
 

 

 
  

Faculty of Technology, Natural Sciences and Maritime Studies 
Department of Maritime Operations 

University of South-Eastern Norway 

 

Modeling Perspective on Human-Automation Interaction (HAI): 
Levels and Trust in Automation 

 
Mehdi Poornikoo 
A Ph.D. dissertation for the degree of Nautical operations, March 2024 



 



 

 I 

 

 

 

 

 

 

 

Modeling Perspective on Human-Automation Interaction (HAI): Levels and 
Trust in Automation 

 
Mehdi Poornikoo  



II 

© Mehdi Poornikoo, 2024 

UiT The Arctic University of Norway 
Faculty of Science and Technology 
Department of Technology and Safety 

Norwegian University of Science and Technology 
Faculty of Engineering 
Department of Ocean Operations and Civil Engineering 

University of South-Eastern Norway 
Faculty of Technology, Natural Sciences and Maritime Studies 
Department of Maritime Operations 

Western Norway University of Applied Sciences 
Faculty of Business Administration and Social Sciences 
Department of Maritime Studies 

Doctoral dissertations at the University of South-Eastern Norway no. 204

ISSN: 2535-5244 (print)
ISSN: 2535-5252 (online)
ISBN: 978-82-7206-884-3 (print)
ISBN: 978-82-7206-885-0 (online)



 

 III 

Dedication 
 

 

 

 

 

 

 

In loving memory of my mother, Masoume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 IV 

  



 

 V 

Summary 

The advent of Maritime Autonomous Surface Ships (MASS) represents a significant leap 
forward in the maritime industry, promising to redefine sea transportation's efficiency, safety, 
and economics. However, this technological advance brings forward the complex interplay 
between human operators and autonomous systems, particularly in the context of Shore Control 
Centers (SCCs), where remote operators play critical roles. The success of integrating MASS 
into the global shipping infrastructure depends not just on technological advancements but 
equally on understanding and optimizing Human-Automation Interaction (HAI). The transition 
to supervisory control roles introduces a paradigm shift in operational dynamics. Remote 
operators are tasked with maintaining oversight over multiple vessels simultaneously, each 
possibly facing different sea conditions and operational challenges. This multi-vessel 
management can significantly amplify the cognitive load, requiring operators to prioritize 
information effectively and make swift decisions to ensure safety and efficiency. One of the 
primary concerns is the risk of over-reliance on automation, which may lead to complacency 
and reduced situational awareness. The remote nature of operation may exacerbate these issues, 
as operators are removed from the immediate physical environment of the vessels they control. 
Moreover, the unpredictable and dynamic nature of maritime environments makes complete 
autonomy a challenging goal; remote operators must be prepared to take control in complex or 
emergency situations. 
To address these challenges and leverage the full potential of MASS, it is imperative to develop 
scientific and robust models of HAI. These models should account for the unique demands of 
maritime environments and the specific roles of remote operators. By understanding the 
cognitive, psychological, and social factors that influence remote operators' performance, 
researchers and practitioners can design more intuitive and effective interfaces and decision-
support systems. Effective HAI models can guide the development of training programs 
tailored to the needs of remote operators, focusing on critical skills such as situational 
awareness, decision-making under uncertainty, and effective communication with autonomous 
systems. Moreover, these models can help identify potential sources of error, the operators’ 
responses, and cognitive overload, enabling the design of systems that support operators' 
decision-making processes and reduce the likelihood of accidents. Two pivotal aspects of these 
models are the Levels of Automation (LOAs) and Trust in Automation (TiA). Understanding 
and accurately modeling these dimensions are crucial for designing systems that effectively 
balance human supervisory control of autonomous capabilities. 
In response to the growing scrutiny regarding the validity of Human Factors and Ergonomics 
(HFE) models, as well as the need for flexible yet credible HAI models, this dissertation 
concentrated on the importance of models and modeling within Human-Automation Interaction 
(HAI), particularly emphasizing Trust in Automation (TiA) and Levels of Automation (LOA) 
as central themes for modeling exploration. This dissertation commences by exploring the 
significance of scientific modeling and developing criteria that can be utilized to assess the 
relative scientific credibility of various models. Furthermore, models of Trust in Automation 
(TiA) were assessed against these criteria not only to showcase the use of the criteria but also 
to understand the TiA modeling efforts in the literature. On the other hand, epistemological 
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accounts of modeling efforts were investigated, to realize the suitability of each approach for 
modeling HAI. The findings suggested simulation as a viable approach to tackle the 
complexities in modeling TiA and LOA within the context of HAI and supervisory control of 
MASS. By incorporating models of Trust in Automation (TiA) and Levels of Automation 
(LOA), simulation offers a powerful tool for examining complex interactions and dynamics 
that are difficult, if not impossible, to study in real-world settings due to safety, cost, and 
practicality concerns. 
 
  



 

 VII 

Acknowledgment 

As I present this work, I am compelled to express my gratitude to those who have been 
instrumental in my PhD journey. Undertaking this doctoral work would not have been possible 
without the guidance and support of my supervisors: Professor Kjell Ivar Øvergård and 
Associate Professor Frøy Birte Bjørneseth. Thank you both for your assistance throughout this 
process. Kjell, your mentorship has been invaluable, and your friendship, accompanied by 
enlightening discussions on “good” science over whiskey and wine, has been a source of great 
support and inspiration. 

My heartfelt thanks go to my friends, whose kindness and companionship made this journey 
endurable. To Sanda and Kristoffer, for welcoming me(us) from the very beginning, sharing 
their table, and treating me(us) like family members. To Easa, my FocusMate, FIFA partner, 
and dear friend. To Ana, Lena, and Boban, for friendship and companionship—Hvala! 

I would also like to extend my appreciation to the colleagues at IMA who impacted the PhD 
environment for the better. To Steven, Munim, Karina, Carina, Halvor, Monica, Fred, Kenn, 
Tor Erik, Anne H., Tor Inge, Christian H., Paul Nikolai, Morten, Per H., Erlend, Erik Andre, 
Lene and Per Eirik; thank you! 

To my fellow PhD candidates, Karen, Laura, Mariia, Hasan, Amit, Koen, Simen, and William, 
your camaraderie and engaging discussions were invaluable. A special thanks to my friend and 
office mate, Mari, for your unwavering support and courageous spirit. 

I am profoundly thankful to my father, my solid, steady, foundational rock. Thank you for your 
unconditional love and support. I aspire to become like you. 

Lastly, my deepest gratitude goes to my partner in crime, my beloved wife, Veronica. Your 
constant encouragement and support have been crucial in this journey. Thank you for always 
being by my side. 

 

March 2024 
Mehdi 
  



 

 VIII 

  



 

 IX 

List of Publications 

Appended Articles 

Article 1 
Poornikoo, M., & Øvergård, K. I. (2023). Model evaluation in human factors and ergonomics 
(HFE) sciences; case of trust in automation. Theoretical Issues in Ergonomics Science, 1-37. 
https://doi.org/10.1080/1463922X.2023.2233591 

Article 2 
Poornikoo M., Mansouri M. (2023), "Systems approach to modeling controversy in Human 
factors and ergonomics (HFE)," 18th Annual System of Systems Engineering Conference 
(SoSe), Lille, France, 2023, pp. 1-8, 
https://doi.org/10.1109/SoSE59841.2023.10178634 

Article 3 
Poornikoo, M., & Øvergård, K. I. (2022). Levels of automation in maritime autonomous surface 
ships (MASS): A fuzzy logic approach. Maritime Economics & Logistics, 24(2), 278-301. 
https://doi.org/10.1057/s41278-022-00215-z 

Article 4 
Poornikoo M., Gyldensten W., Vesin B., Øvergård, K. I. (In review) Trust in Automation (TiA): 
simulation model, and empirical findings in supervisory control of Maritime Autonomous 
Surface Ships (MASS), International Journal of Human-Computer Interaction 

  

https://doi.org/10.1080/1463922X.2023.2233591
https://doi.org/10.1109/SoSE59841.2023.10178634
https://doi.org/10.1057/s41278-022-00215-


 

 X 

  



 

 XI 

List of Tables 
Table 1, Definitions of Trust in Automation (TiA) ................................................................................ 18	
Table 2, Model evaluation criteria and their indicators (Poornikoo & Øvergård, 2023) ....................... 57	
Table 3, Pairwise criteria comparison .................................................................................................... 58	
Table 4, Normalized Summary Scores of TiA Models (Conceptual and Computational) (Poornikoo & 
Øvergård, 2023) ..................................................................................................................................... 60	
Table 5, Outcome- and Event-driven Models ........................................................................................ 63	
Table 6, Inputs, and Output membership functions type and parameters (Poornikoo & Øvergård, 2022)
 ................................................................................................................................................................ 66	
Table 7, Results of perceived reliability, trust, and gaze metrics pre- and post-error ........................... 80	
Table 8, Correlational matrix ................................................................................................................. 81	
Table 9, Summary of key findings and contributions of this dissertation ............................................. 91	
 

  



 

 XII 

  



 

 XIII 

List of Figures 
Figure 1, Overview of the dissertation research focus. ............................................................................ 5	
Figure 2, A concept of Shore Control Center (SCC) at University of South-Eastern Norway (USN) 
research park, Photo taken by Mehdi Poornikoo, all rights reserved. ...................................................... 8	
Figure 3, A conceptual framework of SCC operator and MASS operation. .......................................... 10	
Figure 4, Systems with different types and levels of automation, adapted from Parasuraman et al. 
(2000) ..................................................................................................................................................... 12	
Figure 5, Application of levels and types of automation, adapted from Parasuraman et al. (2000) ...... 14	
Figure 6, Levels of Automation/Autonomy for MASS ......................................................................... 15	
Figure 7, Concept of Supervisory Control (Sheridan, 2021) ................................................................. 16	
Figure 8, Trust in Automation and Reliance (Lee and See, 2004) ......................................................... 27	
Figure 9, Three-layered model of Trust in Automation (Hoff and Bashir, 2015) ................................. 28	
Figure 10, HFE System Characteristics adopted from Wilson (2014) ................................................... 62	
Figure 11, Operational criteria for levels of automation, adapted from Parasuraman et al. (2000) ...... 65	
Figure 12, Fuzzy logic steps. .................................................................................................................. 65	
Figure 13, Process of defining membership function of LOAs linguistic terms (Poornikoo & Øvergård, 
2022) ...................................................................................................................................................... 66	
Figure 14, Inputs, and Output Gaussian membership functions (Poornikoo & Øvergård, 2022) .......... 67	
Figure 15, Rule viewer for 4 inputs and output variables (Poornikoo & Øvergård, 2022) ................... 68	
Figure 16, Fuzzy LOA process across tasks, functions, and system (Poornikoo & Øvergård, 2022) ... 68	
Figure 17, Simplified TiA Causal Loop Diagram (CLD) ...................................................................... 71	
Figure 18, Model's three main feedback loops. ..................................................................................... 72	
Figure 19, Stock and Flow Diagram (SFD) ........................................................................................... 72	
Figure 20, Model at equilibrium ............................................................................................................ 74	
Figure 21, Model’s S-shape growth & path dependency ....................................................................... 74	
Figure 22, Individual variability in trust evolution (initial trust) ........................................................... 74	
Figure 23, Mismatches between expected and perceived performance ................................................. 74	
Figure 24, Trust decline as a result of system malfunction. ................................................................... 74	
Figure 25, Individual variability in propensity to trust .......................................................................... 74	
Figure 26, Multiple simulation runs with varying error time ................................................................. 75	
Figure 27, Experiment Setup; Navigation Lab, University of South-Eastern Norway (USN) .............. 76	
Figure 28, Areas of Interest (AOI) ......................................................................................................... 77	
Figure 29, Vessel’s traffic environment ................................................................................................. 78	
Figure 30, Steering System Panel .......................................................................................................... 78	
Figure 31, Vessel's deviation from the pre-defined route. ..................................................................... 79	
Figure 32, Experiment procedure ........................................................................................................... 79	
Figure 33, Visual attention prior (top) and post (bottom) system malfunction. .................................... 80	
Figure 34, Overview of the four articles, key insights, and the methods ............................................... 84	
 

  



 

 XIV 

  



 

 XV 

List of Abbreviations 
	

Abbreviation Definition 
AI Artificial Intelligence 
AIC Akaike Information Criterion 
ANN Artificial Neural Network 
ANOVA Analysis of Variance 
AOI Area of Interest 
ATMS Air Traffic Management System 
AUTC Area Under Trust Curve 
BWM Best Worst Method 
CLD Causal Loop Diagram 
CSE Cognitive System Engineering 
DP Dynamic Positioning 
ECDIS Electronic Chart and Display and Information System 
EDFT Extended Decision Field Theory 
FIS Fuzzy Inference System 
FL Fuzzy Logic 
GNSS Global Navigation Satellite System 
HAI Human-Automation Interaction 
HFE Human Factors and Ergonomics 
HITL Human-In-The-Loop 
HOTL Human-On-The-Loop 
HPM Human Performance Modeling 
IMO International Maritime Organization 
JSC Joint Cognitive System 
MASS Maritime Autonomous Surface Ship 
MCDM Multi-criteria Decision Making 
MUNIN Maritime Unmanned Navigation through Intelligence in Networks 
NDS Nonlinear Dynamic System 
OPTIMO Online Probabilistic Trust Inference Model 
PC Personal Computer 
RQ Research Question 
SCC Shore Control Center 
SD System Dynamics 
SEM Subject Matter Expert 
TCAS Traffic Collision Avoidance System 
TiA Trust in Automation 
TRA Theory of Reasoned Action 

  



 

 XVI 

  



 

 XVII 

Table of Contents 
1	 Introduction	....................................................................................................................................................	1	

1.1	 Establishing the Context	..................................................................................................................................	1	
1.2	 Problem Description	.........................................................................................................................................	2	
1.3	 Research Focus, Objectives, and Questions	.............................................................................................	4	
1.4	 Structure of the Dissertation	..........................................................................................................................	6	

2	 Background	....................................................................................................................................................	7	
2.1	 Autonomous Ships and Shore Control Center (SCC)	...........................................................................	7	
2.2	 Autonomy, Automation, and Human-Automation Interaction (HAI)	...........................................	11	
2.3	 Level of Automation (LOA)	.......................................................................................................................	11	
2.4	 Supervisory Control	.......................................................................................................................................	15	
2.5	 Complacency and Automation Bias	.........................................................................................................	17	
2.6	 Trust in Automation (TiA)	..........................................................................................................................	18	

2.6.1	 Trust as Consequence (Trust Factors)	..................................................................................................................	20	
2.6.2	 Trust as Precursor (Trust outcomes): Automation Misuse, Disuse, and Abuse	.....................................	23	
2.6.3	 Trust Development	.....................................................................................................................................................	24	
2.6.4	 Models of TiA	..............................................................................................................................................................	24	

3	 Theoretical Grounding	............................................................................................................................	31	
3.1	 Evolution of Human Factors and Ergonomics (HFE)	........................................................................	31	
3.2	 HFE As Scientific Discipline	......................................................................................................................	32	
3.3	 HFE As Basic and Applied Discipline	....................................................................................................	34	
3.4	 HFE As System Discipline	..........................................................................................................................	35	

3.4.1	 Complicated vs. Complex Systems	.......................................................................................................................	36	
3.4.2	 Nonlinear Dynamic Systems (NDS)	.....................................................................................................................	37	

4	 Research Methods	.....................................................................................................................................	39	
4.1	 Theory, Model, and Modeling	....................................................................................................................	39	
4.2	 Simulation Modeling	.....................................................................................................................................	40	

4.2.1	 Fuzzy Logic (FL)	........................................................................................................................................................	42	
4.2.2	 System Dynamics (SD)	.............................................................................................................................................	44	

5	 Research Philosophy	................................................................................................................................	47	
5.1	 From Reductionism to Relativism	............................................................................................................	47	
5.2	 Philosophy of Social Sciences	....................................................................................................................	50	
5.3	 Research Validity	............................................................................................................................................	52	

6	 Results and Summary of Appended Articles	...................................................................................	55	



 

 XVIII 

6.1	 Summary and Results of Article 1	............................................................................................................	55	
6.1.1	 Criteria Development	.................................................................................................................................................	55	
6.1.2	 Model Evaluation	........................................................................................................................................................	58	

6.2	 Summary and Results of Article 2	............................................................................................................	61	
6.2.1	 HFE As a System Discipline	...................................................................................................................................	61	
6.2.2	 Epistemological Assumptions of Modeling Approaches	...............................................................................	62	

6.3	 Summary and Results of Article 3	............................................................................................................	64	
6.4	 Summary and Results of Article 4	............................................................................................................	69	

6.4.1	 Model Structure	...........................................................................................................................................................	70	
6.4.2	 Simulation Results	......................................................................................................................................................	72	
6.4.3	 Empirical Study	...........................................................................................................................................................	75	
6.4.4	 Experiment Results	.....................................................................................................................................................	79	

7	 Synthesis of the Results and General Reflection	............................................................................	83	
7.1	 General Reflection	..........................................................................................................................................	85	
7.2	 Research Limitations	.....................................................................................................................................	87	

7.2.1	 Model Evaluation	........................................................................................................................................................	87	
7.2.2	 Modeling Epistemology	............................................................................................................................................	87	
7.2.3	 Level of Automation (LOA) Fuzzy Logic Model	............................................................................................	87	
7.2.4	 Trust in Automation (TiA) System Dynamics Model	....................................................................................	88	

8	 Conclusion	...................................................................................................................................................	89	
8.1	 Future Research Recommendations	.........................................................................................................	92	

9	 References	...................................................................................................................................................	93	
Appendix A- Informed Consent Form	.....................................................................................................	135	
Appendix B- Experiment Instruction	.......................................................................................................	138	
Appendix C- Demographic Form	..............................................................................................................	142	
Appendix D- Trust in Automation Questionnaire	................................................................................	143	
Appendix E- The Big Five Personality Test Questionnaire	.............................................................	145	
Appendix F- STELLA Syntax Documentation	.....................................................................................	146	
Appendix G- Articles	....................................................................................................................................	148	
 



 

 1 

1 Introduction 

1.1 Establishing the Context 
Industry 4.0 marks a paradigm shift from conventional automation technologies, which acted 
as supplements to human work, to a new era of machine autonomy. In this age, automation 
emerges as an intelligent entity, capable of executing complex tasks such as planning and 
decision-making, powered by advancements in the Artificial Intelligence (AI) (Aiello et al., 
2020; Sepehri et al., 2022). Yet, the vision of machines functioning autonomously within 
unpredictable and unstructured environments is far from realization. Beyond the technical 
challenges, there exist credible arguments, such as ethical concerns and the need for 
accountability, that might limit the absolute autonomy of machines (Coito, 2021; Jordan, 2019). 
Contemporary research has thus pivoted towards hybrid interaction frameworks that harness 
both human expertise and automated efficiency. One such framework is supervisory control, 
where the level of autonomy afforded to machines becomes higher, but human control and 
supervision are also essential. In such a scenario, the human operator transitions to a 
supervisory role, monitoring automated functions and intervening as necessary, particularly in 
unforeseen circumstances or to revise objectives. One of the key applied domains experiencing 
this transition is the Maritime Autonomous Surface Ship (MASS). Various research and 
industry projects have anticipated that autonomous ships will become a reality in seas in the 
coming years (Jalonen et al., 2017; Jokioinen et al., 2016; Laurinen, 2016). The shift towards 
autonomous shipping is expected to occur gradually, progressing from lower levels of 
autonomy to higher ones (Laurinen, 2016; Utne et al., 2017), where unmanned ships would 
likely operate with constrained autonomy, either supervised or controlled by a Shore Control 
Center (SCC) operator (Porathe et al., 2014; Ringbom et al., 2017.; Rodseth et al., 2018; 
Rodseth, 2017; Rødseth et al., 2021). This implies that MASS does not equate to completely 
unmonitored operations, and humans are still required to supervise and analyze the operations 
performed by autonomous systems. 

As automation continues to reshape the working environments, the role of the operator’s 
cognitive factors such as mental workload, trust, and self-confidence, during interactions with 
automated systems becomes crucial for effective human-automation interaction (Hussein et al., 
2020; Lee & See, 2004; Peters et al., 2015). These cognitive factors significantly influence an 
individual's willingness to use and rely on automation (Gao & Lee, 2006; Hancock et al., 2013; 
Lee & Moray, 1994; Riley, 1996). Consequently, creating automated systems that respond to 
the user's cognitive state could enhance task performance and learning (Hancock et al., 2013). 
In this line, cognitive models may become important in explaining and predicting cognitive 
states and would enable systems to modify their responses, adjusting transparency, behavior, 
and autonomy levels (Alonso & De La Puente, 2018; Chen et al., 2015, 2015). Modeling 
Human-Automation Interaction (HAI) can help design more intuitive, efficient, and safe 
automated systems by creating a deeper understanding of how humans interact with such 
systems. This endeavor not only enhances system performance but also ensures that 
technological advancements align with human well-being and operational safety. A well-
constructed model provides a basis for understanding and predicting the complex behaviors of 
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the operator engaging with the automation. Through modeling, researchers and designers can 
explore various scenarios, identify potential pitfalls, and develop strategies to enhance 
interaction and collaboration between human operators and automated systems (Hancock et al., 
2013). This approach can significantly reduce the likelihood of unintended consequences, 
enabling designers to refine automation features based on predictive analyses of human 
behavior. In essence, cognitive theories and models serve as fundamental tools in bridging the 
gap between theoretical knowledge and practical application, ensuring that automated systems 
are not only technologically advanced but also human-centric. 

Over the past three decades of HAI research, several models and frameworks have been 
developed to elucidate the cognitive factors and their effects on human performance and 
decision-making in interaction with automation (Boubin et al., 2017; Hoff & Bashir, 2015; 
Parasuraman & Riley, 1997). These models and frameworks often emphasize the importance 
of trust and levels of automation within the HAI context as the determinants of automation use 
and reliance (Endsley, 2018; Muir & Moray, 1996; Parasuraman et al., 2000). Despite the 
prevalent theories and cognitive models, critiques (e.g., Dekker & Hollnagel, 2004; Flach, 
1995) have raised significant concerns regarding the scientific credibility and practical utility 
of the existing frameworks. These critical perspectives form the foundational impetus for this 
doctoral dissertation. This dissertation is designed to delve into the heart of these issues from 
multiple vantage points, aiming to uncover and address the underlying challenges. The 
forthcoming sections will offer an expanded insight into the core problem, delineate the specific 
objectives of this dissertation, and articulate the research questions that will guide this scholarly 
investigation. 

1.2 Problem Description 
The rapid advancement of technologies and their swift adoption as ‘work facilitators’ by 
industry stakeholders have triggered continuous changes in the workplace. The essence of 
human work has undergone significant transformations since the early 20th century. This 
evolution is evident when comparing perspectives on human-work studies from Scientific 
Management (Taylor, 1911), Human Factors Engineering (Fitts, 1951), Ergonomics and 
Cognitive Ergonomics (Meister, 2000; Meister & Enderwick, 2001), Cognitive Systems 
Engineering (Hollnagel & Woods, 1983), and Human-Computer Interaction (Card et al., 1983). 
Unlike fields such as mathematics and the natural sciences, where theoretical issues often drive 
progress, the challenges in Human Factors and Ergonomics (HFE) arise from its practical 
aspects. The field faces the difficulty of a continuously moving target – practical needs that 
grow so quickly that they are hard to accurately identify and address. 

Despite widespread consensus on the significance of theory in Human-Automation Interaction 
(HAI) and Human Factors and Ergonomics (HFE) in general, some scholars have noted a 
concerning shortfall of theoretical grounding in HFE and HAI research (Salas, 2008). Chung 
(2017) discussed that although HFE is a science-based discipline and its efficacy hinges on 
solid scientific underpinnings, much of the scientific basis of HFE remains underdeveloped. 
Salas (2008) further pointed out that, despite having well-established theories in areas such as 
human information processing, decision-making, and team effectiveness, the field of HFE is 
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still predominantly atheoretical. The neglect of theoretical frameworks and models in HAI 
research has been highlighted as a serious issue by various scholars. Salas (2008) warned that 
an overly applied focus on engineering and design in HFE has led to theories being "ignored, 
misused, or abused." (p.352). Similarly, Hockey (2008) argued that overlooking theoretical 
foundations could undermine the effectiveness of practical applications in the field. De Greene 
(1980) noted significant conceptual challenges in managing ergonomics research, particularly 
emphasizing the problems arising from the reliance on pure static models. This concern is 
shared by other scholars (e.g., Guastello, 2017, 2023; Karwowski, 2012; Thatcher et al., 2020), 
who also expressed concerns about the use of static models in understanding cognition and 
human-automation interactions in dynamic settings. Woods and Dekker (2000) articulated 
these concerns more intensely. They pointed out that the rapid pace of technological change 
and the growing scope of technological advancement have made traditional models and 
methods increasingly inadequate. These models and methods are viewed as oversimplifications 
that can hinder understanding and progress. According to Woods and Dekker (2000), the 
reliance on outdated and oversimplified models and methods could ultimately undermine the 
credibility of the ergonomics field. 

Generally, scientific models in human-technology system studies fall into two categories: 
componential and systemic, each addressing different aspects of human-technology interactions 
(Øvergård, 2008). Componential models assume system behavior is predictable from its 
components' behavior, leading to an understanding of the whole system as a simple addition of 
its parts' behaviors (Card et al., 2005; Dekker, 2005; Hollnagel & Woods, 1983). This approach, 
rooted in the information-processing view of human cognition, separates mind and body and 
treats the environment as a passive element (Fodor, 1983; Gardner, 1985; Ihde, 2002). 
However, the growing complexity of contemporary technical systems has challenged the 
adequacy of this view (Dekker & Hollnagel, 2004; Perrow, 1999; Woods & Dekker, 2000). 
Conversely, the systemic view, or Cognitive Systems Engineering (CSE) (Hollnagel & Woods, 
1983, 2005), emerged in response to the componential perspective. It views sociotechnical 
systems as comprising interconnected humans, technology, and the environment, functioning 
in a goal-directed manner (Vicente, 1999). This approach emphasizes the functional unity of 
the system, where outcomes are emergent from coordinated activities across components, rather 
than traits of individual parts (Hollnagel, 2003). Under this perspective, the human operator is 
an integral part of the Joint Cognitive System (JCS), adapting and responding contextually 
within the system (Hollnagel & Woods, 1983, 2005). 

These viewpoints indicate a growing interest within the HFE community in the need for more 
robust, adaptable models and methodologies that can keep pace with the evolving landscape of 
technology and human interaction. The critique suggests a push towards more novel, advanced 
approaches that can better capture the complexities inherent in modern HFE research and 
design. However, a foundational step requires a thorough comprehension of the discipline's 
unique challenges, requirements, and the current models' effectiveness in addressing these 
needs. Establishing this foundational understanding is crucial before determining which types 
of models are most appropriate for addressing HFE challenges and outlining strategies for their 
development. 
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1.3 Research Focus, Objectives, and Questions 
This dissertation investigates the intricate facets of Human-Automation Interaction (HAI), with 
a particular focus on the Levels of Automation (LOAs) and Trust in Automation (TiA). LOAs 
and TiA are central in assessing the effectiveness and adoption of automation technologies. The 
primary objective of this doctoral dissertation is to explore the essential modeling criteria for 
HAI research within socio-technical frameworks, to clarify the epistemological underpinnings 
of various modeling methodologies, and to evaluate the adequacy of current modeling efforts 
in meeting these criteria. Moreover, this dissertation suggests the value of simulation-based 
modeling techniques as promising solutions capable of overcoming the shortcomings in 
existing models. 

Figure 1 presents an overall research approach of this dissertation, integrating concepts from 
Human Factors and Ergonomics (HFE), particularly focusing on Cognitive Ergonomics and its 
application to Human-Automation Interaction (HAI). This approach is designed to evaluate and 
model trust in automation (TiA) and levels of automation (LOA) within the context of Human-
Automation Interaction (HAI) and supervisory control. Key elements discussed in this 
dissertation are outlined as follows: 

1. Cognitive Ergonomics Domain: At the core, this dissertation explores cognitive ergonomics 
with an emphasis on the psychological aspects of HAI. It considers environmental, 
automation-specific, and individual factors that influence Trust in Automation (TiA). The 
dynamics of TiA are captured through a feedback loop that includes the individual's 
expectation of outcomes and their perception of actual outcomes. 

2. Human-Automation Interaction (HAI): The dissertation investigates the interaction 
between humans and automation and the crucial role of the levels of automation (LOA) 
which dictates how humans supervise and control automated systems. As depicted, Trust in 
Automation (TiA) directly influences the interactions with automated systems and also is 
influenced by the outcome of the interactions. 

3. Characteristics of HFE & Phenomenon: The dissertation outlines the broad characteristics 
of HFE as a discipline, including its scientific, applied, systems, and complex nature. 
Additionally, it addresses the systems as being linear vs. nonlinear, and open vs. closed, 
highlighting the diverse contexts in which HFE research is conducted. 

4. HFE Model Evaluation Criteria: To assess the efficacy of models within HAI, the 
dissertation suggests a set of scientific evaluation criteria including testability/falsifiability, 
predictive power, explanatory power, empirical adequacy, pragmatic adequacy, humans as 
active agents, and dynamic properties of models. These criteria are essential for ensuring 
that models are both scientifically rigorous and practically relevant. 

5. Modeling Epistemological Assumptions: The dissertation recognizes the significance of 
underlying epistemological assumptions in modeling efforts. It differentiates between 
variance (static) and process (dynamic) models, acknowledging that each has its strengths 
and applications within HFE. This distinction is crucial for selecting the appropriate 
modeling methodology based on the nature of the phenomena being studied. 

6. Simulation Modeling: As a solution to the limitations identified in traditional HFE models, 
the dissertation proposes simulation modeling as a versatile tool for understanding complex 
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HAI phenomena. Specifically, it suggests employing Fuzzy Logic Inference Systems and 
System Dynamics modeling to capture the dynamics of levels and trust in automation. 
These simulation methodologies offer the flexibility and depth needed to model cognitive 
states and their evolution over time, providing a more holistic understanding of HAI. 

 

Figure 1, Overview of the dissertation research focus. 

Under this understanding, and to delve deeper, the following research questions have been 
established: 

RQ1: What constitutes the essential criteria for evaluating models within the domain of Human 
Factors and Ergonomics (HFE) research? 

RQ2: What is the current state of Trust in Automation (TiA) models according to the criteria in 
RQ1? 

RQ3: Are the epistemological assumptions in different modeling approaches appropriate for 
studying human-automation interactions (HAI)? 

RQ4: How to effectively model Levels of Automation (LOAs) for Maritime Autonomous Surface 
Ship (MASS)? 

RQ5: How can Trust in Automation (TiA) be dynamically modeled based on its internal 
structures? 
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1.4 Structure of the Dissertation 
Chapter 1 sets the stage for the investigation by expressing the overall context of the 
dissertation, research problems, objectives, and questions, as well as an overall research 
approach to address the questions. Chapter 2 discusses the background of the study, shedding 
light on the importance of the research, the emerging concept of maritime autonomy, the 
rationale behind Shore Control Center (SCC) and supervisory control, the importance of 
Human-Automation Interaction (HAI) and Trust in Automation (TiA) in effective and safe 
operation of future maritime operations. The chapter is underpinned by an extensive review of 
pertinent literature, providing a comprehensive backdrop for the themes under investigation. 
Chapter 3 establishes the theoretical framework for the subsequent exploration and analysis. 
This chapter revisits the theoretical foundation of the Human Factors and Ergonomics (HFE) 
discipline and discusses today’s complexity of Human-Automation Interaction (HAI) research. 
Chapter 4 presents the research methodology and discusses modeling as a theory-building 
activity. The primary focus in this chapter is on simulation as a viable tool for tackling the 
complexity of modeling HAI. More specifically, fuzzy logic and system dynamics are 
considered as the two approaches utilized in this dissertation for modeling levels and trust in 
automation. In Chapter 5, the philosophical foundations that guide the research are thoroughly 
examined. This chapter offers a reflective account of the epistemological understanding of 
theory/model development, guiding the concept of model validity. Chapter 6 presents the 
summary findings of four Articles and engages in a detailed discussion aimed at addressing the 
research questions introduced in the opening chapter. Chapter 7 synthesizes the research 
findings and offers general reflections while also critically appraising the research boundaries. 
Chapter 8 concludes and accentuates the contributions of the study and points out potential 
areas for further scholarly exploration. 
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2 Background 
Maritime transport, one of the oldest and most crucial components of global trade, stands on 
the brink of a transformative leap towards autonomous shipping, a shift often referred to as 
"Shipping 4.0." (Lambrou & Ota, 2017). Over the last three decades, the automation levels in 
merchant vessel operations have progressively increased. However, the current move towards 
autonomous vessels promises to significantly impact the transportation of goods and the future 
navigation and operation of ships. While the primary research emphasis to date has been on the 
technical realization of more autonomous systems, largely through traditional risk assessments 
and technical methodologies (Dreyer & Oltedal, 2019; Thieme et al., 2018), there exists a 
growing need to explore the implications for human operators within the future landscape of 
maritime transport. 

2.1 Autonomous Ships and Shore Control Center (SCC) 
Maritime Autonomous Surface Ships (MASSs) have emerged as a novel domain of vehicle 
automation in recent years, bringing forth both fresh challenges and opportunities. The early 
2010s witnessed a momentous shift towards the digital evolution of the maritime industry. This 
shift emphasized the automated integration of real-time data into the decision-making process 
(Sullivan et al., 2020). A landmark initiative in autonomous shipping was the Maritime 
Unmanned Navigation through Intelligence in Networks (MUNIN) project, spanning 2012–
2015 (Burmeister et al., 2014). In 2017, the Norwegian firms Yara and Kongsberg embarked 
on a venture to develop the Yara Birkeland, a self-operating cargo vessel intended to serve three 
ports in Southern Norway (Yara, 2018), with aspirations for complete autonomous functionality 
by 2022. The advent of uncrewed Maritime Autonomous Surface Ships (MASS) promises 
several advantages, including the expansion of operational capabilities, such as accessing 
challenging and remote areas, and ensuring the safety of operators by removing them from 
hazardous environments (Ahvenjärvi, 2016; Norris, 2018). Insights from the MUNIN project 
highlighted that a variety of tasks, from adjusting shipping routes due to weather conditions or 
potential collisions to monitoring engine conditions for failures, could be managed by 
automated systems on uncrewed MASS. 
The evolution of Maritime Autonomous Surface Ship (MASS) operations is set to focus on 
minimizing onboard crew numbers while enhancing land-based coordination and control 
mechanisms. This strategic shift introduces the Shore Control Center (SCC) as a primary 
solution. The SCC addresses the emerging requirement for centralized supervision, 
encompassing monitoring, and intervention tasks across MASS fleet operations. The Shore 
Control Center (SCC) plays a key role in supervising the operations of one or several 
autonomous ships from a remote location, enabling intervention in their navigation when 
required. An example of such a Shore Control Center (SCC) is depicted in Figure 2. The term 
"autonomous" in this context does not imply complete independence of the vessels; instead, it 
refers to a spectrum of autonomy within the ship’s control system that falls short of full 
autonomy. According to the International Maritime Organization’s (IMO) classification (IMO, 
2018), at automation Levels 2 and 3, the level of automation onboard is insufficient for the 
vessels to navigate without human supervision. Consequently, the necessity arises for these 
vessels to be monitored and, when needed, remotely controlled, ensuring safe and efficient 
maritime operations. In future Shore Control Centers (SCC), the interaction between humans 
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and machines is anticipated to be the most critical element. Establishing a strong connection 
between the operator and the automation system becomes an important aspect of safe and 
effective operation. Fundamental to this interaction is the prerequisite of trust in both the system 
and the automation itself (Dybvik et al., 2020). Trust in Automation (TiA) will be elaborated 
in more detail further in this dissertation. 
 

 
Figure 2, A concept of Shore Control Center (SCC) at University of South-Eastern Norway (USN) research park, 
Photo taken by Mehdi Poornikoo, all rights reserved. 

A general conceptual framework illustrating the interaction between a Shore Control Center 
(SCC) operator and Maritime Autonomous Surface Ships (MASS) within a highly automated 
maritime environment is presented in Figure 3. The framework is structured into several layers 
that collectively represent the cognitive and operational dynamics of supervising autonomous 
vessels. At the top of the framework, the operator's cognitive processes indicate the central role 
of human cognition in monitoring and decision-making processes. This emphasizes that the 
operator's cognitive abilities, such as perception, attention, and problem-solving, are crucial in 
managing the operation of autonomous vessels. Directly below the operator, various 
automation levels specify the spectrum of automation within MASS operations. This spectrum 
ranges from fully manual control to semi-autonomous systems requiring significant human 
input, and to fully autonomous operations where human intervention is minimal. The Level of 
Automation (LOA) influences how the operator interacts with the system and the extent to 
which they need to monitor and make decisions. The concept of Level of Automation (LOA) 
will be further expanded in the subsequent sections. The information necessary for effective 
vessel supervision and control is showcased through an interface setup consisting of multiple 
screens. The operator interacts with the MASS, and accesses real-time data, navigational charts, 
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RADAR information, system statuses, and other critical operational information via the 
interface displays. The interface also serves as the primary tool for the operator to maintain 
situational awareness and execute control commands when necessary. Communication 
channels (e.g., satellite, 5G network) between the SCC and the autonomous vessels are crucial 
for transmitting commands, receiving updates, and ensuring that the vessels operate according 
to plan which enables continuous and reliable data exchange between the SCC and MASS. 
Lastly, tasks and operations involve the capabilities of the vessels and the tasks they perform 
independently, or guided by the supervision and intermittent interventions from the SCC. In 
task execution and operational capability, autonomous maritime systems are distinguished by 
their integration of ‘perception and control’ components. Perception components encompass 
ship positioning systems, RADAR, and additional sensors that survey the maritime 
environment. Control components involve mechanisms such as propulsion and steering 
systems. Specifically, ship maneuvering is significantly enhanced by azimuth thrusters, which 
combine an engine (often electric) with a propeller in a pod below the waterline. These thrusters 
can rotate freely by 360 degrees, allowing the ships to navigate narrow ports efficiently and 
safely (Thombre et al., 2020). Furthermore, the integration of Global Navigation Satellite 
System (GNSS) positioning with control systems into what is known as Dynamic Positioning 
(DP) systems enables vessels to neutralize environmental forces. This technology allows for 
the maintenance of precise positioning and heading, enabling ships to remain at or return to 
their operational stance without anchorage, or to maintain a steady course against the challenges 
posed by wind and waves. Despite the advancement of control systems, integrated perception 
systems suitable for autonomous maritime operations are still in the developmental phase 
(Thombre et al., 2020). Hence, a need for human operators to supervise and share control of the 
vessel becomes fundamental. That said, the primary focus in this dissertation is Human-
Automation Interactions (HAI) which mainly involves the first three layers in the conceptual 
framework (Figure 3), including the operator’s cognitive factors (here, Trust in Automation 
(TiA)), the level of automation, and the status of the automation and environmental factors 
received and perceived via interface displays. 
Maritime Autonomous Surface Ships (MASS) may operate across a spectrum of automation 
levels, ranging from direct human control to fully autonomous operations where human 
intervention is presumably unnecessary. However, as discussed earlier, it is anticipated that a 
human operator will oversee the operations of uncrewed MASS, even at higher automation 
levels, ensuring a fallback mechanism in scenarios where the automated systems encounter 
difficulties or unpredictable situations (Abilio Ramos et al., 2019; Dybvik et al., 2020; Porathe 
et al., 2018; Størkersen, 2021). The human operator's role transition from direct engagement to 
supervisory control is expected to introduce new challenges (Mallam et al., 2020). In other 
words, the shift from Human-In-The-Loop (HITL) configurations, where human operators 
directly input commands and make decisions, to Human-On-The-Loop (HOTL) systems, where 
the human role is primarily to monitor the automated processes, may potentially exacerbate 
issues stemming from human operators' propensity for suboptimal monitoring (Nahavandi, 
2017; Parasuraman & Riley, 1997). 
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Figure 3, A conceptual framework of SCC operator and MASS operation. 

The risk of monitoring lapses, compounded by an overreliance on automation, can lead to 
decision-making errors, resulting in incidents or accidents (Parasuraman & Riley, 1997). To 
mitigate these risks, it has been proposed that keeping human operators engaged through active 
monitoring of ship performance, weather conditions, engine functionality, and communication 
systems could help maintain operator alertness and early problem detection (Porathe et al., 
2020). Nonetheless, the challenge remains that prolonged periods of uneventful and ordinary 
operation, especially in open waters, might lead to operator disengagement and a passive 
monitoring stance. This disengagement poses significant risks, as re-engagement or 're-looping' 
of the human operator during emergencies could be delayed, critically affecting response times 
and operational safety (Parasuraman, 2000).  
 
With this maritime background in mind, the next section reviews the general concepts of 
autonomy, automation, and Human-Automation Interaction (HAI). 
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2.2 Autonomy, Automation, and Human-Automation Interaction 
(HAI) 

The terms autonomy and automation are often used interchangeably (Relling et al., 2018). 
Autonomy, often associated with the notion of free will, manifests differently across various 
disciplines. In psychological terms, autonomy refers to an individual's capacity for self-
governance and decision-making free from external influence (Wellman et al., 1992). In an 
engineering context, artificial autonomy implies providing machines and technologies with 
self-directed operational capabilities (Ziemke, 2008). The application of autonomy within 
engineering and automation technology typically revolves around the ability of systems to 
execute tasks independently of human intervention. Beer et al. (2014) propose a definition of 
autonomy as the degree to which a system is capable of conducting its processes and operations 
autonomously, without the need for external control. This general definition can encompass the 
autonomous functions of both biological entities, such as humans, and non-biological systems, 
including robots and machines (Albus & Antsaklis, 1998). Within the context of robotics, 
autonomy is the measure of a robot’s ability to perceive its environment, formulate plans based 
on this perception, and execute actions to achieve specific objectives that are either assigned or 
self-generated, all while operating independently of external control (Beer et al., 2014). 

Automation on the other hand, a term introduced in the 1950s (Diebold, 1952), is often defined 
as a “device or system that accomplishes (partially or fully) a function that was previously, or 
conceivably could be, carried out (partially or fully) by a human operator” (Parasuraman et al., 
2000, p. 238). This definition encompasses automation across a spectrum of domains, from 
managing advanced cockpit systems to operating simple devices such as an automated coffee 
machine. The difference between automation and a machine is that automation involves 
executing functions that may also be performed by humans, whereas a complete and enduring 
transfer of a function to a machine is characterized as a machine operation (Parasuraman & 
Riley, 1997). With technological advancements, tasks that once necessitated human 
intervention, such as starting a vehicle or activating its Anti-lock Braking System (ABS), have 
now become standard machine operations managed by the machine itself (Adams et al., 2003). 

While automation is fundamentally designed to facilitate human activities, humans typically 
maintain a role within the broader system. These collaborative entities, where humans and 
automation work together, are referred to as joint human-automation systems or human-
computer systems (Johannsen, 1997), representing Licklider's (1960) vision of human-machine 
symbiosis, with practical applications in complex environments such as air traffic control and 
warehouse management (McBride et al., 2011; Rovira & Parasuraman, 2010). Human Factors 
and Ergonomics (HFE) research is dedicated to analyzing and enhancing the interplay and 
interactions between humans and automation, with a particular focus on task allocation and 
determining various degrees of automation. 

2.3 Level of Automation (LOA) 
Understanding the multifaceted interactions between humans and automation systems 
necessitates a theoretical framework, often facilitated by the development of models and 
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taxonomies. Fitts' (1951) seminal work was among the earliest to address the distribution of 
functions between humans and machines, advocating for a system-oriented approach where 
tasks are allocated based on the comparative strengths of human and machine capabilities. 
However, this early taxonomy did not fully embrace the dynamics of interaction and shared 
control, where tasks could be collaboratively managed or alternated between humans and 
machines based on situational demands. Various frameworks and systems for classifying levels 
of automation (LOA) have been introduced over the years. Sheridan and Verplank (1978) laid 
the groundwork by devising a 10-point scale that defined higher and lower LOAs based on the 
extent of autonomy. Their approach detailed the division of tasks and feedback communication 
between humans and automated systems, though it primarily focused on decision-making and 
action execution stages, somewhat overlooking the distinctions between the initial stages of 
information acquisition. In response to this, Endsley and Kaber (1999) refined this model to 
incorporate a more detailed examination of how automated systems gather and process 
information before making decisions. Their revision introduced a structured categorization of 
automation functions into four main activities: monitoring, generating, selecting, and 
implementing, thereby offering a more developed view of the automation process. 

Parasuraman et al. ( 2000) developed a model that echoed Endsley and Kaber's emphasis on the 
varying degrees of automation. Their framework provided a structured approach to categorize 
human-automation interactions based on a multi-stage model of human information processing. 
This taxonomy identifies four primary types of automation, relating to different stages of 
information processing: (1) information acquisition, where automation assists in filtering and 
focusing attention on relevant external information, (2) information analysis, where it helps in 
integrating and interpreting information, (3) decision and action selection, where automation 
contributes to determining and selecting appropriate actions based on analyzed information, 
and (4) action implementation, where it executes the chosen actions. Each type encompasses a 
spectrum of automation levels, from entirely manual to fully automated processes, as illustrated 
in Figure 4. 

 

Figure 4, Systems with different types and levels of automation, adapted from Parasuraman et al. (2000) 

In this model, the initial stage (i.e., information acquisition) plays a focal role in capturing and 
processing sensory input. This phase augments human sensory abilities, facilitating the 
monitoring of various environmental parameters. It encompasses technologies that gather 
environmental data, such as radar systems and thermal imaging devices. When automation 
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reaches advanced stages of information acquisition, it has the capability to sort and prioritize 
this sensory data, similar to how a Vessel Traffic System (VTS) or Air Traffic Management 
System (ATMS) sequences vessels and aircraft (Sheridan et al., 2002). Subsequently, the 
information analysis phase of automation undertakes functions that parallel human cognitive 
activities, notably those associated with working memory. In this phase, the automation system 
might produce predictions, merge diverse data inputs, or condense information for presentation 
to the user. Distinct from the acquisition phase, this analysis phase actively interprets and 
processes the data. In the decision-selection phase, automation assumes the role of choosing 
between different decision-making alternatives. Such systems may, for instance, determine 
optimal flight paths for aircraft to evade bad weather (Ng et al., 2009; Xie & Zhong, 2016), 
route planning under different tidal conditions in maritime navigation (Pan et al., 2021), or 
assist medical professionals by suggesting possible diagnoses (Thanh et al., 2017). The final 
phase, action implementation, involves automation executing the selected decisions. This could 
entail completing an entire task or its constituent parts, such as the autopilot feature in ship 
operation. 

Parasuraman et al. (2000) further recommended a series of iterative procedures (Figure 5) to 
utilize the proposed framework for automation design. The framework aimed to determine the 
degree to which tasks should be automated, considering the effects on human operators and the 
automation system itself. The process begins by selecting a preliminary level of automation for 
each category, which is then assessed using primary evaluative criteria related to human 
performance outcomes. If required, adjustments are made to the automation level based on this 
assessment. For example, a decision support system at a fundamental level of automation would 
be assessed against primary criteria such as human workload and situational awareness, which 
might necessitate adjustments to the automation level to mitigate workload. Following this, 
secondary criteria such as the dependability of automation and the implications of decision 
outcomes are assessed, potentially leading to further calibration of automation levels. This 
evaluative cycle is systematically applied to each category of automation, ideally ensuring that 
the end result is a harmonized blend of human and automated processes. Furthermore, it 
facilitates the identification and resolution of design challenges by determining the optimal 
levels or spectrum of automation. 
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Figure 5, Application of levels and types of automation, adapted from Parasuraman et al. (2000) 

Today, the use of taxonomies for levels of automation (LOAs) is prevalent in scholarly 
literature, primarily for their ease of understanding and as a foundation for further design 
considerations. These taxonomies have recognized the varied nature of automation support, yet 
their application across different domains requires more specificity and clarity (Poornikoo & 
Øvergård, 2022). Recently, Vagia et al. (2016) reviewed the existing LOA taxonomies and 
reported a lack of consensus on the definitions and levels of automation. Originally devised for 
task-oriented and functional operations (Endsley & Kaber, 1999; Endsley & Kiris, 1995; Riley, 
1989; Sheridan & Verplank, 1978), the taxonomies are now employed by policy organizations 
and classification bodies to categorize end products of manufacturing processes. For example, 
the taxonomy by the Society of Automated Engineers (SAE, 2014) delineates five automation 
levels for vehicle driving modes, focusing on operational and tactical tasks such as steering and 
environment monitoring. This taxonomy aims to support manufacturing technology 
classifications, future design initiatives, and inform road traffic regulations. Similarly, the 
maritime sector has developed several taxonomies for maritime autonomous surface ships 
(MASS) as shown in Figure 6, indicating degrees of autonomy and categorizing autonomous 
vessels not merely by automated tasks but as advanced, complete systems. This has resulted in 
the application of LOAs becoming quite context-specific, with interpretations varying based on 
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the industry rules and standards, as well as the analytical level. Furthermore, the prevailing 
levels of automation for MASS primarily focus on navigational functions as the benchmark for 
determining the ship's level of autonomy. However, according to the International Maritime 
Organization's (IMO) description of MASS, an autonomous ship is characterized by its capacity 
to function to varying extents without human intervention (IMO, 2018). This definition implies 
that an autonomous ship’s functionality extends beyond mere navigation to include a wide 
range of critical operations such as maintenance, cargo management, anchoring, etc. Poornikoo 
and Øvergård (2022) outlined the general limitations of the existing LOA taxonomies from an 
operational perspective and offered a simulation-based model for LOA. 

 

Figure 6, Levels of Automation/Autonomy for MASS 

2.4 Supervisory Control 
For a long time, the addition of automation in systems was viewed as simply replacing human 
tasks with machine operations, a concept referred to as the substitution myth (Woods & Dekker, 
2000). However, this view is a limited and inadequate representation of the true impact of 
automation. Automation technology significantly transforms human practices, compelling 
individuals to adjust their skills and routines (Dekker & Woods, 2002). Particularly noteworthy 
is the shift in the role of the human operator. Given the current state of technology, automation 
lacks the capacity for "intelligent" adaptability in unforeseen situations, which necessitates 
human supervision and, at times, direct intervention. The operator now primarily monitors the 
system's actions, comprehends these actions, looks out for deviations and failures, and 
intervenes when necessary (Moray et al., 1986; Sheridan, 2017, 2021; Sheridan et al., 1978). 
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This shift features an irony; while designers aim to reduce the operator's active role, they still 
rely on the operator for tasks that cannot be automated (Bainbridge, 1983). 

The concept of human supervisory control is similar to a human supervisor interacting with 
subordinates. Just as a supervisor issues instructions that subordinates interpret and execute, 
translating complex information into actionable tasks, automation enables similar dynamics 
between humans and machines (Sheridan, 2021). The level of automation delegated by the 
supervisor to their subordinates—or in this case, to automated subsystems—is influenced by 
the perceived intelligence of those executing the tasks, affecting both the depth and the duration 
of the commands given. This form of supervisory control spans a wide array of applications, 
including the management of vehicles such as aircraft, spacecraft, and maritime vessels, control 
of continuous processes including oil, chemical, and power generation industries, and 
supervision of robots and discrete manufacturing tasks. It also extends to medical systems, 
home automation technologies (e.g., heating and appliance management), and various other 
domains where human-machine interaction is focal. At its core, human supervisory control, 
sometimes simply referred to as "supervisory control", involves human operators intermittently 
setting goals for computers that manage internal control loops via electromechanical actuators, 
tasks, and feedback sensors (Sheridan, 2021). In a more expansive view, supervisory control 
encompasses any interaction with a computer interface that modifies data or generates control 
actions as shown in Figure 7. 

 
The roles of a human supervisor in supervisory control systems encompass several key 
functions including: (1) offline planning of tasks and procedures, (2) instructing the computer 
based on the plan, (3) online monitoring of automated actions to ensure alignment with the plan 
and to identify any failures, (4) intervening either post-achievement of goals or during 

Figure 7, Concept of Supervisory Control (Sheridan, 2021) 
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emergencies to establish new objectives and procedures, and (5) learning from these 
experiences to improve future task execution. These roles typically follow a sequential timeline 
within the performance of a task (Sheridan, 2021), and may also incorporate varying levels of 
computer assistance (i.e., LOAs) in both information acquisition and control execution. 
 

2.5 Complacency and Automation Bias 
While automation holds significant promise, it also poses the risk of negatively altering operator 
behavior (Parasuraman & Riley, 1997). Two notable issues, complacency, and automation bias 
are extensively examined in human-automation interaction (HAI) research. Complacency arises 
from excessive reliance on automation, leading to insufficient verification of system states or 
the underlying data. Consequently, human performance suffers when automation fails 
(Wickens et al., 2015). This concern is particularly relevant to highly reliable yet imperfect 
automation systems. For instance, Bagheri and Jamieson (2004) found that in multitasking 
environments, operators were less adept at detecting system malfunctions when automation was 
deemed highly reliable. Operators may preferentially attend to tasks not supported by 
automation, neglecting those aided by it, despite competing demands for their attention. 
Although this strategy may seem logical (Moray & Inagaki, 1999), it has been shown to lead to 
miss of critical safety information (Metzger & Parasuraman, 2005). 

Automation bias manifests when operators depend on incorrect guidance from automated aids, 
leading to a decline in decision-making performance (Wickens et al., 2015). Automated alert 
systems, such as collision warnings in maritime or the Traffic Collision Avoidance System 
(TCAS) in aviation, are designed to enhance human cognitive processes during high-risk 
situations by issuing alerts or recommendations. However, despite the fallibility of such 
systems, operators frequently evade full data analysis, resulting in less-than-optimal decisions 
(Mosier et al., 1998; Mosier & Skitka, 1999; Rovira et al., 2007). 

Automation bias and complacency play a critical role at each stage of information processing 
and levels of automation. They manifest as insufficient system status monitoring or an over-
reliance on automation, overlooking additional information that could influence decision 
accuracy (Yamani & Horrey, 2018). Rovira et al. (2007) observed that as the level of 
automation increased (i.e., from providing a list of possible options to recommending the 
singular best action), operators' decision-making accuracy deteriorated. These issues suggest a 
direct relationship between the complacency and automation bias induced by automation and 
the ineffective strategy of operators in allocating attention and prioritizing tasks. In a similar 
fashion, the remote supervisory control of MASS may potentially introduce new challenges, as 
humans can be relatively ineffective at sustained monitoring tasks (Nahavandi, 2017; 
Parasuraman & Riley, 1997). Subpar monitoring of automated systems can result from an 
operator's excessive reliance on the system, which can lead to decision errors and consequently, 
incidents and accidents (Parasuraman & Riley, 1997). Empirical studies suggest that behavioral 
reliance on automation is strongly influenced by the level of trust that users have in the 
automation system. Trust shapes the human operator's readiness to delegate responsibilities to 
automated systems and determines the extent and frequency of interventions in automated 
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processes. Trust also guides the operator's acceptance of suggestions made by the automation 
(Lee & See, 2004). Operators tend to depend more on automation systems that they trust to be 
reliable and effective (De Vries et al., 2003; Lee & Moray, 1992; Merritt, 2011; Merritt & Ilgen, 
2008; Wang et al., 2009). Consequently, the reliance behavior that the human supervisor adopts 
has a profound impact on both mission outcomes and overall system performance (Clare, 2013; 
Gao et al., 2013). Mallam et al. (2020) conducted interviews with maritime subject matter 
experts, revealing that trust is a predominant theme when assessing the potential impact of 
autonomous shipping. Considering the significant role that Trust in Automation (TiA) plays in 
the performance of joint human-automation systems, the next section reviews the implication 
of TiA in human-automation interaction (HAI), its facets, dynamics, and models. 

2.6 Trust in Automation (TiA) 
Trust is widely regarded as a psychological construct, related to expectation and anticipation of 
reliable actions of another party (de Vries, 2005). Trust is also perceived as a multi-faceted and 
dynamic phenomenon (Atoyan et al., 2006; Dzindolet et al., 2003). 

Trust in Automation (TiA) originated from early theories that drew parallels with the 
psychological understanding of interpersonal trust (Muir, 1994a; Muir & Moray, 1996). Similar 
to interpersonal trust, TiA contains a sense of risk or vulnerability from the trustor's perspective, 
demanding a foundational level of trust for its development (Corritore et al., 2003; Evans et al., 
2011; Evans & Krueger, 2011; Lee & Moray, 1994; Lee & See, 2004). This is because, in 
dynamic and urgent scenarios, individuals interacting with automated systems may struggle to 
perceive and analyze all essential details necessary for effective situation management (Moray 
et al., 2000). Under such circumstances, they must operate under risk and uncertainty, lacking 
comprehensive knowledge of all relevant aspects to accurately assess the situation (Rajaonah 
et al., 2006). Despite debates on the similarities and differences between interpersonal trust and 
TiA (Madhavan & Wiegmann, 2007), the importance of Trust in Automation (TiA) has become 
a central point in Human-Automation Interaction (HAI) research to bolster joint system 
performance (Lee & Moray, 1992; Lee & See, 2004; Muir, 1994a; Muir & Moray, 1996). 

Various definitions of TiA (e.g., Table 1) converge on the premise that TiA embodies a belief, 
attitude, or expectation in the automation's capability to fulfill its intended task. Thus, TiA 
emerges through a continuous process of aligning expectations with actual observations of 
automation performance, especially in contexts where the user bears a significant risk (Kenesei 
et al., 2022; Li et al., 2019; Muir, 1994a; Sheridan & Hennessy, 1984). 

Table 1, Definitions of Trust in Automation (TiA) 

   Parties involved 

 Definition Nature of trust Trustor Trustee 

Muir (1987) "...the intervening variable [between 
the automation and the supervisor’s 
responses to the automation] that 
mediates supervisors’ intervention 
behavior."  

Intervening variable Supervisor Automation 
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Mayer, Davis, and 
Schoorman (1995, 
p.712) 

“the willingness of a party to be 
vulnerable to the actions of another 
party based on the expectation that 
the other will perform a particular 
action important to the trustor, 
irrespective of the ability to monitor 
or control that other party”. 

Expectation Trustor Trustee 

Moray and 
Inagaki (2000) 

“...an attitude which includes the 
belief that the collaborator will 
perform as expected, and can, within 
the limits of its designers’ intentions, 
be relied on to achieve the design 
goals”  

Attitude, Belief Human Collaborator 

Madsen and 
Gregor (2000) 

“the extent to which a user is 
confident in, and willing to act on the 
basis of, the recommendations, 
actions, and decisions of an 
artificially intelligent agent.” 

Confidence User Intelligent 
Agent 

De Vries (2005) “...the expectation of a user about the 
system, that the system will perform a 
certain task for him or her, while the 
outcome of that task is uncertain, in 
that it can have both positive and 
negative consequences”  

Expectation User System 

Lee and See 
(2004) 

“the attitude that an agent will help 
achieve an individual’s goals in a 
situation characterized by uncertainty 
and vulnerability”  

Attitude Individual Agent 

Biros et al. (2004) “...having confidence in and 
entrusting the system automation to 
do the appropriate action”  

Confidence Human System 

Automation 

Rajaonah et al. 
(2006) 

“...a psychological state resulting 
from knowledge, beliefs, and 
assessments  related to the decision-
making situation, that creates 
confident expectations  for human 
machine system performance and 
guides operator reliance on 
automation ”  

Psychological state 
based on knowledge, 
beliefs and assessments 

Operator Automation 

Madhavan and 
Wiegmann (2007) 

“...the expectation of, or confidence 
in, another and is based on the 
probability that one party attaches to 
co-operative or favorable behavior by 
other parties ”  

Expectation  

Confidence  

One party  Another party 

Applied to Maritime Autonomous Surface Ships (MASS), trust becomes a critical factor as the 
operator transitions from an active contributor in direct navigation and control to a more passive 
monitoring role. While the operator can, in theory, always intervene and undertake manual 
control, the fundamental principle of autonomous maritime operations does not mandate such 
interventions during standard operations. When a system limitation is detected, the operator is 
alerted through a clear notification, compelling them to manually take over the navigation and 
control of the ship within a predetermined period. In such a scenario, trust serves as a mediating 
factor in the interplay between the automation and its use. This mediating variable can be 
studied from two perspectives: Trust as a consequence of various influences (trust factors), and 
trust as a precursor that shapes subsequent reliance on the automation (Masalonis & 
Parasuraman, 1999). 
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2.6.1 Trust as Consequence (Trust Factors) 
Trust can be influenced by a variety of factors, generally categorized into elements related to 
the automation, the operator, and the environment. Comprehensive discussions of these factors 
can be found in the studies and meta-analyses by Merritt and Ilgen (2008), Schaefer et al. 
(2016), Schaefer et al. (2014)), Hancock et al. (2011), Lee and See (Lee & See, 2004), and Hoff 
and Bashir (2015). An overview of the prominent factors is discussed in the following section. 

2.6.1.1 Automation-related factors 

Trust is significantly influenced by the automation's characteristics. Some of the main 
characteristics include: 

A. Automation performance (reliability) 
The level of trust users place in automation is significantly influenced by the automation's 
performance. A reliable automation fosters greater trust and is subsequently more frequently 
utilized (Muir, 1994a; Muir & Moray, 1996). Automation reliability, also referred to as system 
competence (Muir, 1987), is characterized by the system's consistent performance. This 
performance level directly correlates with the trust users place in the system, to the extent that 
users may prefer automation over their own capabilities for operating a system (Merritt et al., 
2013). The expectation and actual reliability of a system are key in forming Trust in Automation 
(TiA) (de Vries, 2005; Kazi et al., 2007; Moray et al., 2000). The consistency of system 
reliability plays an important role in its predictability and perceived trustworthiness; systems 
that demonstrate stable reliability are deemed more predictable and, therefore, more trustworthy 
(Muir & Moray, 1996; Parasuraman et al., 1993). Additionally, trust is subject to the primacy-
recency effect, where initial low reliability can lead to a long-term lack of trust and usage 
(Atoyan et al., 2006). 

B. Automation predictability and transparency 
The predictability of a system is closely linked to its perceived reliability and the consistency 
of its performance. The expectation of a system's predictability, as suggested by Muir (1987), 
is considered an essential factor impacting trust. Predictability is intertwined with the system's 
transparency; because a system's actions and intentions must be understandable and logically 
explicable to users for its behavior to be anticipated. Ososky et al. (2014) define system 
transparency as the extent to which the actions and intentions of a system are visible and 
comprehensible to human operators. Achieving this may involve designing automation that 
behaves in a manner akin to human decision-making or creating systems capable of articulating 
their processes and reasoning to users (Ghazizadeh et al., 2012; Sarter & Woods, 1997; Seppelt 
& Lee, 2019). The lack of feedback and transparency on automated processes is a common root 
cause of automation-related accidents (Norman, 1989). Endsley & Kiris (1995) articulate the 
challenge for designers in providing sufficient feedback to keep the operator informed without 
causing information overload. Transparency in automation, therefore, is crucial, enabling 
operators to understand the automation's functioning or failure. Simpson et al. (1995) argue that 
trust in a system is contingent upon its ability to demonstrate competent performance and enable 
predictions of its reliability. Transparency also facilitates the formation and updating of mental 
models about the system (Matthews et al., 2020; Miller, 2021), preventing unexpected 
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automation behaviors and clarifying the system's limitations or errors. The ability of automation 
to self-explain, especially during errors, enhances trust and reliance (Dzindolet et al., 2003). 

C. System malfunction (Faults/errors/failures) 
Faults or system malfunctions tend to erode trust, with the effect varying based on the failure's 
severity and frequency. The larger the fault, the more significant the reduction in trust (Moray 
1992). However, if automation provides a suboptimal performance that does not result in an 
absolute and significant fault, this may reduce the negative impact on trust, as observed in Lee 
and Moray’s (1994) study where a constant fault resulted in increased TiA as participants 
accustomed to the fault and established compensation strategies. The type of fault also plays a 
role, with false alarms primarily affecting operator compliance and ‘misses’ impacting reliance 
(Dixon et al., 2007). Trust typically experiences a significant decline following errors and 
recovers slowly, even if system performance is promptly restored (Lee & Moray, 1992). The 
consequence of a fault may be just as crucial as its magnitude in affecting trust. Masalonis et 
al. (1998) found that trust was lower when an automated aid failed to notify supervisors about 
a possible aircraft encounter compared to when it issued a false alert. 

The literature indicates that foreknowledge of potential system faults can mitigate their negative 
impact on trust, suggesting the importance of system transparency over its actual performance 
(Beggiato & Krems, 2013; Dzindolet et al., 2003; Riley, 1996). A predictable system, even with 
ongoing minor errors, can still be used and trusted if users understand its limitations and 
behavior (Lee & Moray, 1992; Ma, 2005; Muir & Moray, 1996). However, discrepancies 
between users' expectations and system performance can negatively affect trust, even if the 
automation operates as designed (Lee & See, 2004). Madhavan et al. (2006) found that the 
perceived difficulty of a task could also influence trust in automation, with failures in seemingly 
simple tasks being particularly damaging to trust. 

D. Level of Automation (LOA) 
The level of automation which spans from minimal assistance to complete autonomous, 
substantially affects the user's trust. Walliser (2011) noticed that the automation level impacts 
the operator's trust calibration, as well as their performance during system errors. Higher LOA 
have been associated with longer response times to system failures compared to lower levels 
(Niederée et al., 2012a, 2012b; Shen & Neyens, 2014). While lower LOA necessitates user 
vigilance for system errors, higher levels, though less prone to expected errors, may still 
surprise users with unexpected behaviors, potentially undermining trust. 

2.6.1.2 Operator-Related Factors 

Trust in automation extends beyond the technical features of the system and is profoundly 
shaped by an individual's subjective interpretation of these characteristics (Lee & See, 2004). 
Merritt and Ilgen (2008) found that a person's perception of automation is shaped by both the 
actual features of the automation and their natural tendency to place trust (trust propensity) in 
automation. 

A. Demographics 
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In terms of demographic attributes, culture, age, gender, and personality have been identified 
as key factors influencing trust (Hoff & Bashir, 2015). Research has demonstrated variations 
in the interaction and trust levels with automation across different cultures (Heimgärtner, 2007; 
Hoff & Bashir, 2015). Sanchez et al. (2014) suggest that, at the onset of interaction with an 
automated system, older individuals tend to exhibit lower reliance on the automation, aligning 
their trust levels more closely with the system's reliability changes. However, a recent study by 
Hartwich et al. (2019) explored the relationship between age groups and trust in automated 
driving systems, revealing no notable variances across different age groups. Similarly, the 
influence of gender on trust in automated systems has not yet reached a conclusive agreement 
in the literature (Hoff & Bashir, 2015). 

B. Personality traits 
In the context of personality traits, the Five-Factor Model of Personality (John & Srivastava, 
1999; McCrae & John, 1992) has been frequently used in examining how general traits relate 
to trust. Specifically, extraversion is reported to be positively correlated with higher levels of 
interpersonal trust (Evans & Revelle, 2008), a trend that extends to trust in automated systems 
(Merritt & Ilgen, 2008). In contrast, neuroticism typically shows a negative correlation with 
interpersonal trust and may influence skepticism towards automation, as inferred from studies 
on acceptance of automated recommendations (Szalma & Taylor, 2011). Further, traits such as 
agreeableness and conscientiousness have been found to positively affect the initial trust 
individuals place in automation (Chien et al., 2016), suggesting that these personality traits may 
significantly influence one's propensity to trust automated technologies. 

C. Experience 
Experience with automated systems can influence trust, as individuals form expectations about 
these systems based on their observed reliability. Muir (1994) posits that expert operators, 
familiar with system intricacies, are less likely to exhibit confirmation bias compared to novice 
users. However, Riley (1994) found that automation experience did not significantly alter the 
relationship between workload, automation reliability, and usage, suggesting that further 
investigation is needed, particularly in high-fidelity simulations and in testing the hypothesis 
on the persistence of belief relative to experience. Research by Sanchez et al. (2014) 
demonstrated that the effect of low system reliability on trust varies according to the user's level 
of familiarity with the system. Additionally, findings by Manzey et al. (2012) suggest that 
negative experiences with an automated system have a more profound impact on trust than 
positive experiences. Therefore, both the quantity and quality of interactions with a system play 
vital roles in shaping the degree of trust and reliance placed on it. 

2.6.1.3 Environmental-Related Factors 

Environmental factors influence the relationship between trust and interaction with automated 
systems, though they may not directly impact trust. Hoff and Bashir (2015) highlighted that the 
unfamiliarity of a situation, along with the degree of autonomy afforded to the operator, and 
the operator's capacity to evaluate automated versus manual execution can impact the 
relationship between trust and reliance on automation. In scenarios where individuals have the 
opportunity to assess and confirm the automation's accuracy, trust is more likely to dictate 
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reliance on the automation. Moreover, the perceived advantages and potential risks associated 
with employing automation, alongside task requirements and the operator's workload, play 
important roles in shaping this dynamic. 

2.6.2 Trust as Precursor (Trust outcomes): Automation Misuse, Disuse, and 
Abuse 

Automation misuse and disuse, examined by Parasuraman and Riley (1997), encapsulate 
common trust outcomes in human-automation interaction. Misuse or “overreliance on 
automation” (Parasuraman and Riley 1997, p. 230) is characterized by an uncritical reliance on 
automation, often leading to its overuse, and stems from two main factors: automation bias and 
complacency. Both factors contribute to insufficient monitoring due to diminished human 
engagement (Parasuraman & Manzey, 2010; Parasuraman & Riley, 1997). Automation bias, 
the predisposition to accept automated feedback as accurate, emerges from the human 
inclination towards minimizing cognitive effort, thereby preferring to trust automation's 
correctness (Dzindolet, Beck, et al., 2001; Dzindolet, Pierce, et al., 2001; Goddard et al., 2014; 
Mosier et al., 1998; Skitka et al., 1999, 2000; Wang et al., 2008). Complacency manifests when 
monitoring is suboptimal, adversely affecting the performance of the joint system. This 
tendency is exacerbated in high-workload and high-stakes environments, where users might opt 
to depend on even flawed automation (Dixon et al., 2007; Wickens & Dixon, 2007). 

In contrast to misuse, disuse occurs when the automation remains underutilized despite its high 
reliability (Parasuraman & Riley, 1997). Automation disuse ranges from minimal use of 
automation to complete reliance on manual operation. It often results from discrepancies 
between expected and observed automation performance or when a user's confidence in their 
own ability to perform a task surpasses their trust in the automation's effectiveness (Lee & 
Moray, 1992). 

When automation is employed in contexts beyond its intended design or in an inapplicable 
situation, this refers to automation abuse (Parasuraman and Riley 1997). Such abuse can result 
in system malfunctions and diminished performance of the automation. An example of this 
could be the activation of automated lane-keeping in an urban driving setting, which is designed 
specifically for highway use. 

While the concepts of Trust in Automation (TiA) and its resultant outcomes are well-
established, a comprehensive review of the literature alongside recent empirical findings 
suggests a more complex relationship between TiA and trust outcomes than previously 
understood. This complexity suggests that predicting the outcomes of human-automation 
interactions based solely on the level of TiA can be excessively simplistic. Instances have been 
observed where users exhibit high levels of TiA yet opt for manual operations (Lee and Moray, 
1992), or users under high workload conditions have been observed to misuse automation they 
do not fully trust (Biros et al., 2004; Daly, 2002). Despite understanding the behavioral aspects 
of TiA remaining crucial (Drnec, Marathe, Lukos, et al., 2016; Drnec, Marathe, Metcalfe, et 
al., 2016), these findings suggest that the relationship between TiA and behavioral outcomes 
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(e.g., the rate of intervention or attention levels) can better be perceived as a nonlinear dynamic 
process. 

2.6.3 Trust Development 
Muir (1994) argues that TiA's development hinges on meeting three expectations during 
interactions with automation. These are technical competence, persistence (which might be 
more appropriately described as predictability), and fiduciary responsibility. Each of these 
expectations plays a varying role in the evolution of TiA over the duration of automation usage. 
Initially, the automation's perceived technical competence, or its ability to accurately fulfill its 
designed functions, may be paramount. As time progresses, the focus may shift to other aspects. 
Persistence, in this context, is closely tied to the automation's reliability; it is the anticipation 
that the automation will consistently perform in a similar manner under comparable conditions 
in the future. Fiduciary responsibility encompasses the user's expectation that the automation 
will be accountable for the tasks it is designed to perform, thereby allowing the user to allocate 
fewer personal resources to those tasks. The significance of these expectations in the dynamics 
of TiA varies at different interaction phases with the automation. 

Upon initial exposure to an automated system, human users often face a scarcity of information 
to assess the system's trustworthiness. Early expectations of Trust in Automation (TiA) are 
influenced by preconceived biases towards automation and initial impressions of the system's 
design. These basic assessments initiate the development of TiA (Dzindolet et al., 2003; Lee & 
See, 2004; Merritt, 2011; C. Miller et al., 2005; Muir & Moray, 1996; Nass et al., 1996; Pak et 
al., 2012; Parasuraman & Miller, 2004). As users familiarize themselves with the system, they 
experiment with different interaction strategies which facilitates a deeper understanding of the 
system's capabilities. This exploration phase is critical for assessing the system's competence, 
a key determinant of TiA in the beginning stage. Although, humans often struggle to accurately 
estimate system competence due to various biases and limitations (Madhavan et al., 2006; 
Merritt et al., 2014; Sheridan & Hennessy, 1984; Verberne et al., 2012), once a judgment on 
system competence is formed—accurate or not—predictability or persistence in the system's 
performance becomes the key factor in sustaining TiA over time. Consistent performance, 
particularly with an error rate maintained at or below 30%, is generally claimed to be sufficient 
for users to continue relying on the system (Wickens & Dixon, 2007). TiA evolves dynamically 
as users accumulate experiences with the automation, influencing their interaction decisions 
and subsequent behaviors. 

2.6.4 Models of TiA 
The conceptual understanding of trust has become more cohesive over recent years, yet there 
remains no universally accepted definition nor model for Trust in Automation (TiA), likely due 
to the situational specifics inherent to trust (Kohn et al., 2021). This absence of a singular model 
implies that interpretations of trust may differ according to the objectives and theoretical 
underpinnings chosen by each researcher, provided that these are explicitly integrated within 
their conceptual framework. 
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Muir (1987) introduced an initial model of trust, integrating three dimensions of expectations 
based on Barber's (1983) research and three levels of experience, drawing from Rempel et al. 
(1985). The model defines three dimensions of expectations encompassing persistence, which 
is the belief in the stability of natural, physical, biological, and moral social orders; technical 
competence, reflecting trust in the predictable actions of another agent; and fiduciary 
responsibility, which is the anticipation that the trusted party will act in the best interest of the 
trustor. These facets of technical competence intersect with personal experiences across 
predictability, dependability, and faith levels, suggesting a perpendicular relationship between 
the dimensions of expectations and experiences (Muir, 1994). Consequently, perceptions of an 
automated system's persistence, competence, and responsibility are influenced by an 
individual's prior experiences with the system (predictability, dependability, and faith), shaping 
the trust they place in the technology. This trust may be accurately or inaccurately aligned with 
the system's actual attributes. According to Muir (1994), trust in automation evolves from initial 
reliance on the system's consistent actions to a deeper trust founded on perceived reliability 
after extensive interaction. The ultimate level of trust, therefore, is founded on both empirical 
evidence and a leap of faith beyond rational considerations (Adams et al., 2003). Further 
investigations confirm that significant elements of trust in automation are encapsulated within 
models of interpersonal trust (Muir & Moray, 1996). In a controlled setting, individuals 
assessed their trust in a system based on its operational performance, corroborating Muir's trust 
model and highlighting the nature of trust as influenced by the duration of system interaction 
(Muir & Moray, 1996). 

Lee and Moray (1992) extended the foundational ideas proposed by Muir (1994), incorporating 
the constructs postulated by Barber (1983) and Rempel et al. (1985), but further enriching them 
with additional contextual elements specific to their research. According to Lee and Moray 
(1992), trust is initially grounded on basic beliefs about the nature and structure of society, 
forming the bedrock upon which further aspects of trust are constructed. In this model, trust is 
dissected into three primary components: performance, process, and purpose. The Performance 
dimension reflects the observed and historical characteristics of an automated system, including 
its reliability and predictability, essentially focusing on the outcomes of the system's actions. 
Process delves into the suitability and methodology of the system's operations, providing 
insight into the system's operational logic and procedural correctness. Lastly, Purpose considers 
the original intent and application for which the system was designed, underpinning the 
rationale behind its functionalities. In their empirical study on supervisory control, Lee and 
Moray (1992) observed shifts in trust and control approaches as users interacted with an 
automated processing unit. Their findings highlighted the significant roles played by system 
performance and failures in shaping subjective trust levels, suggesting that these trust facets 
(performance and process) significantly inform other trust dimensions such as predictability, 
dependability, and faith. 

Lee and See (2004) compiled theories and insights from diverse fields such as interpersonal 
relationships, psychology, sociology, and organizational behavior to construct a comprehensive 
model that elucidates the evolving nature of trust in interactions with automated systems. 
Anchoring their discussion in the Theory of Reasoned Action (TRA) proposed by Fishbein and 
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Ajzen (1975), they adapt its principles to the context of TiA. The TRA postulates that human 
behavior is under volitional control and significantly shaped by behavioral intentions, which 
themselves are the result of a combination of attitudes, beliefs, and societal norms. Behavioral 
intention in this framework is seen as a reflection of the effort and motivation an individual is 
willing to invest to enact a particular behavior. In this light, beliefs are interpreted as individual 
perceptions regarding the likelihood that engaging with a particular object (e.g., an automated 
system) will result in specific outcomes. These beliefs, informed by relevant information, shape 
one’s attitudes towards the object, encapsulating evaluative judgments along dimensions such 
as good-bad or pleasant-unpleasant. Unlike beliefs, which are situationally specific, attitudes 
are broader and more stable evaluations that transcend specific contexts. 

Adapting these concepts to the domain of automated technology, Lee and See (2004) proposed 
that trust acts as a critical mediator in the relationship between users and automation, 
influencing and being influenced by the interaction dynamics. This reciprocal relationship is 
captured in their model (Figure 8), which outlines a closed-loop process where interaction with 
automation feeds into trust, which in turn affects subsequent interactions. This interactive cycle 
is modulated by external factors including environmental context, system characteristics, and 
user traits. Lee and See (2004) elaborate on the concepts of detail and abstraction as they 
pertain to the understanding and development of trust in automation. Detail pertains to the 
granularity of trust, which might focus on specific elements such as the operational modes of 
an automation system or the system as a whole. Abstraction, on the other hand, captures broader 
considerations such as the system's overall performance, its operational processes, and the 
objectives for which it was designed, following the earlier insights of Lee and Moray (1992). 

Lee and See (2004) suggest that for trust to be accurately calibrated and deemed appropriate, 
both the granularity (detail) and the broader context (abstraction) of the automation's 
capabilities should be communicated effectively to the user. Importantly, the model 
underscores the impact of how information is conveyed through the user interface, suggesting 
that the nature and presentation of information can significantly influence trust dynamics in 
automated systems. This conceptual framework offers a comprehensive understanding of trust 
in automation, emphasizing its dynamic nature and the multifaceted influences that shape trust-
based behavioral decisions in dynamic decision-making scenarios involving automated 
technologies. Lee and See's model made a significant contribution toward understanding the 
psychological underpinnings of trust formation in automation. By positing that trust is dynamic 
and influenced by an array of factors, the model offers an extensive perspective on trust in 
automated systems. Since its introduction in 2004, the model has become a cornerstone for 
discussions surrounding trust in automation, especially its conceptualization of trust as an 
attitude-based phenomenon. Despite its widespread recognition, empirical validation of the 
model's core principles remains limited. Moreover, the model's variables and their interrelations 
within the trust formation process need clearer definitions and more precise explanations to 
enhance empirical testing and theoretical utility. 
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Figure 8, Trust in Automation and Reliance (Lee and See, 2004) 

The development of trust in automated systems is multifaceted, encompassing a variety of 
human internal characteristics, system features, situational dynamics, and environmental 
factors (Hancock et al., 2011; Lee & See, 2004; Merritt & Ilgen, 2008). Drawing from a 
comprehensive review of 127 studies on human-automation interaction, Hoff and Bashir (2015) 
condensed these factors into a three-layered model that categorizes trust into dispositional, 
situational, and learned dimensions, as illustrated in Figure 9. 
Dispositional trust encompasses an individual’s inclination to trust automated systems, 
influenced by stable personal characteristics such as demographics, cultural background, and 
personality traits. This baseline level of trust predisposes a person's initial response to an 
automated system, independent of specific interactions. Situational trust, on the other hand, 
pertains to trust levels influenced by immediate external factors, including the complexity of 
the task, environmental conditions, and situational demands. These elements affect the degree 
to which trust influences reliance on an automated system, with considerations such as 
workload and perceived risks or benefits of using the system playing crucial roles. Learned 
trust pertains to trust that develops from personal experiences with a particular automated 
system. This form of trust is dynamic and history-dependent, shaped by the user's direct 
interactions with and evaluations of the system's performance. Hoff and Bashir (2015) further 
categorize learned trust into initial and dynamic segments. Initial learned trust is based on pre-
existing knowledge and perceptions before interaction, influenced by factors such as past 
encounters with similar technologies or the system’s reputation. Dynamic learned trust evolves 
from continuous use, fluctuating in response to the system's performance over time. 
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Hoff and Bashir's (2015) model represent an important synthesis in the field of trust in 
automation, their work mainly outlines an overview of the factors at each layer. Moreover, this 
model, much like Lee and See's (2004) work, has yet to be extensively validated through 
empirical research. 

 

Figure 9, Three-layered model of Trust in Automation (Hoff and Bashir, 2015) 

In addition to the aforementioned conceptual models, several computational and mathematical 
models have been developed to offer a quantitative account of trust, some of which are 
described here. Gao and Lee (2006) developed the Extended Decision Field Theory (EDFT), a 
dynamic-cognitive framework aimed at explaining the evolution of preferences within 
decision-making contexts under uncertainty. Utilizing an autoregressive model, EDFT 
integrates past preferences and new information to estimate current preference shifts, mapping 
the dynamics of trust and self-confidence in automation contexts. This model applies a 
segmented function to formulate beliefs about automation capabilities versus manual control, 
aligning with empirical observations on trust inertia and the interplay between trust, self-
confidence, and reliance on automation. Xu and Dudek (2015) explored the relationship 
between trust and reliance through the Online Probabilistic Trust Inference Model (OPTIMO), 
a Dynamic Bayesian Network designed to quantify an individual's trust level in robotic 
teammates, suggesting reliance as a tangible measure of trust. Akash et al. (2017) proposed a 
linear model defining trust evolution, which accounts for human biases influenced by past 
experiences and expectations. This model quantifies trust adjustments based on the 
discrepancies between current trust and experiences, cumulative trust, and expected biases, 
addressing the challenge of applying these principles broadly due to its reliance on direct trust 
inquiries from users. Yang et al. (2017) applied a first-order linear time-invariant system to 
analyze how average trust in automation reaches equilibrium over repeated interactions. 
Following this, Guo and Yang (2021) introduced a personalized trust prediction model using 
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Bayesian inference and a Beta distribution to assess trust dynamics, acknowledging the model's 
assumption on static automation capabilities and its impact-based dichotomy of automation 
performance. Furthermore, Lewis and Weigert (2012) emphasize the significance of historical 
feedback loops in developing trust relationships. Jonker and Treur (1999) further investigate 
trust dynamics, emphasizing the reciprocal evolution of trust based on interactions. Manzey et 
al. (2012) identified positive and negative feedback mechanisms influencing trust adjustments, 
noting the disproportionately larger impact of negative experiences on trust recalibration 
compared to positive interactions, as reinforced by subsequent studies (Yang et al., 2016). 

Up to this point, the dissertation has endeavored to deliver a detailed overview of the research 
background and context. This includes an in-depth exploration of the theoretical constructs 
central to the study, such as Supervisory Control, Levels of Automation (LOA), Trust in 
Automation (TiA), and various TiA models. The extensive range of topics, concepts, and 
theoretical frameworks underscore the inherent complexity of intertwining diverse subjects and 
constructs. Significantly, given this dissertation's emphasis on the modeling facets of Human-
Automation Interaction (HAI), it becomes crucial to thoroughly comprehend the field and 
disciplinary context within which this research is embedded. An integral part of this exploration 
involves dissecting the nature of complexity and examining how models can effectively 
navigate and address such complexity in the realm of HFE. The forthcoming chapter will delve 
into the theoretical foundations of the dissertation, concentrating on the broad discipline of 
Human Factors and Ergonomics (HFE). It will explore the historical evolution and defining 
characteristics of HFE. This foundational knowledge will inform the subsequent evaluation of 
existing models and modeling efforts within the field, as well as assess the appropriateness of 
various modeling approaches in meeting the specific needs of the HFE discipline. 
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3 Theoretical Grounding 

3.1 Evolution of Human Factors and Ergonomics (HFE) 
The discipline of Human Factors and Ergonomics (HFE) originated from the old idea of ‘fitness 
for purpose' and progressed particularly in response to the design and operational challenges 
posed by technological advancements in the 20th century (Green & Jordan, 1999; Meister, 
2000). Throughout its history, the discipline has been known by various monikers, such as 
human engineering and engineering psychology, though it is most commonly referred to as 
'human factors' in the United States and 'ergonomics' in the United Kingdom and Europe 
(Dempsey et al., 2000; Wickens et al., 2004). The term 'human factors' became prevalent in the 
late 1940s, when the field's development was significantly influenced by psychology and 
engineering (Meister & Enderwick, 2001). The emphasis was placed on human-centric design 
and incorporating human considerations throughout the system design process (Sanders & 
McCormick, 1998). 
With tremendous progress during and post-World War II, Human Factors and Ergonomics 
(HFE) began to flourish globally, finding practical applications across various industrial 
contexts (Waterson & Eason, 2009). In the 1960s, the discipline secured a solid footing in both 
academic circles and the industrial sector, progressing towards a more integrated relationship 
with stakeholders in the civil, governmental, and industrial realms, including users and 
practitioners. Internationally, HFE increasingly played a central role in shaping health and 
safety regulations (Moray, 2008). This period marked a significant expansion in HFE, 
characterized by advancements in consumer ergonomics, the establishment of standards, the 
integration of automation and systems ergonomics, the rise of computing and technological 
innovations, and the refinement of job and work design methodologies (Moray, 2008; Waterson 
& Eason, 2009). The scope of consumer ergonomics broadened beyond seating solutions to 
encompass a diverse array of consumer goods, ranging from household devices to kitchen 
layouts and the design of hospital beds (Waterson & Eason, 2009). 
During the 1960s, the contributions of Human Factors and Ergonomics (HFE) to computer 
systems primarily revolved around the design of interface hardware, such as keyboards. It was 
not until the advent of the personal computer (PC) in the post-1970 era that comprehensive 
empirical studies began to focus on computer software (Meister, 1999). The rise of interactive 
computing brought to the forefront a multitude of human-centric issues, prompting ergonomists 
to actively engage in research, evaluation, and design. Initially, interactions with computers 
were grounded in programming languages tailored for computer specialists, proving unsuitable 
for a broader audience including accountants, clerks, engineers, and managers. This 
necessitated the creation of software interfaces designed to be intuitive and user-friendly for 
the growing demographic of PC users. The introduction of personal computers heralded the era 
of ‘point and click’ graphical user interfaces, setting a new benchmark for human-computer 
interaction (Waterson & Eason, 2009). 
The introduction of the computer revolution in the 1980s thrust Human Factors and Ergonomics 
(HFE) into widespread attention, highlighting the importance of ergonomically designed 
computer hardware, user-centric software, the role of human factors in office environments, 
and the broader implications of technological advancements on individuals (Sanders & 
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McCormick, 1993). A pivotal focus of research within this period was the operation of nuclear 
power plants, a direction largely motivated by the notorious nuclear incidents at the Three Mile 
Island facility in the US in 1979 and the Chernobyl facility in 1986. These incidents, along with 
other technological catastrophes such as the Bhopal disaster in India in 1984 and the Phillips 
Petroleum plant explosions in Texas in 1989, accentuated the profound consequences of 
neglecting human factors, both in human casualties and financial ramifications. Meshkati 
(1991) conducted analyses on these tragedies, identifying a common thread of insufficient 
human factors considerations contributing to the magnitude of these disasters. In response, there 
was an intensive effort towards enhancing facility safety, notably through the integration of 
HFE programs aimed at augmenting operator support and ensuring the prevention of similar 
disasters (Meister, 1999). 
Over recent decades, the Human Factors and Ergonomics (HFE) field has witnessed 
exponential growth in its literature, including books, scholarly articles, and conference 
proceedings (Meister, 1999). Karwowski (2012) observed that HFE has broadened its horizons, 
extending beyond the traditional domains of physical, psycho-physiological, cognitive, and 
organizational/macro ergonomics to embrace systems-oriented approaches globally. This 
evolution mirrors the growing intricacies of human-system interactions. Notably, the discipline 
has ventured into emerging areas such as nanoergonomics and neuroergonomics, a shift towards 
the human-centered design of increasingly complex systems (Karwowski, 2005; Parasuraman 
& Rizzo, 2008). Research in cognitive ergonomics, human-computer interaction, 
organizational design and management, and the relationship between work and health has seen 
substantial growth (Waterson, 2011). The scope of Human Factors and Ergonomics (HFE) has 
widened, embracing new realms such as the effects of information and communication 
technology on work and daily activities (Dul et al., 2012), interventions addressing 
psychosocial risks in workplaces (Petit et al., 2011), and fostering sustainability in energy, 
waste management, and transportation (Haslam & Waterson, 2013). 
 

3.2 HFE As Scientific Discipline 
Meister (1999) argues that Human Factors and Ergonomics (HFE) is grounded in the pursuit of 
generalization and prediction, essential traits of scientific inquiry. Chapanis (1988) delves 
deeper, articulating that generalizability is about extending research outcomes beyond the 
original conditions of study. This ability to generalize from observed events is critical for 
preparing and managing unencountered human behaviors or scenarios. Sanders and 
McCormick (1998) emphasize that HFE is anchored in the scientific method, leveraging 
objective data to evaluate hypotheses and gather fundamental insights into human behavior. 
Research within HFE aims to uncover and understand the psychological, social, physical, and 
biological facets of humans, with the goal of integrating this knowledge into the design and 
operation of products or systems. This integration seeks to enhance human efficiency, well-
being, safety, and comfort in their interactions with various environments and technologies 
(Stramler, 1992). In HFE, the study of human behavior extends across various environments, 
from highly controlled laboratory settings to real-world systems, to achieve refined 
observations and experimental results. These environments are chosen to reflect the complexity 
of systems relevant to the research, ranging from controlled labs facilitating precise 
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observations to naturalistic settings where normal behavior, incidents, and accidents of users 
can be observed (Wickens et al., 2004). According to Wickens et al. (2004), a thorough 
understanding, alongside the ability to generalize and predict human behavior, is greatly 
enhanced by employing a blend of diverse observational methods and analytical techniques. 
Contrary to viewing Human Factors and Ergonomics (HFE) strictly as a scientific discipline, 
some scholars advocate for its recognition as an art or craft, employing scientific methods as a 
means to an end rather than the end itself. Moray (2000, p. 529) emphasized the importance of 
understanding HFE within the complex social contexts where human work takes place, stating 
“our discipline is an art not a basic science, and one which only makes sense in the full richness 
of the social setting in which people work.” He highlights that the application of HFE 
encompasses a wide array of contextual factors including team dynamics, individual 
motivations, organizational culture, and the varied purposes and scales of systems under 
consideration. Wilson (2000) illustrates the multidimensional nature of HFE in the domain of 
human-computer interaction, acknowledging it as a confluence of craft, science, and 
engineering. This perspective explains the craft in HFE's aims to implement and evaluate, its 
scientific aspect in explaining and predicting behaviors, and its engineering facet in designing 
systems for enhanced performance. Such viewpoints advocate for a universal approach to HFE, 
recognizing it as a discipline that transcends traditional boundaries by integrating artistic 
craftsmanship, rigorous scientific inquiry, and pragmatic engineering solutions. 
Despite the diverse perspectives on the nature of Human Factors and Ergonomics (HFE), there 
is a prevailing consensus among scholars that it fundamentally qualifies as a science. Human 
Factors and Ergonomics (HFE) as a scientific discipline focuses on understanding interactions 
between humans and various elements in the environment. It is also a professional field that 
applies theoretical principles, data, and methods to design, with the aim of enhancing well-
being and overall performance (Dul et al., 2012). The primary goals of HFE are to improve the 
efficiency and effectiveness of work and other activities while promoting key human values 
such as safety, reduced fatigue and stress, and an enhanced quality of life (Sanders and 
McCormick, 1993). To realize these objectives, many experts have emphasized the importance 
of knowledge transfer and the creation of synergy between HFE research and its practical 
application (Caple, 2008; Meister, 2000; Sind-Prunier, 1996; Singleton, 1994). This involves 
bridging the gap between theoretical research and practical implementation, ensuring that 
insights from research are effectively translated into tangible improvements in design and 
practice. This collaboration and integration of theory and practice are essential for the 
advancement of HFE, making it a useful and impactful discipline. Several experts in Human 
Factors and Ergonomics (HFE) have underscored the vital role of theory in the discipline. 
Meister (1999), for instance, viewed the connection between theory, research, and practice into 
three distinct segments: (1) The relationship between theory and research; the idea that 
theoretical frameworks provide a foundation upon which research is built and directed. (2) The 
relationship between research and practice, which focuses on the idea that research should offer 
practical guidelines for design and operation. This implies that the findings and insights gained 
from research should directly influence and shape practical applications in the field of 
ergonomics. (3) The interrelationship among theory, research, and practice, implying that these 
three elements are interdependent. The absence of a solid theoretical base would mean that 
research cannot effectively provide the guidelines necessary to inform practice. Expanding on 
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the importance of theory in HFE, Getty (1995) emphasized the necessity for ergonomics 
principles to be grounded in robust and validated research. This approach is crucial for the 
scientific integrity and long-term development of the discipline. Karwowski (2005) took this 
notion a step further by outlining three primary paradigms within HFE: (1) Ergonomics theory, 
which involves understanding, describing, and evaluating interactions between humans and 
systems. (2) Ergonomics abstraction, that utilizes insights about human-system interactions to 
make testable predictions against real-world scenarios. (3) Ergonomics design, that focuses on 
applying knowledge of human-system interactions to create systems that not only meet 
consumer needs but also adhere to human compatibility requirements. 
 

3.3 HFE As Basic and Applied Discipline 
Basic science is driven by the quest to answer fundamental questions out of pure interest, 
aiming to unravel the underlying mechanisms of various processes without any commercial 
intent (Horrobin, 1969; Rimnac & Leopold, 2014). It often begins with unique observations 
and a genuine pursuit of knowledge (Nudds & Villard, 2006). Historical examples include 
Michael Faraday's development of electromagnetic induction principles in 1821 and Heinrich 
Hertz's discovery of what is now known as radio waves in 1886. Such research, while 
foundational, seldom transitions directly into practical applications, as its commercial potential 
is not immediately evident. On occasions where basic research does prove to be of practical 
use, its applications are frequently realized in fields far from the original study (Horrobin, 
1969). In contrast, applied science leverages the insights gained from basic science to push 
technological, material, or treatment advancements forward (Rimnac & Leopold, 2014). This 
approach is often motivated by the need to address pressing industry problems (Nudds & 
Villard, 2006), creating a bridge between theoretical knowledge and real-world applications. 
Human Factors and Ergonomics (HFE) emerged as a distinct field through the collaborative 
efforts of applied scientists addressing multifaceted challenges that spanned various disciplines 
(Bridger, 2009). Recognized for integrating principles from anatomy, physiology, and 
psychology, HFE has also established significant ties with practical fields such as medicine and 
engineering (Singleton, 1994; Wilson, 2000). Initially focusing on human interactions with 
physical devices in military and industrial contexts, the domain of HFE has significantly 
expanded, reflecting a shift towards a more holistic consideration of human interactions across 
a broader range of environments and systems. This evolution indicates the inherently goal-
driven nature of HFE, which, unlike the predominantly technical focus of engineering, 
prioritizes the human element in the design process, emphasizing the impact of design on 
human interactions with products, environments, and systems (Sanders & McCormick, 1998). 
At its core, HFE is fundamentally linked to design, whether it pertains to work practices, 
products, or entire systems (Green & Jordan, 1999). The discipline's foundation lies in the 
strategic application of knowledge about human traits to foster compatibility within interactive 
systems involving people, machines, and their environments (Karwowski, 2012). The aim is to 
adapt the design of tools, environments, and systems to better suit human needs, capabilities, 
and limitations (Sanders & McCormick, 1998). Originally, HFE addressed singular issues of 
individual interactions with machines or specific environmental factors. However, the 
complexity of contemporary life demands a more sophisticated understanding of human 
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behavior and performance, extending beyond the constraints of traditional ergonomics (Wilson, 
2000). 
Despite its practical orientation, Wilson (2000) argues for the necessity of both basic and 
applied research within HFE to facilitate evidence-based practice and ensure the discipline's 
contributions are both meaningful and empirically grounded. This approach also becomes 
critical in integrating research findings into practical applications to enhance the design and 
usability of systems and environments for human use. Turner (2002) posits that an ideal 
research framework should both guide practice and foster theoretical advancements, with 
practice, in turn, benefiting from research insights and generating further inquiries for 
exploration. The synergy between research and practice is envisioned to establish a robust 
theoretical foundation, fostering the growth and development of a professional community 
(Haddow & Klobas, 2004). Despite these aspirations, the practical integration of research 
findings into professional practice frequently fails to meet these expectations, revealing a gap 
between theoretical ideals and operational realities. 
 

3.4 HFE As System Discipline 
Dul et al. (2012) assert that HFE primarily focuses on systems where humans interact with their 
environment. Yet, the term 'system', while commonly used, often lacks a clear, explicit 
definition, leading to varied interpretations and applications. Simply classifying a discipline as 
“systems-based” does not enhance understanding or provide clearer descriptions. According to 
Dul et al. (2012), in HFE, a system is defined as a set of interrelated independent parts or 
elements, with the acknowledgment that the whole is more than just the sum of its parts. 
Dynamic systems, on the other hand, change their system state with time. These states can be 
number of students enrolled in a class, population of a country, physical and mental activities, 
or psychological constructs such as one’s trust. Singleton (1974) suggested that dynamic 
systems consist of interconnected objects that evolve over time, and for human-made systems, 
they serve a specific purpose. While this definition might be debated in other sciences, 
particularly regarding natural systems and their purpose, it provides a foundation for 
understanding systems. Chapanis (1996) defined HFE system as an interactive combination of 
people, materials, tools, machines, software, facilities, and procedures, all working together for 
a common purpose. Wilson (2014) proposed that a system is a set of interconnected activities 
or entities (including hardware, software, buildings, spaces, communities, and people) with a 
shared purpose. These entities are linked through various forms of state, function, and causality, 
and the system evolves in response to different circumstances and events. A system is 
conceptualized as existing within a boundary, having inputs and outputs with potential many-
to-many connections. In accordance with Gestalt principles, the system as a whole is typically 
more significant (useful, powerful, functional, etc.) than the mere sum of its parts (Wertheimer, 
2012). 

Systems can be categorized based on different features, however, the focus in this dissertation 
is on two distinct features of systems, complex and dynamic systems. Bossel (2007) contends 
that inherently, all systems possess dynamic qualities, including those that seem relatively static 
at first glance. Nonetheless, the designation "Dynamic System" is specifically allocated for 
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systems that undergo state changes and, as a result, exhibit dynamic behavior as time 
progresses. The terms complex and complexity require more clarity, as discussed in the next 
section.   

3.4.1 Complicated vs. Complex Systems 
The introduction of a social element, such as human interaction, transforms a system from 
merely complicated to complex (Cilliers, 2008; Dekker et al., 2011). In complex systems, the 
parts cannot be understood in isolation from the whole. According to Ottino (2003), the system 
itself should be the primary focus of analysis. This principle emphasizes the importance of 
understanding the interconnectedness and emergent properties of systems rather than merely 
analyzing their individual components in isolation. 

It seems that the distinction between "complex" and "complicated" systems is necessary. 
Complicated systems, such as container ships, are intricate and composed of many parts. 
Despite their intricacy, they can be disassembled and reassembled, and are, in principle, 
understandable and describable, even if not by a single individual. This characteristic 
categorizes them as complicated. In contrast, complex systems are defined by the interactions 
among their components. A container ship transforms into a complex system when integrated 
into the real world, encompassing factors such as cultural diversity, communication styles, 
varying bridge hierarchies (Orasanu & Martin, 1998), fatigue effects, procedural implications 
(Snook & Irvine, 1969), diverse training and language standards (Hutchins, 1996), and cross-
cultural differences in risk perception and behavior (Lund & Rundmo, 2009). These elements 
transcend engineering specifications and reliability predictions, making the system complex.  

Complexity in behavior stems from the interplay among system components, emphasizing the 
importance of their interrelations rather than the components themselves (Dekker et al., 2011). 
System properties emerge from these interactions, not residing in any single component (Israel, 
2005). Complex systems can develop new structures internally, independent of external design. 
They adapt their internal structures in response to environmental changes (Urry, 2006). 
Complexity is an attribute of the system as a whole, not of its components (Zuchowski, 2018). 
Each component's understanding is limited and localized, with no single component capable of 
encapsulating the system's entire complexity. Thus, the system's behavior cannot be simplified 
to the behaviors of its components. 
In complex systems, connections are local, and each component operates without full 
knowledge of the system's overall behavior. Components react based on their immediate 
information, leading to complexity from the vast network of interactions and relationships 
stemming from these local responses. With interdependencies and interactions expanding 
rapidly, the complex system's boundaries become blurred (Mitchell, 2006). Furthermore, 
complex systems are influenced by their history and path dependence, which extends beyond 
their boundaries. Their current behavior is shaped not only by their own past but also by the 
history of surrounding events (Sterman, 1994). In complex systems, conditions are irreversible, 
meaning it is impossible to completely reconstruct the specific circumstances that led to a 
particular outcome, such as an accident (Dekker et al., 2011). These systems are in continuous 
flux, with evolving relationships and adaptations to their environment. As a result, the state of 
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a complex system post-accident is never the same as it was before the accident; it changes not 
only due to the accident but also due to the passage of time. This constant change limits the 
predictive accuracy of retrospective failure analyses (Leveson, 2002). In addition, the process 
of reconstructing events in a complex system post-event is filled with challenges, not only 
because of the nature of complexity but also due to psychological factors such as hindsight bias 
that can distort past events (Fischhoff & Beyth, 1975; Hugh & Dekker, 2009). The system under 
scrutiny after an event is never the same system that produced the outcome. 

Closely related to the concepts of complexity and systems theory is Nonlinear Dynamic 
Systems (NSD) theory (Guastello, 2017) which captures the essence of complex dynamic 
systems and their fundamental properties. 

3.4.2 Nonlinear Dynamic Systems (NDS) 
Nonlinear Dynamic Systems (NDS) theory functions as a general systems theory due to its 
broad applicability across a diverse array of phenomena. NDS has effectively incorporated and 
expanded upon several key concepts from general systems theory. Among these are the notions 
of feedback loops and mathematical formalisms, which form the core elements of NDS 
applications (Guastello & Liebovitch, 2009). Feedback loops, fundamental to understanding 
system behaviors and interactions, are especially crucial in NDS as they help explain how 
systems self-regulate and evolve over time. Mathematical formalisms provide the necessary 
structure to model and analyze the dynamic behavior of systems in a precise and quantifiable 
manner. Nonlinear Dynamic Systems (NDS) theory is grounded in four fundamental principles 
that redefine traditional notions of system analysis and behavior: 

1. Variability and Deterministic Functions 
NDS posits that seemingly random events can be produced by simple deterministic functions, 
though identifying these functions can be challenging. The focus in NDS is as much on the 
analysis of variability as it is on the analysis of the underlying structure of variability, focusing 
on understanding the size and structure of variability, the processes generating dynamic 
patterns, and identifying system variables that influence these outcomes (Fuchs, 2013). 

2. Diverse Types of System Changes 
Rather than solely using assumptions of linearity, NDS acknowledges a variety of change types. 
These are represented through multiple modeling structures (Guastello & Liebovitch, 2009; 
Sprott, 2003). Temporal patterns in NDS are seen as indicators of specific underlying dynamics, 
where time typically acts as an implicit variable. The state of an agent at one point in time is a 
nonlinear function of its state at a previous time and other influencing control variables. 

3. Dynamics of Stability and Instability 
Contrary to the belief that systems exist in equilibrium until disrupted by external forces, NDS 
suggests that systems inherently produce stabilities, instabilities, and other change dynamics as 
part of their internal functioning (Jost, 2005; Thelen, 2005). Both internal and external 
disturbances can influence a system, and the focus is on identifying variables that govern the 
system's reactivity to these disturbances. 
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4. Control and Emergence Over Traditional Causality 
In NDS, the concept of causality is replaced with ideas of control and emergence. Instead of 
linear cause-effect relationships (where Event A causes Event B), NDS views each agent as 
following a dynamic path influenced by its prior state. The impact of variables on this path 
depends on the agent's or system's previous state, leading to outcomes where small influences 
can have significant effects and vice versa (De Bot, 2017). Emergent phenomena in NDS are 
seen as outcomes of complex system behaviors and interactions, involving both bottom-up and 
top-down processes. These emergent phenomena require viewing situations through an 
appropriate lens to be understood correctly (Guastello, 2017). 

With that being said, Human-automation interaction (HAI) exemplifies a nonlinear dynamic 
and complex system in two distinct ways (Fereidunian et al., 2015; Karwowski, 2012). First, 
the tasks jointly executed by humans and automated systems are fundamentally complex and 
require adaptation to evolving environmental conditions. Second, the interaction between 
humans and automation systems is, in itself, a multifaceted phenomenon that requires 
continuous adaptation to changes in the system’s states. HAI depends on and reacts to initial 
conditions; thus it cannot be rule-governed and must be a case of continuous adaptation (Flach, 
2012; Hollnagel, 2021). 
 
The increasing complexity of sociotechnical systems necessitates a paradigm shift in the 
scientific development and practice of Human Factors and Ergonomics (HFE), a sentiment 
echoed across various disciplines and scholars (e.g., Allen & Varga, 2007; Dore & Rosser Jr, 
2007; Fleener & Merritt, 2007; Guastello, 2007; Karwowski, 2012; Walker et al., 2017; 
Zausner, 2007). This shift is not just a mere change in techniques or tools; it represents a 
fundamental transformation in how phenomena are understood, approached, modeled, and 
explained. A new scientific paradigm in HFE would entail the emergence of fresh concepts for 
interpreting complex phenomena, posing novel questions, and developing new methodologies 
aligned with these questions. This paradigm shift would also bring about new explanations for 
phenomena, offering insights that might have been previously fragmented or not fully 
understood. Moreover, it would significantly alter perspectives, leading to an enhanced 
understanding of existing phenomena. 

It is important to recognize that all research techniques and methods have their strengths, 
opportunities, and limitations (Frankfort-Nachmias et al., 2014). This diversity in 
methodological approaches means that some techniques are more suited to certain types of 
problems than others (Hughes & Sharrock, 2017). Therefore, the selection of appropriate 
methods and techniques is crucial for effectively understanding and solving the complex 
problems faced in modern ergonomics. 
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4 Research Methods 
This chapter presents the overall research methodology adopted throughout this doctoral 
dissertation. It primarily concentrates on the role of models and modeling complex systems, as 
well as simulation techniques employed in this dissertation. This section also argues the 
justification for selecting simulation as an effective modeling strategy to tackle the dynamic 
complexities inherent in Human-Automation Interaction (HAI) research. 

4.1 Theory, Model, and Modeling 
Theory is viewed as a structured, explanatory, abstract, and coherent framework comprising 
interconnected statements about a certain aspect of reality. These statements consist of 
constructs linked together through testable propositions, underpinned by a logical structure and 
certain assumptions (Davis et al., 2007; Dubin, 1970; Fawcett, 1988). The constituent elements 
of theories often consist of well-formalized models. Theories that arise from a process of 
theorizing rooted in an explicit, formal model have the potential to be more robust and far-
reaching compared to theories primarily based on implicit mental models (Wacker, 2004). 
Methodologically, this Doctoral research focus lies in creating a formalized, structural model, 
utilizing computer-assisted simulations. This approach is also referred to as computer-
supported theory-building (Hanneman, 1988). However, not every model qualifies as a theory. 
To qualify as a theory, a model must be accompanied by a plausible explanation of why it 
generates the observed behavior (Lane & Schwaninger, 2008). 

Models can be represented through various forms such as verbal descriptions, graphical 
illustrations (e.g., diagrams, and images), mathematical formulations, physical representations, 
or a combination thereof, such as computational models that utilize mathematical equations to 
generate numerical data and graphical outputs (Sheridan, 2017). Models can also be categorized 
in various ways based on different criteria, including dynamic versus static, deterministic versus 
stochastic, simple versus complex, and so on. A critical distinction, especially in terms of model 
validity, lies between "causal-descriptive" (explanatory, theory-like, or "white-box") models 
and purely descriptive or "correlational" (data-driven or "black-box") models (Barlas, 1996). 
Purely correlational, or black-box, models do not assert causal structures. In these models, the 
primary focus is on the aggregate output behavior. A model of this type is deemed valid if its 
output aligns with real-world output within a certain accuracy range, without delving into the 
internal validity of the model's individual components or relationships. This form of "output" 
validation often resembles a classical statistical testing problem. Data-driven models are 
primarily used for forecasting, such as time-series or regression models. Conversely, 
explanatory, causal-descriptive, or white-box, models are assertions about the actual processes 
of real systems. For these models, producing an accurate output is not the only criterion for 
validity. The internal structure's validity is paramount. As these models serve as theories about 
the real system, they must not only replicate or predict the system's behavior but also explain 
how this behavior arises and possibly suggest modifications to alter the existing behavior 
(Barlas & Carpenter, 1990). 
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That said, the formalization of any model involves a crucial step: specifying the nature of the 
relationships among the components within the state space. The primary goal of developing 
formal models of dynamic processes is to comprehend the dynamic outcomes arising from the 
interactions among the components within the state space. In models characterized by extensive 
state spaces, marked by strong interconnections, nonlinearity, time delays, noise, and feedback 
mechanisms among the states, deducing the dynamic behavior of the theory can be exceedingly 
difficult. In such complex scenarios, the most effective means of understanding and analyzing 
the theory is through simulation modeling (Hanneman, 1988; 1991). The primary value of a 
simulation outcome is that it presents propositions that can be tested and, if necessary, refuted. 
The focus is not just on whether a proposition is true or false but on providing a foundation for 
constructing arguments. 

4.2 Simulation Modeling 
Simulation is essentially the practical application or execution of a model, typically through 
numerical methods or computation. Its main objective is to simplify the complexity of the 
analytical model, converting the theory into a manageable form, often via computerization 
(Beisbart, 2012). Modeling and computer simulation of dynamic systems have the advantage 
unachievable from only initial knowledge about the system. Complex behaviors such as 
oscillations, collapses, or chaotic patterns, which are not directly inferable from the individual 
elements and their interactions, become apparent through simulations. Predicting the response 
of dynamic systems under specific conditions can be very challenging. In these situations, the 
goal is to generate reliable insights into the system's behavior (Bossel, 2007). A computer model 
capable of simulating system behavior provides insights into how the system might react under 
different circumstances. Through comprehending these behaviors, one can establish various 
scenarios and consider the appropriate interventions needed (Lane & Schwaninger, 2008). 
Additionally, simulations are particularly valuable for scientific hypothesis testing. 
Formulating competing hypotheses into program statements, integrating them into a simulation 
model, and comparing the outcomes with actual observations can be a straightforward and 
effective method (Schwaninger & Grösser, 2008). 

Simulation modeling, since its large-scale inception in the 1940s, has become a fundamental 
tool across various disciplines. Simulation is particularly useful for analyzing systems where it 
is impractical to systematically check every possible state of a model (Bratley et al., 2011). 
Although the application of simulation modeling is widespread, each field has developed its 
own specialized techniques, tools, and terminology. For instance, computer scientists often 
employ discrete-event models, which concentrate on changes in state (Robinson, 2005). This 
approach is also prevalent in human performance models (Choi, 2018), where the focus is on 
discrete events that alter the system's state. In contrast, agent-based models prioritize the 
decision-making processes of independent actors. These models are particularly effective for 
simulating the behaviors of human groups, capturing the dynamics of individual and collective 
actions (Pan et al., 2007). Engineers, on the other hand, might opt for continuous-event models 
to represent systems with states that change constantly (Robinson, 2005). 



 

 41 

Dynamic systems and their corresponding modeling approaches can be characterized by several 
contrasting properties, essential for selecting the most appropriate modeling strategy (Bossel, 
2007). Some of the key properties are briefly discussed here: 

1. Explanatory vs. Descriptive: Simulating behavior can be approached in two ways. The 
first approach involves deriving a behavioral description based on observations of one 
or several similar systems, noting how they respond under varying conditions, and then 
applying mathematical relationships to correlate inputs with outputs, thus replicating 
the real system's behavior. The second method entails attempting to explain behavior 
through modeling the actual processes within the real system, which requires extensive 
knowledge about the structure of the system itself. 

2. Real Parameter vs. Parameter Fitting: Explanatory models, aiming to reflect the real 
system's structure closely, employ actual system parameters, which might be directly 
measurable or derivable from existing studies. When direct measurement is infeasible, 
parameter fitting becomes essential, aligning the model's quantitative outputs with 
observed system behaviors. However, parameter fitting in explanatory models, which 
maintain structural validity, is preferable to fitting in descriptive models, which might 
incorporate structurally inaccurate relationships. 

3. Deterministic vs. Stochastic: Deterministic models exclude random parameter changes, 
interactions between system elements, and environmental influences, portraying a 
predictable, unvarying system behavior. In contrast, stochastic models explicitly 
incorporate randomness, for instance, through transition probabilities or environmental 
variability, leading to divergent outcomes with each simulation run. Monte Carlo 
simulations and other stochastic methods provide insights into behavior distributions, 
mean values, and variance. When models aim to represent the collective behavior of 
numerous entities or processes, individual stochastic behaviors and processes are 
averaged to depict a consolidated outcome. This approach transforms the unpredictable 
nature of individual elements into a more predictable aggregated behavior, often 
permitting the use of deterministic models to approximate real system dynamics 
effectively. 

4. Constant Parameters vs. Time-Variant Parameters: System parameters can be 
constants or time-dependent functions. In systems with constant parameters, the 
structure and interrelations remain unchanged over time, leading to repeatable outcomes 
under identical conditions. Conversely, systems characterized by time-variant 
parameters evolve, reflecting changes in structure, relationships, and consequently, 
behavior over time. 

Understanding these distinctions and properties is crucial for selecting and developing a 
modeling approach that accurately represents the dynamics of the system under study while 
meeting the research or application objectives. 

Structural models, due to their emphasis on the foundational relationships within a system, offer 
a powerful tool for simulating responses to novel conditions, exploring a wide spectrum of 
potential behaviors and developmental trajectories, and understanding the conditions and 
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opportunities for systemic change (Größler et al., 2008). While there is a theoretical distinction 
between descriptive and explanatory models, in practice, purely explanatory models are rare. 
They often rely on descriptive sub-models to aggregate and delineate individual relationships 
(Bossel, 2007). 

This dissertation adopts two distinct modeling approaches: Fuzzy Logic and System Dynamics 
simulations, each tailored to address specific research challenges and phenomena under 
investigation; that is, Levels of Automation (LOA) and Trust in Automation (TiA). The 
selection of these methodologies reflects their unique advantages, foundational assumptions, 
and developmental frameworks, which are elaborated upon in the subsequent sections.  
In the context of model evaluation and validation, this doctoral dissertation delves rather deeply 
into the philosophical underpinnings of scientific inquiry, resulting in the formulation of a set 
of evaluative criteria detailed in the subsequent chapters. Given the critical importance of this 
theme – a cornerstone undergirding the entire dissertation – a dedicated chapter has been 
allocated to thoroughly explore the philosophy of science and the principles underpinning 
model validity. This focused approach is necessitated by the direct relationship between the 
philosophical and epistemological foundations with the development and assessment of 
models, as critically examined in Articles 1 and 2 of this dissertation. These sections aim to 
provide an extensive examination of the theoretical aspects, ensuring a comprehensive 
understanding of the processes involved in model evaluation and the significance of their 
philosophical dimensions.   

4.2.1 Fuzzy Logic (FL) 
At the heart of most human communication is an element of fuzziness—statements are often 
imprecise, lacking in clarity, and not perfectly defined. Fuzzy logic mirrors this aspect by 
recognizing that natural language terms can apply with varying degrees of relevance across 
different objects or situations. This characteristic makes fuzzy set theory an effective tool for 
modeling the way humans approach decision-making and inference. 

Originating from Zadeh's (1965) seminal work, fuzzy logic extends the classical set theory to 
accommodate ambiguity and subjectivity, enabling the mathematical representation of vague 
relationships through fuzzy sets and membership functions. This approach facilitates the 
expression of partial membership, where the degree to which an entity belongs to a set, ranges 
between zero (no membership) and one (full membership), effectively capturing the concepts 
that do not fit neatly into binary categories. Contrasting with classical set theory where a 
temperature of 15°C might strictly be classified as cold, fuzzy logic allows for a more 
comprehensive interpretation—deeming 15°C as simultaneously 65% cold and 35% warm, 
which shows the subjective and variable nature of such categorizations. The selection of an 
appropriate membership function (e.g., triangular, trapezoidal, or Gaussian curves) is key in the 
construction of a fuzzy logic system, influencing its effectiveness and simplicity (Ross, 2005). 

At the core of Fuzzy Logic are the Fuzzy rule-based inference systems that establish 
connections between input and output variables using if-then logic, where the inputs are 
assessed across a continuum and associated with degrees of membership in relevant fuzzy sets. 
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These systems determine the extent to which a rule applies based on the aggregated membership 
degrees of input values, with the resultant fuzzy output shaped by these degrees through 
operations such as truncation or scaling. Utilizing fuzzy linguistic evaluations, membership 
functions, fuzzy operators, and if-then statements, Fuzzy Inference Systems (FIS) offer a 
structured framework for reasoning under uncertainty (Dzitac et al., 2017). Predominantly, 
there are two types of FIS: Mamdani and Sugeno, each outlining a distinct method for 
generating outputs (Ross, 2005). In this dissertation, the Mamdani approach is employed. The 
Mamdani method operates by transforming the "or" and "and" connectives in rules to "max" 
and "min" operators, respectively, ensuring that the combined outputs follow a coherent 
aggregation logic. This approach facilitates the generation of a composite output from multiple 
fuzzy membership functions, presented across the output variable's universe of discourse. The 
process of converting a precise input vector into a corresponding output vector via fuzzy rules 
unfolds through a three-stage process, Fuzzification, Fuzzy Inference, and Defuzzification. 

Fuzzification initiates the fuzzy inference process by translating crisp input value into 
corresponding fuzzy linguistic variables, establishing a framework where every input 
component is matched with a linguistic variable and its set of linguistic values defined across 
the input's universe of discourse (Ross, 2005). Membership functions are allocated to each 
linguistic value, enabling the conversion of crisp inputs into a spectrum of membership values, 
which effectively bridges the gap between crisp data and fuzzy logic interpretation (Ross, 
2004). The essence of a fuzzy system unfolds in the rule establishment stage, where knowledge 
about the subject matter is encapsulated in conditional if-then statements. These rules, which 
form the core of the Fuzzy Inference System (FIS), articulate the implications of specific 
conditions (antecedents) leading to certain outcomes (consequents). The evaluation of these 
conditions is quantified through the minimum or maximum aggregation of the membership 
values, determining the strength of the rule's application (Van Leekwijck & Kerre, 1999). The 
derivation of conclusions in a fuzzy inference system involves integrating the outcomes of 
multiple rules, each contributing to the overall output based on the degree of fulfillment of their 
antecedents. This aggregation process concludes in a composite output fuzzy set for each output 
variable, encapsulating the cumulative wisdom of the system's rules. Defuzzification is the final 
transformative step, where the fuzzy output is distilled into crisp, actionable values. Various 
methods exist for this purpose, with the Height method selected in this dissertation for its 
simplicity and straightforward implementation. This process calculates the weighted average 
of the maximum membership values to derive a precise output value for each output variable. 

Fuzzy logic offers a practical contribution to handling ambiguous information, particularly in 
modeling systems where precise definitions are rather difficult to articulate. This approach 
thrives on embracing the indeterminacy and subjectivity inherent in many decision-making 
processes (Kahraman et al., 2006). Fuzzy set theory provides a robust framework for the 
quantitative handling of imprecise problems encountered in the existing levels of automation. 
Its core strength lies in treating vague parameters (e.g., information acquisition, information 
analysis, decision selection, action implementation) as fuzzy values rather than attempting to 
force them into a precise framework, thereby yielding more reliable outcomes (Konstandinidou 
et al., 2006). 
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4.2.2 System Dynamics (SD) 
Jay W. Forrester, from MIT's Sloan School of Management, proposed the concept of "system 
dynamics" in a note to the Faculty Research Seminar in 1956, marking a significant departure 
from traditional economic modeling (Forrester, 1987, 1997). He criticized existing economic 
models for not capturing the essential feedback loop structures, neglecting the integrated flows 
of goods, money, information, and labor, and failing to account for the changing mental models 
impacting economic processes. Forrester pointed out the limitations of linear equations, the 
constraints of model building due to computational capacities, the overreliance on multiple 
regression for deriving economic behavior coefficients, and the lack of critical reflection on 
underlying model assumptions (Forrester, 1997). In contrast, Forrester advocated for the 
utilization of servomechanisms, differential equations, and simulation techniques. He 
envisioned models with dynamic structures to closely examine system actions and their driving 
forces, emphasizing the significance of lags and time delays. Forrester delineated system 
dynamics through a four-layered hierarchy: feedback loops forming the system's structural 
basis, stock variables indicating accumulations within these loops, flow variables depicting 
activities, and a framework for aligning system goals with observed states to inform actions 
(Forrester, 1992, 2012). 

Endogeneity is a hallmark of system dynamics, positing that within-system causal influences, 
encapsulated in feedback loops, drive system behaviors—contrasting with models where causes 
are attributed to external factors (Richardson, 2011). This perspective underscores the principle 
that system structure predicates behavior, a notion central to system dynamics and fundamental 
to understanding complex systems (Sterman, 1994, 2000). 

System dynamics (SD) modeling is distinguished by its unique characteristics. These 
characteristics capture SD's philosophical, theoretical, and practical core (Bala et al., 2017; 
Richardson, 2011). Firstly, SD models are anchored in causal feedback structures, prioritizing 
causal over correlational relationships within defined problem spaces. Secondly, the concept of 
accumulations and associated delays are fundamental, setting SD apart through stocks and 
flows that introduce realistic path dependence (Forrester, 1987). Thirdly, SD models are 
equation-based, defining each variable's dynamics through mathematical relationships, thereby 
facilitating reproducibility and policy analysis. This approach connects stocks, flows, 
auxiliaries, and constants in a coherent structure that simulates real-world mechanisms. 
Fourthly, SD adopts a continuous time perspective, aligning with real-world processes and 
enabling detailed feedback loop analysis despite simulations being carried out in discrete time 
steps (Kampmann & Oliva, 2008). 

System Dynamics (SD) has been characterized in various ways within the academic literature. 
It has been described as a theory (Flood et al., 2003; Jackson, 2006), a method (Coyle et al., 
1999; Lane, 2001; Meadows, 1989; Sterman, 2000; Wolstenholme, 2003), a methodology 
(Roberts, 1978), a distinct field of study (Coyle et al., 1999; Richardson, 2011), a tool (Luna-
Reyes & Andersen, 2003), and a paradigm (Olaya, 2009), suggesting its role as a foundational 
model-building perspective and approach in various disciplines. 



 

 45 

Today's system dynamics is essentially interdisciplinary, integrating insights from cognitive 
psychology, economics, and management to investigate and address complex real-world issues 
(Sterman, 2000). The discipline has evolved into a theoretical framework and policy design 
tool, examining how structures within systems manifest observable behaviors and guiding 
problem-solving across various domains (Forrester, 1987). As Richardson (2011) concisely 
puts it, system dynamics employs simulation models to identify and analyze the internal drivers 
of system behavior, facilitating informed policy and decision-making processes. 
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5 Research Philosophy 
As previously highlighted, the significance of research philosophy cannot be overstated due to 
its profound impact on the perception and construction of reality through different modeling 
approaches. Moreover, this philosophy plays a critical role in discerning the relative merits of 
diverse models—a central theme of this dissertation. Consequently, this chapter delves into the 
evolution of scientific epistemology, illustrating how this progression informs and propels our 
modeling endeavors. 

The philosophical foundations of a discipline are rooted in its core universal assumptions, 
although identifying these can be challenging given the diversity of perspectives among 
practitioners and researchers. Despite these differences, it is possible to pinpoint central tenets 
that link directly to fundamental philosophical queries concerning the nature of reality 
(ontology) and the basis of knowledge (epistemology). This exploration is essential, as it helps 
frame the disciplinary inquiry, guiding both theoretical development and practical application. 
Such a discourse is vital for aligning the discipline's methodology with its epistemological and 
ontological concerns, thereby shaping its approach to understanding and interpreting the world.  

In addition, the validity of research is significantly influenced by its foundational philosophical 
stance (Cartwright & Montuschi, 2014). Thus, a concise review of the historical evolution of 
scientific inquiry and its philosophical underpinnings is essential. Consequently, this 
exploration provides a structured framework to evaluate the validity of the research from a 
philosophical perspective, ensuring that the chosen approach aligns with established 
epistemological and ontological principles. This foundational step is critical in delineating the 
scope, methods, and interpretation of the research findings within the context of its guiding 
philosophical assumptions. 

5.1 From Reductionism to Relativism 

Rationalism. The foundations of epistemology can be traced back to René Descartes, who 
advocated for a methodological shift towards deductive reasoning in philosophy, echoing the 
precision of mathematical methods. He posited that the only undeniable truths are those 
revealed through such reasoning, establishing himself as a faithful rationalist. In his work, 
"Meditations on First Philosophy" (Descartes, 2016), Descartes implemented his "method of 
doubt" to strip away assumptions, ultimately asserting the certainty of self-awareness through 
the famous cogito argument: "Cogito, ergo sum" ("I think, therefore I am"). However, while 
Descartes affirmed the mind's certainty, he maintained a skeptical stance towards the external 
world, suggesting that while it likely exists, our understanding of it remains perpetually filled 
with doubt. 

Empiricism. Contrasting sharply with Descartes' rationalist approach, John Locke, a proponent 
of empiricism, set forth a different path in "An Essay Concerning Human Understanding" 
(Locke, 1847). Locke disputed the existence of innate ideas posited by Descartes, instead 
portraying the mind at birth as a blank slate, or "tabula rasa," shaped by sensory experiences. 
Locke's skepticism diverged from Descartes in its foundation; he questioned our knowledge of 
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the external world based on the inherent limitations of our sensory experiences. For Locke, 
knowledge begins and ends with experience, meaning that our certainty about the world is 
continuously shaped and reshaped by our direct interactions with it. 

Rational Empiricism. The philosophical landscape of epistemology was further refined by 
Immanuel Kant, who navigated between the poles of rationalism and empiricism. Kant's work 
in 1781 was a critical moment in epistemological thought, merging the active mind's conceptual 
framework from Descartes with Locke's emphasis on experiential input. Kant introduced a 
critical twist: while sensory experiences trigger ideas, genuine knowledge arises not from 
passive reception but from the mind's active engagement and structuring of these ideas. Kant 
introduced categories and forms of intuition that are inherent to the mind, enabling the synthesis 
of experiences into coherent knowledge. This reorientation suggested that while experiences 
are crucial, the structure and inherent rules of the mind play a decisive role in shaping our 
understanding of the world. Kant argued that the mind possesses a priori concepts and 
categories that structure our understanding, thereby enabling synthetic a priori knowledge - 
statements that are universally true yet informative about the world (Kant, 1908). 

Logical Empiricism. The 20th century witnessed a departure from Kantian epistemology, 
particularly in the rejection of synthetic a priori knowledge. Logical empiricism, also known as 
logical positivism, emerged from the Vienna Circle, a group of prominent philosophers who 
were summoned during the 1920s and 1930s at the University of Vienna. This philosophical 
movement focused on several key issues: the potential to reduce all synthetic statements to 
direct observational statements, establishing a strict criterion for meaningfulness, and creating 
an ideal metalanguage for the philosophical analysis of scientific language systems. In its 
broadest sense, logical empiricism seeks to delineate meaningful statements into those that are 
analytically true and those that are empirically verifiable, dismissing statements that fall outside 
these criteria as metaphysical or meaningless. 

The initial iteration of logical empiricism encountered a critical shortcoming regarding the 
verification principle, especially in the logical substantiation of scientific conjectures. This 
philosophical stance posited that if a specific outcome, denoted as C, followed from the truth 
of a theory T, then observing C could confirm T's validity. However, this approach was 
fundamentally flawed because the occurrence of C could result from an alternative process not 
covered by theory T, leading to the realization that scientific theories cannot be conclusively 
verified through direct observation alone. 
Karl Popper (1972) addressed this induction dilemma by introducing the falsification principle. 
He argued that scientific theories should be constructed to be refutable, a shift from seeking 
irrefutable evidence to embracing the possibility of disproof. Popper maintained that a theory 
T is considered more credible not when C is observed, but rather when 'not-C' leads to the 
dismissal of T. This perspective marked a departure from strict verificationism, advocating for 
a theory's evolution through the accumulation of supporting observations and its immediate 
rejection upon a single disproof. 
Popper's falsificationism softened the firm stance of logical empiricism but did not resolve all 
its problems. It maintained the division of theories into analytic and synthetic parts and relied 
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on corresponding empirical observations for each synthetic element. This approach 
presupposed a clear-cut distinction between verifying instances and their negation. Yet, real-
world application revealed the complexity of this ideal, as theories often rest on underlying 
assumptions, blurring the straightforwardness of empirical validation. Furthermore, the early 
phase of logical empiricism overly prioritized predictive capability as the sole measure for 
justifying theories, sidelining the explanatory power and reducing the process to aligning 
predictions with empirical data. This reduced the role of explanation in scientific inquiry to 
merely a secondary activity, separate from theory validation, a stance that was increasingly 
viewed as restrictive and inadequate for capturing the full spectrum of scientific investigation 
and theory assessment. 

Stephen Toulmin (1977) critiques the overemphasis on predictive power as the sole criterion 
for scientific validation. He suggests that if prediction were the only standard, then even 
individuals predicting horse race outcomes could be misclassified as scientists, whereas fields 
such as evolutionary biology, which depend greatly on comprehensive explanatory 
frameworks, might be unfairly marginalized as unscientific. This observation spurred a 
recognition among some empiricists of the crucial role of explanation as a form of substantial 
knowledge. Toulmin points out that this shift necessitates a departure from a purely formalist 
approach towards a more detailed understanding that encompasses theoretical reinterpretation. 
This shift suggests that the true value of a scientific theory lies not solely in its predictability 
but in its capacity to offer insightful and coherent explanations of the observed phenomena, 
urging a more balanced approach to evaluating scientific theories beyond mere predictive 
capability (Toulmin, 1977). 

Paradigm. Thomas Kuhn, in his work "The Structure of Scientific Revolutions" (1962), 
revolutionized the philosophy of science by challenging the conventional linear narrative of 
scientific advancement. He introduced the concept of "paradigm," defining it as the collective 
mindset that governs the norms, methodologies, and theoretical assumptions within a scientific 
community. Kuhn argues that science progresses through periods of "normal science," where 
research operates under an uncontested paradigm, effectively solving puzzles within its scope. 
However, as anomalies and unsolvable problems accumulate, the foundational beliefs of the 
existing paradigm come under scrutiny, paving the way for a scientific revolution. This 
revolution ushers in a new paradigm, fundamentally altering the scientific landscape, including 
its methodologies, problem definitions, and standards of rationality. Kuhn's perspective 
suggests that scientific progress is less about an objective march towards truth and more about 
shifts in community consensus towards more functional and applicable theories. He posits that 
objectivity is constructed through community agreement rather than innate truth, aligning with 
relativist viewpoints (Rorty, 1979). Furthermore, Kuhn dismantles the notion of theory-free 
observation, contending that all scientific observations are inherently colored by the paradigm. 
This perspective critically undermines logical empiricism and ideas of verification (and by 
extension, falsification), which assume the possibility of observations untainted by pre-existing 
theoretical biases. Kuhn's work thus stands as a significant antipositivist critique, reshaping our 
understanding of the nature and progression of scientific knowledge. 
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Relativism. The evolution of scientific philosophy towards relativism in the latter half of the 
20th century signified a departure from the established logical empiricism that had dominated 
scientific inquiry. This shift was characterized by a growing critique of the assumption that 
science could be distilled into a series of formal, context-free analyses. Figures such as Karl 
Popper played key roles in this transition, with Popper advocating for an appreciation of 
science's "internal history" while distinguishing between the internal aspects of scientific 
exploration and the external, contextual influences. Popper's notion of "scientific rationality" 
sought to balance objectivity with an acknowledgment of the historical backdrop of scientific 
advancements. Following in Popper's footsteps, Imre Lakatos further diluted the positivist 
approach, emphasizing the intertwined roles of history and psychology in the fabric of scientific 
progression. Lakatos critiqued the oversimplified views of falsificationism and stressed the 
intricacies of theory validation beyond mere empirical evidence (Lakatos, 1970). 

By the 1970s, the philosophical and scientific realms began to pivot away from the inflexible 
frameworks of logical empiricism, opening up to the complexities and practical challenges of 
contemporary science. This period marked a recognition of the insufficiency of purely formal 
methodologies to grapple with the complex and multifaceted nature of scientific questions. The 
incorporation of history, psychology, and sociology into the philosophy of science shifted the 
discourse towards a more interdisciplinary and refined understanding, moving away from the 
pursuit of absolute truths towards a focus on practicality and functional utility. As Stephen 
Toulmin (1977) noted, the fields of history, psychology, and sociology began to play 
increasingly significant roles in the philosophy of science. Terms such as historicism, 
relativism, or psychologism, which were once used pejoratively to dismiss philosophical works 
that incorporated history, sociology, or psychology, were no longer seen in such a negative 
light. This shift led to a greater openness to interdisciplinary approaches in philosophical 
discourse. Toulmin observed that the pursuit of absolute, timeless truths had become less 
fashionable. Practical utility started to take precedence over formal rigor and the traditional 
notions of "truth" and "excellence." This evolution in epistemology and the philosophy of 
science signifies that the reductionist and foundationalist philosophy, which had remained 
largely unchallenged since the 17th century, encountered serious opposition in the form of 
holistic and relativist philosophy. 

5.2 Philosophy of Social Sciences 
In social science research, the philosophical orientation adopted by the researcher significantly 
influences their worldview and methodology, affecting how knowledge is constructed and 
interpreted. Saunders (2015) outlines principal research philosophies in social sciences, each 
offering distinct perspectives on the nature of reality and the acquisition of knowledge: 

Pragmatism. Pragmatism considers practical effects as vital components of meaning and truth. 
It suggests that ideas are not static entities but tools for action; their validity is tested through 
their practical application. It advocates for a practical, problem-solving approach and is not 
committed to a single system of philosophy or reality (Laudan, 1986). This perspective values 
diverse research methods and theoretical concepts only insofar as they support practical actions 
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and outcomes. Pragmatism is versatile, allowing for the integration of different research 
approaches based on their utility in addressing specific research questions (Bacon, 2012). 

Positivism. operates under the assumption that reality is objective and can be described by 
measurable properties independent of the observer (Comte & Bridges, 2015). Rooted in the 
natural sciences, positivism emphasizes empirical, observable evidence and the identification 
of cause-and-effect relationships. It upholds the idea that through systematic methods and 
statistical analysis, researchers can uncover objective truths about the world (Gauch Jr, 2012; 
Smith et al., 1996). 

Constructivism. Constructivism argues that humans generate knowledge and meaning from an 
interaction between their experiences and ideas. Unlike empiricism, which states that 
knowledge is gained largely from sensory experience, constructivism asserts that people 
construct their own understanding of the world they live in through reflection on experiences 
(Fosnot, 2013). 

Realism. Realism is the belief that reality exists independently of observers. It asserts that 
objects have an existence outside the mind and that scientific inquiry can reveal truths about 
them. Realists argue that phenomena should be described as they are, not influenced by 
emotions, social factors, or personal beliefs. Realism is often contrasted with idealism, which 
holds that reality is mentally constructed (Niiniluoto, 2017). 

Critical Realism. Critical realism combines the concepts of realism and constructivism. It posits 
that there is a reality independent of human thoughts and beliefs, but our understanding of that 
reality is always mediated by social conditions and power relations (Bhaskar, 2013). It 
acknowledges the complexity of the real world, which is often influenced by social, cultural, 
and historical factors, and seeks to provide a rich, explanatory understanding of how and why 
social phenomena occur (Niiniluoto, 1999). 

Interpretivism. Interpretivism aligns with a subjectivist view, emphasizing the importance of 
understanding the subjective meanings and lived experiences of individuals or groups (Kroeze, 
2012). This philosophy values the context and background of social interactions and 
phenomena, advocating for a more in-depth, interpretative approach to research that includes 
the perspectives and interpretations of both informants and researchers (Alharahsheh & Pius, 
2020). 

Postmodernism. Postmodernism challenges conventional ways of thinking, advocating for a 
plurality of perspectives and recognizing the fluid, fragmented nature of reality. It emphasizes 
the importance of understanding individual and collective experiences and deconstructs 
established narratives and constructs to explore diverse viewpoints and interpretations (Kroeze, 
2012). 

The choice of research philosophy largely depends on the nature of the research problem and 
the researcher's objectives. Each philosophy brings different assumptions about the world and 
dictates how research should be conducted, influencing the choice of methods, the 
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interpretation of data, and the ultimate conclusions drawn from the research (Crossan, 2003; 
Holden & Lynch, 2004; Saunders et al., 2015). 

Given that trust in automation is a latent construct and its quantification usually requires indirect 
measurements through questionnaires and/or other behavioral indicators, this dissertation 
conforms to the assumptions of critical realism. Critical realism acknowledges the complexity 
of capturing objective reality and endorses the need for estimation in research, a philosophy 
widely embraced in Human Factors and Ergonomics (HFE). Critical realism position is 
reflected in how simulation modeling acknowledges that while models represent aspects of real-
world systems, they cannot capture all the complexities of those systems. Simulation accepts 
the existence of a real world that can be partially understood and represented, but also 
recognizes the limitations and simplifications inherent in models. Critical realism in simulation 
modeling advocates for a balance between the real structures and mechanisms of systems and 
the limitations of our knowledge and modeling capabilities. 
This dissertation also resonates with principles of Relativism (Interpretivism) in theory building 
and model development, where the context and background of social interactions and 
phenomena, encourage an interpretative approach to research. The philosophical underpinning 
in system dynamics is more aligned with the relativist/holistic philosophy of science. 
Nevertheless, empirical principles by relying on observational and experimental data to 
construct and validate models (Empirical validity) are also necessary. Simulations are often 
used to replicate real-world phenomena in a controlled virtual environment, where empirical 
data can warrant the simulation processes and outcomes. This approach allows researchers to 
test hypotheses and observe potential real-world behaviors of systems under different 
conditions, providing an empirical basis for understanding complex phenomena. Additionally, 
this dissertation aligns closely with pragmatism, particularly in its focus on the practical 
application of ideas and the testing of hypotheses for real-world purposes. Pragmatism 
emphasizes the value of ideas and solutions that are useful in practice (Laudan, 1978). 
Similarly, simulation models of trust and level of automation can be used to explore 'what-if' 
scenarios, solve problems, and inform design decision-making processes. 

5.3 Research Validity 
The understanding of model validity is influenced by the philosophical stance (whether implicit 
or explicit) on how knowledge is acquired and confirmed. This interplay between different 
philosophical viewpoints and model validity has been explored by several scholars (Barlas & 
Carpenter, 1990; Carson & Flood, 1990; Mitroff, 1969; Naylor & Finger, 1967; Senge & 
Forrester, 1980). 

The conventional reductionist/logical positivist approach, which integrates concepts from 
empiricism, rationalism, verificationism, and strict falsificationism, defines a valid model as an 
unbiased depiction of an actual system. This perspective insists that models be classified 
unequivocally as either "accurate" or "inaccurate" and contends that their veracity should 
become apparent upon comparison with empirical evidence. In this philosophical stance, the 
primary criterion for validity is accuracy rather than utility (Barlas & Carpenter, 1990). On the 
other hand, more modern philosophical approaches such as relativism/holism, and pragmatism, 
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regard a valid model as merely one among several possible representations of reality. From this 
viewpoint, no single model is inherently superior, although certain models may be more 
beneficial in particular situations. According to these philosophies, models can never be entirely 
objective as they inevitably embody the perspectives of their creators. Thus, instead of being 
judged strictly as true or false, models are appraised based on their practical efficacy along a 
spectrum of utility (Barlas & Carpenter, 1990). 

It is equally important to recognize that the relativist/holistic philosophy, while emphasizing a 
broader view of model validation, does not dismiss the significance of formal and quantitative 
tests in this process. Contrary to outright rejection, this philosophy regards validity as 
something that is gradually established through a process. Within this framework, the act of 
gathering, organizing, interpreting, and effectively communicating information related to 
model validity becomes a critical component of the validation process (Barlas, 1996). Formal 
and quantitative tests are seen as providing essential contributions to the overall validation 
procedure. This approach underscores the importance of integrating these tests into a larger, 
more inclusive validation dialogue. Such an approach allows for a more comprehensive and 
detailed understanding of the model's validity, acknowledging the complexity and multifaceted 
nature of models and the systems they represent. 
Furthermore, in scientific modeling, similar to theories, the definitive accuracy or verification 
of a model is impossible; a model's comprehensive correctness remains unprovable. The 
replication of real-world behavior by a model in specific instances does not guarantee its 
universal accuracy or applicability under varied or future conditions. Instead, a model's validity 
or its falsity can only be discerned when discrepancies between actual occurrences and 
simulated outcomes arise, particularly when tested under a diverse array of critical 
circumstances aimed at falsification. Consequently, discourse in model development shifts 
from asserting absolute correctness to discussing a model's validity relative to its intended 
purpose. This relative validity is not a fixed attribute but a provisional status, upheld until 
contradicted by new evidence.  

Bossel (2007) suggests that demonstrating a simulation model's adequacy for representing the 
real-world system, involves validation across four distinct dimensions: behavioral, structural, 
empirical, and application validity. Structural validity demands that the model's underlying 
structure—including its state variables and feedback mechanisms—reflects, within the confines 
of its purpose, the critical structural dynamics of the original system. Descriptive (i.e., 
correlational) models, lacking a foundational structure, inherently lack structural validity. 
Behavioral validity necessitates that the model replicates the original system's behavior under 
identical initial conditions and external factors, achieving qualitative concordance in dynamics 
such as rate changes, oscillation frequencies, peaks, and troughs, phase shifts, equilibria, 
stability, and responses under extreme situations. Empirical validity requires that, within the 
model's defined purpose, its outputs—whether numerical or logical—align with or are plausible 
against the real-world system's empirical data under comparable conditions. A model may 
exhibit behavioral validity without being empirically sound; however, congruence can be 
achieved by tuning the model with suitable parameters, especially when the system's structure 
is clear but critical parameters are elusive and necessitate empirical calibration. Application 
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validity entails that the model and its simulation functionalities match the objectives and 
expectations of its users and the intended application, ensuring that the model serves its 
designated purpose effectively. 

The validation of simulation causal-descriptive models, such as system dynamics, is deeply 
intertwined with philosophical issues in the philosophy of science. In system dynamics 
modeling, a model is considered refuted if it can be demonstrated that a relationship within the 
model contradicts a well-established real-world relationship, even if the model’s output 
behavior aligns with observed system behavior (Pruyt, 2006). For these models, the focus of 
validation is on the internal structure rather than merely on output behavior – essentially, 
ensuring the "right behavior for the right reason". A valid system dynamics model, therefore, 
encapsulates a theory about the functioning of a system in some aspect. 
In this context, model validity is not viewed as an absolute concept, and the validation process 
cannot be entirely objective or formal. Since validity is defined as adequacy with respect to a 
purpose (Barlas, 2018), model validation necessarily incorporates informal, subjective, and 
qualitative components. It is seen as a gradual process of building confidence rather than a 
binary decision of either "accepting" or "rejecting" a model (Lane, 2015).  
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6 Results and Summary of Appended Articles 
This chapter presents the findings of this dissertation, offering analysis and discussion that 
relate to the background, theoretical frameworks, research methods, and philosophy outlined in 
previous chapters. It examines how the results relate to established theories and integrates these 
findings to enhance the comprehension of modeling effort within the context of Human-
Automation Interaction (HAI). Key arguments and methodologies used in the associated 
articles are reviewed and condensed for coherence. As a result, and due to the parallel nature 
of the content presented here and, in the articles, some duplication of illustrations, tables, and 
paraphrasing may be observed. Comprehensive details of the results and discussions are fully 
available in the appended articles in this dissertation. 
 

6.1 Summary and Results of Article 1 
This article establishes foundational criteria for assessing models within the Human Factors 
and Ergonomics (HFE) field, addressing the concerns raised by Dekker and Hollnagel (2004) 
regarding the scientific validity of theoretical constructs such as situation awareness and trust 
in automation. It has been argued that these constructs lack theoretical clarity, are unfalsifiable, 
overly generalized, and rely on descriptive labels rather than explaining causal psychological 
mechanisms affecting performance (Cass, 2011; Douglas et al., 2007; Flach, 1995; Jodlowski, 
2008). To address these concerns, Article 1 focused on HFE as a scientific discipline and 
developed a set of criteria to assess the scientific credibility of models of trust in automation. 
Subsequently, this study performed a literature review of the existing models and evaluated the 
state of the TiA modeling and theoretical progress. 

6.1.1 Criteria Development 
The criteria development was performed by reviewing the leading scholars and philosophers of 
science (e.g., Blalock, 1969; Dubin, 1970; Kuhn, 1977; Meleis, 2012; Popper, 1969; Van de 
Ven, 2007), in combination with Kivunja’s (2018) systematic literature review on the 
fundamental constituents of a scientific theory. Seven fundamental criteria were identified 
which are briefly described here and summarized with their indicators in Table 2. 

Testability or falsifiability, as proposed by Popper, is a fundamental aspect of scientific inquiry, 
often viewed as the most rigorous standard for evaluating scientific theories (Cramer, 2013). A 
model's scientific merit hinges on its testability; without the capacity for empirical evaluation, 
the practical utility of a model remains indeterminate. Testability is generally an empirically 
driven criterion. 

Predictive power. To fulfill the criterion of testability, a model or theory must be capable of 
generating predictions. Popper (1969) posits that the value of a theory increases with the 
specificity of its predictions, as these entail a greater risk of refutation, thus enhancing the 
theory's falsifiability. For instance, the vague assertion that 'A is correlated with B' leaves 
almost all possibilities open, except for a zero correlation, offering minimal grounds for 
falsification. In contrast, a more precise claim, such as 'A is positively correlated with B,' 
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excludes half of the potential outcomes, making the theory more susceptible to empirical 
disproof. Hence, a model's merit is elevated by its ability to make more explicit and exact 
predictions. 

Explanatory power. The issue with incomplete theories is their ability to predict without 
providing sufficient explanations for the phenomena observed (Deutsch, 2011). Historically, as 
noted by Kaplan (1964), ancient astronomers could predict celestial events but lacked the 
underlying explanatory frameworks. According to Bacharach (1989), a model's utility is 
dependent upon its capacity for both prediction and explanation, as these are interconnected 
aspects of robust theorizing. Explanatory models, especially those asserting causal 
relationships, inherently entail predictions, particularly regarding the outcomes of specific 
causal actions. Even absent explicit predictions, the narrative of causality typically suggests an 
expected sequence leading to particular results, underlining the intrinsic link between 
explanation and prediction in comprehensive theories (Hofman et al., 2017). 

Empirical adequacy in scientific theory refers to the accuracy of its assertions regarding 
observable phenomena (Bhakthavatsalam & Cartwright, 2017; Van Fraassen, 1980). This 
principle demands that the propositions of the theory align with the observed empirical evidence 
(Fawcett, 2005). If empirical data supports the model's predictions, then its claims can be 
tentatively regarded as empirically supported. Conversely, if empirical evidence contradicts the 
theory's assumptions, the logical inference is that the model's assertions are flawed. It is crucial 
to distinguish empirical adequacy from empirical testability: the former assesses the 
truthfulness of a model's predictions based on real-world evidence, while the latter evaluates 
the model's capacity for being subjected to empirical verification or falsification. 

Pragmatic adequacy measures the degree to which a model provides effective solutions to 
practical problems, reflecting the notion that theories/models are developed for addressing both 
human and technical challenges to enhance real-world applications (Kerlinger, 1979). In 
applied fields such as Human Factors and Ergonomics (HFE), this aspect is crucial as the focus 
lies on translating theoretical insights into practical outcomes. HFE aims to enhance work 
efficiency, safety, and human well-being, including reducing fatigue and stress while improving 
overall quality of life (Sanders & McCormick, 1998). Consequently, achieving these objectives 
necessitates a seamless transfer and integration of knowledge between HFE research and real-
world practice (Caple, 2008; Meister, 2018), emphasizing the critical need for theoretical 
models to be practically relevant and applicable in enhancing human-system interactions. 

Human as active agent criterion emphasizes that models should portray humans as proactive 
entities capable of introspection, decision-making, and the adoption of new concepts and beliefs 
(Harré, 1984). Accordingly, an effective HFE model should acknowledge humans as active 
participants and focus on elucidating the underlying mechanisms behind human decisions, 
behaviors, and perceptions of future occurrences (Kennedy, 2012). 

Dynamic properties criterion was formulated in response to the recognition that many HFE 
issues do not stem from a singular, static cause. Instead, these issues are often emergent 
properties of intricate interactions within complex socio-technical systems (Guastello, 2017). 
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Such systems are characterized by their fluid nature, with relationships and connections 
continuously evolving and adapting within a changing environment (Dekker et al., 2011). 
Consequently, a critical aspect of evaluation in HFE modeling is the capacity of a model to 
effectively capture and represent the dynamic behaviors inherent in these phenomena. 

Table 2, Model evaluation criteria and their indicators (Poornikoo & Øvergård, 2023) 

Criteria Indicator(s) Reference 

(C1)  

Testability/ 
Falsifiability  

(1) Can the model be operationalized? Is there a way of 
measuring the components and constructs in the theory? 

(2) Does the model/theory propose a research design for testing 
the model’s assumptions?  

(3) Are the tools and data analysis techniques adequate to 
measure the model propositions? 

Popper (1969), Cramer (2013), 
Fawcett (1988), Silva (1986) 

(C2) 
Predictive 
power 

Can the model make predictions about: 
(1) Existence of effect? 
(2) Direction (or sign) of effect? 
(3) Direction and interval estimate of effect? 
(4) Mathematical specification of predicted effect?  

Meehl (1967), Dienes (2008), 
Meehl (1978), Velicer et al. 
(2008), Freedman (2010), 
McElreath (2018) 
 

(C3)  
Explanatory 
power  

Does the model provide: 
(1) Contrastive force? 
(2) Explanatory breadth? 
(3) Explanatory depth? 

Cramer (2013), Prochaska, Wright, 
and Velicer (2008), Garfinkel 
(1982), Lipton (1990), Ylikoski 
(2007). Marchionni (2012), 
Morton (1990), Hitchcock and 
Woodward (2003) 

(C4) 
Empirical 
adequacy  

(1) Are theoretical assertions made by the model congruent with 
empirical evidence? 

(2) Has the entire model been tested in different studies? 

Van Fraassen (1980), 
Bhakthavatsalam and Cartwright 
(2017), Fawcett (2005), Gould 
(Gould, 1991), Van de Ven (2007) 

(C5) 
Pragmatic 
adequacy 

Does the model: 
(1) recognize the domain(s) to which it can be applied to?  
(2) provides recommendations on how to implement the 

proposed model in that domain?  
(3) clarify specific areas in which the model can provide useful 

and tangible results? 

 

Getty (1995), Karwowski (2005), 
Caple (2008), Meister (2018), 
Salas (2008), Sind-Prunier (1996) 

(C6) 
Human as 
active agent 

Does the model take human judgments, motivations, emotions, 
and socially driven behaviors into consideration? 

Witkin and Gottschalk (1988), 
Gauch (2012), Kennedy (2012) 
 

(C7)  
Dynamic 
properties 

If the phenomenon is dynamic, does the model acknowledge time 
as a variable?  

Guastello (2017), Dekker, Cilliers, 
and Hofmeyr (2011), De Keyser et 
al. (1988)(1988), Hollnagel (2002) 

 

In assessing HFE models (trust in automation in this study), it was crucial to prioritize the 
evaluation criteria through a hierarchical system due to the varying degrees of importance 
among different criteria. This study employed the Best Worst Method (BWM) (Rezaei, 2015), 
a subset of Multi-criteria decision-making (MCDM), which leverages ratios from pairwise 
comparisons of criteria's relative importance as determined by the evaluator (Liang et al., 2020). 
The results for each criterion’s weight are depicted in Table 3. 



 

 58 

Table 3, Pairwise criteria comparison 

 

6.1.2 Model Evaluation 
After an extensive literature review, thirty-six studies were selected for evaluation and 
categorized into two primary groups. The first group comprises theoretical research aimed at 
developing conceptual models of trust in automation. These models are often depicted through 
network diagrams and position trust as a mediating factor influencing the operator's reliance on 
automation. The second group encompasses computational studies, which seek to formulate 
mathematical or probabilistic models capable of predicting trust levels. These models integrate 
various causal factors and explore the relationships between them. 
Upon establishing the importance of each evaluation criterion, the assessment proceeds by 
determining to what extent each model fulfills these criteria. For every criterion, models receive 
a subjective rating between 1 and 9, which are then normalized as (!!"#$	(',))),  and the total 
scores (#$')	recalculated according to the formulas: 

!!"#$	(',)) =	
!(',))
'()	!)

 

 

#$' =	*(!!"#$	(',)) ∗ -)) 
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Here, !(',))  represents the extent to which the ith model meets the jth criterion, !) 	 is the 
maximum value in the jth column of matrix !, and -) denotes the relative significance of the 
jth criterion. 
 
Additionally, a secondary evaluation with an independent rater was performed on a random 
selection of 20% of the models (which includes four conceptual and three computational 
models) to test the reliability of the initial assessments. This step involved calculating the inter-
rater reliability to gauge the consistency among different evaluators' ratings, using 
Krippendorff’s alpha (.+)as the reliability measure. With Krippendorff’s alpha value of 0.88, 
the results indicate a satisfactory level of inter-rater agreement (Krippendorff, 2004, 2011). 
 
The evaluation of models of Trust in Automation (TiA) highlighted distinctive attributes across 
conceptual and computational models (See Table 4). Among the conceptual models, the Lee 
and See (2004) framework stands out for its closed-loop dynamic approach and comprehensive 
consideration of causal factors such as information assimilation and belief formation, alongside 
individual, organizational, cultural, and environmental contexts. Despite challenges in 
operationalization and testability, this model significantly contributes to understanding the 
dynamic nature and foundational dimensions of trust. Desai’s (2012) approach, utilizing the 
Area Under Trust Curve (AUTC), was also a significant advancement in capturing long-term 
interaction experiences, though it falls short in precise trust prediction and human performance 
metrics. Kraus’s (2020) model which integrates foundational concepts from Lee and See (2004) 
and Hoff and Bashir (2015), offered a refined view of trust's psychological processes and 
interactions. On the computational side, models such as Gao and Lee’s (2006) EDFT and Hu 
et al.’s (2019) dynamic human-machine trust models are commendable for their testability, 
predictive capability, and incorporation of dynamic factors. These models excel in addressing 
cumulative trust and expectation bias, enhancing predictive power. However, they may lack in 
accounting for broader causal factors, impacting their explanatory scope and generalizability. 
 
It is unrealistic to expect a model to excel in all proposed evaluation criteria as each model has 
its strengths and weaknesses across different aspects. This variation in performance among 
different criteria is why some scholars (e.g., Van Lange, 2013), suggest referring to these 
benchmarks as 'ideals' rather than strict criteria. The inherent challenge across both model types 
was balancing detailed operationalization and broad conceptual coverage. Conceptual models 
provide vital insights but often struggle with precise predictions and operational definitions. In 
contrast, computational models offer specificity and testability but might miss broader causal 
relationships. This tension indicates the complexity of TiA modeling, stressing the need for a 
multifaceted approach that accommodates the dynamic, reciprocal interactions between human 
agents, automation, and their environment. 
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Table 4, Normalized Summary Scores of TiA Models (Conceptual and Computational) (Poornikoo & Øvergård, 
2023) 

Model/Criteria C1 C2 C3 C4 C5 C6 C7 Overall 
Score 

BWM pairwise weight 0.392 0.300 0.101 0.063 0.031 0.056 0.056   
Muir (1987) 0.63 0.75 0.38 0.75 0.17 0.13 0.13 0.57 
Lee and Moray (1992) 0.75 0.75 0.38 0.50 0.50 0.25 0.75 0.66 
Muir (1994) 0.75 0.50 0.38 0.50 0.17 0.13 0.25 0.54 
Cohen et al. (1997) 0.75 0.50 0.38 0.50 0.67 0.38 0.25 0.57 
Madsen and Gregor (2000) 0.38 0.38 0.50 0.25 0.33 0.38 0.13 0.36 
Seong and Bisantz (2000) 0.63 0.50 0.38 0.50 0.33 0.13 0.13 0.49 
Kelly et al. (2001)  0.63 0.75 0.38 0.50 0.33 0.25 0.13 0.57 
Adams et al.(2003)  0.63 0.63 0.75 0.50 0.17 0.38 0.38 0.59 
Nickerson and Reilly (2004) 0.50 0.63 0.38 0.25 0.33 0.13 0.25 0.47 
Lee and See (2004) 0.75 0.75 1.00 0.75 0.50 0.38 0.50 0.73 
Madhavan and Weigmann (2004) 0.50 0.38 0.50 0.75 0.33 0.38 0.25 0.45 
Hancock et al. (2011) 0.50 0.50 1.00 1.00 0.33 0.38 0.25 0.56 
Desai (2012) 0.75 0.75 0.88 0.50 0.50 0.25 0.38 0.69 
Chien et al. (2014) 0.50 0.50 0.88 0.50 0.33 0.38 0.13 0.50 
Hoff and Bashir (2015) 0.63 0.63 1.00 0.50 0.33 0.38 0.50 0.62 
Bindewald et al. (2018) 0.38 0.50 0.50 0.50 0.17 0.38 0.13 0.41 
Kraus et al. (2020) 0.75 0.63 0.75 0.50 0.67 0.38 0.63 0.67 
Hou et al. (2021) 0.50 0.38 0.88 0.25 0.17 0.38 0.25 0.45 
Gao and Lee (2006) 1.00 1.00 0.88 0.50 0.83 0.63 0.88 0.92 
Itoh (2011) 0.63 0.75 0.88 0.50 0.50 0.25 0.25 0.63 
Xu & Dudek (2012) 0.88 0.88 0.75 0.50 1.00 0.75 1.00 0.84 
Gao et al. (2013) 1.00 1.00 0.88 0.50 0.50 0.38 1.00 0.91 
Hoogendoorn et al. (2013) 1.00 1.00 0.63 0.50 0.33 1.00 0.88 0.90 
Xu and Dudek (2015) 1.00 1.00 0.50 0.50 1.00 0.38 0.63 0.86 
Sadrfaridpour et al. (2016) 1.00 1.00 0.75 0.50 0.67 0.38 0.88 0.89 
Akash et al. (2017) 1.00 1.00 0.75 0.75 1.00 0.88 1.00 0.95 
Hu et al. (2018)  1.00 1.00 0.88 0.75 1.00 0.88 1.00 0.96 
Akash et al. (2018) 1.00 1.00 0.63 0.50 1.00 0.88 1.00 0.92 
Chen et al. (2018) 1.00 0.75 0.63 0.50 0.50 0.50 0.88 0.80 
Hussein et al. (2019) 0.63 0.63 0.88 0.50 0.33 0.38 0.75 0.63 
Sheridan (2019) 0.63 0.63 0.88 0.50 0.33 0.38 0.38 0.61 
Nam et al. (2020) 1.00 1.00 0.75 0.50 1.00 0.88 0.75 0.92 
Guo and Yang (2020) 0.88 1.00 0.63 0.50 0.83 0.88 1.00 0.87 
Chen et al. (2020) 0.88 1.00 0.75 0.50 0.67 0.63 1.00 0.86 
Azevedo-Sa et al. (2021) 0.88 1.00 0.63 0.50 1.00 0.50 0.88 0.85 

 
The essence of this study was to refine the model evaluation process in HFE, specifically 
applied to trust in automation (TiA), illustrating the divergence between conceptual and 
computational models. This study suggested that while the established criteria draw from the 
philosophy of science, adaptations may better serve specific HFE contexts. The use of the Best-
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Worst Method (BWM) for criteria ranking introduces a subjective layer; hence, incorporating 
insights from Subject Matter Experts (SMEs) could mitigate bias and enhance the robustness 
of future evaluations. Additionally, aligning evaluation criteria with specific application 
contexts could guide selecting the most appropriate models for theoretical exploration or 
practical design, fostering a more tailored and effective approach to HFE research and 
application. This analysis also underscored the stagnation in TiA research progression, 
signaling the HFE community's challenge with trust's complexity and the limitations of 
conventional modeling approaches. To address this, adopting more advanced modeling 
techniques such as system dynamics and agent-based modeling was recommended to provide 
a richer, more comprehensive understanding of trust dynamics within sociotechnical systems. 
 

6.2 Summary and Results of Article 2 
Article 2 discusses the challenges and complexity of modeling human behavior in 
sociotechnical systems, which are subject to varying technical and contextual factors. The 
complexity of these systems makes providing a reliable explanation of human behavior 
remarkably difficult, particularly in the context of human-automation interaction (HAI), which 
stands as a prominent issue in cognitive engineering today. 
Article 2 further elaborates on Human Factors and Ergonomics (HFE) as a discipline grounded 
in systems theory, examining its systemic characteristics. It delves into the epistemological 
appropriateness of various modeling approaches for addressing the complexities inherent in 
systems. 
  

6.2.1 HFE As a System Discipline 
Human Factors and Ergonomics (HFE) fundamentally constitutes a systems-oriented 
discipline. It encompasses various systems, including socio-technical and cognitive systems, 
aiming to improve both performance and well-being through design enhancement and better 
human-system integration. Wilson (2014) identifies six key systemic characteristics (Figure 10) 
inherent to HFE: system focus, context, interactions, holism, emergence, and embedding. 
System focus underlines the significance of examining the network of interactions among 
various elements, whether organic or inorganic, across different levels of functionality and 
conceptual frameworks. Context acknowledges that behaviors and performances are inherently 
influenced by their environments, challenging the generalizability of laboratory findings to 
complex real-world scenarios. Interaction emphasizes the essential nature of relationships 
within systems, vital for optimizing human and technological collaborations. Holism advocates 
for a comprehensive approach, considering physical, technical, cognitive, and social facets to 
craft effective solutions. Emergence recognizes that systems may exhibit properties unforeseen 
by their designers, highlighting the adaptability and creative potential of users. Finally, 
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embedding emphasizes the participative aspect of HFE, incorporating insights from 
stakeholders and experts into ergonomic practices. 

 
Figure 10, HFE System Characteristics adopted from Wilson (2014) 

Given these premises, it becomes apparent that HFE models should represent interconnected 
networks operating within closed-loop systems, embodying systems thinking. This perspective 
necessitates an examination of the epistemological underpinnings of various HFE modeling 
approaches to determine if they accurately reflect systems thinking in their methodological 
frameworks. 
 

6.2.2 Epistemological Assumptions of Modeling Approaches 
In exploring modeling issues related to human interactions within automated systems, two 
primary epistemological approaches have been identified. Bruner (1986) distinguishes these 
based on differing thought modes: the paradigmatic or logico-scientific mode, which focuses 
on variance, and the narrative or process mode, which emphasizes storytelling and the sequence 
of events. These approaches offer distinct perspectives on reality construction and validation 
methods. Aldrich (2001) further categorizes these into outcome-driven approaches, answering 
'what' questions, and event-driven approaches, addressing 'how' questions, each providing 
unique insights into HFE problems and solutions. Article 2 adopts this perspective for the 
suitability of modeling approaches for studying Human-Automation Interaction (HAI). 
 
The outcome-driven, or variance approach (Van de Ven, 2007) focuses on elucidating the 
relationships between independent and dependent variables to tackle 'what' questions, such as 
identifying the antecedents and consequences related to a specific phenomenon. This approach 
demands evidence of co-variation, temporal precedence, and elimination of spurious 
relationships between variables. Employing research designs such as experiments and surveys, 
variance models rely on the general linear model framework, supporting the use of statistical 
analyses including ANOVA, regression, factor analysis, and structural equation modeling to 
validate hypotheses and uncover patterns within HFE research. 
Contrary to outcome-driven variance models, process models focus on event-driven 
explanations, addressing the "How" question. They seek to explain the sequence of events by 
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revealing the mechanisms responsible for causing real-world occurrences and the particular 
conditions or contingencies that activate these mechanisms. This approach aims to understand 
the dynamic and complex interactions that lead to specific outcomes, providing a more 
reflective understanding of the processes at play. 
 
The epistemological assumptions in variance models present a specific method for interpreting 
reality, segmenting it into analyzable and quantifiable segments. The variance approach is 
particularly adept at exploring questions that involve comparing different entities or 
understanding linear causal connections between variables. Nonetheless, this approach 
encounters limitations when applied to the examination of social entities, especially within the 
context of sociotechnical systems, where dynamics are complex and multidimensional. 
On the other hand, the assumptions in process models feature a different outlook, where causes 
are seen not just as immediate triggers but as parts of a continuous interaction within the 
system's history. Particularly, such models emphasize the emergence of causal forces from 
specific feedback mechanisms, emphasizing the temporal and evolving nature of cause-effect 
relationships. The fundamental assumptions of the two modeling perspectives are described in 
Table 5. 
 
Table 5, Outcome- and Event-driven Models 

Outcome-driven variance model Event-driven process model 
The universe is composed of stable entities with 
attributes that vary. 

Entities engaged in events are dynamic, subject to 
change over time rather than being static. 

Explanations are fundamentally rooted in the concept 
of efficient causality. 

Explanations draw on a mix of final, formal, and 
efficient causality, offering a multifaceted 
perspective on causes and effects. 

The universality of any given explanation is 
contingent upon its applicability across diverse 
scenarios. 

The value of explanations lies in their adaptability 
and applicability across different contexts and 
conditions. 

The order of occurrence of independent variables 
relative to dependent variables does not impact the 
final outcomes. 

Chronology is crucial; the order in which events 
unfold significantly impacts outcomes. 

Explanations should prioritize immediate or direct 
causation. 

A comprehensive explanation should consider a 
spectrum of influences, from the proximate to the 
more remote. 

Attributes retain a singular causal interpretation over 
time. 

The significance of an entity, attribute, or event can 
evolve, reflecting its changing role and impact over 
time. 

One important consideration is understanding the interplay between the two approaches and 
their complementary nature. The rationale within a variance model, whether stated directly or 
indirectly, outlines the narrative of how specific conditions lead an independent (input) variable 
to influence a dependent (outcome) variable. Thus, delving into the underlying process believed 
to justify the causal relationship between independent and dependent variables can enhance the 
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solidity of responses to 'what' (variance theory) questions. Conversely, responses to 'how' 
questions may lack significance without addressing the corresponding 'what caused it?' or 'what 
are its consequences?' questions, underscoring the necessity of integrating both variance and 
process theories for a more comprehensive understanding. 
 
If we accept Human Factors and Ergonomics (HFE) and its sub-disciplines including HAI, as 
a systems discipline, it is crucial to identify the types of models that effectively facilitate the 
study of human performance within such sociotechnical systems. Variance models, with their 
analytical reductionism, fall short of capturing the dynamic interplay and mutual impacts 
among different system elements when confronted with simultaneous multiple impacts, due to 
the complexity inherent in modern high-technology systems. This complexity, a hallmark of 
today's systems, emphasizes the importance of examining systems holistically, focusing on 
interrelationships rather than isolated components. In such systems, behaviors emerge that are 
not predictable from the properties of individual parts. Despite the prevalence of variance-based 
methodological approaches in HFE, which facilitate the study of individual operators, teams, 
and technical performance through established toolkits and methods, the bidirectional and 
nonlinear nature of cause-effect relationships within sociotechnical systems calls for a shift 
towards more integrative process models. These models, though more complex to develop, are 
better suited for capturing the multifaceted interactions, feedback loops, and temporal dynamics 
inherent in social entities and human-machine interactions. 
Article 2 concludes by emphasizing the complementary nature of variance and process 
approaches, where HFE should leverage the existing consensus on causal factors within 
variance models to inform the development of more advanced process models. By embracing 
a systems approach and focusing on the complexities of modern sociotechnical systems, HFE 
and HAI research can evolve towards providing more comprehensive causal models that 
address both 'what' and 'how' questions, thereby deepening our understanding of human 
performance in sociotechnical environments and advancing the formalization of HFE theories. 
 

6.3 Summary and Results of Article 3 
Utilizing a fuzzy rule-based inference system paired with operational criteria for automation, 
Article 3 offers quantification and definition of LOAs, particularly tailored to operational tasks 
and functions within Maritime Autonomous Surface Ships (MASS). One of the major outcomes 
of this article is to establish a standardized language to articulate LOAs in MASS, thereby 
transforming an abstract construct into a concrete, operationalizable concept. 
 
To develop Levels of Automation (LOAs), this article focused on LOAs at the function and 
system levels which adopt the operational criteria by Parasuraman et al. (2000) and 
recommended by Veritas (2019) for autonomous shipping. These guidelines classify 
automation's support to humans into four stages: information acquisition, information analysis, 
decision selection, and action implementation, where each stage can take various degrees of 
automation, as shown in Figure 11. 



 

 65 

 
Figure 11, Operational criteria for levels of automation, adapted from Parasuraman et al. (2000) 

In the next step, utilizing fuzzy logic, truth is defined as a quintuple (/, 1(/), 2, 3,'), where 
/ is a variable’s designation; 1(/) denotes a finite set of linguistic values for /; 2 symbolizes 
a universe of discourse; 3	represents a set of rules for generating 1(/); and ' stands for a 
membership function mapping terms in 1(/). In this context, LOAs and their linguistic term 
sets can be formulated as: 1	(4#56) 	= 	789:	4;<, 4;<,'8=>?@,/>Aℎ, 789:	/>Aℎ. 
 
The fuzzy logic steps unfold in four primary stages, as illustrated in Figure 12. 

 
 
Figure 12, Fuzzy logic steps. 

 
Using the MATLAB fuzzy logic toolbox, the process begins with the establishment of fuzzy 
inference systems (FIS), selecting Mamdani for the Fuzzy Inference System (FIS) type and the 
Centroid method for defuzzification. 
In the fuzzification step, membership functions for input variables, which in this case are 
information acquisition, information analysis, decision selection, and action implementation, 
were defined. According to established best practices, selecting three to seven linguistic term 
sets for these variables is advisable to maintain clarity and manageability. In this specific article, 

Fuzzification

•This	initial	stage	converts	linguistic	inputs	into	fuzzy	numbers	through	membership	
functions.	It	involves	defining	linguistic	variables	(inputs	and	outputs)	and	their	
corresponding	membership	functions.

Fuzzy	Rule	
Base

•This	stage	involves	formulating	IF-THEN	rules	that	describe	relationships	between	input	
and	output	variables,	effectively	encapsulating	human	knowledge	into	a	set	of	fuzzy	rules.	
These	rules	assist	the	fuzzy	inference	engine	in	making	decisions	based	on	input	sets.

Inference	
Engine

•This	mechanism	applies	fuzzy	reasoning	to	derive	outputs	from	input	variables,	utilizing	
the	established	fuzzy	rules	to	generate	new	knowledge	or	judgments.

Defuzzification

•This	final	step	converts	fuzzy	variables	back	into	crisp	values	by	amalgamating	the	results	
derived	from	the	fuzzy	rules.	Popular	defuzzification	methods	include	the	mean	of	
maximum,	Bisector	of	Area,	and	Center	of	Gravity.
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three linguistic terms are chosen for input variables to maintain simplicity and efficiency 
without compromising the system's effectiveness. In contrast, five linguistic terms are selected 
for the output variable to allow for a more accurate representation of LOAs. A graphical 

depiction of this process is illustrated in Figure 13. 
 

Figure 13, Process of defining membership function of LOAs linguistic terms (Poornikoo & Øvergård, 2022) 

The Gaussian membership function is utilized for both input and output variables, an approach 
often chosen due to its effectiveness in handling nonlinear transitions between different 
automation levels. This function's shape is well-suited for representing the uncertainty and 
ambiguity inherent in natural language terms, thereby providing a smooth transition between 
different levels of automation. The parameters for these membership functions, which define 
their shape and spread, are detailed in Table 6. These parameters are crucial as they influence 
how input data is interpreted and classified into different linguistic terms. Figure 14 shows the 
membership functions associated with the input and output functions. For any given input value, 
one or more membership functions can be engaged in the operation. For example, input 
variable=3 for information acquisitions may activate membership functions ‘Low’ and 
‘Medium’. 
 
Table 6, Inputs, and Output membership functions type and parameters (Poornikoo & Øvergård, 2022) 

variables Type Term 1, 
Parameters  

Term 2, 
Parameters 

Term 3, 
Parameters 

Term 4, 
Parameters 

Term 5, 
Parameters 

INPUT1 Gaussian  Low  
[1.699 6.939e-17] 

Medium  
[1.699 5] 

High 
[1.699 10]  

  

INPUT2 Gaussian Low  
[1.699 6.939e-17] 

Medium  
[1.699 5] 

High 
[1.699 10]  

  

INPUT3 Gaussian Low  
[1.699 6.939e-17] 

Medium  
[1.699 5] 

High 
[1.699 10]  

  

INPUT4 Gaussian Low  
[1.699 6.939e-17] 

Medium  
[1.699 5] 

High 
[1.699 10]  

  

OUTPUT Gaussian LOA 1 
[1.062 -2.776e-17] 

LOA 2 
[1.062 2.5] 

LOA 3 
[1.062 5] 

LOA 4 
[1.062 7.5] 

LOA 5 
[1.062 10] 
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Figure 14, Inputs, and Output Gaussian membership functions (Poornikoo & Øvergård, 2022) 

By applying IF-THEN rules, the Fuzzy Inference System (FIS) determines levels of automation 
(LOA) based on input variables. The FIS integrates multiple input variables—information 
acquisition, information analysis, decision selection, and action execution—into a cohesive 
framework that defines the automation level. By crafting 81 fuzzy rules, FIS maps these inputs 
onto the outcome variable LOA. Finally, the outcome of the model is defuzzified to return crisp 
values for LOA. The simulation model can effectively take any values as inputs and return the 
function’s LOA, as illustrated in Figure 15. The returned crisp values of LOAs denote 
automation levels at a functional level. A similar process of fuzzification can be implemented 
to identify the LOAs of a system (Figure 16). 
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Figure 15, Rule viewer for 4 inputs and output variables (Poornikoo & Øvergård, 2022) 

Figure 16, Fuzzy LOA process across tasks, functions, and system (Poornikoo & Øvergård, 2022) 



 

 69 

Utilizing a bottom-up hierarchical framework combined with fuzzy logic, this article developed 
a structured approach for determining the autonomy levels in various tasks, functions, and 
systems. The simulation outcomes demonstrate the adaptability of fuzzy membership functions 
to cover a broad spectrum of autonomous activities, thus defining the Levels of Automation 
(LOA) for autonomous vessels effectively. The primary benefit of this proposed method lies in 
its practical application to an otherwise abstract concept typically used to outline the potential 
capabilities of MASS. The proposed fuzzy logic approach not only characterizes an 
autonomous vessel based on its fundamental functions but also enables a dynamic 
representation of how automated each function is. For example, the level of automation in 
navigation can be adjusted based on the required human interaction or lack thereof. This 
adjustment necessitates a detailed task analysis, particularly for the navigation function and its 
dependencies across various operational contexts. In this model, tasks such as information 
gathering and analysis could be assigned high autonomy levels (i.e., membership functions 
nearing one) due to the ship's reliance on advanced sensory technologies including optical and 
infrared cameras, LiDAR, and RADAR. However, in scenarios of low visibility or high traffic, 
human intervention may still be essential for decision-making and action execution, which 
indicates the need for dynamic LOA adjustments in real-time navigation. 
 

6.4 Summary and Results of Article 4 
Article 4 builds upon articles 1 and 2 while addressing some of the key limitations of Trust in 
Automation (TiA) models including: 
1. Trust dynamics: most previous research has treated trust as a static attribute, captured at a 

single moment, failing to acknowledge its evolving nature due to ongoing interactions with 
automation. 

2. Conceptual model limitations: many conceptual models use broad, general terminologies, 
which limit their testability and empirical validation. They often lack specificity in 
predicting how trust changes in response to different factors, making them less actionable 
for real-world applications. 

3. Computational model constraints: computational models, while providing numerical 
insights into trust variations, are often too tied to specific datasets, limiting their 
generalizability across different contexts of human-automation interaction. 

4. Practical relevance: the practical utility of existing TiA models is limited due to their 
shortcomings in identifying specific intervention points for adjusting trust levels. This 
restricts their usefulness in designing and implementing automation systems that foster 
appropriate levels of trust. 

 
To address these issues, article 4 introduces a system dynamic simulation model aimed at 
exploring structural aspects of Trust in Automation (TiA). The model accounts for the phases 
of trust development, decline, and recovery during user interaction with automated systems.  
By employing a System Dynamics (SD) methodology, this model demonstrates the complex, 
nonlinear interplay of trust via dynamic feedback mechanisms. Contrary to other methodologies 
that depend heavily on empirical data for system behavior, SD emphasizes the development of 
formal models that encapsulate dynamic phenomena as continuous feedback processes. These 
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conceptualizations embed propositions about the cause-and-effect dynamics among elements 
and variables within the system, analyzing the outcomes of their interplay. In this schema, 
feedback loops are considered analytical units, each designed for a specific function and 
exhibiting variable importance over time. Variables may participate in several feedback loops, 
shifting the focus from isolated causal links between variable pairs to a more extensive 
examination of causative frameworks. 
The model accounts for key variables responsible for trusting behavior including system 
performance (reliability), system capabilities, system malfunctions, perceived reliability, 
expectations of performance, perceived risk, and operator’s individual characteristics. 
Trust levels can fluctuate in response to the system's performance (Lee & Moray, 1992; Muir, 
1994), with such trust variations often aligning positively with changes in automation 
utilization. A decline in trust prompts operators to favor manual operations over automated 
solutions, reducing their willingness to explore the automation's functions. Continuous 
interaction with the system also cultivates operators' performance expectations for automation, 
aligning with the notion of "anticipation" in Sheridan's (2019) framework. Moreover, prolonged 
engagement fosters generalized perceptions of automation efficacy and broader constructive 
beliefs about system conduct, encapsulated as “faith”. 
 
The outcome of the model is (partially) assessed through an experimental study involving 
participants engaging with simulated Maritime Autonomous Surface Ships (MASS). 

6.4.1 Model Structure 
Figure 17 illustrates a simplified TiA Causal Loop Diagram (CLD). The dynamics of trust in 
automation (TiA) are captured through the interplay between three key components: Trust (T), 
Perceived Performance, and Expectation of Performance. The central component, Trust (T), 
changes over time based on the interactions between Perceived and Expected Performance.  
Assume 1(C)	be the Trust stock at time C and D(C) be the Change in TiA. Using this convention, 
the following formulation can be articulated, where E denotes the Initial Trust, F denotes the 
Expectation Gap, ω indicates the Difference Between the Maximum TiA (Faith) and Current 
Trust, and λ represents the Trust Adjustment Time. 

!(#) = 	' + ∫ *(#)+#  (1) 

*(#) = min /!" 	 ,
#
"1	(2) 

Initial Trust (ρ) is a reflection of an individual's baseline level of trust before interacting with 
the automation. It is influenced by previous experiences and inherent trust propensity (Merritt 
& Ilgen, 2008). This means that two individuals might start from different levels of trust based 
on their past interactions with similar systems and their general inclination to trust technology. 
This variability is referred to as intra-individual variability. 
Adjustment Time refers to the rate at which individuals update their trust in response to new 
information or experiences. This rate can vary significantly among individuals. Some people 
may quickly reassess their level of trust after a single event (fast adjustment time), while others 
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may require more time or additional evidence to alter their trust levels (slow adjustment time). 
These differences are crucial as they influence how each person's trust evolves in response to 
the perceived performance of the automation. 

Despite the individual differences in initial trust levels and adjustment times, the model assumes 
that the basic feedback mechanisms underlying trust dynamics are common across individuals. 
This implies that while the starting point (initial trust) and the rate of change (adjustment times) 
can differ, the way in which trust increases or decreases in response to the gap between expected 
and perceived performance follows a universal pattern. This approach allows the model to 
accommodate individual differences while maintaining a consistent structure for understanding 
how trust evolves over time. This combination of individual variability with a standard 
feedback structure enables a more personalized understanding of trust dynamics, catering to the 
complex nature of human-automation interactions. By considering individual characteristics, 
the model can provide more accurate predictions and insights into how different people will 
react to the same system, which is critical for designing, implementing, and managing 
automated systems effectively. 

 
Figure 17, Simplified TiA Causal Loop Diagram (CLD) 

The system dynamics model encompasses three main feedback loops (as shown in Figure 18) 
influencing trust dynamics in autonomous systems: a reinforcing loop (R1) where increased 
trust leads to more trusting behavior, moderated by perceived risk; a balancing loop (B1) where 
trust adjusts according to the gap between expected and perceived performance, thus ensuring 
trust reflects actual system performance; and another balancing loop (B2) that caps trust growth 
at a maximum threshold (Faith) to prevent unlimited trust. Additionally, the model factors in 
system malfunctions and systems capabilities, reflecting how sudden failures or inherent system 
limitations can impact trust levels. Figure 19 illustrates the basic Stock and Flow Diagram 
(SFD) of the model structure. System malfunction in this model represents a sudden disruption 
in the System performance, formulated with a Pulse function that incorporates the Magnitude 
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and Time of the System Malfunction. On the other hand, System Capability reflects the limiting 
cap to the Perceived Performance. Environmental Challenges, such as adverse weather 
conditions or limited visibility, can greatly impact the System Capability. A more thorough 
description of the model structure can be found in the appended articles. 
 

   
Figure 18, Model's three main feedback loops. 

 

Figure 19, Stock and Flow Diagram (SFD) 

6.4.2 Simulation Results 
The simulation results highlight various dynamics in trust in automation. In a baseline scenario 
(i.e., perfect automation), the model stays at equilibrium when the system's capabilities match 
the operator's initial trust (for example, 30 out of 100) (see Figure 20). Deviations from this 
state trigger the reinforcing loop (R1), leading to different trust behaviors based on the initial 
trust levels, showcasing goal-seeking and path-dependency behaviors where past states 
influence future behaviors as illustrated in Figure 21. This process indicates that operators with 
higher trust levels tend to engage more with the system to evaluate its performance, resulting 
in an increased positive perception of performance, assuming the automation is flawless. This 
kind of path-dependent trust evolution has been observed in various studies (Castelfranchi & 
Falcone, 2010; Lewis & Weigert, 2012), indicating how past and initial trust conditions 
significantly influence future trust levels and actions. The presence of path dependency in trust 
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dynamics is further affected by which feedback loops are predominant at any time (i.e., loop 
dominance). As circumstances evolve, different loops may gain prominence, directing the pace 
and direction of trust development. This suggests that the system's behavior is influenced not 
only by its starting state but also by the interplay and dominance of various feedback 
mechanisms over time, leading to intricate and occasionally unexpected trajectories of trust 
progression. 
The baseline simulation findings reveal a notable path dependency in the evolution of individual 
trust trajectories. As previously discussed, the divergence in individual experiences is captured 
through variations in Initial Trust values and the time it takes for individuals to adjust their trust 
levels. The model highlights the dynamics of trust formation and erosion by showcasing the 
speed at which trust is gained or lost, a concept described as the gradient of trust dynamics. 
These intra-individual variations are illustrated in Figure 25, demonstrating that while 
individuals may start with different Propensity to Trust, their trust development trajectories 
exhibit similar patterns. Additionally, the model points to a convergence towards a state of path 
dependency, influenced by different Initial Trust values, as depicted in Figure 22. This 
convergence is a result of adjustments made in response to the gap between expected and actual 
performance. When the perceived performance aligns with or surpasses expectations, there is a 
gradual increase in trust.  
The variability in trust-related outcomes can be significantly impacted by the initial discrepancy 
between Expected Performance and Perceived Performance. When the performance anticipated 
by an individual far exceeds the performance actually observed, this gap triggers a negative 
feedback loop, resulting in an initial reduction in trust towards automation. This decrease in 
trust leads to a more cautious approach towards engaging with the automation system, causing 
a slower recognition of its effectiveness. This results in a prolonged phase of trust building and 
adjustment of expectations. As the difference between what is expected and what is perceived 
decreases, trust starts to build up again, though at a slower rate than initially might have been 
the case, as illustrated in Figure 23. This demonstrates how early expectations and subsequent 
performance perceptions are crucial in shaping the trajectory of trust development in automated 
systems. 
To delve deeper into the dynamics of trust in the context of imperfect automation, a disruption 
in the baseline model was introduced by implementing a Pulse function. This function models 
an unforeseen error with a magnitude of 50% occurring at the specific moment of t=25, 
resulting in an immediate and significant drop in both System Performance and Perceived 
Performance, as depicted in Figure 24. The introduction of this error creates a gap between 
expected and actual system performance, triggering a delay in the reduction of trust. This 
reduction sustains trust at a diminished level until system performance begins to recover and 
realign with the operator's expectations. The impact of a system malfunction on trust does not 
manifest instantly but rather initiates a gradual erosion of trust over time. Recovery from such 
malfunctions also does not happen immediately but occurs gradually, as highlighted in Figure 
24, where trust ascends to a level lower than that of the perceived performance improvement 
post-malfunction (Yang et al., 2017). 



 

 74 

 
Figure 20, Model at equilibrium 

 

 
Figure 21, Model’s S-shape growth & path 
dependency 

 

 
Figure 22, Individual variability in trust evolution (initial 
trust) 

  
 

 
Figure 23, Mismatches between expected and 
perceived performance 

 

 
Figure 24, Trust decline as a result of system 
malfunction. 

 

 
Figure 25, Individual variability in propensity to trust 

 

To assess the impact of system malfunctions occurring at different stages of the interaction, 
multiple simulation runs were investigated. As delineated in Figure 26, the timing of these 
errors critically affects the trajectory of trust recovery post-malfunction. The uppermost 
trajectory in the figure, which shows no decline, illustrates the baseline scenario where the 
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system operates without encountering any errors. Introducing system malfunctions early in the 
interaction, approximately at time t=10, leads to a significant initial drop in trust. This early 
disruption results in a lengthy recovery phase, during which trust levels fail to return to the 
baseline (i.e., perfect automation) within the observed period. Conversely, malfunctions that 
occur midway through the interaction, around time t=25, precipitate a noticeable but less severe 
drop in trust, with a subsequent recovery phase that is shorter compared to early errors. 
Malfunctions occurring later in the interaction process have the least impact on trust levels, 
with trust recovering more rapidly and nearly reaching the levels observed in the baseline 
scenario. This analysis illustrates the complex relationship between the timing of system errors 
and the resilience of trust in automation. It highlights how earlier errors can severely disrupt 
the trust-building process, necessitating extended periods for trust to be re-established, while 
errors occurring later are less detrimental, allowing for a quicker restoration of trust. 
 

 
Figure 26, Multiple simulation runs with varying error time 

6.4.3 Empirical Study 
Article 4 also presents empirical findings from an experiment designed to validate a segment 
of the proposed System Dynamics model, specifically tailored for application in Maritime 
Autonomous Surface Ships (MASS). The motivation behind selecting a portion of the model 
for empirical validation stems from the uncertainty surrounding the time required for an 
individual to attain maximum trust levels, a parameter challenging to test directly in practice. 
However, since the model addresses the decline in trust, a phenomenon that can occur more 
rapidly and is thus amenable to experimental scrutiny and validation. The secondary goal was 
to explore the behavioral manifestations of trust in automation by analyzing operators' eye 
movements during monitoring tasks. This includes examining how often participants monitor 
the system and the characteristics of their fixations to understand the impact of system 
malfunctions on their engagement. 
 

A. Participants 
The experiment involved 30 participants, including nautical students and instructors from a 
maritime university. These participants, recruited through snowball sampling, ranged in age 
from 18 to 55 and included a mix of 22 males and 8 females. 
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B. Apparatus 
For this study, the Kongsberg K-Sim desktop bridge training simulator (Kongsberg, 2023) 
served as the testing ground, simulating maritime conditions for autonomous vessel operation. 
The setup involved three main components: a RADAR display, a central bridge control 
interface, and an Electronic Chart Display and Information System (ECDIS), as depicted in 
Figure 27. 
 

 
Figure 27, Experiment Setup; Navigation Lab, University of South-Eastern Norway (USN) 

C. Data collection 
In terms of data gathering, participants provided self-reported responses through a 50-item 
questionnaire based on the International Personality Item Pool for Big-Five personality traits  
(Goldberg et al., 2006) and a trust questionnaire developed by Körber (2019). Eye movement 
data were collected via Tobii Pro Glasses 2, and analyzed with Tobii Pro Lab software, 
operating at a 50 Hz sampling rate. 
The analysis focused on several eye movement metrics divided into three known categories: 
temporal (e.g., duration and frequency of gaze fixations), spatial (e.g., saccade amplitude and 
eye movement patterns), and count (e.g., number of fixations and transitions between specific 
areas of interest) (Boudreau et al., 2009; Lu & Sarter, 2019; Yang et al., 2017). These metrics 
helped assess the participants' attention distribution and scanning strategies. As illustrated in 
Figure 28, multiple Areas of Interest (AOIs) were designated on the simulation screens to track 
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how participants' visual attention varied, especially in response to system malfunctions. The 
processing and analysis of eye movement data were conducted using the Tobii Pro software 
suite, IBM SPSS Statistics, and the R programming language. 
 

 
  
Figure 28, Areas of Interest (AOI) 

 
D. Design of Experiment 

The experiment employed an observational within-subjects design to assess human interaction 
with autonomous maritime systems. Participants, all exposed to identical conditions, engaged 
with a simulated mid-size Roll-on/Roll-off (Ro-Ro) vessel autonomously navigating from 
Horten to Moss in Norway, with additional vessels introduced to simulate realistic maritime 
traffic (see Figure 29). The simulation tasked participants with monitoring the vessel’s 
autonomous navigation, with the option to manually override the system in response to potential 
malfunctions. The vessel’s navigational control can be selected from three modes of autonomy 
in the Steering System panel including, Autonomous (NAV), Autopilot (AUTO), and Manual 
(MANUAL), as shown in Figure 30. 
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Figure 29, Vessel’s traffic environment 

 

 
Figure 30, Steering System Panel 

E. Procedure 
Initially, participants received an overview of the study's objectives, consented to participate, 
and completed demographic and personality surveys. They were then informed about the 
study’s tools and tasks, including the calibration of an eye-tracking device for precise data 
gathering. 
During the first half of the study, the system functioned without fault, showcasing ideal 
automation conditions. However, in the latter half, a deliberate malfunction — the halting of a 
steering gear pump — was introduced to observe participants' responses to unexpected 
navigational deviations, as shown in ECDIS (Figure 31), and signaled by an alert. Deviation 
from the course commenced after 10 minutes and lasted for 60 seconds. If the test subject failed 
to notice and/or take over, the vessel was set to go back on course after the error period. Test 
subjects were expected to notice the change in course anytime within the 60 seconds. By the 
end of the study, if any test subject did not notice the deviation, it would be considered a failure 
to recognize. Trust measurements were recorded before and after this induced error to assess 
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changes in participants' perceptions of the autonomous system. The entire session lasted about 
40 minutes. A graphical representation of this procedure is displayed in Figure 32. 
 

 
Figure 31, Vessel's deviation from the pre-defined route. 

Figure 32, Experiment procedure 

6.4.4 Experiment Results 
Analysis using a paired samples t-test revealed significant changes in gaze metrics and 
perceptions of reliability and trust in automation post-error (see Table 7). Specifically, total and 
average fixation durations increased, indicating heightened attention to Areas of Interest (AOIs) 
following the error. While spatial metrics such as the average amplitude of saccades showed no 
change, the total amplitude of saccades increased. Notably, the number of visits, saccades, and 
fixations to AOIs rose, signifying more intensive engagement with the information provided by 
the AOIs after the system malfunction. A heatmap of visual attention before and after the error 
is shown in Figure 33. Perceived reliability and trust in automation both decreased significantly 
from pre-error to post-error, with reliability showing a larger mean decrease. 
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Table 7, Results of perceived reliability, trust, and gaze metrics pre- and post-error 

 
 

 
 

Figure 33, Visual attention prior (top) and post (bottom) system malfunction. 
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Correlation analysis (Table 8) between perceived reliability, trust in automation, and 
personality traits revealed a strong positive relationship between reliability and trust at both 
time points, but no significant correlation with personality traits. Change in trust in automation 
(dTRU) and the change in perceived reliability (dREL) are also positively correlated, indicating 
a concurrent decrease in trust and perceived reliability from the two time points. It is important 
to note that personality traits do not show significant correlations with changes in trust, 
suggesting that personality may not play a substantial role in the observed decline in trust 
because of system malfunction. 
 
Table 8, Correlational matrix 

 
Comparing empirical findings with the System Dynamics model showed that perceived 
reliability and trust decreased by 15.4% and 13.2% respectively, aligning with the model's 
predictions of a 14% decline in perceived performance and a 12.7% decrease in trust in 
automation. This congruence between simulated and observed trust dynamics empirically 
validates the portion of the model's applicability in reflecting real-world trust behavior 
following system malfunctions. 
 
The proposed system dynamics model illuminates how initial conditions shape trust dynamics 
in human-automation interactions, confirming the enduring influence of first impressions. 
Ensuring alignment between perceived performance, trust, and user expectations is vital for 
autonomous systems' effectiveness. The model suggests that trust can self-perpetuate, provided 
the system meets expectations, but may diminish with perceived unreliability. Trust recovery 
after malfunctions depends on the magnitude and timing of the faults, with early issues causing 
more pronounced and prolonged trust decreases. Empirical findings from the MASS study 
support the model's hypotheses, showing that personality traits do not significantly affect trust 
variations due to system malfunctions. The model's structural focus on trust dynamics, rather 
than specific contextual details, offers broad applicability across scenarios but also necessitates 
adjustments for precise contextual representation. Overall, the study offers a flexible, and 
adaptable system dynamics model that can generate testable hypotheses about trust evolution, 
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offering a tool for future research to investigate trust across various contexts and automation 
levels. 
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7 Synthesis of the Results and General Reflection 
This chapter consolidates the principal outcomes of this dissertation, offering an overarching 
reflection on the entire research journey. The connections between each article and their central 
insights are depicted in Figure 34. Additionally, this chapter outlines the research's limitations 
and suggests directions for future inquiry in the field of Human-Automation Interaction (HAI). 
 
Article 1 (Poornikoo & Øvergård, 2023) initiated an in-depth examination into the realm of 
theory development and model building, centering specifically on models of trust in automation 
(TiA) and the application of scientific criteria for evaluating these models. The objective of this 
article was to explore the foundational aspects of HFE models and to assess whether current 
modeling endeavors offer a reliable and comprehensive understanding of trust in automation in 
today’s complex sociotechnical systems. It revealed a prevalent reliance on conceptual 
(variance) modeling as the primary approach for depicting variations in trust. This approach 
has been instrumental in identifying potential factors influencing trust and has enabled further 
analysis through empirical research. However, despite the assertion that trust is inherently 
dynamic and subject to change over time, the predominant modeling language and focus on 
static causal factors, rather than on interrelationship dynamics, renders these models somewhat 
restrictive. As a result, studies on TiA and cognitive psychology continue to depend heavily on 
static models and traditional experimental methodologies, often defaulting to statistical data 
analysis. This overreliance poses a critical issue: the statistical framework utilized in the 
analysis inadvertently becomes a replacement for an actual static model. This approach, 
primarily designed to structure data and hypothesize relationships in the absence of concrete 
understanding, falls short of accurately depicting social processes and dynamics. Notably, 
standard methods such as analysis of variance and regression are especially inadequate for 
capturing complex social interactions, with time-based dynamics being particularly 
underrepresented (Levine, 2000; Levine & Doyle, 2002; Levine & Fitzgerald, 1992). 
Several other issues were discussed in Article 1 regarding the efficacy of modeling approaches 
in relation to satisfying the proposed scientific criteria. Specifically, the conventional variance 
conceptual models do not allow for scientific checks of the entire model, as this requires the 
operationalization of all variables and the relationship between them. As a result, the empirical 
adequacy of the models becomes somewhat limited. The choice of variance modeling approach 
is mainly in line with the reductionist view of science, despite the ongoing debates regarding 
viewing the HAI and HFE as a systems discipline. Article 1 further examined the computational 
models of trust in automation, revealing that such models are better in testability/falsifiability 
criterion and predictive power. Nevertheless, they heavily rely on data and consequently, they 
become data models with limited applicability and generalizability to be adapted in new 
settings. The suggestions in Article 1 pointed towards adopting novel modeling approaches that 
can better satisfy the proposed criteria. 
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Figure 34, Overview of the four articles, key insights, and the methods 

In Article 2 (Poornikoo & Mansouri, 2023), assumptions of the variance models were examined 
to realize the notion of cause and effect in such models. The primary definition of cause and 
effect in the variance model implies that the cause is necessary and sufficient for the outcome, 
and the outcome inevitably occurs when necessary and sufficient causes are available. This 
overly simplified static assumption can only be applied for a fraction of the time in which the 
phenomenon is being studied. Yet, the entire broader picture of continuous human interaction 
with the automation and dynamic environment cannot be studied with such assumptions. On 
the other hand, process models assume that causation consists of necessary conditions in 
sequence, and the outcome may not occur even when the causal conditions are present. The 
logical differences in the two modeling paradigms can be explained as: if X, then Y; if more X 
then more Y (in variance models), whereas if not X, then not Y (in process models) (Markus & 
Robey, 1988; Payne et al., 2017; Poole et al., 2000). 
As discussed in Article 2, while the assumptions underlying variance models may be sufficient 
for comparisons among entities and general linear models, they are rather ill-suited for studying 
social entities that are prone to nonlinear dynamic interactions. On the other hand, assumptions 



 

 85 

of process (casual-descriptive) models, can account for the reciprocal causality, time-lagged, 
and historical development of trust in automation. 
The primary objective of Articles 1 and 2 was to map out the current modeling practices within 
Human Factors and Ergonomics (HFE) and to delineate the crucial scientific criteria necessary 
for the evaluation of models within this domain. The findings from both articles underscore that 
simulation modeling emerges as a particularly promising strategy for addressing the 
multifaceted nature of Human-Automation Interaction (HAI) challenges. 
With this in mind, Article 3 (Poornikoo & Øvergård, 2022) focused on levels of automation, a 
critical aspect of human-automation interaction. It was initiated by reviewing the existing 
taxonomies and levels and defining the concept of automation across systems, functions, and 
tasks. An autonomous system in this regard was defined as a system capable of performing 
functions autonomously (Poornikoo & Øvergård, 2022), such as route planning and 
autonomous navigation. A fuzzy logic simulation model was crafted to describe levels of 
automation according to operational criteria, aiming to establish a common language among 
scholars and practitioners engaged in Maritime Autonomous Surface Ships (MASS). This 
model aspires to integrate Levels of Automation (LOAs) effectively into both research and 
modeling endeavors. 
Article 4 explores a different simulation technique to analyze trust in automation, emphasizing 
the internal structure and feedback loops to predict system behavior. Unlike previous 
conceptual models, this study narrows its focus to the feedback mechanisms, revealing the 
universal nature of trust's path dependence in automation contexts. It postulates that individual 
variances significantly affect the rates at which trust adjusts in response to automation 
performance. A critical insight from this research is the model's sensitivity to system 
malfunctions; the timing and magnitude of errors significantly influence trust levels, with early-
stage errors causing more substantial damage. Indeed, this hypothesis necessitates further 
empirical support. Article 4 also undertakes empirical tests to examine the effects of errors on 
trust and perceived reliability and explores how such incidents alter monitoring behavior. 
Experimental results not only support the model's predictions but also highlight the impact of 
trust on supervisory control within Maritime Autonomous Surface Ships (MASS). The findings 
indicate that trust levels significantly dictate the monitoring frequency and attention distribution 
across different Areas of Interest (AOIs), suggesting that inadequate trust can lead to a 
disproportionate focus on specific AOIs at the expense of others, thus underscoring the critical 
role of trust in the effective supervision of autonomous systems. 

7.1 General Reflection 
Hollnagel (2002) reminds us about the practices of modeling in the study of human-machine 
systems. The first practice focuses on the how of modeling, emphasizing the structure and 
content of the models. This approach assumes the necessity of modeling and aims at devising 
the most effective or sophisticated methods to fulfill this need. It is primarily interested in the 
architecture of the model, including its components and their configuration. The second practice 
concentrates on what is being modeled, i.e., the purpose and outcome of the modeling, 
prioritizing the model's functionality or performance over its structure. This functional 
approach values what the model aims to replicate or predict rather than the intricacies of its 
construction. This method is more concerned with the end function and results, choosing the 
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most apt solution based on the phenomena being addressed rather than a fixed, bottom-up 
construction of specific model components. He further emphasizes time and control – 
indispensable aspects of human action – as neglected issues in cognitive ergonomics models. 
It can be maintained that the structure and function within modeling are interconnected and 
mutually reinforcing concepts. An in-depth understanding of the phenomenon being modeled, 
including its intrinsic characteristics, is essential before a meaningful and explanatory model 
can be constructed. In the domain of cognitive ergonomics, particularly in Human-Automation 
Interaction (HAI), it appears that fundamental concepts such as change, time, and state are often 
overlooked in contemporary ergonomic models and methodologies. To further elaborate, 
several decades ago, Lewin (1951) theorized the field theory, that psychological phenomena 
take place within a field termed a “life space” or “psychological field”, characterized by the 
dynamics of interconnections and positionalities. Behavior is viewed as a product of the 
interaction between an individual and their life space, summarized in G	 = 	H(4$). Life space 
(LS) encompasses both the individual (P) and their surrounding environment (E), leading to the 
revised equation G	 = 	H(I, J). This formula suggests that behavior emerges from the interplay 
between a person and their environment, meaning that behavior is represented as locomotion 
from one region of the life space to another, regions that attract or repel having valence. Lewin 
further argues that any behavior or changes in behavior depends only on the psychological field 
at that time. Field theory asserts that behavioral change ,-,.  at the time C depends on the situation 

$. at the time t, or ,-,. = 	K($.), and in closed systems, also depends on a past situation $./!. 
This somewhat overlooked principle offers valuable insights for today’s modeling practices. 
Specifically, recognizing that phenomena are dynamic suggests that their characteristics can 
evolve over time. Consequently, factors that were crucial at one stage may become less 
influential later, leading to variations in the strength of correlations as time progresses. This 
phenomenon reflects the challenges associated with nonlinear dynamic complexity in modeling 
(Guastello, 2017). 

Modeling human behavior in human-automation systems primarily involves cognitive 
processes and dynamic evolution. In scientific research, models of human behavior serve not 
only to unify diverse empirical findings but also to offer a systematic understanding of the 
mechanisms underlying human behavior (Gauch, 2012). A cognitive model then must be 
designed to reflect such mechanisms with adequate intricacy. While verbal descriptions or 
conceptual models are crucial in guiding many experimental studies for identifying causal 
factors, they often fall short of explaining the kind of relationships among variables and the 
dynamics of human behavior in making predictions. This limitation becomes particularly 
apparent given the complexity of the human cognitive and motor systems, which verbal 
descriptions or a simple box-and-arrow representation may struggle to quantify effectively.  

Computer-assisted modeling (i.e., simulation) can provide a more detailed and quantifiable 
method of representing the intricate relationships within human-automation systems. These 
models are not only useful for solving the limitations of verbal descriptions but also play a 
crucial role in guiding researchers in their data collection efforts. Furthermore, simulation 
models offer a great opportunity to formulate testable hypotheses in dynamic scenarios. 
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Programming a computer to imitate human actions represents a more thorough level of 
understanding than is typically achieved through conventional box-and-arrow diagrams. 
Successful cognitive models, when based on certain assumptions, can produce human-like 
behaviors. By altering these assumptions, researchers can observe changes in the model's 
behavior. Such explorations provide a basis for designing experimental conditions likely to 
yield measurable effects, further enhancing the understanding of human behavior. 
 

7.2 Research Limitations 
The objective of this doctoral dissertation was to create a comprehensive and robust body of 
work. However, it is important to acknowledge certain limitations that were encountered. These 
limitations were primarily due to the time constraints associated with this academic endeavor 
and the theoretical nature of the research undertaken. A detailed discussion of these constraints 
and their implications is provided in the subsequent sections. 

7.2.1 Model Evaluation 
Article 1 introduced a framework for assessing Human Factors and Ergonomics (HFE) 
constructs, setting the stage for assessing models of trust in automation. Initially, the proposed 
evaluation criteria derive from established scientific criteria; however, there is room for 
adaptation to tailor these criteria more closely to specific HFE models in subsequent research 
efforts. Additionally, the prioritization of these criteria through the Best-Worst Method (BWM) 
is inherently influenced by the subjective perspectives of the researchers involved. Fostering 
agreement among researchers regarding the evaluation of models could lead to more consistent 
and reliable assessments. Moreover, the research recognizes that a one-size-fits-all approach 
may not be applicable, and aligning the evaluation criteria with the application context could 
facilitate more precise and relevant model selection. This approach would enable practitioners 
to choose the most suitable model based on the specific requirements of their situation, whether 
it be for theoretical exploration or practical design purposes. 

7.2.2 Modeling Epistemology 
Article 2 explored two distinct modeling approaches (i.e., variance, and process) with regards 
to their epistemological assumptions and utility in HFE modeling efforts. While the paper 
discusses the limitations of current HFE models in adopting a variance approach, it primarily 
focuses on outcome-oriented and mathematical simulation models. That means that the 
exploration of alternative modeling approaches is not deeply explored. The article provides a 
theoretical discussion on the need for systems approaches in HFE modeling but lacks studies 
or case examples to support the proposed benefits of integrating variance and process models. 

7.2.3 Level of Automation (LOA) Fuzzy Logic Model 
The fuzzy model of LOAs encompasses several limitations that warrant further investigation. 
One of the primary constraints lies in the subjective selection of membership functions within 
the fuzzy logic model, which can significantly vary based on the specific scenario being 
analyzed. This subjectivity calls for additional studies aimed at identifying the most appropriate 
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membership functions tailored to distinct Levels of Automation (LOAs). An advanced strategy, 
such as employing a weighted fuzzy approach, is suggested to refine this process. Moreover, 
the conceptual foundation of the proposed model is built upon existing presumptions related to 
human-automation interaction (HAI) dynamics and the operational definitions of LOAs. These 
underlying assumptions form the backbone of the current framework but may not encompass 
all possible variations and complexities inherent in HAI scenarios. Consequently, future studies 
should delve deeper into these presumptions, examining their validity and applicability in the 
context of fuzzy logic models for LOAs, thereby enhancing the model's relevance and accuracy. 
Lastly, the practical implications and efficiency of the proposed approach, particularly in the 
context of Maritime Autonomous Surface Ships (MASS), have yet to be fully explored. 
Empirical testing and real-world application of the model within this domain are critical to 
ascertain its efficacy and identify potential areas for refinement. Adjustments may be required 
to align the model more closely with the unique challenges and requirements of MASS 
operations.  

7.2.4 Trust in Automation (TiA) System Dynamics Model 
This study has introduced a system dynamics model centered on trust in automation, illustrating 
the potential of simulation modeling to generate dynamic, testable hypotheses regarding trust 
and related behaviors. The model stands out due to its dynamic nature as opposed to static 
conceptual frameworks, offering a versatile tool that adapts to empirical data. This 
characteristic enables the examination of various theories concerning the development and 
evolution of trust, enhancing its utility for future research in different settings by altering 
parameters or model structures. Such flexibility is vital for accurately representing complex 
interactions between humans and automated systems in diverse operational contexts. However, 
the model predominantly emphasizes the structural dynamics of trust, sidelining the contextual 
specifics that might influence trust dynamics in particular scenarios. This lack of specific 
situational details could limit the model’s immediate applicability, requiring modifications to 
suit distinct environments and conditions for precise simulation outcomes. 
For system designers, the model provides insights into integrating psychological and behavioral 
dimensions of trust from the early stages of development, aiming for systems that users can 
trust and understand comprehensively. However, the model's current iteration specifically 
addresses scenarios with high levels of automation, such as fully autonomous driving or 
autonomous maritime navigation, focusing mainly on situations where human operators 
supervise and intervene when necessary. This choice limits the model's exploration of trust 
dynamics across varying levels of automation and does not consider the transitions between 
different automation levels or how trust fluctuates within these transitions. To enhance the 
model's relevance and applicability, future versions could introduce modular components to 
accommodate different operational contexts, system reliability levels, user experiences, and 
environmental conditions. Such modifications would extend the model's applicability, making 
it a more practical tool for diverse applications.  
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8 Conclusion 
This chapter concludes this dissertation's research outcomes and scholarly contributions, 
aligning with the research questions established in the introduction chapter. A summary of the 
outcomes from each study, along with their theoretical and practical contributions is provided 
in Table 9. 
 
The advent of Maritime Autonomous Surface Ships (MASS) can represent a significant leap 
forward in the maritime industry, promising to redefine sea transportation's efficiency, safety, 
and economics. However, this technological advance brings forward the complex interplay 
between human operators and autonomous systems, particularly in the context of Shore Control 
Centers (SCCs), where remote operators play critical roles. The success of integrating MASS 
into the global shipping infrastructure depends not just on technological advancements but 
equally on understanding and optimizing Human-Automation Interaction (HAI). The transition 
to supervisory control roles introduces a paradigm shift in operational dynamics. Remote 
operators are tasked with maintaining oversight over multiple vessels simultaneously, each 
possibly facing different sea conditions and operational challenges. This multi-vessel 
management can significantly amplify the cognitive load, requiring operators to prioritize 
information effectively and make swift decisions to ensure safety and efficiency. One of the 
primary concerns is the risk of over-reliance on automation, which may lead to complacency 
and reduced situational awareness (Endsley, 1996). The remote nature of operation may 
exacerbate these issues, as operators are removed from the immediate physical environment of 
the vessels they control. Moreover, the unpredictable and dynamic nature of maritime 
environments makes complete autonomy a challenging goal; remote operators must be prepared 
to take control in complex or emergency situations. 

To address these challenges and leverage the full potential of MASS, it is imperative to develop 
scientific and robust models of HAI. These models should account for the unique demands of 
maritime environments and the specific roles of remote operators. By understanding the 
cognitive, psychological, and social factors that influence remote operators' performance, 
researchers and practitioners can design more intuitive and effective interfaces and decision-
support systems. Effective HAI models can guide the development of training programs 
tailored to the needs of remote operators, focusing on critical skills such as situational 
awareness, decision-making under uncertainty, and effective communication with autonomous 
systems (Bachari-Lafteh & Harati-Mokhtari, 2021; Emad & Ghosh, 2023; Wright, 2020). 
Moreover, these models can help identify potential sources of error, the operators’ responses, 
and cognitive overload, enabling the design of systems that support operators' decision-making 
processes and reduce the likelihood of accidents. Two pivotal aspects of these models are the 
Levels of Automation (LOAs) and Trust in Automation (TiA). Understanding and accurately 
modeling these dimensions are crucial for designing systems that effectively balance human 
supervisory control of autonomous capabilities. 
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The concept of LOAs in HAI models refers to the range of functions and decision-making 
capabilities allocated between humans and machines. These levels span from full human control 
to full automation, with various intermediate stages where tasks are shared or divided 
differently between humans and systems. Properly modeling LOAs involves identifying the 
optimal distribution of tasks that maximizes system performance and human well-being. In 
maritime autonomous systems, such as Maritime Autonomous Surface Ships (MASS), defining 
LOAs is critical due to the complex, dynamic nature of maritime environments and the high 
stakes involved in navigation and operations. A robust LOA model for HAI in maritime 
contexts should provide a framework for dynamically adjusting the level of automation based 
on specific conditions, operator workload, and system reliability. Such models help in 
designing interfaces and control systems that allow for seamless transitions between levels of 
automation, minimizing potential confusion and ensuring that operators remain engaged and 
prepared to take control when necessary. 
 
Trust in automation is a multifaceted concept that plays a crucial role in HAI. It influences how 
much reliance operators place on automated systems and how they interact with them. 
Inappropriate levels of trust—either too high (overreliance) or too low (underutilization)—can 
lead to suboptimal system performance and increase the risk of accidents (Lee & See, 2004; 
Parasuraman & Riley, 1997). Modeling TiA requires a deep understanding of the factors that 
influence trust, such as the system's reliability, transparency, predictability, and the operator's 
personal experiences and biases. Nonetheless, it also requires an understanding of the 
relationships among these factors in a closed-loop dynamic HAI process. A well-constructed 
TiA model enables the design of automated systems that communicate their intentions and 
limitations clearly, fostering appropriate levels of trust. Such systems should provide operators 
with feedback and explanations for their actions, especially when autonomous decisions deviate 
from the operator's expectations. By ensuring that operators understand the capabilities and 
reasoning of the automated systems, these models can enhance collaboration between humans 
and machines, leading to more effective decision-making and improved safety outcomes. 
 
In response to the growing scrutiny regarding the validity of Human Factors and Ergonomics 
(HFE) models, as well as the need for flexible yet credible HAI models, this dissertation 
concentrated on the importance of models and modeling within Human-Automation Interaction 
(HAI), particularly emphasizing Trust in Automation (TiA) and Levels of Automation (LOA) 
as central themes for modeling exploration. This dissertation commenced by exploring the 
significance of scientific modeling and developed criteria that can be utilized to assess the 
relative scientific credibility of various models. Furthermore, models of Trust in Automation 
(TiA) were assessed against these criteria not only to showcase the use of the criteria but also 
to understand the TiA modeling efforts in the literature. On the other hand, epistemological 
accounts of modeling efforts were investigated, to realize the suitability of each approach for 
modeling HAI. The findings suggested simulation as a viable approach to tackle the 
complexities in modeling TiA and LOA within the context of HAI and supervisory control of 
MASS. By incorporating models of Trust in Automation (TiA) and Levels of Automation 
(LOA), simulation offers a powerful tool for examining complex interactions and dynamics 
that are difficult, if not impossible, to study in real-world settings due to safety, cost, and 
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practicality concerns. Through simulation, researchers can dissect the underlying mechanisms 
of TiA and LOA, providing a deeper understanding of how and why certain interactions affect 
human performance and system efficiency. For example, simulations can reveal how changes 
in the performance of autonomous systems impact operators' trust levels and their ability to 
make informed decisions. Another significant advantage of simulation modeling is its ability 
to predict outcomes of various scenarios. This predictive capability is invaluable for informing 
the development of MASS, allowing designers to anticipate human factors challenges and 
address them proactively. 
While specific simulations may be designed around particular scenarios or types of MASS 
operations, the principles and findings derived from this dissertation may have broader 
applicability. By identifying general patterns in how humans interact with automation, 
simulation modeling contributes to a body of knowledge that can inform the design and 
operation of a wide range of automated systems, beyond the maritime context. This 
generalizability makes simulation an invaluable tool in the broader field of HAI research. 
 
Table 9, Summary of key findings and contributions of this dissertation 

RQs Article Key findings Contributions 
RQ1: What 
constitutes the 
essential criteria 
for evaluating 
models within the 
domain of Human 
Factors and 
Ergonomics 
(HFE) research? 

Article 1 
Poornikoo, M., & Øvergård, K. I. (2023). 
Model evaluation in human factors and 
ergonomics (HFE) sciences; case of trust in 
automation. Theoretical Issues in 
Ergonomics Science, 1-37. 
https://doi.org/10.1080/1463922X.2023.22
33591 

 

Seven scientific criteria were 
developed including: 
Falsifiability/testability, 
Predictive power, Explanatory 
power, Empirical adequacy, 
Pragmatic adequacy, Human as 
an active agent, and Dynamic 
properties.  
These criteria were applied to 
Trust in Automation models 
using the Best-Worst Method 
(BWM). 

The study offers a set of 
checklists for evaluating the 
scientific credibility of Human 
Factors and Ergonomics (HFE) 
models. These criteria can be 
used as reference tools for 
comparing different models. The 
applicability of findings can go 
beyond TiA models and can be 
applied to other cognitive models 
such as Situation Awareness and 
Mental Workload. 

RQ2: What is the 
current state of 
Trust in 
Automation (TiA) 
models according 
to the criteria in 
RQ1? 

Article 1 
Poornikoo, M., & Øvergård, K. I. (2023). 
Model evaluation in human factors and 
ergonomics (HFE) sciences; case of trust in 
automation. Theoretical Issues in 
Ergonomics Science, 1-37. 
https://doi.org/10.1080/1463922X.2023.22
33591 

 

Two clusters of TiA models 
were identified in the literature, 
conceptual and computational 
models. It was revealed that 
conceptual models are better at 
incorporating causal factors and 
have explanatory power. 
Contrarily, computational 
models have the advantage of 
higher testability scores but are 
limited in generalizability and 
explanatory power. 

The findings of this study 
highlighted the advantages and 
disadvantages of different 
modeling approaches in the 
conceptualization and prediction 
of TiA. This study contributed to 
the theoretical understanding of 
TiA research programme, and the 
progression of the field. 

RQ3: Are the 
epistemological 
assumptions in 
different 
modeling 
approaches 
appropriate for 
studying human-
automation 
interactions? 

Article 2 
Poornikoo M., Mansouri M. (2023), 
Systems approach to modeling controversy 
in Human factors and ergonomics (HFE), 
18th Annual System of Systems 
Engineering Conference (SoSe), Lille, 
France, 2023, pp. 1-8, 
https://doi.org/10.1109/SoSE59841.2023.1
0178634 

This study distinguished static 
(variance) and dynamic 
(process) modeling approaches 
and discussed the underlying 
epistemological assumptions in 
defining causal and effect 
relationships.  

The findings and discussions 
highlighted the shortcomings of 
the assumptions of variance 
models in modeling human 
agents and behavior. The study 
contributed to the theoretical and 
epistemological assumptions of 
various modeling approaches and 
recommended utilizing process 
(dynamic) modeling practices in 
studying human performance in 
sociotechnical systems. 

RQ4: How to 
effectively model 
Levels of 
Automation 
(LOAs) for 
Maritime 

Article 3 
Poornikoo, M., & Øvergård, K. I. (2022). 
Levels of automation in maritime 
autonomous surface ships (MASS): A fuzzy 
logic approach. Maritime Economics & 
Logistics, 24(2), 278-301. 

This study reviewed the 
existing levels of automation 
and highlighted their ambiguity 
and limitations in operational 
scenarios. Utilizing the LOA’s 
basic constituents and fuzzy 
logic approach, the study 

This study is the first attempt to 
quantify and operationalize the 
levels of automation for broader 
use and applicability. The main 
contribution of this model lies in 
using an approach that can take 
human judgements as inputs and 

https://doi.org/10.1080/1463922X.2023.2233591
https://doi.org/10.1080/1463922X.2023.2233591
https://doi.org/10.1080/1463922X.2023.2233591
https://doi.org/10.1080/1463922X.2023.2233591
https://doi.org/10.1109/SoSE59841.2023.10178634
https://doi.org/10.1109/SoSE59841.2023.10178634
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Autonomous 
Surface Ship 
(MASS)? 

https://doi.org/10.1057/s41278-022-00215-
z 

developed a simulation model 
for levels of automation. 

return the corresponding LOA, 
offering a universal language for 
defining the LOAs not as discrete 
taxonomies but a continuous 
spectrum. 

RQ5: How can 
Trust in 
Automation (TiA) 
be dynamically 
modeled based on 
its internal 
structures? 

Article 4 
Poornikoo M., Gyldensten W., Vesin B., 
Øvergård, K. I. (Submitted) Trust in 
Automation (TiA): a system dynamics 
model, and empirical findings in 
supervisory control of Maritime 
Autonomous Surface Ships (MASS), 
Human-Computer Interaction 

 

Building on the findings from 
RQ1 and RQ2, this study 
constructs a structural causal 
model of trust in automation 
that can portray trust dynamics 
in three stages: trust formation, 
trust loss, and trust repair. 
Using system dynamics 
simulation model, the model 
generates behavior based on its 
internal structure. The study 
was further examined through 
an empirical study for 
validation.  

The contribution of this study 
includes: (1) developing a 
dynamic model with few 
assumptions that can be tested 
and refuted. (2) incorporating 
individual variability as part of 
the adjustment time in response 
to observed performance. (3) 
proposing several scenario-based 
behaviors such as the effect of 
error time on trust, or initial 
trust/expectation mismatch. 

 

8.1 Future Research Recommendations 
The findings from this dissertation mark a significant stride towards enriching future research 
in the fields of Human-Automation Interaction (HAI) and cognitive ergonomics. The 
simulation models introduced in this dissertation represent preliminary efforts to explore these 
complex domains with a new perspective. While these initial models might appear rudimentary 
to simulation experts, including those specializing in system dynamics and fuzzy logic, they 
lay a foundational groundwork for the development of more intricate and thorough models in 
subsequent research endeavors. Moreover, while the current system dynamics model of trust in 
automation is tailored to scenarios involving high levels of automation, such as fully 
autonomous systems, there is a clear pathway for further refinement. Specifically, there is an 
opportunity to enhance the integration of Trust in Automation (TiA) system dynamics with 
various levels of automation articulated through fuzzy logic. 

Regarding model evaluation, the framework introduced in this dissertation holds potential for 
broader application, extending beyond trust models to evaluate other critical HFE constructs 
such as situation awareness and mental workload. Also, the proposed system dynamics TiA 
model itself presents an opportunity for rigorous assessment using these criteria in subsequent 
studies.  

https://doi.org/10.1057/s41278-022-00215-
https://doi.org/10.1057/s41278-022-00215-
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Appendix A- Informed Consent Form 

 
Informed Consent Form 

“Trust in automation in maritime autonomous surface ships 
using eye-tracking technology” 

Please read this consent agreement carefully before agreeing to participate in this experiment. 

This is an inquiry about participation in a research project where the main purpose is to gain an 
understanding of Trust in Automation using eye-tracking technology in an autonomous ship’s 
simulator. In this letter, we will give you information about the purpose of the project and what your 
participation will involve. 

 
Purpose of the project 
This experimental research is part of a doctoral thesis to build upon the existing knowledge on Trust in 
Automation in the maritime sector. The project’s objective is to develop a dynamic model of trust in 
automation and to validate the model using the data from an eye-tracking study. In particular, we aim 
to answer the research question “How does trust in automation change with different degrees of 
automation reliability?”  
 
Who is responsible for the research project?  
University of South-eastern Norway (USN) is the institution responsible for the project.  
 
Why are you being asked to participate?  
You are asked to participate in this project because you have familiarity or experience with navigation 
and/or maritime operations.  
 
What does participation involve for you? 
Tobii 2 glasses (Hardware) will be used in this study. The glasses record eye movements, as well as 
video, and audio of the surroundings on a memory card inserted into the glasses’ recorder. While 
recording, the experimenter can observe the live stream on a laptop which is connected to the glasses. 
There will be no recordings of the events but only live transmission from the glasses. Participants will 
be identified as "Participant 1", "Participant 2", and so on. 
All recordings will then be transferred to a USN's computers and stored in a secured drive, processed 
with Tobii Pro software for initial screening and visualizations, and then exported as CSV files for 
further statistical analysis in R. Tobii Pro as the software will be used for data analysis. The software 
is installed locally on a USN's laptop and does not sync up with cloud storage. 
 
At the beginning of the study, you will be familiarized with the overall scope of the study, tools, and 
equipment used in this study. Next, you will be asked to read, understand, and sign the consent form.  
Upon the agreement to participate in the experiment, you will be requested to fill out two paper-based 
surveys including a) Demographic information regarding your age, gender, education, and experience, 
and b) A personality test (Big Five). 
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The experiment will last approximately 35 minutes. During the experiment, you will be asked to wear 
eye-tracking glasses (Tobii 2 glasses) and perform a supervisory control of unmanned vessels (detailed 
instructions will be provided). Data regarding the eye movements (gaze, fixation, and saccades) as 
well as audio and video recordings of the environment will be collected. At the middle and end of the 
study, you are asked to fill out a subjective assessment form regarding your level trust in the 
automated system via paper/electronically recorded surveys. 
 
Participation is voluntary  
Participation in the project is voluntary. If you chose to participate, you can withdraw your consent at 
any time without giving a reason. All information about you will then be made anonymous. There will 
be no negative consequences for you if you chose not to participate or later decide to withdraw.  
 
Your personal privacy – how we will store and use your personal data  
We will only use your personal data for the purpose(s) specified in this information letter. We will 
process your personal data confidentially and in accordance with data protection legislation (the 
General Data Protection Regulation and Personal Data Act). Only the project team and the data 
analyst will have access to the personal data. The personal data will be secured within the course of 
this study and be coded/encrypted after the analysis. Participants will not be recognizable in 
publications of this study. 
 
What will happen to your personal data at the end of the research project?  
The project is scheduled to end on 15.11.2023. The personal data, including any digital recordings, 
will be anonymized at the end of the project. 
 
Your rights  
As long as you can be identified in the collected data, you have the right to: 

- access the personal data that is being processed about you  
- request that your personal data is deleted 
- request that incorrect personal data about you is corrected/rectified 
- receive a copy of your personal data (data portability), and 
- send a complaint to the Data Protection Officer or The Norwegian Data Protection Authority 

regarding the processing of your personal data 
 

What gives us the right to process your personal data?  
We will process your personal data based on your consent.  
Based on an agreement with University of South-eastern Norway (USN), Data Protection Services has 
assessed that the processing of personal data in this project is in accordance with data protection 
legislation.  
 
Where can I find out more? 
If you have questions about the project or want to exercise your rights, contact:  

• University of South-eastern Norway (USN) via Mehdi Poornikoo mehdi.poornikoo@usn.no  
• Our Data Protection Officer: Paal Are Solberg paal.a.solberg@usn.no  
• Data Protection Services, by email: (personverntjenester@sikt.no) or by telephone: +47 53 21 

15 00. 
 
Yours sincerely, 
Mehdi Poornikoo 

mailto:mehdi.poornikoo@usn.no
mailto:paal.a.solberg@usn.no
mailto:personverntjenester@sikt.no
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Consent form  
 

I have received and understood information about the project “Trust in automation in 

maritime autonomous surface ships using eye-tracking technology” and have been given the 

opportunity to ask questions. I give consent:  

¨ to participate in the eye-tracking experimental study  
¨ to participate in paper/electronic surveys 
¨ my personal data to be processed until the end date of the project, approx. 15.11.2023 

 

Signature: __________________  

Date: ______________________ 

 
Name: _____________________ 

 
Participant ID: _______________  
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Appendix B- Experiment Instruction 

 
Instruction 

 
 
Checklist Setup: 
 

1. RADAR: 
• INTERFERENCE REJECTION: ON 
• NAVIGATE: GPS: ON 
• AIS: ON 
• RANGE RINGS: OFF 
• RANGE: 3 miles 
• RM: ON 
 

 
 

2. Main Interface: 
• SPEED: ACTIVE: ON,  
• INTERLOCK: ON,  
• Speed: %100 ~ 13 Kn 

 
 
 
 
 
 

3. ECDIS: 
• Route: Manage Route: mp hortenmoss, 

Monitor 
• Route: Route Monitor |< 
• Current WP: 02 
• AP Mode: ON |< 
• Autopilot: Track 
• Themes: Non-chart: past track to 

remove previous tracks 
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Briefing 
 
Vessel Info:  

Small Ro-Ro carrier 
The vessel has 2 propellers & 2 rudders 
 

Route: 
 Horten-Moss on pre-validated route 
 
Weather:  

Wind South 6 Kn. 
Significant waves: 0.4 
 

Traffic: 
Bastø 1: Eastbound,  
Bastø 2: Westbound 

 
Responsibility:  

Only sailing 
The mooring crew will take over 
 

 
The Vessel starts in Autopilot & Autotrack mode with a speed of 100%. 

 
*Please do not change the ECDIS layout 

 
Your tasks: 
 

1. Supervise the vessel's performance for a safe operation 
2. Ensure the vessel follows the pre-validated route 
3. In case of error or deviation: 

 
¨ Acknowledge the error by clicking on the ALARM buttons, located on the top left 

corner of the RADAR screen, and the STEERING SYSTEM, as shown below:  



 

 140 

 

 
 
¨ Set the vessel on track by choosing either: 
 

§ Manual control using TURN Slider for RUDDER COMMAND 
 

 
 
§ Autopilot: SET COURSE to the Next WP 

 

 
 
§ Re-activate Nav Auto track by selecting NAV in the STEERING 

SYSTEM, Selecting AP Mode, and Track command in ECDIS 
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Appendix C- Demographic Form 

“Trust in automation in maritime autonomous surface 
ships using eye-tracking technology”. 

 
Demographic information 

 
 
Participant No.: _______________ 
 
 
Age: 

¨ 18-24 
¨ 25-34 
¨ 35-44 
¨ 45-54 
¨ 55-64 

 
Gender:  

¨ Male 
¨ Female 
¨ Prefer not to say 

 
Education: 

¨ High school degree 
¨ Bachelor’s degree (e.g., BA, BS) 
¨ Master’s degree (e.g., MA, MSc.) 
¨ Doctorate (Ph.D.) 

 
Seafaring experience: 
 

¨ None 
¨ 1-5 years 
¨ 5-10 years 
¨ 10-15 years 
¨ Over 15 years 

 
Knowledge of Navigation system 
 

¨ Limited 
¨ Some  
¨ Good  
¨ Very good  
¨ Expert 
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Appendix D- Trust in Automation Questionnaire 

 
 
 

 

 

  Strongly 
disagree 

Rather 
disagree 

Neither 
disagree 

nor agree 
Rather 
agree 

Strongly 
agree 

No 
response 

1 
The system is capable of interpreting situations 
correctly. (1) (2) (3) (4) (5)  

2 The system state was always clear to me. (1) (2) (3) (4) (5)  

3 I already know similar systems. (1) (2) (3) (4) (5)  

4 The developers are trustworthy. (1) (2) (3) (4) (5)  

5 
One should be careful with unfamiliar 
automated systems. (1) (2) (3) (4) (5)  

6 The system works reliably. (1) (2) (3) (4) (5)  

7 The system reacts unpredictably. (1) (2) (3) (4) (5)  

8 The developers take my well-being seriously. (1) (2) (3) (4) (5)  

9 I trust the system. (1) (2) (3) (4) (5)  

10 A system malfunction is likely. (1) (2) (3) (4) (5)  

11 I was able to understand why things happened. (1) (2) (3) (4) (5)  

12 I rather trust a system than I mistrust it. (1) (2) (3) (4) (5)  

13 
The system is capable of taking over 
complicated tasks. (1) (2) (3) (4) (5)  

14 I can rely on the system. (1) (2) (3) (4) (5)  

15 The system might make sporadic errors. (1) (2) (3) (4) (5)  

16 
It is difficult to identify what the system will do 
next. (1) (2) (3) (4) (5)  

17 I have already used similar systems. (1) (2) (3) (4) (5)  

18 Automated systems generally work well. (1) (2) (3) (4) (5)  

19 I am confident about the system’s capabilities. (1) (2) (3) (4) (5)  
 
 

Questionnaire „Trust in Automation“ (TiA) | Moritz Körber, Technical University of Munich 
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Based on your observation, please answer the following questions: 
 

1. Did you notice any errors? 
 

¨ YES  
¨ NO 

 
2. What do you think could be the source of the error? 

 
…………………………………… 
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Appendix E- The Big Five Personality Test Questionnaire 
The Big Five Personality Test 
from personality-testing.info 

courtesy ipip.ori.org 
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Appendix F- STELLA Syntax Documentation 
	 Top-Level Model: Equation Properties 

 

Expectation_of_performanc
e(t) 

Expectation_of_performance(t - dt) + 
(change_in_expectation) * dt 

INIT 
Expectation_of_performance = 
INITIAL_EXPECTATION 

 

Perceived_performance(t) Perceived_performance(t - dt) + 
(change_in_perceived_performance) * dt 

INIT Perceived_performance = 
INITIAL_PERCEIVED_PERF
ORMANCE 

 

Trust(t) Trust(t - dt) + (change_in_TiA) * dt INIT Trust = INITIAL_TRUST 

 

change_in_expectation 
((Trust-
Expectation_of_performance)/adjustment_tim
e_expectation)+Expectation_ramp 

 

 

change_in_perceived_perfor
mance 

System_performance*fractional_perception_r
ate*Perceived_performance*(Maximum_capa
bility-
Perceived_performance)/ad_time_performanc
e 

 

 

change_in_TiA MIN(Expectation_gap/adjustment_time_TiA; 
Discrepancy/adjustment_time_TiA) 

 

 

ad_time_performance 3  

 

adjustment_time_expectatio
n 3  

 

adjustment_time_TiA Baseline_AD_time/Propensity_Factor  

 

Baseline_AD_time 2,5  

 

Baseline_challenge 0  

 

Desire_to_allocate_trust_be
havior 0,1-Perceived_risk_1  

 

Discrepancy Max_TiA_faith-Trust  

 

Environmental_challenges Baseline_challenge+(SWITCH_STEP_1_ON
*STEP_Challenge) 

 

 

Error_magnitude 50  

 

Error_Time 25  

 

Expectation_gap Perceived_performance-
Expectation_of_performance 

 

 

Expectation_ramp RAMP(Expectation_slope; 50; 60)  

 

Expectation_slope 0  

 

fractional_perception_rate 0,0005  

 

INITIAL_EXPECTATION 30  

 

INITIAL_PERCEIVED_PE
RFORMANCE 30  

 

INITIAL_TRUST 30  
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Max_TiA_faith 100  

 

Maximum_capability Nominal_capability-
Environmental_challenges 

 

 

Nominal_capability 100  

 

Perceived_risk_1 0  

 

Propensity_Factor 0,7  

 

STEP_Challenge STEP(30; 50; 10; 0)+STEP(-30; 75; 10; 0)  

 

SWITCH_1_ON 0  

 

SWITCH_STEP_1_ON 0  

 

System_Malfunction SWITCH_1_ON*PULSE(-Error_magnitude; 
Error_Time; 0) 

 

 

System_performance "Trusting_behavior,_Use"+System_Malfuncti
on 

 

 

"Trusting_behavior,_Use" (Trust*Desire_to_allocate_trust_behavior)  

	

Run Specs 

Start Time 0 

Stop Time 100 

DT 1/125 

Fractional DT True 

Save Interval 0,008 

Sim Duration 1,5 

Time Units Time 

Pause Interval 0 

Integration Method Euler 

Keep all variable results True 

Run By Run 

Calculate loop dominance information True 

Exhaustive Search Threshold 1000 
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ABSTRACT
Theories and models are central to Human Factors/Ergonomics (HFE) 
sciences for producing new knowledge, pushing the boundaries of the 
field, and providing a basis for designing systems that can improve 
human performance. Despite the key role, there has been less attention 
to what constitutes a good theory/model and how to examine the relative 
worth of different theories/models. This study aims to bridge this gap by 
(1) proposing a set of criteria for evaluating models in HFE, (2) employing 
a methodological approach to utilize the proposed criteria, and (3) eval-
uating the existing models of trust in automation (TiA) according to the 
proposed criteria. The resulting work provides a reference guide for 
researchers to examine the existing models’ performance and to make 
meaningful comparisons between TiA models. The results also shed light 
on the differences among TiA models in satisfying the criteria. While con-
ceptual models offer valuable insights into identifying the causal factors, 
their limitation in operationalization poses a major challenge in terms of 
testability and empirical validity. On the other hand, although more read-
ily testable and possessing higher predictive power, computational mod-
els are confined to capturing only partial causal factors and have reduced 
explanatory power capacity. The study concludes with recommendations 
that in order to advance as a scientific discipline, HFE should adopt mod-
elling approaches that can help us understand the complexities of human 
performance in dynamic sociotechnical systems.

Relevance to human factors/ergonomics theory

For human factors and ergonomics (HFE) as a discipline to progress, it is necessary to produce 
and validate scientific theories and models. Testing and evaluating models are essential aspects 
of the theory/model development process, allowing for the recognition of advancements in 
the field. This study proposes a number of criteria for model evaluation in HFE and a meth-
odological procedure to apply these criteria to the models of trust in automation.

Introduction

A long-standing discussion in Human Factors/Ergonomics (HFE) is whether constructs and 
models are ‘folk models’; that is, whether they are credible and scientific (Dekker and Hollnagel 
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2004; Flach 1995; Sarter and Woods 1991; van Winsen and Dekker 2015). The term ‘folk 
psychology’ is referred to the ‘collection of psychological principles and generalizations which, 
… underlies our everyday explanation of behaviour’ (Stich and Nichols 1992, 37). People can 
make remarkably well-articulated naïve theories of motion based on their everyday experi-
ences. Such theories are sensible outcomes of interactions with the real world, which may not 
be consistent with the principles of physics but tend to continue as a common-sense and 
laypeople’s explanation of the physical world (McCloskey 1983). Similarly, psychology has 
been populated with folk models of human behaviour, which are not necessarily wrong but 
compared to more articulated models, they tend to focus on descriptions rather than explain-
ing phenomena, making them very hard to test and falsify (Corbett 2015).

Within the HFE discipline, Dekker and Hollnagel (2004) have raised concerns regarding 
the scientific credibility of several theoretical constructs (e.g. situation awareness and trust 
in automation) and their relation to human performance. Several researchers have presented 
claims that these constructs are theoretically unclear, unfalsifiable, excessively generalizable, 
and with generic descriptive labels rather than proper explanations for causal psychological 
mechanisms relevant to the performance (Cass 2011; Douglas, Aleva, and Havig 2007; Flach 
1995; Jodlowski 2008). Billings claims that HFE constructs have become too neat and too 
holistic (Billings 1995) relying on their face validity as intuitive concepts (Jones 2015). Yet, 
face validity is considered the weakest form of validity (Drost 2011).

In opposition to Dekker and Hollnagel (2004) some scholars (e.g. Endsley 2015; 
Parasuraman, Sheridan, and Wickens 2008; Wickens 2008) argue that a large body of 
research on situation awareness, mental workload, and trust in automation (TiA) indicates 
the credibility of these constructs and their practical usefulness. Parasuraman, Sheridan, 
and Wickens (2008) maintain that Popper’s (1972) notion of falsification has less relevance 
for theory development in cognitive engineering and ergonomics sciences because these 
constructs are not part of empirical reality or statement of fact and therefore, falsifiability 
of such constructs becomes a meaningless idea. According to Parasuraman, Sheridan, and 
Wickens (2008), HFE constructs are scientifically credible and should not be held account-
able for being proven as ‘right or wrong’ but instead, attempts should be directed to ‘estab-
lish contextual limitations in which a theory or principle successfully predicts performance 
and makes testable recommendations…’ (Parasuraman, Sheridan, and Wickens 2008, 155).

The divergent perspectives on the credibility of HFE constructs call for a critical review of 
the existing theories and models in the HFE discipline. We believe a viable solution to the folk-
model controversy is not to take a general ‘yes or no’ position but rather to promote a framework 
that will allow us to assess the scientific nature of theories by examining their epistemological 
assumptions, quality of propositions, and empirical adequacy. The purpose of this paper is then 
twofold. The first section sets forth a set of criteria for evaluating scientific theories in HFE, 
which can lead to cumulative scientific progress in the field. In the second part of the study, we 
review the existing Trust in Automation (TiA) models (which is one of the theories being accused 
of being a Folk Model construct) and probe these models against the proposed criteria to com-
pare the efficacy of the models for real-world use. By doing so we hope to be able to assess 
whether the TiA research programme (Lakatos 1978) is progressing or not.

Theory evaluation in HFE

One of the general aims of science is to produce and test theories (Kerlinger and Lee 1986). 
Theories are central to scientific understanding because they allow us to see relationships 
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between phenomena that might otherwise appear disconnected. Theories also illuminate 
the underlying causes or structure of a phenomenon and thus enable us to develop successful 
interventions to consolidate or prevent a particular effect (Risjord 2019).

Underlying any form of scientific inquiry is a philosophy of science that elucidates a 
researcher’s approach to the nature of the phenomenon being studied (ontology) and the 
methods for comprehending it (epistemology). Whether explicitly or implicitly, we rely on 
the philosophy of science to understand the meanings, logical relationships, and conse-
quences of our theoretical assertions and observations (Van de Ven 2007). Philosophers 
have endlessly debated these topics and developed a variety of research philosophies for 
what constitutes science and scientific progress. In a realistic view of science (Scientific 
Realism), the progress of science is furthered by empirical testing of theories that allow 
theories to encompass more and more of empirical phenomena, thereby improving the 
‘truthlikeness’ of the theory (Niiniluoto 1999). Not all agree with this goal for science, and 
some view science as a problem-solving activity where scientific progress is achieved when 
theories can help solve new problems (e.g. Azevedo 1997; Campbell 1988; Deutch 1998; 
Laudan 1978). Irrespective of the nuances of this long-standing disagreement between these 
two views of philosophy of science, truthlikeness and problem-solving ability are not mutu-
ally exclusive goals. A theory becomes useful the moment it describes and can predict how 
part(s) of the world work. A theory that has no relation to how the world works can only 
spuriously hope to improve the solution of problems as the use of the theory would actually 
be based upon wrong presuppositions, and if so – the problem-solving element of the theory 
would be pure luck – based upon coincidences and not upon a thorough understanding of 
how the world works. On the other hand, a theory that has truthlikeness and encompasses 
and explains observed data would probably be of more practical value than a theory that 
does not explain the observed data. Likewise, a theory that improves the problem-solving 
activity in the physical world probably also has a higher truthlikeness. Hence, we would 
claim – in accordance with Niiniluoto (2017) – that there is a correspondence between 
truthlikeness and problem-solving ability, thus pointing out that the practical consequences 
of the realistic- and pragmatic orientations to science are similar – theories allow us to 
understand, explain, and act on the world in order to do new things.

The likelihood that a theory will be rejected determines how credible the theory is (Van 
de Ven 2007). According to Popper (1972), a theory must be falsifiable or otherwise deemed 
as a pseudo-scientific theory. Although the idea of falsification by a single study (what 
Lakatos (1978) has called naïve falsification) has been met with heavy critique (e.g. Kuhn 
1962) and subsequently refined by pointing out that falsification requires multiple refuta-
tions and the presence of an alternative and superior theory (Lakatos 1978), the idea of 
theory evaluation is a cornerstone of the scientific methods (Carnap 1953; Lakatos 1970, 
1978; Popper 1972; Ngwenyama 2014). Scientists collect and report data to test and evaluate 
theories (Trafimow 2012), yet it is not easy to think of theories in social sciences and psy-
chology that are clearly falsified (Van Lange 2013). Whether one prefers hard falsification 
(Popper 1972), a softer version of falsification (Lakatos 1978), strong inference falsification 
(Platt 1964), or Bayesian inference (Edwards, Lindman, and Savage 1963; Howson and 
Urbach 1989), theories must be empirically testable (falsifiable) and closely correspond to 
the investigated phenomenon.

That said, empirical testability cannot be a single criterion as an unclear theory is able 
to accommodate any observation consistent with itself (Deutsch 2011). As Lakatos (1970, 
184) puts it: ‘Any theory … can be saved from refutation by some suitable adjustment in 
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the background knowledge’. Therefore, falsifiability and empirical evidence are necessary 
conditions but not sufficient criteria for assessing the credibility of a theory or at least the 
relative worth of alternative theories. Van de Ven (2007) advocates that theories cannot be 
justified only by testing their empirical fit with the real world but rather by rhetorical argu-
ments about the logical validity of a theory. A good theory is expected to offer clear oper-
ational definitions, internal logical consistency, verifiability (Bacharach 1989; Péli and 
Masuch 1997; Wacker 2004), and replicability of findings that are obtained from a precise-
ly-stated theory (Earp and Trafimow 2015).

Middle-range theories as models

Theories consist of constructs (abstract ideas or concepts) that are connected in a logical 
way (Baumeister and Bushman 2020), which is defined as ‘a set of abstract concepts (i.e. 
constructs) together with propositions about how those constructs are related to one 
another’ (Manstead and Livingstone 2008, 27). Theories are usually not open to direct 
examination, while models can make specific predictions of theory that can be tested (Van 
de Ven 2007). The high level of abstraction in theories often resists falsification (Weick 1974).

Models typically consist of symbols that specify the characteristics of a phenomenon, its 
components, and relationships among the components. Though there is no well-defined 
distinction between theories and models, a theory appears like a narrative description, while 
a model can be analogous to a map. Models enable researchers to formulate empirically 
testable propositions about aspects of a theory (Frankfort-Nachmias, Nachmias, and 
DeWaard 2014) and hence can be regarded as partial representations of theories. The empir-
ical investigation is commonly achieved via modelling. Social scientists do not directly 
observe and test theories; instead, they study and inspect models (McKelvey 2017). Models 
may also encompass procedures, assumptions, and manipulations that are used to apply 
the scientific methodology of observation and analysis. These assumptions and procedures 
are not typically embedded in the theory itself; therefore, a model is not just an operational 
version of a theory but rather acts as a mediator or intermediary between theory and 
empirical evidence (Morgan and Morrison 1999).

Theories can be classified based on their level of abstraction. Merton (1968) provides a 
distinction between ‘grand’ and ‘middle-range’ theories. Grand theories are the most 
abstract, normative, unbounded, and all-encompassing theories that address the nature, 
mission, and purpose of a phenomenon in a fairly general fashion (Peterson and Bredow 
2013). Compared to grand theories, middle-range theories are less abstract, narrower in 
scope and specificity, and more readily usable and testable in research projects. In other 
words, middle-range theories are abstract enough to allow for generalizations but specific 
enough for observed data to be incorporated into propositions that can be empirically 
tested. Based on this categorization, one can think of HFE’s theories as middle-range the-
ories, also frequently referred to as theoretical constructs. Theoretical constructs are 
invented terms that can neither be directly nor indirectly observed but may be entirely 
defined based on observable variables (Kaplan 1964).

Risjord (2019) argues that middle-range theories can be better understood when analysed 
as models. We usually differentiate theories by referring to specific models. This is partic-
ularly relevant in HFE studies as, for example, theories of trust in automation (TiA) are 
commonly discussed as Muir’s (1994) integrated model of trust in human-machine 



THEORETICAL ISSUES IN ERGONOMICS SCIENCE 5

relationships or Lee and See (2004) conceptual model of trust and reliance. By focusing on 
models, we shift our attention from the structure to the core content of the theory. Models 
emphasize causality and demonstrate how some events occur because of processes and 
interactions among the model elements.

Causal relationships in models can help HFE professionals to identify potential areas for 
improving human performance in sociotechnical systems. Furthermore, considering HFE 
theories as models forges a stronger link between the adequacy of the model and the moti-
vations/occasions for using them. That is, since models are analogous to maps, they ignore 
some aspects of reality to be simple and useful. A street map of Paris creates an abstraction 
of the world – ignoring many aspects not directly relevant to navigation – to simplify nav-
igation through the streets of Paris. Different models then represent different features of 
the same thing for different purposes. It means a model implicitly assumes some features 
to be more important than others. This is why multiple models based on different assump-
tions and background theories are often needed to comprehend complicated phenomena 
(Fried 2020; Risjord 2019). Lastly, models specify interactions and allow us to test whether 
changes in one element’s activity can change the others, as explained by the model. We then 
evaluate the model’s empirical support and highlight its accuracy for applications in real-
world settings. Model evaluation focuses on the phenomenon being modelled, its funda-
mental assumptions, the elements of the model, and the relationships between its elements 
(Degani and Heymann 2002).

It is also important to distinguish between theoretical models from statistical models. 
While theoretical models represent phenomena in the world and propose global conjectures 
about aspects of a phenomenon, statistical models are data models that represent data and 
are used for testing hypotheses locally, derived from theory and through the process of 
hypothetico-deductive framework (Borsboom et al. 2021; Robinaugh et al. 2021). Despite 
close correspondence, theoretical and statistical models should not be confused. The former 
deals with scientific epistemology and justification of knowledge, while the latter involves 
scientific methodology and justification of methods (Carter and Little 2007). Although 
questions about methodology are beyond the scope of this study, a review of empirical 
findings and statistical methods is necessary to investigate the empirical adequacy of the 
existing models.

Criteria development to evaluate HFE models

Theory evaluation is not possible without a set of criteria by which it is to be evaluated. 
The challenging parts of theory evaluation, however, are the appropriateness and use 
of epistemological criteria for evaluating theories (Howard 1985). While providing a 
list of criteria seems rather easy, scholars may disagree on how to apply these criteria, 
their relative significance, and the degree to which a theory/model is supported by a 
given criterion. Laudan (1986) reminds us that theoretical disagreements may happen 
at any level (substantive, content, or methodological levels), which are to some extent 
subject to the aim of science. Unfortunately, epistemological criteria cannot tell us what 
the aim of science - especially in social sciences - should be (Witkin and Gottschalk 
1988). The choice of criteria for theory evaluation is ultimately dependent on the eval-
uator’s view on ontology, epistemology, methodology, and purpose (Prochaska, Wright, 
and Velicer 2008).
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To develop a set of criteria for evaluating HFE models, a review of leading philosophers 
of science (e.g. Blalock 1969; Dubin 1970; Kuhn 1977; Meleis 2012; Popper 1969; Van de 
Ven, 2007), combined with Kivunja’s (2018) systematic literature review on the fundamental 
constituents of a scientific theory is performed. While most of these criteria are widely 
established principles for theory assessment, some are specific to the phenomenon under 
investigation (Here, TiA).

Criterion 1: testability/falsifiability

Testability or falsifiability (Popper 1969) is an essential part of science and is often regarded 
as the most rigorous criterion (Cramer 2013). If a model is not testable, we cannot assess 
its empirical value. Testability is typically considered an empirically-based criterion. While 
the relatively abstract and general nature of grand theories may hinder direct measurement 
and operationalization of the concepts, the relatively concrete and precise nature of mid-
dle-range theories means that they can have operational definitions, and their propositions 
must be open to direct empirical testing (Saunders, Lewis, and Thornhill 2007).

To assess the testability of the middle-range theories (i.e. HFE models) a classical empir-
icism approach would demand that the concepts of the theory are observable, and the 
propositions are quantifiable (Fawcett 2005). Concepts would be empirically observable 
when operational definitions provide empirical indicators that are used to identify the 
concepts. Propositions then can be examined when empirical indicators can be replaced 
with the concepts and when methods can adequately give proof for the assertions made 
(Fawcett 1988). A substantial advantage of representing HFE middle-range theories as 
models is that it highlights the ways that the models can be tested. If the chosen model is 
operationalized and relatively precise, the relevant test can signify whether the model’s 
components change in the way that the model predicts. Such tests are direct tests of the 
model and indicate the relationship between the construct of interest and the empirical 
observations.

Although nonempirical tests such as computer simulation can be beneficial when con-
textual details are well-incorporated in the model, often it is the empirical research that can 
give support (or lack of it) to the model. At the operational level, testability has also import-
ant implications for the methods that are available. For instance, recent developments in 
neuroscience and its techniques, such as fMRI, allow researchers to test assertions that 
previously could not be possible. When evaluating the testability of HFE models, we adapt 
Fawcett (1986, 2005) and Silva (1986) three main questions:

(1) Can the model be operationalized? Is there a way of measuring the components and 
constructs in the model?

(2) Does the model suggest a research design for testing its assumptions?
(3) Are the measurement tools and data analysis techniques adequate to measure the 

model propositions?

Criterion 2: predictive power

To employ the testability criterion, a model/theory must make some predictions. 
According to Popper (1969), the more specific predictions one can make, the better it is, 
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as specific predictions are riskier and therefore more likely to fail, and hence it is easier 
to falsify the theory. For example, a linear relationship between two variables stated as 
‘A is correlated with B’ rules out practically nothing except when the correlation is zero, 
while ‘A is positively correlated with B’ makes a more specific prediction by ruling out 
50% of possible outcomes. The latter statement is more falsifiable and would constitute 
a better form of theory than the former. Thus, a model is better the more precise predic-
tions it makes. As long as there is a pathway in a causal model which is testable, the model 
potentially has a degree of predictive power (Dienes 2008). Meehl (1978) points out a 
difference between point prediction (predicting a particular parameter value) and direc-
tional prediction (predicting the direction of an effect – e.g. positive or negative). Point 
prediction is typically common for ‘harder’ sciences such as physics and chemistry, which 
indicates the rigor of precision. This precision has been attributed to the neatly interre-
lated and tightly connected components and constructs in physical sciences. Theories 
in social sciences and psychology, on the other hand, tend to focus on directional 
prediction.

Prochaska, Wright, and Velicer (2008) promote predictions of effect sizes between con-
structs in order for theories to provide riskier predictions. Effect size estimates make tighter 
and more explicit quantitative predictions. This would also help researchers to go beyond 
pure reliance on null hypothesis testing and its limitations for the theory evaluation 
(Prochaska, Wright, and Velicer 2008). That said, we advocate a differentiation of quanti-
tative predictions in HFE models according to a simple-to-complex listing of predicted 
empirical/causal relations. The models that make the more complex predictions are deemed 
to have a higher scientific level (given that the model’s predictions are correct). The criteria 
for determining the scientific level of a model´s predictions are described from ‘simple’ to 
‘complex’ below.

(1) Predicting the Existence of an effect: Specifying the existence or non-existence of a 
relationship between constructs. In a path model, this would be akin to adding or 
removing an arrow connecting two constructs (Pearl 2009). This is the simplest pre-
diction and is similar to the standard null hypothesis test.

(2) Predicting the direction (or sign) of an effect: Specifying the direction of effects – 
e.g. construct A is positively correlated with construct B.

(3) Predicting the size and direction of the effect: Specifying the direction and size of 
the effect – e.g. constructs A and B will have a correlation r = 0.40. Even better would 
be adding a prediction for the variance of the observed effect. This could be shown by 
presenting a Confidence Interval (CI) for the effect.

(4) Mathematical specification of the form of the predicted effect: Another improve-
ment on points 1–3 is the specification of the mathematical form of relationships 
between variables. This is often forgotten in psychology as most mathematical/statis-
tical predictions use an assumption of linearity (Freedman 2010; McElreath 2018); 
however, we know that many (if not most) relationships are non-linear in nature 
(Guastello 2001, 2017; Thompson, Stewart, and Turner 1990). Hence, specifying not 
only the direction and size of a relationship but also the mathematical form of a rela-
tionship – so that we know if a relationship is assumed to be linear (e.g. y a bx= + ), 
curvilinear (e.g. y a bx bx= + + 2) or non-linear (e.g. y ax bx= +2 3) – would improve the 
testability of a theory.
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These four sub-criteria are directionally complimentary as any model whose predictions 
fulfil sub-criterion 3 will automatically also fulfil sub-criteria 1 and 2, while a model that 
only fulfils sub-criterion 1 will not satisfy sub-criteria 2–4.

Criterion 3: explanatory power

One problem of incomplete theories is that they often make some predictions but are unable 
to provide an adequate explanation of the phenomenon. Ancient astronomers were able to 
make accurate predictions without satisfactory explanation (Kaplan 1964). A model is useful 
when it can both predict and explain (Bacharach 1989). Indeed, prediction and explanation 
are two sides of the same coin and complementary characteristics of a good theory. 
Explanations that implore causal relationships always make predictions, particularly pre-
dictions on future events under causal intervention. Even if predictions are not declared 
explicitly, the language of causal explanation often implies a sequence of events as the ‘reason’ 
for some specific outcomes (Hofman, Sharma, and Watts 2017).

Cramer (2013) exemplifies explanatory power in the process of reckoning the next value 
in a series of numbers as 1 2 3 5 8 … Since there can be different ways to predict the next 
number by adding and subtracting various combinations, explanation provides logic and 
justification for the predicted outcome. Theories should therefore have a priori truthlikeness 
or verisimilitude; i.e. they must be viable and produce explananda before testing (Fried 
2020). ‘One needs theory first to know what is worth testing’ (Van Rooij and Baggio 2021, 
324). This criterion is greatly applicable to applied problems in the HFE domain. Applied 
problems require an understanding of the phenomenon by virtue of a complete explanation 
and particular predictions of the outcome (Athey 2017).

Appropriate explanations in science necessitate clear proof of causality (Prochaska, 
Wright, and Velicer 2008). One approach is to create experimental control, which is normally 
accomplished using an experiment where you control the presence of independent variables 
and measure the changes in a dependent variable. The changes in the dependent variable 
can then be explained by the manipulation of the independent variable. However, in real-
world contexts, experimental control is often not possible or is very hard to achieve, and 
this is particularly so for behaviours and phenomena that are critical to the HFE field.

Statistical control is an alternative when experimental control is not feasible or ethical 
to use. With statistical control, the association between an independent and a dependent 
variable is controlled for by removing the variation explained by other independent vari-
ables, like in a multiple regression model (Cohen et al. 1983). Theoretical models, controlled 
experiments, and statistical control are all means to acquire causal knowledge by inquiring 
about how changes in a set of causal factors change the outcome (Woodward 2005). Since 
different models may portray different causal factors for a particular phenomenon, the 
causal explanation can be regarded as ‘interest relative’ (Lipton 1990). This implies that a 
model should elucidate not only ‘why this’ but ‘why this rather than that’ for a set of causal 
factors. This view fits with the contrastive account of explanation (Garfinkel 1982; Lipton 
1990; Ylikoski 2007), which demonstrates how models are used to attain causal and explan-
atory knowledge. A contrastive perspective requires theoretical models to provide justifi-
cation for the choice of causal elements and argue why the chosen factors provide a better 
explanation (Pearl 2009). In order to evaluate the explanatory power of the HFE models, 



THEORETICAL ISSUES IN ERGONOMICS SCIENCE 9

we adopt Marchionni’s (2012) three dimensions of explanatory power: contrastive force, 
explanatory breadth, and explanatory depth.

(1) Contrastive force entails justification of causal background, assumptions, and contras-
tive explanation of a phenomenon. False models have fairly limited contrastive force, 
in the sense that they handle some contrastive questions but not others (Morton 1990).

(2) Explanatory breadth indicates the extent to which a model accounts for different phe-
nomena with the same or fewer explanatia. Explanatory breadth requires models’ 
explanatia to be abstract enough to encompass a wider range of phenomena. Simply 
put, a model must be effectively generalizable to problems and populations beyond a 
single observation and occasion. Explanatory breadth is the matter of the unifying 
power of a model and whether a model can explain more of the phenomenon by 
encompassing different classes and instantiations of the phenomenon. The side effect 
of a high degree of explanatory breadth is the limited ability of the model to answer 
fine-grained questions about specific problems. On the flip side, models that aim to 
incorporate abundant information specific to a phenomenon in a particular occasion 
have limited unifying power but are better at answering fine-grained questions. 
Ultimately, selecting the right model depends on the interest and purpose of the study.

(3) Explanatory depth refers to the layers of investigation for underlying causal mecha-
nisms. Achieving explanatory depth is typically a matter of describing mechanisms 
that component parts are at a lower level than the phenomenon to be explained 
(Hitchcock and Woodward 2003). However, the amount of information about the 
causal factors should not be confused with the depth of explanation. While deep expla-
nations are often more detailed than shallow ones, detailed explanations are not always 
deep. A deep explanation discusses how the explanatory factors are responsible for the 
explanandum. Therefore, deep explanation requires theoretical and computational 
models to decompose their constructs and elaborate causal processes that give rise to 
specific behavior. Whether such elaboration takes place at a lower biological level or 
higher abstract level is mainly concerned with ‘levels’ problem, pertinent to the prob-
lem at hand and the level of analysis (Eronen 2021; Shapiro 2019).

Criterion 4: empirical adequacy

Empirical adequacy of a theory (or model or set of scientific claims) can be achieved when 
the claims about empirical phenomena are correct (Van Fraassen 1980; Bhakthavatsalam 
and Cartwright 2017). This requires the theory’s assertions to be consistent with empirical 
evidence (Fawcett 2005). If the empirical findings corroborate the theoretical statements, 
it may be fair to tentatively accept the assertions as reasonable. If the empirical findings 
contradict the assumptions, it is reasonable to conclude that the assertions are incorrect. 
Empirical adequacy is different from the criterion of empirical testability as Empirical 
adequacy concerns the verisimilitude of a theorýs predictions, while empirical testability 
only refers to the extent to which a theory can be tested.

The propensity for circular reasoning should be noted while evaluating the model’s 
empirical adequacy. If evidence is always evaluated in the context of a single model, it may 
be difficult to notice results that contradict that model. Indeed, if researchers repeatedly 
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expose, explain, and interpret data via the lens of a single model, the end result may be 
limited to the expansion of that model and that model alone (Ray 1990). Circular reasoning 
can be avoided by carefully examining the empirical findings to evaluate their degree of 
congruence with the model’s ideas and propositions, as well as from the standpoint of 
competing models (Platt 1964). In other words, when interpreting evidence acquired con-
sidering a model, it is always necessary to take alternative models into consideration.

A single test of a model is unlikely to offer the conclusive evidence required to verify its 
empirical validity. As a result, all connected studies’ conclusions should be considered when 
making decisions about empirical adequacy. To integrate the results of related investigations, 
meta-analysis, and other formal approaches can be employed. The goal of evaluating empir-
ical adequacy is not to determine the absolute truth of the model but rather to identify the 
level of confidence received by the empirical evidence. The consequence of evaluating 
empirical adequacy is then a decision about whether one or more of the model’s concepts 
or propositions need to be modified, refined, or discarded (Fawcett 2005). More importantly, 
since studies with incongruent results have more weight than studies with compatible results, 
empirical adequacy may also indicate how well a model manages disconfirming evidence. 
A model should provide an explanation for any discomforting instances (Gould 1991; Van 
de Ven 2007). It is also equally important to point out that it is not sufficient that only some 
parts of a model are congruent with empirical data rather, the entirety of a model must be 
empirically adequate and valid.

To evaluate the empirical adequacy criterion, a comprehensive review of the empirical 
research guided by the model must be performed. In this regard, the criterion can be stated 
as the questions:

(1) Are theoretical assertions made by the model congruent with empirical evidence?
(2) Has the entire model been tested in different studies?

Criterion 5: pragmatic adequacy/applicability

An applied field such as HFE is particularly concerned with practice and identifying theories 
that are most useful. HFE strives to improve the efficacy and efficiency of work and other 
activities, as well as human standards, including enhanced safety, reduced fatigue and stress, 
and improved quality of life (Sanders and McCormick 1998). Many scholars have claimed 
that knowledge transfer and synergy between HFE research and practice are required to 
attain these goals (Caple 2008; Meister 2018; Salas 2008; Sind-Prunier 1996). Getty (1995) 
emphasized the importance of HFE principles being based on robust and validated research, 
as well as the fact that the appropriate science and practice of HFE have long-term conse-
quences for the discipline’s future. Karwowski (2005) expanded on the significance of theory 
in the HFE field by identifying three primary paradigms: (1) HFE theory, which involves 
the ability to recognize, explain, and appraise human-system interactions; (2) HFE abstrac-
tion, which deals with those interactions to make predictions about the real world; and (3) 
HFE design, which involves utilizing the understanding about those interactions in order 
to design systems that can fulfil consumer needs and other necessary requirements.

Pragmatic adequacy is the extent to which a theory/model can offer effective solutions 
to real-world problems, which is based on the idea that theories are created to ‘solve human 
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and technical problems and to improve practice’ (Kerlinger 1979, 280). The pragmatic 
adequacy criterion requires that the application of a model is generally feasible to implement. 
Thus, it is expected that a good HFE model:

(1) recognizes the domain(s) to which it can be applied to,
(2) provides recommendations on how to implement the proposed model in that domain, 

and
(3) clarifies specific areas in which the model can provide useful and tangible results.

Criterion 6: recognizing humans as active agents

Witkin and Gottschalk (1988) argue that traditional theory evaluation criteria are not nec-
essarily adequate to assess theories in social sciences and social work. They suggest theories 
should account for human beings as active agents. That is, humans are capable of reflecting 
on their own actions, overcoming distractions, making decisions, and adopting new prin-
ciples and beliefs (Harré 1984). Thus, assumptions of people as mechanically responding 
to stimuli are less favourable than recognizing people as agents with their beliefs and inten-
tions. People act, not simply behave. Such actions may impact the environment, change the 
course of events, and create new problem spaces (Øvergård, BjØrkli, and Hoff 2008). 
Viewing humans as active agents also shifts focus from exclusively identifying ‘causes’ of 
behaviour to the consequences of actions in a sociotechnical system. In this line, Gauch 
(2012) differentiates ‘inference’ and ‘decision’ problems. Despite a tight relationship, infer-
ence problems follow true beliefs, while decision problems follow ideal actions. Decision 
theory divides the causes of a situation into two distinct groups based on whether we have 
the power to control the cause or not (Gauch 2012). What we can control is the action or 
choice, and what we cannot control is the ‘state.’ Each combination of action and state 
provides an ‘outcome’ that has a specific utility or consequence that determines the value 
or benefit of the outcome. Since an uncontrollable situation (i.e. state) is usually unknown 
and changing, decision problems require Bayes inference to assess the probability of the 
state (based on prior and likelihood). Also, the response to the expected utility is not always 
linear. Decisions may have several criteria to be optimized simultaneously, possibly with 
some trade-offs and compromises. Therefore, inference and decision problems may have 
completely different solutions and outcomes.

Hence, a good HFE model recognizes humans as active agents and pursues modelling 
approaches that strive to explain the processes that give rise to human decisions, actions, 
and the meanings of future events (Kennedy 2012). So, the criterion for a good HFE 
model is:

(1) Does the model take human judgments, motivations, emotions, and socially driven 
behaviours into consideration?

Criterion 7: models of dynamic phenomena should be dynamic

Many problems in HFE cannot be reduced to a single static underlying cause but rather are 
emergent products of internal interactions in a complex socio-technical system (Guastello 
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2017). Complex systems constantly experience change as relationships and interconnections 
evolve and adapt to their dynamic environment (Dekker, Cilliers, and Hofmeyr 2011). 
Temporal patterns are the footprint of the dynamic environment. Time is also a fundamental 
element in modelling human-machine interaction (De Keyser, Decortis, and Van Daele 
1988; Hollnagel 2002). This is because in dealing with systems and automation, humans 
must evaluate events in the limited time available, plan actions and execute them. Information 
required for this process also needs to be updated and checked regularly. Therefore, not only 
do mental processes and actions take time, but different time frames also demand the pri-
oritization of concurrent activities (Hollnagel 2002). It is of interest to understand whether 
an HFE model can address the dynamic behaviour of a phenomenon or not. To evaluate 
this criterion, we seek to uncover whether the model explicitly indicates time as an essential 
component of a dynamic construct or not. The indicator of this criteria is as follows:

(1) If the phenomenon is dynamic, does the model acknowledge time as a variable?

Thus far, we have proposed seven different criteria with a number of indicators. Table 1 
provides a summary of the proposed criteria for model evaluation as well as the indicators 
for each criterion.

In the following sections, we examine some of the prominent models of Trust in 
Automation (TiA) according to the proposed criteria.

Assessing models of trust in automation

Trust is an abstract, complex, and multidimensional concept that can be attributed to 
wide-ranging entities such as humans, machines, organizations, institutions, and countries 
(Abbass et al. 2016). In the context of human-automation interaction (HAI), trust is acknowl-
edged to be an essential element in the use, misuse, or disuse of automation (Parasuraman 
and Riley 1997). Trust is not all or nothing but is a continuous phenomenon that can be 
attributed to an agent as a whole or to specific parts, capabilities, or functions of that agent 
(Hou, Ho, and Dunwoody 2021; Chiou and Lee 2023). Also, trust is situation and task-de-
pendent, which means it can vary even towards the same agent at different occasions and 
times. For instance, one may fully trust his/her partner, but not in specific tasks like cooking. 
Trust has been treated as both a relatively static and dynamic phenomenon. As a psychological 
construct, trust has a long-term propensity that is relatively stable until it is broken (Jarvenpaa, 
Knoll, and Leidner 1998; Mayer, Davis, and Schoorman 1995), but it can also change, evolve, 
and degrade over time (Desai et al. 2013; Schaefer 2013; Wilson, Straus, and McEvily 2006). 
Research also points out asymmetry between development and loss of trust over time, mean-
ing that the process of building trust is slow and steady while distrust can happen quickly 
by a single event or inconsistency in trustee’s behaviour (Burt and Knez 1996; Lewicki and 
Bunker 1996; Gambetta 1988). This asymmetry has made some scholars treat trust and 
distrust as two distinct constructs that can evolve or decline independently (Kramer, Brewer, 
and Hanna 1996; Lewicki, McAllister, and Bies 1998).

More than three decades of human-automation interaction research have resulted in the 
emergence of numerous theories and models, endeavouring to provide insight into human 
performance within complex sociotechnical systems. Modelling trust in automation has 
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undergone various modelling attempts ranging from regression models, time-series models, 
qualitative models, argument-based probabilistic models, and neural net models with each 
modelling approach having its pros and cons (Moray and Inagaki 1999). Regression-based 
models are useful in identifying the independent and dependent variables, as well as the 
relationships among them, hence providing rigid testability and predictive power. These 
models, however, are unable to capture the dynamic variances in trust formation and can 
only be used for factors that influence trust which do not significantly vary during inter-
action with automation. Time-series models are used to capture the dynamic relationship 
between trust and other independent variables, but they require prior knowledge about the 
causal factors and large enough data for validation (Moray and Inagaki 1999; Desai 2012). 
Argument-based probabilistic trust models are based on information value theory and 
utilize evidence to lower the degree of uncertainty in the model’s outputs. The output of 

Table 1. Criteria for model evaluation in HFE.
Criteria Indicator(s) Reference

(C1)
Testability/Falsifiability

(1)  Can the model be operationalized? Is 
there a way of measuring the 
components and constructs in the 
theory?

(2)  Does the model/theory propose 
research design for testing the 
model’s assumptions?

(3)  Are the tools and data analysis 
techniques adequate to measure the 
model propositions?

Popper (1969), Cramer (2013), Fawcett 
(1988), Silva (1986)

(C2)
Predictive power

Can the model make predictions about:
(1) Existence of effect?
(2) Direction (or sign) of effect?
(3)  Direction and interval estimate of 

effect?
(4)  Mathematical specification of 

predicted effect?

Meehl (1967), Dienes (2008), Meehl 
(1978), Velicer et al. (2008), Freedman 
(2010), McElreath (2018)

(C3) 
Explanatory power

Does the model provide
(1) Contrastive force?
(2) Explanatory breadth?
(3) Explanatory depth?

Cramer (2013), Prochaska, Wright, and 
Velicer (2008), Garfinkel (1982), 
Lipton (1990), Ylikoski (2007). 
Marchionni’s (2012), Morton (1990), 
Hitchcock and Woodward (2003)

(C4)
Empirical adequacy

Are theoretical assertions made by the 
model congruent with empirical 
evidence?

Has the entire model been tested in 
different studies?

Van Fraassen (1980), Bhakthavatsalam 
and Cartwright (2017), Fawcett 
(2005), Gould (1991), Van de Ven 
(2007)

(C5)
Pragmatic adequacy

Does the model:
(1)  recognize the domain(s) to which it 

can be applied to?
(2)  provides recommendations on how 

to implement the proposed model in 
that domain?

(3)  clarify specific areas in which the 
model can provide useful and 
tangible results?

Getty (1995), Karwowski (2005), Caple 
(2008), Meister (2018), Salas (2008), 
Sind-Prunier (1996)

(C6)
Human as active agent

Does the model take human judgments, 
motivations, emotions, and socially 
driven behaviours into consideration?

Witkin and Gottschalk (1988), Gauch 
(2012), Kennedy (2012)

(C7) 
Dynamic properties

If the phenomenon is dynamic, does the 
model acknowledge time as a 
variable?

Guastello (2017), Dekker, Cilliers, and 
Hofmeyr (2011), De Keyser, Decortis, 
and Van Daele (1988), Hollnagel 
(2002)
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the model is the probability that a particular course of action will succeed, i.e. how much 
one can trust the decision aids suggestions (Cohen et al. 1997). Neural net models are data-
driven models. They can make accurate predictions about trust and control allocation 
strategies but due to the nature of such models (varying coefficients from one data set to 
another), it is not feasible to extract a meaningful explanation about how the model works. 
Neural nets are not models of psychological processes but rather predictive models applied 
in human-machine systems (Moray and Inagaki 1999).

Data collection

To identify the existing models of trust in automation, four databases were searched: Web 
of Science, Scopus, ScienceDirect, and Google Scholar. This led to several duplications but 
also ensured thorough indexing of academic databases. The search was restricted to the 
title, abstract, and keywords of the publications using the search string: (‘Trust in Automation’ 
OR ‘Trust in Automated’ OR ‘Trust in Autonomy’ OR ‘Trust in Autonomous’ OR ‘Trust in 
Robots’) AND (‘Model*’). Additionally, we examined the literature review articles on trust 
in automation models (e.g. French, Duenser, and Heathcote 2018; Abbass, Scholz, and Reid 
2018; Adams, Bruyn, and Houde 2003; Hussein, Elsawah, and Abbass 2020) and employed 
snowball approach to ensure inclusion of all relevant studies. The initial screening was 
performed to remove any duplicates. The second-stage screening of articles required ana-
lysing the abstracts to identify whether the study potentially proposes a model of trust in 
automation. At the second-stage screening, we made some scoping constraints to exclude 
works focused on just one component (e.g. the effect of culture on TiA) and/or studies that 
only peripherally mentioned trust in automation.

After a comprehensive review of the articles, thirty-six studies were selected for evalu-
ation. The studies are classified into two main clusters. The first cluster of models involves 
theoretical research intending to offer conceptual models of trust in automation which 
share many similarities. They often provide causal factors related to the automation, the 
individual, and to the environment’s characteristics and are generally presented in a network 
diagram. Conceptual models consider trust as a mediator of the operator’s reliance on 
automation. The second cluster of studies involves computational models, aimed at pro-
viding mathematical and/or probabilistic models that can predict trust by incorporating 
causal factors and relationships among them.

Criteria weighting

To evaluate the models of trust in automation, it is important to arrange the proposed 
criteria according to a ranking system. This is because different criteria have relative impor-
tance in model evaluation. A model can be portrayed as dynamic and suggest a pragmatic 
application, and yet unfalsifiable. Conversely, a testable model can lack temporal property 
and/or have limited predictive/explanatory power. Therefore, identifying the relative weight 
of each criterion seems necessary. The model evaluation can be seen as a Multi-criteria 
decision-making (MCDM) problem. For this purpose, this study utilized the Best Worst 
Method (BWM) as a branch of MCDM. The BWM uses ratios of the relative importance 
of criteria in pairwise comparisons specified by the decision-maker (Liang, Brunelli, and 
Rezaei 2020). Compared to other MCDM methods, such as Analytical Hierarchy Process 
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(AHP), BWM requires fewer comparison data for generating consistent pairwise compar-
isons (Rezaei 2015, 2016). The BWM starts with identifying the most and least important 
criteria, followed by ratings for the relative importance of other criteria in pairwise com-
parisons with the most and least important ones. To derive the weights of each criterion, 
two independent researchers followed the standard steps in BWM, as described below. The 
overall weighting is then calculated as the mean from the two evaluations.

Step 1 is to determine a set of decision criteria as C C Cn1 2
, , ,…{ }. The decision criteria in this 

study can be shown as:

 Testability C Predictive Power C Dynamic Properties C( ), ( ), , (
1 2 7

… )){ } 

Step 2 is to define the most and least important criteria. In this study, testability and pragmatic 
adequacy are considered the most and least important criteria, respectively. This is because if a 
model is not testable, there is no practical way to examine many of the remaining criteria. 
However, a model can pass some essential criteria and is yet to be applied in real-world settings.

Step 3 is to decide the importance of the best criterion over all other criteria using a scale from 
1 to 9. The result would be a vector as:

 AB B B Bn= …( )α α α
1 2
, , ,  

Where αBj denotes the importance of the best criterion B over criterion j.

Step 4 is to decide the importance of all the criteria over the worst criterion using a scale from 
1 to 9. The result would be a vector as:

 Aw w w nw

T
= …( )α α α

1 2
, , ,  

Where α jw denotes the importance of the criterion j over the worst criterion W.

Step 5 is to determine the optimal weights vector W W Wn1 2

* * *
, , ,…( ), where for each pair of 

W
W

B

j

 and 
W
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w
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W
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j
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W
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j

w
jw=α . To satisfy these conditions for all 

j, the below linear min-max problem must be solved according to the following formula:
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α α  
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j Wj

∑
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Using the BWM Excel solver (Rezaei 2022), the relative weight of each criterion is calculated as shown in 
Table 2.
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Model evaluation

After identifying the weight of each criterion, the evaluation is carried out for the degree 
to which a model can satisfy each criterion. The models are rated on a subjective scale 
from 1 to 9 for each criterion, normalized (Xnorm i j( , )

), and computed the overall scores (OSi ) as:

 X
X

Xnorm i j

i j

j

,

,

max
( )

( )=  

 OS X Wi norm i j j=∑ ( )( )
,
*  

Where X i j( , )
 is a degree to which model i can satisfy the criterion j, Xj is the jth column 

of matrix X, and Wj is the relative weight of criterion j.
Furthermore, a second assessment is conducted for a random 20% of the models (four 

conceptual and three computational) to realize the reliability of the evaluation. Subsequently, 
the inter-rater reliability as a measure of agreement among evaluations (Krippendorff 2011, 
2004) is calculated with Krippendorff ’s αk = 0 88.  which signifies an acceptable inter-
rater score.

To demonstrate the evaluation process, Muir’s (1987) conceptual model of trust is selected 
as an illustrative example. The model draws upon trust taxonomies proposed by Barber 
(1983) and Rempel, Holmes, and Zanna (1985), and encompasses the expectation of per-
sistence, technically competent performance, and fiduciary responsibility. Since the model 
does not specify the ways to operationalize and measure its components, the testability of 
the entire model becomes restricted. However, the linear regression-based formulation 
indicates a resealable predictive ability of the model. The model receives a low explanatory 
power score as it fails to provide sufficient explanatory depth/breadth despite its attempts 
to distinguish itself (i.e. contrastive force) from the previous interpersonal trust models. 
The empirical adequacy of the model is also fairly limited to the experimental studies of 
trust and human intervention in a process control simulation (Muir and Moray 1996). With 
regard to the pragmatic adequacy criterion, the model provides some generic recommen-
dations about the calibration of trust for decision support systems. However, it falls short 
in specifying the applicable domains and the practical benefits of using the model. 
Additionally, the model also does not adequately account for humans’ judgments, biases, 
and socially driven behaviours resulting in a low score in this area. Although Muir’s (1987) 
model discusses trust as a dynamic phenomenon, it cannot be considered as a dynamic 
model since it fails to explain the temporal characteristics of trust in automation.

Results

The evaluation of TiA models was conducted based on the proposed criteria to assess their 
adherence to each criterion. Prior to discussing the evaluation results, it is essential to 
examine the relationships between the criteria. As illustrated in Table 3, there exists a pos-
itive correlation between the testability and predictive power of the models. This is because 
in order to measure the predictive power, the model’s assumptions must be measurable and 
testable. Testability is also a meaningless idea without the model generating some predictions 
to be tested. Conversely, explanatory power and predictive power appear to be inversely 
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correlated. This can be understood from a perspective of modelling functionality and the 
trade-off between the explanation and prediction (Watts et al. 2018; Hofman, Sharma, and 
Watts 2017; Yarkoni and Westfall 2017). Conceptual causal models that aim to encompass 
a wide range of instances by incorporating ample causal factors may have limited predictive 
capabilities. On the other hand, predictive models (e.g. regression, time-series) may achieve 
higher accuracy by narrowing down the causal elements, resulting in less generalizable 
outcomes (i.e. reduced explanatory power).

Criterion 1, testability

With regards to the testability criterion, the components of early conceptual models are often 
expressed in generic terms such as ability, benevolence, integrity (Mayer, Davis, and Schoorman 
1995), faith, and personal attachments (Madsen and Gregor 2000). The generic terminology 
reduces the possibility of the models being operationalized and tested and therefore defies the 
testability criterion. A number of studies provide mathematical notations (Muir 1994) regres-
sion-based (Muir 1994; Lee and Moray 1992), and time series (Lee and Moray 1994), but these 
can be seen as partial representations of the original conceptual models. Computational mod-
els, on the other hand, offer more precise and quantifiable definitions for models’ variables in 
order to be validated with data, and hence perform better in this criterion.

Criterion 2, predictive power

With respect to predictive power, most conceptual models can provide the existence of effect 
(sub-criterion C2-1). Muir (1994) offers a linear regression formulation as a mathematical 
specification of predicted effect (sub-criterion C2-4). Similarly, Lee and Moray (1992) 
Autoregressive Moving Average Vector (ARMAV) model receives a higher score in the pre-
dictive power criterion. The computational models that are expressed using mathematical 
equations have normally a higher predictive ability. However, Sheridan’s (2019) three models 
of signal detection, statistical parameter estimation, and model-based control as well as the 
system dynamics model proposed by Hussein, Elsawah, and Abbass (2019) do not offer 
sufficient details for the variables and therefore generate less risky predictions.

Criterion 3, explanatory power

Explanatory power is evaluated for the degree to which a model can provide contrastive 
force, explanatory breadth, and explanatory depth. To do so, the theoretical assumptions 
of the models were reviewed to identify whether the model justifies the choices for its 
components/parameters, the relationships between the components, and the relative advan-
tage of the model compared to previous models. Moreover, we sought to consider whether 
the model attempted to decompose and elaborate its structural elements and answer ‘how’ 
questions (explanatory depth). The model’s assumptions are also examined for conceivable 
generalizability (explanatory breadth).

A higher level of abstraction in conceptual models allows for encompassing a wider 
range of phenomena. Models of Lee and See (2004), Hoff and Bashir (2015), and Hancock 
et al. (2011) received the highest scores in this criterion for providing an ample contrastive 
force and justification of assumptions while offering a broad explanatory breadth to 
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encompass a wider range of TiA instances. However, these models (and many other con-
ceptual models) have a relatively shallow explanatory depth in decomposing the underlying 
causal mechanisms and explaining the interactions that give rise to TiA. Among compu-
tational models, the extended decision field theory model (Gao and Lee 2006) provides a 
detailed explanation and highlights the inertia of trust, the nonlinear relationship between 
trust, self-confidence, and reliance on automation in a closed-loop dynamic model.

Criterion 4, empirical adequacy

The empirical adequacy of the models is examined to realize whether the model’s assertions 
are supported by empirical research. Several studies have acknowledged the role of different 
factors on TiA, such as age (Ho et al. 2005), personality traits (Merritt and Ilgen 2008; 
Szalma and Taylor 2011), culture (Huerta, Glandon, and Petrides 2012), gender (Nomura 
et al. 2008), self-confidence (de Vries, Midden, and Bouwhuis 2003), and automation reli-
ability (Parasuraman and Riley 1997; Dzindolet et al. 2003). Nonetheless, the empirical 
adequacy of the conceptual models remain somewhat limited. In our assessment, the 
meta-analysis model proposed by Hancock et al. (2011) receives a higher score for offering 
an evidence-based model of TiA, although the entirety of the model has yet to undergo 
comprehensive testing. Similarly, the empirical adequacy of the computational models is 
typically constrained to data fitting and model validation within a single study.

Criterion 5, pragmatic adequacy

Pragmatic adequacy pertains to the application of TiA models in real-world settings. This 
criterion requires the TiA models to explicitly specify the domain(s) to which they are appli-
cable. Models that are specifically tailored to a particular context excel in this criterion, as 
they are primarily designed for a specific setting. For instance, Kraus et al. (2020) model is 
mainly developed for automated driving (AD) vehicle systems and offers new insights into 
the processes involved in trust calibration prior to and during the take-over request (TOR). 
Argument-based Probabilistic Trust (APT) model (Cohen et al. 1997) explores its feasibility 
to be implemented in a military decision-aiding environment for Rotorcraft Pilot’s Associate 
(RPA). Among computational models, those that aimed to be utilized in real-world applica-
tions such as human-robot interactions (e.g. Xu and Dudek 2015, 2012), or automated driving 
systems (Azevedo-Sa et al. 2021) receive higher scores in terms of pragmatic adequacy.

Criterion 6, humans as active agents

Humans are self-reflecting actors that do not mechanically respond to stimuli but rather 
reflect, draw on previous experience, make choices, and anticipate the outcome of their deci-
sions. The ‘Humans as active agents’ criterion requires the TiA models to take human judg-
ment, biases, motivations, emotions, and socially driven behaviour into consideration. For 
example, Cohen et al. (1997) model incorporates different levels of operators’ understanding 
of automation trustworthiness by integrating an event tree model that represents various 
pathways denoting different scenarios in which an operator may need decision support.

Among computational models, Hoogendoorn et al. (2013) introduced an adaptive biased-
based trust model that is designed to perform in situations where humans have to make 
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decisions to trust one of the multiple heterogeneous trustees. The model considers human 
inclinations to an agent system based on available cues and previous interactions with the 
system. In another study, Akash et al. (2017) proposed a third-order linear trust model that 
can capture the cumulative perception of trust as well as bias in human’s expectation of a 
particular interaction with automation.

Criterion 7, dynamic criterion

Walker, Stanton, and Salmon (2016, 5) describe trust as ‘a dynamic phenomenon, moving 
along a continuum,…’. The dynamic criterion stipulates that if a phenomenon is dynamic, 
the models representing it should also be dynamic and capable of explaining the phenom-
enon in a dynamic manner. While computational models have the advantage of producing 
time-series and simulation models, conceptual models can provide a dynamic understand-
ing of evolution and degradation of trust by elucidating how time as a variable plays a role 
in the modelling process. In our evaluation, we assessed the extent to which existing models 
consider time as a parameter. This process takes a range of forms; from the inclusion of 
information feedback loops, describing temporal dynamics of trust, to the development of 
time-series and dynamic simulation models.

Lee and Moray (1992) time-series model represents an early attempt to highlight the 
temporal characteristics of trust. The dynamic model accounts for a greater amount of 
variance compared to a simple regression model (79.1% versus 53.3%), also indicating its 
improved predictive power. Lee and See (2004) and Hoff and Bashir (2015) models are also 
notable in reflecting the dynamics of trust through signifying closed feedback loops and 
the distinction between initial and dynamic learned trust during human-automation inter-
action. Building upon the assumptions of these two models, Kraus et al. (2020) proposed 
a theoretical model to capture the dynamics of trust calibration in highly automated driving 
settings. Another contribution is the introduction of a real-time computational model of 
trust for human-automation collaboration called trust-POMDP, which integrates measured 
trust in the automation decision-making (Chen et al. 2018). In a different approach, Gao 
and Lee (2006) proposed a model based on the extended decision field theory (EDFT) to 
capture the dynamics and nonlinear characteristics of trust.

Tables 4 and 5 summarize the results for theoretical and computational models in all the 
criteria.

Discussion

The model evaluation revealed key differences between TiA models. Three conceptual mod-
els particularly stood out in terms of their overall scores. Lee and See (2004) model is 
remarkable in providing a widely accepted definition of trust in automation and a closed-
loop dynamic framework that governs trust and its impact on reliance. The model considers 
various causal factors underlying trust in automation including information assimilation 
and belief formation, individual, organizational, cultural, and environmental context. 
Despite the limitation in operationalization and testability of the model’s assumptions, Lee 
and See (2004) model is notable in elucidating the dynamic evolution of trust and the 
dimensions that describe the basis of trust. Desai’s (2012) qualitative model of trust in 
autonomous robot teleoperation represents an important step in using the Area Under Trust 
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Curve (AUTC) measure to account for an individual’s long-term interaction experience 
with the robot. While the model was developed based on experimental data, it is not suitable 
for accurately predicting trust and human performance. Kraus’s (2020) three-stage trust 
framework integrates the key assumptions of Lee and See (2004) and Hoff and Bashir (2015) 
trust models, providing a more detailed specification of the psychological processes involved 
in the formation and calibration of trust. The model distinguishes between the factors 
influencing trust prior to and during interactions, enabling a clearer understanding of inter-
actions among various individual and situational processes. However, the model appears to 
overlook human agency and trusting behaviour for reliance on automation. Regarding com-
putational models, Gao and Lee (2006) model of extended decision field theory (EDFT) 
and dynamic model of human-machine trust (Hu et al. 2019) are noteworthy for providing 
a testable, predictive, and dynamic explanation of trust in automation. These models excel 
in identifying the significance of cumulative trust and expectation bias.

Assuming a model could perfectly fulfil all the proposed criteria would be irrational as dif-
ferent models can vary in their performance across the seven criteria. A model may excel in one 
criterion while performing poorly in another. That is why some prefer the term ‘ideals’ rather 
than criteria for model evaluation (Van Lange 2013). That said, computational models tend to 
perform better in terms of the overall model scores. This is due to their testability and inclusion 
of articulated equations that allow for the inclusion of dynamic properties thereby enhancing 
their predictive power. Nonetheless, computational models are constrained by the causal factors 
included in the model which can limit their explanatory breadth and generalizability. As Hu 
et al. (2019) report, factors such as demographics, false alarms, misses, and the effect of past 
experience on the future trust level are often overlooked in the computational models.

A nonparametric statistical test reveals the key differences between the conceptual and 
computational models in fulfilling the criteria. As shown in Table 6, computational models 
generally outperform conceptual models in all criteria except criterion 3 (explanatory power) 
and criterion 4 (empirical adequacy). This is not surprising since conceptual models are typ-
ically designed to be more generalizable for a wide range of instances, thereby providing a 
broader explanatory scope. The qualitative nature of the conceptual models also allows for the 
inclusion of more causal factors, extensive explanation, and justification of model parameters, 
resulting in a higher contrastive force. The greater explanatory breadth and contrastive force 
in the conceptual models provide a general framework for empirical studies. Though not 
always the entirety of the model, certain assumptions have undergone empirical testing and 
validation. That being said, empirical adequacy received the lowest score among both concep-
tual and computational models, indicating a lack of empirical validation beyond a single study.

To summarize, while conceptual models offer valuable insight into how trust, reliance, 
and other factors may interact, their heuristic nature hinders accurate predictions regarding 

Table 6. Nonparametric tests of TiA models.
Test Statisticsa C1 C2 C3 C4 C5 C6 C7 Overall Score
Mann-Whitney U 25.500 19.000 120.000 147.500 39.500 43.500 17.000 13.000
Wilcoxon W 215.500 209.000 310.000 337.500 229.500 233.500 207.000 203.000
Z −4.400 −4.643 −1.341 −.564 −3.958 −3.964 −4.640 −4.706
Asymp. Sig. 

(2-tailed)
<.001 <.001 .180 .573 <.001 <.001 <.001 <.001

Exact Sig. 
[2*(1-tailed Sig.)]

<.001b <.001b .196b .661b <.001b <.001b <.001b <.001b

aGrouping Variable: Model Type.
bNot corrected for ties.
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trust and control allocation (Desai 2012). The use of general terminology in conceptual 
models poses a challenge for precise operationalization, limiting the testability and empirical 
validation of these models. This entails that there cannot be any observation that could 
possibly contradict the model’s assumptions and refute them. Despite some consensus on 
the key factors influencing trust in automation, there remains no agreement on ‘how’ various 
factors and attributes combine into a single vector within existing TiA models (Sheridan 
2019). This modelling challenge highlights the importance of the model’s structure (Hollnagel 
2002). Conceptual models tend to assume the interactions between various constructs and 
factors as unidirectional linear pathways. However, this stimulus-response logic, prevalent 
in both theories and experiments, greatly underestimates the complexity of the coupling 
effect between human agents, automation, and the environment (Kugler and Turvey 2015; 
Jagacinski and Flach 2018). Trust, as an outcome of prolonged interaction with automation 
on an infinite number of occasions, is far more complex to be modelled in a linear stimulus 
(cause) and response (effect) fashion. Failure in automation has a decaying reminiscence 
effect on future trust. On top of that, properties in dynamic systems can be induced by changes 
in other properties, resulting in simultaneous and reciprocal alterations (Van Gelder and Port 
1995). This implies that changes in trust, which can be influenced by factors like automation 
reliability, may indirectly impact automation reliability itself through reliance on automation 
and intervening behaviours. The intrinsic complexity of sociotechnical systems introduces 
new complications that require a comprehensive consideration of the direction of causality 
and temporal priority of the causal variables (Jagacinski and Flach 2018; Guastello 2017; Van 
de Ven 2007). Therefore, efforts should be directed towards refreshing our epistemological 
understanding of complex systems and adopting novel modelling techniques that can accom-
modate the ever-growing complexity of socio-technical systems.

On a related note, and to address the question raised in the introduction section, a 
regression analysis was performed for the thirty-six models of trust in automation. By doing 
so, we aimed to gain insights into the temporal evolution of TiA research and assess the 
TiA progress over time. Figure 1 illustrates that the TiA models exhibit an upward trend, 
indicating a gradual advancement in the field. However, when considering the model’s type 
as a covariate in the regression analysis (Table 7), it becomes evident that there is no 

Figure 1. TiA model scores over time.
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significant change in TiA models over time. Thus, relying solely on a simple regression 
analysis with time as the covariate can be misleading. The observed reason for the upward 
trend can be attributed to the increased prevalence of computational models in recent years 
and not because of meaningful development in the TiA research programme.

Concluding remarks

For human factors and ergonomics (HFE) to progress as a scientific discipline, it is necessary 
to produce and validate scientific theories and models (Hancock and Diaz 2002; Meister 
2000). Testing and evaluating these models are essential aspects of theory/model develop-
ment process, allowing for the recognition of scientific advancements in the field. With this 
objective in mind, this study proposed a set of criteria for model evaluation in HFE and 
introduced a methodological procedure to apply these criteria to the case of trust in auto-
mation. The findings revealed differences between the two main classes of models. 
Conceptual models provide valuable insight into listings of variables that have or are 
assumed to have a direct causal effect on trust such as cultural variations, personality traits, 
and automation reliability. These models strive to consider all or the most significant ele-
ments that might have a causal impact on operators’ trust and reliance on automation. 
However, testability and empirical validation of these models remain the biggest challenge 
to tackle. On the other hand, computational models incorporate mathematical representa-
tions that aim to predict or estimate levels of trust and can often be tested against data. Yet, 
these models can encompass only a limited number of causal factors and hence are less 
generalizable to various trust scenarios.

The analysis also indicated that there has been limited progress in TiA models over the 
years. This suggests that despite the efforts, the HFE community has struggled to significantly 
expand the frontiers of TiA research. The challenge lies in the complexity of trust as a psy-
chological phenomenon and the inadequacy of the current modelling tools to effectively 
capture this complexity. The existing modelling approaches seem to be too simplistic and 
linear to effectively capture the intricate nature of trust in automation. Therefore, it is crucial 
for the HFE community to prioritize the adaptation of modelling approaches that can 
enhance our understanding of this phenomenon and, in turn, prove useful in real-world 
applications. Modelling approaches such as system dynamics, network dynamics, and agent-
based modelling offer promising avenues for effectively modelling trust in automation. By 
leveraging these approaches, we may better grasp the complexity of trust by capturing inter-
connections and interactions among various entities in sociotechnical systems, emergent 
properties from these interactions, and the dynamic patterns of trust propagation and 
diffusion.

With regards to proposing an approach to evaluate HFE constructs, this study paves the 
way for new avenues of research. Firstly, although the proposed criteria are based on the 
known principles of the philosophy of science, further adjustments can be made to suit 
specific HFE models in future studies. Secondly, the rankings of the criteria based on the 
Best-Worst Method (BWM) reflect subjective assessments by researchers. Collecting and 
analysing judgments from Subject Matter Experts (SMEs) in future research can help reduce 
subjectivity. Similarly, achieving consensus among individual researchers on model ratings 
can enhance consistency in evaluation. Future studies may also consider matching some of 
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the criteria to the application. There may be no universal objective criteria weights. Matching 
the criteria to the target situation would allow individuals to select the right model for a 
particular situation, such as theory development or design.
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Abstract— Contemporary debate regarding the 

shortcomings of human factors and ergonomics (HFE) 

models has inspired a growing interest in the HFE 

community to reconsider what constitutes a scientific 

model. Concerns are raised about the scientific 

credibility and adequacy of the existing models to explain 

human performance in sociotechnical systems. This 

study aims to address the debate through an 

epistemological understanding of different modeling 

approaches and discuss the suitability of each modeling 

approach for HFE problems in socio-technical systems. 

We argue that above anything, HFE is a systems 

discipline and therefore requires systems models and 

methodologies to support systems view on performance. 

The dominant outcome-oriented modeling approaches 

are ill-suited to study the complexity of today’s 
sociotechnical systems. Alternatively, mathematical and 

simulation modeling can be beneficial in highlighting the 

inherent complexities, feedback loops, and temporal 

properties of HFE constructs.  

Keywords— Human factors and ergonomics, Human 

automation interaction, Cognitive system engineering, 

Systems thinking, folk models 

I. INTRODUCTION 
 
Nearly two decades ago, Dekker and Hollnagel [1] 
argued that HFE models and constructs and their 
relations with human performance may not be 
sufficiently credible but rather are “folk models”. 
Several other scholars also raised concerns that 
constructs such as situational awareness, and trust in 
automation are theoretically vague, irrefutable, and 
overly generalizable [2]–[5]. By contrast, 
Parasuraman, Sheridan & Wickens [6] contend that 
HFE constructs received credibility through empirical 
research and therefore cannot be considered folk 
models. The debate was further discussed through 
“epistemological self-confidence” in HFE studies and 
whether a large body of evidence for a construct is a 
sign of concrete science or critical reasoning and 

skepticism about the constructs separates science from 
non-science [7]. 
 
Up to the present time, questions regarding the validity 
and credibility of HFE models are a subject of ongoing 
debates which necessitate a closer look into the core of 
the issue through understanding HFE as a scientific 
field, its modeling needs, and investigating whether 
the existing modeling approaches can satisfy the 
field’s modeling aspirations. This paper intends to 
address the debate by exploring the modeling practices 
in HFE and suggest a way forward by adopting a 
systems approach to modeling. 

II. FOLK MODEL CONTROVERSY IN HFE 
Within cognitive sciences and philosophy of mind, the 
term “folk psychology” is denoted as “a collection of 
psychological principles and generalizations which… 
underlies our everyday explanation of behavior” [9, 
p.37]. One famous example of a folk model is the 
Yerkes-Dodson Law (YDL) developed by animal 
behaviorists more than 100 years ago. Yerkes and 
Dodson [9] performed a series of experiments to 
understand the speed of Japanese mice in 
distinguishing between black and white boxes under 
different levels of electric shock. The experimenters 
tested the association between electric shocks as 
stimulus strength and formation of habit i.e., learning 
speed. They found out that “moderate” shocks resulted 
in faster learning outcomes compared to “low” or 
“extreme” shocks. Additionally, they discovered that 
there is a linear relationship between variables; the 
higher the shock, the faster the learning outcome (up 
to the optimal point); making the results graphically 
look like an inverted-U curve. 
Within the next 50 years, the original paper was only 
cited ten times in psychology journals [10]. However, 
by the 1970s, the YDL and inverted-U became the 
mainstream rule for the explanation of all 
psychological reasons [11], from human anxiety and 
task performance [12] to motivation and performance 
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[13] and the contemporary interpretation of YDL as 
“some stress is necessary for optimal performance” 
[15, p. 359]. In many of the YDL applications in 
psychology, little or no empirical evidence was found 
to support the theory; yet such overgeneralization and 
explanation by substitution offered an incredible 
degree of immunity against falsification [11]. 
 
The longevity of folk models is attributed to offering 
a simple and seductively convincing way of describing 
human behavior and not because of their ability to 
predict or explain a phenomenon by decomposing its 
constructs into quantifiable units and defining the 
relationships among them [1], [15]. More importantly, 
the risk of incorrect folk models is their resistance to 
scientific checks that would highlight their 
shortcomings; and the fact that they can be generalized 
to inapplicable situations [16]. 
 
To address the folk model controversy, it is important 
to review the core content and structure of the HFE 
models. All models are also constrained by the validity 
of the assumptions that they ride on [17]. When the 
assumptions are true, theorems concerning the 
methods are valid. When the assumptions are false, the 
theorems do not hold. Therefore, it seems reasonable 
to investigate the nature of HFE sciences, and the 
epistemological assumptions of modeling practices in 
HFE, and finally to realize whether the HFE models 
and methods can help the field to advance by 
providing a useful and accurate account of the  

III. MODELING HUMAN BEHAVIOR  
It is widely accepted that one of the main aims of 
science is to provide an epistemologically sound 
account of the empirical world. Science certainly has 
other aims too, such as improving quality of life or 
producing useful technology, but these pragmatic aims 
are deferential to its core epistemological aim, which 
is to develop and deepen our empirical knowledge. 
Models are a crucial aspect of scientific inquiry 
because they offer a mechanism to comprehend 
phenomena and record that information in a way that 
can be shared with others. All models are abstractions 
since they exclude details that are assumed to be 
unimportant in favor of emphasizing the aspects of the 
phenomenon that are thought to be most important. 
Quite often, this selection is subjective and dependent 
on the modeler's preferences, however, this 
subjectivity has implications for the model’s 
usefulness and/or accuracy [18]. 
 
Modeling human behavior in sociotechnical systems 
that are prone to variations of technical and contextual 
factors is a complex undertaking [19], where a reliable 
explanation of human behavior is reported to be nearly 

impossible [20], [21]. In particular, modeling human-
automation interaction (HAI) has become the current 
modeling challenge in cognitive engineering. 
Hollnagel [22] discusses this issue and argues that 
while the use of technologies and computers in the 
1980s was seen as the solution, it has now become a 
source of problems. Many systems have become too 
complex that the consequences of work situations are 
underspecified and hence partially unpredictable.  
Primary modeling efforts in HFE were focused on 
creating models that show how a series of 
consequences may evolve from a certain set of 
possible causes [23], [24]. However, with the rise of 
sophisticated computing algorithms and the 
emergence of Big Data technologies, statistical 
machine learning (ML) models are now capable of 
predicting human behavior. Big data empowers ML 
algorithms to uncover complex patterns and make 
more timely and precise predictions than ever before 
[25]. On the other hand, the latest development in 
neuroscience and non-invasive tools for examining 
human brain activities (e.g., fMRI, EEG, MEG, Eye 
tracking) allows direct observation of underlying 
neural responses related to specific stimuli and 
provides useful data to divulge cognitive processes 
related to human behavior and decision making [26]. 
Nonetheless, ML and Big data are not able to reason 
‘how’ specific behavior occurs, and thus, their 
application in studying human behavior is limited to 
forecasting. This becomes exceptionally important 
since in applied fields such as HFE, the ultimate goal 
is to solve real-world problems through understanding 
the root causes of undesirable behavior, predicting 
future events based on the assumed causes, and 
subsequently, being able to modify the controllable 
causal variables in order to improve the overall 
system’s performance. 
The prevailing modeling practice in HFE involves 
models that are essentially listing variables that have 
or are believed to have a causal influence on a 
particular construct. Take trust in automation (TiA) as 
an example. It has been empirically reported that mood 
[27], personality traits [28], [29], self-confidence [30], 
and tendency to trust [28] influence trust in 
automation. In two separate meta-analysis studies, 
Hancock et al. [31] and Schaefer et al. [32] provided a 
comprehensive list of factors found to influence trust 
in automation. This style of modeling has led to a 
proliferation of several causal models for any given 
construct. The abundance of various models brings 
about questions regarding the model's validity and 
empirical adequacy. For instance, which of the models 
best represents the phenomenon? Is there a way to 
compare the relative worth of each model? Is it 
entirely possible to account for ‘all’ controllable 
variables in experimental settings involving human 
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entities? Such questions demand an understanding of 
the phenomenon being modeled and the way it is 
modeled. Before we dive into the modeling 
approaches, we briefly review the core and purpose of 
HFE as a scientific field to help us realize its modeling 
needs. 

IV. HFE AS A SYSTEMS DISCIPLINE 
HFE as we know it became recognized as a scientific 
field under the name of human factors engineering in 
the late 1940s. Prior to that, the intellectual work of 
Taylor [33] in Scientific Management theory was 
central to providing practical principles and 
techniques for analyzing and synthesizing workflow in 
order to enhance labor productivity. Although HFE 
has been commonly understood as a study of humans 
interacting with their environment, HFE is above 
anything, a systems discipline [34]–[37]. The system 
can be a work system such as a socio-technical or 
cognitive system, where the aim of HFE sciences is to 
simultaneously enhance performance and well-being 
through design processes and/or better integrating 
humans and the system [34]. Wilson [36] defines six 
overlapping characteristics of HFE as a systems 
discipline – systems focus, context, interactions, 
holism, emergence, and embedding. Systems focus 
emphasizes the importance of studying systems as a 
combination of interconnections among (in)organic 
materials, functions, processes, and ideas. Context 
refers to the idea that all behavior and performance 
occur in a setting or context. The context determines 
the system’s boundaries and level of complexity. The 
context also highlights an important discussion 
regarding the validity of HFE laboratory studies 
because they are unable to account for the complexity 
and numerous factors in real-world settings [38], [39]. 
Even the most statistically significant results in the 
best controlled environment can only account for a 
slim fraction of the real variance in real settings [36]. 
Interactions imply that the nature of a system consists 
of parts interacting with each other. This view lies at 
the core of HFE methodologies and concepts, to 
understand and optimize the interactions between 
humans, technical systems, joint cognitive systems, 
etc. The notion of interaction is also tightly related to 
the systems' complexity of the system. Holism refers 
to the idea that HFE systems should be seen as a 
whole, meaning that physical, technical, cognitive, 
and social systems must be simultaneously studied in 
order to offer a viable solution for enhanced safety, or 
performance improvement. Emergence as the fifth 
feature of systems HFE is the acknowledgment of 
emergent properties of systems [40]. This is especially 
central to HFE as almost all systems in real use can 
portray characteristics not expected by the designers 
of the systems. The opposite scenario can also be true 

where the impact of poor design can be reduced by the 
ability of the user to find a way to make the system 
work despite its limitations. Thus, people may behave 
in creative and unpredicted ways which may be 
beneficial to the overall system performance. 
Embedding refers to the way that HFE practitioners 
operate which involves the inclusion of stakeholders 
and subject matter experts in the participatory 
ergonomics [41]. 
With these assumptions in mind, it is fair to argue that 
all HFE models can be seen as a network of constructs 
and systems because it is entirely possible to identify 
a set of interrelated elements that act in a closed-loop 
system which by definition is thinking in systems [42], 
[43]. By acknowledging the systems view of HFE, it 
is natural to review the epistemological assumptions 
underlying different modeling and methods in HFE to 
see whether the systems thinking can be reflected in 
the modeling practices or not. 

V. TWO BASIC EPISTEMOLOGIES 
Two fundamental epistemologies underlie the 
different methods that are necessary to study HFE 
problems involving humans and sociotechnical 
systems. Bruner [44] differentiates them based on two 
modes of thought; the paradigmatic or logico-
scientific mode (variance) and the narrative (process) 
mode. The two modes provide a distinctive way of 
fabricating reality. While they are complementary to 
each other, they differ entirely in their method of 
validation. Aldrich [45] classifies the ‘what’ and ‘how’ 
questions in terms of outcome-driven and event-driven 
approaches. 

A. Thinking in straight lines 
In outcome-oriented thinking, everything can be 
explained by causal chains of events. From this 
perspective, the root causes are the events starting the 
chains of cause and effect, such as A and B as 
illustrated in Figure 1. 

 

Figure 1. Outcome-oriented causal diagram 
The outcome-driven approach to modeling, which Van 
de Ven [46] refers to as variance models intend to 
examine the relationship between independent and 
dependent variables to address the ‘what’ question, 
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e.g.; ‘what are the antecedents and consequences 
associated with the phenomenon?’  
With regard to causality, variance models require 
proof of co-variation, temporal precedence, and the 
absence of false association between the independent 
and dependent variables. Variance models use 
experimental and survey research designs, based on 
the general linear model that underlies most common 
statistical methods, such as ANOVA, regression, 
factor analysis, and structural equation modeling [46]. 
 
Poole et al. [47] highlight six assumptions underlying 
variance models.  

1. The world constitutes fixed entities with 
varying attributes. 

2. The basis of explanation is efficient causality. 
3. The generality of explanation is dependent on 

the ability to apply it consistently across a 
wide range of situations. 

4. The temporal sequence in which independent 
variables influence the dependent variable is 
irrelevant to the outcome. 

5. Explanation should highlight 
immediate/direct causation. 

6. Attributes have one and only one causal 
meaning over the course of time. 

These assumptions signify a particular approach to 
constructing reality; a certain way of cutting up the 
world into researchable and measurable units. The 
variance modeling approach performs well for 
investigating research questions involving 
comparisons among entities or linear causal 
relationships between variables [48]. However, they 
are particularly limiting in studying social entities, 
particularly in sociotechnical systems. 
 

B. Thinking in circles 
“The reality is made up of circles, but we see straight 
lines” [39, p. 73]. 
In contrast to variance models and outcome-driven 
explanations, process models are event-driven 
explanations. The ‘How’ question explicates an 
observed series of events in terms of the underlying 
mechanisms that have the ability to cause events to 
occur in the real world and the specific conditions or 
contingencies under which these mechanisms operate 
[50]. 
 
Poole et al. [47] argue that the process approach views 
events as the most valid representation of what occurs 
in development and change processes with six 
contrasting assumptions to those of variance models. 

1. The world is made up of entities that take part 
in events. These entities are not constant and 
may change over time. 

2. The basis of explanation is final and formal 
causality, supplemented by efficient 
causality. 

3. The generality of explanations is dependent 
on their flexibility. 

4. The temporal sequence of events is extremely 
important. 

5. Explanations should encompass layers of 
explanation ranging from immediate to 
distant. 

6. An entity, attribute, or event may change in 
meaning over time. 

These assumptions create a remarkable situation, 
where a particular cause may operate for only a limited 
time in a process model; that is, it never ceases to 
influence the entity as it forms part of the entity’s 
history. More importantly, process models see the root 
causes as the forces emerging from particular feedback 
loops.  

 

Figure 1. Event-driven causal diagram 
 
Having addressed the difference between the two 
approaches, it is equally important to value their 
complementary relationship. Answers to a ‘what’ 
question typically presuppose or hypothesize an 
answer to a ‘how’ question. The logical reasoning 
behind a variance model - whether implicitly or 
explicitly- tells the story of how a series of 
circumstances led to an independent (input) variable 
having an impact on a dependent (outcome) variable. 
Therefore, carefully examining the process that is 
claimed to account for why an independent variable 
produces a dependent variable is one way to increase 
the robustness of answers to ‘what’ (variance theory) 
questions. Likewise, answers to ‘how’ questions are 
somehow pointless without an answer to the related 
variance theory questions of ‘what caused it?’ or ‘what 
are its consequences?’ 
 

VI. DISCUSSION AND CONCLUDING REMARKS 
For HFE as a systems discipline to progress, it is 
essential to realize the types of models that can be 
beneficial for studying human performance in 
sociotechnical systems. Analytical reduction in 
variance models is unable to explain how various 
entities and processes work together when multiple 
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impacts are present at the same time. Complexity is the 
defining feature of today’s high-technology systems 
[51]. Interaction between a system's constituent parts 
can lead to complex behavior. Complexity invites us 
to pay attention to the system’s relationships rather 
than the parts. These interactions produce properties of 
the system that cannot be obtained only by focusing on 
individual components. Complexity is a property of 
the system, not of its constituent parts [52]. The 
system's behavior cannot be boiled down to the 
behavior of its individual parts. Such systems must be 
examined as a whole if we are to study them. 
Furthermore, a complex system has irreversible 
circumstances. It is impossible to fully reconstruct the 
precise set of circumstances that led to the creation of 
a specific outcome. As linkages and interconnections 
change internally and adapt to their altering 
environments, complex systems undergo constant 
change. The system after the accident is not the same 
as the system before the accident because of the 
adaptive nature of complex systems [52]. Hence, the 
predictive power of variance models for retrospective 
analysis is very constrained [18]. Topmiller [53] 
argues that research in HFE systems poses a 
methodological challenge due to the complexity of the 
present systems, which demands simultaneous 
consideration of several interacting factors that 
influence different dimensions of both individual and 
group performance. The mainstream modeling in HFE 
however, follows the variance outcome-oriented 
approach, where HFE researchers and practitioners are 
given a range of methodological toolkits for studying 
aspects of individual operators, teams, and technical 
performance. These structured methods provide the 
basis for HFE discipline [54]. Examples can be found 
in methods and models of mental workload [55], 
situation awareness [56], trust in automation [57], and 
task analysis [58] which are frequently used within 
individual operator contexts. As pointed out, 
assumptions regarding variance models are ill-suited 
for the study of causality issues in social sciences. In 
particular, the notion of cause-effect relationships in 
sociotechnical systems seems to be nonlinear and 
bidirectional. Humans are continuously interacting 
within the environment they are in, consisting diverse 
range of entitles. While they impact other entities, they 
are simultaneously impacted.  
Although in recent years HFE has witnessed few 
modeling attempts with systems thinking in mind, 
namely in accident analysis methods [59] and 
distributed situation awareness [60], the prevailing 
modeling practices still do not support systems view 
on performance [61], [62]. The problem becomes 
more apparent when researchers may mistakenly 
employ a variance model to study process questions. 
The downside of which is that the researcher is 

constrained to casting process dynamics into general 
linear relationships among variables. Compared to 
variance models, developing process models is 
relatively more complicated, but they can account for 
the complexity of events, feedback loops, temporal 
properties, and different time scales. Hence, they seem 
to be more suitable for studying social entities in HFE 
and Human Machine Interaction (HMI). More 
specifically, computational [63], [64] and dynamic 
simulation modeling [65]–[67] can be useful in 
providing a quantifiable language, specifying the 
relationships between the elements of HFE constructs, 
and addressing the temporal properties in dynamic 
social systems.  
 
With that being said, and in line with the 
complementary connection between the two modeling 
approaches, future HFE process modelers can benefit 
from the existing variance models as there is a 
relatively good agreement regarding the causal factors 
for many constructs. The effort must be dedicated to 
addressing the inherent complexities in today’s 
sociotechnical systems through the application of a 
systems approach and to provide enhanced causal 
models that can account for both ‘what’ and ‘how’ 
questions. This way, HFE, and cognitive system 
engineering can move toward a deeper and more 
meaningful understanding of human performance in 
social work settings and further formalizing HFE 
theories.  
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Abstract 
Trust is recognized as a crucial element for effective interaction and utilization of 
autonomous systems. In supervisory control, trust determines the extent to which an operator 
relies on automation. This study introduces a dynamic simulation model for Trust in 
Automation (TiA) that encompasses trust development, deterioration, and recovery during 
interactions with automation. The model distinguishes itself from static conceptual models by 
offering a flexible, empirically testable framework, which can be tailored to fit a range of 
contexts. Utilizing a System Dynamics (SD) approach, the model reflects the non-linear and 
reciprocal nature of trust through dynamic feedback loops, generating behavioral patterns that 
align with empirical observations of trust evolution. An experimental study involving human 
participants in a simulated task with Maritime Autonomous Surface Ships (MASS) tests the 
model's empirical validity. The experiment focuses on behavioral responses to system 
malfunctions, emphasizing changes in monitoring strategies based on eye-tracking metrics. 
Consistent with the existing literature, the findings underscore the importance of initial 
conditions and aligning expectations with the system's performance to ensure the effective 
operation of autonomous systems. 
 
Keywords: Trust in Automation, Dynamic modeling, Maritime Autonomous Surface Ships 
(MASS), Eye-tracking, System Dynamics 
 
1 Introduction 
The rapid progression of automation technologies, encompassing Maritime Autonomous 
Surface Ships (MASS), Autonomous Vehicles (AV), robotics, and autonomous web-based 
systems, is drastically transforming various facets of our daily lives. Understanding the 
dynamics of human interaction with these technologies is vital to harnessing their full 
potential. Trust emerges as a pivotal element shaping interactions between humans and 
automation (Kohn et al., 2021; Lee & Moray, 1992; Lee & See, 2004; Muir, 1994). Trust has 
been acknowledged as a crucial element for effective interaction and utilization of highly 
automated systems. As denoted by Lee and See (2004) and Porter et al. (2020), trust in 
automation also acts as a determinant of how much responsibility humans are willing to 
delegate to machines. Excessive trust may lead to over-reliance, where tasks are 
inappropriately assigned to automation, potentially resulting in neglectful oversight or failure 
to intervene when necessary. Conversely, distrust can lead to underutilization of automation 
capabilities, with operators unnecessarily intervening or disregarding the systems' 



competencies (Parasuraman & Riley, 1997). Understanding and adjusting trust is paramount 
in enhancing human-automation interaction and integrating autonomous systems smoothly 
and effectively into daily operations (Gao et al., 2013; Lee & See, 2004). 
 
The growing field of Trust in Automation (TiA) research has seen substantial progress in 
recent years. The diverse interest has generated numerous definitions, models, and 
measurements of trust. Comprehensive literature reviews (Basu & Singhal, 2016; Hancock et 
al., 2011, 2021; Madhavan & Wiegmann, 2007; Sanders et al., 2011; Schaefer et al., 2016; 
Tenhundfeld et al., 2022) have effectively synthesized research findings, and as a result, 
provide an ample understanding of the factors that may influence trust in automation. These 
works have also led to the development of diverse models to describe the development of 
trust in automation, offering distinctive perspectives on how trust is formed and evolves 
(Hoff & Bashir, 2015; Lee & See, 2004; Muir, 1994; Sheridan, 2019). One group of models 
stems from theoretical research with the aim of presenting a conceptual understanding of trust 
in automation. These models typically demonstrate multiple factors related to automation, 
individuals, and environmental characteristics, often depicted in network diagrams. Another 
set of studies involves computational models, striving to offer mathematical notations capable 
of predicting trust through the incorporation of causal factors and their interrelationships.  
 
Despite the effort, ongoing TiA research faces five major challenges. First, many previous 
models have adopted a "snapshot" perspective on trust, often assessing trust at a single point 
in time. This static approach fails to fully recognize that trust is a dynamic phenomenon 
capable of both strengthening and declining due to moment-to-moment interaction with 
automation. With some exceptions (e.g., Hu et al., 2018; Lee & Moray, 1992; Lee & See, 
2004; Xu & Dudek, 2015), there is limited understanding of trust formation, trust loss, and 
trust recovery, particularly in the context of autonomous systems (de Visser et al., 2020).  
 
Second, While conceptual models (e.g., Hoff & Bashir, 2015; Lee & See, 2004) offer 
valuable insights into identifying the causal factors, the use of general terminology in these 
models limits their falsifiability and empirical validation (Dekker & Hollnagel, 2004; 
Poornikoo & Øvergård, 2023). A common limitation among many of these models is their 
lack of specificity regarding behavioral outcomes and the detailed patterns of trust evolution. 
This vagueness means that the models often fail to concretely predict the manner and 
direction in which trust will change in response to varying levels of the identified causal 
factors. 
 
Third, Computational models such as the ones utilizing time series and regression 
formulations offer quantitative accounts of trust but primarily function as statistical models 
fitted to data (Hu et al., 2018; Lee & Moray, 1992, 1994; Moray et al., 2000; Muir & Moray, 
1996). While these models provide a numerical understanding of trust variations and may 
successfully fit the observed data, their reliance on the specificities of the data often confines 
their broader applicability. Consequently, these models may not fully capture the nuances or 
generalize across various human-automation interaction contexts. 
 



Fourth, Existing Trust in Automation (TiA) models frequently conceptualize the interactions 
between constructs and factors as unidirectional and linear pathways, adopting a simplistic 
stimulus-response framework. This approach significantly underrepresents the intricate 
interplay and coupling effects among human agents, automation technologies, and the 
operational environment (Jagacinski & Flach, 2018; Kugler & Turvey, 2015). Trust, as an 
outcome of prolonged dynamic interaction with automation on an infinite number of 
occasions, can be too complex to be adequately captured through a linear causal model. The 
inherent complexity of dynamic systems necessitates the acknowledgment of the temporal 
precedence of causal variables and the reciprocal and often simultaneous alterations in system 
properties (Guastello, 2017; Jagacinski & Flach, 2018; Van de Ven, 2007). For example, a 
system malfunction can have both an instant and a decaying reminiscence effect on future 
trust while trust itself may also vary non-linearly in response to changes in automation 
performance. These challenges highlight the need for careful consideration of model structure 
and the overall approach to modeling, as argued by Hollnagel (1993, 2002). Furthermore, 
nonlinear dynamic social systems may embody time delays for human perception and 
information processing (Jagacinski & Flach, 2018) or between communication errors and the 
effect these errors have on system performance (Øvergård et al., 2015), which can 
substantially affect the timing and formation of trust. Time delays can lead to oscillatory 
behavioral patterns (Sterman, 2000), further complicating the predictability and 
understanding of trust dynamics. 
 
Fifth, Due to the limitations identified in existing Trust in Automation (TiA) models, their 
applicability and utility in real-world settings have been considerably constrained. 
Specifically, the existing models fall short in identifying the intervention points or areas for 
trust modification that could calibrate an operator’s trust to accurately reflect the performance 
and capabilities of the automation system. As a result, the practical value of these models in 
guiding the engineering and design of automation systems remains largely unexplored and 
unestablished. The lack of specific, actionable insights from these models means that their 
contribution to enhancing the efficacy and safety of human-automation interaction in 
practical applications is yet to be fully realized and utilized. 
 
To bridge these gaps, this paper proposes a system dynamic simulation model aimed at 
delineating the process of trust development, deterioration, and recovery through continuous 
interactions with automation. The model seeks to address the deficiencies of previous models 
and provides three key advantages. Firstly, it aligns closely with the existing trust literature 
and empirical studies, enhancing the model's explicability and generalizability across various 
contexts. Secondly, the model holds a high level of adaptability, capable of simulating a wide 
array of trust dynamics tailored to different scenarios and conditions. This flexibility allows it 
to reflect diverse real-world situations and potential changes in automation and user behavior. 
Lastly, the model emphasizes the role of model structure in determining the behavioral 
outcomes of trust interactions. By focusing on the structure, it moves towards a deeper 
understanding of the underlying mechanisms and patterns of trust formation and erosion, 
thereby contributing to more effective design and management of human-automation 
systems. 



 
In addition, this study uses an experiment with a within-subject design, wherein 30 human 
participants engaged in a simulated task involving the monitoring of an unmanned 
autonomous vessel. This empirical facet is designed to test a segment of the proposed model 
where a shorter time scale allows for laboratory testing, more specifically in trust response to 
a system malfunction. The objective is to assess the model's predictions and to observe the 
corresponding behavioral reactions of the operators. Key focus areas include examining 
changes in the participants' visual scanning patterns and monitoring strategies in response to 
the malfunction. This approach aims to provide concrete insights into how operators interact 
with and adjust to automated systems under varying conditions, thereby reinforcing the 
model's relevance and applicability to human-automation interaction scenarios. 
 
 
The remainder of the paper is organized as follows. Section 2 reviews the relevant literature 
on trust in automation. Section 3 formulates a system dynamics model of trust in automation 
and discusses its feedback loop structure and behavioral outcomes. Section 4 presents an 
empirical study and examines the results. Section 5 discusses the findings, and Section 6 
concludes the study and suggests future research. 
 
2 Theoretical backgrounds 
A widely used definition of human-automation trust, put forth by Lee and See, characterizes 
trust as "the attitude that an agent will help achieve an individual's goals in a situation 
characterized by uncertainty and vulnerability." (2004, p. 51). In this definition, the central 
idea remains that trust revolves around the belief that automation will effectively perform a 
task in a context marked by uncertainty and vulnerability. This perspective aligns with the 
concept of trust in interpersonal relationships, where uncertainty and vulnerability are integral 
components. Another definition defines trust as "an attitude of confident expectation in an 
online situation of risk that one's vulnerabilities will not be exploited." (Corritore et al., 2003, 
p. 740). This definition is in line with Mayer, Davis, and Schoorman’s description of trust as 
the "willingness of a party to be vulnerable to the actions of another party based on the 
expectation that the other will perform a particular action important to the trustor, 
irrespective of the ability to monitor or control that party" (Mayer et al., 1995, p. 712). This 
definition emphasizes that expectation is a crucial element in the trust relationship, which is 
also pointed out by several other scholars (e.g., De Vries et al., 2003; Muir, 1987). Among 
various definitions of trust, this study adopts the definition proposed by Mayer et al. (1995). 
This concise definition will serve as our guiding framework for later developing a model of 
trust in automation. 
 
Rempel et al. (1985) suggested that trust is a dynamic attitude shaped by specific dimensions 
that gradually form over time. They identified predictability, dependability, and faith as the 
three key dimensions that impact an individual's willingness to accept a trustee, laying the 
foundation for trust. This concept was later integrated into many early models of trust in the 



automation (e.g., Lee & Moray, 1992, 1994; Lee & See, 2004; Muir, 1994; Muir & Moray, 
1996). 
 
Lee and Moray (1992) presented a first step toward modeling trust in automation and 
employed linear regression models to investigate the factors influencing trust in automation. 
In their subsequent work, Lee and Moray (1994) developed and tested several linear models 
to identify factors affecting trust. These models indicated that self-reported trust was 
influenced by two main factors: the system performance and the occurrence of a system fault. 
To account for the memory of trust and the impact of past performance, Lee and Moray 
(1992, 1994) introduced the Autoregressive Moving Average Vector (ARMAV) model, a 
stochastic time series model for trust. The utility of this trust model is somewhat constrained 
by its specificity and the context for which it was designed. It necessitates input data about 
the performance metrics and fault occurrences of the automation system involved in the 
particular experiment. This requirement means that the model's applicability may be limited 
to scenarios like the one it was originally developed for. Additionally, the model does not 
offer an underlying rationale for conceptualizing trust as a linear combination of prior trust 
levels, performance metrics, and fault incidences.  
 
Muir (1994) integrated the trust models proposed by Barber (1983) and Rempel et al. (1985) 
and developed a linear model. According to Muir's model, trust can be predicted as an 
outcome of the expectation of persistence (P), technically competent performance (TCP), and 
fiduciary responsibility (FR). The trust model was further extended as a linear regression of 
predictability, dependability, faith, competence, responsibility, and reliability. A notable 
limitation of the mode remains as to how to operationalize its components such as 
dependability and faith (Rodriguez Rodriguez et al., 2023). 
 
Gao and Lee (2006) proposed the Extended Decision Field Theory (EDFT) which is based on 
a dynamic-cognitive approach to human decision-making in order to describe “preference 
dynamics”. They employed an autoregressive approach that considers the linear combination 
of the previous preference and new input on the current preference in an uncertain 
environment. This model has been utilized to create a quantitative account of trust and self-
confidence, linked to decision-making in automation usage. It incorporates the construction 
of belief in the automation’s capability or the operator’s manual capability using a piece-wise 
function. The EDFT model was able to successfully replicate empirical findings related to the 
inertia of trust and the relationship between trust, self-confidence, and reliance.  
Xu and Dudek (2015) presumed a connection between the level of reliance and the level of 
trust, suggesting that reliance can serve as an indicator of trust. To delve into this concept, 
they developed the Online Probabilistic Trust Inference Model (OPTIMO), a Dynamic 
Bayesian Network model designed to capture a person's level of trust in a robot teammate. 
Akash et al. (2017) introduced a three-state model of trust in automation that can account for 
biases in human behavior arising from perceptions of past trust and expectations. This model 
assumes that the change in trust, denoted as !(#	 + 	1) 	− 	!(#), is linearly dependent on 
three factors: (1) the difference between experience and present trust ()(#) − !(#)), (2) the 
difference between cumulative trust and present trust (*!(#) 	− 	!(#)), and (3) the 



difference between expectation bias and present trust (+,(#) 	− 	!(#)). If the present 
experience is less than the present trust level, the predicted trust level decreases, and vice 
versa. The model faces challenges in terms of its applicability to a broader range of scenarios, 
primarily due to its reliance on directly querying participants about their trust in automation. 
This approach presupposes the ability to measure current trust levels as a basis for forecasting 
future trust (Rodriguez Rodriguez et al., 2023). 
 
Yang et al. (2017) employed a first-order linear time-invariant dynamic system and 
discovered that the average trust in automation stabilizes through recurring interactions. 
Recently, Guo and Yang (2021) employed a Beta distribution to construct a personalized trust 
prediction model, applying Bayesian inference to compute the Beta distribution parameters. 
The model is based on certain assumptions including trust at time - is influenced by trust at 
time - − 1, negative experiences with automation have a more substantial impact on trust 
than positive experiences, and trust in automation stabilizes after multiple interactions. The 
authors acknowledged some limitations of the model such as the assumptions that the 
automation's ability remains constant across all interactions and the automation's performance 
is either consistently good or bad. Despite these limitations, the model, utilizing automation's 
performance and reliability alongside the human's self-reported trust history, exhibits 
potential for generalization to other human-automation task scenarios capturing changes in 
these measures. 
 
Lewis and Weigert (2012) highlight the importance of capturing feedback loops in trust 
development, asserting that trust relationships have histories. Jonker and Treur (1999) delve 
into the dynamics of trust, describing it as the "evolution of trust over time." They offer a 
modeling framework that investigates the reciprocity of trust and the development and 
deterioration of trust between agents from an experiential perspective. Manzey et al. (2012) 
identified two feedback loops in the process of human trust adjustment: a positive and a 
negative feedback loop. The positive loop is activated by instances of automation success, 
while the negative loop is triggered by instances of automation failure. It is noteworthy that 
the negative feedback loop has a more pronounced impact on trust adjustment compared to 
the positive feedback loop (Yang et al., 2016). 
 
Among conceptual models, the dynamic model of trust and reliance proposed by Lee and See 
(2004) presents a fundamental theoretical framework. At the heart of this closed-loop system, 
human operators acquire information about the physical state of the system through a display, 
and based on this information, they construct their own beliefs and assessments regarding the 
system's current state. The level of trust is then formed based on these beliefs about the 
automation's capability and the current state of the system. Depending on their level of trust, 
the operator may decide (i.e., intend) whether to use the system or intervene as necessary. 
The action taken by the operator directly influences the state of the automation. 
Recently, Sheridan (2019) extended Lee and See’s (2004) model and mapped the model’s 
elements to a Kalman system of human control (See Figure 1) including the automation 
(physical reality of cause-effect), display (measurement of result of action), information 
analysis and belief formation (discrepancy in estimation of state), trust evolution (internal or 



mental model of reality), intention formation (state-based policy deciding action), and 
reliance action (physical action to modify state). The Kalman modification produces two 
intermediate feedback loops. The first feedback mechanism is responsible for measuring the 
discrepancy between what the actual automation's displayed information conveys and what 
the internal model (i.e., trust evolution) expects. This discrepancy between the two forms the 
basis for adjusting the internal trust evolution model. In other words, it allows the trust model 
to adapt and better align with the observed reality by modifying the internal trust belief based 
on this comparison. The second feedback loop enables the internal mental model of the actual 
automation to “anticipate” how a new action will modify the automation state. It provides the 
operator with the ability to foresee the consequences of their actions, allowing for more 
informed and proactive decision-making.  
 
To illustrate the model's applicability to human behavior, Sheridan (2019) exemplifies 
walking down a flight of stairs with your arms full. In this situation, you cannot directly see 
your feet, making the placement of each foot on the next step a partially open-loop 
extrapolation estimate or "dead reckoning" based on your trust in your ability to navigate the 
stairs safely. The loop allows for the updating of your internal trust model to mediate how far 
you trust in each step of the process. However, even in this scenario, there's a need for real-
world confirmation or closed-loop validation, which requires feedback on the discrepancy 
between where you think your feet are (internal trust model) and where they actually are 
(actual foot placement represented). The feedback mechanism, which compares the 
anticipated actions to the real-world outcomes, ensures that your trust in the process remains 
grounded in reality and allows for adaptive adjustments based on real-world conditions. 

 
Figure 1. Modified Lee and See’s (2004) model of trust in automation (Sheridan, 2019) 
 
One important factor to consider in the evolution of trust is the time delays in the human 
perception and processing of information (Boubin et al., 2017; Lee & See, 2004). Unlike 
classical control systems, where these time lags tend to be relatively short, it may take human 
operators significantly longer to accurately perceive displayed information and form trust in 
automation. The human operator makes decisions based on their internal belief and the 
anticipated actions toward the automation system. However, the feedback from the system 
can arrive after some time lag. The significance of this time lag becomes more pronounced as 
the gap between the internal belief and the feedback from the actual system increases. In 
other words, the longer the time lag, the less the operator can expect their internal belief and 



the actual feedback to closely align. Dealing with time delays or long inertial time constants 
in dynamic systems is something that operators experience in various scenarios. For example, 
consider a shore-based operator navigating a large ship making open-loop movements, 
trusting that these actions will lead to the desired results. However, verification of the 
outcome only occurs after a time delay due to the slow response of the system, with the hope 
that the system will not overshoot and produce disproportionate results. This process is 
described as an iteration of “trust-action-verify”. The operator trusts the system, acts, and 
then waits for verification (Sheridan, 2019). 
The time delays inherent in human-automation interactions necessitate a trust model that 
accommodates both open-loop decision-making and closed-loop verification based on real-
time feedback, to ensure an adaptable trust in automation. 
More importantly, the implementation of the assumptions in Lee & See (2004) and Sheridan 
(2019) trust models would require computer systems to simulate the interaction of the various 
‘blocks’ within the model. These blocks may include perception and expectation of the 
system, belief formation, intention, or decision-making. The level of realism in the simulation 
would depend on the specific research or application context. For instance, the display of 
information in Lee and See’s (2004) framework could be modeled to represent perfect 
information transfer, or it could introduce noise and uncertainties to simulate real-world 
factors like inattention or system limitations (Sheridan, 2019). This flexibility allows 
researchers to tailor the model to the specific conditions they want to investigate. 
 
3 Proposed Model of Trust in Automation 
This section introduces a simulation model designed to depict the evolving nature of trust in 
automation, stemming from continuous interactions with automated systems. The model aims 
to capture characteristics inherent to this dynamic, including time delays and nonlinear 
responses, thereby providing a comprehensive understanding of trust dynamics within an 
autonomous context. 
 
3.1 Method 
This study utilizes the principles of System Dynamics (SD) to develop a continuous event 
simulation model of trust in automation. System dynamics (SD) is a computer-based 
modeling approach that employs simulation to gain insights into the dynamics of complex 
systems over time (Sterman, 2000). The primary objective of system dynamics is to 
comprehend how a system's behavior emerges and to leverage this understanding to explore 
how changes within the structure of that system can influence its behavior. As a modeling 
and simulation approach, system dynamics excels at describing complex, non-linear, and 
often counter-intuitive behaviors driven by feedback mechanisms. It is especially suitable for 
systems characterized by feedback relationships and time delays (Azar, 2012; Lane & 
Schwaninger, 2008). 
 
With roots in non-linear control theory (Forrester, 1987, 1997; Towill, 1993), SD is a 
versatile method that finds applications in diverse settings, ranging from highly practical 
contexts (e.g., Ghaffarzadegan et al., 2017; McCarthy et al., 2014; Williams, 1997) to more 



theoretical domains (e.g., Gambardella et al., 2017; A. Sastry, 1998; S. Sastry, 2013; Sterman 
& Wittenberg, 1999; Wittenberg, 1992). In theoretical SD research, the primary outcomes are 
the development of new theories, or the adaptation and refutation of existing ones related to 
dynamic phenomena. SD employs both causal tracing, a potent technique for capturing 
mental models, and differential equations to represent the temporal changes within systems. 
System Dynamics models significantly enhance falsifiability, allowing for both logical- and 
empirical testing of each interrelationship within the model (Lane & Schwaninger, 2008; 
Schwaninger & Grösser, 2008). 
 
As proposed by Lane (2000), the theory of System Dynamics is primarily a structural theory, 
distinguishing it from content theories. This posits that the developmental patterns of social 
systems over time are explicable through endogenous processes, which are represented by 
feedback loops, rates, and stock variables. 
 
In contrast to other modeling approaches that primarily rely on data to describe and predict 
system behavior, SD revolves around the creation of formal models that capture dynamic 
patterns as continuous feedback systems. These models incorporate hypotheses about the 
causal relationships among parameters and variables as functional components, considering 
the results of their interactions. In this context, loops become higher-level units of analysis, 
each with a distinct purpose and varying degrees of significance over time. A single variable 
may belong to multiple feedback loops. Rather than examining the potential causal 
connections between individual pairs of variables, system dynamics modelers take a step 
back to understand the broader causative structures. 
 
There are several reasons why SD is particularly well-suited for the modeling of human 
automation interaction. Firstly, given that human performance typically does not conform to 
linear models (Gao & Lee, 2006), incorporating non-linear behavioral and performance 
representations becomes necessary to ensure the model's external validity (Sweetser, 1999). 
Secondly, SD models offer the flexibility to incorporate both qualitative and quantitative data 
(Sterman 2000), with qualitative data often being indispensable for human performance 
modeling (Hancock & Szalma, 2004). Thirdly, SD models prove to be highly effective in 
depicting the effects of latencies and feedback interactions within the system, a vital aspect of 
modeling a human operator and assessing the influence of delays in perceiving system 
performance on operator behavior and trust (Cummings & Clare, 2015). 
 
3.2 Model components 
Literature suggests three primary sources that influence trust in automation: (1) the 
characteristics of the automation itself, (2) the trustor (or user), and (3) the environmental 
context in which interaction occurs (Hancock et al., 2011; Hoff & Bashir, 2015; Schaefer et 
al., 2016). Within each of these categories, several specific factors can introduce variability 
and complexity to trust dynamics. However, to construct a coherent and manageable model 
of trust dynamics, it is often practical to start with only a handful of these factors deemed 
most critical. While incorporating additional factors might enhance the model's robustness 



and predictive accuracy, the fundamental behavioral patterns of trust can typically be 
captured with a few essential components. This approach allows for a more focused and 
tractable analysis, providing a balanced perspective between complexity and 
understandability in modeling trust dynamics. 
 
A. System performance (reliability) 
Studies have consistently shown a strong relationship between trust and the reliability of the 
automation (Moray & Inagaki, 1999; Parasuraman & Manzey, 2010; Parasuraman & Riley, 
1997; Riley, 1994). When system reliability declines, trust, and trust expectations tend to 
systematically decline (Moray et al., 2000). System reliability pertains to automation with 
some error rate (Lewis et al., 2018). 
 
B. System malfunctions 
Although related to system reliability, system malfunctions must be considered separately 
due to their discrete occurrences. System malfunctions refer to “sudden, unpredicted errors 
related to a system’s reliability within its area of application” (Kraus et al., 2020, p. 1) that 
can lead to disruption of normal operation and result in a fallback strategy (Emzivat et al., 
2017). System malfunctions are usually singular events and can be studied as a “shock” in the 
automation’s continuous performance. Trust can be affected differently depending on the 
type and magnitude of the malfunction. In cases of mild and temporary faults, trust may 
decline briefly and then recover. However, when a failure impairs the automation's 
capabilities, trust may decline continuously until operators decide to rebuild it (Itoh et al., 
1999; Lee & Moray, 1992). A study conducted by Lee & Moray (1992) revealed that when 
persistent system malfunctions were present, trust in automation reached its lowest point after 
six trials but trust gradually recovered even as faults persisted. The dynamic changes in trust 
resulting from system malfunctions may not only happen instantly but evolve over time (Lee 
& Moray, 1992). A time-series analysis demonstrated that the impact of malfunction on trust 
can be modeled using a first-order differential equation, where it is suggested that the most 
substantial effect is observed immediately after a failure, with a residual effect extending over 
time (Lee and Moray, 1994). Muir & Moray (1996) revealed that malfunctions that are erratic 
in magnitude reduced trust more than faults that were large and continuous. 
 
While system malfunctions can impact trust in automation, this effect is particularly 
pronounced when individuals lack prior knowledge of these malfunctions. Studies have 
indicated that when people are aware of potential malfunctions in automation, these issues do 
not necessarily erode their trust in the system (Riley, 1994). One plausible explanation for 
this phenomenon is that foreknowledge of potential automation malfunctions reduces 
uncertainty and the associated risks tied to using the system. 
 
C. Individual’s characteristics 
Trust in automation is not solely affected by the attributes of the automation but is 
significantly influenced by a person's subjective perception of these attributes (Lee & See, 
2004; Merritt & Ilgen, 2008). Merritt and Ilgen (2008) discovered that an individual's 
perception of automation is influenced not only by the actual characteristics of the machine 



but also by the person's inherent propensity to trust machines. According to Mayer et al. 
(1995), trust propensity is a stable trait that varies from person to person, depending on 
factors such as developmental experiences, personality type, and cultural background. 
Demographic factors such as age and gender, have been the subject of research regarding 
their relationship with trust in automation. While some studies have shown age-related 
differences (Donmez et al., 2006), these differences appear to be context-dependent (Hoff & 
Bashir, 2015). More recently, Hartwich et al. (2019) investigated the impact of age groups on 
trust in an automated driving system and found no significant differences among the groups. 
Similarly, there is currently no consensus on the effects of gender on trust in automation 
(Hoff & Bashir, 2015). In the realm of general personality traits, research has frequently 
explored the traits of the Five-Factor Model of Personality (John & Srivastava, 1999; McCrae 
& John, 1992) concerning trust. Notably, extraversion has been consistently linked to higher 
levels of interpersonal trust (Evans & Revelle, 2008), and this positive association extends to 
the propensity to trust in automation (Merritt & Ilgen, 2008). Conversely, neuroticism is 
negatively related to interpersonal trust (Evans & Revelle, 2008), and while there is no direct 
evidence of such a link to trust in automation, a connection between neuroticism and 
accepting recommendations by automated systems suggests a potential relationship (Szalma 
& Taylor, 2011). Additionally, agreeableness and conscientiousness have been positively 
associated with individuals’ initial trust automation (Chien et al., 2016). 
 
D. Environmental characteristics 
Regarding environmental-related factors, studies indicate that the extent to which individuals 
rely on automation is influenced by the level of risk associated with their decision to use it 
(Riley, 1996). When the likelihood of negative outcomes is higher, individuals tend to be 
more hesitant to use automation, and once their trust is diminished, it takes them longer to 
regain trust in high-risk situations compared to low-risk scenarios (Riley, 1994). 
 
3.3 Model Formulation 
A. Model assumptions 
Trust as a dynamic phenomenon (Kim et al., 2009; Muir & Moray, 1996) typically unfolds in 
three phases: trust formation, where trustors decide to trust trustees and may gradually 
increase their trust; trust dissolution, where trustors choose to lower their trust following a 
trust violation; and trust restoration, where trust stops diminishing after a disruption and may 
eventually be restored. In the early stages of a relationship, trust in a system is primarily 
based on the system's performance and perceived reliability. Trust can shift in response to 
changes in the system's performance (Lee & Moray, 1992; Muir, 1994). These variations in 
trust are often positively correlated with changes in automation use. As trust diminishes, 
operators may resort to more frequent manual control and consequently, less inclined to test 
out the automation’s capabilities. When operators continue to interact with the system, they 
start forming expectations of future performance of the automation. This “expectation” can 
correspond to “anticipation” in Sheridan’s (2019) model. In addition, extended interaction 
leads to the formation of generalizations about the automation performance and broader 
positive beliefs about the system's behavior, referred to as “faith”. 
 



Trust at the current moment is influenced by the trust at the previous moment (Lee Moray 
1992) in other words, trust is history-dependent where the initial level of trust is determined 
by past experiences in alike situations (Lee & See 2004). The anchoring effect, which 
describes how individuals make estimates or decisions starting from an initial reference point, 
can significantly impact trust dynamics. Lewicki & Brinsfield (2011) indicated that an 
operator's initial trust level acts as an anchor, substantially influencing their subsequent trust 
assessments and reactions to automation performance, particularly after system malfunctions 
(Lee & See, 2004; Merritt & Ilgen, 2008). The degree to which trust is eroded following a 
malfunction is often proportional to this anchored initial trust level.  
 
The initial trust and trust expectations (anticipation) are not static but rather influenced by an 
individual's prior experience or inherent propensity to trust, which varies from person to 
person. As a result, individuals who commence their interaction with an automated system 
with high trust expectations are often more sensitive to any changes in the system's 
performance (Pop et al., 2015). A significant system malfunction can dramatically alter their 
trust levels, resulting in a steep decline compared to those who started with lower trust 
expectations. 
 
A. Model structure 
Figure 2 captures the trust dynamics with three key stocks, Trust, Perceived Performance, 
and Expectation of Performance. The focal point of this model is the Trust stock. Adopting 
Caddell and Nilchiani (2023) formulation of interpersonal trust, trust accumulates changes 
based on the difference between the Expectation of Performance and the Perceived 
Performance. Let !(-)	be the Trust stock at time - and .(-) be the Change in TiA. Using this 
convention, Equation (1) allows us to articulate the formulation of the stock. Change in TiA, 
C(t), is articulated in Equation (2), where / denotes the Initial Trust, θ denotes the 
Expectation Gap, ω indicates the Difference Between the Maximum TiA (Faith) and Current 
Trust, and λ represents the Trust Adjustment Time. 
 

!(#) = 	' + ∫ *(#)+# (1) 
 

*(#) = min /!" 	 ,
#
"1	(2) 

 
Based on this formulation, trust at time - is equivalent to the initial level of trust and an 
accumulation of all the changes in trust during the interaction period. This formulation sets 
the basis of the model. 
 
The model posits that an individual's 0#1-123	!456-	(/) is influenced by their previous 
experiences in similar contexts and their inherent disposition or propensity to trust, as 
outlined by Merritt and Ilgen (2008) and considered a source of intra-individual variability. 
While individual characteristics significantly impact trust levels, these traits are generally 
stable and relatively constant over time. In our model, individual characteristics primarily 
influence two aspects: (1) Initial Levels of Trust (Stocks), or an individual’s baseline trust, is 



shaped by their trust propensity. This means different individuals may begin interactions with 
varying levels of trust and expectations based on their unique predispositions and prior 
experiences. (2) Adjustment Times, where individuals differ in their response rates to cues 
that might influence trust. Some might adjust their trust levels quickly in response to new 
information or experiences, while others may do so more slowly. These variations affect how 
rapidly or gradually individuals' trust levels change in response to perceived performance. 
Despite these individual differences in initial trust and adjustment rates, the underlying 
feedback structure that governs trusting behavior remains consistent across individuals.  

 
Figure 2. Simplified Causal Loop Diagram (CLD) of the model. 
 
The model consists of three prominent feedback loops responsible for trust patterns. The 
reinforcing feedback loop (R1), as shown in Figure 3, is initiated by an elevation in the trust, 
heightening the likelihood of generating Trusting Behavior and use of the system. While 
increased trust does not always translate into trusting behavior, Desire to Allocate Trusting 
Behavior represents a partial contribution in this regard. Desire to Allocate Trusting Behavior 
can be influenced by the Perceived Risk of using the autonomous system. In scenarios where 
negative outcomes are more probable, there is an increased reluctance among individuals to 
engage with automated systems. Furthermore, following a decline in trust, the duration 
required for individuals to restore their trust is more extended in high-risk circumstances than 
in those with lower risks (Riley, 1994). That said, when a system performs well, there is an 
overall tendency to allocate more tasks. This, in turn, results in testing the System’s 
Performance, informing the Perception of Performance and consequently updating an 
individual's trust. 
  

+
-

+

+

+

+

+

-

-

+0

50

100

0 100

Expectation	of
performance

0

50

100

0 100

Perceived	performance

0

50

100

0 100

Trust

change	in	expectation

change	in	perceived	performance

change	in	TiA



 
 
Figure 3. Trust formation reinforcing feedback loop 

 
The balancing loop (B1) starts by forming the Expectation of Performance, and subsequently 
impacts Trust through the discrepancy between the Perceived Performance and Expectation 
of Performance, labeled as Expectation Gap in Figure 4. This loop allows trust to adjust to 
the observation of the system’s performance. An increase in trust may raise the user's 
expectations. If the perceived performance does not meet these heightened expectations, a 
gap between expectation and perceived performance occurs. The widening gap can erode 
trust, creating a negative feedback loop. 
 

 
Figure 4. Expectation balancing feedback loop. 
 
The second balancing loop (B2) controls the level of trust and highlights Limits to Trust. 
With the increase in trust, the gap between the current level of trust and its maximum level 
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(Faith) diminishes, leading to a reduced variation in trust and constraining its further growth. 
This loop establishes a first-order control mechanism that guarantees trust cannot surpass the 
maximum limit; there is a cap on how much one can trust a system. 
 

 
Figure 5. Limits to trust balancing feedback loop. 
 
System Malfunction in this model represents a sudden disruption in the System Performance, 
formulated with a Pulse function that includes the Magnitude and Time of the System 
Malfunction. On the other hand, System Capability reflects the limiting cap to the Perceived 
Performance. This simply means what automation can or cannot do in different situations. 
Environmental Challenges, such as adverse weather conditions or limited visibility, can 
greatly impact the System Capability. 
 
3.4 Model simulation 
The simulation exercises were conducted utilizing the STELLA Architect version 3.5 
software, spanning 100 time steps, with a fractional delta time (DT) set at 1/125, and 
employing the Euler method for integration. The outcomes of these simulation runs are 
analyzed and discussed in the following sections, under diverse scenarios. 
 
A. Baseline equilibrium (perfect automation) 
At equilibrium, when the system maintains some Nominal Capability level that aligns with 
the operator’s Initial Trust (e.g., 30 on a 100 scale), there is no observable change; the model 
remains in a state of equilibrium (See Figure 6). However, altering the initial values or the 
Nominal Capability yields significantly varied behaviors. Deviation from the equilibrium 
activates the reinforcing loop, leading to goal-seeking dynamics, as illustrated in Figure 7. 
According to these dynamics, operators identified with higher trust levels exhibit more trust 
behaviors to test out the system’s performance and accumulate more positive Perceived 
Performance (given perfect automation). Conversely, those with trust below the nominal 
level trigger these reinforcing loops negatively, leading to path dependency, a phenomenon 
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where the structure of the system and its initial condition drive its trajectory (Sterman 2002). 
Such path-dependent dynamics in trust evolution have been noted in various studies 
(Castelfranchi & Falcone, 2010; J. D. Lewis & Weigert, 2012, 2012), emphasizing that the 
past and initial states of trust significantly shape future trust levels and behaviors. The 
manifestation of path dependence in trust dynamics is further influenced by the dominance of 
specific loops at given times. As conditions change, different feedback loops may become 
more influential, shaping the direction and rate of trust evolution. This means that the 
system's behavior is not only determined by its initial state but also by how different 
reinforcing or balancing loops interact and dominate over time, leading to complex and 
sometimes unexpected paths of trust development. Figure 8 illustrates the relative dominance 
of various feedback loops over time, depicted as a percentage of the total effect. The dashed 
horizontal line at 50% represents a threshold or reference point, indicating a balanced 
influence where neither the reinforcing nor the balancing loops are dominant. The influence 
of different feedback loops varies over time, with periods where the system seeks balance (as 
indicated by the B loops) and other times where it experiences growth or decline (as indicated 
by the R loop). The Bu1- and Bu1+ loops suggest that the same balancing loop might have 
different phases or actions depending on other conditions in the system. 
 

 
Figure 6. Baseline equilibrium of the model. 
 

Figure 7. S-shape goal-seeking behavior. 
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Figure 8. Relative dominance of feedback loops; B1: Expectation gap, B2: Change in 
Expectation, R1: Trust formation, Bu1∓: Perceived performance 
 
The loop dominance and path dependence behavior in the model resonates with everyday 
experience, as higher levels of trust tend to demonstrate more reliance on the system and, if 
capable, build upon that trust positively to a certain limit. In contrast, incompetent automation 
faces diminishing trust behaviors and ultimately a reduction in trust-based interactions. 
Although formal validation of these dynamic behaviors requires historical data as reference 
mode, the model confirms that the structure of the model which is based on the existing 
literature can produce the behavior described and suggested in the literature. 
 
The model also responds to variations for different inputs. Figure 9 illustrates the sensitivity 
analysis for random and normally distributed inputs for the Nominal Capability. As 
anticipated, the path dependence appears at both extremes. 
 

 
Figure 9. Sensitivity analysis for various inputs of nominal capability 
 
B. Individual variability 
The baseline simulation result has demonstrated a path dependency in individuals' trust 
development trajectories. As outlined earlier, variations among individuals manifest in the 
form of Initial Trust values and the temporal duration required for adjustments. Essentially, 
the model's gradient elucidates the rate at which trust is established or eroded, reflecting the 
velocity of trust accumulation or decay. These intra-individual dynamics are depicted in 
Figure 10, illustrating that while distinct levels of Propensity to Trust lead to diverse 
outcomes, they nevertheless follow comparable patterns of trust development. Likewise, the 
model exhibits convergence toward its terminal state of path dependency, influenced by 
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varying Initial Trust values, as demonstrated in Figure 11. This convergence is attributed to 
adjustments arising from the discrepancy between expected and perceived performance. 
When perceived performance meets or exceeds expectations, trust incrementally escalates. 
 

 
Figure 10. Sensitivity analysis for various inputs for propensity to trust 
Figure 11. Sensitivity analysis for various inputs for initial trust 

 
 
C. Initial values mismatch (Higher expectations) 
Variability in outcomes is also influenced by the disparity in initial values between Expected 
and Perceived Performance. When an individual's anticipated performance is significantly 
higher than what is observed, this discrepancy activates a negative feedback loop, 
precipitating an initial decline in trust in automation. Consequently, with diminished trust, 
operators are slower to engage with the automation system and gradually perceive its 
effectiveness, leading to a protracted period of trust accumulation and expectation 
adjustment. As the gap between expectation and perception narrows, trust begins to 
accumulate, albeit at a diminished velocity, as shown in Figure 12. 
 

 
Figure 12. Mismatch in initial values of perceived performance, trust, and expectation of 
performance 
 
D. Perceived risk  
As previously noted, a critical constraint in automation use is the Perceived Risk. 
Specifically, some scenarios prompt operators to favor reduced use of automation due to 
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associated risks. The impact of this risk-averse behavior is depicted in Figure 13, where 
varying levels of Perceived Risk alter the trust development trajectory. Such high-risk 
situations restrict engagement with the autonomous system, impeding the observation and 
assessment of its performance and thus leading to a more slow and gradual accumulation of 
trust. 

 
Figure 13. Multiple simulation runs with varying inputs for perceived risk 
 
C. System malfunction (imperfect automation) 
So far, simulations have assumed optimal system performance, leading to a natural increase 
in human trust through sustained usage. However, to understand trust dynamics in response 
to system malfunction, we introduced a disruption into the baseline model using a Pulse 
function. This function simulates an error with a 50% Magnitude occurring at time - = 25, 
causing an abrupt decline in both System Performance and Perceived Performance, as 
illustrated in Figure 14. The resultant breach in expectations causes a delayed but significant 
decrease in trust, maintaining it at a lower level until system performance begins to 
recuperate and align with the operator's expectations. 
 

 
Figure 14. Perceived performance and trust behavior after a system malfunction at t=25 
 
The influence of system malfunction on trust is not immediate, but rather a gradual decline in 
trust over time. Similarly, the recovery process after malfunctions is not instantaneous but 
unfolds over a period (Yang et al., 2017). This can be observed in Figure 14 where trust 
experiences a lower recovery level than the upward perceived performance. 
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The timing of system malfunction plays a pivotal role in the process of trust development. In 
a subsequent simulation, we applied the same Error Magnitude (50%) but introduced it 
earlier at - = 12. This adjustment resulted in a more pronounced drop in trust followed by an 
extended recovery period (Figure 15). A plausible explanation for this dynamic is that 
breaches of trust during early interactions cause operators to become more hesitant to engage 
with the system, thereby delaying their ability to observe its potential performance and 
correspondingly prolonging the duration required to rebuild trust. 
 

 
Figure 15. Perceived performance and trust behavior after a system malfunction at t=12 
 
We simulated the model with several different timings of the System Malfunction. As Figure 
16 illustrates the timing of errors significantly influences trust recovery in an automated 
system. The topmost line, which does not exhibit any drop, represents the baseline scenario 
without any system errors. Early errors, introduced at around time - = 10, result in a steep 
decline in trust and a prolonged recovery phase where trust does not reach the level of the no-
error scenario within the most observed time frame. Errors occurring mid-way, around time 
- = 25, still cause a notable dip in trust but allow for a quicker rebound than early errors. In 
contrast, errors introduced later in the process have a relatively minor impact on trust levels, 
with a faster return to near-baseline trust. 

 
Figure 16. Multiple simulation runs with varying inputs for error time 
 
In our investigation into the impact of system malfunctions on trust, we conducted an 
empirical study. This approach was motivated by two primary factors. Firstly, the temporal 

Time

0

50

100

0 25 50 75 100

1

2

3

4

1

2

3

4

1
2

3 4 1 2 3 4

Trust1 Expectation	of	performance2

Perceived	performance3 Max	TiA	faith4

Trust

Time

0

50

100

0 25 50 75 100



dimensions of trust dynamics—encompassing the formation, erosion, and restoration of 
trust—necessitate meticulous experimental design with different timeframes. Given that 
current literature does not provide definitive timelines for the establishment of trust or 
recovery post-malfunction, it was sensible to conduct studies that simulate rapid-onset 
stimuli. Such conditions are conducive to observing trust changes over shorter durations, 
thereby facilitating a more accurate assessment of malfunctions' effects on trust. Secondly, it 
is pragmatic to recognize that automated systems are not infallible and that malfunctions, 
while undesirable, are a realistic aspect of their operation. Therefore, integrating these 
realistic elements into our experimental design offers valuable insights into trust dynamics 
within authentic operational contexts. 
 
4 Experiment 
The objective of this study is twofold. First, to empirically test a segment of the proposed 
System Dynamics model specifically tailored for application in Maritime Autonomous 
Surface Ships (MASS). Second, to investigate the behavioral manifestations of trust in the 
context of monitoring automation, utilizing eye movement data. The focus is on assessing the 
frequency of monitoring and analyzing fixation metrics to understand how system 
malfunctions influence the operator's engagement with the automated system. 
 

A. Participants 
A total of 30 participants, consisting of nautical students and licensed instructors from a 
Norwegian maritime university were recruited for this study. Participant recruitment was 
accomplished via non-probabilistic snowball sampling (Vehovar et al., 2016). The 22 male 
and 8 female participants were between the ages of 18 and 55 years. Table 1 provides an 
overview of 30 participants recruited in this study. 
Prior to their participation, all participants provided written informed consent, acknowledging 
their right to withdraw from the study at any point. Upon the conclusion of their involvement, 
participants were compensated with a gift card. The experimental procedures, including the 
management of data, received approval from the Norwegian Centre for Research Data (NSD) 
under project number 407324. In compliance with NSD guidelines, all personal data acquired 
during the study was handled with stringent confidentiality and security measures. 
 
TABLE 1: Participants’ Demographic information 

 n % 
Age 18-24 16 53.3 

25-34 11 36.7 
35-44 1 3.3 
45-54 2 6.7 

Gender 
Female 8 26.7 
Male 22 73.3 

Education 
High School 5 16.7 
Bachelor 17 56.7 
Master 6 20.0 
Doctorate 2 6.7 

Seafaring 
Experience None 16 53.3 

1-5 7 23.3 
5-10 4 13.3 
10-15 2 6.7 



Over 15 1 3.3 
Navigation 
knowledge Very poor 1 3.3 

Some 6 20.0 
Good 15 50.0 
Very good 6 20.0 
Expert 2 6.7 

Note. N = 30 
 

B. Apparatus 
The Kongsberg K-Sim desktop bridge training simulator was used as a test environment for 
the design of scenarios and simulation of an autonomous vessel. The simulator provides 
maritime navigators with a platform to refine their navigational skills through practice and 
training. K-Sim supports the creation of maritime traffic scenarios, which can be simulated in 
real time, offering an immersive and dynamic training environment (Kongsberg, 2023). As 
shown in Figure 17, the experimental setup consists of three screens, a radar information 
screen, a bridge (main interface), and an Electronic Chart Display and Information System 
(ECDIS). 
 

C. Data collection 
Quantitative data collection was performed through self-reported questionnaires and metrics 
from the eye-tracking glasses. Demographic information of the participant was collected 
through a customized questionnaire. Personality traits data were collected using a 50-item 
International Personality Item Pool (IPIP) for the Big-Five personality factors (Goldberg et 
al., 2006). Trust in Automation (TiA) and perceived reliability data were gather via trust 
questionnaire developed by Körber (2019). Eye movement data were collected using Tobii 
Pro Glasses 2 and the Tobii Pro Lab software. The sampling rate of the eye-tracking glasses 
was 50 Hz. 
 
The raw data collected from eye-tracking were utilized to compute several metrics, which are 
categorized into three established groups (Boudreau et al., 2009; Lu & Sarter, 2019; Yang et 
al., 2017): temporal, spatial, and count metrics. Temporal metrics include total and average 
fixation duration, with a fixation characterized as a relatively stationary gaze within a certain 
dispersion threshold (around 2°), lasting for a minimum duration (usually between 100-200 
ms), and a velocity below a set threshold (commonly 15-100°/s) (Jacob & Karn, 2003). The 
spatial metrics, which consist of mean saccade amplitude, backtrack rate, rate of transitions, 
and scan-path length per second, address the efficiency and pattern variability of eye 
movements. These metrics serve to quantify the eye's movements and the strategy of visual 
information intake. The count metrics are concerned with the number and frequency of 
fixations and transitions between predefined Areas of Interest (AOI). In this context, an AOI 
is a specified zone determined by the experimenter to focus the analysis of eye movement 
data. For this experiment, two AOI sets were employed: one set considered the alarm section 
on the bridge monitor and the mid-section on the ECDIS collectively to investigate the 
impacts of system malfunction on the eye movement metrics; the second set included the 
three screens as AOI to visualize the participants' scanning behaviors. 



The eye movement data was primarily processed using the Tobii Pro software package, IBM 
SPSS Statistics software (version 29), and R programming language. 

 
 
Figure 17. Experimental setup: Radar, Bridge (main interface), ECDIS 
 

D. Design 
This study implemented an observational within-subject design where all participants were 
exposed to the same stimuli. A mid-size Ro-Ro vessel was selected, sailing autonomously 
from the port of Horten to Moss in Norway. Three additional vessels were added to the 
simulated environment to emulate a realistic traffic situation with one vessel crossing 
situation, see Figure 18. The vessel was initiated in an autonomous navigation mode (N) set 
to 100% speed, following a pre-validated course marked by specific waypoints. Participants 
were tasked with closely observing the vessel’s navigational performance, which included 
route monitoring, navigation control, and collision avoidance, to ensure its safe passage. They 
were provided with the option to intervene and control the vessel by switching to manual 
control (M) or autopilot (A) mode, as well as by modifying the vessel’s speed if deemed 
necessary. In the event of any system malfunctions, participants were expected to respond to 
alarms and execute corrective maneuvers to return the vessel to its designated trajectory. The 
duration of the study was approximately 40 minutes. 
 

 
Figure 18. Simulated vessel traffic environment 
 

E. Procedure 



Figure 19 delineates the experimental sequence. At the outset, a brief introduction to the goal 
of the study was provided. Following this introduction, they proceeded to read and sign the 
informed consent form. The demographic and personality questionnaires were administered, 
and the eye-tracking device was calibrated to ensure accurate data collection tailored to each 
participant. Participants were then familiarized with the interface and setup and trained on the 
tasks they would be required to perform during the session.  
 
In the initial phase of the study, the system operated flawlessly, exemplifying perfect 
automation by maintaining accurate control and adherence to the predetermined route. During 
the latter half of the session, the system was programmed to introduce a malfunction by 
halting one of the steering gear pumps. This malfunction led to the vessel's deviation from its 
charted course, subsequently activating an alarm to notify the participant of the issue. 
Deviation from the course commenced after 10 minutes and lasted for 60 seconds. If the test 
subject failed to notice and/or take over, the vessel was set to go back on course after the 
error period. Test subjects were expected to notice the change in course anytime within the 60 
seconds. By the end of the study, if any test subject did not notice the deviation, it would be 
considered a failure to recognize. The self-report trust measures were collected after 10 
minutes of interaction with the system (pre-error) and at the end of the session (post-error). 

 
Figure 19. Sequence of experiment 

 
F. Analysis and results 

Data analysis embarks by employing visualization techniques to enhance the understanding 
and presentation of the collected data, particularly to depict the changes of trust in automation 
between two distinct points in time, as shown in Figure 20. During the data collection 
process, it was observed that two participants (participants ID. 21 and 28) did not register the 
introduced error, leading to an anomalous increase in their trust in the automated system. 
Consequently, these two participants were omitted from the subsequent data analysis, as their 
experiences did not accurately reflect exposure to the critical stimulus — the system 
malfunction. 
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Figure 20. Trust in Automation at two time points for 30 participants 
 
Figure 21 provides heatmaps representing the visual attention allocation of participants across 
three main displays: Radar information, Bridge Display System (middle), and Electronic 
Chart Display and Information System (ECDIS). In the pre-error period, visual attention is 
distributed across all three displays, with a relatively even distribution of fixation duration 
indicating routine monitoring behavior. However, in the post-error period, there is a marked 
shift in visual focus towards the Bridge Display and ECDIS. The increased intensity and 
concentration of colors on these displays in the heatmap signal a heightened attentional 
demand, likely due to participants seeking critical navigational information. This shift 
suggests a cognitive reallocation of resources towards areas perceived as more relevant for 
the post-error period, reflecting an adaptive response to operational anomalies. 
 
 

 

 
Figure 21. Heatmap of visual attention before and after the system malfunction 
 
A paired samples t-test was employed to assess the differences in various gaze metrics as 
well as perceived reliability and trust in automation before and after the error occurrence. As 
illustrated in Table 2, temporal metrics displayed substantial increases in the total duration of 
fixation (TDF) post-error (Mdiff = -56082.3, 95% CI [-77614, -34550], Cohen's d = 1.01) and 



average duration of fixation (ADF) (Mdiff = -68.6, 95% CI [-110, -26], Cohen's d = 0.63), 
suggesting an extended focus on AOIs after the error. Spatial metrics did not show a 
significant change in the average amplitude of saccades (AMS), but there was a notable 
increase in the total amplitude of saccades (TAS) (Mdiff = -972.5, 95% CI [-1463, -481], 
Cohen's d = 0.77). For count metrics, there were significant increases in the number of visits 
(NV) (Mdiff = -56.4, 95% CI [-70, -42], Cohen's d = 1.53), number of saccades (NS) (Mdiff = -
35.1, 95% CI [-53, -16], Cohen's d = 0.73), and number of fixations (NF) (Mdiff = -119.6, 
95% CI [-162, -76], Cohen's d = 1.07). These results indicate that following the system 
malfunction, participants engaged with the information from the AOIs more intensively. 
Furthermore, perceived reliability (REL) and trust in automation (TRU) significantly 
decreased from pre-error to post-error, with REL showing a larger mean decrease (Mdiff = 
0.77, 95% CI [0.53, 1.01], Cohen's d = 1.25) compared to TRU (Mdiff = 0.66, 95% CI [0.34, 
0.98], Cohen's d = 0.62). 
 

<Table 2 Here: Check the last page> 
 
Next, to delineate the relationships between perceived reliability, trust in automation, and 
various personality traits across two time points, a correlation analysis was performed. As 
illustrated in Table 3, perceived reliability (REL) and trust in automation (TRU) at time 1 (t1) 
have a strong positive correlation (r = .65, 95% CI [.37, .82]), which suggests a robust 
association that strengthens at time 2 (t2), as indicated by an even higher correlation (r = .79, 
95% CI [.59, .90]). Change in trust in automation (dTRU) and the change in perceived 
reliability (dREL) are also positively correlated (r = .62, 95% CI [.33, .81]), indicating a 
concurrent decrease in trust and perceived reliability from the two time points. It is important 
to note that the Big Five personality traits do not show significant correlations with changes 
in trust, suggesting that personality may not play a substantial role in the observed decline in 
trust because of system malfunction. The internal consistency of our scales, as measured by 
Cronbach's alpha, ranges from acceptable (.69 for Conscientiousness) to excellent (.93 for 
TRU at t2), ensuring the reliability of our measures. 
 

<Table 3 Here: Check the last page> 
 
To align the empirical findings with the segment of the System Dynamics model under 
investigation, a comparative analysis was conducted. This involved measuring the percentage 
changes in empirical trust in automation and perceived reliability against the decline in 
perceived performance and trust as depicted in the model. By quantifying these changes, we 
aimed to assess the model's accuracy in reflecting real-world trust dynamics within 
automated systems. The empirical results showed that perceived reliability (REL) 
experienced a mean decrease from 3.46 to 2.69, constituting a 15.4% decrease when 
normalized against the maximum Likert scale value of five, (0.77 / 5) * 100 = 15.4%. 
Similarly, trust in automation (TRU) had a mean reduction from 3.68 to 3.02, translating to a 
13.2% decrease, (0.66 / 5) * 100 = 13.2%. These empirical changes in trust and perceived 
reliability were put into perspective by comparing them with the simulation model's 
predictions. The model indicated a 14% (from 46.58 to 32.50) decline in perceived 



performance for the period of 12-17 and a parallel 12.7% (from 44.7 to 32) decrease in trust 
in automation. This comparative analysis demonstrates a congruence between the simulated 
and observed trust dynamics, validating the model's ability to reasonably reflect the impact of 
system malfunctions on trust and reliability. Despite variations in timing and magnitude, the 
alignment of trends confirms the model's relevance in simulating trust behavior in the wake 
of system malfunctions, albeit with a recognition of its limitations and scope for refinement. 
 
5 Discussion 
The results from the system dynamics simulated scenarios highlight the critical role of initial 
conditions in shaping long-term trust dynamics in human-automation interactions, 
corroborating the research on the lasting impact of first impressions. Importantly, these 
outcomes underline the necessity of aligning initial conditions for system performance, user 
trust, and performance expectations. This alignment is pivotal for the effective operation of 
autonomous systems. The idea that building trust extends beyond the mere enhancement of 
system performance to include the alignment of user expectations with the system’s realistic 
capabilities has reflective design implications. Successful automation systems must not only 
be technically competent but also effectively communicate their capabilities to users to set 
realistic expectations. It is also essential for designers to align system capabilities with the 
tasks they are intended to perform. Overestimating these capabilities can lead to scenarios 
where the system fails to meet expectations, triggering a negative feedback loop of 
diminishing trust. One approach would be through transparency about system capabilities, 
and providing users with clear, accurate information about what the system can and cannot 
do. User training should also emphasize realistic expectations about the system's capabilities 
and limitations, helping to prevent the erosion of trust due to misunderstandings or unrealistic 
expectations. 
 
The phenomena of loop dominance and path dependence, as depicted in the model, 
demonstrate that when a system is trusted and proves itself capable, trust tends to grow, 
leading to increased reliance on the system. This positive reinforcement loop suggests that 
trust, once established, can be self-perpetuating up to a certain threshold, provided the system 
continues to meet or exceed expectations. Conversely, when automation is perceived as 
incompetent or unreliable, the model shows a negative feedback loop. In these cases, trust 
begins to diminish, and as a result, trust-based interactions with the system decrease. This 
decline in trust can lead to a reduced willingness to rely on the system, with users potentially 
reverting to manual controls or alternative methods. The diminishing trust is a critical 
concern, as it not only affects current interactions but can also have long-term implications 
for the acceptance and usability of automated systems. 
 
The study's exploration of trust recovery dynamics in the aftermath of system malfunctions 
provides valuable insights into the resilience of trust in automation. A key finding is the 
important role that the timing of a malfunction plays in shaping trust trajectories. 
Malfunctions occurring early in the interaction with an automated system result in a more 
pronounced decrease in trust, accompanied by a prolonged recovery period. This observation 
underscores the crucial need for establishing and maintaining reliability from the onset of 



system usage. These findings align with the concept of the anchoring effect in trust 
relationships, where the initial level of trust sets a baseline that significantly influences future 
trust dynamics. In the context of human-automation interaction, early experiences with the 
system serve as an anchor point. If these initial experiences are negative, such as 
encountering early malfunctions, they set a lower trust baseline, making it more challenging 
to build trust subsequently. Conversely, positive early experiences can establish a higher 
baseline, making the system more resilient to future setbacks. For designers and operators of 
automated systems, this emphasizes the importance of robust initial system testing and 
quality assurance to minimize early malfunctions. Ensuring that the system operates reliably 
when first introduced to users can create a strong foundation of trust, which is more likely to 
withstand future issues. Additionally, users should be informed about the potential for 
malfunctions and the procedures for addressing them. This transparency can mitigate the 
negative impact on trust when malfunctions do occur. 
 
The empirical findings from the study on Maritime Autonomous Surface Ships (MASS) align 
with the established research body, including the works of Lee and Moray (1992), Moray et 
al. (2000), and Yang et al. (2016, 2017), reinforcing the principle that trust in automation is 
closely tied to the system's performance outcomes. Consistent with these prior studies, our 
research observed a decline in trust following a system malfunction. Notably, the study 
reveals that personality traits do not directly influence perceived reliability or variations in 
trust. This finding corroborates the simulation model's hypothesis that individual differences 
primarily affect initial trust levels and adjustment times rather than ongoing trust perceptions. 
 
6 Conclusion and future work 
This study developed a system dynamics model of trust in automation to demonstrate the 
utility of simulation modeling for creating dynamic, testable hypotheses about trust and 
trusting behaviors. Unlike static conceptual models, the proposed model provides a flexible 
tool that can be adjusted and validated against empirical data. This flexibility allows 
researchers to explore a range of conjectures about how trust forms and evolves over time. 
The adaptability of the model is particularly beneficial for future research endeavors. It 
provides a robust tool that can be tailored to investigate trust in a variety of contexts by 
manipulating values or refining the structure of the model. This adaptability is crucial for 
modeling complex human-automation interactions across diverse operational environments. 
Furthermore, employing the system dynamics approach enabled the construction of a model 
based on dynamic feedback loops. This approach is instrumental in replicating the non-linear 
and often reciprocal nature of trust behaviors. By considering the interplay between 
reinforcing and balancing loops, the model can generate behaviors that more accurately 
reflect the fluctuations and transitions observed in real-world trust scenarios. 
 
The proposed model primarily focuses on the structural aspects of trust dynamics, rather than 
specific contextual details. This approach brings both strengths and limitations. On the one 
hand, the absence of explicit contextual elements restricts the model's direct applicability to 
specific scenarios. Each unique situation, with its distinct variables and conditions, may 
require adjustments to the model's numeric sensitivities for accurate representation and 



prediction. On the other hand, the model's general structural design and its depiction of path-
dependent behavior are broadly applicable across a range of scenarios. This generalizability 
is one of the model's key strengths. The underlying structure of the trust relationship – 
characterized by its feedback loops and the overall dynamics of trust formation, dissolution, 
and restoration – is likely to remain relevant in various contexts. 
 
For system designers, this model can serve as a guide for creating systems that not only meet 
technical and functional requirements but also address the psychological and behavioral 
aspects of trust. It underscores the importance of considering user perceptions, experiences, 
and responses to automated systems from the initial stages of design. This consideration is 
central to ensuring that users not only trust the system's capabilities but also understand its 
limitations, thereby fostering a balanced and informed trust relationship. 
 
It is important to note that different Levels of Automation (LOAs) can significantly influence 
the trust dynamics (Walliser, 2011), especially during the monitoring process, the focus in 
this paper was narrowed to scenarios involving the highest level of automation, such as Full 
Self-Driving (FSD) in vehicles or Auto-track mode in maritime vessel navigation systems, 
where the operator's primary role is relegated to supervising the automation system and 
intervening when necessary. While the model is adaptable to any given LOA, it does not 
explicitly account for transitions between different LOAs or the intricate relationships 
between trust levels across various automation levels. This limitation was a deliberate scope 
constraint to maintain focus and clarity but does suggest an area for potential future 
expansion and refinement of the model. 
 
Future iterations of the model could also incorporate modular elements that allow for easy 
adaptation to different contexts. This could include features that adjust for varying levels of 
system reliability, user experience, environmental factors, or other relevant contextual 
variables. Such enhancements would make the model more versatile and applicable to a 
broader range of specific situations, thereby increasing its usefulness in practical applications.  
 
Future research may focus on applying the model to specific contexts, empirically testing its 
assumptions, and exploring how variations in individual characteristics may influence trust 
adjustment times. 
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TABLE 2. Compared means Paired Samples Test, paired differences in time 1 and time 2 
  Time 1-Pre-Error (N=28) Time 2 -Post-Error (N=28) Paired Differences 
  M SD 95% CI M SD 95% CI Mdiff SD 95% CI t Cohen's d 
REL 3.46 0.373 [3.32, 3.60] 2.69 0.694 [2.49, 3.01] 0.77 0.616 [0.53, 1.01] 6.651 1.25 

TRU 3.68 0.629 [3.40, 3.87] 3.02 1.018 [2.70, 3.46] 0.66 0.82 [0.344, 0.98] 4.279  0.80 

Temporal Metrics 

TDF 44963.11 38535.01 [28916, 57216] 101045.39 69226.59 [71718, 122764] -56082.286 55529.778 [-77614, -34550] -5.34 1.01 

ADF 322.32 69.08 [294.12, 354.42] 390.96 107.84 [346.79, 426.01] -68.643 108.798 [-110, -26] -3.33   0.631 

Spatial Metrics 

AMS 5.71 0.87 [5.38, 6.03] 5.5 0.90 [5.26, 5.92] .13964 .59624 [-.09, .37] 1.23  0.234 

TAS 4190 1260.82 [3695, 4615] 5162.54 1437.54 [4595, 5639] -972.53 1267.43 [-1463, -481] -4.06   0.767 

Count Metrics 

NV 56.61 27.87 [45.6, 66.26] 113.04 43.56 [95.19, 127.41] -56.429 36.839 [-70, -42] -8.10 1.532 

NS 51.54 56.17 [28.10, 69.36] 86.64 56.35 [61.31, 103.62] -35.107 48.293 [-53, -16] -3.84  0.727 

NF 133.5 102.70 [91.10, 166.5] 253.11 136.54 [195.14, 295.99] -119.607 111.021 [-162, -76] -5.70 1.07 
Notes. REL = perceived reliability; TRU = trust in automation; TDF = total duration of fixation; ADF = average duration of fixation; AMS = average amplitude of saccades; TAS = total amplitude of saccades; NV = 
number of visits; NS = number of saccades; NF = number of fixations; M = mean; SD = standard deviation; 95% CI = 95% confidence interval, Mdiff = mean difference; t = t-statistics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



TABLE 3. Means, Standard Deviation, Internal Consistency (Cronbach’s α), and Correlations of all traits and Trust in Automation in time 1 and time 2.  
Variable α M SD 1 2 3 4 5 6 7 8 9 10 
              
1. REL t1 .40 3.46 0.39                     
                           
2. TRU t1 .77 3.68 0.63 .65**                   
       [.37, .82]                   
                           
3. REL t2 .78 2.69 0.68 .44* .55**                 
       [.08, .70] [.22, .77]                 
                           
4. TRU t2 .93 3.02 1.02 .32 .60** .79**               
       [-.06, .62] [.29, .80] [.59, .90]               
                           
5. dTRU _ -0.62 0.82 -.09 -.06 .51** .74**             
       [-.45, .29] [-.43, .32] [.18, .74] [.51, .87]             
                           
6. dREL _ -0.77 0.62 -.15 .20 .83** .66** .62**           
       [-.49, .24] [-.19, .53] [.65, .92] [.39, .83] [.33, .81]           
                           
7. E .82 24.79 6.59 .12 .02 .10 .26 .29 .03         
       [-.27, .47] [-.35, .39] [-.29, .45] [-.12, .58] [-.09, .60] [-.34, .40]         
                           
8. A .75 28.32 5.89 .12 -.02 -.14 -.11 -.07 -.23 .35       
       [-.27, .47] [-.39, .36] [-.49, .24] [-.46, .28] [-.43, .31] [-.56, .15] [-.03, .64]       
                           
9. C .69 25.11 5.82 .08 .35 .13 .14 -.04 .09 -.13 -.02     
       [-.30, .44] [-.02, .64] [-.25, .48] [-.25, .49] [-.41, .34] [-.29, .45] [-.48, .25] [-.39, .36]     
                           
10.N .78 26.86 5.87 .03 .01 .14 .06 .04 .13 -.05 .13 .42*   
       [-.34, .40] [-.36, .38] [-.25, .49] [-.32, .43] [-.34, .41] [-.25, .48] [-.41, .33] [-.26, .48] [.05, .69]   
                           
11.O .73 27.18 5.12 .15 .34 .06 .24 .09 -.03 .01 .24 .37 .04 
       [-.24, .49] [-.04, .63] [-.32, .42] [-.15, .56] [-.29, .45] [-.40, .35] [-.37, .38] [-.14, .56] [-.01, .65] [-.34, .41] 
                           

Note. REL = perceived reliability; TRU = trust in automation; dTRU = change in trust in automation, dREL = change in perceived reliability E = extraversion; A = 
agreeableness; C = conscientiousness; N= neuroticism; O = openness; t1 = measurement at time 1, t2 = measurement at time 2, α = Cronbach’s alpha; M = mean; SD = 
Standard deviation, Values in square brackets indicate the 95% confidence interval for each correlation, * indicates p < .05. ** indicates p < .01. 
 
 
 
 
 
 
 



 

 

 

  



 

 

 




