Computational Fluid Dynamics Study of the Effects of Drill Cuttings on the Open Channel Flow
Welahettige, Prasanna Kumara Welahetti; Berg, Christian; Lundberg, Joachim; Lie, Bernt; Vågsæther, Knut
Peer reviewed, Journal article
Published version
View/ Open
Date
2019Metadata
Show full item recordCollections
Abstract
A three-dimensional computational fluid dynamics (CFD) study was carried out for drilling fluid flow with drill cuttings in open channels. The flow is similar to the return flow when drilling, stream containing drilling fluid, and drill cuttings. The computational model is under the framework of the Eulerian multifluid volume of the fluid model. The Herschel–Bulkley rheological model was used to describe the non-Newtonian rheology of the drilling fluid, and the computational model was validated with experimental results for two-phase flow in the literature. The effect of flow depth and flow velocity in an open channel was studied for drill cutting size of up to 5 mm and for a solid volume fraction of up to 10%. For constant cross section and short open channels, the effect of drill cuttings on flow depth and mean velocity was found to be small for particle sizes less than 5 mm and solid volume fractions less than 10%. High momentum force in the downward direction can carry the solid-liquid mixture at higher velocities than a lower density mixture. Higher inclination angles mean that the gravity effect upon the flow direction is more significant than the particle friction for short channels.
Description
,is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.