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Summary

The advent of Maritime Autonomous Surface Ships (MASS) represents a significant leap
forward in the maritime industry, promising to redefine sea transportation's efficiency, safety,
and economics. However, this technological advance brings forward the complex interplay
between human operators and autonomous systems, particularly in the context of Shore Control
Centers (SCCs), where remote operators play critical roles. The success of integrating MASS
into the global shipping infrastructure depends not just on technological advancements but
equally on understanding and optimizing Human-Automation Interaction (HAI). The transition
to supervisory control roles introduces a paradigm shift in operational dynamics. Remote
operators are tasked with maintaining oversight over multiple vessels simultaneously, each
possibly facing different sea conditions and operational challenges. This multi-vessel
management can significantly amplify the cognitive load, requiring operators to prioritize
information effectively and make swift decisions to ensure safety and efficiency. One of the
primary concerns is the risk of over-reliance on automation, which may lead to complacency
and reduced situational awareness. The remote nature of operation may exacerbate these issues,
as operators are removed from the immediate physical environment of the vessels they control.
Moreover, the unpredictable and dynamic nature of maritime environments makes complete
autonomy a challenging goal; remote operators must be prepared to take control in complex or
emergency situations.

To address these challenges and leverage the full potential of MASS, it is imperative to develop
scientific and robust models of HAI. These models should account for the unique demands of
maritime environments and the specific roles of remote operators. By understanding the
cognitive, psychological, and social factors that influence remote operators' performance,
researchers and practitioners can design more intuitive and effective interfaces and decision-
support systems. Effective HAI models can guide the development of training programs
tailored to the needs of remote operators, focusing on critical skills such as situational
awareness, decision-making under uncertainty, and effective communication with autonomous
systems. Moreover, these models can help identify potential sources of error, the operators’
responses, and cognitive overload, enabling the design of systems that support operators'
decision-making processes and reduce the likelihood of accidents. Two pivotal aspects of these
models are the Levels of Automation (LOAs) and Trust in Automation (TiA). Understanding
and accurately modeling these dimensions are crucial for designing systems that effectively
balance human supervisory control of autonomous capabilities.

In response to the growing scrutiny regarding the validity of Human Factors and Ergonomics
(HFE) models, as well as the need for flexible yet credible HAI models, this dissertation
concentrated on the importance of models and modeling within Human-Automation Interaction
(HAI), particularly emphasizing Trust in Automation (TiA) and Levels of Automation (LOA)
as central themes for modeling exploration. This dissertation commences by exploring the
significance of scientific modeling and developing criteria that can be utilized to assess the
relative scientific credibility of various models. Furthermore, models of Trust in Automation
(TiA) were assessed against these criteria not only to showcase the use of the criteria but also
to understand the TiA modeling efforts in the literature. On the other hand, epistemological



accounts of modeling efforts were investigated, to realize the suitability of each approach for
modeling HAI. The findings suggested simulation as a viable approach to tackle the
complexities in modeling TiA and LOA within the context of HAI and supervisory control of
MASS. By incorporating models of Trust in Automation (TiA) and Levels of Automation
(LOA), simulation offers a powerful tool for examining complex interactions and dynamics
that are difficult, if not impossible, to study in real-world settings due to safety, cost, and
practicality concerns.
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1 Introduction

1.1 Establishing the Context

Industry 4.0 marks a paradigm shift from conventional automation technologies, which acted
as supplements to human work, to a new era of machine autonomy. In this age, automation
emerges as an intelligent entity, capable of executing complex tasks such as planning and
decision-making, powered by advancements in the Artificial Intelligence (Al) (Aiello et al.,
2020; Sepehri et al., 2022). Yet, the vision of machines functioning autonomously within
unpredictable and unstructured environments is far from realization. Beyond the technical
challenges, there exist credible arguments, such as ethical concerns and the need for
accountability, that might limit the absolute autonomy of machines (Coito, 2021; Jordan, 2019).
Contemporary research has thus pivoted towards hybrid interaction frameworks that harness
both human expertise and automated efficiency. One such framework is supervisory control,
where the level of autonomy afforded to machines becomes higher, but human control and
supervision are also essential. In such a scenario, the human operator transitions to a
supervisory role, monitoring automated functions and intervening as necessary, particularly in
unforeseen circumstances or to revise objectives. One of the key applied domains experiencing
this transition is the Maritime Autonomous Surface Ship (MASS). Various research and
industry projects have anticipated that autonomous ships will become a reality in seas in the
coming years (Jalonen et al., 2017; Jokioinen et al., 2016; Laurinen, 2016). The shift towards
autonomous shipping is expected to occur gradually, progressing from lower levels of
autonomy to higher ones (Laurinen, 2016; Utne et al., 2017), where unmanned ships would
likely operate with constrained autonomy, either supervised or controlled by a Shore Control
Center (SCC) operator (Porathe et al., 2014; Ringbom et al., 2017.; Rodseth et al., 2018;
Rodseth, 2017; Rgdseth et al., 2021). This implies that MASS does not equate to completely
unmonitored operations, and humans are still required to supervise and analyze the operations
performed by autonomous systems.

As automation continues to reshape the working environments, the role of the operator’s
cognitive factors such as mental workload, trust, and self-confidence, during interactions with
automated systems becomes crucial for effective human-automation interaction (Hussein et al.,
2020; Lee & See, 2004; Peters et al., 2015). These cognitive factors significantly influence an
individual's willingness to use and rely on automation (Gao & Lee, 2006; Hancock et al., 2013;
Lee & Moray, 1994; Riley, 1996). Consequently, creating automated systems that respond to
the user's cognitive state could enhance task performance and learning (Hancock et al., 2013).
In this line, cognitive models may become important in explaining and predicting cognitive
states and would enable systems to modify their responses, adjusting transparency, behavior,
and autonomy levels (Alonso & De La Puente, 2018; Chen et al., 2015, 2015). Modeling
Human-Automation Interaction (HAI) can help design more intuitive, efficient, and safe
automated systems by creating a deeper understanding of how humans interact with such
systems. This endeavor not only enhances system performance but also ensures that
technological advancements align with human well-being and operational safety. A well-
constructed model provides a basis for understanding and predicting the complex behaviors of



the operator engaging with the automation. Through modeling, researchers and designers can
explore various scenarios, identify potential pitfalls, and develop strategies to enhance
interaction and collaboration between human operators and automated systems (Hancock et al.,
2013). This approach can significantly reduce the likelihood of unintended consequences,
enabling designers to refine automation features based on predictive analyses of human
behavior. In essence, cognitive theories and models serve as fundamental tools in bridging the
gap between theoretical knowledge and practical application, ensuring that automated systems
are not only technologically advanced but also human-centric.

Over the past three decades of HAI research, several models and frameworks have been
developed to elucidate the cognitive factors and their effects on human performance and
decision-making in interaction with automation (Boubin et al., 2017; Hoff & Bashir, 2015;
Parasuraman & Riley, 1997). These models and frameworks often emphasize the importance
of trust and levels of automation within the HAI context as the determinants of automation use
and reliance (Endsley, 2018; Muir & Moray, 1996; Parasuraman et al., 2000). Despite the
prevalent theories and cognitive models, critiques (e.g., Dekker & Hollnagel, 2004; Flach,
1995) have raised significant concerns regarding the scientific credibility and practical utility
of the existing frameworks. These critical perspectives form the foundational impetus for this
doctoral dissertation. This dissertation is designed to delve into the heart of these issues from
multiple vantage points, aiming to uncover and address the underlying challenges. The
forthcoming sections will offer an expanded insight into the core problem, delineate the specific
objectives of this dissertation, and articulate the research questions that will guide this scholarly
investigation.

1.2 Problem Description

The rapid advancement of technologies and their swift adoption as ‘work facilitators’ by
industry stakeholders have triggered continuous changes in the workplace. The essence of
human work has undergone significant transformations since the early 20th century. This
evolution is evident when comparing perspectives on human-work studies from Scientific
Management (Taylor, 1911), Human Factors Engineering (Fitts, 1951), Ergonomics and
Cognitive Ergonomics (Meister, 2000; Meister & Enderwick, 2001), Cognitive Systems
Engineering (Hollnagel & Woods, 1983), and Human-Computer Interaction (Card et al., 1983).
Unlike fields such as mathematics and the natural sciences, where theoretical issues often drive
progress, the challenges in Human Factors and Ergonomics (HFE) arise from its practical
aspects. The field faces the difficulty of a continuously moving target — practical needs that
grow so quickly that they are hard to accurately identify and address.

Despite widespread consensus on the significance of theory in Human-Automation Interaction
(HAI) and Human Factors and Ergonomics (HFE) in general, some scholars have noted a
concerning shortfall of theoretical grounding in HFE and HAI research (Salas, 2008). Chung
(2017) discussed that although HFE is a science-based discipline and its efficacy hinges on
solid scientific underpinnings, much of the scientific basis of HFE remains underdeveloped.
Salas (2008) further pointed out that, despite having well-established theories in areas such as
human information processing, decision-making, and team effectiveness, the field of HFE is



still predominantly atheoretical. The neglect of theoretical frameworks and models in HAI
research has been highlighted as a serious issue by various scholars. Salas (2008) warned that
an overly applied focus on engineering and design in HFE has led to theories being "ignored,
misused, or abused." (p.352). Similarly, Hockey (2008) argued that overlooking theoretical
foundations could undermine the effectiveness of practical applications in the field. De Greene
(1980) noted significant conceptual challenges in managing ergonomics research, particularly
emphasizing the problems arising from the reliance on pure static models. This concern is
shared by other scholars (e.g., Guastello, 2017, 2023; Karwowski, 2012; Thatcher et al., 2020),
who also expressed concerns about the use of static models in understanding cognition and
human-automation interactions in dynamic settings. Woods and Dekker (2000) articulated
these concerns more intensely. They pointed out that the rapid pace of technological change
and the growing scope of technological advancement have made traditional models and
methods increasingly inadequate. These models and methods are viewed as oversimplifications
that can hinder understanding and progress. According to Woods and Dekker (2000), the
reliance on outdated and oversimplified models and methods could ultimately undermine the
credibility of the ergonomics field.

Generally, scientific models in human-technology system studies fall into two categories:
componential and systemic, each addressing different aspects of human-technology interactions
(Dvergard, 2008). Componential models assume system behavior is predictable from its
components' behavior, leading to an understanding of the whole system as a simple addition of
its parts' behaviors (Card et al., 2005; Dekker, 2005; Hollnagel & Woods, 1983). This approach,
rooted in the information-processing view of human cognition, separates mind and body and
treats the environment as a passive element (Fodor, 1983; Gardner, 1985; Thde, 2002).
However, the growing complexity of contemporary technical systems has challenged the
adequacy of this view (Dekker & Hollnagel, 2004; Perrow, 1999; Woods & Dekker, 2000).
Conversely, the systemic view, or Cognitive Systems Engineering (CSE) (Hollnagel & Woods,
1983, 2005), emerged in response to the componential perspective. It views sociotechnical
systems as comprising interconnected humans, technology, and the environment, functioning
in a goal-directed manner (Vicente, 1999). This approach emphasizes the functional unity of
the system, where outcomes are emergent from coordinated activities across components, rather
than traits of individual parts (Hollnagel, 2003). Under this perspective, the human operator is
an integral part of the Joint Cognitive System (JCS), adapting and responding contextually
within the system (Hollnagel & Woods, 1983, 2005).

These viewpoints indicate a growing interest within the HFE community in the need for more
robust, adaptable models and methodologies that can keep pace with the evolving landscape of
technology and human interaction. The critique suggests a push towards more novel, advanced
approaches that can better capture the complexities inherent in modern HFE research and
design. However, a foundational step requires a thorough comprehension of the discipline's
unique challenges, requirements, and the current models' effectiveness in addressing these
needs. Establishing this foundational understanding is crucial before determining which types
of models are most appropriate for addressing HFE challenges and outlining strategies for their
development.



1.3 Research Focus, Objectives, and Questions

This dissertation investigates the intricate facets of Human-Automation Interaction (HAI), with
a particular focus on the Levels of Automation (LOAs) and Trust in Automation (TiA). LOAs
and TiA are central in assessing the effectiveness and adoption of automation technologies. The
primary objective of this doctoral dissertation is to explore the essential modeling criteria for
HAI research within socio-technical frameworks, to clarify the epistemological underpinnings
of various modeling methodologies, and to evaluate the adequacy of current modeling efforts
in meeting these criteria. Moreover, this dissertation suggests the value of simulation-based
modeling techniques as promising solutions capable of overcoming the shortcomings in
existing models.

Figure 1 presents an overall research approach of this dissertation, integrating concepts from
Human Factors and Ergonomics (HFE), particularly focusing on Cognitive Ergonomics and its
application to Human-Automation Interaction (HAI). This approach is designed to evaluate and
model trust in automation (TiA) and levels of automation (LOA) within the context of Human-
Automation Interaction (HAI) and supervisory control. Key elements discussed in this
dissertation are outlined as follows:

1. Cognitive Ergonomics Domain: At the core, this dissertation explores cognitive ergonomics
with an emphasis on the psychological aspects of HAIL It considers environmental,
automation-specific, and individual factors that influence Trust in Automation (TiA). The
dynamics of TiA are captured through a feedback loop that includes the individual's
expectation of outcomes and their perception of actual outcomes.

2. Human-Automation Interaction (HAI): The dissertation investigates the interaction
between humans and automation and the crucial role of the levels of automation (LOA)
which dictates how humans supervise and control automated systems. As depicted, Trust in
Automation (TiA) directly influences the interactions with automated systems and also is
influenced by the outcome of the interactions.

3. Characteristics of HFE & Phenomenon: The dissertation outlines the broad characteristics
of HFE as a discipline, including its scientific, applied, systems, and complex nature.
Additionally, it addresses the systems as being linear vs. nonlinear, and open vs. closed,
highlighting the diverse contexts in which HFE research is conducted.

4. HFE Model Evaluation Criteria: To assess the efficacy of models within HAIL the
dissertation suggests a set of scientific evaluation criteria including testability/falsifiability,
predictive power, explanatory power, empirical adequacy, pragmatic adequacy, humans as
active agents, and dynamic properties of models. These criteria are essential for ensuring
that models are both scientifically rigorous and practically relevant.

5. Modeling Epistemological Assumptions: The dissertation recognizes the significance of
underlying epistemological assumptions in modeling efforts. It differentiates between
variance (static) and process (dynamic) models, acknowledging that each has its strengths
and applications within HFE. This distinction is crucial for selecting the appropriate
modeling methodology based on the nature of the phenomena being studied.

6. Simulation Modeling: As a solution to the limitations identified in traditional HFE models,
the dissertation proposes simulation modeling as a versatile tool for understanding complex



HAI phenomena. Specifically, it suggests employing Fuzzy Logic Inference Systems and
System Dynamics modeling to capture the dynamics of levels and trust in automation.
These simulation methodologies offer the flexibility and depth needed to model cognitive
states and their evolution over time, providing a more holistic understanding of HAI.
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Figure 1, Overview of the dissertation research focus.

Under this understanding, and to delve deeper, the following research questions have been
established:

RQ1: What constitutes the essential criteria for evaluating models within the domain of Human
Factors and Ergonomics (HFE) research?

RQ2: What is the current state of Trust in Automation (TiA) models according to the criteria in
RQI1?

RQ3: Are the epistemological assumptions in different modeling approaches appropriate for
studying human-automation interactions (HAI)?

RQA4: How to effectively model Levels of Automation (LOAs) for Maritime Autonomous Surface
Ship (MASS)?

RQ5: How can Trust in Automation (TiA) be dynamically modeled based on its internal
structures?



1.4 Structure of the Dissertation

Chapter 1 sets the stage for the investigation by expressing the overall context of the
dissertation, research problems, objectives, and questions, as well as an overall research
approach to address the questions. Chapter 2 discusses the background of the study, shedding
light on the importance of the research, the emerging concept of maritime autonomy, the
rationale behind Shore Control Center (SCC) and supervisory control, the importance of
Human-Automation Interaction (HAI) and Trust in Automation (TiA) in effective and safe
operation of future maritime operations. The chapter is underpinned by an extensive review of
pertinent literature, providing a comprehensive backdrop for the themes under investigation.
Chapter 3 establishes the theoretical framework for the subsequent exploration and analysis.
This chapter revisits the theoretical foundation of the Human Factors and Ergonomics (HFE)
discipline and discusses today’s complexity of Human-Automation Interaction (HAI) research.
Chapter 4 presents the research methodology and discusses modeling as a theory-building
activity. The primary focus in this chapter is on simulation as a viable tool for tackling the
complexity of modeling HAI. More specifically, fuzzy logic and system dynamics are
considered as the two approaches utilized in this dissertation for modeling levels and trust in
automation. In Chapter 5, the philosophical foundations that guide the research are thoroughly
examined. This chapter offers a reflective account of the epistemological understanding of
theory/model development, guiding the concept of model validity. Chapter 6 presents the
summary findings of four Articles and engages in a detailed discussion aimed at addressing the
research questions introduced in the opening chapter. Chapter 7 synthesizes the research
findings and offers general reflections while also critically appraising the research boundaries.
Chapter 8 concludes and accentuates the contributions of the study and points out potential
areas for further scholarly exploration.



2 Background

Maritime transport, one of the oldest and most crucial components of global trade, stands on
the brink of a transformative leap towards autonomous shipping, a shift often referred to as
"Shipping 4.0." (Lambrou & Ota, 2017). Over the last three decades, the automation levels in
merchant vessel operations have progressively increased. However, the current move towards
autonomous vessels promises to significantly impact the transportation of goods and the future
navigation and operation of ships. While the primary research emphasis to date has been on the
technical realization of more autonomous systems, largely through traditional risk assessments
and technical methodologies (Dreyer & Oltedal, 2019; Thieme et al., 2018), there exists a
growing need to explore the implications for human operators within the future landscape of
maritime transport.

2.1 Autonomous Ships and Shore Control Center (SCC)

Maritime Autonomous Surface Ships (MASSs) have emerged as a novel domain of vehicle
automation in recent years, bringing forth both fresh challenges and opportunities. The early
2010s witnessed a momentous shift towards the digital evolution of the maritime industry. This
shift emphasized the automated integration of real-time data into the decision-making process
(Sullivan et al., 2020). A landmark initiative in autonomous shipping was the Maritime
Unmanned Navigation through Intelligence in Networks (MUNIN) project, spanning 2012—
2015 (Burmeister et al., 2014). In 2017, the Norwegian firms Yara and Kongsberg embarked
on a venture to develop the Yara Birkeland, a self-operating cargo vessel intended to serve three
ports in Southern Norway (Yara, 2018), with aspirations for complete autonomous functionality
by 2022. The advent of uncrewed Maritime Autonomous Surface Ships (MASS) promises
several advantages, including the expansion of operational capabilities, such as accessing
challenging and remote areas, and ensuring the safety of operators by removing them from
hazardous environments (Ahvenjirvi, 2016; Norris, 2018). Insights from the MUNIN project
highlighted that a variety of tasks, from adjusting shipping routes due to weather conditions or
potential collisions to monitoring engine conditions for failures, could be managed by
automated systems on uncrewed MASS.

The evolution of Maritime Autonomous Surface Ship (MASS) operations is set to focus on
minimizing onboard crew numbers while enhancing land-based coordination and control
mechanisms. This strategic shift introduces the Shore Control Center (SCC) as a primary
solution. The SCC addresses the emerging requirement for centralized supervision,
encompassing monitoring, and intervention tasks across MASS fleet operations. The Shore
Control Center (SCC) plays a key role in supervising the operations of one or several
autonomous ships from a remote location, enabling intervention in their navigation when
required. An example of such a Shore Control Center (SCC) is depicted in Figure 2. The term
"autonomous" in this context does not imply complete independence of the vessels; instead, it
refers to a spectrum of autonomy within the ship’s control system that falls short of full
autonomy. According to the International Maritime Organization’s (IMO) classification (IMO,
2018), at automation Levels 2 and 3, the level of automation onboard is insufficient for the
vessels to navigate without human supervision. Consequently, the necessity arises for these
vessels to be monitored and, when needed, remotely controlled, ensuring safe and efficient
maritime operations. In future Shore Control Centers (SCC), the interaction between humans

7



and machines is anticipated to be the most critical element. Establishing a strong connection
between the operator and the automation system becomes an important aspect of safe and
effective operation. Fundamental to this interaction is the prerequisite of trust in both the system
and the automation itself (Dybvik et al., 2020). Trust in Automation (TiA) will be elaborated
in more detail further in this dissertation.

Figure 2, A concept of Shore Control Center (SCC) at University of South-Eastern Norway (USN) research park,
Photo taken by Mehdi Poornikoo, all rights reserved.

A general conceptual framework illustrating the interaction between a Shore Control Center
(SCC) operator and Maritime Autonomous Surface Ships (MASS) within a highly automated
maritime environment is presented in Figure 3. The framework is structured into several layers
that collectively represent the cognitive and operational dynamics of supervising autonomous
vessels. At the top of the framework, the operator's cognitive processes indicate the central role
of human cognition in monitoring and decision-making processes. This emphasizes that the
operator's cognitive abilities, such as perception, attention, and problem-solving, are crucial in
managing the operation of autonomous vessels. Directly below the operator, various
automation levels specify the spectrum of automation within MASS operations. This spectrum
ranges from fully manual control to semi-autonomous systems requiring significant human
input, and to fully autonomous operations where human intervention is minimal. The Level of
Automation (LOA) influences how the operator interacts with the system and the extent to
which they need to monitor and make decisions. The concept of Level of Automation (LOA)
will be further expanded in the subsequent sections. The information necessary for effective
vessel supervision and control is showcased through an interface setup consisting of multiple
screens. The operator interacts with the MASS, and accesses real-time data, navigational charts,



RADAR information, system statuses, and other critical operational information via the
interface displays. The interface also serves as the primary tool for the operator to maintain
situational awareness and execute control commands when necessary. Communication
channels (e.g., satellite, 5G network) between the SCC and the autonomous vessels are crucial
for transmitting commands, receiving updates, and ensuring that the vessels operate according
to plan which enables continuous and reliable data exchange between the SCC and MASS.
Lastly, tasks and operations involve the capabilities of the vessels and the tasks they perform
independently, or guided by the supervision and intermittent interventions from the SCC. In
task execution and operational capability, autonomous maritime systems are distinguished by
their integration of ‘perception and control’ components. Perception components encompass
ship positioning systems, RADAR, and additional sensors that survey the maritime
environment. Control components involve mechanisms such as propulsion and steering
systems. Specifically, ship maneuvering is significantly enhanced by azimuth thrusters, which
combine an engine (often electric) with a propeller in a pod below the waterline. These thrusters
can rotate freely by 360 degrees, allowing the ships to navigate narrow ports efficiently and
safely (Thombre et al., 2020). Furthermore, the integration of Global Navigation Satellite
System (GNSS) positioning with control systems into what is known as Dynamic Positioning
(DP) systems enables vessels to neutralize environmental forces. This technology allows for
the maintenance of precise positioning and heading, enabling ships to remain at or return to
their operational stance without anchorage, or to maintain a steady course against the challenges
posed by wind and waves. Despite the advancement of control systems, integrated perception
systems suitable for autonomous maritime operations are still in the developmental phase
(Thombre et al., 2020). Hence, a need for human operators to supervise and share control of the
vessel becomes fundamental. That said, the primary focus in this dissertation is Human-
Automation Interactions (HAI) which mainly involves the first three layers in the conceptual
framework (Figure 3), including the operator’s cognitive factors (here, Trust in Automation
(TiA)), the level of automation, and the status of the automation and environmental factors
received and perceived via interface displays.

Maritime Autonomous Surface Ships (MASS) may operate across a spectrum of automation
levels, ranging from direct human control to fully autonomous operations where human
intervention is presumably unnecessary. However, as discussed earlier, it is anticipated that a
human operator will oversee the operations of uncrewed MASS, even at higher automation
levels, ensuring a fallback mechanism in scenarios where the automated systems encounter
difficulties or unpredictable situations (Abilio Ramos et al., 2019; Dybvik et al., 2020; Porathe
et al., 2018; Sterkersen, 2021). The human operator's role transition from direct engagement to
supervisory control is expected to introduce new challenges (Mallam et al., 2020). In other
words, the shift from Human-In-The-Loop (HITL) configurations, where human operators
directly input commands and make decisions, to Human-On-The-Loop (HOTL) systems, where
the human role is primarily to monitor the automated processes, may potentially exacerbate
issues stemming from human operators' propensity for suboptimal monitoring (Nahavandi,
2017; Parasuraman & Riley, 1997).
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Figure 3, A conceptual framework of SCC operator and MASS operation.

The risk of monitoring lapses, compounded by an overreliance on automation, can lead to
decision-making errors, resulting in incidents or accidents (Parasuraman & Riley, 1997). To
mitigate these risks, it has been proposed that keeping human operators engaged through active
monitoring of ship performance, weather conditions, engine functionality, and communication
systems could help maintain operator alertness and early problem detection (Porathe et al.,
2020). Nonetheless, the challenge remains that prolonged periods of uneventful and ordinary
operation, especially in open waters, might lead to operator disengagement and a passive
monitoring stance. This disengagement poses significant risks, as re-engagement or 're-looping'
of the human operator during emergencies could be delayed, critically affecting response times
and operational safety (Parasuraman, 2000).

With this maritime background in mind, the next section reviews the general concepts of
autonomy, automation, and Human-Automation Interaction (HAI).
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2.2 Autonomy, Automation, and Human-Automation Interaction
(HAI)

The terms autonomy and automation are often used interchangeably (Relling et al., 2018).
Autonomy, often associated with the notion of free will, manifests differently across various
disciplines. In psychological terms, autonomy refers to an individual's capacity for self-
governance and decision-making free from external influence (Wellman et al., 1992). In an
engineering context, artificial autonomy implies providing machines and technologies with
self-directed operational capabilities (Ziemke, 2008). The application of autonomy within
engineering and automation technology typically revolves around the ability of systems to
execute tasks independently of human intervention. Beer et al. (2014) propose a definition of
autonomy as the degree to which a system is capable of conducting its processes and operations
autonomously, without the need for external control. This general definition can encompass the
autonomous functions of both biological entities, such as humans, and non-biological systems,
including robots and machines (Albus & Antsaklis, 1998). Within the context of robotics,
autonomy is the measure of a robot’s ability to perceive its environment, formulate plans based
on this perception, and execute actions to achieve specific objectives that are either assigned or
self-generated, all while operating independently of external control (Beer et al., 2014).

Automation on the other hand, a term introduced in the 1950s (Diebold, 1952), is often defined
as a “device or system that accomplishes (partially or fully) a function that was previously, or

managing advanced cockpit systems to operating simple devices such as an automated coffee
machine. The difference between automation and a machine is that automation involves
executing functions that may also be performed by humans, whereas a complete and enduring
transfer of a function to a machine is characterized as a machine operation (Parasuraman &
Riley, 1997). With technological advancements, tasks that once necessitated human
intervention, such as starting a vehicle or activating its Anti-lock Braking System (ABS), have
now become standard machine operations managed by the machine itself (Adams et al., 2003).

While automation is fundamentally designed to facilitate human activities, humans typically
maintain a role within the broader system. These collaborative entities, where humans and
automation work together, are referred to as joint human-automation systems or human-
computer systems (Johannsen, 1997), representing Licklider's (1960) vision of human-machine
symbiosis, with practical applications in complex environments such as air traffic control and
warehouse management (McBride et al., 2011; Rovira & Parasuraman, 2010). Human Factors
and Ergonomics (HFE) research is dedicated to analyzing and enhancing the interplay and
interactions between humans and automation, with a particular focus on task allocation and
determining various degrees of automation.

2.3 Level of Automation (LOA)

Understanding the multifaceted interactions between humans and automation systems
necessitates a theoretical framework, often facilitated by the development of models and
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taxonomies. Fitts' (1951) seminal work was among the earliest to address the distribution of
functions between humans and machines, advocating for a system-oriented approach where
tasks are allocated based on the comparative strengths of human and machine capabilities.
However, this early taxonomy did not fully embrace the dynamics of interaction and shared
control, where tasks could be collaboratively managed or alternated between humans and
machines based on situational demands. Various frameworks and systems for classifying levels
of automation (LOA) have been introduced over the years. Sheridan and Verplank (1978) laid
the groundwork by devising a 10-point scale that defined higher and lower LOAs based on the
extent of autonomy. Their approach detailed the division of tasks and feedback communication
between humans and automated systems, though it primarily focused on decision-making and
action execution stages, somewhat overlooking the distinctions between the initial stages of
information acquisition. In response to this, Endsley and Kaber (1999) refined this model to
incorporate a more detailed examination of how automated systems gather and process
information before making decisions. Their revision introduced a structured categorization of
automation functions into four main activities: monitoring, generating, selecting, and
implementing, thereby offering a more developed view of the automation process.

Parasuraman et al. ( 2000) developed a model that echoed Endsley and Kaber's emphasis on the
varying degrees of automation. Their framework provided a structured approach to categorize
human-automation interactions based on a multi-stage model of human information processing.
This taxonomy identifies four primary #ypes of automation, relating to different stages of
information processing: (1) information acquisition, where automation assists in filtering and
focusing attention on relevant external information, (2) information analysis, where it helps in
integrating and interpreting information, (3) decision and action selection, where automation
contributes to determining and selecting appropriate actions based on analyzed information,
and (4) action implementation, where it executes the chosen actions. Each type encompasses a
spectrum of automation /evels, from entirely manual to fully automated processes, as illustrated
in Figure 4.
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Figure 4, Systems with different types and levels of automation, adapted from Parasuraman et al. (2000)

In this model, the initial stage (i.e., information acquisition) plays a focal role in capturing and
processing sensory input. This phase augments human sensory abilities, facilitating the
monitoring of various environmental parameters. It encompasses technologies that gather
environmental data, such as radar systems and thermal imaging devices. When automation
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reaches advanced stages of information acquisition, it has the capability to sort and prioritize
this sensory data, similar to how a Vessel Traffic System (VTS) or Air Traffic Management
System (ATMS) sequences vessels and aircraft (Sheridan et al., 2002). Subsequently, the
information analysis phase of automation undertakes functions that parallel human cognitive
activities, notably those associated with working memory. In this phase, the automation system
might produce predictions, merge diverse data inputs, or condense information for presentation
to the user. Distinct from the acquisition phase, this analysis phase actively interprets and
processes the data. In the decision-selection phase, automation assumes the role of choosing
between different decision-making alternatives. Such systems may, for instance, determine
optimal flight paths for aircraft to evade bad weather (Ng et al., 2009; Xie & Zhong, 2016),
route planning under different tidal conditions in maritime navigation (Pan et al., 2021), or
assist medical professionals by suggesting possible diagnoses (Thanh et al., 2017). The final
phase, action implementation, involves automation executing the selected decisions. This could
entail completing an entire task or its constituent parts, such as the autopilot feature in ship
operation.

Parasuraman et al. (2000) further recommended a series of iterative procedures (Figure 5) to
utilize the proposed framework for automation design. The framework aimed to determine the
degree to which tasks should be automated, considering the effects on human operators and the
automation system itself. The process begins by selecting a preliminary level of automation for
each category, which is then assessed using primary evaluative criteria related to human
performance outcomes. If required, adjustments are made to the automation level based on this
assessment. For example, a decision support system at a fundamental level of automation would
be assessed against primary criteria such as human workload and situational awareness, which
might necessitate adjustments to the automation level to mitigate workload. Following this,
secondary criteria such as the dependability of automation and the implications of decision
outcomes are assessed, potentially leading to further calibration of automation levels. This
evaluative cycle is systematically applied to each category of automation, ideally ensuring that
the end result is a harmonized blend of human and automated processes. Furthermore, it
facilitates the identification and resolution of design challenges by determining the optimal
levels or spectrum of automation.
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Figure 5, Application of levels and types of automation, adapted from Parasuraman et al. (2000)

Today, the use of taxonomies for levels of automation (LOAs) is prevalent in scholarly
literature, primarily for their ease of understanding and as a foundation for further design
considerations. These taxonomies have recognized the varied nature of automation support, yet
their application across different domains requires more specificity and clarity (Poornikoo &
Overgard, 2022). Recently, Vagia et al. (2016) reviewed the existing LOA taxonomies and
reported a lack of consensus on the definitions and levels of automation. Originally devised for
task-oriented and functional operations (Endsley & Kaber, 1999; Endsley & Kiris, 1995; Riley,
1989; Sheridan & Verplank, 1978), the taxonomies are now employed by policy organizations
and classification bodies to categorize end products of manufacturing processes. For example,
the taxonomy by the Society of Automated Engineers (SAE, 2014) delineates five automation
levels for vehicle driving modes, focusing on operational and tactical tasks such as steering and
environment monitoring. This taxonomy aims to support manufacturing technology
classifications, future design initiatives, and inform road traffic regulations. Similarly, the
maritime sector has developed several taxonomies for maritime autonomous surface ships
(MASS) as shown in Figure 6, indicating degrees of autonomy and categorizing autonomous
vessels not merely by automated tasks but as advanced, complete systems. This has resulted in
the application of LOAs becoming quite context-specific, with interpretations varying based on
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the industry rules and standards, as well as the analytical level. Furthermore, the prevailing
levels of automation for MASS primarily focus on navigational functions as the benchmark for
determining the ship's level of autonomy. However, according to the International Maritime
Organization's (IMO) description of MASS, an autonomous ship is characterized by its capacity
to function to varying extents without human intervention (IMO, 2018). This definition implies
that an autonomous ship’s functionality extends beyond mere navigation to include a wide
range of critical operations such as maintenance, cargo management, anchoring, etc. Poornikoo
and Overgird (2022) outlined the general limitations of the existing LOA taxonomies from an
operational perspective and offered a simulation-based model for LOA.
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Figure 6, Levels of Automation/Autonomy for MASS

2.4 Supervisory Control

For a long time, the addition of automation in systems was viewed as simply replacing human
tasks with machine operations, a concept referred to as the substitution myth (Woods & Dekker,
2000). However, this view is a limited and inadequate representation of the true impact of
automation. Automation technology significantly transforms human practices, compelling
individuals to adjust their skills and routines (Dekker & Woods, 2002). Particularly noteworthy
is the shift in the role of the human operator. Given the current state of technology, automation
lacks the capacity for "intelligent" adaptability in unforeseen situations, which necessitates
human supervision and, at times, direct intervention. The operator now primarily monitors the
system's actions, comprehends these actions, looks out for deviations and failures, and
intervenes when necessary (Moray et al., 1986; Sheridan, 2017, 2021; Sheridan et al., 1978).
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This shift features an irony; while designers aim to reduce the operator's active role, they still
rely on the operator for tasks that cannot be automated (Bainbridge, 1983).

The concept of human supervisory control is similar to a human supervisor interacting with
subordinates. Just as a supervisor issues instructions that subordinates interpret and execute,
translating complex information into actionable tasks, automation enables similar dynamics
between humans and machines (Sheridan, 2021). The level of automation delegated by the
supervisor to their subordinates—or in this case, to automated subsystems—is influenced by
the perceived intelligence of those executing the tasks, affecting both the depth and the duration
of the commands given. This form of supervisory control spans a wide array of applications,
including the management of vehicles such as aircraft, spacecraft, and maritime vessels, control
of continuous processes including oil, chemical, and power generation industries, and
supervision of robots and discrete manufacturing tasks. It also extends to medical systems,
home automation technologies (e.g., heating and appliance management), and various other
domains where human-machine interaction is focal. At its core, human supervisory control,
sometimes simply referred to as "supervisory control", involves human operators intermittently
setting goals for computers that manage internal control loops via electromechanical actuators,
tasks, and feedback sensors (Sheridan, 2021). In a more expansive view, supervisory control
encompasses any interaction with a computer interface that modifies data or generates control
actions as shown in Figure 7.

Human
Operator

Display Controller

Computer

Sensor Actuator

Task

Figure 7, Concept of Supervisory Control (Sheridan, 2021)

The roles of a human supervisor in supervisory control systems encompass several key
functions including: (1) offline planning of tasks and procedures, (2) instructing the computer
based on the plan, (3) online monitoring of automated actions to ensure alignment with the plan
and to identify any failures, (4) intervening either post-achievement of goals or during

16



emergencies to establish new objectives and procedures, and (5) learning from these
experiences to improve future task execution. These roles typically follow a sequential timeline
within the performance of a task (Sheridan, 2021), and may also incorporate varying levels of
computer assistance (i.e., LOAs) in both information acquisition and control execution.

2.5 Complacency and Automation Bias

While automation holds significant promise, it also poses the risk of negatively altering operator
behavior (Parasuraman & Riley, 1997). Two notable issues, complacency, and automation bias
are extensively examined in human-automation interaction (HAI) research. Complacency arises
from excessive reliance on automation, leading to insufficient verification of system states or
the underlying data. Consequently, human performance suffers when automation fails
(Wickens et al., 2015). This concern is particularly relevant to highly reliable yet imperfect
automation systems. For instance, Bagheri and Jamieson (2004) found that in multitasking
environments, operators were less adept at detecting system malfunctions when automation was
deemed highly reliable. Operators may preferentially attend to tasks not supported by
automation, neglecting those aided by it, despite competing demands for their attention.
Although this strategy may seem logical (Moray & Inagaki, 1999), it has been shown to lead to
miss of critical safety information (Metzger & Parasuraman, 2005).

Automation bias manifests when operators depend on incorrect guidance from automated aids,
leading to a decline in decision-making performance (Wickens et al., 2015). Automated alert
systems, such as collision warnings in maritime or the Traffic Collision Avoidance System
(TCAS) in aviation, are designed to enhance human cognitive processes during high-risk
situations by issuing alerts or recommendations. However, despite the fallibility of such
systems, operators frequently evade full data analysis, resulting in less-than-optimal decisions
(Mosier et al., 1998; Mosier & Skitka, 1999; Rovira et al., 2007).

Automation bias and complacency play a critical role at each stage of information processing
and levels of automation. They manifest as insufficient system status monitoring or an over-
reliance on automation, overlooking additional information that could influence decision
accuracy (Yamani & Horrey, 2018). Rovira et al. (2007) observed that as the level of
automation increased (i.e., from providing a list of possible options to recommending the
singular best action), operators' decision-making accuracy deteriorated. These issues suggest a
direct relationship between the complacency and automation bias induced by automation and
the ineffective strategy of operators in allocating attention and prioritizing tasks. In a similar
fashion, the remote supervisory control of MASS may potentially introduce new challenges, as
humans can be relatively ineffective at sustained monitoring tasks (Nahavandi, 2017;
Parasuraman & Riley, 1997). Subpar monitoring of automated systems can result from an
operator's excessive reliance on the system, which can lead to decision errors and consequently,
incidents and accidents (Parasuraman & Riley, 1997). Empirical studies suggest that behavioral
reliance on automation is strongly influenced by the level of trust that users have in the
automation system. Trust shapes the human operator's readiness to delegate responsibilities to
automated systems and determines the extent and frequency of interventions in automated
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processes. Trust also guides the operator's acceptance of suggestions made by the automation
(Lee & See, 2004). Operators tend to depend more on automation systems that they trust to be
reliable and effective (De Vries et al., 2003; Lee & Moray, 1992; Merritt, 2011; Merritt & Ilgen,
2008; Wang et al., 2009). Consequently, the reliance behavior that the human supervisor adopts
has a profound impact on both mission outcomes and overall system performance (Clare, 2013;
Gao et al., 2013). Mallam et al. (2020) conducted interviews with maritime subject matter
experts, revealing that trust is a predominant theme when assessing the potential impact of
autonomous shipping. Considering the significant role that Trust in Automation (TiA) plays in
the performance of joint human-automation systems, the next section reviews the implication
of TiA in human-automation interaction (HAI), its facets, dynamics, and models.

2.6 Trust in Automation (TiA)

Trust is widely regarded as a psychological construct, related to expectation and anticipation of
reliable actions of another party (de Vries, 2005). Trust is also perceived as a multi-faceted and
dynamic phenomenon (Atoyan et al., 2006; Dzindolet et al., 2003).

Trust in Automation (TiA) originated from early theories that drew parallels with the
psychological understanding of interpersonal trust (Muir, 1994a; Muir & Moray, 1996). Similar
to interpersonal trust, TiA contains a sense of risk or vulnerability from the trustor's perspective,
demanding a foundational level of trust for its development (Corritore et al., 2003; Evans et al.,
2011; Evans & Krueger, 2011; Lee & Moray, 1994; Lee & See, 2004). This is because, in
dynamic and urgent scenarios, individuals interacting with automated systems may struggle to
perceive and analyze all essential details necessary for effective situation management (Moray
et al., 2000). Under such circumstances, they must operate under risk and uncertainty, lacking
comprehensive knowledge of all relevant aspects to accurately assess the situation (Rajaonah
et al., 2006). Despite debates on the similarities and differences between interpersonal trust and
TiA (Madhavan & Wiegmann, 2007), the importance of Trust in Automation (TiA) has become
a central point in Human-Automation Interaction (HAI) research to bolster joint system
performance (Lee & Moray, 1992; Lee & See, 2004; Muir, 1994a; Muir & Moray, 1996).

Various definitions of TiA (e.g., Table 1) converge on the premise that TiA embodies a belief,
attitude, or expectation in the automation's capability to fulfill its intended task. Thus, TiA
emerges through a continuous process of aligning expectations with actual observations of
automation performance, especially in contexts where the user bears a significant risk (Kenesei
et al., 2022; Li et al., 2019; Muir, 1994a; Sheridan & Hennessy, 1984).

Table 1, Definitions of Trust in Automation (TiA)

Parties involved

Definition Nature of trust Trustor Trustee

Muir (1987) "...the intervening variable [between Intervening variable Supervisor Automation
the automation and the supervisor’s
responses to the automation] that
mediates supervisors’ intervention
behavior."
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Mayer, Davis, and  “the willingness of a party to be Expectation Trustor Trustee
Schoorman (1995,  Vulnerable to the actions of another
p.712) party based on the expectation that
T the other will perform a particular
action important to the trustor,
irrespective of the ability to monitor
or control that other party”.
Moray and “...an attitude which includes the Attitude, Belief Human Collaborator
Inagaki (2000) belief that the collaborator will
perform as expected, and can, within
the limits of its designers’ intentions,
be relied on to achieve the design

goals”
Madsen and “the extent to which a user is Confidence User Intelligent
Gregor (2000) confident in, and willing to act on the Agent

basis of, the recommendations,
actions, and decisions of an
artificially intelligent agent.”
De Vries (2005) “...the expectation of a user about the ~ Expectation User System
system, that the system will perform a
certain task for him or her, while the
outcome of that task is uncertain, in
that it can have both positive and
negative consequences’”’
Lee and See “the attitude that an agent will help Attitude Individual Agent
(2004) achieve an individual’s goals in a
situation characterized by uncertainty
and vulnerability”
Biros et al. (2004)  “...having confidence in and Confidence Human System
entrusting the system automation to
do the appropriate action”

Automation

Rajaonah et al. “...a psychological state resulting Psychological state Operator Automation
(2006) from knowledge, beliefs, and based on knowledge,
assessments r.elated to the decision- beliefs and assessments
making situation, that creates
confident expectations for human
machine system performance and
guides operator reliance on
automation ”
Madhavan and “...the expectation of, or confidence Expectation One party Another party
Wiegmann (2007)  in, another and is based on the
probability that one party attaches to
co-operative or favorable behavior by
other parties ”

Confidence

Applied to Maritime Autonomous Surface Ships (MASS), trust becomes a critical factor as the
operator transitions from an active contributor in direct navigation and control to a more passive
monitoring role. While the operator can, in theory, always intervene and undertake manual
control, the fundamental principle of autonomous maritime operations does not mandate such
interventions during standard operations. When a system limitation is detected, the operator is
alerted through a clear notification, compelling them to manually take over the navigation and
control of the ship within a predetermined period. In such a scenario, trust serves as a mediating
factor in the interplay between the automation and its use. This mediating variable can be
studied from two perspectives: Trust as a consequence of various influences (trust factors), and
trust as a precursor that shapes subsequent reliance on the automation (Masalonis &
Parasuraman, 1999).

19



2.6.1 Trust as Consequence (Trust Factors)

Trust can be influenced by a variety of factors, generally categorized into elements related to
the automation, the operator, and the environment. Comprehensive discussions of these factors
can be found in the studies and meta-analyses by Merritt and Ilgen (2008), Schaefer et al.
(2016), Schaefer et al. (2014)), Hancock et al. (2011), Lee and See (Lee & See, 2004), and Hoff
and Bashir (2015). An overview of the prominent factors is discussed in the following section.

2.6.1.1 Automation-related factors

Trust is significantly influenced by the automation's characteristics. Some of the main
characteristics include:

A. Automation performance (reliability)

The level of trust users place in automation is significantly influenced by the automation's
performance. A reliable automation fosters greater trust and is subsequently more frequently
utilized (Muir, 1994a; Muir & Moray, 1996). Automation reliability, also referred to as system
competence (Muir, 1987), is characterized by the system's consistent performance. This
performance level directly correlates with the trust users place in the system, to the extent that
users may prefer automation over their own capabilities for operating a system (Merritt et al.,
2013). The expectation and actual reliability of a system are key in forming Trust in Automation
(TiA) (de Vries, 2005; Kazi et al., 2007; Moray et al., 2000). The consistency of system
reliability plays an important role in its predictability and perceived trustworthiness; systems
that demonstrate stable reliability are deemed more predictable and, therefore, more trustworthy
(Muir & Moray, 1996; Parasuraman et al., 1993). Additionally, trust is subject to the primacy-
recency effect, where initial low reliability can lead to a long-term lack of trust and usage
(Atoyan et al., 2006).

B. Automation predictability and transparency
The predictability of a system is closely linked to its perceived reliability and the consistency
of its performance. The expectation of a system's predictability, as suggested by Muir (1987),
is considered an essential factor impacting trust. Predictability is intertwined with the system's
transparency; because a system's actions and intentions must be understandable and logically
explicable to users for its behavior to be anticipated. Ososky et al. (2014) define system
transparency as the extent to which the actions and intentions of a system are visible and
comprehensible to human operators. Achieving this may involve designing automation that
behaves in a manner akin to human decision-making or creating systems capable of articulating
their processes and reasoning to users (Ghazizadeh et al., 2012; Sarter & Woods, 1997; Seppelt
& Lee, 2019). The lack of feedback and transparency on automated processes is a common root
cause of automation-related accidents (Norman, 1989). Endsley & Kiris (1995) articulate the
challenge for designers in providing sufficient feedback to keep the operator informed without
causing information overload. Transparency in automation, therefore, is crucial, enabling
operators to understand the automation's functioning or failure. Simpson et al. (1995) argue that
trust in a system is contingent upon its ability to demonstrate competent performance and enable
predictions of its reliability. Transparency also facilitates the formation and updating of mental
models about the system (Matthews et al., 2020; Miller, 2021), preventing unexpected
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automation behaviors and clarifying the system's limitations or errors. The ability of automation
to self-explain, especially during errors, enhances trust and reliance (Dzindolet et al., 2003).

C. System malfunction (Faults/errors/failures)

Faults or system malfunctions tend to erode trust, with the effect varying based on the failure's
severity and frequency. The larger the fault, the more significant the reduction in trust (Moray
1992). However, if automation provides a suboptimal performance that does not result in an
absolute and significant fault, this may reduce the negative impact on trust, as observed in Lee
and Moray’s (1994) study where a constant fault resulted in increased TiA as participants
accustomed to the fault and established compensation strategies. The type of fault also plays a
role, with false alarms primarily affecting operator compliance and ‘misses’ impacting reliance
(Dixon et al., 2007). Trust typically experiences a significant decline following errors and
recovers slowly, even if system performance is promptly restored (Lee & Moray, 1992). The
consequence of a fault may be just as crucial as its magnitude in affecting trust. Masalonis et
al. (1998) found that trust was lower when an automated aid failed to notify supervisors about
a possible aircraft encounter compared to when it issued a false alert.

The literature indicates that foreknowledge of potential system faults can mitigate their negative
impact on trust, suggesting the importance of system transparency over its actual performance
(Beggiato & Krems, 2013; Dzindolet et al., 2003; Riley, 1996). A predictable system, even with
ongoing minor errors, can still be used and trusted if users understand its limitations and
behavior (Lee & Moray, 1992; Ma, 2005; Muir & Moray, 1996). However, discrepancies
between users' expectations and system performance can negatively affect trust, even if the
automation operates as designed (Lee & See, 2004). Madhavan et al. (2006) found that the
perceived difficulty of a task could also influence trust in automation, with failures in seemingly
simple tasks being particularly damaging to trust.

D. Level of Automation (LOA)

The level of automation which spans from minimal assistance to complete autonomous,
substantially affects the user's trust. Walliser (2011) noticed that the automation level impacts
the operator's trust calibration, as well as their performance during system errors. Higher LOA
have been associated with longer response times to system failures compared to lower levels
(Niederée et al., 2012a, 2012b; Shen & Neyens, 2014). While lower LOA necessitates user
vigilance for system errors, higher levels, though less prone to expected errors, may still
surprise users with unexpected behaviors, potentially undermining trust.

2.6.1.2 Operator-Related Factors

Trust in automation extends beyond the technical features of the system and is profoundly
shaped by an individual's subjective interpretation of these characteristics (Lee & See, 2004).
Merritt and Ilgen (2008) found that a person's perception of automation is shaped by both the
actual features of the automation and their natural tendency to place trust (trust propensity) in
automation.

A. Demographics
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In terms of demographic attributes, culture, age, gender, and personality have been identified
as key factors influencing trust (Hoff & Bashir, 2015). Research has demonstrated variations
in the interaction and trust levels with automation across different cultures (Heimgértner, 2007,
Hoff & Bashir, 2015). Sanchez et al. (2014) suggest that, at the onset of interaction with an
automated system, older individuals tend to exhibit lower reliance on the automation, aligning
their trust levels more closely with the system's reliability changes. However, a recent study by
Hartwich et al. (2019) explored the relationship between age groups and trust in automated
driving systems, revealing no notable variances across different age groups. Similarly, the
influence of gender on trust in automated systems has not yet reached a conclusive agreement
in the literature (Hoff & Bashir, 2015).

B. Personality traits

In the context of personality traits, the Five-Factor Model of Personality (John & Srivastava,
1999; McCrae & John, 1992) has been frequently used in examining how general traits relate
to trust. Specifically, extraversion is reported to be positively correlated with higher levels of
interpersonal trust (Evans & Revelle, 2008), a trend that extends to trust in automated systems
(Merritt & Ilgen, 2008). In contrast, neuroticism typically shows a negative correlation with
interpersonal trust and may influence skepticism towards automation, as inferred from studies
on acceptance of automated recommendations (Szalma & Taylor, 2011). Further, traits such as
agreeableness and conscientiousness have been found to positively affect the initial trust
individuals place in automation (Chien et al., 2016), suggesting that these personality traits may
significantly influence one's propensity to trust automated technologies.

C. Experience

Experience with automated systems can influence trust, as individuals form expectations about
these systems based on their observed reliability. Muir (1994) posits that expert operators,
familiar with system intricacies, are less likely to exhibit confirmation bias compared to novice
users. However, Riley (1994) found that automation experience did not significantly alter the
relationship between workload, automation reliability, and usage, suggesting that further
investigation is needed, particularly in high-fidelity simulations and in testing the hypothesis
on the persistence of belief relative to experience. Research by Sanchez et al. (2014)
demonstrated that the effect of low system reliability on trust varies according to the user's level
of familiarity with the system. Additionally, findings by Manzey et al. (2012) suggest that
negative experiences with an automated system have a more profound impact on trust than
positive experiences. Therefore, both the quantity and quality of interactions with a system play
vital roles in shaping the degree of trust and reliance placed on it.

2.6.1.3 Environmental-Related Factors

Environmental factors influence the relationship between trust and interaction with automated
systems, though they may not directly impact trust. Hoff and Bashir (2015) highlighted that the
unfamiliarity of a situation, along with the degree of autonomy afforded to the operator, and
the operator's capacity to evaluate automated versus manual execution can impact the
relationship between trust and reliance on automation. In scenarios where individuals have the
opportunity to assess and confirm the automation's accuracy, trust is more likely to dictate
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reliance on the automation. Moreover, the perceived advantages and potential risks associated
with employing automation, alongside task requirements and the operator's workload, play
important roles in shaping this dynamic.

2.6.2 Trust as Precursor (Trust outcomes): Automation Misuse, Disuse, and
Abuse

Automation misuse and disuse, examined by Parasuraman and Riley (1997), encapsulate
common trust outcomes in human-automation interaction. Misuse or “overreliance on
automation” (Parasuraman and Riley 1997, p. 230) is characterized by an uncritical reliance on
automation, often leading to its overuse, and stems from two main factors: automation bias and
complacency. Both factors contribute to insufficient monitoring due to diminished human
engagement (Parasuraman & Manzey, 2010; Parasuraman & Riley, 1997). Automation bias,
the predisposition to accept automated feedback as accurate, emerges from the human
inclination towards minimizing cognitive effort, thereby preferring to trust automation's
correctness (Dzindolet, Beck, et al., 2001; Dzindolet, Pierce, et al., 2001; Goddard et al., 2014;
Mosier et al., 1998; Skitka et al., 1999, 2000; Wang et al., 2008). Complacency manifests when
monitoring is suboptimal, adversely affecting the performance of the joint system. This
tendency is exacerbated in high-workload and high-stakes environments, where users might opt
to depend on even flawed automation (Dixon et al., 2007; Wickens & Dixon, 2007).

In contrast to misuse, disuse occurs when the automation remains underutilized despite its high
reliability (Parasuraman & Riley, 1997). Automation disuse ranges from minimal use of
automation to complete reliance on manual operation. It often results from discrepancies
between expected and observed automation performance or when a user's confidence in their
own ability to perform a task surpasses their trust in the automation's effectiveness (Lee &
Moray, 1992).

When automation is employed in contexts beyond its intended design or in an inapplicable
situation, this refers to automation abuse (Parasuraman and Riley 1997). Such abuse can result
in system malfunctions and diminished performance of the automation. An example of this
could be the activation of automated lane-keeping in an urban driving setting, which is designed
specifically for highway use.

While the concepts of Trust in Automation (TiA) and its resultant outcomes are well-
established, a comprehensive review of the literature alongside recent empirical findings
suggests a more complex relationship between TiA and trust outcomes than previously
understood. This complexity suggests that predicting the outcomes of human-automation
interactions based solely on the level of TiA can be excessively simplistic. Instances have been
observed where users exhibit high levels of TiA yet opt for manual operations (Lee and Moray,
1992), or users under high workload conditions have been observed to misuse automation they
do not fully trust (Biros et al., 2004; Daly, 2002). Despite understanding the behavioral aspects
of TiA remaining crucial (Drnec, Marathe, Lukos, et al., 2016; Drnec, Marathe, Metcalfe, et
al., 2016), these findings suggest that the relationship between TiA and behavioral outcomes
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(e.g., the rate of intervention or attention levels) can better be perceived as a nonlinear dynamic
process.

2.6.3 Trust Development

Muir (1994) argues that TiA's development hinges on meeting three expectations during
interactions with automation. These are technical competence, persistence (which might be
more appropriately described as predictability), and fiduciary responsibility. Each of these
expectations plays a varying role in the evolution of TiA over the duration of automation usage.
Initially, the automation's perceived technical competence, or its ability to accurately fulfill its
designed functions, may be paramount. As time progresses, the focus may shift to other aspects.
Persistence, in this context, is closely tied to the automation's reliability; it is the anticipation
that the automation will consistently perform in a similar manner under comparable conditions
in the future. Fiduciary responsibility encompasses the user's expectation that the automation
will be accountable for the tasks it is designed to perform, thereby allowing the user to allocate
fewer personal resources to those tasks. The significance of these expectations in the dynamics
of TiA varies at different interaction phases with the automation.

Upon initial exposure to an automated system, human users often face a scarcity of information
to assess the system's trustworthiness. Early expectations of Trust in Automation (TiA) are
influenced by preconceived biases towards automation and initial impressions of the system's
design. These basic assessments initiate the development of TiA (Dzindolet et al., 2003; Lee &
See, 2004; Merritt, 2011; C. Miller et al., 2005; Muir & Moray, 1996; Nass et al., 1996; Pak et
al., 2012; Parasuraman & Miller, 2004). As users familiarize themselves with the system, they
experiment with different interaction strategies which facilitates a deeper understanding of the
system's capabilities. This exploration phase is critical for assessing the system's competence,
a key determinant of TiA in the beginning stage. Although, humans often struggle to accurately
estimate system competence due to various biases and limitations (Madhavan et al., 2006;
Merritt et al., 2014; Sheridan & Hennessy, 1984; Verberne et al., 2012), once a judgment on
system competence is formed—accurate or not—predictability or persistence in the system's
performance becomes the key factor in sustaining TiA over time. Consistent performance,
particularly with an error rate maintained at or below 30%, is generally claimed to be sufficient
for users to continue relying on the system (Wickens & Dixon, 2007). TiA evolves dynamically
as users accumulate experiences with the automation, influencing their interaction decisions
and subsequent behaviors.

2.6.4 Models of TiA

The conceptual understanding of trust has become more cohesive over recent years, yet there
remains no universally accepted definition nor model for Trust in Automation (TiA), likely due
to the situational specifics inherent to trust (Kohn et al., 2021). This absence of a singular model
implies that interpretations of trust may differ according to the objectives and theoretical
underpinnings chosen by each researcher, provided that these are explicitly integrated within
their conceptual framework.
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Muir (1987) introduced an initial model of trust, integrating three dimensions of expectations
based on Barber's (1983) research and three levels of experience, drawing from Rempel et al.
(1985). The model defines three dimensions of expectations encompassing persistence, which
is the belief in the stability of natural, physical, biological, and moral social orders; technical
competence, reflecting trust in the predictable actions of another agent; and fiduciary
responsibility, which is the anticipation that the trusted party will act in the best interest of the
trustor. These facets of technical competence intersect with personal experiences across
predictability, dependability, and faith levels, suggesting a perpendicular relationship between
the dimensions of expectations and experiences (Muir, 1994). Consequently, perceptions of an
automated system's persistence, competence, and responsibility are influenced by an
individual's prior experiences with the system (predictability, dependability, and faith), shaping
the trust they place in the technology. This trust may be accurately or inaccurately aligned with
the system's actual attributes. According to Muir (1994), trust in automation evolves from initial
reliance on the system's consistent actions to a deeper trust founded on perceived reliability
after extensive interaction. The ultimate level of trust, therefore, is founded on both empirical
evidence and a leap of faith beyond rational considerations (Adams et al., 2003). Further
investigations confirm that significant elements of trust in automation are encapsulated within
models of interpersonal trust (Muir & Moray, 1996). In a controlled setting, individuals
assessed their trust in a system based on its operational performance, corroborating Muir's trust
model and highlighting the nature of trust as influenced by the duration of system interaction
(Muir & Moray, 1996).

Lee and Moray (1992) extended the foundational ideas proposed by Muir (1994), incorporating
the constructs postulated by Barber (1983) and Rempel et al. (1985), but further enriching them
with additional contextual elements specific to their research. According to Lee and Moray
(1992), trust is initially grounded on basic beliefs about the nature and structure of society,
forming the bedrock upon which further aspects of trust are constructed. In this model, trust is
dissected into three primary components: performance, process, and purpose. The Performance
dimension reflects the observed and historical characteristics of an automated system, including
its reliability and predictability, essentially focusing on the outcomes of the system's actions.
Process delves into the suitability and methodology of the system's operations, providing
insight into the system's operational logic and procedural correctness. Lastly, Purpose considers
the original intent and application for which the system was designed, underpinning the
rationale behind its functionalities. In their empirical study on supervisory control, Lee and
Moray (1992) observed shifts in trust and control approaches as users interacted with an
automated processing unit. Their findings highlighted the significant roles played by system
performance and failures in shaping subjective trust levels, suggesting that these trust facets
(performance and process) significantly inform other trust dimensions such as predictability,
dependability, and faith.

Lee and See (2004) compiled theories and insights from diverse fields such as interpersonal
relationships, psychology, sociology, and organizational behavior to construct a comprehensive
model that elucidates the evolving nature of trust in interactions with automated systems.
Anchoring their discussion in the Theory of Reasoned Action (TRA) proposed by Fishbein and
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Ajzen (1975), they adapt its principles to the context of TiA. The TRA postulates that human
behavior is under volitional control and significantly shaped by behavioral intentions, which
themselves are the result of a combination of attitudes, beliefs, and societal norms. Behavioral
intention in this framework is seen as a reflection of the effort and motivation an individual is
willing to invest to enact a particular behavior. In this light, beliefs are interpreted as individual
perceptions regarding the likelihood that engaging with a particular object (e.g., an automated
system) will result in specific outcomes. These beliefs, informed by relevant information, shape
one’s attitudes towards the object, encapsulating evaluative judgments along dimensions such
as good-bad or pleasant-unpleasant. Unlike beliefs, which are situationally specific, attitudes
are broader and more stable evaluations that transcend specific contexts.

Adapting these concepts to the domain of automated technology, Lee and See (2004) proposed
that trust acts as a critical mediator in the relationship between users and automation,
influencing and being influenced by the interaction dynamics. This reciprocal relationship is
captured in their model (Figure 8), which outlines a closed-loop process where interaction with
automation feeds into trust, which in turn affects subsequent interactions. This interactive cycle
is modulated by external factors including environmental context, system characteristics, and
user traits. Lee and See (2004) elaborate on the concepts of detail and abstraction as they
pertain to the understanding and development of trust in automation. Defail pertains to the
granularity of trust, which might focus on specific elements such as the operational modes of
an automation system or the system as a whole. Abstraction, on the other hand, captures broader
considerations such as the system's overall performance, its operational processes, and the
objectives for which it was designed, following the earlier insights of Lee and Moray (1992).

Lee and See (2004) suggest that for trust to be accurately calibrated and deemed appropriate,
both the granularity (detail) and the broader context (abstraction) of the automation's
capabilities should be communicated effectively to the user. Importantly, the model
underscores the impact of how information is conveyed through the user interface, suggesting
that the nature and presentation of information can significantly influence trust dynamics in
automated systems. This conceptual framework offers a comprehensive understanding of trust
in automation, emphasizing its dynamic nature and the multifaceted influences that shape trust-
based behavioral decisions in dynamic decision-making scenarios involving automated
technologies. Lee and See's model made a significant contribution toward understanding the
psychological underpinnings of trust formation in automation. By positing that trust is dynamic
and influenced by an array of factors, the model offers an extensive perspective on trust in
automated systems. Since its introduction in 2004, the model has become a cornerstone for
discussions surrounding trust in automation, especially its conceptualization of trust as an
attitude-based phenomenon. Despite its widespread recognition, empirical validation of the
model's core principles remains limited. Moreover, the model's variables and their interrelations
within the trust formation process need clearer definitions and more precise explanations to
enhance empirical testing and theoretical utility.
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Figure 8, Trust in Automation and Reliance (Lee and See, 2004)

The development of trust in automated systems is multifaceted, encompassing a variety of
human internal characteristics, system features, situational dynamics, and environmental
factors (Hancock et al., 2011; Lee & See, 2004; Merritt & Ilgen, 2008). Drawing from a
comprehensive review of 127 studies on human-automation interaction, Hoff and Bashir (2015)
condensed these factors into a three-layered model that categorizes trust into dispositional,
situational, and learned dimensions, as illustrated in Figure 9.

Dispositional trust encompasses an individual’s inclination to trust automated systems,
influenced by stable personal characteristics such as demographics, cultural background, and
personality traits. This baseline level of trust predisposes a person's initial response to an
automated system, independent of specific interactions. Situational trust, on the other hand,
pertains to trust levels influenced by immediate external factors, including the complexity of
the task, environmental conditions, and situational demands. These elements affect the degree
to which trust influences reliance on an automated system, with considerations such as
workload and perceived risks or benefits of using the system playing crucial roles. Learned
trust pertains to trust that develops from personal experiences with a particular automated
system. This form of trust is dynamic and history-dependent, shaped by the user's direct
interactions with and evaluations of the system's performance. Hoff and Bashir (2015) further
categorize learned trust into initial and dynamic segments. Initial learned trust is based on pre-
existing knowledge and perceptions before interaction, influenced by factors such as past
encounters with similar technologies or the system’s reputation. Dynamic learned trust evolves
from continuous use, fluctuating in response to the system's performance over time.
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Hoff and Bashir's (2015) model represent an important synthesis in the field of trust in
automation, their work mainly outlines an overview of the factors at each layer. Moreover, this
model, much like Lee and See's (2004) work, has yet to be extensively validated through
empirical research.
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Figure 9, Three-layered model of Trust in Automation (Hoff and Bashir, 2015)

In addition to the aforementioned conceptual models, several computational and mathematical
models have been developed to offer a quantitative account of trust, some of which are
described here. Gao and Lee (2006) developed the Extended Decision Field Theory (EDFT), a
dynamic-cognitive framework aimed at explaining the evolution of preferences within
decision-making contexts under uncertainty. Utilizing an autoregressive model, EDFT
integrates past preferences and new information to estimate current preference shifts, mapping
the dynamics of trust and self-confidence in automation contexts. This model applies a
segmented function to formulate beliefs about automation capabilities versus manual control,
aligning with empirical observations on trust inertia and the interplay between trust, self-
confidence, and reliance on automation. Xu and Dudek (2015) explored the relationship
between trust and reliance through the Online Probabilistic Trust Inference Model (OPTIMO),
a Dynamic Bayesian Network designed to quantify an individual's trust level in robotic
teammates, suggesting reliance as a tangible measure of trust. Akash et al. (2017) proposed a
linear model defining trust evolution, which accounts for human biases influenced by past
experiences and expectations. This model quantifies trust adjustments based on the
discrepancies between current trust and experiences, cumulative trust, and expected biases,
addressing the challenge of applying these principles broadly due to its reliance on direct trust
inquiries from users. Yang et al. (2017) applied a first-order linear time-invariant system to
analyze how average trust in automation reaches equilibrium over repeated interactions.
Following this, Guo and Yang (2021) introduced a personalized trust prediction model using
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Bayesian inference and a Beta distribution to assess trust dynamics, acknowledging the model's
assumption on static automation capabilities and its impact-based dichotomy of automation
performance. Furthermore, Lewis and Weigert (2012) emphasize the significance of historical
feedback loops in developing trust relationships. Jonker and Treur (1999) further investigate
trust dynamics, emphasizing the reciprocal evolution of trust based on interactions. Manzey et
al. (2012) identified positive and negative feedback mechanisms influencing trust adjustments,
noting the disproportionately larger impact of negative experiences on trust recalibration

Up to this point, the dissertation has endeavored to deliver a detailed overview of the research
background and context. This includes an in-depth exploration of the theoretical constructs
central to the study, such as Supervisory Control, Levels of Automation (LOA), Trust in
Automation (TiA), and various TiA models. The extensive range of topics, concepts, and
theoretical frameworks underscore the inherent complexity of intertwining diverse subjects and
constructs. Significantly, given this dissertation's emphasis on the modeling facets of Human-
Automation Interaction (HAI), it becomes crucial to thoroughly comprehend the field and
disciplinary context within which this research is embedded. An integral part of this exploration
involves dissecting the nature of complexity and examining how models can effectively
navigate and address such complexity in the realm of HFE. The forthcoming chapter will delve
into the theoretical foundations of the dissertation, concentrating on the broad discipline of
Human Factors and Ergonomics (HFE). It will explore the historical evolution and defining
characteristics of HFE. This foundational knowledge will inform the subsequent evaluation of
existing models and modeling efforts within the field, as well as assess the appropriateness of
various modeling approaches in meeting the specific needs of the HFE discipline.
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3 Theoretical Grounding

3.1 Evolution of Human Factors and Ergonomics (HFE)

The discipline of Human Factors and Ergonomics (HFE) originated from the old idea of ‘fitness
for purpose' and progressed particularly in response to the design and operational challenges
posed by technological advancements in the 20th century (Green & Jordan, 1999; Meister,
2000). Throughout its history, the discipline has been known by various monikers, such as
human engineering and engineering psychology, though it is most commonly referred to as
'human factors' in the United States and 'ergonomics' in the United Kingdom and Europe
(Dempsey et al., 2000; Wickens et al., 2004). The term 'human factors' became prevalent in the
late 1940s, when the field's development was significantly influenced by psychology and
engineering (Meister & Enderwick, 2001). The emphasis was placed on human-centric design
and incorporating human considerations throughout the system design process (Sanders &
McCormick, 1998).

With tremendous progress during and post-World War II, Human Factors and Ergonomics
(HFE) began to flourish globally, finding practical applications across various industrial
contexts (Waterson & Eason, 2009). In the 1960s, the discipline secured a solid footing in both
academic circles and the industrial sector, progressing towards a more integrated relationship
with stakeholders in the civil, governmental, and industrial realms, including users and
practitioners. Internationally, HFE increasingly played a central role in shaping health and
safety regulations (Moray, 2008). This period marked a significant expansion in HFE,
characterized by advancements in consumer ergonomics, the establishment of standards, the
integration of automation and systems ergonomics, the rise of computing and technological
innovations, and the refinement of job and work design methodologies (Moray, 2008; Waterson
& Eason, 2009). The scope of consumer ergonomics broadened beyond seating solutions to
encompass a diverse array of consumer goods, ranging from household devices to kitchen
layouts and the design of hospital beds (Waterson & Eason, 2009).

During the 1960s, the contributions of Human Factors and Ergonomics (HFE) to computer
systems primarily revolved around the design of interface hardware, such as keyboards. It was
not until the advent of the personal computer (PC) in the post-1970 era that comprehensive
empirical studies began to focus on computer software (Meister, 1999). The rise of interactive
computing brought to the forefront a multitude of human-centric issues, prompting ergonomists
to actively engage in research, evaluation, and design. Initially, interactions with computers
were grounded in programming languages tailored for computer specialists, proving unsuitable
for a broader audience including accountants, clerks, engineers, and managers. This
necessitated the creation of software interfaces designed to be intuitive and user-friendly for
the growing demographic of PC users. The introduction of personal computers heralded the era
of ‘point and click’ graphical user interfaces, setting a new benchmark for human-computer
interaction (Waterson & Eason, 2009).

The introduction of the computer revolution in the 1980s thrust Human Factors and Ergonomics
(HFE) into widespread attention, highlighting the importance of ergonomically designed
computer hardware, user-centric software, the role of human factors in office environments,
and the broader implications of technological advancements on individuals (Sanders &
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McCormick, 1993). A pivotal focus of research within this period was the operation of nuclear
power plants, a direction largely motivated by the notorious nuclear incidents at the Three Mile
Island facility in the US in 1979 and the Chernobyl facility in 1986. These incidents, along with
other technological catastrophes such as the Bhopal disaster in India in 1984 and the Phillips
Petroleum plant explosions in Texas in 1989, accentuated the profound consequences of
neglecting human factors, both in human casualties and financial ramifications. Meshkati
(1991) conducted analyses on these tragedies, identifying a common thread of insufficient
human factors considerations contributing to the magnitude of these disasters. In response, there
was an intensive effort towards enhancing facility safety, notably through the integration of
HFE programs aimed at augmenting operator support and ensuring the prevention of similar
disasters (Meister, 1999).

Over recent decades, the Human Factors and Ergonomics (HFE) field has witnessed
exponential growth in its literature, including books, scholarly articles, and conference
proceedings (Meister, 1999). Karwowski (2012) observed that HFE has broadened its horizons,
extending beyond the traditional domains of physical, psycho-physiological, cognitive, and
organizational/macro ergonomics to embrace systems-oriented approaches globally. This
evolution mirrors the growing intricacies of human-system interactions. Notably, the discipline
has ventured into emerging areas such as nanoergonomics and neuroergonomics, a shift towards
the human-centered design of increasingly complex systems (Karwowski, 2005; Parasuraman
& Rizzo, 2008). Research in cognitive ergonomics, human-computer interaction,
organizational design and management, and the relationship between work and health has seen
substantial growth (Waterson, 2011). The scope of Human Factors and Ergonomics (HFE) has
widened, embracing new realms such as the effects of information and communication
technology on work and daily activities (Dul et al., 2012), interventions addressing
psychosocial risks in workplaces (Petit et al., 2011), and fostering sustainability in energy,
waste management, and transportation (Haslam & Waterson, 2013).

3.2 HFE As Scientific Discipline

Meister (1999) argues that Human Factors and Ergonomics (HFE) is grounded in the pursuit of
generalization and prediction, essential traits of scientific inquiry. Chapanis (1988) delves
deeper, articulating that generalizability is about extending research outcomes beyond the
original conditions of study. This ability to generalize from observed events is critical for
preparing and managing unencountered human behaviors or scenarios. Sanders and
McCormick (1998) emphasize that HFE is anchored in the scientific method, leveraging
objective data to evaluate hypotheses and gather fundamental insights into human behavior.
Research within HFE aims to uncover and understand the psychological, social, physical, and
biological facets of humans, with the goal of integrating this knowledge into the design and
operation of products or systems. This integration seeks to enhance human efficiency, well-
being, safety, and comfort in their interactions with various environments and technologies
(Stramler, 1992). In HFE, the study of human behavior extends across various environments,
from highly controlled laboratory settings to real-world systems, to achieve refined
observations and experimental results. These environments are chosen to reflect the complexity
of systems relevant to the research, ranging from controlled labs facilitating precise
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observations to naturalistic settings where normal behavior, incidents, and accidents of users
can be observed (Wickens et al., 2004). According to Wickens et al. (2004), a thorough
understanding, alongside the ability to generalize and predict human behavior, is greatly
enhanced by employing a blend of diverse observational methods and analytical techniques.
Contrary to viewing Human Factors and Ergonomics (HFE) strictly as a scientific discipline,
some scholars advocate for its recognition as an art or craft, employing scientific methods as a
means to an end rather than the end itself. Moray (2000, p. 529) emphasized the importance of
understanding HFE within the complex social contexts where human work takes place, stating
“our discipline is an art not a basic science, and one which only makes sense in the full richness
of the social setting in which people work.” He highlights that the application of HFE
encompasses a wide array of contextual factors including team dynamics, individual
motivations, organizational culture, and the varied purposes and scales of systems under
consideration. Wilson (2000) illustrates the multidimensional nature of HFE in the domain of
human-computer interaction, acknowledging it as a confluence of craft, science, and
engineering. This perspective explains the craft in HFE's aims to implement and evaluate, its
scientific aspect in explaining and predicting behaviors, and its engineering facet in designing
systems for enhanced performance. Such viewpoints advocate for a universal approach to HFE,
recognizing it as a discipline that transcends traditional boundaries by integrating artistic
craftsmanship, rigorous scientific inquiry, and pragmatic engineering solutions.

Despite the diverse perspectives on the nature of Human Factors and Ergonomics (HFE), there
is a prevailing consensus among scholars that it fundamentally qualifies as a science. Human
Factors and Ergonomics (HFE) as a scientific discipline focuses on understanding interactions
between humans and various elements in the environment. It is also a professional field that
applies theoretical principles, data, and methods to design, with the aim of enhancing well-
being and overall performance (Dul et al., 2012). The primary goals of HFE are to improve the
efficiency and effectiveness of work and other activities while promoting key human values
such as safety, reduced fatigue and stress, and an enhanced quality of life (Sanders and
McCormick, 1993). To realize these objectives, many experts have emphasized the importance
of knowledge transfer and the creation of synergy between HFE research and its practical
application (Caple, 2008; Meister, 2000; Sind-Prunier, 1996; Singleton, 1994). This involves
bridging the gap between theoretical research and practical implementation, ensuring that
insights from research are effectively translated into tangible improvements in design and
practice. This collaboration and integration of theory and practice are essential for the
advancement of HFE, making it a useful and impactful discipline. Several experts in Human
Factors and Ergonomics (HFE) have underscored the vital role of theory in the discipline.
Meister (1999), for instance, viewed the connection between theory, research, and practice into
three distinct segments: (1) The relationship between theory and research; the idea that
theoretical frameworks provide a foundation upon which research is built and directed. (2) The
relationship between research and practice, which focuses on the idea that research should offer
practical guidelines for design and operation. This implies that the findings and insights gained
from research should directly influence and shape practical applications in the field of
ergonomics. (3) The interrelationship among theory, research, and practice, implying that these
three elements are interdependent. The absence of a solid theoretical base would mean that
research cannot effectively provide the guidelines necessary to inform practice. Expanding on
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the importance of theory in HFE, Getty (1995) emphasized the necessity for ergonomics
principles to be grounded in robust and validated research. This approach is crucial for the
scientific integrity and long-term development of the discipline. Karwowski (2005) took this
notion a step further by outlining three primary paradigms within HFE: (1) Ergonomics theory,
which involves understanding, describing, and evaluating interactions between humans and
systems. (2) Ergonomics abstraction, that utilizes insights about human-system interactions to
make testable predictions against real-world scenarios. (3) Ergonomics design, that focuses on
applying knowledge of human-system interactions to create systems that not only meet
consumer needs but also adhere to human compatibility requirements.

3.3 HFE As Basic and Applied Discipline

Basic science is driven by the quest to answer fundamental questions out of pure interest,
aiming to unravel the underlying mechanisms of various processes without any commercial
intent (Horrobin, 1969; Rimnac & Leopold, 2014). It often begins with unique observations
and a genuine pursuit of knowledge (Nudds & Villard, 2006). Historical examples include
Michael Faraday's development of electromagnetic induction principles in 1821 and Heinrich
Hertz's discovery of what is now known as radio waves in 1886. Such research, while
foundational, seldom transitions directly into practical applications, as its commercial potential
is not immediately evident. On occasions where basic research does prove to be of practical
use, its applications are frequently realized in fields far from the original study (Horrobin,
1969). In contrast, applied science leverages the insights gained from basic science to push
technological, material, or treatment advancements forward (Rimnac & Leopold, 2014). This
approach is often motivated by the need to address pressing industry problems (Nudds &
Villard, 2006), creating a bridge between theoretical knowledge and real-world applications.

Human Factors and Ergonomics (HFE) emerged as a distinct field through the collaborative
efforts of applied scientists addressing multifaceted challenges that spanned various disciplines
psychology, HFE has also established significant ties with practical fields such as medicine and
engineering (Singleton, 1994; Wilson, 2000). Initially focusing on human interactions with
physical devices in military and industrial contexts, the domain of HFE has significantly
expanded, reflecting a shift towards a more holistic consideration of human interactions across
a broader range of environments and systems. This evolution indicates the inherently goal-
driven nature of HFE, which, unlike the predominantly technical focus of engineering,
prioritizes the human element in the design process, emphasizing the impact of design on
human interactions with products, environments, and systems (Sanders & McCormick, 1998).
At its core, HFE is fundamentally linked to design, whether it pertains to work practices,
products, or entire systems (Green & Jordan, 1999). The discipline's foundation lies in the
strategic application of knowledge about human traits to foster compatibility within interactive
systems involving people, machines, and their environments (Karwowski, 2012). The aim is to
adapt the design of tools, environments, and systems to better suit human needs, capabilities,
and limitations (Sanders & McCormick, 1998). Originally, HFE addressed singular issues of
individual interactions with machines or specific environmental factors. However, the
complexity of contemporary life demands a more sophisticated understanding of human
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behavior and performance, extending beyond the constraints of traditional ergonomics (Wilson,
2000).

Despite its practical orientation, Wilson (2000) argues for the necessity of both basic and
applied research within HFE to facilitate evidence-based practice and ensure the discipline's
contributions are both meaningful and empirically grounded. This approach also becomes
critical in integrating research findings into practical applications to enhance the design and
usability of systems and environments for human use. Turner (2002) posits that an ideal
research framework should both guide practice and foster theoretical advancements, with
practice, in turn, benefiting from research insights and generating further inquiries for
exploration. The synergy between research and practice is envisioned to establish a robust
theoretical foundation, fostering the growth and development of a professional community
(Haddow & Klobas, 2004). Despite these aspirations, the practical integration of research
findings into professional practice frequently fails to meet these expectations, revealing a gap
between theoretical ideals and operational realities.

3.4 HFE As System Discipline

Dul et al. (2012) assert that HFE primarily focuses on systems where humans interact with their
environment. Yet, the term 'system', while commonly used, often lacks a clear, explicit
definition, leading to varied interpretations and applications. Simply classifying a discipline as
“systems-based” does not enhance understanding or provide clearer descriptions. According to
Dul et al. (2012), in HFE, a system is defined as a set of interrelated independent parts or
elements, with the acknowledgment that the whole is more than just the sum of its parts.
Dynamic systems, on the other hand, change their system state with time. These states can be
number of students enrolled in a class, population of a country, physical and mental activities,
or psychological constructs such as one’s trust. Singleton (1974) suggested that dynamic
systems consist of interconnected objects that evolve over time, and for human-made systems,
they serve a specific purpose. While this definition might be debated in other sciences,
particularly regarding natural systems and their purpose, it provides a foundation for
understanding systems. Chapanis (1996) defined HFE system as an interactive combination of
people, materials, tools, machines, software, facilities, and procedures, all working together for
a common purpose. Wilson (2014) proposed that a system is a set of interconnected activities
or entities (including hardware, software, buildings, spaces, communities, and people) with a
shared purpose. These entities are linked through various forms of state, function, and causality,
and the system evolves in response to different circumstances and events. A system is
conceptualized as existing within a boundary, having inputs and outputs with potential many-
to-many connections. In accordance with Gestalt principles, the system as a whole is typically
more significant (useful, powerful, functional, etc.) than the mere sum of its parts (Wertheimer,
2012).

Systems can be categorized based on different features, however, the focus in this dissertation
is on two distinct features of systems, complex and dynamic systems. Bossel (2007) contends
that inherently, all systems possess dynamic qualities, including those that seem relatively static
at first glance. Nonetheless, the designation "Dynamic System" is specifically allocated for
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systems that undergo state changes and, as a result, exhibit dynamic behavior as time
progresses. The terms complex and complexity require more clarity, as discussed in the next
section.

3.4.1 Complicated vs. Complex Systems

The introduction of a social element, such as human interaction, transforms a system from
merely complicated to complex (Cilliers, 2008; Dekker et al., 2011). In complex systems, the
parts cannot be understood in isolation from the whole. According to Ottino (2003), the system
itself should be the primary focus of analysis. This principle emphasizes the import