Vis enkel innførsel

dc.contributor.authorChladek, Jana
dc.contributor.authorEnstad, Gisle
dc.contributor.authorMelaaen, Morten Christian
dc.date.accessioned2012-03-27T11:00:11Z
dc.date.accessioned2017-04-19T12:52:11Z
dc.date.available2012-03-27T11:00:11Z
dc.date.available2017-04-19T12:52:11Z
dc.date.issued2011
dc.identifier.citationPowder Technology 207 (2011) nr 1-3, s. 87-95
dc.identifier.issn0032-5910
dc.identifier.urihttp://hdl.handle.net/11250/2438491
dc.description.abstractThe effect of the fluidization air flow rate and the transport air velocity on the solids mass flow rate and the pressure drop along the transport pipe was investigated in a vertical air-lift. The use of two different materials, glass (150 μm) and zirconium oxide (260 μm) particles (Geldart's B class), enabled to estimate the effect of particle properties on the air-lift performance. Different levels of the solids mass flow rate were obtained by varying the fluidization air flow rate while keeping the transport air velocity constant. The solids loading ratio varied between 2 and 16 for both types of particles. The pressure drop was nonlinearly related to the solids mass flow rate at most of the transport air velocities tested. State diagrams presenting the relationship between the transport air velocity, the solids mass flow rate, and the pipeline pressure drop were constructed to characterize the flow pattern and to compare the behavior of the glass and zirconium oxide particles. Owing to the larger size and higher density, the zirconium oxide particles displayed higher pressure drop values than the glass beads and the minimum pressure drop shifted towards higher transport air velocities. The velocity at the transition between dilute and dense phase conveying was approximately in the range of 7 to 10 m/s for glass beads and 10 to 12 m/s for zirconium oxide, at the solids mass flow rates tested. The flow patterns could be also effectively characterized from the analysis of the pressure drop fluctuations at different transport air velocities.
dc.language.isoeng
dc.publisherElsevier
dc.subjectPneumatic conveying
dc.subjectVertical air-lift
dc.subjectFluidization
dc.subjectTransport air velocity
dc.subjectSolid mass flow rate
dc.subjectpipeline pressure drop
dc.titleEffect of operating conditions and particle properties on performance of vertical air-lift
dc.typeJournal article
dc.typePeer reviewed
dc.description.versionAccepted version
dc.subject.nsi574
dc.identifier.doihttp://dx.doi.org/10.1016/j.powtec.2010.10.013


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel