Vis enkel innførsel

dc.contributor.authorOstadi, Mohammad
dc.contributor.authorPaso, Kristofer Gunnar
dc.contributor.authorRodriguez-Fabia, Sandra
dc.contributor.authorØi, Lars Erik
dc.contributor.authorManenti, Flavio
dc.contributor.authorHillestad, Magne
dc.date.accessioned2020-10-02T12:35:13Z
dc.date.available2020-10-02T12:35:13Z
dc.date.created2020-09-17T11:31:59Z
dc.date.issued2020
dc.identifier.citationOstadi, M., Paso, K. G., Rodriguez-Fabia, S., Øi, L. E., Manenti, F., & Hillestad, M. (2020). Process Integration of Green Hydrogen: Decarbonization of Chemical Industries. Energies, 13(18), 4859.en_US
dc.identifier.issn1996-1073
dc.identifier.urihttps://hdl.handle.net/11250/2680964
dc.description.abstractIntegrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript, we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations, CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind, solar, etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy, allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically, new process designs uniquely exploit intermittent renewable energy for CO2 conversion, enabling thermal integration, H2 and O2 utilization, and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction, municipal waste incineration, biomass gasification, fermentation, pulp production, biogas upgrading, and calcination, and are an essential step forward in reducing anthropogenic CO2 emissions.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleProcess Integration of Green Hydrogen: Decarbonization of Chemical Industriesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 by the authors.en_US
dc.source.journalEnergiesen_US
dc.identifier.doihttps://doi.org/10.3390/en13184859
dc.identifier.cristin1830769
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal