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A B S T R A C T

Partial discharge events can occur in high-voltage cables. It can be caused by defects in the cable insulation,
contamination, or a combination of both. Partial discharge in cables can lead to insulation failure and cable
failure. This investigation aims to identify the trends and patterns in the internal partial discharge (PD)
occurrences in the power cables when exposed to different voltage levels - 6.4, 7.4, 9.4, and 11.3 kV. For
pattern extraction, a well-established method, ramping behavior analysis, is implemented to extract and classify
PD occurrences into sets of significant and stationary events. In this investigation, significant events correspond
to an absolute peak (the discharge pulse) and subsequent oscillations from the measurement sensor. The
stationary events represent a collection of noise that is recorded during the measurement. These noise signals
are essentially small variations within a pre-determined threshold range. Furthermore, a comparative analysis
is performed for each voltage level and for the voltage levels.

This investigation brings new knowledge on how internal partial discharge pulses occur at various voltage
stress levels. Specifically, the emerging patterns and trends of internal partial discharge events. The results
indicate that there is a positive correlation between the number of PD events and the increase in stress levels.
Furthermore, negative PD peaks are more frequent at lower stress levels.
1. Background and objectives

Partial discharge (PD) is a phenomenon of substantial importance in
high-voltage electrical equipment due to its relationship to insulation
faults. Partial discharge is formally defined according to IEC 60270 as a
localized electrical discharge that only partially bridges the insulation
between conductors and which may or may not occur adjacent to a
conductor. This implies the phenomenon is distinctly different from a
full disruptive discharge, during which an electrical discharge occurs
between phases or between phase and ground, i.e. a fault which precipi-
tates short-circuit in the electrical system. One aspect of the importance
of PD is that it can often precede this type of electrical fault in various
types of electrical insulation, as it can be considered both a cause and
a result of insulation aging.

PD occurs in areas where the local electric field strength is en-
hanced, and the dielectric strength of the insulation is decreased. This
can occur, for example, inside gas-filled voids and cavities embedded
into solid or liquid insulation, where the inequality of dielectric per-
mittivities result in increased electric field strength inside the gaseous
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medium. Other locations prone to PD activity include interfaces be-
tween different dielectric media, areas surrounding sharp electrode
edges in a gaseous environment or other similar circumstances. Three
distinct types of PD are usually described based on where the discharge
occurs relative to the electrodes and insulation. These PD types are
internal discharge, surface discharge, and corona discharge.

When the discharge occurs adjacent to a solid or liquid dielectric
material, it usually has a degrading effect on the insulation. Charged
particles bombard the surface of the material, which undergoes chem-
ical and physical changes, i.e. scission of intramolecular chemical
bonds and chemical reactions, formation of cracks and chemical by-
products, erosion, and carbonization. Materials can vary widely in their
resilience to PD activity, but it is generally recognized that PD has a
negative impact on high-voltage insulation and should be minimized
whenever possible. This excludes corona discharge occurring on extra
high voltage overhead lines, as air is a self-renewing insulation medium
under normal circumstances, although steps are also taken to reduce
corona-related power loss.
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Nomenclature

𝛥𝑡 Duration of a ramp event
𝛥𝑡𝑚 Duration of significant ramp event
𝛥𝑤 Change 𝛥 in magnitude (𝑤) of voltage

or change in the magnitude of partial
discharge signal voltage

𝛥𝑤𝑚 Magnitude of significant ramp event
𝛥𝑤𝑠 Value difference between the predeter-

mined threshold and the present value
𝛬𝑚 Set of frequencies per featured event
𝜎𝑚 Mean of initial and final magnitudes of

ramp event
𝜏 RBA𝜃 threshold
𝜃 Phase angle of PD occurrence
𝜃𝛥𝑊𝑠 Angle between the horizontal and a line

connecting the point at which the threshold
is exceeded and the peak point

𝜃𝑚 Angle to peak of significant ramp event at
the origin of the event

𝜃𝑝 Phase angle
𝑓 (𝑥) Curve fitting function
𝑝1 Polynomial coefficient
𝑝2 Polynomial coefficient
𝑝3 Polynomial 𝑦-axis intercept
𝑡 Time
𝑇1 Start time of exceeding threshold
𝑇2 End time of exceeding threshold
𝑤1 Signal value upon start of exceeding thresh-

old
𝑤2 Signal value upon end of exceeding thresh-

old
𝑤𝑠(𝑡) Peak value of a ramp event
𝛥𝑡 Time difference
HFCT High-frequency current transformer
PD Partial discharge
RBA𝜃 Ramping Behavior Analysis
RMSE Root mean square error
XLPE Cross-linked polyethylene

1.1. Background

Characteristics of PD activity depend on the type of PD source.
Substantial research has been conducted to determine the pulse char-
acteristics of different types of PD sources, i.e., corona, internal, and
surface discharges, and also to identify particular types of equipment
defects based on their PD signature [1–4]. Power cables are of par-
ticular interest concerning PD and it has been determined that the
geometrical aspects of the void inside the insulation which acts as a
PD source will have a profound impact on the PD activity [5]. Mea-
suring PD is one of the few available approaches to collect information
regarding the cable condition, which is an asset that is mostly difficult
to examine due to its structure and reduced physical access. Therefore
researchers have been focused on developing PD measurement systems
for power cables and resolving the problems associated with their im-
plementation [6–9]. PD measurement, applied both offline and online,
is seen as favorable from the perspective of the electrical utility, by
decreasing cable network maintenance costs over the long term [10]. In
cable diagnostics, PD measurement is often combined with dissipation
factor (tan 𝛿) measurement, as both metrics respond to changes in cable
condition [11].
2

PD has been identified as a factor that contributes to failure rates
in both underground and submarine cables [12]. Cable faults are a
problem in both the medium and high voltage grid, where a typical
failure rate is around 1 fault per 100 km of cable per year, but this can
vary substantially across regions [13]. Cable faults can also be difficult
to locate and repair, which makes cable reliability a high priority for
electrical utilities.

One of the difficulties in measuring PD in power cables is that PD
pulses attenuate upon propagation from the discharge site to the point
of measurement, which is usually situated at the terminations or joints
of the cable system. Therefore the pulses can be too weak to be detected
and require a different bandwidth of the measurement detector for
optimal measurement sensitivity [14,15]. Also, locating the PD source
along the cable can be challenging. Approaches such as time-domain
reflectometry as well as methods based on the frequency content of
measured pulses have been developed to determine the position of
PD sources in cables [16–18]. The research focused on improving the
accuracy of location algorithms is still ongoing [19].

When PD is detected, it is necessary to characterize it and de-
termine the nature of the PD sources. There can sometimes be only
one PD source, but sometimes several, which can be a combination
of the various types of PD sources described previously. Recognition
and classification of PD patterns include various different approaches,
e.g., examining statistical parameters (mean, standard deviation, kur-
tosis, skewness, polarity and phase asymmetry, etc.) [20–24], principal
component analysis [20,21,24,25], discriminant analysis [21,24], t-
distributed stochastic neighbor embedding [20], density-based spatial
clustering for applications with noise (DBSCAN) [20,25,26], inductive
inference algorithms [22,27], rough set theory [22,28], fuzzy logic [22,
23], self-organizing maps [22], support vector machines [20,22,24],
neural networks and various other machine learning algorithms [20–
24], including deep learning [24,29]. Using PD energy as an alter-
native to apparent charge values in the analysis of PD has also been
proposed [30].

1.2. Motivation and reasoning

This paper presents the novel application of the Ramping behavior
algorithm (RBA𝜃) to PD analysis. The goal is to evaluate the effective-
ness of this approach in characterizing the important aspects of PD
activity and determine if this is feasible for application under various
condition assessment scenarios. The principle of RBA𝜃 is determining
nd characterizing the peaks corresponding to significant changes in a
rocess characterized by a time series. It has previously been applied
n the analysis of wind farm output power data [31], which is an
ntrinsically stochastic weather-dependent process. The nature of PD
ctivity also involves a significant degree of stochasticity, as it is
ometimes observed that PD does not occur when the voltage exceeds
he PD inception voltage, and when PD does occur, the phase angles
t which PD pulses are identified and recorded are also variable. The
ariability is itself dependent on the type of PD source, e.g., corona
ischarge activity is more consistent compared to internal discharge
ctivity across several AC voltage cycles.

When determining the nature of PD sources from measured data,
here is a limited number of aspects based on which the PD activity
an be characterized and assessed. When measuring PD using a suitable
ensor, e.g., a high-frequency current transformer (HFCT), the pulsed
D activity appears as a series of distinct peaks, provided that the level
f background noise is sufficiently low so as to not obscure the PD.
s mentioned previously, these pulses have distinct characteristics like
eak value, rise-time, fall-time, frequency, time interval, etc., due to
hich these very suitable targets for investigation using RBA𝜃 . Another

advantage of RBA𝜃 is that the algorithm contains an in-built threshold,
which filters out changes with a small amplitude, which represents
measurement noise in the context of PD. Due to the high degree of
the intrinsic variability of internal discharges and the high relevance
to power equipment reliability of this phenomenon, we have analyzed

the usefulness of RBA𝜃 in characterizing this type of PD.
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Fig. 1. Test setup for measuring internal partial discharge activity in medium voltage power cable sample. (A) Test circuit schematic; (B) Photo of test setup; (C) Internal PD
source on cables.
1.3. Key contributions

The paper is organized into four sections starting with an intro-
duction covering the background of the investigation (Section 1), rea-
soning, and key contributions. Section 2 describes the experimental
method and its application. Following that, Section 3 elaborates on
the results and discusses the findings of this work. Finally Section 4
concludes by summarizing the results and the main findings with
remarks for future research.

The primary contributions of this work are related to the com-
prehensive characterization of internal discharge activity by means of
using the RBA𝜃 , which is a novel way to approach PD analysis. This
adds to the toolkit available to accomplish PD source recognition and
discrimination, either as a standalone method or in combination with
other approaches described in the literature. This can aid in creating
PD analysis algorithms, which can assist human experts in evaluating
PD measurement results. PD measurements can be difficult to interpret,
depending on various measurement conditions. Some of the strengths
of the RBA𝜃 algorithm, which make it a favorable candidate for PD
analysis, include that it characterizes the rise and fall times of pulses in
addition to the peak values and also includes a thresholding function
to dismiss measurement noise, which might be misinterpreted as PD.
The basic components of RBA𝜃 involve segmentation, identification,
characterization, quantification, and comparison of analyzed data. As a
result, using the RBA𝜃 on test data gathered from an internal discharge
source at various test voltages provides an expanded understanding of
its behavioral characteristics.

2. Method: Analysis of internal discharge properties

This section describes the measurement of PD in an artificially
created source intended to produce internal discharge. The measure-
ments were performed in a laboratory environment and the results were
processed using the RBA algorithm.
3
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2.1. Experimental setup

The PD data were gathered on a test sample with an internal
discharge source using a high-frequency current transformer (HFCT) to
measure the PD activity (Fig. 1). The test object was a sample of a 20
kV medium voltage cable, which has a cut on the outer jacket of the
cable, which reached into the main insulation of the cable. The HFCT
is connected to the screen of the cable, and the setup also includes
a coupling capacitor, which is added to stabilize voltage and supply
the charge during PD events. The HFCT has a bandwidth of 0.5–80
MHz (−3 dB) and a transfer ratio of 1:10. The output of the HFCT is
measured and data are recorded using a digital storage oscilloscope.
Various voltage levels are applied to the test object and the PD activity
is recorded and analyzed. An example of a PD measurement obtained
using this setup is depicted in Fig. 2, where the PD pulses appear
as sharp peaks and are plotted in relation to the AC voltage used to
energize the test sample to obtain information regarding the phase
angle at which the PD occurs.

The measurements were performed at various voltages at and be-
yond the level at which PD begins to occur (i.e., PD inception voltage).
The data were gathered at 6.4, 7.4, 9.4, and 11.3 kV and the PD
activity was recorded for a total of 32 cycles of AC voltage at each
voltage level. The sampling rate used in the experiments was 156 MS/s.
Examples describing the typical PD measurement results at different
voltage levels are depicted in Fig. 3. In the figure, the test voltage
waveform is provided purely for visualization of phase reference. Upon
increasing the test voltage, the PD activity undergoes some noticeable
changes:

• The magnitude of the largest PD pulses tends to increase
• The number of PD pulses over one AC voltage cycle tends to

increase
• The range of phase angles at which PD activity occurs tends to

expand



Electric Power Systems Research 227 (2024) 109988S. Mishra et al.
Fig. 2. Measurement data set recorded at 11.3 kV. Partial discharge activity is plotted in relation to the 50 Hz energizing voltage.
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The figure also demonstrates the stochastic nature of PD activity.
The phase angles at which PD pulses are observed tend to change
as the voltage increases. If individual AC voltage cycles recorded at
any voltage level beyond the PD inception voltage are compared, then
the magnitude, occurrence time, and the number of pulses exhibit
noticeable variation. As the PD measurement was accomplished using
an HFCT, which does not measure the apparent charge of PD pulses,
no charge magnitude calibration was performed. The PD pulses are
quantified based on the peak response of the HFCT output in mV.

The measurements obtained using the experimental setup capture
the internal partial discharge in the cable using a data acquisition sys-
tem. However, the recorded PD pulses are accompanied by oscillations
along with superimposed noise. Therefore, to separate these unwanted
signals and extract only PD peaks occurring at several instances without
losing significant information, a ramping behavior algorithm (RBA𝜃)
is applied. The RBA𝜃 is only applied to the time-series PD data set.
The RBA𝜃 algorithm extracts two sets of events, which are termed
stationary and significant. The diversification of events into segments
facilitates circumventing the noise from the PD measurements, which
can be further investigated with ease. This algorithm is applied for
different sets of measurements taken at each stress level. The following
subsection will provide a high-level overview and the steps of the RBA𝜃
method. Subsequently, how the RBA𝜃 is applied to the internal PD
measurements is explained.

2.2. Working principle of ramping behavior analysis (RBA𝜃) method

The RBA𝜃 methodology, which has been proposed in [32,33], and
applied in [31], was originally utilized in the process of wind ramp
event extraction. A swing across the reference axis is one way to
describe what is known as a ramp event. RBA𝜃 categorizes the ramp
events as either significant or stationary depending on their duration.
Significant events are those that exhibit abrupt and significant fluctu-
ations, whereas stationary events have swings of a relatively smaller
magnitude and are consistent across time. The original application of
the RBA𝜃 methodology focuses on the significant events that can be
found in time series data pertaining to wind power production. Fig. 4
is a graphic representation of the characteristics that define an event
that is deemed to be of major importance, therefore significant. Five
distinguishing characteristics are used to summarize each significant
event. The peak value of a ramp event, which is the peak value of the
capacity factor at the time of vertex, is denoted by the 𝑤𝑠(𝑡) variable.
The value of 𝑡 indicates the time at which the ramp event took place.
4

The size of a ramp event is measured by the 𝛥𝑤𝑠 value, which is the n
value change that occurs between the predetermined threshold and the
present value of the wind capacity factor. The duration of time that a
ramp event has been present is denoted using the 𝛥𝑡 variable. Finally
𝜃𝛥𝑊𝑠 represents the angle that must be covered in order to get from the
initial departure point that intersects the threshold to the peak point
𝑤𝑠(𝑡).

The RBA𝜃 methodology introduced above was originally developed
or wind-related applications, with a particular focus on extracting
ignificant events from wind power production curves. Given the in-
erent uncertainty of wind power production, as well as the promising
esults obtained by using RBA𝜃 for wind power feature extractions,
t is reasonable to assume that the same methodology could have a
roader range of applications where stochasticity is prominent and the
xtraction of significant events is of interest. The work proposed in [34]
rovides insights on the value of extracting events from time-series
ata to perform predictions that are less computationally intensive both
rom the computational time aspects and from the energy consumption
spects. Such work is already a demonstration that the RBA𝜃 key idea
f events extraction has great potential for a wide range of applica-
ions that go beyond the ramping behavior analyses limited to wind
ower production. In particular, the insights gathered from RBA𝜃 can
e utilized by decision support system tools based on mathematical
ptimization for power and energy networks. The subject of energy
nd power systems modeling [35] as a subfield of the broad domain of
nergy informatics [36], would greatly benefit from data manipulation
ethodologies aimed at identifying significant events in the input time

eries data. Significant events could be utilized in place of the more
raditional typical periods that are usually adopted in literature to
educe the computational time of large-scale models. An example is
rovided in [37] aimed at identifying needs for network reinforcement,
estructuring, and reconfiguration. Here events’ identification could im-
rove the dataset utilized as model input, and have a positive impact on
he overall computational time. Furthermore, decision support system
odels dealing with renewable integration, novel technologies, and
on-linearities such as [38] can greatly benefit from the RBA𝜃 key
oncept of events extraction.

From this perspective, the identification of trends and patterns in
he internal partial discharge occurrences in the power cables repre-
ents another promising area of application, and is the main focus of
his article, as further discussed in the following paragraphs.

.3. Application of ramping behavior analysis method

The data set obtained from the measurements consists of a large

umber of samples, time (in ms), and PD activity measured using
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Fig. 3. Examples of internal partial discharge activity at various voltage levels.
an HFCT superimposed with noise (in mV). The used sampling rate
generated a total number of data points of around 3.12 million per AC
cycle and the size of the file was 107 MB for each data set at different
voltage stress levels. The output data from the obtained measurements
was mapped as RBA𝜃 input given that it is based on the number of
samples and the PD magnitude.

The input data obtained from the measurement system is normal-
ized between 0 to 1 by the RBA𝜃 for computation (in this case 1 is
30 mV). The user-defined threshold (𝜏) based on the nominal value
5

segregates the time series data set into significant and stationary events.
The significant accounts for the PD peak formation events and the
stationary events account for the noise interference. This process of
filtering is based on the selection of optimal threshold (𝜏) and is
achieved iteratively by analyzing the peak noise amplitude manually.
Furthermore, the determination of features based on the amplitude of
the data signal in the significant event can further be classified as a
significant up or significant down event depending on the direction of
variation. Due to the characteristics of the recorded measurements, no
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Fig. 4. Main features of ramp events, and examples of stationary and significant events, for the original wind application of RBA.
further conditioning was necessary prior to RBA. However, depending
on background noise levels, denoising of the recorded PD data might
be necessary under some circumstances. A number of methods have
been investigated to accomplish this more commonly, e.g. fast Fourier
transform (FFT), short-time Fourier transform (STFT), low-pass and
notch filtering, as well as wavelet-based filtering methods [39].
Algorithm 1 Event extraction using Ramping Behavior Algorithm
Require: 𝑁𝑙 > 0
Ensure: 𝑁 = 0…1
Ensure: 𝑆𝑒𝑡 𝜏
while 𝑁𝑙 ≥ 0 do

if 𝑁𝑖 ≥ 𝜏 then
𝐸𝑠 ← 𝑁𝑖
𝐸𝑠 ← 𝛥𝑡, 𝛥𝑡𝑚, 𝛥𝑤, 𝛥𝑤𝑚, 𝜃, 𝑡, 𝑇1, 𝑇2

else if 𝑁𝑖 ≤ 𝜏 then
𝐸𝑠 ← 𝑁𝑖
𝐸𝑠 ← 𝛥𝑤𝑠, 𝜃𝛥𝑤𝑠 , 𝑤𝑠, 𝑇1, 𝑇2, 𝜎𝑠

end if
end while
Implementation of RBA𝜃 algorithm on partial discharge measure-

ment dataset is demonstrated as pseudocode in Algorithm 1. The mea-
surement data from four stress levels are sequentially fed into the
algorithm, and extracted events are stored. In each iteration, the length
of data (𝑁𝑙) is required to be positive and the dataset (𝑁) is normalized
between 0 and 1. Afterward, a threshold 𝜏 is set that will distinguish
between significant (𝐸𝑠) and stationary (𝐸𝑠) events. For this analysis,
the significance corresponds to partial discharge events and stationary
6

noise in the measurement. Each significant and stationary event is made
up of several features that describe an individual event of either type
as listed in the algorithm above. A complete description of the RBA𝜃
algorithm, features and the working principle is covered in [31].

The working procedure of the RBA𝜃 , starting from input data series,
PD peak events, to extraction of significant events with the feature
description is depicted in Fig. 5. When the variation between consec-
utive data set points exceeds the threshold value, the instant at which
this change occurs is recorded as the start time (𝑇1) of the significant
event and the end of the event as (𝑇2). The time interval (𝛥𝑡) is used
to calculate the total number of samples recorded when the PD peak
changes from its initial value to a maximum value of the PD pulse
given by the difference between (𝑇1) and (𝑇2). The initial magnitude
of the PD pulse is denoted by 𝑤1, captured at instant 𝑇1, and 𝑤2
corresponds to the PD peak magnitude observed at 𝑇2. Furthermore, the
difference between the initial and final PD magnitudes 𝛥𝑤 is recorded,
also the mean value of these 𝜎𝑚. The slope formed between 𝑤1 and 𝑤2
is calculated in relation to the horizontal from the data point where 𝑇1
is marked and the angle denoted is by 𝜃𝑚. The set of the frequencies
per featured event denoted by 𝛬𝑚 for 𝛥𝑡𝑚, 𝛥𝑤𝑚, 𝜃𝑚, and 𝜎𝑚 are also
calculated for the given PD data set.

The previously described mapping process results in two output data
sets, i.e., the significant events which capture the occurrence of PD
peaks and stationary events which account for noise. Hence for further
evaluation stationary events are not considered. It should also be noted
that the PD pulses are also subjected to noise interference (although
with different frequencies) which affects the peak value of the PD
pulses along with their waveform. Table 1 represents the output of the
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Fig. 5. Mapping of partial discharge (PD) measurements with RBA𝜃 algorithm.
Table 1
Example of significant events obtained from RBA𝜃 output.
𝑡1 𝑡2 𝛥𝑡𝑚 𝑤𝑚(𝑡1) 𝑤𝑚(𝑡2) 𝛥𝑤𝑚 𝜎𝑚 𝜃𝑚 (◦)

158 305 158 316 11 0.06842 0.96102 0.89259 0.51472 82.97
318 594 318 601 7 0.10773 1.11090 1.00317 0.60931 86.00
418 648 418 652 4 0.02606 −0.1951 −0.2211 −0.0845 −79.74
666 536 666 546 10 0.07188 0.76551 0.6936 0.4187 81.79
1 544 996 1 545 010 14 0.02936 −0.4496 −0.4789 −0.2101 −73.70
1 750 350 1 750 362 12 0.00325 −0.4299 −0.4331 −0.2133 −74.51
1 874 555 1 874 563 8 0.03584 −1.0946 −1.1304 −0.5293 −85.95
2 090 801 2 090 809 8 −0.0553 −0.876 −0.8209 −0.4658 −84.43
2 117 052 2 117 054 2 −0.0584 0.21464 0.27309 0.0781 85.811
2 161 524 2 161 532 8 −0.0358 −0.4073 −0.3714 −0.2215 −77.84

significant event captured by mapping it from the measurement file at
an 11.3 kV voltage stress level. Not only are the PD peaks captured, but
the oscillations accompanying the PD are also shown in the table. The
occurrence of oscillations is a by-product of the measurement process
and attention should be primarily directed towards the initial PD pulse
and its waveform. The first peak that occurred during the event is the
actual partial discharge. This peak formation may occur in one or more
steps depending on the noise interference. The point at which the PD
peaks magnitude changes its polarity is starting point of the oscillation
of any given PD event. This sign reversal as shown in Table 1 (starting
from column 3) is the significant event which is accounting for PD
oscillations.

Fig. 6 illustrates the total number of significant events (secondary y-
axis) and PD events (primary y-axis) extracted from the measurements
in each data set at different voltage stress levels. The variation of the
total number of events observed ranges between 5 to 22. The PD peaks
observed at 6.4 kV voltage stress level consist of only negative polarity
and each observation has only one PD peak. At a voltage stress level of
7.4 kV, the variation of the total number of events ranges between 7 to
54. The occurrence of PD peaks with negative polarity is prominent in
each evaluated data set and the positive polarity peaks occur in only a
few data sets. The total PD peaks range between 1 and 2. After further
7

increment in voltage stress level (i.e., at 9.4 kV), the occurrence of PD
peaks having positive polarity occurrence becomes more pronounced
and is observed in each data set. However, the negative polarity PD
peak occurrence frequency is still higher. At 11.3 kV, both positive and
negative polarity PD peaks increase and range between 1 to 4 and 2 to
4 respectively.

The frequency of occurrence of PD peaks at different phase angles
and their respective peak magnitude is shown in Fig. 7 for different
voltage stress levels. The phase angle is computed by equating the total
number of samples to 2𝜋. The polarity of the voltage cycle has an effect
on the PD peak polarity. In the positive cycle, the occurrence of positive
PD peaks are observed, and vice-versa in the negative voltage cycle, as
expected. Since at low voltage stress levels, positive peaks are absent,
further analysis is carried out for the negative voltage cycle only.

At 11.3 kV voltage stress level, the frequency of occurrence of PD
magnitudes (normalized) between 0 to −1 and −1 to −2 are almost
equal (i.e. 9 and 10 respectively) which occurs in the voltage phase
angle ranging from 150◦ to 200◦ and 200◦ to 250◦ respectively. The
highest PD peak magnitudes having frequency of occurrence 2, are
also realized in the latter range. The frequency of occurrence of PD
magnitudes is scattered more at the 9.4 kV stress level. The highest
occurring frequency (i.e. 7) of the normalized PD magnitudes ranges
from 0 to 1 which occurs from 150◦ to 200◦ of voltage phase angle.
High magnitude PD peaks arise in all the voltage phase angles as
shown in Fig. 7 with almost similar frequency of occurrence. However,
the voltage phase angle range from 200◦ to 250◦ has slightly higher
occurrence.

For 7.4 kV stress level, the range from 180◦ to 210◦ has the highest
frequency of occurrence of PD pulses with magnitudes ranging from 0
to −1. The normalized PD magnitudes between −1 to −2 occur mostly
between 220◦ to 240◦ while one PD peak is also identified in the range
of 180◦ to 200◦. The PD peaks ranging from 0 to −0.5 occur mostly
within the voltage phase angle range of 220◦ to 240◦. The highest
PD peaks having normalized magnitude of −1 occur dominantly in the
range of 240◦ to 260◦.

Fig. 8 represents the variation of the time difference (or sample
number difference) for each PD pulse, measured at different voltage
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Fig. 6. Occurrence of positive and negative partial discharge peaks and the total number of identified significant events for each voltage stress level across 10 AC voltage cycles.
Fig. 7. Frequency of occurrence of PD peak magnitudes at different voltage phase angle (𝜃𝑝) for each voltage stress level.
stress levels, to obtain its peak amplitude from its initial value. At 11.3
kV, the variation of 𝛥𝑡 ranges from 3 to 19, however, for most of the PD
pulses, 𝛥𝑡 ranges between 8 to 14. The variation of 𝛥𝑡 at 9.4 kV stress
level has almost a similar range (i.e. between 3 to 18). However, for
most of the PD peaks 𝛥𝑡 ranges between 8 to 12. The magnitude of 𝛥𝑡
reduces at 7.4 kV stress level, having the highest value of 13. However,
at 6.4 kV stress level, the 𝛥𝑡 highest value is 17. Most of the PD peak
formation for this stress level occurs at 12.
8

3. Results: Patterns and trends of internal partial discharge

The aggregate percentage of the positive and negative PD peaks
with respect to the total number of peaks and the total number of
significant events captured in each data set is presented in Table 2. It
can be inferred that the occurrence of negative PD peaks is predominant
at each voltage stress level. Also, at lower stress levels, positive PD
peaks are not observed with increasing stress levels. Hence only the
negative voltage half-cycle is analyzed. Additionally, the total number



Electric Power Systems Research 227 (2024) 109988S. Mishra et al.
Fig. 8. Negative PD pulse rise-times across 10 AC voltage cycles as determined by RBA𝜃 algorithm.
Table 2
Aggregated percentage change of partial discharge peaks as significant events at
different voltage levels.

Voltage (kV) 6.4 7.4 9.4 11.3

Negative PD peaks (%) 100 80 60 55.5
Significant events corresponding to negative PD peaks (%) 11.3 6.6 2.8 2.7
Positive PD peaks (%) 0 20 40 44.5
Significant events corresponding to positive PD peaks (%) 0 1.1 2.1 2.2

Table 3
Comparison of aggregate percentage change in PD peaks and significant events.

Voltage (kV) 6.4 7.4 9.4 11.3

Phase angle (%) 99.82 99.89 103.71 103.06
𝛥𝑡𝑚 (%) 129.92 122.21 117.45 104.85
𝑤𝑚(𝑡2) (%) 116.63 122.96 136.78 153.02
𝜃𝑚 (%) 100.63 99.43 94.77 100.45

of significant events grows with increasing stress levels which cor-
respond to the lower percentage change in negative PD peaks with
increasing stress levels.

Table 3 represents the rolling average percentage of the RBA𝜃
algorithm output parameters for different voltage stress levels. The
percentage of voltage phase angle (corresponding to 𝑡2) decreases from
103.06% at 11.3 kV to 99.82% at 6.4 kV stress level. However, the per-
centage in 𝛥𝑡 increases with decreasing stress levels. The rolling average
percentage of 𝛥𝑤 (corresponding to a change in PD peak from its initial
value to final value) has similar behavior to change in voltage phase
angle and inverse relation with change in 𝛥𝑡. At 11.3 kV, the aggregate
rolling percentage change is 153.02% which reduces with decreasing
stress level and reaches 116.63% at 6.4 kV voltage stress level. The
percentage of 𝜃𝑚 (the angle at which the PD peak is generated) has
a value of 100.45% at 11.32 kV which reduces to 99.43% at 7.4 kV.
However, the aggregate percentage change again increases to 100.63%
at 6.4 kV. Successive voltage cycles and the occurrence of the PD peaks
at each voltage stress level explain the change in the occurrence of the
PD peaks. Then, a rolling average method is used where an average
value is calculated over a time horizon.

To determine a trend in the variation of PD peak occurrence at
different voltage stress levels, linear polynomial fitting is applied to
9

variables 𝛥𝑡 and 𝛥𝑤. The mathematical equation for the curve is given
as presented in (1).

𝛥𝑤(𝛥𝑡) = 𝑝1(𝛥𝑡)2 + 𝑝2𝛥𝑡 + 𝑝3 (1)

Fig. 9 shows the variation of the curve for different voltage stress
levels. This variation can be explained in two parts — first, the number
of PD peaks varies at each stress level, and second, the variations of
𝛥𝑡 which are affected by the noise (higher voltage stress level has
more effect) and the 𝛥𝑤 (normalized PD peaks) have inverse relation
in their rolling aggregate percentage as depicted in 4. These factors
contribute to different curve formations after applying the polynomial
fitting. The parameters of the equation along with their 𝑅2 and RMSE
(root mean squared error) values are presented in Table 4. It can be
observed that the RMSE value increases with voltage and is highest
(0.415) at the 11.3 kV stress level. Concurrently, the 𝑅2 value decreases
with voltage. Coefficient 𝑝1, which is associated with the second degree
and the constant value 𝑝3 have negative values while 𝑝2 is positive.
With decreasing voltage stress level, the RMSE value decreases and
the 𝑅2 score improves by reaching values 0.13 and 0.82, respectively.
At 9.4 kV, the signs of 𝑝1 and 𝑝3 change from positive to negative,
and 𝑝2 becomes negative instead of positive. At 7.4 kV, the sign of all
the constants becomes negative. Finally, at the 6.4 kV stress level, the
sign convention becomes similar to 11.3 kV, although having different
values as presented in Table 4.

For comparison, the smoothing spline fitting was also applied. In
Fig. 9, it can be observed that as the voltage increases, so does the
disparity between the two fitted curves. It is evident that the degree of
stochasticity in the PD activity increases substantially with the increase
in voltage, particularly due to the increased variability of 𝛥𝑤. The
higher applied voltage facilitates larger PD peak magnitudes, while the
possibility for smaller PD pulses to occur is also present. This results
in a higher degree of variability in the dataset, which will necessarily
have a rather poor fit to a polynomial function. From Table 4, it is
also evident that the smoothing spline yields a better fit compared to
the second degree polynomial, with higher 𝑅2 values and lower RMSE
values at all voltage levels. The spline fitting also lacks the monotonic
nature of the polynomial observed for these data.



Electric Power Systems Research 227 (2024) 109988S. Mishra et al.
Fig. 9. 2nd degree polynomial and smoothing spline fitting applied to partial discharge RBA algorithm results. (REVISED CAPTION).
Table 4
Polynomial fitting equation coefficients, 𝑅2 score and RMSE for polynomial and
smoothing spline (S) fitting at different voltage stress levels.

Voltage (kV) 𝑝1 𝑝2 𝑝3 𝑅2 RMSE 𝑅2 (S) RMSE (S)

6.4 −0.003 0.025 −0.312 0.821 0.130 0.877 0.122
7.4 −0.001 −0.057 −0.019 0.764 0.181 0.823 0.166
9.4 0.005 −0.201 0.645 0.512 0.368 0.748 0.305
11.3 −0.005 0.035 −0.495 0.469 0.415 0.698 0.344

4. Concluding remarks

The objective of this work was to quantify the patterns and trends in
the occurrences of internal partial discharge. Internal partial discharge
tests were conducted at four stress levels: 6.4, 7.4, 9.4, and 11.3 kV
to collect the data set. The data set contains actual partial discharge
events and noise from the measurement.

The ramping behavior analysis (RBA𝜃) method was developed to
quantify variations and characterize the data by segregating them into
significant and stationary events. The RBA𝜃 method has been well
established in wind power production data sets, which are inherently
stochastic. Thus, such a method aligns with the objective of this work
in identifying internal partial discharge events. RBA𝜃 method is im-
plemented in parallel and recursive programming form. This results
in faster computational processing. Beyond that, the key advantage of
RBA𝜃 method is to provide insight from data with easier recognizable
results. That is to imply significant and stationary events are much
easier to recognize and therefore plan for. In addition, the number
of events is much smaller than the number of data points, thereby
providing a holistic insight into the phenomenon with smaller storage
size requirements.

The following steps are involved in the RBA𝜃 method:

• Segmentation: differentiating between the noise and partial dis-
charge events by identifying and setting the threshold

• Identification: identifying PD peak events with oscillations by cap-
turing the whole cycle from the origin until the end of oscillations.
10
• Characterization: Characterizing PD peak formation which takes
place in several steps due to noise interference and removing the
oscillations.

• Quantification: Quantifying the events into significant and sta-
tionary events.

• Comparison: Comparative analysis is performed using the pa-
rameters phase angle (time or observations), magnitude, and
angle variations associated with PD peaks for each stress level to
quantify the changes.

The following are the main findings of the analysis.

• The occurrence of PD events is voltage-polarity dependent. Neg-
ative PD peaks occur during the negative voltage half-cycle, as
expected. The number of PD peaks increases with increasing
stress levels. At lower stress levels, PD peaks occur mostly during
the negative polarity. With increasing voltage, the occurrence of
positive PD peaks becomes more frequent.

• The number of significant events is associated with the occurrence
of PD according to the RBA𝜃 setting. The number of significant
events is higher than the PD peak number, as it accounts for the
oscillations accompanying PD peaks.

• The stationary events account for the noise. The range of phase
angles at which PD occurs is mostly between 200◦–250◦ at 11.32
kV and 9.4 kV. For 7.4 kV and 6.4 kV stress levels, the PD
occurrence frequency is highest between the phase angle range
from 220◦–240◦. The time duration from an initial value of the
PD peak to the final value is higher at high-stress levels.

• The aggregate percentage change of negative PD peaks with
respect to significant events increases with decreasing stress levels
as positive PD peaks increase (from Table 2).

• The percentage change in phase angle increases with decreasing
stress levels. Subsequently, the change in PD peak magnitude is
in descending order in correspondence with the decreasing stress
levels (from Table 3).

• The finding from curve fitting is that the RMSE of curve fitting
increases with increasing stress level (i.e., stochasticity increases
with increasing voltage). The polynomial fitting curve constants
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also change signs, resulting in different types of curves when
fitted.

The scope of this study is to diagnose the partial discharge events
rom the measurements collected by the sensors. Then, the data source
s limited by the observations from the sensor. The noise data recorded
y the sensor is characterized as stationary events and not included in
his study. In future research work, more continuous observations could
e collected and stationary events could be utilized in investigating how
partial discharge pulse builds on over time.

This work demonstrates the application of RBA𝜃 to the analysis of
a specific type of internal PD defect. Further work on this subject can
include studying the characteristics of different types of PD defects as
determined using RBA𝜃 , both of internal and external nature and also
corona discharge, to determine how these sources can be differentiated
during PD signal interpretation. The impact of various types of noise
on the results of the RBA𝜃 analysis, which can be present during any
D measurement both in a laboratory or on-site setting, should also be
nvestigated.
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