Vis enkel innførsel

dc.contributor.authorAhmadi, Vafa
dc.contributor.authorDinamarca, Carlos
dc.date.accessioned2023-02-09T10:00:39Z
dc.date.available2023-02-09T10:00:39Z
dc.date.created2023-01-20T11:53:42Z
dc.date.issued2022
dc.identifier.citationAhmadi, V., & Dinamarca, C. (2022, 20.-21. september). Simulation of the Effect of Local Electric Potential and Substrate Concentration on CO2 Reduction via Microbial Electrosynthesis [Paperpresentasjon]. Proceedings of the 63rd International Conference of Scandinavian Simulation Society, SIMS 2022, Trondheim.en_US
dc.identifier.issn1650-3686
dc.identifier.urihttps://hdl.handle.net/11250/3049572
dc.description.abstractIntegrating anaerobic digestion into electrochemical reactors is an advanced technology for biomethane recovery. Imposing low electric potential between electrodes, supplies CO2, electrons, and hydronium ions from anodic oxidation of organic and/or inorganic compounds. Then, autotrophic methanogens on the cathode produce methane from CO2 and H+ by electron uptake from the cathode. However, in mixed microbial environments, acetogens produce acetate as well. These reactions can take place via two different mechanisms, DIET (direct interspecies electron transfer) or IMET (indirect mediated electron transfer). This work investigates CO2 conversion to acetate and methane in an electrochemical biofilm reactor comparing the efficiency of CO2 reduction via DIET and IMET mechanisms at hydrogen evolving potentials from -0.3 to -0.7 vs SHE. The other goal is to prove the importance of mass balance in CO2 reduction at applied voltages. Simulations are done in AQUASIM version 2.1. Simulation results depicted that higher H+ concentration at -0.7 V vs SHE can reduce more CO2 in DIET with less current generation compared to IMET. This shows DIET the more efficient mechanism. Methane production is dominant in IMET model, however higher current is needed for CO2 fixation in this mechanism. Also, biomass concentration, acetate and methane production, substrate concentration, biofilm thickness, biomass distribution in biofilm, and current density over time in both mechanisms are investigated at variant voltages and substrate concentrations. Simulations showed that at high CO2 levels in both mechanisms CO2 conversion cannot reach maximum if the voltage is not high enough to supply H+.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleSimulation of the Effect of Local Electric Potential and Substrate Concentration on CO2 Reduction via Microbial Electrosynthesisen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 Vafa Ahmadi, Carlos Dinamarca.en_US
dc.source.volume192en_US
dc.source.journalLinköping Electronic Conference Proceedingsen_US
dc.identifier.doihttps://doi.org/10.3384/ecp192006
dc.identifier.cristin2111460
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal