• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • 1 USN ansatte
  • Publikasjoner fra CRIStin
  • View Item
  •   Home
  • 1 USN ansatte
  • Publikasjoner fra CRIStin
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Particle image velocimetry measurements of stratified gas-liquid flow in horizontal and inclined pipes

Vestøl, Sondre; Kumara, W.A.S.; Melaaen, Morten Christian
Journal article, Peer reviewed
Published version
Thumbnail
View/Open
2018VestolParticleimage.pdf (2.650Mb)
URI
http://hdl.handle.net/11250/2468785
Date
2018
Metadata
Show full item record
Collections
  • Institutt for prosess-, energi- og miljøteknologi [288]
  • Publikasjoner fra CRIStin [2656]
Original version
International Journal of Computational Methods and Experimental Measurements. 2018, 6 (2), 411-422   10.2495/CMEM-V6-N2-12
Abstract
The main objectives of this work is to produce detailed velocity profile measurements over a range of operating conditions of two phase gas/liquid flow with low liquid fractions in horizontal and inclined pipes. The experiments are performed in a 15 m long stainless steel pipe section with internal diameter 56 mm at room temperature and atmospheric outlet pressure. Exxsol D60 oil (viscosity 1.30 mPa s, density 793 kg/m3), water (viscosity 0.89 mPa s, density 999 kg/m3) and air (viscosity 0.018 mPa s, density 1.22 kg/m3) are used as test fluids. The pipe inclination is changed in the range from 5° upward to 5° downward. The measurements are made at mixture velocity, 5 m/s for different inlet liquid fractions. The cross-sectional distribution of phase fractions is measured using a traversable single-beam gamma densitometer. The particle image velocimetry (PIV) is utilized in order to obtain non-invasive instantaneous velocity measurements of the flow field. Based on the instantaneous local velocities, mean velocities, root mean squared velocities and Reynolds stresses are calculated. The measured mean velocity and turbulence profiles show a strong dependency with pipe inclination. The present measurements show that PIV can be successfully used as a practical measurement technique for multiphase flow applications with potential to become even more powerful in the near future as digital camera technology progresses.
Journal
International Journal of Computational Methods & Experimental Measurements
Copyright
© 2018 WIT Press, www.witpress.com

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit