Vis enkel innførsel

dc.contributor.authorVågsæther, Knut
dc.contributor.authorKnudsen, Vegeir
dc.contributor.authorBjerketvedt, Dag
dc.date.accessioned2011-05-03T13:38:27Z
dc.date.accessioned2017-04-19T12:52:28Z
dc.date.available2011-05-03T13:38:27Z
dc.date.available2017-04-19T12:52:28Z
dc.date.issued2007
dc.identifier.citationInternational journal of hydrogen energy 32(13), 2186-2191
dc.identifier.issn0360-3199
dc.identifier.urihttp://hdl.handle.net/11250/2438534
dc.description.abstractFlame acceleration and deflagration to detonation transition (DDT) is simulated with a numerical code based on a flux limiter centered method for hyperbolic differential equations. The energy source term is calculated by a Riemann solver for the inhomogeneous Euler equations for the turbulent combustion and a two-step reaction model for hydrogen–air. The transport equations are filtered for large eddy simulation (LES) and the sub-filter turbulence is modelled by a transport equation for the turbulent kinetic energy. The flame tracking is handled by the G-equation for turbulent flames. Numerical results are compared to pressure histories from physical experiments. These experiments are performed in a closed, circular, 4 m long tube with inner diameter of 0.107 m. The tube is filled with hydrogen–air mixture at 1 atm, which is at rest when ignited. The ignition is located at one end of the tube. The tube is fitted with an obstruction with circular opening 1 m down the tube from the ignition point. The obstruction has a blockage ratio of 0.92 and a thickness of 0.01 m. The obstruction creates high pressures in the ignition end of the tube and very high gas velocities in and behind the obstruction opening. The flame experiences a detonation to deflagration transition DDT in the supersonic jet created by the obstruction. Pressure build-up in the ignition end of the tube is simulated with some discrepancies. The DDT in the supersonic jet is simulated, but there is a discrepancy in the time of the simulated DDT.
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofVågsæther, K. (2010). Modelling of gas explosions. Doctoral thesis. http://hdl.handle.net/2282/1113
dc.subjectmodelling
dc.subjectflame acceleration
dc.subjectDDT
dc.titleSimulation of flame acceleration and DDT in H-2-air mixture with a flux limiter centered method
dc.typeJournal article
dc.typePeer reviewed
dc.description.versionAccepted version
dc.subject.nsi429
dc.identifier.doihttp://dx.doi.org/10.1016/j.ijhydene.2007.04.006


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel