Modeling for control of run-of-river power plant Grønvollsfoss
Journal article, Peer reviewed
Published version

View/ Open
Date
2015-11-25Metadata
Show full item recordCollections
Original version
Vytvytskyi, L., Sharma, R., Granstrøm, I., & Lie, B. (2015). Modeling for control of run-of-river power plant Grønvollsfoss. Paper presented at the 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden. doi:http://dx.doi.org/10.3384/ecp15119237 http://dx.doi.org/10.3384/ecp15119237Abstract
Design of optimal operation and control of a run-of-river hydro power plant depends on good models for the elements of the plant. River reaches are often considered to be shallow channels with free surface flow. A typical model for such reaches thus use the Saint Venant model, which is a 1D model based on the mass and momentum balances. This combination of free surface and momentum balance makes the problem numerically challenging to solve. Here, the finite volume method with staggered grid is used to illustrate the dynamics of the river upstream from the Grønvollfoss run-of-river power plant in Telemark, Norway, operated by Skagerak Energi. A model of the same river in the Grønvollfoss power plant has been studied previously, but here the geometry of the river is changed due to new information from Skagerak Energi. The numerical scheme for solving the model has been further developed. In addition, the behavior of the dynamic model is compared to data form experiments, carried out on the Grønvollfoss run-of-river power plant. The essence of the experiments is to consider the time taken from an increase in the input volumetric flow, to a measured change in level in front of the dam at Grønvollfoss. The results of the improved model (numerically, tuned to experiments), is a model that can be further used for control synthesis and analysis.