• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • 1 USN ansatte
  • Fakultet for teknologi, naturvitenskap og maritime fag
  • Institutt for elektro, IT, og kybernetikk
  • View Item
  •   Home
  • 1 USN ansatte
  • Fakultet for teknologi, naturvitenskap og maritime fag
  • Institutt for elektro, IT, og kybernetikk
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parameter and State Estimation of Large-Scale Complex Systems Using Python Tools

Perera, M. Anushka S.; Hauge, Tor Anders; Pfeiffer, Carlos Fernando
Journal article, Peer reviewed
Thumbnail
View/Open
MIC-2015-3-6.pdf (4.807Mb)
URI
http://hdl.handle.net/11250/2438463
Date
2015
Metadata
Show full item record
Collections
  • Institutt for elektro, IT, og kybernetikk [236]
Original version
Perera, A., Hauge, T. A., & Pfeiffer, C. (2015). Parameter and State Estimation of Large-Scale Complex Systems Using Python Tools. Modeling, Identification and Control, 36(3), 189-198. doi:http://dx.doi.org/10.4173/mic.2015.3.6   http://dx.doi.org/10.4173/mic.2015.3.6
Abstract
This paper discusses the topics related to automating parameter, disturbance and state estimation analysis of large-scale complex nonlinear dynamic systems using free programming tools. For large-scale complex systems, before implementing any state estimator, the system should be analyzed for structural observability and the structural observability analysis can be automated using Modelica and Python. As a result of structural observability analysis, the system may be decomposed into subsystems where some of them may be observable --- with respect to parameter, disturbances, and states --- while some may not. The state estimation process is carried out for those observable subsystems and the optimum number of additional measurements are prescribed for unobservable subsystems to make them observable. In this paper, an industrial case study is considered: the copper production process at Glencore Nikkelverk, Kristiansand, Norway. The copper production process is a large-scale complex system. It is shown how to implement various state estimators, in Python, to estimate parameters and disturbances, in addition to states, based on available measurements.

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit