Vis enkel innførsel

dc.contributor.authorJaiswal, Rajan
dc.contributor.authorMoldestad, Britt Margrethe Emilie
dc.contributor.authorEikeland, Marianne Sørflaten
dc.contributor.authorNielsen, Henrik Kofoed
dc.contributor.authorThapa, Rajan Kumar
dc.date.accessioned2022-12-09T14:31:46Z
dc.date.available2022-12-09T14:31:46Z
dc.date.created2022-11-25T13:00:47Z
dc.date.issued2022
dc.identifier.citationJaiswal, R., Moldestad, B. M. E., Eikeland, M. S., Nielsen, H. K. & Thapa, R. K. (2022). Image Processing and Measurement of the Bubble Properties in a Bubbling Fluidized Bed Reactor. Energies, 15(21), Artikkel 7828.en_US
dc.identifier.issn1996-1073
dc.identifier.urihttps://hdl.handle.net/11250/3037060
dc.description.abstractThe efficiency of a fluidized bed reactor depends on the bed fluid dynamic behavior, which is significantly influenced by the bubble properties. This work investigates the bubble properties of a bubbling fluidized bed reactor using computational particle fluid dynamic (CPFD) simulations and electrical capacitance tomography (ECT) measurements. The two-dimensional images (along the reactor horizontal and vertical planes) of the fluidized bed are obtained from the CPFD simulations at different operating conditions. The CPFD model was developed in a commercial CPFD software Barracuda Virtual Reactor 20.0.1. The bubble behavior and bed fluidization behavior are characterized form the bubble properties: average bubble diameter, bubble rise velocity, and bubble frequency. The bubble properties were determined by processing the extracted images with script developed in MATLAB. The CPFD simulation results are compared with experimental data (obtained from the ECT sensors) and correlations in the literature. The results from the CPFD model and experimental measurement depicted that the average bubble diameter increased with an increase in superficial gas velocities up to 4.2 Umf and decreased with a further increase in gas velocities due to the onset of large bubbles (potential slugging regime). The bubble rise velocity increased as it moved from the lower region to the bed surface. The Fourier transform of the transient solid volume fraction illustrated that multiple bubbles pass the plane with varying amplitude and frequency in the range of 1–6 Hz. Further, the bubble frequency increased with an increase in superficial gas velocity up to 2.5Umf and decreased with a further increase in gas velocity. The CPFD model and method employed in this work can be useful for studying the influence of bubble properties on conversion efficiency of a gasification reactor operating at high temperatures.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleImage Processing and Measurement of the Bubble Properties in a Bubbling Fluidized Bed Reactoren_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 by the authors.en_US
dc.source.pagenumber18en_US
dc.source.volume15en_US
dc.source.journalEnergiesen_US
dc.source.issue21en_US
dc.identifier.doihttps://doi.org/10.3390/en15217828
dc.identifier.cristin2081043
dc.source.articlenumber7828en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal