Vis enkel innførsel

dc.contributor.authorChavez Panduro, Elvia Anabela
dc.contributor.authorTorsæter, Malin
dc.contributor.authorGawel, Kamila
dc.contributor.authorBjørge, Ruben
dc.contributor.authorGibaud, Alain
dc.contributor.authorBonnin, Anne
dc.contributor.authorSchlepütz, Christian M.
dc.contributor.authorBreiby, Dag Werner
dc.date.accessioned2019-11-14T11:41:30Z
dc.date.available2019-11-14T11:41:30Z
dc.date.created2019-09-13T09:34:44Z
dc.date.issued2019
dc.identifier.citationCrystal Growth & Design. 2019, 19 (10), 5850-5857.nb_NO
dc.identifier.issn1528-7483
dc.identifier.urihttp://hdl.handle.net/11250/2628514
dc.descriptionThis is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.nb_NO
dc.description.abstractCement degradation caused by CO2 exposure is an increasingly important environmental challenge that must be understood, for example, if former oil reservoirs are to be used for CO2 storage. When exposed to CO2-saturated brine, cement undergoes a chemically complex carbonation process that influences all the physicochemical properties of the cement. It is known that under favorable conditions, fractures and voids in cement can be occluded, or self-sealed, by precipitation of calcium carbonate. Here, we report a detailed X-ray microcomputed tomography (μ-CT) study on the carbonation of gas pores (macropores) of diameter ∼1 mm in cement. Specifically, cured class G Portland cement with sub-millimeter spherical disconnected macropores was exposed to CO2-saturated brine at high pressure (280 bar) and high temperature (90 °C) for 1 week. High-resolution synchrotron-based μ-CT enabled visualizing the morphology of the precipitates inside the macropores within both unreacted and carbonated regions. Quantitative analysis of the type and amount of material deposited in the macropores during carbonation suggests that the filling of the disconnected macropores involves transport of calcium ions from the cement bulk to the macropore interior. A detailed model describing the chemical processes involved is provided. The present study gives a deeper understanding of cement carbonation by literally shedding light on the complex precipitate structures within the macropores.nb_NO
dc.language.isoengnb_NO
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleComputed X-ray Tomography Study of Carbonate Precipitation in Large Portland Cement Poresnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.rights.holder© 2019 American Chemical Societynb_NO
dc.source.pagenumber5850-5857nb_NO
dc.source.volume19nb_NO
dc.source.journalCrystal Growth & Designnb_NO
dc.source.issue10nb_NO
dc.identifier.doi10.1021/acs.cgd.9b00864
dc.identifier.cristin1724343
dc.relation.projectNorges forskningsråd: 193816nb_NO
dc.relation.projectNorges forskningsråd: 275182nb_NO
dc.relation.projectNorges forskningsråd: 262644nb_NO
dc.relation.projectNorges forskningsråd: 243765nb_NO
cristin.unitcode222,58,4,0
cristin.unitnameInstitutt for mikrosystemer
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal