• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • 1 USN ansatte
  • Fakultet for teknologi, naturvitenskap og maritime fag
  • Institutt for elektro, IT, og kybernetikk
  • Vis innførsel
  •   Hjem
  • 1 USN ansatte
  • Fakultet for teknologi, naturvitenskap og maritime fag
  • Institutt for elektro, IT, og kybernetikk
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural observability analysis of large scale systems using Modelica and Python

Perera, M. Anushka S.; Lie, Bernt; Pfeiffer, Carlos Fernando
Journal article, Peer reviewed
Published version
Thumbnail
Åpne
MIC-2015-1-4.pdf (1.743Mb)
Permanent lenke
http://hdl.handle.net/11250/2438456
Utgivelsesdato
2015
Metadata
Vis full innførsel
Samlinger
  • Institutt for elektro, IT, og kybernetikk [193]
Originalversjon
Perera, A., Lie, B., & Pfeiffer, C. (2015). Structural Observability Analysis of Large Scale Systems Using Modelica and Python. Modeling, Identification and Control, 36(1), 53-65. doi: http://dx.doi.org/10.4173/mic.2015.1.4   http://dx.doi.org/10.4173/mic.2015.1.4
Sammendrag
State observability of dynamic systems is a notion which determines how well the states can be inferred from input-output data. For small-scale systems, observability analysis can be done manually, while for large-scale systems an automated systematic approach is advantageous. Here we present an approach based on the concept of structural observability analysis, using graph theory. This approach can be automated and applied to large-scale, complex dynamic systems modeled using Modelica. Modelica models are imported into Python via the JModelica.org-CasADi interface, and the Python packages NetworkX (for graph-theoretic analysis) and PyGraphviz (for graph layout and visualization) are used to analyze the structural observability of the systems. The method is demonstrated with a Modelica model created for the Copper production plant at Glencore Nikkelverk, Kristiansand, Norway. The Copper plant model has 39 states, 11 disturbances and 5 uncertain parameters. The possibility of estimating disturbances and parameters in addition to estimating the states are also discussed from the graph-theory point of view. All the software tools used on the analysis are freely available.

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit