Bioelectrochemical CO2 Reduction to Methane: MES Integration in Biogas Production Processes
Peer reviewed, Journal article
Published version
Date
2019Metadata
Show full item recordCollections
Abstract
Anaerobic digestion (AD) is a widely used technique to treat organic waste and produce biogas. This article presents a practical approach to increase biogas yield of an AD system using a microbial electrosynthesis system (MES). The biocathode in MES reduces carbon dioxide with the supplied electrons and protons (H+) to form methane. We demonstrate that the MES is able to produce biogas with over 90% methane when fed with reject water obtained from a local wastewater treatment plant. The optimised cathode potential was observed in the range of −0.70 V to −0.60 V and optimised feed pH was around 7.0. With autoclaved feed, these conditions allowed methane yields of about 9.05 mmol/L(reactor)-day. A control experiment was then carried out to make a comparison between open circuit and MES methanogenesis. The highest methane yield of about 22.1 mmol/L(reactor)-day was obtained during MES operation that performed 10–15% better than the open circuit mode of operation. We suggest and describe an integrated AD-MES system, by installing MES in the reject water loop, as a novel approach to improve the efficiency and productivity of existing waste/wastewater treatment plants.
Description
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited