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Abstract
We investigate the impact of the deformed phase space associated with the
quantum Snyder space on microphysical systems. The general Fermi–Dirac
equation of state and specific corrections to it are derived. We put emphasis on
non-relativistic degenerate Fermi gas as well as on the temperature-finite cor-
rections to it. Considering the most general one-parameter family of deformed
phase spaces associated with the Snyder model allows us to study whether the
modifications arising in physical effects depend on the choice of realization. It
turns out that we can distinguish three different cases with radically different
physical consequences.

Keywords: non-commutative geometry, Snyder model,
generalized uncertainty principle, equation of state, stars

1. Introduction

Quantum theory of gravity and the search for phenomenological signatures thereof have
been rapidly developing due to the recent rise in experimental precision. The introduction of
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quantum structure of space-time and the deformation of the associated quantum phase spaces
leading to the generalization of the Heisenberg uncertainty principle is growing in importance
due to the possible measurable effects emerging from this approach. Generalizations of (the
Heisenberg) uncertainty principle (GUPs) have been quite fruitful in providing predictions for
quantum gravity effects, without specifying themathematical structure of themodels, although
most, see e.g. [1–6], sharing the minimum length scale property, expected to be of the order

of the Planck length LP ∼
√

ℏG
c3 , see also [7–9]. Nevertheless, the uncertainty relationship

between two physical quantities is closely related to their commutation relation, making the
deformation of quantum phase space and non-commutative (NC) quantum space-times a nat-
ural background for GUP theories. One of the quantum space-time models, introducing NC
coordinates, which can be associated with the GUP framework is the Snyder model [10]. It
was proposed in 1947 as the first example of Lorentz-covariant NC space-time, admitting a
fundamental length scale. The non-commutativity of the Snyder space-time is encoded in the
commutation relation between the space-time coordinates and is proportional to the Lorentz
generators of rotations and boosts. The Lorentz symmetry underlying this space-time is unde-
formed at the algebraic level.

In this paper we are interested in the phase space corresponding to the Snyder model,
i.e. appropriate deformation of the Heisenberg algebra expressed by the modification of the
quantum-mechanical commutation relations between the Snyder coordinates and momenta.
Such deformed algebra is closely related with the modification of the quantum–mechanical
uncertainty principle, and thus the physical consequences of the model follow from that algeb-
raic description. Basing on the ‘general realization’ of the Snyder model, proposed in [11], we
consider one-parameter family of deformed phase spaces [12] associated with that model of
quantum space-time.

The novelty in our approach, in contrary to GUP literature, is to start with the specific
model of the NC space-time, associated with the more general form of the deformed phase
space, parametrized by an additional parameter and analyze the phenomenological predictions
following this deformation. Considering the one-parameter family of deformed phase spaces,
which is linked to the ‘general realization’ of the Snyder model will also allow us to see if any
of the measurable effects pick out one realization (i.e. specific value of the parameter) over the
others.

The paper is organized as follows. In the next section we summarize the important details
related to the Snyder model, its generalized phase space as well as its relation to quantum
symmetry group. Then we investigate the consequences of the Snyder deformed phase space
onmicroscopic properties of matter, mainly focusing on an equation of state by considering the
partition function. Firstly, we derive the general Fermi–Dirac equation of state, with particular
emphasis on the non-relativistic degenerate Fermi gas as well as on the temperature-finite
corrections to it. Section 4 is devoted to discussion on the choices of possible realizations and
their physical interpretation deduced from the form of the modified equation of state. We finish
with short conclusions.

2. Snyder model and its realizations

Snyder NC quantum space-time [10] is defined by the following commutation relations:

[x̂µ, x̂ν ] = iℏβMµν (1)
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between the position operators x̂µ, and Mµν are the generators of the Lorentz algebra which
is the symmetry of this NC space-time. Parameter β is the deformation parameter of dimen-
sion [ L

2

ℏ2 ] that sets the scale of non-commutativity (as L—length is usually associated with the
Planck length Lp). We shall use the notation µ,ν = 0,1, . . . ,D and i, j = 1,2, . . . ,D and the sig-
nature is given by ηµν = diag(−,+, . . . ,+). The Lorentz symmetry underlying this space-time
is undeformed at the algebraic level and is described by the usual Lie algebra relations:

[Mµν ,Mρσ] = iℏ(ηµρMνσ − ηµσMνρ+ ηνσMµρ− ηνρMµσ). (2)

We also have the cross-commutation relations between Lorentz generators and Snyder coordin-
ates:

[Mµν , x̂ρ] = iℏ(ηµρx̂ν − ηνρx̂µ). (3)

Moreover, one can extend the symmetry from Lorentz to the Poincaré by considering the usual
translation generators pµ, which commute with each other [pµ,pν ] = 0 and satisfy the standard
cross-commutation relations with the Lorentz generators:

[Mµν ,pρ] = iℏ(ηµρpν − ηνρpµ). (4)

The Casimir operator is then defined by p2 = ηµνpµpν . However, all the deformation of the
Poincaré symmetry underlying the Snyder space-time is contained in a (highly) non-trivial
co-algebraic sector3.

In [13] it has been shown that, by using the concept of realizations4, there exists infinitely
many deformed Heisenberg algebras which correspond to Snyder geometry. By choosing the
most general Lorentz-covariant realization for the non-commuting Snyder coordinates [11]
(parametrized by ξ), the deformation of the quantum-mechanical phase space, up to the linear
order in the non-commutativity parameter β, has the following form [12]:

[pµ, x̂ν ] =−iℏηµν
(
1+β

(
ξ− 1

2

)
pρpρ

)
− 2iℏξβpνpµ+O(β2). (5)

The original Snyder realization [10] is recovered for ξ = 1/2, giving the usually considered
phase space relations:

[pµ, x̂ν ] =−iℏ(ηµν +βpνpµ). (6)

3 In the formalism of quantum groups of symmetry associated with the non-commutative space-times, we consider
the co-algebraic sector defined by coproducts, antipodes and counits. For the Snyder model, although the quantum
group of symmetry is not a Hopf algebra, one can define the co-algebraic sector as follows. All the maps on the
Lorentz generators are undeformed (primitive on generators), hence the Lorentz symmetry is truly the undeformed
one. But the coproduct on the momenta generators turns out to be deformed and non-coassociative. One can consider
different realizations for the non-commuting coordinates leading to the different forms of coproducts on momenta. In
this paper, following [11, 12], the (non-coassociative) coproduct of momenta, up to the linear order in the parameter
β, and the remaining coalgebra maps are defined as follows:

∆pi = 1⊗ pi + pi ⊗ 1+β

((
ξ−

1

2

)
pi ⊗ p2 +

(
2ξ−

1

2

)
pipk ⊗ pk + ξ

(
p2 ⊗ pi + 2pk ⊗ pkpi

))
+O(β2),

ϵ(pi) = 0, S(pi) =−pi.

4 For the precise comparison between the (Heisenberg) realization with the Heisenberg representation and the Hilbert
space representation, see e.g. [14].
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For ξ= 0, one obtains the type of realization which can be linked to [2, 3]5 and giving:

[pµ, x̂ν ] =−iℏηµν
(
1− β

2
p2
)
+O(β2). (7)

The so-called Weyl realization [15, 16] is obtained for ξ = 1/6, with

[pµ, x̂ν ] =−iℏηµν
(
1− β

3
p2
)
− iℏ

3
βpµpν +O(β2). (8)

The first two types (6) and (7) have beenwidely investigated in the context of GUP theories, see
e.g. [1–3, 6, 7, 17–22]. In this paper we are interested in using the most general one-parameter
family of deformed phase spaces (5) corresponding to the Snyder model and investigate the
possible measurable effects associated with this deformation. It is worth to point out that the
form of (5) agrees with the most general quadratic relativistic GUP, allowing the existence of
Lorentz invariant minimummeasurable length, considered in [23]. However, since in this paper
we are interested in comparing our approach to the one considered in GUP literature, we shall
focus only on the spacial part of our deformed phase space (5) and the non-relativistic quantum
mechanical picture. The Heisenberg algebra generated by x̂i and pi obeying the commutation
relation:

[pi, x̂k] =−iℏδik
(
1+β

(
ξ− 1

2

)
p jpj

)
− 2iℏξβpipk+O(β2) (9)

following from (5) and parametrized by ξ, can be represented on momentum space wave func-
tions ϕ(p) with x̂i and pi acting as operators [1]:

x̂iϕ(p) = iℏ
((

1+β

(
ξ− 1

2

)
pkpk

)
∂

∂pi
+ 2ξβpipj

∂

∂pj
+ γpi

)
ϕ(p), (10)

piϕ(p) = piϕ(p) (11)

on the dense domain of functions decaying faster than any power, where γ (of dimension [ L
2

ℏ2 ])
is an arbitrary constant, which does not enter the commutation relations (9), but affects the
definition of the scalar product in momentum space. One can check explicitly that this repres-
entation obeys the commutation relation (9). Further, in order to define symmetric operators:

⟨x̂iψ,ϕ⟩= ⟨ψ, x̂iϕ⟩, ⟨piψ,ϕ⟩= ⟨ψ,piϕ⟩ (12)

the new inner product in momentum space must be defined as follows [1, 4]:

⟨ψ,ϕ⟩=
ˆ

dDp

(1+β(3ξ− 1
2 )p

2)α
ψ∗(p)ϕ(p) (13)

where α=
β(2ξ+Dξ− 1

2 )−γ
β(3ξ− 1

2 )
and is dimensionless. We also introduce a shortcut notation as ω =

β(3ξ− 1
2 ) then the inner product can be re-written in the following form:

⟨ψ,ϕ⟩=
ˆ

dDp
(1+ωp2)α

ψ∗(p)ϕ(p). (14)

5 In [2, 3] the author arrived at the deformed Heisenberg algebra by investigating the relationship between the gen-
eralized uncertainty principle and the quantum deformation of the Poincaré algebra without a priori assuming the
Snyder model. The commutation relations obtained therein in the finite form can be expanded and compared to the
above one given in the first order of β.
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The values of α and ω are closely related with the choice of the realization parameter ξ appear-
ing in the Snyder phase space we consider (cf (5)). For example, for the three distinguished
values of parameter ξ discussed above we obtain the following cases:

• for the (original) Snyder realization ξ = 1
2 then ω = β and α= β(D+1)−2γ

2β ,

• for ξ= 0 we have ω =− 1
2β and α= β+2γ

β ,

• for theWeyl realization, ξ = 1
6 and for this value we do not have the deformation of themeas-

ure (ω = β(3ξ− 1
2 ) = 0) and the inner product on the momentum space stays unchanged

⟨ψ,ϕ⟩=
´
dDpψ∗(p)ϕ(p).

3. Equations of state

In what follows, we would like to derive Fermi equation of state (EoS) resulting from phase
space deformations associated with the Snyder NC space. The Fermi gas model is highly sig-
nificant in the field of physics of stars and substellar objects. Its various forms, such as for
instance the well-known polytrope [24], polytrope with finite temperature [25] are commonly
utilized to depict specific regions within the interiors of neutron stars, white dwarf stars [26],
and non-relativistic stars including pre- and main sequence stars [27]. It is also popular to
model interiors of substellar objects, that is, brown dwarfs and planets [28, 29].

Let us consider a system of N particles with the energy states Ei. The partition function in
the grand-canonical ensemble is given as (see e.g. [30])

lnZ=
∑
i

ln
[
1+ aze−Ei/kBT

]
(15)

where T is the temperature, kB Boltzmann constant, z= eµ/kBT whileµ is the chemical potential
and a= 1 (a=−1) if the particles are fermions (bosons).

In investigating the effects of the quantum space (1) and its phase space deformation (9)
on the Fermi equation of state we need to take into account the appropriate modifications
in the partition function calculation which are compatible with such deformation. We first
note that the deformation of phase space leads to the modified phase space volume6, i.e. (1+

ωp2)−αd3xd3p where α=
β(5ξ− 1

2 )−γ
β(3ξ− 1

2 )
in D= 3 dimensions. If we consider a large volume, the

summation in the above partition function (15) should be replaced by7∑
i

→ 1
(2πℏ)3

ˆ
d3xd3p

(1+ωp2)α
. (16)

Therefore, the partition function in 3 dimensions is given as

lnZ=
V

(2πℏ)3
g
a

ˆ
ln
[
1+ aze−E/kBT

] d3p
(1+ωp2)α

, (17)

6 To find the Liouville measure one computes the determinant of the symplectic form, and the commutator between
coordinates does not contribute to this determinant.
7 Wenote that, as shown in [5], we can assume that the volume of the phase space evolves in such away that the number
of states inside does not change in time. This holds in the case when the coordinates are non-commutative and the
proof of invariance of the weighted phase space volume, indeed relies on the non-commutativity of the coordinates
as well.

5
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where g is a spin of a particle, V :=
´
d3x is the volume of the cell (of the configuration space),

while E= (p2c2 +m2c4)1/2. As mentioned earlier, the squared physical momentum pρpρ is
a Casimir invariant of the quantum symmetry of the Snyder model, and the above dispersion
relation, related to the Casimir invariant of the Poincaré group, stays undeformed. Although,
if one considers an effective mass the dispersion relation could be modified [11]; we postpone
this case for another investigation. The thermodynamic variables such as pressure, number of
particles, and internal energy are given as, respectively:

P= kBT
∂

∂V
lnZ, n= kBT

∂

∂µ
lnZ |T,V, U= kBT

2 ∂

∂T
lnZ |z,V . (18)

Considering the spherical symmetric case, we can write (17) as

lnZ=
V

(2πℏ)3
g
a

ˆ
ln
[
1+ aze−E/kBT

] 4πp2dp
(1+ωp2)α

. (19)

3.1. General Fermi–Dirac equation of state

In this generalized case, using (19) and (18) with a= 1 for fermions and g= 2 for electrons,
we obtain the microphysical description of the system with the Fermi–Dirac distribution f (E),
that is,

f(E) =
(
1+ ze−E/kBT

)−1
, (20)

such that the pressure is given by

P=
1

π2ℏ3

ˆ
1
3
p3 2F1

(
3
2
,α,

5
2
,−p2ω

)
f(E)

c2p
E

dp, (21)

where 2F1 is the hypergeometric function, while the particle number density and internal
energy are

n=
1

π2ℏ3

ˆ
f(E)

p2dp
(1+ωp2)α

(22)

U=
1

π2ℏ3

ˆ
Ef(E)

p2dp
(1+ωp2)α

. (23)

For the case when |ωp2|<< 18, we can write the pressure as

P=
1

π2ℏ3

ˆ
p3

3

( ∞∑
k=0

(α)k
(
3
2

)
k
(−ωp2)k(

5
2

)
k
k!

)
f(E)

c2p
E

dp (24)

while taking into account only the first two terms of the series (as we consider the NC deform-
ation only up to linear terms in β, cf (9). β taken as a small parameter suggests that higher
orders will rather not have any significant impact on the physics of stars), we have

P=
1

π2ℏ3

ˆ (
p3

3
− ωαp5

5

)
f(E)

c2p
E

dp . (25)

We note that in our approach αω depends on the realization of the deformation of the phase
space ξ in (9), hence we can consider cases when αω = 0, αω > 0 or αω < 0. We discuss the
implications of this in detail in section 4.

8 Note that this condition is satisfied thanks to the fact that β is small and it is not a restriction. Nevertheless, we can
consider two cases when ω> 0 leading to ξ > 1

6
and ω< 0 leading to ξ < 1

6
.

6
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3.2. Non-relativistic degenerate Fermi gas

Before considering a simplified case (but keeping the general realization), let us rewrite the
general Fermi–Dirac pressure (21) in terms of energy for the non-relativistic electrons, that is,

E≈ p2

2me
:

P=
1

π2ℏ3

ˆ
1
3
(2meE)

3
2 2F1

(
3
2
,α,

5
2
,−2Emeω

)
f(E)dE. (26)

For the case when 2me|ωE|<< 1, we can write the pressure as

P=
1

3π2ℏ3

ˆ (
(2meE)

3
2 − 3αω

5
(2meE)

5
2

)
f(E)dE. (27)

We will focus now on a specific type of matter which has a very special interest in the stel-
lar physics: degenerate gases. They are used to describe dense cores of stellar and substellar
objects as well as degenerate matter in compact stars. In the toy model case which we are going
to use here, all states with energy being less than Fermi energy level are occupied while all
states with higher energy are empty at the absolute temperature, that is, T→ 0, and the chem-
ical potential µ becomes the Fermi energy EF. For such a case, the Fermi–Dirac distribution
is a step function

f(E) =

{
1 if E⩽ EF
0 otherwise.

Due to that fact, the integration in (27) is taken up to the Fermi energy EF such that

PT→0 =
2
5
vE

5
2
F

(
1− 3αω

7
(2me)EF

)
, (28)

where we have defined v= (2me)
2
3

3π2ℏ3 . The pressure PT→0 becomes smaller when αω > 0 while
it increases for αω < 0.

Let us use the definition of the measure of electron degeneracy

ψ =
kBT
EF

=
2mekBT

(3π2ℏ3)2/3

[
µe
ρNA

]2/3
≡ u−1kBT

[
µe
ρ

]2/3
(29)

in the equation (28) to write

PT→0 =
2
5
vu

5
2

(
ρ

µe

) 5
3

[
1− 3u

7
αω(2me)

(
ρ

µe

) 2
3

]
(30)

where u= (3π2ℏ3NA)
2
3 /2me. It can be rewritten as a mixture of two polytropes

PT→0 = K1ρ
Γ1 −αωK2ρ

Γ2 (31)

where K1 =
2
5vu

5
2µ

− 5
3

e , Γ1 = 5/3 and K2 =
12
35vu

7
2meµ

− 7
3

e , Γ2 = 7/3. Notice that a similar
modification of the polytrope EoS also happens in the case of modified gravity [31], where
the additional term appears because of the gravitational backreaction on the particles.

Let us notice that using again the definition (29) to the last term we can rewrite this EoS as

PT→0 = K1ρ
Γ1

(
1− 6

7
meαω

kBT
ψ

)
= K̃ρΓ1 , (32)

7
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where K̃ := K1(1− 6
7meαω

kBT
ψ ).We see that non-commutativity introduces the electron degen-

eracy term which usually appears when we consider corrections from the finite temperature,
see e.g. [25] and discussion in the next section 3.3. Note that we are also dealing with an
implicit dependence on the temperature T. If ψ= 1, we are dealing with a non-degenerate mat-
ter, while ψ→ 0 with the degenerate one, increasing by this the significance of the quantum
deformation term. In general, ψ is a function of time. Therefore, we can expect that objects
with degenerate matter, such as compact or contracting astrophysical bodies, can be in prin-
ciple used to test theories with modifications given by the non-commutativity, in a similar
manner as it was performed in modified gravity or dark matter models [32–40].

3.3. Temperature-finite corrections to the non-relativistic Fermi gas

We can also consider a more realistic situation, that is, when the temperature is finite. Playing
a bit9 with the general form of pressure (21), one may rewrite it as

P=
2
5
vµ

5
2

(
1− 3αω

7
(2me)µ

)
− 1

8
v
kBT

µ
3
2 ln[1+ e−µ/kBT]

+
3
4

v
(kBT)2

µ
1
2Li2[e

−µ/kBT]
(
1− αω

10
(2me)µ

)
− 3

4
v

(kBT)3
µ− 1

2Li3[e
−µ/kBT]

(
1− 12αω

10
(2me)µ

)
+ . . . , (33)

where Lis are the polylogarithm functions of different orders s. As the gas becomes increasingly
degenerate, the polylogs exhibit an exponential decrease, therefore further terms turn out to be
insignificant in the above expression.

Analogously, as in the previous case, we can rewrite it in terms of the electron degeneracy.
Keeping the EoS up to the second order in ψ and considering again µ≈ EF one gets

P=
2
5
vu

5
2

(
ρ

µe

) 5
3
[
1− 5

16
ψ ln[1+ e−1/ψ] +

15
8
ψ2Li2[e

−1/ψ]

− 3meαω

(
2
7
kBT
ψ

+
1
8

ψ

(kBT)3
Li2[e

−1/ψ]

)]
, (34)

which again can be written as the polytropic equation of state with the polytropic index Γ =
5/3 and

p= KρΓ (35)

where the polytropic ‘parameter’ is

K=
2
5
vu

5
2µ

− 5
3

e

[
1− 5

16
ψ ln[1+ e−1/ψ] +

15
8
ψ2Li2[e

−1/ψ]− 3meαωC(ψ)

]
with C(ψ,T) =

(
2
7
kBT
ψ + 1

8
ψ

(kBT)3
Li2[e−1/ψ]

)
.

4. Discussion

Let us firstly discuss the physical interpretation of the terms introduced to the Fermi EoS
by the non-commutativity. Note that the parameter K appearing in the polytropic forms of

9 The procedure we have used here is nicely presented in the appendix A of [25].

8
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EoS derived in the previous section (equation (28) or (30)) is related to the bulk modulus or
incompressibility

B=
dP
dlnρ

, (36)

describing properties of an isotropic material, for example crystallized cores of white dwarf
stars or terrestrial planets. It can be also written with respect to the shear modulus and elastic
constants, appearing in the Hooke’s law [41]. For our polytropic form, the bulk modulus is
then

B= KΓρΓ, (37)

which is modified due to the modifications in K provided by the deformation parameters. For
incompressible solids B=∞ while for infinitely compressible one B= 0. For example, for
our simplified case (28)

K= 1− 6
7
αωmeEF

we will deal with infinitely compressible solid (B= 0) when αω > 0 while αω < 0 provides
the incompressible counterpart. We shall now consider those cases in more detail.

In the equations obtained in the previous sections, we can notice that the combination αω
(more precisely the sign of this term) influences the physical interpretation of the modifica-
tions introduced by the non-commutativity. The deformation parameter β and the parameter ξ
generalising the deformation of the phase space (5) are both included in this combination. For
any dimension D we have αω = β(2ξ+Dξ− 1

2 )− γ. Since we are interested in D= 3, this
formula reduces to

αω = β

(
5ξ− 1

2

)
− γ. (38)

Let us recall that γ is an arbitrary constant, which does not enter the commutation relations, but
affects the definition of the scalar product in momentum space. When β→ 0 classical (unde-
formed) case, i.e. no presence of NC geometry, we have αω =−γ. Considering γ ̸= 0 would
lead to non-trivial representation of commutative coordinates in (10) and such (unusual) choice
of representation could possibly lead to some modifications of physical properties. Therefore,
to recover the correct undeformed (commutative) space-time limit we should require γ= 0.
So let us assume that γ= 0 from now on.

In section 3.1, we have assumed that |ωp2|<< 1 to allow for the expansion of the hypergeo-
metric function in (21). This is not a restriction as the order ofmagnitude of β inω = β(3ξ− 1

2 )
ensures this condition and we are free to consider the cases with any sign of ω. Therefore, we
can discuss various sign options for the αω term and have explicit dependence of the physical
properties on the choice of realization (ξ) in (9). That is (considering even the simplest case
with γ= 0) we have: αω = β(5ξ− 1

2 ) = 0 when ξ = 1
10 , αω > 0 when ξ > 1

10 and αω < 0
when ξ < 1

10 . When the term αω changes sign the physical interpretation changes radically.
We are now in position to discuss all these cases in detail.

4.1. αω = 0

Firstly, we should notice that we can distinguish the value of the parameter ξ = 1
10 which gives

αω = 0. Since the combinationαω is responsible for introducing modified physical properties,

9



Class. Quantum Grav. 40 (2023) 195021 A Pachoł and A Wojnar

this choice of realization results in no modification to the considered physical effects up to the
linear order in the deformation parameter β. Using this distinguished value of ξ we get the
following form of the deformed phase space:

[pi, x̂k] =−iℏδik
(
1− 2

5
βp jpj

)
− iℏ

1
5
βpipk+O(β2). (39)

Note that the choice of the realization ξ = 1
10 will automatically enter in the coproduct of

Snyder momenta (see footnote on page 3), hence will affect the quantum composition law for
the momenta.

Let us also point out that for ξ = 1
6 there is no modification in physical properties of the

system, due to the fact that for this valueω= 0 and there is nomodification in the measure (14).
However, these two cases differ significantly as for ξ = 1/6 we have no NC corrections

in the effects we considered due to the fact that the measure stays undeformed. While for
ξ = 1/10 we have no NC corrections in the effects we considered up to the first order in the
deformation parameter. The modifications may appear in the higher orders for this realization.
Although, for both of these numerical values of ξ the space-time and the phase space both stay
deformed.

4.2. αω > 0

The condition αω > 0 picks out the deformed phase spaces (9) for which ξ > 1/10. This
includes ξ = 1/2 which is one of the most considered cases in the literature.

Firstly, we notice that in this case one deals with weaker electron degeneracy pressure (28)
which means that one deals with a more compact object with respect to the commutative case.
Moreover, because of the condition αω > 0, we can obtain its critical value

(αω)crit =
7

6EFme
, (40)

for which pressure becomes zero, or, in other words, we deal with infinitely compressible
material. We can see that the choice of the realization (value of ξ) assures the condition αω > 0
for which the critical value exists.

To put a numerical bound on (αω)crit, let us take a value of Fermi energy of a typical white
dwarf star, EF ∼ 3 MeV, providing the critical value as (αω)crit ∼ 2.66× 1043 (kg m s−1)−2.
So for instance, in the realization with ξ = 1

2 the critical value for the non-commutativity
parameter βcrit ∼ 1043. Therefore, from this very simplified analysis, we can put the bound

β0 < 4.27× 1044 (41)

where we have used a more common notation, that is, β0 = βM2
Pc

2 (dimensionless).
Our upper bound is consistent with the newest results on the upper bound obtained by

comparing the orbital angular momentum acquired after light is lensed by a GUP-modified
rotating black hole with experimental data acquired for M87, that is, β0 ∼ 1078 [42]. In [43],
the graviton and photon speeds in a GUP-modified curved space-time were compared with
speeds obtained from gravitational wave events GW150914 and GW190521. An upper bound
β0 < 2.56× 1060 was provided in the case of taking into account the GUPmodifications in the
graviton speed only, while more stringent bound β0 < 28.83× 1035 was given when the modi-
fication was considered in the photon speed. From computing the Hawking temperature for a
Schwarzschild black hole, the authors [44] obtained β0 ∼ 1010. On the other hand, the scanning
tunneling microscopy experiments provided a few other bounds, that is, the bound β0 < 1050

was provided by the accuracy of measurements of Landau levels while β < 1036 from the

10
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accuracy in precision measurements of the Lamb shift of hydrogen atom [45]. Moreover, the
bound β0 < 1021 is required in order to add a GUP induced current up to the charge of just
one electron. In [46] the energy spectrum of the gravitational quantum well modified by a first
order perturbation of the parameter β was compared to the energy spectrum values obtained
from the GRANIT experiments, providing β0 < 1034. Considering the fact that number density
can only be positive, β0 < 1013 was obtained in [47], while analyzing the harmonic oscillator
energy levels [4] provided β0 < 1019.

4.3. αω < 0

The condition αω < 0 requires the form of the deformed phase space (9) for which ξ < 1/10,
and includes the case ξ= 0.

If αω is negative, the NC correction makes the solid more incompressible, that is, the astro-
physical object is less compact in comparison to the non-modified case. Since the sign in (28)
changes, we do not deal anymore with critical values.

Let us notice that any modification in the equation of state will have a non-trivial effect
on a mass and radius of stars. There exist a few well-known limiting masses, such as for
example the theoretical Buchdahl’s bound [48] or more empirical methods, allowing to test the
theoretical models against observations, such as for instance, minimum main sequence mass
[28, 38, 49, 50] or critical masses/temperatures for Hayashi tracks [32]. It would be interesting
to investigate these ideas in detail in the future.

5. Conclusions

The purpose of the present paper was to examine the influence of different parametrizations of
the deformed phase space arising from the Snyder model on the microphysical system. Before
doing so, we firstly recalled the basic notions and properties of the Snyder model, and related
possible choices of the realizations to the existing GUP frameworks.

Subsequently, considering the most general deformation of the quantum–mechanical phase
space in 3D associated with the Snyder model, we derived a general Fermi–Dirac equation
of state resulting from the mentioned deformation. The modified terms are governed by αω,
which is a combination of the deformation parameter β, choice of realization ξ and arbitrary
constant γ related to the representation of the coordinates in the momentum space. As particu-
lar examples of the Fermi–Dirac equation of state, we have also derived corrections to the usual
polytropic equation of state (that is, for the case when the temperature of the system T→ 0
and one deals with a non-relativistic degenerate Fermi gas) (30), as well as we computed the
temperature finite corrections to the non-relativistic Fermi gas (34). In both cases, we kept the
most general realization picture.

We observed that the terms introduced by the deformation have a clear physical interpret-
ation. Firstly, as expected, because of modification of the phase space (the size of each unit
cell which is occupied by a quantum state) one deals with an increase, αω < 0, or decrease,
αω > 0 response from the fermionic fields against attempts at squeezing, for example by the
gravitational attraction. Notice that similar term appears in modified gravity [31] and sim-
ilar corrections are expected in other models of gravity [32, 51]. Therefore, we should not be
surprised to see that those terms (32) can be written with respect to the electron degeneracy
parameter,ψ ∼ T/EF, whose value informs howmuch a given object is degenerate. In the solid
state physics language, the bulk modulus (incompressibility) of isotropic materials, such us for

11



Class. Quantum Grav. 40 (2023) 195021 A Pachoł and A Wojnar

example carbon or iron, acquires an extra term, making the material more or less compress-
ible, depending on the sign of αω. Therefore, we expect to observe interesting effects when
studying properties of the white dwarf stars’ [52], brown dwarfs’ [35], or Earth’s cores [53],
respectively. Let us notice, however, that the electron degeneracy parameter depends on time
[25], therefore, if one wishes to use any astrophysical bodies to constrain the parameters, one
should be more interested in very old astrophysical objects as the effects of non-commutativity
will be more pronounced [35, 39].

Having this interpretation inmind, since the sign ofαω is governed by the choice of the real-
ization leading to different deformed phase spaces, we have distinguished particular choices:
when ξ = 1/10 leading to αω = 0, when ξ > 1/10 giving αω > 0 and ξ < 1/10 providing
αω < 0. Ideally, depending on the measurable physical effects we would be able to determine
the specific type of realization detected or preferred.

Moreover, using the simple Fermi gas equation of state (28) we obtained a critical value for
(αω)crit ∼ 2.66× 1043 (kg m s−1)−2.

In the present work, we have focused on the Snyder model, with its similarities of the
GUP allowing us to make direct comparisons with the results available in the GUP literat-
ure. However, one can expect that the common feature of other NC space-times, which lead
to the deformation of the phase space, would be the modification of the inner product and
consequently the modification of the measure of the phase space volume (see e.g. [3, 47]).The
modification in themeasure, will in turnmodify the partition function leading to the corrections
arising, for example, in the pressure, number of particles, and internal energy depending on the
non-commutativity parameters used in the deformation of the space-time. Going further, one
obtains similarities in the form of corrections which may arise from different quantum gravity
approaches, such as modified gravity, see e.g. [54]. Therefore similar effects, as considered
here, should be relevant for other NC models, and possibly other quantum gravity approaches
and would be an interesting topic for further study.
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