Show simple item record

dc.contributor.authorGustavsen, Kim Robert
dc.contributor.authorHuang, Hao
dc.contributor.authorJohannessen, Erik Andrew
dc.contributor.authorWang, Kaiying
dc.date.accessioned2024-04-08T11:49:43Z
dc.date.available2024-04-08T11:49:43Z
dc.date.created2023-10-31T12:51:08Z
dc.date.issued2023
dc.identifier.citationGustavsen, K. R., Huang, H., Johannessen, E. A., & Wang, K. (2023). Boron-induced growth of highly textured Ag (111) films with nano-tentacle structures for the electrochemical reduction of CO2 to CO. Electrochemistry Communications, 156, Artikkel 107600.en_US
dc.identifier.issn1388-2481
dc.identifier.urihttps://hdl.handle.net/11250/3125285
dc.description.abstractAg is a cost-effective alternative to Au as a catalyst for the electrochemical reduction of CO2 into CO, but a reduction in the accompanying overpotential is required to make Ag viable. In this study we use B to modulate the catalytic performance of Ag towards the electrochemical reduction of CO2 to CO. Initial DFT simulations discloses a deviation from the linear scaling relations with the inclusion of B that stabilizes the *COOH intermediate while weakening the binding strength of *CO. A magnetron co-sputtering process is used to develop a catalyst based on B-induced crystal growth of highly textured Ag (1 1 1) films. Incorporation of B facilitates the formation of Ag (1 1 1) coherent twin boundaries, which gives rise to unique nano-tentacle structures. The Ag-B catalyst achieves a faradaic efficiency of CO production of 97.9% at −0.9 V vs RHE with a partial current density that is four times higher compared to pristine Ag. Thus, the inclusion of B into Ag offers a facile approach for circumventing the linear scaling relations, allowing for the design of electrocatalysts with high faradaic efficiencies and current densities.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleBoron-induced growth of highly textured Ag (1 1 1) films with nano-tentacle structures for the electrochemical reduction of CO2 to COen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Authors.en_US
dc.source.pagenumber7en_US
dc.source.volume156en_US
dc.source.journalElectrochemistry communicationsen_US
dc.identifier.doihttps://doi.org/10.1016/j.elecom.2023.107600
dc.identifier.cristin2190506
dc.relation.projectNorges forskningsråd: 295864 NORFAB IIIen_US
dc.relation.projectNorges forskningsråd: 295864en_US
dc.relation.projectThe EEA and Norway Grants Fund for Regional Cooperation: EEA-Poland-NOR/POLNORCCS/PhotoRed/0007/2019-00en_US
dc.relation.projectEU/Marie Skłodowska-Curie Actions individual fellowship CarbonChem 101024758en_US
dc.relation.projectThe EEA and Norway Grants Fund for Regional Cooperation: Norway-Romania project #Graftid, RO-NO-2019-0616en_US
dc.source.articlenumber107600en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal