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Preface 
Pursuing a PhD has been something I wanted to do since I graduated from Leiden University in 2004 
with an MSc. in Cognitive Psychology, I just never got around to doing it. After my first degree, I 
decided to pursue a second one within Industrial Ecology, with the aim to “do something within 
sustainability”. But when I obtained a position as a Human Factors researcher at the National 
Aerospace Laboratory in Amsterdam, I immediately knew this was what I wanted to do – optimizing 
human performance in safety critical domains. Focussing on human-automation interaction for 
commercial-, fighter pilots and Air Traffic Controllers, it occurred to me that I could specialise in this 
even further by doing a PhD. However, my wife and I decided to accept an even bigger challenge. In 
2010, we emigrated to Norway.  

Without any social network, nor any Norwegian vocabulary, we basically started our adult life anew. 
However, we both were fortunate enough to be able to find relevant, interesting, and challenging work 
as consultants within the oil & gas industry. In 2012, our first child was born, and in 2015, the second 
one. Whilst still learning Norwegian, changing nappies, and a full-time job, we had enough on our 
plate to keep us occupied for a while. This meant that although the thought of pursuing a PhD degree 
never left my mind, it began to fade, and at some point, I thought I would never do one. Until at the 
end of 2019, an opportunity came along that sparked my interest: an industry PhD position within my 
employer’s Research & Development department on the topic of autonomous shipping and human 
performance. As this was right up my alley, I applied, got the position, was approved by the 
University of South-Eastern Norway’s joint PhD program, and started on my new journey. Finally.  

The excitement was short-lived as, on my very first day as a PhD candidate, I was in quarantine 
because of a COVID-19 case at work. Two weeks later, Norway was in lockdown. Here I was, behind 
my PC at the dining table, together with my wife and two children. We were doing morning-, 
afternoon-, and evening shifts where one was working, and the other was home-schooling and 
entertaining the children. In between activities, I was trying to focus on whatever I was going to 
research. The thought of performing a task as large as a PhD, alone, and in these conditions, was 
daunting. Needless to say, it was a challenging time.  

Fortunately, with the guidance and unwavering support of my supervisors, employer, family, friends, 
and colleagues, I was able to take it step-by-step, persevere, and ultimately made this a successful and 
extremely rewarding chapter of my life. I look back on it with fulfilment, joy and pride. 

Høvik, Norway 

Koen van de Merwe 
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Summary 
The maritime industry is investing in advanced technologies to reduce its environmental footprint, 
become more attractive to personnel, improve its safety record, and enhance its resilience against 
adverse conditions, whilst maintaining profitability. To contribute to achieving these goals, Artificial 
Intelligence (AI) is anticipated to play a central role in supporting navigators in critical decision 
making and possibly even allowing ships to sail without direct human involvement. Considering the 
safety-critical nature of maritime navigation, this means that AI-enabled systems need to demonstrate 
a high degree of reliability and robustness across a wide range of situations. However, given the 
limitations of such systems to operate in novel and complex situations, careful design, 
implementation, management and operation is required when deploying these in real-world 
environments. Therefore, proposed autonomous ship concepts typically employ human operators to 
monitor, supervise, and potentially intervene in the system to ensure the required performance and 
safety levels are achieved. 

Decades of research has demonstrated that there are significant human performance challenges 
associated with assigning humans a supervisory role of highly automated systems. Since operators are 
tasked with supervising systems that make their own decisions and actions, they are typically removed 
from much of the information- and decision-making loop. Consequently, they may find it challenging 
to evaluate, understand, and predict the behaviour of such systems. In addition, passive information 
processing may lead to complacent behaviour, biases in decision making, a reduced ability to detect 
critical information, an over- or underreliance on the system, and high workload when switching from 
supervised- to manual control. As a result, their capability to intervene is affected. Nevertheless, 
recent research has suggested that by disclosing the system’s decisions, planned actions, and internal 
reasoning to the operator, i.e., by making the system “transparent”, some of these challenges may be 
alleviated. However, considering the novelty of the application of AI-enabled systems in safety-
critical domains, there is limited experience with the effect of transparency in these settings. As such, 
there is an urgent need to generate new knowledge, methods, and tools with regards to how humans 
may successfully interact with these types of technologies. Therefore, this dissertation aims to explore 
the following overarching research question (RQ):  

How does agent transparency support human performance in supervisory control? 

The main RQ is decomposed in the following sub-questions (see Table 1). 

Table 1. The research questions addressed in this dissertation. 

No. Research question 
1 What is the relationship between agent transparency and Situation Awareness, mental workload, and 

task performance? 
2 How is human performance achieved in conventional- and supervised maritime collision avoidance? 
3 How does a model for human information processing form the basis for agent transparency in the 

ship autonomy context? 
4 How should a maritime collision avoidance system be made transparent to a human supervisor? 
5 What is the relationship between agent transparency and Situation Awareness, mental workload, and 

task performance in maritime autonomous collision avoidance manoeuvring? 



 

xiv 

To answer the RQs, a mix of quantitative and qualitative methods were deployed. The Preferred 
Reporting items for Systematic review and Meta-Analysis method (PRISMA) was used to 
systematically map and assess the scientific literature for empirical research addressing the effect of 
transparency on central Human Factors variables: Situation Awareness (SA), mental workload, and 
task performance (RQ1). A Goal-Directed Task Analysis (GDTA) was used to identify information 
requirements for conventional- and supervised collision and grounding avoidance (CAGA) 
manoeuvring (RQ2). A model of human information processing was adapted to the autonomous 
shipping context and was used to structure the data from the GDTA and generate layers of 
transparency for a hypothetical CAGA system (RQ3). An iterative design process was used to develop 
traffic situations and Human Machine Interface (HMI) concepts for displaying various levels of 
transparency (RQ4). A controlled experiment was used to assess the relationship between transparency 
and agent performance (RQ5). In addition, a range of secondary methods were used to gather, 
structure, validate, and quality-assure the data. Finally, professional navigators played a key role as 
subject matter experts (SME) throughout the dissertation to ensure external validity. 

As depicted in Table 2, the Systematic Literature Review (SLR) found a promising effect of 
transparency on SA and task performance, without affecting mental workload, for studies where 
participants were responding to proposals or supervising automation. As documented in Article 1, it 
was suggested that strategies to improve human performance, when interacting with intelligent agents, 
should focus on allowing humans to see into its information processing stages, considering the 
integration of information in existing HMI solutions. By using the PRISMA method, the results 
contributed by systematically mapping the scientific knowledge regarding transparency as a design 
principle for effective human-automation interaction. In addition, the results provide an incentive for 
designers to apply transparency principles when developing systems in which operators are tasked 
with responding to proposals or perform supervisory control, e.g., as proposed in autonomous shipping 
concepts. 

The GDTA mapped and analysed the goals, decisions, and cognitive tasks associated with 
conventional- and supervised collision and grounding avoidance. As reported in Article 2, data was 
obtained from in situ observations and interviews with nine navigators onboard passenger ferries, an 
appraisal of the collision regulations, and from relevant company documentation. The results provide a 
detailed analysis of the change in information requirements from conventional- to supervised collision 
avoidance. The study explored the shift in cognitive activities when the navigator’s task changes from 
performing collision avoidance to supervising a system performing collision avoidance. To support 
operators in this change, explicit information requirements were identified that should allow for 
insight into the agent’s decisions, planned actions, and underlying reasoning.  

As addressed in Article 3, a model for human information processing was adapted and repurposed to 
function as a model for transparency. The model by Parasuraman, Sheridan, and Wickens (PSW) was 
contextualized to the maritime collision avoidance setting such that the information from the GDTA 
could be structured into unique and distinct layers. It was suggested that this model may serve as a 
framework for transparent design as the steps in the model could represent the agent’s input 
parameters, analysis, decisions, and planned actions. Using the model in this way, a minimum set of 
information requirements was made, organised in layers per processing step, resulting in a model for 
transparency.  
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Based on the structured information requirements, HMI concepts were developed for making an 
autonomous collision avoidance system transparent for its supervisor (see Article 4). Here, traffic 
situations and symbology were developed to operationalise transparency for a hypothetical CAGA 
system. The symbology was integrated into the primary task display for collision avoidance, i.e., the 
radar display, and the PSW model was used to create distinct levels of transparency. For the purpose 
of this dissertation, this enabled each transparency level’s individual contribution to human 
performance to be evaluated. As such, this activity provided the groundwork for the empirical 
evaluation of agent transparency in a maritime collision avoidance context. In addition, the results 
demonstrated the value of the PSW model as a design framework for creating levels of transparency 
for autonomous agents. 

Finally, the effect of transparency on SA, mental workload, and task performance was evaluated using 
a controlled experiment (see Article 5). Based on the PSW model and the traffic situations, four levels 
of transparency and two levels of traffic complexity were varied in an experiment with 34 navigators. 
The results demonstrated a positive effect of transparency on SA without affecting mental workload. 
However, the time to comprehend the provided information increased with increased levels of 
transparency. These results indicate the benefits of applying transparency principles to autonomous 
collision avoidance systems in terms of SA, but care should be taken in time-critical conditions where 
the added transparency information may affect timely decision making. Furthermore, considering the 
absence of the effect of transparency on mental workload, these results also indicate the value of 
proper HMI design through applying a structured and systematic human-centred design process, as 
applied in this dissertation. 

Table 2. Summary of key point and contributions of this dissertation. 

RQ / 
Article 

Key points Theoretical contributions Practical contributions 

1 Systematically gathered and 
assessed empirical evidence for 
the relationship between agent 
transparency and key human 
factors variables 

The results contribute to the 
knowledge regarding 
transparency as a design 
principle for effective 
human-automation 
interaction 

The results provide incentives 
to designers for applying 
transparency principles, 
especially for when humans 
respond to proposals and 
perform supervisory control 

2 Goals, decisions, cognitive tasks 
and SA requirements were 
identified for conventional- and 
supervised collision avoidance  

The results provide a detailed 
analysis of the change in 
information requirements 
from conventional- to 
supervised collision 
avoidance 

The results provide concrete 
insights into the SA 
requirements for supervised 
collision avoidance 

3 Adapted the PSW model to the 
maritime collision avoidance 
domain and used the model to 
organise the SA requirements 
into layers of transparency  

The results expand the 
applicability of the PSW 
model to represent a model 
for agent internal 
information processing, i.e., 
transparency 

The results provide a set of 
minimum SA requirements, 
organised per layer of 
transparency 
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RQ / 
Article 

Key points Theoretical contributions Practical contributions 

4 Developed realistic traffic 
situations and applied the 
transparency model and SA 
requirements to develop realistic 
HMIs 

The results provide the 
groundwork for empirical 
evaluations of transparency 
levels  

The results provide insight 
into the practical value of the 
model as a design framework 
for transparent agents 

5 Experimentally evaluated the 
transparency model in 
autonomous collision avoidance 
context and found effects of 
transparency on SA and task 
performance, but not on mental 
workload 

The results add to the 
knowledge of the effects of 
transparency on key human 
factors variables and 
empirically evaluate the 
proposed transparency 
model 

The results provide insight 
into the anticipated human 
performance effects of 
transparency when applied to 
autonomous agents 

 

To conclude, this dissertation investigated the role of agent transparency in supervisory control and 
contributed with knowledge, methods, and tools regarding transparency in general and its application 
to the maritime domain specifically. As humans are foreseen to play a critical role in overseeing the 
functioning of AI-enabled systems, the operator’s ability to understand, predict, and evaluate agent 
behaviour becomes a critical aspect of the human’s supervisory task repertoire. Consequently, it is 
essential that humans are informed and supported in making accurate decisions to enable timely and 
appropriate control when needed. Therefore, the aim of this dissertation was to generate and advance 
the knowledge on how supervisory control can be supported through agent transparency. This 
dissertation has contributed to this aim by recognising the importance of transparency in safety critical 
domains in terms of human performance, exploring the impact of autonomy on the operator’s 
cognitive tasks, constructing a model for transparency, operationalising transparency for the maritime 
navigational context, and assessing its effects in a controlled experimental setting. The results have 
implications for scientific research and for the application of transparency as a design principle for 
autonomous agents. In addition, this dissertation has made explicit the role-change that may be 
anticipated when introducing autonomous systems. With these new insights, meaningful human work 
may be created where the combined capabilities of human-agent teams can be optimised. Ultimately, 
this dissertation advocates the relevance of affording human operators with insight into the reasoning 
of autonomous systems and established transparency as an important prerequisite on the path towards 
safe and effective human-supervisory control. 

 

 

  



 

xvii 

Structure of the dissertation 
This dissertation consists of two parts: 

Part I: This part of the dissertation introduces the context, theoretical background, and research 
questions, as well as the methodological framework that was applied. In addition, the results and key 
findings from the relevant articles are presented, including a discussion on their implications. Finally, 
directions for future research, contributions and conclusions and are indicated.  

Part II: This part includes appendices in which additional background information to the studies is 
provided. In addition, the five publications relevant to this dissertation are included here. Article 1 is a 
systematic literature review, article 2 is an empirical study exploring operator goals, decisions, and SA 
requirements in a supervised autonomy setting. Article 3 elaborates on the use of a human information 
processing model as the basis for creating levels of transparency. Article 4 discusses the process for 
developing transparent HMIs for supervising an autonomous collision and grounding avoidance 
system, including the development process for generating realistic conflict scenarios on which the 
transparency levels could be evaluated. Finally, article 5 presents the results of an experimental 
evaluation in which the effect of transparency on key human performance variables was assessed. 
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Definition of terms 

Term Definition 

Agent An autonomous entity having goal-directed behaviour in an environment 
using observation through sensors and execution actions through actuators 
(Russell & Norvig, 2022) 

AI-enabled system A system that contains or relies on one or more AI components (DNV, 2023) 
Artificial intelligence System capability of an engineered system to acquire, process and apply 

knowledge and skills (ISO, 2021) 
Automation The full or partial replacement of a function previously carried out by the 

human operator (Parasuraman et al., 2000) 
Autonomy Ability of a system to work for sustained periods without human intervention 

(ISO, 2020b) 
Display equipment Device capable or representing information visually (IEC, 2022) 
Function Specific purpose or objective to be accomplished, that can be specified or 

described without reference to the physical means of achieving it (IEC, 
2019) 

Human Factors Scientific discipline concerned with the understanding of interactions among 
human and other elements of a system, and the profession that applies 
theory, principles, data and methods to design in order to optimize human 
well-being and overall system performance (ISO, 2011) 

Human Machine Interface 
(also: user* , human-
system*, man-machine*) 

Set of all the components of an interactive system that provide information 
and controls for the user to accomplish specific tasks with the interactive 
system (ISO, 2020a) 

Machine learning Process using algorithms rather than procedural coding that enables learning 
from existing data in order to predict future outcomes (ISO, 2017) 

Operator Individual whose primary duties relate to the conduct of monitoring and 
control functions, usually at a control workstation, either on their own or in 
conjunction with other personnel both within the control room or outside 
(ISO, 2000) 

Situation awareness Situation awareness is the perception of the elements in the environment 
within a volume of time and space, the comprehension of their meaning, 
and the projection of their status in the near future (Endsley, 1995) 

Supervisory control One or more human operators are continually programming and receiving 
information from a computer that itself closes an autonomous control loop 
through artificial effectors and sensors to the controlled process or task 
environment (Sheridan, 1992) 

System Combination of interacting elements organized to achieve one or more stated 
purposes (ISO, 2011) 

Task Activities required to achieve a goal (ISO, 1998) 
Transparency 

(also: system*, agent*, 
display*, automation*) 

The ability of a system to support understandability and predictability of its 
current and future actions (Endsley, 2017) 

User Person who interacts with a system, product or service (ISO, 2011) 
Validation Confirmation, through the provision of objective evidence, that the 

requirement for a specific intended use or application have been fulfilled 
(ISO, 2015) 

Verification Confirmation, through the provision of objective evidence the specified 
requirements have been fulfilled (ISO, 2015) 
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1 Introduction 
1.1 Background and context 
Maritime transport is responsible for the majority of global trade. An estimated 80% of the trade 
volume is carried out by a global shipping fleet of over 100,000 vessels, with a manning force of more 
than 1.8 million seafarers, and a vessel market size of 168 billion USN (Fortune Business Insights, 
2021; UNCTAD, 2023b, 2023a). However, despite decades of growth, the industry is faced with 
several key challenges. For example, the prospect of global disruption as a consequence of climate 
change is pushing the maritime industry towards developing sustainable solutions (IMO, 2023). Also, 
the lack of- and increasing demand for certified seafarers in the world threatens to affect manning 
levels and the subsequent flow of goods (BIMCO, 2021). Furthermore, with more than 800 total ship 
losses in the last decade, and more than 3000 shipping incidents reported in 2022 only, improving 
maritime safety is a continuous and ongoing endeavour (Allianz, 2023). Moreover, increasing 
geopolitical tension, cybersecurity risks, and changes in legislation and regulations threaten to affect 
global trade (Allianz, 2024). To address these challenges, the maritime industry is looking for ways to 
reduce its environmental footprint, become more attractive to personnel, improve its safety record, and 
enhance its resilience to adverse conditions whilst maintaining profitability. One of the areas that has 
received considerable attention as a candidate for decreasing operating costs, increasing efficiencies, 
reducing reliance on qualified seafarers, and enhancing safety, is autonomous shipping (Kretschmann 
et al., 2017; Kurt & Aymelek, 2022). 

In the last decade, the industry has painted a vision of a future where autonomous ships, powered by 
artificially intelligent (AI) agents, execute their voyages without direct human involvement (Rolls 
Royce, 2016). These ships, without the need for human support facilities, may use novel designs, use 
cleaner fuels, and sail at more efficient speeds, thereby saving fuel and personnel costs (Kretschmann 
et al., 2017; Kurt & Aymelek, 2022). Furthermore, as removing personnel from sharp-end operations 
will also remove their exposure to risk, unmanned ships may reduce the number of casualties among 
seafarers (de Vos et al., 2021; Wróbel et al., 2017). Still, despite these purported benefits, the effect of 
ship autonomy on overall safety performance is unclear, and highly depends on the operational 
concept. For example, some developments foresee advanced technologies to be used as decision 
support tools in traditional navigational contexts (Aylward et al., 2022; Pietrzykowski et al., 2017). 
More visionary developments delegate seafarers a new role as operators in Remote Operations Centres 
(ROC) where multiple ships can be monitored and supervised (Alsos et al., 2022; Porathe et al., 2020; 
Rødseth et al., 2021). Regardless of the concept, in the path towards becoming a green, attractive, and 
safe industry, future seafarers are expected to interact with increasingly sophisticated and capable 
systems.  

Within autonomous shipping, collision avoidance is an area that has received a significant amount of 
attention, as solving this complex and multi-faceted task is seen as an important step in realising 
autonomous shipping (see Akdağ et al., 2022; Zhang et al., 2021 for reviews). Here, success depends 
on the collision and grounding avoidance (CAGA) system’s ability to develop solutions that are 
compliant with the Convention on the International Regulations for Preventing Collisions at Sea 
(COLREG; IMO, 1977). These “rules of the road” for seagoing vessels are central to successful 
collision avoidance manoeuvring. However, one of the primary challenges with COLREG compliant 
behaviour is the vagueness of how the rules are phrased (Stitt, 2002). For example, performing 
“apparent” collision avoidance manoeuvres according to “the practice of ordinary seamen”, and made 
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in “ample time” may make sense to experienced sailors, but may be challenging for an algorithm to 
interpret (Porathe, 2019; Wróbel et al., 2022; Zhou et al., 2020). In addition, notwithstanding advances 
in machine learning models that may be able to replicate traditional ship behaviour, AI-enabled 
systems typically employ probabilistic models trained on large datasets to recognize patterns in data. 
Although such models can be powerful, the association between input and output parameters are not 
wholly predictable or observable (Christoffersen & Woods, 2002; Littman et al., 2021). Also, systems 
using machine learning-based algorithms lack a model of causation which limits their capabilities to 
discovering correlations between variables only, rather than causal relationship (Littman et al., 2021). 
This means that such systems have limited ability to predict how novel situations may develop, or how 
situations would have played out under different circumstances (Pearl & Mackenzie, 2018).  

As AI-enabled systems “do not know what is possible in the world”, creating reliable and predictable 
systems deployable in complex environments remains a major challenge (Littman et al., 2021, p. 23). 
Given these limitations, such systems are currently not adequately fit to operate in novel and complex 
situations and therefore require careful management and supervision (National Academies of 
Sciences, Engineering and Medicine, 2022). For the foreseeable future, this means that humans can be 
expected to play a supervisory role to oversee system performance, direct their functioning, and ensure 
that their desired utility is achieved (Endsley, 2017). However, because of their probabilistic nature, 
such systems are less tractable and predictable compared to “traditional” control systems (Hollnagel, 
2012). Consequently, humans may find it challenging to understand and evaluate their behaviour 
(Endsley, 2017, 2023a). Considering how AI-enabled systems may significantly affect how work is 
organised, including the role of the human herein, this means that new knowledge, methods, and tools, 
with regards to how humans may be supported in effectively interacting with these emerging 
technologies, are urgently needed.  

1.2 Research gaps, objectives, and questions 
Early research from studies addressing human supervisory performance in safety-critical domains 
have suggested that providing insight into a system’s internal information processes can support 
human supervisors in understanding and predicting its behaviour (e.g., Christoffersen & Woods, 2002; 
Sheridan & Verplank, 1978). More recently, “agent transparency” (J. Y. C. Chen et al., 2014), “system 
transparency” (Ososky et al., 2014), “display transparency” (National Academies of Sciences, 
Engineering and Medicine, 2022), “automation transparency” (Skraaning & Jamieson, 2021), or 
simply “transparency” has been proposed as a means to enhance understandability and predictability  
and support human supervision of highly automated systems (Endsley, 2023b; Endsley et al., 2003; 
Meister, 1999).  

Transparency is a design principle based on the notion that when selected system-internal information 
is made available to the operator, its understandability and predictability is enhanced. That is, when 
humans interact with autonomous systems, transparency principles can be used to convey the system’s 
state, its modes, and limitations, and support understandability and predictability regarding its current- 
and future actions (Endsley, 2017). As the Human-Machine Interface plays a vital role in bridging the 
gap between autonomous systems and humans, a potential lack of transparency may make it difficult 
for an operator to grasp the capabilities of the system in terms of what it is doing and why. This, in 
turn, may affect the operator’s trust in the system (Lee & See, 2004). Conversely, systems which 
disclose their inner processes should enhance the operators’ ability to assess their performance, 
calibrate their trust, and encourage appropriate use (Lee & See, 2004), rather than misuse or disuse 
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(Parasuraman & Riley, 1997). Therefore, the ability of the system to provide feedback about its 
internal information processing, its decisions, and planned actions is important for supporting 
supervisory performance (Beck et al., 2007; Endsley, 2017; Endsley & Kiris, 1995; Parasuraman & 
Riley, 1997). This potential “free lunch” (Wickens, 2018), i.e., the ability of transparency to alleviate 
some of the challenges of human supervision of autonomous systems without reducing its benefits, 
warrants further investigation. 

Recent studies have investigated the relationship between transparency and human performance 
variables. Bhaskara et al. (2020) and Rajabiyazdi and Jamieson (2020) identified and compared the 
evidence for agent transparency in the contemporary literature. The results indicated there is emerging 
evidence regarding human performance improvements, despite a concern for increased mental 
workload. However, results were not consistent in terms of the correlation between the degree of 
transparency and performance variables. In other words, more transparency did not consistently 
produce improved operator performance outcomes. Furthermore, the authors concluded that the 
validation efforts for the transparency models have been largely incomplete or have provided 
inconclusive evidence. Therefore, given that agents are increasingly deployed in safety critical 
contexts where insufficient performance of the human-machine system may have consequences for 
safety, ongoing and continuous efforts are needed to understand how agents can be made 
understandable to human supervisors (National Academies of Sciences, Engineering and Medicine, 
2022). Specifically, focus should be given to determining which transparency information best 
supports SA and operator performance as well as which methods should be applied in designing 
transparent agents without overloading the supervisor with information (National Academies of 
Sciences, Engineering and Medicine, 2022). Although the scientific literature demonstrates the 
potential benefit of transparency, there is a continuous and ongoing need for knowledge, methods, and 
tools with regards to its applicability as a design principle in safety critical domains. Therefore, this 
dissertation aims to contribute to generating and advancing knowledge on how human supervisory 
control can be supported through agent transparency. To achieve this, it aims to answer the following 
overarching question:  

How does agent transparency support human performance in supervisory control? 

To contribute to answering the main question, specific sub-questions are posed. Each is addressed 
through several activities and reported in a series of research articles. The first activity aims to 
establish a broad overview of the relevant scientific literature regarding agent transparency and key 
human factors variables, identify knowledge gaps, and determine a path forward for the remainder of 
the dissertation. Combined, this activity aims to answer the following question:  

RQ1: What is the relationship between agent transparency and Situation Awareness, mental 
workload, and task performance? 

The second research activity aims to establish an understanding of the collision avoidance context by 
mapping and assessing goals, decisions, and tasks for conventional- and supervised collision 
avoidance. Furthermore, this activity aims to identify information requirements to make agents, 
capable of collision and grounding avoidance, transparent to their users. Together, this activity aims to 
answer the following question: 
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RQ2: How is human performance achieved in conventional- and supervised maritime collision 
avoidance? 

The third research activity aims to understand how a model of human information processing can be 
used as an approach to define transparency requirements for autonomous systems. By disclosing the 
system’s perceived information, internal reasoning, decisions, and planned actions, this approach aims 
to explore how this model can function as a framework to organise the information requirements as 
layers of transparency. Therefore, this activity aims to answer the following question: 

RQ3: How does a model for human information processing form the basis for agent transparency in 
the ship autonomy context? 

The fourth research activity aims to examine how the organised information requirements from the 
previous activities can be represented as levels of transparency in realistic transparent HMI concepts. 
Operationalised through realistic traffic situations and symbology representing the autonomous 
system’s information processing, this activity aims to provide the groundwork for systematically 
studying the relationship between agent transparency and human performance in the collision 
avoidance context. Hence, this activity aims to answer the following question: 

RQ4. How should a maritime collision avoidance system be made transparent to a human supervisor? 

Finally, the fifth research activity aims to study the relationship between agent transparency and key 
human factors variables: SA, mental workload, and task performance. Through a controlled 
experiment with certified navigators, this activity aims to systematically evaluate the effect of 
individual levels of transparency and derive a comprehensive understanding of the factors contributing 
to human performance when supervising autonomous agents. Accordingly, this activity aims to 
answer the following question:    

RQ5. What is the relationship between agent transparency and Situation Awareness, mental workload, 
and task performance in maritime autonomous collision avoidance manoeuvring? 

1.3 Structure of the dissertation 
In this dissertation, the first chapter provides the general background to the research, the research 
gaps, objectives, and research questions (this chapter). The second chapter provides the theoretical 
foundation to the work, addressing central concepts, theories, and relevant contexts. The third chapter 
depicts the research methodology, including chosen philosophies, methods, considerations regarding 
validity, reliability, quality of research, and ethics. The fourth chapter discusses the results and 
discussions from each of the research articles. Chapter five presents the overall conclusions, scientific 
and practical contributions of this work. Finally, relevant details are provided in the appendices, 
including the five publications integral to this dissertation.  
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Figure 1. A schematic overview of this dissertation. 

This dissertation aims to combine a theoretical and applied approach in answering the overall research 
question. As depicted in Figure 1, the main research question is answered through a series of activities, 
each addressed through its individual research questions, elucidating and combining theoretical 
insights with practical applications. The literature review provides the theoretical foundation on which 
the further activities are based. Here, the state-of-the-art of the scientific evidence on agent 
transparency and human performance is mapped (RQ1). Subsequently, the GDTA focuses on nautical 
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collision avoidance manoeuvring, based on in-situ observations and interviews, and where subject-
matter experts (navigators) play a vital role. This analysis provides a set of SA requirements on which 
subsequent activities are built (RQ2). Next, a theoretical model is adapted to the nautical collision 
avoidance context, such that the SA requirements are structured and transformed into transparency 
requirements for human supervised autonomous collision and grounding avoidance systems (RQ3). 
Furthermore, graphical HMI concepts are developed, with the aid of a navy-certified navigator, to 
transform the transparency requirements into graphical symbology for presentation onto a radar 
display depicting realistic traffic situations (RQ4). Finally, levels of transparency are developed that 
are experimentally evaluated with certified navigators on key human factors variables (RQ5). The 
culmination and integration of this body of work is ultimately used to contribute to answering the 
overall research question.  

The results of the research activities performed in this dissertation are presented in five peer-reviewed 
research articles in recognised journals and conferences (see Table 3). The work in this dissertation 
follows a sequential progression from the start of the research in Article 1 to the experimental results 
in Article 5. 

Table 3. Appended articles. 

No. Title Authors Journal/Conference Status RQ 
1 Agent Transparency, Situation 

Awareness, Mental 
Workload, and Operator 
Performance: A Systematic 
Literature Review 

Koen van de Merwe 
Steven Mallam 
Salman Nazir 

Human Factors Published 1 

2 Supporting human supervision 
in autonomous collision 
avoidance through agent 
transparency 

Koen van de Merwe 
Steven Mallam 
Salman Nazir 
Øystein Engelhardtsen 

Safety Science Published 2 

3 Towards an approach to define 
transparency requirements for 
maritime collision avoidance 

Koen van de Merwe 
Steven Mallam 
Øystein Engelhardtsen 
Salman Nazir 

Proceedings of the 
Human Factors and 
Ergonomics Society 
Annual Meeting 

Published 3 

4 Operationalising Automation 
Transparency for Maritime 
Collision Avoidance 

Koen van de Merwe 
Steven Mallam 
Øystein Engelhardtsen 
Salman Nazir 

TransNav, 
International Journal 
on Marine Navigation 
and Safety of Sea 
Transportation 

Published 4 

5 The Influence of Agent 
Transparency and Complexity 
on Situation Awareness, 
Mental Workload, and Task 
Performance 

Koen van de Merwe 
Steven Mallam 
Salman Nazir 
Øystein Engelhardtsen 

Journal of Cognitive 
Engineering and 
Decision Making 

Published 5 
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2  Theory and background 
This section introduces and elaborates on each of the knowledge areas introduced in Chapter 1: 
collision avoidance in the maritime context, human factors in supervisory control, and agent 
transparency.  

2.1 Achieving safe maritime collision avoidance 

2.1.1 The human factor in avoiding collisions 
Considering the international nature of the shipping industry, safety at sea is largely regulated by the 
International Maritime Organisation (IMO). The IMO is a specialised agency of the United Nations 
which is, amongst others, responsible for developing regulations to improve safety of the shipping 
industry (IMO, 2019). Its scope embodies a variety of maritime safety aspects, including technical 
requirements related to ship stability, fire safety, life-saving appliances, ship design, operational 
requirements for search and rescue, radiocommunication, and navigation. Within these requirements, 
the “human element” is recognized as central for safety of life at sea. For example, in navigation, the 
International Convention for the Safety of Life at Sea (SOLAS) stipulates the role of the ship’s Master 
to ensure that the intended voyage is planned appropriately, using the latest information, to allow for 
safe passage of the ship (IMO, 1974:2000). In addition, the International Convention on Standards of 
Training, Certification, and Watchkeeping stipulates the watchkeeping arrangement and principles to 
be observed for seagoing ships. This includes that a “safe and continuous watch or watches 
appropriate to the prevailing circumstances and conditions are maintained on all seagoing ships at all 
times” (IMO, 1978:2010; Chapter VIII/2). To support the crew in this, the regulations dictate that 
measures shall be in place with the aim to minimize the potential for human error by ensuring that the 
bridge design facilitates the navigational tasks to be performed by the bridge crew, that convenient and 
continuous access to essential information is available, and that this information is presented in a clear 
and unambiguous manner (IMO, 1974:2000). In case of vessel encounters during the ship’s voyage, 
the Convention on the International Regulations for Preventing Collisions at Sea stipulates the rules 
for how navigators shall perform collision avoidance manoeuvring (IMO, 1977).  

Collision avoidance is internationally regulated through the collision avoidance rules, i.e., the 
COLREGs. These rules were developed to provide the “rules of the road” for sea-going ships. The aim 
of the COLREGs is to increase safety by providing a set of rules that make for predictable vessel 
traffic behaviour. With the rules, navigators are provided with guidance on how to manage vessel 
encounters such that collisions can be prevented. The COLREGs are made up of 41 rules divided into 
six parts: Part A - general aspects, part B - the steering and sailing rules, part C - lights and shapes, 
part D - sounds and light signals, part E - exemptions, and part F - verification of compliance. For the 
purpose of this dissertation, parts A and B are the most relevant as these provide detailed descriptions 
regarding collision avoidance manoeuvring.  

Part A describes the general application of the rules and makes explicit the ultimate responsibility of 
the ship’s navigator to avoid dangers of navigation and collision. Part B provides the steering and 
sailing rules for vessels in any condition of visibility and for vessels in sight of one another. Here, the 
rules state the requirements for how to manoeuvre and determine priority when encountering other 
vessels on collision course. That is, Rule 5 states the requirements for maintaining a proper lookout to 
ensure a full appraisal of the situation is made such that vessels and objects are detected early. 
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Furthermore, Rule 6 stipulates the requirements for determining the speed appropriate to the 
circumstances. Rule 7 describes the process for determining collision risk, and Rule 8 describes the 
actions for avoiding collision, including the execution of route and/or speed changes. Rules 11 to 18 
describe the rules for collision avoidance when vessels are in sight of one another and Rules 13 to 15 
specifically deal with three typical ship encounter situations: overtaking, head-on, and crossing. 
Finally, Rules 16 to 18 describe the circumstances under which a ship shall give-way (perform an 
avoidance manoeuvre), when it shall stand-on (hold course and speed), and the hierarchy of 
responsibilities between vessels. 

As much as the rules were developed to provide specific guidance for navigators in handling ship 
encounters, their interpretation is not straightforward, and experience is required when applying them 
(Stitt, 2002; Wang et al., 2021; Weber, 1995). For example, Rule 8 “Action to avoid collision” states: 
“any action to avoid collision shall be taken in accordance with the Rules of this Part and shall, if the 
circumstances of the case admit, be positive, made in ample time and with due regard to the 
observance of good seamanship” (IMO, 1977). This rule can be interpreted as when a navigator 
identifies that own ship engages in a collision scenario with another ship, the avoidance action shall be 
performed without delay, and be clearly visible to the other ship. However, this rule does not specify 
what “ample time” means, nor the interpretation of “positive”, or “good seamanship”. Furthermore, 
Rule 2 “Responsibility” states: “In construing and complying with these Rules due regard shall be had 
to all dangers of navigation and collision and to any special circumstances, including the limitations of 
the vessels involved, which may make a departure from these Rules necessary to avoid immediate 
danger” (IMO, 1977). Here, the rule can be interpreted as to allow the navigator to take any measure 
necessary to avoid immediate danger, even if this means deviating from the COLREGs. Clearly, these 
two examples provide evidence of the interpretative nature of the COLREGs and the experience 
necessary to apply them. Nevertheless, the COLREGs applies “to all vessels upon the high seas and in 
all waters connected therewith navigable by seagoing vessels” (IMO, 1977) and is thereby an essential 
element in ensuring safety in maritime navigation; now and on the road towards autonomous ships 
(IMO, 2021).  

2.1.2 Towards human supervised autonomous collision avoidance 
Rules and regulations are currently under development at national and international levels to prepare 
for, and accommodate, the arrival of ships with autonomous ship functions. That is, IMO is 
developing a code to regulate the operation of maritime autonomous surface ships (IMO, 2022). In 
Norway, the Norwegian Maritime Authority (NMA) has published guidance for documentation 
requirements and principles to be applied when seeking approval for operating unmanned or partially 
unmanned operations (NMA, 2020). Furthermore, several classification societies are working on 
developing guidelines for the approval of autonomous and remotely controlled ships (e.g., American 
Bureau of Shipping, 2022; Bureau Veritas, 2019; DNV, 2021). Even though developments towards 
established rules and regulations are ongoing, national authorities may already provide temporary 
approval of autonomous ship concepts for testing purposes and limited to national waters only (e.g., 
NMA, 2020), based on the current IMO regulations for the approval of “alternatives and equivalents” 
(IMO, 2013).  

The “guidelines for the approval of alternatives and equivalents as provided for in various IMO 
instruments” (IMO, 2013, p. 1) provides a temporary alternative path to approving ships for which the 
standard regulations are lacking or are insufficient, e.g., for autonomous ships. Central to this 
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approach is a risk-based method based on which a ship’s design is evaluated against overall risk 
criteria. This means that, through a structured design and approval process, the submitter of an 
autonomous ship concept provides data and documentation to the relevant regulatory body for 
evaluation. Assuming sufficient evidence for risk mitigation is provided, this approach allows for 
deploying technological solutions based on alternative designs. As such, if an equivalent level of 
safety can be demonstrated, e.g., in terms of life safety criteria, the environment, and damage to ship 
structures and systems, approval may be provided on a case-by-case basis (although for operation in 
the national waters of the given administration only).  

This approach provides the basis for guidelines published by classification societies on autonomous 
and remotely operated ships (e.g., DNV-CG-0264; DNV, 2021). For this approach, the class society 
plays the role of intermediate between autonomous ship concept submitter and national authorities and 
performs concept reviews, provides the submitter with specifications, analysis, and test scopes, and 
performs reviews of the submitter’s tests. Class societies may also perform their own tests to 
independently verify claims made by the submitter. Throughout this process, the national authority 
provides the framework for approval basis and performs design and test reviews. Consequently, this 
interaction between concept submitter, classification society, and national authority aims to support 
and facilitate the final approval of the ship autonomy concept. 

Central to the approval of autonomous ships is that the degree of autonomy and the division of 
function control is contingent on the principle that “the combined human/machine capabilities […] 
should be the same or better than the conventional capabilities. This in order to achieve an equivalent 
or better level of safety” (DNV, 2021, p. 52). This means that the concept of operations provided by 
the submitter should clearly describe the operational tasks that the vessel will perform, and the extent 
to which these will be automated. For example, some tasks may be fully automated with no human 
involvement, some tasks may be highly automated, but require human supervision, whereas other 
tasks may be executed by humans with automation as support. Considering the potential changes in 
tasks, roles, and responsibilities for humans within the ship autonomy domain, it is important to 
support humans in this and mitigate any potential challenges to human performance. 

In the context of collision avoidance, this means that the concept submitter should provide evidence 
indicating that the overall system delivers an equivalent level of safety, or better. Furthermore, 
“special attention should be placed on the timing aspects, and the ability of the human to establish 
sufficient situational awareness so that correct actions can be taken within reasonable time” (DNV, 
2021, pp. 27, 28). For these tasks, the interface between the system and the human plays a vital role in 
communicating the required information for effective human supervision. In situations in which 
humans are expected to intervene and assume control of the vessel because of “system-limitations or 
failures, […] ample time [should be allowed] for the human to get the required situational awareness 
in order to be able to make good decisions” (DNV, 2021, p. 42). Hence, to ensure equivalent safety in 
concepts where autonomous functions perform tasks previously performed by humans, special focus 
should be given to supporting the cognitive processes required for adequate and effective human 
supervisory control (Sheridan, 1992). 

2.2 Human Factors in supervisory control 
The construct “Situation Awareness” is a key variable associated with supervisory control (Endsley, 
1995). Therefore, a discussion around this construct, including factors affecting it, is useful within the 
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context of this dissertation such that its connection to human supervisory control and autonomous 
collision avoidance is illustrated. 

2.2.1 Human information processing and Situation Awareness 
Within the field of applied cognitive psychology, scientists have aimed to create conceptual models to 
understand how humans process information, perform cognitive tasks, and make decisions. This 
knowledge can be used to develop systems that support operators in achieving their goals. Figure 2 
depicts a model conceptualising how humans perceive and analyse information, make decisions, and 
perform actions in four discrete stages: information acquisition, information analysis, decision 
selection, and action implementation. (Lee et al., 2017; Parasuraman et al., 2000). In this model, the 
first stage represents the acquisition and registration of multiple sources of information, pre-processing 
of information, orienting of sensory receptors, and selective attention to information sources. The 
second stage represents conscious perception and manipulation of processed and retrieved information 
in working memory. Here, based on the information from the initial stage, associations between 
information elements and inferences are made prior to generating decisions and conclusions. The third 
stage represents the stage where decision alternatives are created and decided upon. The fourth stage 
represents the action implementation resultant of the decision. As feedback from actions is perceived 
again as stimuli for the information processing system, the cycle starts anew.  

Figure 2. A model for human information processing (adapted from Lee et al. (2017) and Parasuraman et al. (2000)). 

In this model, the roles of working-, long-term memory, and attentional resources are key factors in 
the perception and analysis of information, decision making and response execution. Working 
memory refers to the transient and vulnerable form of information storage capable of containing a 
limited amount of information. Here, information in the form of images, symbols, locations, etcetera, 
can be mentally maintained and manipulated (Wickens & Carswell, 2021). Considering the finite 
space of working memory, the amount of information that can be processed by working memory is 
limited (Cowan, 2010; Miller, 1994). Therefore, maintaining information active in working memory, 
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whilst limiting distraction by other competing information elements, is important for achieving and 
maintaining performance (Kintsch (1970), in Haberlandt, 1999). However, it is also cognitively 
demanding. In terms of attentional resources, selective attention focuses on relevant incoming stimuli, 
focused attention typifies the effort to maintain focus on relevant stimuli without becoming distracted, 
whilst divided attention enables the processing of multiple stimuli across the processing stages: 
information acquisition, analysis, decision selection, and action implementation (Styles, 1997; 
Wickens & Carswell, 2021). Since attentional resources are also limited, dividing attention between 
more than one activity is mentally demanding too (Kahneman, 1973). Consequently, as demands 
increase, the quality of action execution may degrade (or fail), more efficient and less resource 
consuming methods may be used, and focus may be shifted to higher priority tasks rather than lower 
priority ones (Hancock et al., 2021). As demands exceed capacity, performance will break down 
(Wickens, 2008). This implies that attention and memory processes play important roles in 
information processing in dynamic environments.  

In complex and constantly evolving environments, such as shipping, action execution is highly 
dependent on the human’s ability to make accurate and timely decisions. The operator’s constant 
awareness of what is happening around him/her and what this information means now and in the 
future is called “Situation Awareness” (Endsley et al., 2003). A common definition of SA is “the 
perception of the elements in the environment within a volume of time and space, the comprehension 
of their meaning, and the projection of their status in the near future” (Endsley, 1988, 1995). In this 
definition, SA is divided in three processing steps: 

• Level 1: The perception of elements in the environment, within a volume of time and space
• Level 2: The comprehension of their current status
• Level 3: The projection of their status in the near future

In terms of information processing, Endsley’s model of SA includes explicit processing stages for 
information perception, comprehension, and future predictions (as depicted in Figure 3). In this model, 
SA can be described in terms of the knowledge that is produced, and the processes to produce that 
knowledge, in order to make decisions and perform actions (Endsley, 1995; van Doorn et al., 2017). 
For each level of SA this means: 

• Level 1: Perceptual knowledge – unprocessed knowledge about elements in their environment
• Level 2: Comprehended knowledge – an understanding of their meaning and relationships
• Level 3: Projected knowledge – insight into the predicted future state, given the dynamic

environment, in relation to operational goals
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Figure 3. A model for human information processing with levels of Situation Awareness superimposed (adapted from Lee et 
al. (2017), Parasuraman et al. (2000), and Endsley (1995)). 

The continuous cognitive processes that operators perform to achieve, acquire, and maintain SA 
knowledge is called “SA assessment” (Endsley, 1995). This includes providing selective attention to 
information, dividing attention between processing steps, maintaining relevant information elements 
in working memory, and applying mental models stored in long-term memory. In this context, mental 
models are conceptual analogues of the external world which allows for its understanding and 
prediction (Mogford, 1997). In terms of SA, mental models are important for directing attention to 
relevant information, developing an understanding of this information, and projecting this information 
into the future. Mental models provide an essential mechanism in human’s ability to integrate 
substantial amounts of information, form an understanding of their meaning, and project their effects 
in the future. In the context of collision avoidance, this means that navigators need to have mental 
models of their task environment and the systems they operate to actively perceive, make sense of, and 
predict the status of potential objects such that quality decisions can be made on how to avoid 
collisions.  

For autonomous collision avoidance, this implies that operators also need effective mental models of 
the system under supervision. This includes understanding the system’s limitations, capabilities, 
reliability, functioning, and an understanding of its logic and components (Endsley, 2023b). Therefore, 
the operator’s mental model of the autonomous collision avoidance system is of particular relevance in 
understanding if the system is behaving correctly or whether intervention is needed. This means that, 
to effectively assess the performance of the system, operators need to have “task SA” (i.e., SA of the 
collision avoidance task), as well as “system SA” (i.e., SA of the collision avoidance system).  

For human supervised autonomous collision avoidance, system SA implies that the operator has an 
understanding of how the system is performing (Endsley, 2023b). For example, if the system 
encounters a situation outside its operational design domain, the operator may be required to intervene 
(Rødseth et al., 2021). This means that operators should be aware of whether the system is able to 
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perform its function in the current situation, the sufficiency of what the system knows about the 
collision situation, and the impact of the system’s actions on the situation. However, the degree to 
which an operator can achieve SA depends on individual-, task-, and system factors. For example, 
individuals may differ in their ability to achieve and maintain SA due to innate abilities or differences 
in training. Also, differences in tasks complexities influence an operator’s ability to achieve and 
maintain SA. Furthermore, poorly designed system interfaces may hinder the operator in perceiving 
and evaluating critical information. Moreover, the effort associated with maintaining task- and system 
SA in parallel may lead to increased mental workload due to limited availability of attentional 
resources and working memory. Finally, the fact that operators are less involved in the system’s 
information and decision-making loop has consequences for the effectiveness of human oversight 
(Endsley et al., 2003).  

2.2.2 Challenges to Situation Awareness in supervisory control 
The “ironies of automation” (Bainbridge, 1983), the “out-of-the-loop (OOTL) performance problem” 
(Endsley & Kiris, 1995), and the “automation conundrum” (Endsley, 2017) are three human 
performance challenges commonly associated with supervisory control of automation. The ironies in 
automation are described as the paradoxical expectations system designers have between an 
envisioned automated system, where “unreliable” human behaviour is replaced by “reliable” 
automation, and an implemented system, where humans are given (an arbitrary set of) left-over tasks 
unable to be automated in addition to compensating for system reliabilities (Bainbridge, 1983). 
Although automation undisputedly leads to performance improvements, it may also lead to 
complacency on the part of the operator (the assumption that “all is well”; Parasuraman & Manzey, 
2010; Wickens et al., 2015), automation bias (the assumption that the system is probably right; Mosier 
& Skitka, 1996), reduced vigilance (because of depletion of mental resources ; Finomore et al., 2013; 
Warm et al., 1996), and misuse and disuse of the system (because of over- and underreliance on the 
system; Parasuraman & Riley, 1997). Finally, when automation fails, humans may not be completely 
up to date with the current state of the system, resulting in unreasonably high workload in trying to 
recover the situation (Onnasch et al., 2014). That is, given the limited information processing capacity 
of humans, because of attentional and memory limitations, when task demands exceeds cognitive 
supply mental overload occurs and task performance is affected (Wickens et al., 2013).  

As discussed earlier, decision making and action execution depends on the operator’s ability to 
perceive, interpret, decide, and act in a continuously evolving information loop. When automation 
takes over (part of) the information processing activities, operators are no longer part of the loop. As 
information perception, comprehension, and projection are essential elements in obtaining and 
maintaining SA, this means that being outside of this loop has consequences for SA (Endsley & Kiris, 
1995). For supervised collision avoidance, where system oversight depends on a comparison between 
task- and system SA, challenges can be expected when the operator is not able to “follow along” what 
the system was doing when it failed. Having to take over from a failing system can lead to high mental 
workload, when suddenly being confronted with the responsibility of the control task with limited time 
to perform it (Onnasch et al., 2014). Considering that it takes mental effort to acquire SA knowledge 
and continuously perform SA assessment, high workload may interfere with obtaining and 
maintaining system- and task SA. Although sufficient mental capacity is not a guarantee for good SA, 
high mental workload due to tasks competing for the same mental capacities may lead to the operator 
only paying attention to a subset of information which could result in sub-optimal SA (Endsley, 1995). 
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Supervisory control is also affected by the reliability and robustness of the system. For system with 
high reliability, a loss of skills, as a result of a lack of experience with manual control, may aggravate 
the operator’s ability to adequately supervise the system (Endsley & Kiris, 1995). A conundrum exists 
where humans are less likely to take over manual control of a system, the more reliable and robust this 
system becomes (Endsley, 2017). As human tasks shift towards supervisory control with the 
advancement of technology, it may become increasingly difficult for humans to fully understand what 
the system is doing. In contrast with active information processing in manual control, supervisory 
control typically involves passively monitoring a system (Metzger & Parasuraman, 2001). Here, the 
lack of cognitive engagement in the task leads to reduced information processing performance and 
ability to retain critical task information in working memory (Endsley, 2017). Also, a change in 
feedback provided by the system affects the human’s ability to understand its decisions and actions, 
especially when essential elements are occluded, not available, or lost in the information noise 
(Moacdieh & Sarter, 2017).  

Although a range of design recommendations have been developed on how to support human-
automation interaction (Endsley, 2017; Endsley et al., 2003; Sheridan, 2021; Wickens & Carswell, 
2021), adequate and appropriate feedback is a central element for humans to create mental models of 
the system under supervision (Norman, 1990). However, what constitutes “adequate and appropriate 
feedback” depends on the function and task distribution between humans and systems, and the 
operational context in which the system is deployed. For collision avoidance systems, feedback should 
be compatible with the operators’ information processing steps by, for example, providing SA 
knowledge directly to the operator (van Doorn et al., 2021). This means that, for operators given the 
task of supervising collision avoidance systems, it should provide relevant information in a way that 
does not interfere, but rather support, the cognitive processes needed for supervision. That is, 
depending on which of the information processing steps are automated and the level of sophistication, 
a collision avoidance system may provide information about what it perceives in its vicinity, its 
interpretation of this information related to its goals, and its proposed solution. Therefore, 
notwithstanding optimisation of individual-, task-, and other factors, design should focus on 
facilitating system SA by considering the amount of information made available, the degree of 
integration in interfaces needed for task SA, and the degree of information competition as a 
consequence of maintaining task- and system SA.  

2.3 Supporting supervisory control with transparency 

2.3.1 Definitions of transparency 
In their work in the context of undersea teleoperations, Sheridan and Verplank highlighted the need 
for operators to understand “when the computer activity should be apparent to the operator” to be able 
to monitor and diagnose its behaviour (1978, pp. 9–4). Also, Norman (1990) highlighted the need for 
adequate feedback to support human supervisory performance to alleviate some of the performance 
issues associated with human supervision. Furthermore, Christoffersen and Woods (2002) discussed 
the need for observability and directability in making systems cooperative, especially for systems with 
high degree of automation. Here, they discussed that feedback to humans should be event based 
(highlighting changes and events), future oriented (including anticipatory reasoning), and pattern-
based (allowing for quick detection of abnormalities). Finally, Lee and See (2004) discussed the need 
for systems to display information about its purpose, processes, and how it performs in relation to 
building trust. Based on these initial ideas, the concept of “transparency” (Endsley et al., 2003), “agent 
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transparency” (J. Y. C. Chen et al., 2014), “system transparency” (Ososky et al., 2014), “display 
transparency” (National Academies of Sciences, Engineering and Medicine, 2022), or “automation 
transparency” (Skraaning & Jamieson, 2021) has emerged as a strategy to support humans in 
supervisory control.  

In the literature on transparency several definitions can be extracted. First, some researchers define 
transparency as a property of the interface, with emphasis on observability and predictability of system 
behaviour (see Figure 4). Second, several research have expanded on this definition by addressing bi-
directional communication between human and system, thereby allowing for observability and 
predictability of humans by systems (see Figure 5). Finally, some researchers have interpreted 
transparency as an emergent property between teams of humans and systems (see Figure 6).  

Meister (1999) argued that by visualizing system internal functioning, human users may appreciate the 
meaning of the system’s current and future actions. Here, transparency refers to “the extent to which 
internal system functioning is made apparent to the human operator” (1999, p. 136). J.Y.C. Chen et al. 
(2014, p. 2) defined transparency as the “descriptive quality of an interface pertaining to its abilities to 
afford an operator’s comprehension about an intelligent agent’s intent, performance, future plans, and 
reasoning process”. Furthermore, in her review of human-automation research, Endsley defined 
transparency as “making apparent what the system is doing, why it is doing it, and what it will do 
next” (2017, p. 19). In this definition, the intention of transparency is to provide operators with 
understandability of its actions, and predictability of its future actions. Finally, Skraaning and 
Jamieson (2021, p. 1) describe transparency as a “design principle espousing that the responsibilities, 
capabilities, goals, activities, and/or effects of automation should be directly observable in the human-
system interface”. Common to these definitions is that transparency is seen as a property of the system 
interface. Here, transparency is a design principle that can be applied in the development process of 
creating human machine interfaces of autonomous systems. In addition, in these definitions 
transparency is limited to one-way communication between systems and humans (see Figure 4). That 
is, transparency is a design principle applied to systems such that their users can observe and predict 
the behaviour of the system.  

Figure 4. Transparency as a property of the interface to provide observability and predictability of system behaviour. 

Some researchers have expanded the scope of transparency to include bi-directional communication 
between systems and humans. Lyons (2013) developed a model for human-robot interaction 
describing transparency as information a system needs to present to users prior, during, or after 
interactions. In addition, the system also needs to be able to have an awareness of the human’s 
cognitive states and be able to communicate this back to the human (see Figure 5). This “robot-to-
human” and “robot-of-human” transparency are seen as essential elements in effective human-robot 
teaming. Thus, transparency is described as a means to establish shared intent and shared awareness 
between humans and systems.  
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Figure 5. Transparency as bi-directional communication between system and human. 

J.Y.C. Chen et al. (2018) expanded on their original definition of transparency to include bi-
directional communication of information. In addition, the model of transparency was broadened to 
include teams of humans and systems working together to achieve a common goal. Here, “both the 
human and the agent share their goals, reasoning, and projections to achieve their goals as a team, [this 
way] both the human and the agent maintain transparency regarding their contributions to a shared 
task. Interestingly, here transparency is not solely defined as a property of the system interface, but 
(also) as an activity that needs to be continuously performed by actors working towards a common 
goal (see Figure 6). Similarly, Ososky et al. (2014, p. 2) describe that transparency, “within the 
domain of collaborative robotics, is not solely a characteristic or feature of a robotic asset; rather, it is 
an emergent characteristic of the human–robot system”. Thus, by performing collaborative activities 
towards a common goal, exchanging goals, reasoning, and intent, transparency emerges. 

Figure 6. Transparency as an emergent property between systems and humans collaborating on a shared task. 

Within the autonomous shipping domain, activities point towards automating tasks currently 
performed by navigators. Here, humans are delegated supervisory control tasks where monitoring, 
adjusting, and supervising autonomous ships are central elements. Although future technological 
developments may include monitoring of human performance as input to agents, this research does not 
assign this role to the collision avoidance system. Therefore, this dissertation adopts the first 
viewpoint of transparency, as depicted in Figure 4. 

2.3.2 Transparency and explainability 
When discussing AI-enabled systems, transparency and explainability are frequently mentioned in 
tandem. When operators interact with agents that provide recommendations or perform actions that 
have safety critical consequences, insight into the agent’s reasoning is important in effective 
supervisory control (Warden et al., 2019). Therefore, such agents should be able to provide 
“explanations” and be “transparent” about their decisions and actions. However, despite appearing to 
have the same meaning, there are important distinctions between these two concepts.  

Explainability aims to support understandability of AI-enabled systems by providing operators with 
explanations of how agents derive their conclusions or recommendations. For example, an agent may 
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provide the background for its recommendations by providing insight into which elements were 
included in its analysis, their relative importance, and how these relate to its recommendation. Thus, 
explainability “provides information in a backward-looking manner on the logic, process, factors, or 
reasoning upon which the system’s actions or recommendations are based” (National Academies of 
Sciences, Engineering and Medicine, 2022, p. 31). In other words, explainability contributes to 
understanding the logic used by the agent, its capabilities, and limitations by providing retrospective 
information about its processing behind its decisions. This way, explainability supports the operator’s 
comprehension of how the agent works, when it will work, and when it will not work (Endsley, 
2023b). Based on this understanding, operators can develop accurate mental models of the agent (see 
Figure 7).  

Transparency “provides a real-time understanding of the actions of the AI system as a part of Situation 
Awareness” (National Academies of Sciences, Engineering and Medicine, 2022, p. 31). Transparency 
supports humans by affording prospective information about how the agent performs in real-time and 
informs what its future actions will be. Here, information from the agent is shared to support the 
operator’s understanding of how the agent is currently performing and which actions it will take in the 
near future. This means that transparency contributes to perceiving, comprehending, and projecting the 
decisions and actions of the agent (see Figure 7). Therefore, whilst explainability supports the 
development of mental models of the agent, transparency supports the development SA of the agent 
(Endsley, 2023b).  

Figure 7. Transparency and explainability in a decision-making context (adapted from Endsley (2023b) and National 
Academies of Sciences, Engineering and Medicine (2022)). 

Operators that interact with agents that provide non time-critical decisions, actions, and 
recommendations will benefit from understanding the agent’s reasoning in order to build and maintain 
accurate mental models. Likewise, operators interacting with agents that provide real-time information 
about their decisions and future actions, will also benefit from the agent’s reasoning in order to build 
and maintain SA. In other words, explainability supports and maintains the mental models 
underpinning agent SA, whereas transparency directly supports SA of the agent in its task 
environment by providing current and prospective information (Endsley, 2023b). Consequently, agent 
reasoning plays a key role in both concepts. As this dissertation is concerned with supporting effective 
oversight of agents performing decisions and actions in real-time, this dissertation investigates the 
application and effects of affording reasoning, decisions, and future actions to human supervisors, i.e., 
transparency. 



Agent Transparency and Human Performance in Supervisory Control 

18 

2.3.3 Frameworks and models for transparency 
Research on transparency and explainability has resulted in several models and frameworks for how to 
develop transparent systems. Among these, the SA-based Agent Transparency model (SAT; J. Y. C. 
Chen et al., 2014) and the Human-Robot Transparency model (Lyons, 2013) have received 
considerable attention. In addition, the Coactive System Model based on Observability, Predictability, 
and Directability is relevant in this context (M. Johnson et al., 2014).  

The SAT model combines various theories into an overall model representing three levels of 
transparency, including the three levels of SA (Endsley, 1995), the Beliefs, Desires, Intentions (BDI) 
Agent Framework (Rao & Georgeff, 1995), the 3P framework depicting the agent’s Purpose, Past 
performance, and its Processes and algorithms (J. Y. C. Chen et al., 2014; Lee & See, 2004). The 
model consists of three layers representing system-internal information into a single model. At the first 
level of the SAT model, the operator is provided with basic information about the agent’s current state 
and goals, intentions, and proposed actions. Also, the agent’s purpose, performance, and progress in 
reaching its goals are represented here. At the second level, the operator receives information about 
the agent’s reasoning process behind those actions and the environmental and other constraints that the 
agent considers when planning those actions. At the third level, the agent affords operators with 
information regarding the agent’s projection of its future state, such as predicted consequences, 
likelihood of success/failure, and any uncertainty associated with the aforementioned projections. 
Also, the agent’s limitations are afforded there, including the likelihood or error and history of 
performance. Finally, although not formally a level of transparency in this model, uncertainty 
information may either be included in the third level or added as a separate one. Whilst originally a 
model depicting the structure of information flow from the agent to the operator, in later years, this 
model has been expanded to include bi-directional transparency between multiple agents and humans 
(J. Y. C. Chen et al., 2018). Considering the distinction between transparency and explainability (see 
Figure 7), the SAT model appears to integrate both elements into a single model, thereby supporting 
the maintenance of mental models as well as system SA. 

Lyons (2013) developed a model for transparency based on bi-directional communication between 
robot and human. The Human-Robot Transparency model (HRT) consists of two parts. First, the 
robot-to-human part of the model describes the information the robot should provide to the operator to 
afford transparency. This part consists of several sub-elements describing and structuring the type of 
information that constitutes robot transparency. This includes an intentional part where the purpose 
and intent of the robot is conveyed, including why the robot exists, and how the robot is programmed 
to interact with humans. Furthermore, the task model affords operators the robot’s understanding of its 
tasks, goals, progress, and awareness of its capabilities and errors. Moreover, the analytical model 
communicates the robot’s underlying analytical principles used by the robot to make decisions, 
especially relevant in situations with high degree of uncertainty. Finally, the environmental model, 
communicates the robot’s understanding of the dynamics of its surrounding environment, including its 
limitations given the environmental conditions. Second, the human-to-robot part of the overall model 
consist of a teamwork element affording the state of the robot’s role in the human-robot team. In 
addition, the human state model allows a robot to convey its understanding of the operator’s state and 
intervene in the operator’s actions if the system deems this necessary. Similar to the SAT model, the 
HRT model integrates explainability and transparency elements, in addition to adopting the bi-
directional definition of transparency. 
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The Coactive System Model based on Observability, Predictability, and Directability from M. Johnson 
et al. (2014) describes both an approach and model for developing transparent systems based on 
interdependence between agents and humans. Here, the principle of observability is used to make 
“pertinent aspects of one’s status, as well as one’s knowledge of the team, task, and environment 
observable to others” (2014, p. 51). This includes the capability of the agent and human to observe and 
interpret each other’s signals. Predictability implies that one’s actions should be sufficiently 
predictable such that others can reasonably rely on them when considering own actions. This mutual 
predictability is an essential element in the relationship between agents and humans. Finally, 
directability implies the ability to direct the behaviour of others and be directed by other team-
member, human or agents. By defining requirements associated with observability, predictability, and 
directability, designers can identify which information needs to be shared, who to share it with, and 
when to share it. In line with the SAT-, and the HRT model, this model adopts the bi-directional 
definition of transparency. However, the model is not explicit about what kind of information should 
be shared between agent and human beyond information supporting observability, predictability, and 
directability. It is therefore unclear whether this model supports explainability, transparency, or both. 

This dissertation investigates the feasibility of an alternative model for representing transparency that 
would suit the context of autonomous collision avoidance and the anticipated role of the operator 
herein. As discussed earlier, this dissertation adopts the stance that transparency is a design principle 
aimed at enhancing agent understandability and predictability for human supervisors. Transparency is 
thus a property of the agent and is concerned with the information flow from the agent to the operator. 
Also, this dissertation is concerned with supporting effective real-time oversight of agents performing 
safety critical decisions and actions. Although the role of explainability is recognised, this dissertation 
is interested in studying the effect of real-time information provision rather than post-hoc 
explanations. Considering the continuous cognitive processes that operators perform to acquire, 
achieve, and maintain SA knowledge, a model is needed that should be compatible with these 
processes. The information processing model, depicted in Figure 2 and simplified below, represents 
how humans perceive and analyse information, make decisions, and perform actions in four discrete 
stages: information acquisition, information analysis, decision selection, and action implementation. In 
addition, Figure 3 depicts how the role of SA fits within this model by specifying how the processes of 
SA assessment underpins decision making by constantly updating and maintaining the SA knowledge 
represented in the perception, comprehension, and projection stages. Thus, an agent designed in 
accordance with this model, i.e., by providing operators with insight into its information perception, 
analysis, decision-making and actions should be compatible with the information needs of the operator 
supervising that agent.  

Figure 8. A simple model of human information processing (adapted from Parasuraman et al., 2000). 

Parasuraman et al. (2000) describe that, in addition to representing a simple model of human 
information processing, this model could be used to represent the types and levels of human 
interaction with automation. That is, when determining the distribution of functions and tasks between 
humans and automated systems, the authors proposed to use this model to understand in which stage 
of the information processing cycle automation is deployed and to which degree. This way, the model 
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represents an approach to understanding the interaction between humans and agents and can thereby 
be useful in system design. For example, in designing support systems for human decision making in 
collision avoidance, the distribution of functions and tasks can be based on this model. That is, 
depending on the degree of sophistication, systems may be delegated the task of performing 
“information acquisition” from the environment around the ship, but not for any of the other 
information processing stages. In such systems, only information is provided to the operator without 
meaningful processing or interpretation. For systems delegated the task of “information analysis”, 
algorithms may be applied to the data to allow for prediction of the information elements over time. 
For collision avoidance systems, this implies the capability to predict how the situation around own 
ship will develop over time, including target ships, objects, land, and etcetera. Here, the implications 
of the predictions and their relation to own ship play a vital role in determining collision risk. For 
systems with even further sophistication, the risk picture may be used to derive decision alternatives 
upon which the risk can be reduced, i.e., “decision selection”. Here, the system may provide the 
operator with one or more decision alternatives that provide a future track intended to solve the 
collision risk situation. Finally, systems may also be delegated with the task of “action 
implementation”. Here, the system may execute an avoidance manoeuvre, determined by the system’s 
acquisition of information, analysis, and decisions, without human involvement. As such, this siple 
information processing model can be used as a basis to develop systems that afford operators with SA 
knowledge of the system’s information perception, processing, decision making, and action execution 
that is compatible with the operator’s information processing, as discussed earlier.  
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3 Research methodology 
This chapter details the dissertation’s research philosophy, approaches to data gathering, and 
considerations regarding the quality of its results. In addition, methodological challenges and ethical 
considerations are discussed.  

3.1 Scientific research philosophy 
This dissertation is situated within the “Human Factors” (HF) discipline. HF is the scientific discipline 
concerned with the interaction between humans and other elements of a sociotechnical system 
(Meister, 1999). The goal of HF is to support humans in their work environment such that errors can 
be reduced, productivity can be increased, and safety enhanced (Human Factors and Ergonomics 
Society, 2023). HF is defined as the “scientific discipline concerned with the understanding of 
interactions among humans and other elements of a system, and the profession that applies theory, 
principles, data and methods to design in order to optimize human well-being and overall system 
performance” (International Ergonomics Association, 2000; ISO, 2019, p. 2). In other words, HF is 
concerned with the research and application regarding the arrangement of human and machine 
elements, that interact and function concurrently, and organized into a whole to accomplish a specified 
goal (Meister, 1999). By positioning this research within the HF discipline, several philosophical 
approaches become relevant. 

Post-positivism, i.e., the philosophical stance that objective information cannot be observed in its 
completeness and that approximations are needed, lends itself well as a philosophy for HF research 
(Howell, 2013). For example, constructs such as mental workload, and SA are challenging to measure 
directly and are therefore typically measured by use of proxies (e.g., questionnaires, behavioural-, and 
psycho-physiological measurements). In addition, as HF is concerned with solving real-world 
problems, the pragmatist philosophical viewpoint is equally relevant considering its focus is on 
generating practical knowledge in specific contexts, enabling successful action through theories and 
knowledge, and solving problems to inform future practices (Saunders et al., 2019). Considering the 
applied nature of this dissertation, i.e., the role of agent transparency in autonomous shipping, the 
application of a pragmatic philosophy, in addition to a post-positivistic one, is warranted. Combining 
these philosophies means that this dissertation aims to develop theories and generate knowledge based 
on objective, valid, and reliable methods that can be applied in practice. Furthermore, in line with the 
post-positivistic philosophy, the role of the researcher was aimed to be neutral and independent of the 
gathered data. However, according to the pragmatist philosophy, it is recognised that researcher 
biases, methodological, and practical limitations may influence the research results. As this 
dissertation combines the two philosophies, the researcher requires mitigating measures that aim to 
minimise these effects and optimise objectivity in the data where applicable. These are discussed 
below. 

3.2 Methodological approach 
This dissertation deployed a mix of qualitative and quantitative methods to address the relationship 
between agent transparency and human performance (R. B. Johnson et al., 2007; Plano Clark & 
Ivankova, 2016). Quantitative methods were used to assess the relationship between transparency and 
agent performance in an experimental setting (Article 5). In addition, qualitative methods were used 
throughout the dissertation, i.e., to systematically map the literature using the PRISMA method 
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(Article 1), to understand and analyse collision avoidance manoeuvring using a Goal-Directed Task 
Analysis (Article 2), to structure data according to a context-specific model of human information 
processing (Article 3), to develop and design transparency concepts using a human-centred design 
process (Article 4), and to capture navigator preferences using a ranking approach (Article 5). By 
combining quantitative and qualitative methods, this dissertation considered a mixed-method approach 
appropriate to explore facets of the relationship between agent transparency and human performance 
(Anguera et al., 2018; R. B. Johnson et al., 2007). Each of the primary and secondary methods is 
depicted in Table 4 and discussed further below. 

Table 4. The methodological choice for each research article. 

No. Title 
Methodological 
approach 

Primary 
methods 

Secondary 
methods 

Input data 

1 Agent Transparency, 
Situation Awareness, 
Mental Workload, and 
Operator Performance: 
A Systematic 
Literature Review 

Qualitative PRISMA Workshop Scientific 
publications 

2 Supporting human 
supervision in 
autonomous collision 
avoidance through 
agent transparency 

Qualitative Goal-Directed 
Task Analysis 

In-situ 
interviews 

In-situ 
observations 

Workshop 

9+2 navigators 
COLREGs 
Procedures 

3 Supporting human 
supervisory 
performance through 
information disclosure: 
Establishing 
transparency 
requirements for 
maritime collision 
avoidance 

Qualitative Modelling - GDTA

4 Operationalising 
Automation 
Transparency for 
Maritime Collision 
Avoidance 

Qualitative Human Machine 
Interface 
development 

Workshop (x2) 1+2+2 
navigators 

5 The Influence of Agent 
Transparency and 
Complexity on 
Situation Awareness, 
Mental Workload, and 
Task Performance 

Mixed-method Controlled 
experiment 

SAGAT 
NASA-TLX 
Time recording 
Interviews 

34+3 navigators 
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3.3 Research methods and data analysis process 
This section discusses the methods and data analysis processes that were applied in this dissertation. 
Detailed descriptions can be found in the method sections of the respective appended articles. 
However, for readability purposes, relevant sections of the articles are repeated and summarised 
below. This means that, given the similarities between the descriptions below and the respective 
sections in the articles, some similarity in wording of sentences and paragraphs should be expected. 
For clarity, references to the appended articles are provided where relevant. 

3.3.1 Article 1: Systematic Literature Review 
The first article performed a systematic literature review to establish the overall research context by 
mapping the state-of-the-art regarding agent transparency and human performance (van de Merwe, 
Mallam, & Nazir, 2024). Literature reviews are an essential part of any scientific enquiry as in the 
quest to extend the boundaries of scientific knowledge, knowing where the boundaries are is valuable 
knowledge (Xiao & Watson, 2019). That is, by mapping out the scientific evidence for a specific field, 
gaps in the knowledge can be identified and new directions can be chosen. Literature reviews add 
value compared to the knowledge generated in single studies in that the former integrates and 
synthesizes findings from multiple studies. Testing an overall theory or hypothesis based on multiple 
information sources provides stronger evidence than basing a theory on a single study only. Also, 
evidence sourced from multiple single studies implies that variation in methodological approaches, 
intervention strategies, and contexts are incorporated in the literature review. This, in turn, provides a 
broader and more varied information basis compared to single study results only. Furthermore, 
literature studies are valuable for checking whether consistency exists between scientific studies or 
whether there are disagreements among the results. Finding variations among the results may point 
towards gaps in the knowledge or shed light on the applicability of the results. Finally, literature 
reviews may highlight strengths and weaknesses in the evidence and argue for further research 
(Petticrew & Roberts, 2006).  

Despite the strength of literature reviews to provide the status-quo of a specific field through a meta-
analysis, the method is not without its weaknesses (Booth et al., 2016). First, a lack of a clear method 
may hamper the study’s interpretability. For example, imprecise research questions, methods for 
identifying literature, and approaches to synthesis, makes it difficult for readers to understand the 
study’s results. Second, in deciding which studies to include in the review and which ones not to 
include, literature reviews run the risk of suffering from selection bias. For example, when studies are 
chosen that predominantly support the researcher’s hypothesis, internal validity may suffer, impacting 
the defendability of the results. Finally, a lack of a clear link between the data and the study’s 
conclusions may hamper auditability of the results. Without a method and description of how the data 
from the individual studies is synthesized, it is unclear whether the review’s conclusions are derived 
from the data or from the researcher’s a priori assumptions. Systematic literature reviews (SLR) aim to 
alleviate these issues by deploying a rigorous methodological approach to data gathering, synthesis, 
and reporting. 

The primary rationale for using SLRs is the potential for increased accuracy and improved reflection 
of reality (Mulrow, 1994). SLRs differentiate from non-systematic ones in their application of explicit 
scientific principles aimed at reducing biases. In addition, the application of explicit methods allows 
for increased replicability and improved transparency in terms of its conclusions. That is, in contrast 
with non-systematic literature reviews, SLRs follow a transparent approach that makes explicit the 
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review’s choices in terms of data selection, analysis, and conclusions. In addition, the SLR answers 
more specific research questions than the traditional review (Petticrew & Roberts, 2006). Whereas the 
non-systematic review may provide a detailed and well-grounded overview of the scientific literature, 
the lack of explicit methods or protocol may threaten the study’s comprehensiveness or balance in its 
selection or discussion of the evidence.  

In the first article (van de Merwe, Mallam, & Nazir, 2024), the Preferred Reporting Items for 
Systematic review and Meta-Analysis protocol (PRISMA) was used to provide a structured approach 
for gathering, filtering, and reporting on findings in the literature (Moher et al., 2009, 2015). The 
PRISMA method uses a three-step approach to report its findings: a structured approach to data 
gathering, defining explicit criteria to filter and reduce data, and clear expectations regarding data 
analysis. For data gathering, a set of inclusion criteria were established based on the PICOC approach 
(Population, Intervention, Comparisons, Outcomes, and Context) (Booth et al., 2016; Petticrew & 
Roberts, 2006). That is, the first article was interested in identifying studies performed on users in the 
safety critical domain, where transparency principles were tested in simulated and/or operational 
environments, and where its effect on SA, and/or mental workload, and/or operator performance 
metrics were reported. In addition, exclusion criteria were established for the initial screening, thereby 
omitting non-English articles, articles from outside the time-period, non-peer reviewed, or grey 
literature, and non-experimental studies on transparency. Finally, literature was searched in three 
databases: Scopus (with ScienceDirect for the full-text journals), IEEE explore, and Web of Science 
based on a search string. For data reduction, the initial set of 1714 articles derived from the database 
search was reduced to 1575 after removal of duplicates. These were subsequently filtered based on the 
inclusion and exclusion criteria. This left 59 articles for full-text review. A workshop was held in 
which a subset of 25 articles was reviewed by the doctoral researcher and two supervisors. Each 
participant performed an independent assessment of the articles. 42 articles were excluded with 
reasons, resulting in 17 articles for the qualitative analysis. For data analysis, the results from each of 
the individual articles was extracted including the domain in which transparency was studied, the 
sample size, which (if any) transparency model was used, the Human-Automation Interaction type 
(HAI), how transparency was operationalized, and the comparisons that were made in the 
experimental study. For each of the articles the results were extracted, including SA effects of using 
the automation in the study, the effect on mental workload, and the behavioural/performance measures 
employed in the study. 

3.3.2 Article 2: Goal-Directed Task Analysis 
In the second article, a GDTA was used to establish the specific research context and derive SA 
requirements for human-supervised autonomous collision and grounding avoidance (van de Merwe, 
Mallam, Nazir, et al., 2024a). Task analysis (TA) is a method commonly used to describe and evaluate 
the interaction between humans and other actors within a system, e.g., between humans or between 
humans and machines (Kirwan & Ainsworth, 1992; Stanton, 2006). The method is typically used by 
human factors engineers, designers, and ergonomists to identify, organise, and analyse what humans 
are required to do to achieve their goals. By creating a representation of the human involvement in a 
system, this information can be used to ensure there is compatibility between the goals of the system 
and the human capabilities such that overall goals can be achieved (Stanton et al., 2013). 

Whereas TA is typically concerned with the physical activity performed within the system, cognitive 
task analysis (CTA) is interested in the mental activities. Understanding the physical activities that 
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need to be performed to achieve a system goal can be useful when designing step-by-step guidance on 
task execution or when designing task zones where work is associated with space or location 
requirement (ISO, 2000). However, modern computer-based systems using screen-based interaction 
methods put increasing demands on the cognitive skills of the operators. CTA emphasises the mental 
activities required to achieve system goals and is useful for describing and representing the cognitive 
elements that underlie goals, decisions, and judgements. In other words, CTA aims to understand how 
cognition enables humans to perform their tasks, and then uses this understanding to create support 
systems to assist humans in performing their tasks even better (Stanton et al., 2013).  

The second article used a GDTA to derive requirements to support SA when operators supervise 
autonomous collision avoidance systems (van de Merwe, Mallam, Nazir, et al., 2024a). GDTA is a 
type of CTA that focuses on the goals, decisions, and information needs of humans when performing a 
task (see Figure 9). GDTA is a technology-agnostic technique, which means that the analysis aims to 
determine what operators ideally would like to know to perform a task, without specifying with which 
technology this information is made available (Endsley et al., 2003). In addition, the analysis aims to 
understand how the operator integrates the information to derive decisions. This way, systems can be 
designed that support the cognitive needs of the operator and thereby enhances decision making and 
performance. The method typically uses a hierarchical structure to visualise how goals, sub-goals, 
decisions, and information needs are associated. Based on information sources, in which interviews 
and observations with Subject-Matter Experts (SMEs) play a leading role, the hierarchy is created and 
populated. Final validation of the hierarchy’s content is performed with an independent group of 
SMEs.  

Figure 9. The Goal-Direct Task Analysis method (adapted from Endsley et al., 2003). 

The GDTA in article two was based on four input sources: in-situ interviews with navigators, in-situ 
observations on ship bridges, an appraisal of the COLREGs, and a review of company procedures (van 
de Merwe, Mallam, Nazir, et al., 2024a). In addition, the results of the analysis were validated with 
two independent navigators (see Figure 10).  
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Figure 10. The analysis framework employed in this study (van de Merwe, Mallam, Nazir, et al., 2024a). 

First, nine navigators were interviewed whilst on-duty on the ship bridges of passenger ferries. An 
interview guide was developed addressing the actions navigators perform to obtain a picture of their 
surroundings, how they determine safe speed, how they determine collision risk, and how collisions 
are avoided. In addition, the interview guide addressed the navigator’s potential interaction with an 
autonomous collision avoidance system. For this part, a series of questions based on a modified 
MITRE Human-Machine Teaming Systems Engineering Guide (MITRE, 2018) was used to identify 
SA requirements when humans team with advanced automation to perform a task. Second, in-situ 
observations were performed whilst interviewing the navigators and were conveniently used as 
examples and objects of enquiry during the interviews. Therefore, potential collision situations that 
arose during the visits were observed, noted, and discussed in detail (see Figure 11). Third, an 
appraisal of the COLREGs was performed to identify goals, decisions, tasks, and information needs 
provided in the rule descriptions. The COLREGs describe, to a degree, the tasks to be performed in 
ship-to-ship encounters (IMO, 1977). As such, the information already embedded in the rule 
descriptions was used to understand how navigators establish an awareness of the traffic, estimate safe 
speed, determine collision risk, and decide on which actions are needed to avoid collisions. Fourth, 
documents provided by the ferry operator were reviewed to identify any specific information and 
amendments to the information above. Finally, once the GDTA was established, its results were 
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validated with two independent navigators in workshops. Here, the task analysis was reviewed, and 
corrections, amendments, and adjustments were made where necessary. 

Figure 11. Observations and interviews performed onboard a passenger ferry. 

3.3.3 Article 3: Human information processing model 
Article 3 (van de Merwe et al., 2023b) discusses the application of a model to define layers of 
transparency based on the information requirements established in Article 2 (van de Merwe, Mallam, 
Nazir, et al., 2024a) concerning conventional- and supervised collision avoidance. The aim for 
establishing these requirements was to support the development of transparent Human Machine 
Interfaces (Article 4; van de Merwe et al., 2023a) and support the supervision of collision and 
grounding avoidance systems. However, depicting all information identified in the GDTA on an HMI 
would not be prudent as this would likely lead to an excess amount of information for the operator. 
Therefore, an approach for organising this information was applied using a model of human 
information processing, i.e., the model by Parasuraman, Sheridan, and Wickens (PSW; 2000). 

The PSW model is both a conceptual model for human information processing and a pragmatic means 
to describe four classes of automated functions. As such, the compatibility of information processing 
between human and system, as represented in this model, combined with the model’s practicality and 
face validity, made this model attractive to use as a basis for developing transparent automation. 
Therefore, based on the mapping of goals, decisions and information needs identified in the GDTA 
(Article 2; van de Merwe, Mallam, Nazir, et al., 2024a), the information requirements were structured 
based on the model’s information processing stages adapted to the collision avoidance context. As per 
DNV’s guidelines for autonomous and remotely operated ships, the following categories were 
adopted: condition detection, condition analysis, action planning, and action control (DNV, 2021). 
Based on this contextualised model, a layered approach to transparency was developed in which 
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information from the task analysis was structured. This resulted in a set of information elements that is 
unique to each of the information processing stages (see Figure 12). 

Condition detection Condition analysis Action planning Action control

Human Human

Agent Agent Agent Agent

HumanHuman

Object detection
Basic classification

Object relative motion

Object classification
Object tracking

Situation analysis
Risk estimation

Collision avoidance decision
Updated passage plan Execution

Figure 12. The PSW model applied in a framework to derive transparency requirements for human supervised CAGA 
systems. 

For example, in the “condition detection” stage, the agent conveys which objects is has detected, 
performs basis classification of these objects, and determines objects’ relative motion. In the 
“condition analysis” stage, the agent conveys its object classification, tracking, analysis of the 
situation, and risk estimation. In the “action planning” stage, it depicts its decision regarding collision 
avoidance and its updated passage plan. Finally, in the “action control” stage the action is executed. 
However, since there is limited information processed at this processing step, i.e., there is only action 
execution and monitoring, there is limited information displayed for this stage. Consequently, the 
contextualised PSW model served as a framework for structuring SA requirements depicting the 
collision avoidance system’s internal information processing. To examine the results of the GDTA, 
see Appendix A – Coupling the Goal-Directed Task Analysis, PSW model, and HMI. 

3.3.4 Article 4: Human Machine Interface development 
Article 4 (van de Merwe et al., 2023a) describes the process for developing concepts for transparent 
HMIs based on the information requirements identified in Article 2 (van de Merwe, Mallam, Nazir, et 
al., 2024a), and the transparency model describe in Article 3 (van de Merwe et al., 2023b). As HMIs 
are typically system components capable of handling the interaction between humans and systems, the 
HMI supports human-machine interactions by providing relevant feedback to support SA and allowing 
for appropriate input commands to support action execution. Since design decisions can have major 
impact on the user experience, care was taken to develop transparent HMIs that would not interfere in 
the experimental evaluations (Kirk, 2013). Therefore, the approach to developing accurate, 
representative, and integrated HMIs was performed in two parts.  

First, realistic and representative traffic situations were developed to provide the context for the 
CAGA system. An iterative approach was used where a navy-certified navigator with five years of 
navigational experience developed realistic traffic situations based on a set of criteria. These situations 
were subsequently reviewed in a workshop with two independent navigators and assessed for their 
degree of realism, complexity and likelihood of occurrence. Also, the navigators were asked to 
identify if the situation depicted a traffic conflict, if yes, what type, and which manoeuvre own ship 
should perform. Based on feedback provided by the navigators, the situations were updated and 
finalised (see Figure 13).  
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Figure 13. Example of a form used in the workshops to validate the traffic situations. 

Second, symbology was developed representing the CAGA system’s decisions, planned actions, and 
reasoning based on the following principles (ISO, 2019). First, HMIs were developed such that the 
information pertaining to CAGA was suitable to the task. In this context, the transparency information 
pertaining to the CAGA system was limited to providing the information needed to understand the 
CAGA system’s decisions, planned actions, and underlying reasoning. Second, emphasis was put on 
integrating transparency information in the user’s primary task display. For collision avoidance, the 
Automatic Radar Plotting Aid (ARPA) is used by navigators to provide “continuous, accurate and 
rapid situation evaluation” (IMO, 1979, p. 2). This meant that the radar display was chosen as the 
interface for integrating transparency information from the CAGA system. In practice, this meant 
placing symbology on and around the radar display similar to regular ARPA symbology. Third, the 
symbology was designed to be as self-explanatory as possible. This was aimed to be achieved by 
developing graphical elements representing transparency information based on the IEC 62288 
standard for maritime navigation and radiocommunication equipment and systems such that the same 
“look-and-feel” as the existing ARPA symbology was created (IEC, 2022). In addition, as the 
graphical elements on the ARPA make limited use of text, i.e., information was primarily presented 
using symbols, the transparency information followed the same principles. Using an iterative design 
approach, the symbology was developed with a navy-certified navigator and validated with two 
independent navigators. Here, two workshops were held where navigators were asked to explain and 
describe, using a talk-aloud protocol, which information they perceived from the CAGA system. Their 
answers were compared to the intentions of the design, the designs were subsequently updated and 
finalised. A detailed explanation of the developed symbology, their explanations, including an 
example, is depicted in Appendix B – Guide to Human-Machine Interface and symbology. 

3.3.5 Article 5: Controlled experiment 
Article 5 describes the execution of a controlled laboratory experiment that was conducted to evaluate 
the relationship between agent transparency and human performance variables (van de Merwe, 
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Mallam, Nazir, et al., 2024b). A full-factorial repeated measures (or within-subjects) design was used 
with two independent variables: complexity (2 levels) and transparency (4 levels).  

Figure 14. Experiments conducted at the TARG research lab at USN, onboard a passenger ferry, and at NTNU Ålesund 
respectively. 

In this experiment, 34 navigators holding a deck officer license (32 males and 2 females) took the role 
of a supervisor of a ship equipped with an autonomous CAGA system (see Figure 14). They were 
tasked with observing and understanding a traffic situation depicting own ship in conflict with a target 
ship and own ship’s proposed solution to resolve it. Out of a pool of 70 traffic situations (see Table 8), 
16 unique traffic situations were used in the experiment (in addition to four for the familiarisation) 
with two levels of complexity and four levels of transparency, distributed across two sessions (see 
Table 5).  

The order of the traffic situations was randomised, resulting in each participants receiving a different 
order. As dependent variables, the effects on SA, mental workload, and task performance were 
measured and averaged across the two sessions (see Figure 15). Finally, participant preferences 
pertaining to levels of transparency were recorded through a ranking exercise as part of a semi-
structured interview.  

Figure 15. Independent and dependent variables. 
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Table 5. Traffic situations and configuration used in the familiarisation and experimental trials. 

Situations A-D were used in the familiarisation, one to eight were used in trial one, and nine to sixteen in trial two. Key: HO 
= Head-on, CR = Crossing, OT = Overtaking/overtaken, NC = No collision, RAM = Restricted in Ability to Manoeuvre. The 
reference column can be used to locate the specific traffic situation in Appendix D – Traffic situations used in the experiment. 

No. Transp. 
level 

Complexity Collision 
situation 

Own ship 
priority 

Change Target 
RAM? 

Geo. Ref. 

A Low Low HO GW Route No Sea 1_HO_L 
B Medium (A) High CR SO N/A No Sea 17_CR_H 
C Medium (B) High HO GW Route No Sea 16_HO_H 
D High Low OT GW Speed No Land 11_OT_L 

1 Low Low HO GW Route No Sea 7_HO_L 
2 Medium (A) Low CR GW Route No Sea 2_CR_L 
3 Medium (B) Low HO GW Route No Sea 2_HO_L 
4 High Low OT (target) GW Route Yes Sea 10_OT_L 
5 Low High HO GW Route No Sea 15_HO_H 
6 Medium (A) High CR GW Speed No Sea 21_CR_H 
7 Medium (B) High HO GW Route No Sea 11_HO_H 
8 High High OT (target) GW Route Yes Sea 17_OT_H 

9 Low Low HO GW Route Yes Sea 9_HO_L 
10 Medium (A) Low CR GW Speed No Land 13_CR_L 
11 Medium (B) Low HO GW Route No Sea 5_HO_L 
12 High Low OT (target) SO N/A No Sea 9_OT_L 
13 Low High HO GW Route No Sea 10_HO_H 
14 Medium (A) High CR GW Route No Sea 15_CR_H 
15 Medium (B) High HO GW Route Yes Sea 13_HO_H 
16 High High OT (own) GW Route No Sea 13_OT_H 

The Situation Awareness Global Assessment Technique (SAGAT) was used to measure participant 
SA through queries concerning three levels of SA: the agent’s information perception, its 
comprehension, and its decisions and planned actions (Endsley, 2000). The SAGAT was chosen as the 
preferred method because of its track record of providing an objective assessment of a person’s SA 
compared to subjective measurements such as the Situation Awareness Rating Technique (SART; 
Endsley et al., 1998), the Situation Present Assessment Technique (SPAM; Endsley, 2021) and other 
methods (Gawron, 2019a; Stanton et al., 2013). The SAGAT avoids errors related to poor meta-
awareness about one’s own SA (participants may not be aware of what they do not know) and 
prevents measurements being influenced by the participants’ perception of their own performance. 
However, compared to subjective rating scales, the SAGAT requires effort and in-depth knowledge of 
the scenarios to develop a varied pool of meaningful queries. Still, the strength of the SAGAT in terms 
of its sensitivity, validity, and reliability were contributing factors for choosing this technique 
(Endsley, 2000, 2021; Endsley et al., 1998). This means that for this experiment, a set of generic 
SAGAT queries were developed for each level of SA (see Appendix E – Generic SAGAT queries). 
These were subsequently tailored to each traffic situation, and were administered directly after each 
experimental trial, one at a time and in order of level of SA. 
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Mental workload was measured with the NASA-Task Load Index (Hart & Staveland, 1988). The 
NASA-TLX was chosen over other methods of workload, such as stand-alone performance 
measurements, secondary task performance, or psychophysiological measures, because of the 
sensitivity of the method and the fact that it is well-known and widely used (Gawron, 2019b; Hart, 
2006; Stanton et al., 2013). In this method, workload is measured across six dimensions: mental 
demand, physical demand, temporal demand, performance, effort, and frustration level. First, 
participants rate their perceived level of workload for each of these sub-dimensions on a 10-point 
rating scale, and subsequently, a pair-wise comparison technique is applied in which the subjective 
importance of each dimension is assessed. The result of this comparison is a set of weights for each of 
the sub-dimensions. The final workload score is created by multiplying each dimension’s score with 
its weight and summing the results. In this experiment, the NASA-TLX was administered after the 
final SAGAT query was answered. However, as setting the weights after each trial is somewhat time-
consuming and as the type of task is constant across the experiment, a version of the NASA-TLX was 
used where participants only performed pairwise comparisons once, and only after all experimental 
trials were performed. As such, the weights derived from the pairwise comparison applied to all 
workload scores for the individual trials (Gawron, 2019b). See Appendix F – NASA-TLX for the 
dimensions and pairwise comparisons. 

Task performance was operationalised as the time required to comprehend the traffic situation (i.e., 
time-to-comprehension; TTC). In psychological research, an abundance of indices is available to 
measure human performance (Gawron, 2019a). Indicators include measures of accuracy (e.g., number 
of correct responses, number of errors, deviations), time indices (e.g., search time, reading speed, time 
to complete), domains specific measures (e.g., aviation, driving, control rooms), and team 
performance measures (e.g., team communication, team effectiveness measures). In addition, one can 
measure performance through psychophysiological measurements (e.g., heart rate, eye tracking, 
galvanic skin response), psychological measurements (e.g., rating scales, self-report measurements), 
3rd party assessments (e.g., expert judgements), and primary task performance (e.g., speed and 
accuracy of task completion) (Coleman, 2019). For this experiment, a primary task performance 
measurement (time to comprehension) was used to assess the time it took participants to evaluate and 
understand the traffic situation including the information provided by the CAGA system. The time it 
took participants was self-guided and consisted of participants deciding that the traffic situation and 
the visualised solution was sufficiently understood. The time measurement started when the traffic 
situation was displayed and ended upon a key press by the participant after which the screen was 
blanked. Time was measured in seconds with no time limit imposed. However, to instil participants 
with a sense of urgency, participants were told they had a 90 second time-limit to evaluate the traffic 
situation after which the radar image would disappear automatically. No time keeping device was 
available to the participants and, in practice, there was no time limit imposed by the researchers to 
avoid a ceiling effect in the measurements.  

Finally, the participants’ preferences were recorded during a post-experiment interview. Preference 
was operationalized through a ranking exercise in which participants were asked to rank the four 
levels of transparency on two dimensions: observability and predictability (MITRE, 2018). 
Understanding the participant’s perceptions regarding the system’s transparency is interesting as it 
provides a subjective dimension to the aforementioned human performance variables, considering the 
role of user perceptions in technology acceptance (Davis, 1989; Venkatesh et al., 2003). A think-aloud 
protocol was used to record the participant’s verbal reasoning of the ranking (Eccles & Arsal, 2017). 
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Ranking was recorded to supplement the other dependent variables and obtain qualitative feedback on 
the transparency levels (see Figure 16 and Appendix G – Ranking transparency levels).  

Figure 16. Screenshot from the ranking exercise from one of the participants. 

3.4 Recruitment process 
In this doctoral research, a total of 50 participants were recruited for all of the activities and divided 
across three articles (Articles 2, 4, and 5). The recruitment of the participants was primarily performed 
using snow-ball sampling techniques based on the professional networks from the doctoral researcher 
and the supervisors from DNV and USN.  

For the second article, the Goal-Directed Task Analysis, nine navigators were interviewed on the topic 
of collision avoidance manoeuvring onboard a passenger ferry (van de Merwe, Mallam, Nazir, et al., 
2024a). This included two for which video interviews were performed due to the resurgence of 
COVID-19 restrictions. In addition, two independent navigators from the university’s maritime 
education program performed an independent validation of the results of the GDTA. These 
participants were identified through the doctoral researcher’s and the supervisors’ professional 
network. For the fourth article, a navy-certified navigator was recruited to assist in the development of 
the traffic situations and HMIs (van de Merwe et al., 2023a). During the development of the traffic 
situations, a workshop was held for which two independent navigators provided structured feedback 
on the traffic situations. In addition, a separate workshop was held to validate the developed HMIs 
with two licensed navigators. For the fifth article, three navigators were recruited to perform pilot 
testing prior to commencement of the experiment and 34 navigators were recruited for the experiment 
(van de Merwe, Mallam, Nazir, et al., 2024b). These participants were recruited through various 
means using both convenience and snowball techniques based on the doctoral researcher’s- and 
supervisor’s professional networks within DNV, USN, and externally.  

In terms of distribution between males and females, the maritime industry is a male dominated 
industry. This gender imbalance made it challenging to obtain an equal distribution in this doctoral 



Agent Transparency and Human Performance in Supervisory Control 

34 

research. Throughout the studies, only two females were recruited: none for Article 2 and 4, and two 
in Article 5. Therefore, no scientific enquiries were performed to include gender differences in the 
analysis. In terms of the distribution of all participants across the articles, Article 2 used navigators 
from ferry operators only, Article 4 used navigators from nautical training institutes and DNV only, 
and Article 5 used navigators from various ferry operators and nautical training institutes. 

3.5 Validity, reliability, and quality of research 
Because the aims of research are to draw conclusions about an effect and to make generalisations to 
other settings of interest, validity and reliability are central components herein (Kirk, 2013). Validity 
refers to the degree to which “experimental results lead to an intended conclusion from the data” 
(Ritter et al., 2013, p. 2). Reliability is “concerned with the extent that an experiment can be repeated 
or how far a given measurement will provide the same results on different occasions” (Howell, 2013, 
p. 2). There are various types of validity, but in general, three types are of greatest interest here:
internal, external, and statistical conclusion validity (Kirk, 2013).

Internal validity refers to how well the research design explains its outcomes or whether the results 
were influenced by other factors. In qualitative research, internal validity can be enhanced by applying 
scientific rigour in developing a theoretical framework, selecting approaches to data gathering and 
participant sampling, concurrently collecting and analysing data, ability to shift between micro- and 
macro perspectives to develop theories (Malterud, 2001; Morse et al., 2002). In addition, the use of 
member check and cross-checking activities with independent subject matter expert are means to 
enhance the validity of the results (Malterud, 2001). In quantitative research, internal validity can be 
enhanced using experiments to control for externally influencing factors. This way, precise answers to 
the question of which causes lead to which effects can be answered (Coleman, 2019).  

External validity refers to how well the research finding are generalisable to and across populations 
and settings. In qualitative research, external validity is also referred to as transferability, which is the 
“range and limitations for application of the study findings, beyond the context in which the study was 
done” (Malterud, 2001, p. 484). Purposeful sampling, based on a theoretical framework, in which 
participants with in-depth subject knowledge are obtained from a relevant population, is one of the 
ways to enhance transferability in qualitative research. In quantitative experimental research, high 
internal validity may have consequences for external validity, i.e., generalizability. Because 
experiments require a tight control of extraneous variables to investigate cause-effect relationships, the 
study’s ability to predict the same effect in real-life situations may suffer (Jarvie & Zamora Bonilla, 
2011). Nevertheless, strategies such as sampling participants from a relevant population to perform 
experimental tasks illustrative of real-world tasks can strengthen the study’s ability to reflect real-
world effects (Ritter et al., 2013).  

Finally, statistical conclusion validity refers to the ability to make valid inferences from data without 
being affected by random error or improper statistical procedures (Kirk, 2013). Threats to this type of 
validity include low statistical power, violation of assumptions of statistical test, fishing for significant 
results, poor reliability of measures, poor reliability of experimental implementation, and poor control 
of individual differences between participants. Strategies such as obtaining a sufficiently large sample 
size to enhance power (Boruch, 1997; Ritter et al., 2013), appropriate use of statistical methods 
(Tabachnick et al., 2019), reliable and valid measurement instruments (Coleman, 2019), a standardised 
approach to execution of the experiment (Ritter et al., 2013), a repeated measures design (Coleman, 
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2019), and randomisation of stimuli (Coleman, 2019; Jarvie & Zamora Bonilla, 2011), are effective 
means to control statistical conclusion validity. In addition, pilot tests, as depicted in Figure 17, are 
important to ensure the technical, procedural, data quality, and analytical elements of the experiment 
(Ritter et al., 2013). 

Figure 17. Ensuring reliability, validity, and quality of the experiment. 

Clockwise: Five pilot experiments were performed prior to the start of the experiment, two independent navigators validated 
the transparency designs, and two independent navigators validated the traffic situations. 

Reliability is concerned with the repeatability of a study and the extent that a measurement provides 
the same result on different occasions, in other words, stability of results (Howell, 2013). Reliability is 
often associated with research from the positivistic and post-positivistic philosophies, e.g., 
experimental research. Here, reliability refers to “the reproducibility of a measurement and describes 
the extent to which a particular method of measurement will yield the same result repeatedly on a trait 
presumed to be stable” (Boruch, 1997, p. 6). Establishing reliability in non-experimental studies is 
more challenging but nonetheless more easily realised when a structured, positivistic approach to the 
research is chosen (Howell, 2013). For example, when studying the collision avoidance task in Article 
2, multiple qualitative methods provided input to the GDTA. This multi-method approach aimed to 
offset each method’s strength and weaknesses, triangulate the data, and complement the various 
methods and contributed to the data’s validity and reliability. In applying this approach, the 
comprehensiveness and accurateness of the study’s results and conclusions are enhanced (Moon, 
2019; Plano Clark & Ivankova, 2016).   

Table 6 depicts the strategies deployed in this dissertation to address the studies’ validity and 
reliability.
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Table 6. Strategies to control validity and reliability in this dissertation. 

Article 1 Article 2 Article 3 Article 4 Article 5 

Method PRISMA GDTA Modelling HMI development Controlled experiment 

Validity Applied an established 
method for systematic 
literature reviews 

Performed data synthesis 
based on clear research 
questions 

Three researchers 
performed the full-text 
selection 

Used multiple data 
gathering methods: In-
situ interviews, in-situ 
observations, 
COLREGs, procedures 

Reviewed results with 
two independent 
navigators 

Applied an established 
model for human 
information processing 

Contextualised model 
based on published 
guidelines for 
autonomous shipping 

Used navy-certified 
navigator in development 
of traffic situations and 
HMIs 

Applied iterative approach 
Reviewed traffic situations 

and HMIs with 
independent navigators 

Performed pilot testing 
Used realistic traffic situations  
Transparency layers integrated in 

ARPA 
34 licensed navigators participated 
Participants performed relevant task 
Measured with established methods 

(SAGAT, NASA-TLX, time) 
Stimuli were randomly assigned 
Performed quality control measures 

prior to data analysis: checking data 
for normality, outliers, missing 
values 

Performed data analysis using 
established statistical methods 
(RM-ANOVA) 

Reliability Systematically searched 
for relevant literature 
based on explicit criteria 

Reviewed full-text articles 
based on in- & exclusion 
criteria 

Specified the analytical 
process 

Used multiple data 
gathering methods: In-
situ interviews, in-situ 
observations, 
COLREGs, procedures 

Applied an established 
task analysis method 

Established categorisation 
criteria for generating 
transparency levels 

Established explicit criteria 
for developing varied 
traffic situations 

Correlated GDTA and 
model based on 
categorisation criteria to 
generate levels of 
transparency 

Established experimental procedure 
Used validated experimental 

software 
Automated execution of experiment 
Automated data capture 



Chapter 3 - Research methodology 

37 

3.6 Research ethics 
This dissertation followed the Norwegian national research ethics guidelines for ethical research. For 
each individual study involving external participants, the Norwegian Agency for Shared Services in 
Education and Research evaluated and approved the dissertation’s approaches to gathering and 
managing personal data (reference nr. 579620 and 986652). In addition, all personal data was 
managed according to the General Data Protection Regulation.  

In this dissertation, informed consent was obtained from participants for the data gathering in Article 2 
(interviews and workshops), Article 4 (two workshops), and Article 5 (experiment). For each 
occasion, participants were given a written form that explained the purpose of the project, what was 
expected of the participants, how personal data was managed, stored, and used in the research and 
publications. Participants were informed that participation was voluntary and that they could withdraw 
at any given moment and without reason. Participants also had the right to access their own personal 
data, request its deletion, request rectification, receive a copy, and send a complaint to the relevant 
authorities. Finally, participants were provided with contact information of the doctoral researchers’ 
supervisors, the data protection officer, and the Norwegian Agency for Shared Services in Education 
and Research. All participants consented to the information provided and signed the form. 

For the recruitment of participants for the workshops (Articles 2 and 4) and the experiment (Article 5), 
personal information, i.e., name, email address and telephone number, were gathered. However, to 
separate personal information from research data, a coding system was used to identify participant 
data without linking it to personal data. The key that linked the participant’s personal data to the 
research data was stored separately and was deleted after the project’s end data (28.02.2024). 

Finally, all articles followed the Recommendation for the Conduct, Reporting, Editing, and 
Publication of Scholarly Work in Medical Journals, i.e., the Vancouver Recommendations 
(International Committee of Medical Journal Editors, 2023, p. 2; ICMJE). The ICJME states that 
authorship is based on the following criteria: 

1. “Substantial contributions to the conception or design of the work; or the acquisition, analysis,
or interpretation of data for the work; AND

2. Drafting the work or reviewing it critically for important intellectual content; AND
3. Final approval of the version to be published; AND
4. Agreement to be accountable for all aspects of the work in ensuring that questions related to

the accuracy or integrity of any part of the work are appropriately investigated and resolved.”

All the persons named in the articles in this dissertation have satisfied these criteria. Additional 
persons, institutions, or companies that have significantly contributed to the content of the work have 
been identified in each of the articles’ acknowledgement sections. For statements regarding authorship 
in this dissertation, see Appendix I – Statements of co-authorship. 
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4 Results 
This section presents the results from the studies performed in this dissertation. Detailed descriptions 
can be found in the Results sections of the respective appended articles. However, for readability 
purposes, relevant sections of the articles are repeated and summarised below. This means that, given 
the similarities between the descriptions below and the respective sections in the articles, some 
reproduction of texts, figures, tables, as well as similarity in wording of sentences and paragraphs 
should be expected. For clarity, references to the appended articles are provided where relevant. 

4.1 Article 1: Understanding the overall context 
In Article 1, the primary findings from a systematic literature review are discussed (van de Merwe, 
Mallam, & Nazir, 2024). The results are summarised below. However, for a detailed overview of the 
results, including extensive tables, see Tables 1 and 2 in Article 1 in Appendix H – Publications. 

4.1.1 Domains, models, interaction types, and operationalisations 
The article presents the domains in which transparency has been researched, the different transparency 
models applied by the experimental studies, the various human-automation interaction types and tasks 
employed by the studies, and the ways in which transparency has been operationalised in the literature. 

The literature review found that transparency has been primarily researched in the military domain. 
53% of the studies in the SLR focused on UAV operations, ground troop support, and military 
aviation, 12% of the studies were performed within the autonomous driving domain, whilst the other 
domains were related to civil defence (12%), civil aviation (12%), nuclear (6%), and robotics (6%).  

Two transparency models were prevalent in the literature review: the (Dynamic) Situation Awareness-
based Transparency model (J. Y. C. Chen et al., 2014, 2018) and the Human-Robot Transparency 
model (Lyons, 2013). In the 17 articles analysed for full-text review in the SLR, eight studies (47%) 
used the SAT model and one study (6%) used the HRT model. For the remaining eight studies (47%), 
no particular model was used as the basis for HMI- and experimental design.  

Three categories of human-automation interaction types were identified in the studies. In six studies 
(35%), participants were tasked with responding to proposals provided by the agent, in five studies 
(30%), participants were required to supervise automation, i.e., monitor, respond to, and manually 
operate, and in six studies (35%), participants were required to monitor only, i.e., no manual 
interaction was required.  

Finally, most of the studies in the SLR implemented transparency information on a graphical user 
interface. Exceptions include Skraaning and Jamieson (2021) who provided verbal feedback to nuclear 
control room operators about the state of the system, in addition to implementing graphical elements. 
Also, Bhaskara et al. (2021) gave participants in the higher transparency conditions formulae used by 
a recommender system on a sheet of paper. Otherwise, the studies used graphical elements to convey 
the system’s inner reasoning, including icons, colour and opacity coding, text prompts, and graphs.  

4.1.2 Transparency, SA, mental workload, and task performance 
The literature review also gathered empirical evidence from experimentally controlled studies on the 
effect of agent transparency and SA, mental workload, and task performance. Nine out of 17 studies 
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measured the effect on SA, 15 out of 17 studies measured mental workload, and 10 out of 17 studies 
measured task performance.  

The findings indicate a neutral to positive effect of transparency on SA. However, the results vary 
between measurement technique and Human Automation Interaction type (HAI). Improved SA scores 
were found for the studies by Roth et al. (2020; SAGAT scores only), T. Chen et al. (2014, 2015), 
Skraaning and Jamieson (2021; experiment 2) and Selkowitz et al. (2017). Neutral effects were found 
in the studies by Roth et al. (2020; SART scores only), Guznov et al. (2020), Skraaning and Jamieson 
(2021; experiments 1 and 3), Selkowitz et al. (2015, 2017), Wright et al. (2020), Pokam et al. (2019).  

The results indicate a predominantly neutral effect of agent transparency on mental workload. Ten 
studies found no effect between agent transparency and mental workload as measured with various 
subjective and objective indicators, two studies found an increase, and four studies found a decrease. 
Two studies measured workload with different methods and found different results, i.e., Skraaning and 
Jamieson (2021) and Selkowitz et al. (2017). Nevertheless, most of the studies in the review indicate 
that providing transparency information did not affect the participants to such an extent that this led to 
increased mental workload. In addition, adding transparency information did not lead to reductions in 
mental workload either.  

Five studies found indications of improvements on task performance indicators such as correct use and 
rejections of agent generated proposals (Bhaskara et al., 2021; Mercado et al., 2016; Stowers et al., 
2020), response time (Stowers et al., 2020), improved goal completion (T. Chen et al., 2015; 
Skraaning & Jamieson, 2021), and performing detection and verification activities (Skraaning & 
Jamieson, 2021). However, six studies found reductions in performance, such as, response time 
(Bhaskara et al., 2021; T. Chen et al., 2015; Roth et al., 2020; Skraaning & Jamieson, 2021), 
separation conflicts (Göritzlehner et al., 2014), and verification activities (Sadler et al., 2016). Finally, 
eight studies found no difference in task performance, e.g., Roth et al (2020), Sadler et al. (2016), and 
Wright et al. (2020).  

4.2 Article 2: Identifying requirements for supervision 
Article 2 presents and discusses the results from the GDTA in terms of identified information 
requirements for conventional and human supervised collision avoidance (van de Merwe, Mallam, 
Nazir, et al., 2024a). The results are summarised below, but for a detailed discussion of the results, see 
the Results section of Article 2 in Appendix H – Publications, especially Figures 5 to 8. 

The results indicate a change towards increased cognitive activities required to verify agent 
performance. In the conventional collision avoidance case, i.e., the baseline, decisions and actions are 
performed by the navigator. Here, the navigator perceives the environment, analyses relevant 
information, determines collision risk, makes decisions given the situation, and executes avoidance 
manoeuvres. In the supervised collision avoidance case, i.e., the supervision case, these tasks are 
outsourced to the CAGA system, and it is now the system that perceives, analyses, decides, and takes 
actions. In this scenario, the operator is left with supervising the performance of the CAGA system. 
Thus, the supervision of the system entails ascertaining that CAGA makes a full appraisal of the 
situation, proceeds at a safe speed, determines collision risk, and performs avoidance actions in 
accordance with the Rules.  
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The results section of Article 2 depicts and exemplifies the change in SA requirements when shifting 
from the baseline case to the supervision case. That is, in conventional collision avoidance the 
navigator requires a range of information elements to be able to perform the tasks associated with 
performing the look-out function (COLREG Rule 5), determining safe speed (Rule 6), determining 
risk of collision (Rule 7), and taking actions to avoid collisions (Rule 8). For example, for Rule 5 – 
Look-out this includes location information of vessels, terrain, and objects, relative motion of targets, 
(time to) closest point of approach (CPA/TCPA) for targets, bow cross range and time, course of 
ground of targets. For Rule 6 – Safe speed, this includes information on current speeds, meteorological 
conditions, detected targets on ARPA and ECDIS, known vessel characteristics, look-out and 
navigational charts, water level contours, and limitations to radar equipment. For Rule 7 – Risk of 
collision, this includes detected targets, true- and relative vectors for targets, bearing or COG changes 
for targets, and CPA/TCPA for targets. Finally, for Rule 8 – Actions to avoid collision, this includes 
knowledge of Rule 18 – Responsibilities between vessels, changes to bearing with target vessels, 
availability of sea room, CPA with target vessels, and visual estimation of distances.  

In the supervision case, the operator of the collision avoidance system needs to be able to verify that 
the system is performing the collision avoidance function according to its performance requirements 
(see Figure 18). This means that the system needs to be able to provide the relevant information 
necessary to allow for its verification. To satisfy Rule 5 – Look-out, this means depicting the CAGA 
system’s detection of vessels, terrain, objects, and its estimated collision risk. For Rule 6 – Safe speed, 
the CAGA system should depict its chosen safe speed, the parameters this is based on including their 
individual effects, and any uncertainties and limitations to the data. For Rule 7 – Risk of collision, 
CAGA should depict which objects it has detected in the short to long range, an evaluation of their 
type, size, and activity, which objects pose a collision risk, and the status of its relevant sensors. 
Finally, for Rule 8 – Actions to avoid collision, CAGA should indicate its intended actions, the time to 
perform these actions, the magnitude of its planned course and/or speed changes, its identified limits 
to sea room and obstructions, its CPA to target vessels during the planned avoidance manoeuvre, and 
its determination of vessel priority based on Rule 18 – Responsibilities between vessels.  

A supervisor may intervene in the CAGA system if its performance is not in accordance with its 
expected standard. For example, the supervisor may intervene when its detection of targets-, speed-, 
estimated collision risk-, intended actions-, time to perform these actions-, or determination of vessel 
priorities are incorrect. Also, when there are large uncertainties in its input data and there is 
disagreement across and between its sensors, the supervisor may intervene. Thus, Article 2 identified 
that the supervisor requires independent information to be able to evaluate the performance of the 
CAGA system, e.g., provided through conventional means. For example, on a bridge, a navigator may 
look out the window to cross-check the information from the collision avoidance system and may 
intervene using the ship’s existing control options. In a remote-control centre, a supervisor may need 
access to information independent of the collision avoidance system.  

For detailed results of the GDTA, see Appendix A – Coupling the Goal-Directed Task Analysis, PSW 
model, and HMI.  
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Figure 18. The generic framework used to map the changes between the baseline and supervision case. 

4.3 Article 3: Structuring requirements using the PSW model 
Article 3 (van de Merwe et al., 2023b) discusses the application of the PSW model to the SA 
requirements that were identified in Article 2 (van de Merwe, Mallam, Nazir, et al., 2024a).  

The context-adapted transparency model, based on the original PSW model, describes the four stages 
of information processing as condition detection, condition analysis, action planning, and action 
control. In the condition detection stage, the CAGA system determines the presence of objects, 
provides basic information regarding these objects, and provides own ship relative motion with 
regards to these objects. In the condition analysis stage, target objects are tracked, classified, and 
future states are predicted. Based on this analysis, the collision avoidance system can determine the 
risk of collision with own ship. In the action planning stage, actions are planned based on the 
outcomes of the risk analysis with which the risk of collision can best be avoided whilst adhering to 
the COLREGs. This includes determining which ship has “right of way” and which changes are 
needed to course and speed (if any) to clearly indicate own ship’s intention to avoid collision. Finally, 
in the action control stage the collision avoidance system sends the parameters of the updated passage 
plan to the control- and machinery system for effectuation. Limited information processing is 
performed in this stage as it is primarily concerned with the execution of decisions made earlier. 

In terms of mapping the SA requirements to this model, the results show that each of the information 
processing stages of the system can be depicted using a unique set of information parameters (see 
Table 7). Also, each set of information elements are additive in terms of that they convey information 
that other elements do not. For example, in the condition detection stage, the system may show which 
objects it has detected in the short and long range, target object type and size, whether the object is 
moving or stationary, and whether these objects are crossing, head-on, or overtaking. In the condition 
analysis stage, the CAGA system may depict the targets it follows over time, which ship types and 
manoeuvrability classifications it is considering, and target location predictions based on course and 
speed. In the action planning stage, the system conveys how the system sees the solution to the 
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collision risk situation. Here, the CAGA system may depict which ship requires to give-way or stand-
on and what actions the system intends to perform, including if this means keeping current course and 
speed. In the final stage, action control, the execution of the plan is monitored only and any deviations 
from the original plan, is detected, analysed, decided, and planned in the preceding stages through a 
continuous information loop. Further details on how the data from the GDTA was structured 
according to the PSW model can be found in Appendix A – Coupling the Goal-Directed Task 
Analysis, PSW model, and HMI. 

Table 7. Applying the PSW model to the information requirements from the task analysis.  

Key: OT= overtaking/overtaken, HO=head-on, CR=crossing, GW=give-way, SO=stand-on. 

Information processing stage Information requirements for supervision (excerpts) 

1. Condition detection:
CAGA performs object detection, basic

classification, object tracking, and status 

- Detected objects short & long range
- Identified target ship
- Target object type and size
- Identified target object as OT/HO/CR
- Uncertainties in the radar/ sensor data
- Status of sensors

2. Condition analysis:
CAGA performs object classification,

tracking, situation analysis, and risk 
estimation 

- Objects that pose risk
- Plotted objects
- Risk object type and size
- Risk object priority
- Risk object course and speed
- Risk object intended trajectory
- Risk object conflict type
- Safe speed parameters

3. Action planning:
CAGA decides on collision avoidance

manoeuvring and determines an updated 
passage plan 

- Own ship priority (GW/SO)
- Target vessel priority (GW/SO)
- Own ship intended track and speed

4. Action control:
CAGA executes the plan

N/A: only action implementation 

4.4 Article 4: Developing Human Machine Interface concepts 
Article 4 (van de Merwe et al., 2023a) presents the process for developing traffic situations and HMI 
concepts for a CAGA system, including design examples, based on the structured SA requirements 
described in Article 3 (van de Merwe et al., 2023b).  

4.4.1 Developing traffic situations 
70 traffic situations were developed that aimed to represent realistic conflicts and reflect the variety of 
situations navigators could encounter in real-life (see Table 8). The situations were created on a 
desktop ARPA simulator from a popular equipment manufacturer and developed by a navy-certified 
navigator with five years of navigational experience. This pool of traffic situations provided the 
foundation for developing and applying transparency symbology, including experimental evaluation. 
To ensure consistent variation between the situations, the following criteria were established. First, 
situations were developed with high- and low levels of complexity. In low complexity situations own 
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ship was not restricted in its manoeuvring. In high complexity cases, own ship was “boxed-in” 
indicating there were some restrictions to performing avoidance manoeuvring thereby increasing the 
situation’s complexity. High complexity situations also had increased traffic density compared to low 
complexity situations. Second, the COLREG’s define three types of conflicts: crossing, head-on, and 
overtaking/overtaken. In principle, these three types represent all defined types of collisions one can 
encounter at sea. In addition, situations in which there were no collisions were developed. Third, 
according to COLREGs, when own ship encounters a target ship, it is either in a give-way- or in a 
stand-on situation. Give-way indicates own ship needs to perform an avoidance manoeuvre, stand-on 
indicates the target ship needs to manoeuvre. Forth, ships can have various restrictions, e.g., in their 
ability to manoeuvre. For this research, only target ships could be restricted in their ability to 
manoeuvre, not own ship. Finally, traffic situations could include land and/or open sea.  

Table 8. Criteria for establishing a varied set of traffic situations. 

Key: HO = Head-on, CR = Crossing, OT = Overtaking/overtaken, NC = No collision, RAM = Restricted in Ability to 
Manoeuvre. *Note: in a head-on situation with one motorised target ship and no other exceptions, own ship cannot be stand-

on. 

Head-on Crossing Overtaking Total 
Variant/Complexity Low High Low High Low High 
Type (HO/CR/OT) 5 5 4 4 4 4 26 
Type (NC) 2 2 2 2 2 2 12 
Own ship stand-on* 0 0 2 2 2 2 8 
Restrictions target (RAM) 2 2 2 2 2 2 12 
Geography (land) 2 2 2 2 2 2 12 
Total 11 11 12 12 12 12 70 

4.4.2 Developing transparent HMIs for collision avoidance 
To visualise the SA requirements, a set of symbology was developed that allowed the CAGA system’s 
information processing to be represented (see Appendix B – Guide to Human-Machine Interface and 
symbology, for an overview of the developed symbology and their explanations). Four concept 
illustrations are depicted below that use the same underlying traffic situation but add and vary layers 
of transparency information. Additional traffic situations depicting variations in traffic complexity and 
levels of transparency are included in Appendix D – Traffic situations used in the experiment. Note 
that the descriptions corresponding the illustrations are similar to those presented in Article 3. Still, for 
the purpose of readability and clarity in presenting the results of Article 3, these sections are repeated 
below. 

Figure 19 depicts a traffic situation with own ship, in the centre of the radar screen, and several other 
ships within a 6nm range. In this case, own ship engages in a head-on situation with ship “003”. 
According to COLREG rule 14 “when two power-driven vessels are meeting on reciprocal or nearly 
reciprocal courses so as to involve risk of collision each shall alter her course to starboard so that each 
shall pass on the port side of the other” (IMO, 1977). However, ship “004” poses a hindrance to free 
avoidance manoeuvring for own ship and care should be taken that an avoidance manoeuvre does not 
result in a new collision situation.  



Chapter 4 - Results 

45 

Figure 19. Traffic situation without transparency information. 

In Figure 20, the same traffic situation is shown as above, but now with varying levels of 
transparency: low, medium (A), medium (B), and high. For larger versions, see Appendix C – 
Examples of transparency levels.  

In the low transparency variation (top-left), own ship indicates its intended avoidance manoeuvre by 
drawing its planned track for the next three manoeuvring steps (each step corresponds to one vector 
length and equals six minutes). The system also depicts “GW” next to the own ship symbol which 
indicates it intends to give-way.  

In the medium (A) transparency variation (top-right), it is depicted that the red target forms the highest 
risk, whilst the target in orange poses a potential risk during the avoidance manoeuvre. Additional 
indicators next to the target symbols indicate the type of conflict and vessel. Also, a risk circle depicts 
where own ship can manoeuvre within a one vector length. Finally, the factors influencing safe speed 
information is provided in table form on the left of the screen.  

In the medium (B) transparency variation (bottom-left), all layers are depicted except the “information 
analysis” layer. Here, the system discloses its decisions, actions, and which information is has 
acquired. However, it does not provide information about how it analyses this information, e.g., which 
risks it has determined. This level of transparency was included to provide an alternative to the 
cumulative approach discussed above. 

Finally, in the high transparency variation (bottom-right), all transparency information identified 
through the task analysis is provided on the HMI. Here, all targets have received identifiers (green 
circles), and initial classifications (ship types and relevant conflict type indicators). In addition, 
information regarding the status of the system’s sensors is provided in the tables to the left of the radar 
screen.  
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Figure 20. Traffic situations with varying transparency levels.  

Top-left: Low, Top-right: Medium (A), Bottom-left: Medium (B), Botton-right: High. For larger versions, see Appendix C – Examples of transparency levels. 
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4.5 Article 5: Evaluating with controlled experimentation 
Article 5 presents the findings from a controlled experimental study analysing the relationship 
between agent transparency and key human performance variables in an autonomous conflict 
avoidance context (van de Merwe, Mallam, Nazir, et al., 2024b). Three dependent variables were 
measured (SA, mental workload, and task performance) as a function of transparency and traffic 
complexity. A detailed discussion of the results is depicted in the Results section of Article 5 in 
Appendix H – Publications. Note that the descriptions of the statistical results are predominantly 
similar to those presented in the Article 5. Still, in order to provide a complete picture of the 
experimental findings, the findings are repeated here. In addition, an overall and integrated 
presentation of the study’s results is provided. The findings are also graphically depicted in Figure 21. 

For level 1 SA, a main effect for transparency was found (F(3,31) = 9.374, p < .001, ηp
2 = .476). The 

high transparency level (Mhigh = .71) resulted in improved awareness of elements in the environment 
compared to the low transparency and the medium (B) condition (Mlow = .46, Mmedium (B) = .57). No 
differences were found between the medium (A) condition and the other conditions (Mmedium (A) = .60). 
A main effect for complexity was found where traffic situations with high complexity indicate lower 
level 1 SA (F(1,33) = 30.347, p < .001, ηp

2 = .479; Mlow = .70, Mhigh = .47). A weak and non-
significant interaction was found between the transparency and complexity conditions (F(3,31) = 
2.885, p = .051, ηp

2 = .218). 

For level 2 SA, a main effect for transparency was found (F(3,31) = 10.572, p < .001, ηp
2 = .506). The 

SAGAT level 2 scores for transparency level medium (A) (Mmedium (A) = .84) are higher than the low- 
and high condition (Mlow = .65, Mhigh = .64). Also, the scores for the medium (B) condition are higher 
than the scores for the low condition and did not differ from the medium (A) condition (Mmedium (B) = 
.85). This indicates that comprehension of the elements in the traffic situation was best when 
transparency was at a medium (A)- or at a medium (B) level. Furthermore, a main effect of complexity 
on level 2 SA was found (F(1,33) = 24.713, p < .001, ηp

2 = .428; Mlow = .82, Mhigh = .67). This 
indicates that a lower level 2 SA was achieved in high complexity cases compared to low complexity 
ones. Finally, a significant interaction between complexity and transparency was found for level 2 SA 
(F(3,31) = 3.206, p < .037, ηp

2 = .237) showing significant differences in SA scores for medium (A) 
transparency and complexity.  

For level 3 SA, a main effect for transparency was found (F(3,31) = 4.362, p < .011, ηp
2 = .297). The 

scores on SAGAT were highest for the high transparency condition (Mhigh = .85) and significantly 
higher than the low- and medium (A) transparency conditions (Mlow = .73, Mmedium (A) = .69). This 
indicates that participants were best able to predict the future state of the elements in the environment 
with the highest level of transparency. No difference between the medium (B) transparency level and 
the other levels was found (Mmedium (B) = .77). A main effect for complexity was found in which the low 
complexity level resulted in higher scores on the SAGAT compared to the high complexity level 
(F(1,33) = 38.594, p < .001, ηp

2 = .539, Mlow = .85, Mhigh = .67). This means that the participants were 
better able to predict the future state of elements in the traffic situations when these were of low 
complexity compared to high complexity. No interaction between complexity and transparency was 
found for level 3 SA. 

No main effect of transparency on mental workload was found. However, individual dimensions as 
measured through the NASA-TLX were analysed and showed an effect on the “Performance” sub-
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dimension (F(3,28) = 7.791, p < .001, ηp
2 = .455). Here, the participants reported they were more 

satisfied with “achieving the goals set by the experimenter” for the medium transparency level 
compared to the other levels (Hart & Staveland, 1988, p. 30). Also, a main effect for complexity on 
mental workload was found (F(1,33) = 21.964, p < .001, ηp

2 = .400; Mlow = 55.29, Mhigh = 64.45). This 
indicates that participants reported higher levels of workload in the high complexity cases compared to 
the low complexity cases. Finally, no interaction between complexity and transparency was found. 

A main effect for transparency was found for mean TTC (F(3,22) = 24.73, p < .001, ηp
2 = .771). The 

medium (A)-, medium (B)-, and high transparency levels (Mmedium (A) = 52.62, Mmedium (B) = 60.12, Mhigh 
= 60.80) led to increased mean TTC compared to the low transparency condition (Mlow = 38.40). Also, 
medium (A)- and high transparency levels resulted in higher mean TTC compared to the low- and 
medium (B) levels. No difference in TTC was found between the medium (A)- and high transparency 
levels. For complexity, a main effect was found on the mean TTC (F(1,24) = 46.65, p < .001, ηp

2 = 
.66, Mlow = 40.30, Mhigh = 53.14). A high traffic complexity level resulted in increased mean times to 
comprehend the traffic situations for the participants. For the interaction between transparency and 
complexity no effect was found. 

In terms of subjective ranking, a main effect of transparency was found (F(3,31) = 616.639, p < .001, 
ηp

2 = .984). The medium (A)- and high transparency levels were preferred compared to the low- and 
medium (B) levels. The low transparency was rated the least preferred, followed by the medium (B) 
level, and a shared highest preference for the medium (A)- and high transparency level. 

When integrating the results across the dependent variables, Figure 21 graphically depicts the graphs 
found in Article 5 but now in conjunction and side-by-side. For complexity, its effect in the dependent 
variables appear primarily uniform. As supported by the statistical data discussed earlier, higher 
complexity levels result in lower SAGAT scores compared to lower complexity levels, regardless of 
SA level. Also, for mental workload and task performance, higher complexity levels lead to increased 
mental workload and TTC respectively. Only for the combination between level 2 SA and the medium 
(A) transparency level, no differences were found.

For transparency, Figure 21 depicts that its effect differs from variable to variable and from level to 
level of transparency. For level 1 SA, high transparency provided the highest level 1 SA, for level 2 
SA, medium (A) and medium (B) transparency levels was the highest, and for level 3 SA, the high 
transparency level provided the highest level 3 SA. This implies that for medium (A) to high levels of 
transparency increased levels of SA can be expected. This result aligns with the subjective rankings 
which indicated that participants preferred the medium (A)- and high transparency levels compared to 
the low- and medium (B) levels. However, these SA levels came with a task performance penalty; 
increased comprehension times were recorded with medium (A) and high levels of transparency. 
Nevertheless, for mental workload, no effects were found for any of the levels of transparency.  
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Situation Awareness Mental workload Time to comprehension 

Figure 21. Mean scores for level 1, 2, and 3 SA, mental workload, and time to comprehension as a function of transparency and complexity. 

Note the error bars represent the 95% confidence interval.  
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5 Discussion 
The following section reflects on the results of the studies performed in this dissertation as well as the 
methods applied to generate these. As for other parts of this dissertation, relevant sections of the 
articles are repeated and summarised below. This means that, given the similarities between the 
descriptions below and the respective sections in the articles, some reproduction of texts, figures, 
tables, as well as similarity in wording of sentences and paragraphs should be expected. For clarity, 
references to the appended articles are provided where relevant. 

5.1 Theoretical reflections 
This section discusses the overall results from the studies performed in this dissertation. In the 
theoretical background, this dissertation argued that to ensure equivalent safety in “alternative and 
equivalent” concepts where autonomous functions perform tasks previously performed by humans, 
special focus should be given to supporting cognitive processes required for adequate and effective 
human supervisory control (DNV, 2021; IMO, 2013). This was considered relevant as supervisory 
control of autonomous agents is challenged by the problem of attaining and maintaining SA, resulting 
in the OOTL performance problem (Endsley & Kiris, 1995). One of the proposed alleviating measures 
to combat this was the application of transparency principles in the design of autonomous agents 
(Endsley et al., 2003; Meister, 1999). That is, by providing insight into the agent’s reasoning process, 
through providing direct SA knowledge on the agent’s display, human supervisors would be able to 
uphold their SA assessment process and consequently maintain agent SA.  

To support this claim, emerging evidence was reported in terms of SA, albeit at a potential cost in 
mental workload (Bhaskara et al., 2020). However, as reported in a separate review on transparency 
models, validation efforts for the transparency models have largely been incomplete or have provided 
inconclusive evidence (Rajabiyazdi & Jamieson, 2020). Therefore, this dissertation started with 
obtaining an overview of the evidence regarding transparency, SA, mental workload, and task 
performance by systematically mapping and assessing scientific studies addressing these variables 
(Article 1; van de Merwe, Mallam, & Nazir, 2024).  

The principal finding from Article 1 was that there is a promising effect of agent transparency on SA 
and task performance, without affecting mental workload, for tasks involving responding to proposals 
and supervision. However, the detailed findings are rather nuanced and probably the most interesting 
to discuss here are those studies in which SA, mental workload, and task performance were measured 
in conjunction. Good SA, without excessive mental workload, increases the probability for good 
operator performance (Endsley, 1995; van de Merwe et al., 2012; van Doorn et al., 2021). Therefore, 
studies that have measured these constructs in tandem may provide insight into the effect of 
transparency on the combined effect on these variables. In Article 1, five of the 17 studies measured 
these constructs together and for three of these improved SA and neutral or reduced workload were 
found, in combination with improved response times (T. Chen et al., 2015; Roth et al., 2020, for 
SAGAT only; Skraaning & Jamieson, 2021, experiment 1 and 2), goal achievement (T. Chen et al., 
2015; Skraaning & Jamieson, 2021, experiment 1 and 2), and detecting process deviations and 
performing verifications (Skraaning & Jamieson, 2021, experiment 1 and 2). Others have found 
increased workload scores, but no effect for SA and task performance (Guznov et al., 2020). Finally, 
Skraaning and Jamieson (2021, experiment 3) found no effect for SA, workload, and task 
performance, and even reduced performance when participants were detecting and verifying events 
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from a plant-wide agent-like automation. Here, transparency information was made available on 
dedicated screens in the control room and the authors argued that this setup may have negatively 
affected performance measured. It also indicates that any benefits from transparency may be affected 
by agent type and how information is made available to operators. That is, information that is 
integrated in primary task displays reduces the effort needed to keep information elements in working 
memory which, in turn, benefits other tasks and information elements competing for the same 
resources (van Doorn et al., 2021; Wickens, 2008). 

These findings indicate the intricate nature of the relationship between human performance and 
transparency. That is, the effects of transparency depend on the way transparency is defined, 
modelled, operationalised, and measured. Consequently, these results were interpreted as an incentive 
to acquire more knowledge around this construct. Also, since the literature review did not contain 
studies from the maritime industry, these findings were interpreted as an additional incentive to 
investigate the applicability of transparency principles for this domain. Therefore, this dissertation 
aimed to address these challenges, elucidate the transparency concept, and apply it to the maritime 
collision avoidance domain. 

The articles appended to this dissertation highlight the approach, models, and methods that were 
applied throughout this research and their results are discussed earlier. Especially Article 5 addresses 
the relationship between transparency and the aforementioned key human performance variables, but 
now applied to the maritime domain (van de Merwe, Mallam, Nazir, et al., 2024b). Here, an 
experiment was performed that addressed levels of agent transparency applied to a collision avoidance 
system and where the same key human factors variables were measured: SA, mental workload, and 
task performance. For this study, and based on the findings from the literature review, it was predicted 
that transparency would have a positive effect on SA and task performance without affecting mental 
workload. An additional independent variable was added to evaluate potential interaction effects. For 
complexity, it was predicted that a negative effect on SA, mental workload, and task performance 
would occur. Finally, it was predicted that higher transparency levels could mitigate the effect of 
complexity on SA and task performance as increased transparency information would alleviate the 
task of building agent SA. No interaction effect was predicted for mental workload (see Table 9).  
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Table 9. Summary of predictions and results as discussed in Article 5. 

Measure 

Impact of 
transparency 

Results 
match 
prediction? 

Impact of 
complexity 

Results 
match 
prediction? 

Transparency 
x complexity 
(interaction) 

Results 
match 
prediction? 

Situation 
Awareness 

Improved SA 
with higher 
transparency 
levels 

Level of SA 
1 - Yes 
2 - Yes 
3 - Yes 

Reduced SA 
with higher 
complexity 

Level of SA 
1 - Yes 
2 - Yes 
3 - Yes 

Higher 
transparency 
levels may 
negate effect 
of higher 
complexity 

Level of SA 
1 - No 
2 - Yes 
3 - No 

Mental 
workload 

No effect 
predicted 

Yes Increased 
mental 
workload with 
higher 
complexity 

Yes No interaction 
predicted 

Yes 

Task per-
formance 

Improved task 
performance 
with higher 
transparency 
levels 

No Reduced task 
performance 
with higher 
complexity 

Yes Higher 
transparency 
levels may 
negate effect 
of higher 
complexity 

No 

5.1.1 Situation Awareness 
Although the precise effect of transparency on SA depends on the combination of level of 
transparency and complexity, the overall results indicate improved SA scores with increased levels of 
transparency (see Table 9). However, as elaborated on in Article 5, interpreting the detailed findings 
shows nuanced variations.  

For level 1 SA, it was found that increased level 1 SA can be achieved with increased transparency. In 
Endsley’s definition of SA (1995), level 1 SA is concerned with the perception of elements in their 
environment and provides the foundation for the higher levels of SA. This mean that when the system 
depicts which information it has detected, this should support the participants’ level 1 SA. Here, the 
results indicate that the highest level was achieved in the medium (A) and highest transparency 
condition. Interestingly, the medium (B) condition scored lower than the medium (A) and high 
transparency conditions. It was expected that when the system depicts which information it has 
detected, this should support the participants’ level 1 SA. This may indicate that the information 
provided in the “condition analysis” step (absent in the medium (B) transparency condition yet present 
in the medium (A) condition) may have played a role in achieving improved level 1 SA. Possibly, the 
additional information regarding collision risk, e.g., risk objects, intended trajectories, and priorities, 
may have directed the participants’ attention towards the ship’s surrounding traffic and thus better able 
to achieve level 1 SA. 

For level 2 SA, medium (A) and medium (B) transparency levels resulted in the highest SA scores. 
For medium (A) transparency, this was as anticipated as the system’s analytical information is 
depicted at this transparency level, and having this information readily available on the HMI should 
support this type of SA. However, for the medium (B) transparency level, this type of information is 
not available, yet participants score equally well on level 2 SA. In addition, analytical information is 
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also available in the high transparency condition, yet the level 2 SA scores are significantly lower than 
the medium (A) and the medium (B) levels. For example, at the medium (A) level of transparency, the 
system depicts which objects it sees as posing a collision danger by extrapolating the objects’ current 
vector and highlighting the level of risk using specific symbology and colours. This way, participants 
could directly perceive the outcomes of the system’s risk analysis process and use this information to 
understand the system’s reasoning. Perhaps, the information associated with the medium (B) condition 
was sufficient to deduce the system’s internal reasoning. Also, it is possible the amount of information 
associated with the high transparency condition may have distracted the participants to such an extent 
that their level 2 SA was affected.  

For level 3 SA, the highest level of SA was achieved with the highest level of transparency. Also, no 
differences were found between the low and medium (A) level of transparency. To support level 3 SA, 
the transparency levels provided participants with the CAGA system’s future state prediction of own-
ship and target objects. The future state of own ship, i.e., its future track and speed, was depicted for 
each level of transparency. The future state of target ships was depicted for the medium (A)- and high 
transparency levels but not for the other levels. Therefore, it was expected that level 3 SA would either 
be improved across all levels of transparency, or only for the medium (A)- and high level. However, 
considering that the highest level of level 3 SA is only achieved at the highest level of transparency, 
makes this result not straightforward to interpret. A possible explanation is the “completeness” of the 
information depicted in the highest level of transparency: its decisions and planned actions, its 
analysis, its perception of the environment, and its sensor states. Here, all transparency information is 
provided which may have resulted in an improved understanding of all parameters by the system. This 
way, participants may have used this complete picture to reason towards the correct answer when 
answering the level 3 SA query in the SAGAT. 

Comparing these results to the results from the studies in Article 1, comparable results were found. 
For example, Roth et al. (2020) found that level 3 SA was most improved in the high transparency 
condition compared to the low condition, when participants were evaluating agent-generated proposals 
in an unmanned-manned helicopter teaming operation. Chen et al. (2014, 2015) found improvements 
in SA when participants were supervising unmanned aerial vehicles in a search operation. Also, 
Selkowitz et al. (2017) reported improved level 2 and level 3 SA when monitoring an autonomous 
robot, but not level 1. Still, despite some studies failing to identify a relationship between transparency 
and SA for supervision (Skraaning & Jamieson, 2021; experiment 3) and monitoring tasks (Pokam et 
al., 2019; Selkowitz et al., 2015; Wright et al., 2020), the overall results point toward a neutral to 
positive relationship between transparency and SA. The results from the experiment in Article 5 have 
strengthened these findings. 

5.1.2 Mental workload 
In this study, no effect of transparency was hypothesized for mental workload, and the data indicates 
that none was found. However, for complexity, increased workload scores were found for all high 
complexity traffic situations. Finally, no interaction effects with transparency were found either. 

When comparing these results from the studies in Article 1, limited effects of mental workload were 
also found for those experiments in which participants were tasked with monitoring an autonomous 
agent (e.g., Du et al., 2019; Selkowitz et al., 2015, 2017; Wright et al., 2020). In studies where 
participants were acting as a supervisor, either reductions in workload (T. Chen et al., 2014, e.g., 
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2015; Skraaning & Jamieson, 2021; experiment 1 and 2), increases in workload (Guznov et al., 2020), 
or no effects were found (Skraaning & Jamieson, 2021; experiment 3). In studies where participants 
were asked to respond to system-generated proposals, no effect on mental workload was reported 
(e.g., Bhaskara et al., 2021; Loft et al., 2021; Mercado et al., 2016; Roth et al., 2020; Stowers et al., 
2020). Across all the studies in Article 1 in which mental workload was measured, 17 out of 23 
workload indicators did not show a relationship with transparency (van de Merwe, Mallam, & Nazir, 
2024). Considering these results, this experiment does not change the overall conclusion that adding 
transparency information does not affect mental workload. 

5.1.3 Task performance 
The overall results for task performance show that operators take more time in building up a mental 
picture for the medium (A)- and high transparency conditions and less time in the low- and medium 
(B) transparency conditions. This was the case for both the low- and high complexity conditions
indicating an equal effect of traffic complexity regardless of transparency level.

For this experiment, the results indicate a trade-off between the effort and performance where 
participants with higher level 1- and level 3 SA scores also used more time to comprehend the traffic 
situations, albeit without increased mental workload. Also, when participants took more time to 
analyse the traffic situations, the effect of complexity was negated for level 2 SA. In Article 5, the 
time to comprehension was driven by the instruction for the participants to “continue to the next step 
when you feel you have built up a sufficient understanding of the traffic situation”. Since the 
participants consisted of professional navigators that were tasked with supervising an autonomous 
ship, it may be argued that they had a professional interest in performing this task as accurately as 
possible. This means that when the CAGA system’s analytical information was depicted on the HMI, 
arguably the most safety-critical information the system is able to depict, they used their time to 
comprehend the system’s reasoning behind its avoidance action. Possibly, one of the main drivers of 
the increased comprehension time was that they were comparing the system’s analysis to their own. 
Conversely, when the CAGA system did not provide analytical information, no increase in TTC was 
found, possibly because there was less information to compare. Similar observations have indeed 
shown the increased need for comparing information when systems provide recommendations 
(Endsley, 2017). Given the potential safety critical role of humans in supervising autonomous ships, 
this indicates the importance of addressing the type of information in developing transparent CAGA 
systems, and not the amount only (van de Merwe, Mallam, Nazir, et al., 2024a).   

5.1.4 Complexity 
For complexity, the results are as anticipated, i.e., increased complexity results in reduced SA scores, 
increased workload, and reduced task performance. This result can be traced back to the information 
processing model and the processes of selective, divided, and working memory. As anticipated, high 
complex traffic situations, consisting of a larger number of ships and more complex collision 
situations, increase the burden on the human information processing system. Here, increased amounts 
of information are perceived, processed, and temporarily stored, compared to low complexity 
situations, and this has clearly affected SA scores, perceived mental workload, and task performance. 
However, this effect appears to be negated for the medium (A) transparency condition. Here, no 
differences were found between low- and high complexity traffic situations in terms of level 2 SA. 
This seems to indicate that transparency is able to alleviate some of the challenges associated with 
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obtaining and maintaining level 2 SA knowledge, i.e., the understanding of the meaning and 
relationships of perceived information elements, in high complexity cases.  

Earlier researchers have debated the relationship between SA and mental workload and the need to 
consider both constructs in the assessment of human performance (Endsley, 1995; Parasuraman et al., 
2008; Vidulich, 2000). According to Vidulich and Tsang, mental workload is generally characterised 
“in terms of the level of attentional demands on placed on the operator in course of performing 
required tasks”, and SA is “primarily associated with the informational content of the operator’s 
memory system during task performance” (2014, p. 95). Furthermore, they argue that mental workload 
and SA often compete for the same resources and are therefore both supported and limited by the 
these. As such, the more demanding and complex a task is, the more work is required to perform it and 
assess the situation. This implies that high mental workload could lead to poor SA because of the way 
the limits of the information processing system affect the amount of attentional resources that can be 
allocated to the information. Also, the amount of information that can be actively kept in working 
memory, as part of SA assessment, affects the degree to which SA can be obtained and maintained. 
However, mental workload and SA are influenced by other factors than information amount and 
complexity only. 

Mental workload is influenced by factors such as level of automation, its degree of adaptiveness, and 
granularity of control, task difficulty, and time pressure when interacting with autonomous systems 
(Endsley, 2017; Galy et al., 2012). SA is influenced by, amongst others, workload, engagement, 
mental models, and the automation interface (Endsley, 2017). In the case of this dissertation, the HMI 
was manipulated to include transparency information, integrated in the primary task display and 
congruent with relevant HMI standards for the radar display, such that system internal information 
could be disclosed to the operator. As the participants were tasked with making sense of the 
information provided by the collision avoidance system, it could be anticipated that the additional 
information burden provided by complexity would negatively affect SA, mental workload, and task 
performance. This was indeed the case for these variables. However, for level 2 SA, it was found that 
providing the system’s analytical information directly on the HMI, the participants were freed from 
processing the additional information elements imposed by high complexity traffic situations, 
resulting in improved scores. Similar to Van Doorn et al. (2021), this “display-based” information 
processing, resulted in improved performance compared to “memory-based” information processing, 
at least for level 2 SA. 

5.2 Practical reflections 
Besides routed in theoretical knowledge, the activities and results of this dissertation have a strong 
practical connection to the developments of autonomous systems and the role of the human herein. 
Reflecting on the work, two aspects are highlighted: designing for transparency, and assessing 
transparent designs. 

5.2.1 Designing for transparency 
The research performed in this dissertation followed a development process by establishing the 
research and application context, identifying SA requirements, developing concepts, and evaluating 
designs. Although this dissertation should not be considered a graphical design-oriented study, the 
novelty of the ship autonomy field and the lack of readily available CAGA systems meant a design 
process still was needed to produce the transparency levels and integrate these into HMIs. Considering 
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that the overall research objective of this dissertation was to evaluate how transparency can support 
human performance in the context of autonomous ships, the path towards achieving this aim reflects a 
Human-Centred Design (HCD) process. 

HCD is an approach where capabilities and human needs are taken into account in system design 
(Endsley et al., 2003). In contrast with technology-centred design, HCD considers the user’s tasks, 
context, and capabilities to inform system design, e.g., for designing human machine interfaces. The 
aim of this type of design is to create more effective systems, by reducing errors and improve 
productivity, whilst increasing user acceptance and satisfaction. To achieve a HCD process, the 
following main activities should be performed: The system’s context of use is specified and 
understood, user requirements are specified, design solutions are produced, and finally, the design is 
evaluated (ISO, 2019). Through a series of iterations, where user requirements and design solutions 
are updated and evaluated, a final solution is produced that meets the user requirements. 

As depicted in Figure 22, Article 1 specified and described the dissertation’s overall context through a 
systematic literature review, i.e., transparency in safety critical domain (van de Merwe, Mallam, & 
Nazir, 2024). Here, a mapping of the scientific context was performed by addressing how transparency 
has been researched and which effects are reported concerning the relationship between transparency 
and key human factors variables. Article 2 established, described, and analysed the specific context for 
this dissertation, i.e., collision avoidance within the maritime domain (van de Merwe, Mallam, Nazir, 
et al., 2024a). Here, in-situ observations and interviews with navigators onboard ship bridges, 
document reviews, and COLREG assessments formed the basis for identifying cognitive tasks and 
information requirements for conventional and supervised autonomous collision avoidance. 
Subsequently, Article 3 applied a contextualised model for human information processing to structure 
and organise these requirements such that autonomous collision avoidance systems could be made 
transparent to their users (van de Merwe et al., 2023b). Article 4 used these structured requirements to 
develop HMI design concepts (van de Merwe et al., 2023a). Based on the model for information 
processing, symbology was developed and integrated in a conventional radar display to create levels 
of transparency for a selection of traffic situations. Navigators were used to independently evaluate the 
designs throughout their developments. Finally, Article 5 closed the HCD development loop by 
experimentally evaluating the effect of transparency on key human factors variables. This way, the 
outcome of this research was connected to the dissertation’s wider context, i.e., transparency in safety 
critical domains. 
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Figure 22. The development process as applied in this dissertation. 

In executing the development process for this dissertation, a critical element in designing for 
transparency was the choice of the underlying model. As discussed, the PSW model was adapted and 
contextualised to be used as a model for transparency (Parasuraman et al., 2000; van de Merwe et al., 
2023b). By defining layers of transparency, the structure of the transparency concepts was shaped. In 
other words, the steps in the information processing model defined the amount of transparency layers 
that were developed in the concept phase and evaluated in the experiment. Had a different model been 
chosen, different transparency concepts would have been produced.  

For example, as described in the literature review in Article 1, Stowers et al. (2020) used a cumulative 
approach based on the SAT model in which each subsequent level of transparency added new 
information to the previous one, i.e., similar to the approach used in this dissertation. However, here, 
unmanned vehicle capabilities were conveyed through the size of icons depicting the speed of the 
vehicle (level 1+2). In addition, the vehicle’s time to meet its goals was added to convey the vehicles 
reasoning behind its actions (level 3). Finally, uncertainty information was added as a separate and 
final layer as visualised through changes in the opacity of the vehicle’s icon (level 3 + uncertainty). 
Alternatively, in the study performed by Pokam et al. (2019), the HRT model by Lyons (2013) formed 
the basis for the design. This model assumes that, for human-agent systems to be transparent, 
information should flow from the agent to the human, and vice versa, depicting the agent’s intent, 
tasks, analysis, and its understanding of its environment. Based on these principles, levels of 
transparency were developed and evaluated in a driving simulator. In this study, the HRT model was 
used to define information elements and classify these according to a model of information 
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processing: information acquisition, information analysis, decision making, and action execution. 
Although similar to the model in this dissertation, here, five HMIs were developed depicting degrees 
of transparency of the autonomous vehicle. The first level of transparency served as the control 
condition and did not depict any system internal information to the participants. The second level 
provided information about the system’s information acquisition and action execution. Third level 
added the systems analytical information, the fourth added its decision making (but did not depict its 
action execution), and the fifth level provided full insight into the system’s information processing 
levels. Finally, the literature review identified several studies that did not base their designs on any 
model of transparency. Here, transparency was implemented based on how the concept was 
interpreted and which definition was adopted. For example, Skraaning and Jamieson (2021) 
interpreted transparency as the observability of responsibilities, capabilities, goals, activities, and/or 
effects of automation in the human-machine interface. In three separate nuclear control room 
experiments, transparency was operationalised as adding information about automation activities on 
process screens, provided verbal feedback about system status, and depicted the state of the 
automation’s status, actions, and progress along procedural steps. 

As the literature review has shown, research regarding the utility of transparency as a design principle 
is ongoing (van de Merwe, Mallam, & Nazir, 2024). Although the outcome of a HCD process is 
highly context dependent, the process itself is matured, standardised, and widely used. However, the 
process for deriving at transparent designs supportive of effective supervisory control is less so. This 
means that research is needed to consolidate definitions, models, and design processes for 
transparency. Nevertheless, this dissertation has shown that, despite the current state of transparency 
research, the HCD process is an effective method for developing transparent systems and providing 
operators with insight into what the system is doing, why it is doing it, and what it will do next 
(Endsley, 2017). This means system designers, tasked with developing transparent systems, have an 
established and viable process at their disposal to develop systems supportive of supervisory control 
through transparency. However, for the moment, they should be mindful of the choices around the 
transparency model and the consequences this has on the design of their systems. 

5.2.2 Assessing transparency in autonomous ship concepts 
As introduced earlier, guidance developed by the relevant authorities and classification societies aim 
to support concept submitters in seeking approval for the approval of autonomous ship concepts 
(American Bureau of Shipping, 2022; Bureau Veritas, 2019; DNV, 2021; NMA, 2020).  For example, 
as described in DNV’s class guidance for autonomous and remotely operated ships, the distribution of 
functions between humans and machines should result in equal or better capabilities than conventional 
solutions (DNV, 2021; IMO, 2013). This means that “the concept of operations should clearly 
describe all the operational tasks that the vessel will undertake that will be either fully or partly 
automated” (DNV, 2021, p. 27) as well as how human-system integration will be designed (American 
Bureau of Shipping, 2022). Also, “when a human is in charge of decision making, the location of the 
decision maker should be clearly described” (DNV, 2021, p. 27). For autonomous ships concepts, this 
will typically be on-board, from a remote location, or a combination. Furthermore, special focus shall 
be placed on the ability for the human operator to establish sufficient SA such that corrective actions 
can be taken (Bureau Veritas, 2019). To achieve this, “the interface between the system and the human 
users shall be designed according to best practises for user interfaces and with defined responsibility 
modes for the operator (DNV, 2021, p. 42). 
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This means that concept submitters, aiming to provide autonomous collision avoidance services, 
should propose solutions that define the function and task distribution between the collision avoidance 
system and the human operator. In addition, submitters should develop HMI solutions that support 
operators in their task of supervisory control, regardless of the location this task is performed from. 
Finally, the concept submitter should provide evidence indicating that the overall system delivers an 
equivalent level of safety, or better, in order to receive approval of the autonomy concept by a relevant 
authority. Given the application of intelligent agents, with advanced sensory-, information processing-, 
decision making-, and action capabilities, this dissertation argued that insight into the agent’s 
reasoning processes is a crucial element to consider in the development of such concepts. Likewise, 
this means that the relevant authority should establish clear expectations and acceptance criteria 
towards the approval of such concepts with regards to transparency. 

Based on the work performed in this dissertation, criteria may include expectations with regards to the 
provision of clear, unambiguous, and timely information for the supervisor with regards to insight into 
the system’s decisions, planned actions, and the reasoning for these. For collision avoidance systems, 
examples include depictions of own ship’s intended avoidance manoeuvre, when to execute the 
manoeuvre, its assessment of priority (give-way or stand-on), which actions are expected of the target 
ship, which objects and type it has detected, and any restrictions to manoeuvrability. Furthermore, the 
system should provide its interpretation of collision risk and the reasons for performing these actions, 
e.g., because of critical CPA, TCPA, or other risk indicators, such as the available sea room.
Moreover, the collision avoidance system should state which COLREG situation is appropriate given
the situation, e.g., head-on, overtaking, or crossing, and for which target ship this is relevant for.
Finally, given the dynamic nature of maritime collision avoidance, the relevance of this information
should be evaluated over time, i.e., how long the information depicted on the HMI is relevant for, to
allow for sufficient time for supervision and possible intervention.

In addition to these product-focussed requirements, the concept approver should also state clear 
expectation regarding the development process for creating transparent systems. As mentioned above, 
the interface between the autonomous system and the user shall be designed according to best 
practices for user interfaces. The HCD process provides an established, standardised, and widely used 
method for managing the development of hardware and software components of interactive systems 
(ISO, 2019). The rationale for application of HCD principles is to develop systems that enhance 
human-automation interaction, reduce the probabilities for errors, and increase productivity (Human 
Factors and Ergonomics Society, 2023; ISO, 2019; Lee et al., 2017). This dissertation has applied the 
HCD process and provided evidence for the value of transparency as a design principle to support 
supervisory control of autonomous collision avoidance. This means that, in addition to setting 
requirements to transparency as an end-product, concept approvers should set expectations on the 
process for how to achieve transparency.  

5.3 Methodological limitations and reflections 
The activities performed in this dissertation were planned, executed, analysed, and documented with 
the aim to produce high-quality knowledge. However, reflecting on the work, a number of limitations 
are discussed that should be considered in interpreting the dissertation’s results and conclusions. 
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5.3.1 Systematic literature review 
Although the use of SLRs has the potential for increased accuracy and improved reflection on the 
research field, it is not without its limitations (Mulrow, 1994). Performing a SLR means making 
choices for each of the steps of the method which have the potential to influence the accuracy and 
outcomes of the study. This includes, defining eligibility criteria, information sources, search terms, 
data selection process, data analysis process, and data reporting (Moher et al., 2015). For example, by 
limiting the information sources to only include peer-reviewed journal articles, one should be aware of 
the potential for missing potentially relevant data published in channels outside of this criterium, e.g., 
reports from research institutes, or non-peer reviewed project reports. Also, whilst setting eligibility 
criteria limits the amount of data, it may also exclude and overlook other relevant publications, e.g., 
from non-safety critical domains. Similarly, selection and analysis processes used for synthesising the 
data may exclude relevant information elements, e.g., which variables to report on. Finally, choices on 
how to report on the data may influence the results of the SLR, e.g., to perform a narrative synthesis of 
the data or perform a quantitative meta-analysis (Paré et al., 2015). The effect of these choices means 
that making different choices throughout the process will likely affect which data is represented, 
which results are synthesised, and how these are reported.  

In this dissertation, a search string was defined and applied to three relevant databases that aimed to 
cover the breadth and depth of the research topic. Only research articles written in English that 
performed experimental studies within the safety-critical domain were included. Based on a full-text 
review, a narrative synthesis was chosen that reported on the overall outcome of the results. That is, as 
several of the studies did not report sufficient statistical data to allow for a meta-analysis, a qualitative 
synthesis approach was taken to analysis, summarise, and report on the findings from the literature. 
Although these considerations are made explicit here, limitations are inherent to performing research 
in general and SLRs in specific (Booth et al., 2016). That is, throughout research activities, choices are 
required that will affect how research is performed and will, to an extent, shape the outcomes of the 
research activities. The strength of the PRISMA method is that it requires these choices to be made 
explicit such that fellow researchers are made aware of these and can take these into account in their 
interpretation of the study’s outcomes (Moher et al., 2009, 2015). Also, by being transparent and 
explicit about the choices, others may attempt to reproduce the study by following the same approach 
and using the same search terms, databases, inclusion- and exclusion criteria, selection process, and 
etcetera. This dissertation, and the appended publication, has made explicit the criteria and choices 
that were made in assimilating the research data into an overview of the research regarding the 
relationship between transparency and key human factors variables. In addition, three researchers 
performed the full-text selection, thereby strengthening the validity of the study’s results (van de 
Merwe, Mallam, & Nazir, 2024).    

5.3.2 Goal-Directed Task Analysis 
This dissertation used various data sources as input to perform a GDTA. Among these, in-situ 
observations and -interviews were used where the collision avoidance task was studied onboard the 
bridges of passenger ferries. Here, a semi-structured interviewing technique was used that consisted of 
questions pertaining to the collision avoidance task, in addition to questions probing the use of a 
hypothetical autonomous collision avoidance system.  

Nine licensed navigators were interviewed with a mean experience 30.6 years. Although critics may 
argue that “the more interviewees, the better”, in this study, the number of interview subjects was 
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driven by “information power” (Malterud et al., 2015). This concept suggests that the more 
information a sample holds, the lower the number of participants are needed to meet the goal of the 
analysis. To determine the information power of a sample, Malterud suggests considering the 
following aspects: the specificity of the study’s aim, the specificity and experience of the participants, 
the amount of a-priori information available, the quality of the dialogue, and finally, the specificity of 
the case under investigation. For this study, this meant that, first, this study’s scope was considered 
narrow as it was limited to understanding collision avoidance manoeuvring only. Second, the 
population was limited to licensed navigators only, a highly specialised nautical position. Third, 
collision avoidance manoeuvring is highly regulated through internationally enforced rules and 
regulations and ample knowledge, experience, and documentation is available. Fourth, the interviews, 
based on a semi-structured protocol, were performed onboard ship bridges and were augmented by in-
situ observations, which supported the dialogue between the interviewer and the participants. Finally, 
the scope of this study was to gain an in-depth understanding of the collision avoidance task only and 
was therefore limited and practical in scope. Based on this reasoning, it was deemed that the number 
of interview participants provided a sufficient information basis for the analysis. Also, as discussed 
earlier, two independent navigators reviewed the results of the GDTA, thereby strengthening the 
quality of the data. 

Due to complexities involved in ensuring obtaining consent from participants and ensuring anonymity 
of data gathering, it was decided not to perform voice or video recording of the interview data in 
Article 2. Because of the operational environment in which this study took place, there was little 
control over when personnel exited or entered the ship’s bridge. In addition, recording of voice data 
would inevitably lead to unintentionally recording radio communications for which consent was 
challenging to obtain. Finally, as each interview was performed while the participants were on duty 
and question could only be asked when they were available, each interview lasted between four to six 
hours. This made voice or video recording also a practical challenge. It was therefore decided to 
record the data by taking notes instead. Because of the extensive time available for the interviews, 
pauses were used to write out the notes, identify gaps, and prepare for the next questions. In addition, 
observations of collision avoidance manoeuvring were used to cross-check the interview notes and 
revisit earlier questions. This way, the quality of notetaking was enhanced without the need for voice 
recording and subsequent transcribing. Finally, to ensure validity of the captured data, the results of 
the GDTA were validated with two independent navigators (van de Merwe, Mallam, Nazir, et al., 
2024a). 

5.3.3 Human information processing model 
It is recognised that the operationalisation of the agent’s inner reasoning as levels of transparency, 
including the ways in which it can be traversed, is highly dependent on the choice of model and what 
is considered vital information. Here, it was considered that “action planning” was the most critical 
information and therefore this would be presented as the first layers of transparency. Also, the choice 
of an information processing model dictated the number of layers of transparency and type of 
information represented by these. Although the application of this approach is sensible in this context, 
it is recognised that other models will produce different operationalisations. For example, if the SAT 
model was chosen as the basis for transparency, the first layer of transparency would represent 
“What’s going on and what is the agent trying to achieve?”, the second layer “Why does the agent do 
it?”, and the third layer “What should the operator expect to happen?” (J. Y. C. Chen et al., 2014, p. 
2). Here, the first layer would represent the agent’s purpose, processes, and performances. The second 
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layer would represent its reasoning process and constraints. The third layer would represent its 
projections to a future or end state, and its potential limitations, including its likelihood of error and 
history of performance. Although there is overlap between this model and the model chosen for this 
dissertation, their differences would likely have resulted in alternative operationalisations of 
transparency. Future work could explore developing designs based on different transparency models to 
evaluate which of these would have most merit given the respective context and task. 

5.3.4 Human Machine Interface development 
As discussed in Article 1, operationalisation of transparency depends on the context and the task (van 
de Merwe, Mallam, & Nazir, 2024). For example, when comparing the graphical design of 
transparency concepts for the control room experiment by Skraaning and Jamieson (2021) and Wright 
et al. (2020) it is clear designs were chosen that were aligned with the user interface philosophy in 
which transparency elements were integrated. In this dissertation, there were several principles the 
design and implementation of transparency elements adhered to, i.e., compatibility of transparency 
elements with existing design principles and integration of information in primary task displays. The 
aim of this approach was to avoid overloading the navigators with transparency information and 
thereby artificially confounding the results of the experiment. In other words, the aim was to limit the 
effect of transparency information on working memory capacity, selective, and divided attention (Lee 
et al., 2017; Wickens et al., 2013). This was achieved by employing a navy-certified navigator to 
develop traffic situations and HMI symbology based on a set of explicit design criteria, iterative 
design process, and independent validation with two navigators.  

In developing transparent and integrated HMI concepts, based on the contextualised information 
processing model, decisions were made related to how to graphically represent the various information 
layers dictated by the model. As the model consist of four steps: condition detection, condition 
analysis, action planning, and action control, there a several ways in which these steps could be 
represented. The most straightforward approach would be a cumulative approach starting with the first 
step of the model (condition detection) and subsequently add information from the next steps as layers 
of transparency. This would have meant that the minimum transparency layer would represent the 
agent’s perception of its environment. The next step would provide analytical information, whereas 
the last step would provide the agent’s decisions and planned actions. (Note that in the last step 
“action control”, no information is processed and is thereby not represented as a transparency layer.) 
However, considering collision avoidance is about avoiding collisions, it was deemed that such an 
approach would be little supportive of the supervisor’s understanding of the agent’s decisions and 
planned actions. That is, as the agent’s plans for performing avoidance actions would only be made 
visible with all other information it was processing, this approach would potentially result in increased 
demand on the supervisor’s information processing capabilities and would be in disagreement with the 
aforementioned design principles. Therefore, it was reasoned that a more fruitful starting point for 
providing transparency to supervisors would thus be the “action planning” step of the information 
processing model and not the “condition detection” step. This way, the supervisor would be informed 
of the agent’s most crucial information, i.e., its decisions and planned actions to avoid a collision, and 
the additional underlying information would be made available by going “backwards” through the 
model.  
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5.3.5 Controlled experiment 
In Article 5, an experiment was performed that aimed to assess the effect of transparency on SA, 
mental workload, and task performance. Through experiments, the existence of a causal relationship 
between variables could be determined by manipulating independent variables, measuring their effect 
on dependent variables, whilst controlling for extraneous variables. In contrast with quasi-, natural-, 
and field studies, controlled experiments are better able to tease out the effect of one variable on 
another in terms of its type and size (Coleman, 2019; Kirk, 2013). However, results from controlled 
experiments may not be transferable to situations other than those that were tested (Kirk, 2013). For 
this experiment, although efforts were made to ensuring the experiment was as representative as 
possible for the autonomous navigational context, the experiment used static images to represent 
traffic situations. Participants were asked to try to comprehend the information provided on the HMI 
and subsequently answer SA queries based on the traffic situation. In terms of the results, it can be 
debated whether the use of static images, into which the participants were “dropped in”, is a 
representative way to approximate real-life collision avoidance situations. When on the ship’s bridge, 
navigators are constantly processing dynamic information on own ship’s manoeuvring in relation to 
other traffic, obstacles, and land. In this experiment, navigators were exposed to a collision situation 
that they had to make sense of rather than act on. Also, since the information was static, temporal 
information regarding target ships’ movements over time, e.g., when changing course or speed, was 
not possible. Consequently, despite the efforts to create realistic conflict situations, the fact they were 
static reduced the realism of the situations. As such, when interpreting the results for application in a 
real-world setting, this needs to be considered. Future work should focus on implementing 
transparency in real-time simulation facilities comprising dynamic traffic situations and (simulated) 
collision avoidance systems. 

As discussed earlier, critics may argue that more participants would have provided better experimental 
results. That is, for statistical analysis, the study’s sample size and its distribution are important 
determinants of the robustness of the outcomes. In this experiment, the number of participants for the 
experiment was based on statistical requirements for data analysis. A requirement for ensuring 
robustness of results when using parametric statistical inference techniques, such Analysis of Variance 
(ANOVA), is a normally distributed sampling distribution (Vogt, 2005). Sampling distributions tend 
to approach a normal distribution from sample sizes of 30 and more according to the Central Limit 
Theorem (Tabachnick et al., 2019; Vogt, 2005). To ensure this, efforts were made to maximise 
recruitment of licensed navigators. As professionals can be challenging to obtain for academic 
research, it was aimed to lower the threshold for recruitment as much as possible. Therefore, the 
doctoral researcher travelled to locations most suitable for the participants to perform the study, 
including onboard passenger ferries and at various national nautical training institutes such that 
interference between their participation and their professional activities was minimized (see Figure 
14). This way, a sufficient sample size of 34 navigators was obtained and robustness of statistical 
results was ensured. Furthermore, a range of strategies were used to ensure quality of the experimental 
data, including pilot testing of the experimental setup and procedures, the choice and quality of the 
traffic situations, integration of transparency information in the primary task display, the choice of 
established and validated measurement techniques, performed quality control measures prior to data 
analysis, and applying established statistical methods for analysing the data. Finally, the experiment 
followed a strict procedure, established experimental software, and was predominantly automated such 
that the effect of the experimenter on the data was minimised. In all, these strategies contributed to the 
validity and reliability of the data, and the trustworthiness of the experimental results. 
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5.4 Recommendations for future work 
This dissertation has assumed a supervisory role of an operator that monitors, controls, and potentially 
intervenes in a collision avoidance system. The effectiveness of this role, i.e., the challenges to 
supervisory control, was discussed earlier and was summarised as “ironies of automation” 
(Bainbridge, 1983), “OOTL performance problem” (Endsley & Kiris, 1995), and “automation 
conundrum” (Endsley, 2017). This dissertation investigated the role of transparency in supporting 
supervisory control through transparency. However, it is recognized and emphasised that transparency 
is only a part of the puzzle. Research on supervisory control of highly automated systems has 
uncovered there are many factors that affect human supervisory performance of which agent-human 
communication is only one. Individual-, task-, and system factors, comprising of skills, training, 
competence, complexity, level and type of automation, granularity of control, automation reliability, 
competing task demands, and distribution of roles and responsibilities between agent and human all 
contribute to successful automation oversight and interaction performance (Endsley, 2017). 
Considering these constraints and given the developments within the autonomous shipping domain, 
there is a continuous and urgent need to explore how teams of agents and humans can work together 
(National Academies of Sciences, Engineering and Medicine, 2022). Here, the focus should be on 
creating meaningful human work where the combined capabilities of humans and agents can be 
exploited. Although it may be assumed that such teams will be more effective than each of its 
constituents alone, future work needs to ensure that humans can understand and predict the behaviours 
of the agent, develop trust relationships, make accurate decisions based on input from the agent, and 
exert timely and appropriate control over the agent when needed (National Academies of Sciences, 
Engineering and Medicine, 2022). To this end, transparency has an important role to play in terms of 
supporting task-, agent-, and system SA (Endsley, 2023a). 

The PSW model, as applied in this dissertation, is a simple, yet pragmatic representation of human 
information processing. In their original article, Parasuraman et al. (2000), commented on the limits of 
this model as a “theoretical structure of the human cognitive system”, but rather aimed to “propose a 
structure that is useful in practice” (Parasuraman et al., 2000, p. 288). Based on these considerations, 
this model was applied in this dissertation and proved to be a pragmatic framework for developing 
transparent HMIs. However, despite its simplicity, this representation does not cover the whole 
breadth of the contemporary knowledge that other transparency models have aimed to address (J. Y. 
C. Chen et al., 2014; Lyons, 2013). Most prominently, the lack of a representation of information
uncertainty is a limiting factor in the current representation of the model. In AI-enabled systems, using
stochastic models, uncertainty is an inherent characteristic (Hüllermeier & Waegeman, 2021). For
example, uncertainty may occur in the system’s information acquisition stage due to missing data,
reliability of sensors, noisy data, and incongruent data. It may occur in the system’s transformation of
data because of interpolation, sampling, simplification, and errors in the algorithms. And finally, it
may appear in the system’s output generation, due to approximations, mapping and classifications, and
tolerances (Kunze et al., 2019). These uncertainties may affect the user’s trust in the system, SA, and
decisions to take over control. However, as the PSW model, and its repurposed transparency version,
does not include uncertainty, it was not part of the research focus of this dissertation. This means that
the results, including the graphical depictions in the form of symbology, should be revisited in future
research endeavours and include uncertainty elements. For example, a way forward would be to
investigate how to integrate uncertainty information in the processing steps of the model (as eluded
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above). Furthermore, representation of uncertainty information onto the various levels of transparency 
should be investigated further. 

The results from the rankings indicate that participants preferred the medium- and high transparency 
levels compared to the low- and medium levels. The low transparency level, where only decisions and 
future actions were depicted was least preferred. There was no difference between the medium- and 
high transparency levels in terms of ranking, indicating that these transparency levels were equally 
preferred. This seems to imply that participants prefer more information rather than less information 
when it comes to making sense of an agent’s decisions and actions, or at a minimum prefer access to 
the agent’s underlying analysis processes. Nevertheless, there is no clear result pointing towards the 
optimal level of transparency across the dependent variables. This means that, when designing for 
transparency, it may be challenging to decide on which level of to implement. In Article five, a more 
demand-driven transparency approach was alluded to where users adjust the level of transparency 
depending on the task and context. This approach may be used to provide control to the supervisor 
over the amount of system information presented. A demonstration of such an approach was provided 
in a study by Vered et al. (2020) that found that the downsides of presenting transparency information 
may be avoided whilst maintaining its benefits. For example, when applied to autonomous shipping, 
supervisors may only depict a low level of transparency in situations with little to no traffic whilst 
“dialling up” the level of transparency for situations that require closer supervision. This way, future 
work should investigate the effectiveness of this approach in improving comprehension times 
compared to the sequential transparency approach as used in this study. In addition, future work 
should anticipate and mitigate the potential risks associated with a flexible approach to transparency 
by addressing information overload and the potential for confusion between information levels. 
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6 Conclusions 
This chapter presents the main research findings and contributions from this dissertation. The research 
questions are revisited, the contributions of the research are discussed, and an outlook for 
recommended future work is provided. 

6.1 Revisiting the research questions 
As presented in the introduction section of this dissertation, the maritime industry is looking for ways 
to reduce its environmental footprint, there is an ongoing trend in the maritime industry to become 
more attractive to personnel, improve its safety record, and enhance its resilience against adverse 
conditions, whilst maintaining profitability. To this end, it is anticipated that advanced technologies, 
including AI-enabled systems, will play an important role in achieving these aims by enabling ships to 
sail without direct human involvement, introducing new designs, implementing novel propulsion 
technologies, and exploiting alternative means of operation. However, considering the safety-critical 
nature of the industry, these systems will need to demonstrate considerable reliability across a wide 
range of situations. Therefore, given the inherent limitations of such systems to handle novel and 
complex situations effectively and reliably, humans are foreseen to take a supervisory role to ensure 
performance and safety standards are met. However, there are well-known challenges related to 
assigning humans this function, as they are typically less involved in the system’s information and 
decision-making loop. This potentially leads to biases in decision making, passive information 
processing, complacent behaviour, over- and underreliance on the system, and high workload when 
taking over manual control. Nevertheless, research has suggested that by disclosing the system’s 
decisions, planned actions and internal reasoning to the supervisor, some of these challenges may be 
alleviated. However, considering the novelty of the application of AI-enabled systems in safety-
critical domains, there is limited experience with the effect of transparency in these settings. 
Therefore, this dissertation purposed to explore new knowledge, methods, and tools on the role of 
transparency in supporting humans in supervisory control. Therefore, the overarching research 
question in this dissertation was as follows:    

How does agent transparency support human performance in supervisory control? 

This question was decomposed into five sub-questions: 

RQ1: What is the relationship between agent transparency and Situation Awareness, mental 
workload, and task performance? 

This dissertation started by performing a broad and systematic analysis of relevant scientific 
publications regarding agent transparency and human performance variables. Based on 17 scientific 
studies, this dissertation found a promising effect of transparency on SA and task performance, 
without affecting mental workload. The results were especially clear for studies where participants 
were responding to proposals or supervising automation. It was suggested that strategies to improve 
human performance when interacting with intelligent agents should focus on allowing humans to see 
into its information processing stages, considering the integration of information in existing HMI 
solutions. 
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RQ2: How is human performance achieved in conventional- and supervised maritime collision 
avoidance? 

A GDTA mapped and analysed the goals, decisions, and cognitive tasks associated with conventional 
and supervised collision avoidance. This activity explored the shift in cognitive activities when the 
navigator’s task changes from performing collision avoidance to supervising a system performing 
collision avoidance. It was suggested that to allow a supervisor to assess the decisions and planned 
actions of the system, the system needs to provide insight into its information processing. To support 
operators in this, explicit information requirements were identified that should allow for insight into 
the agent’s decisions, planned actions, and underlying reasoning. 

RQ3: How does a model for human information processing form the basis for agent transparency in 
the ship autonomy context? 

An information processing model was adapted and repurposed to function as a model for transparency, 
describing the system’s information processing steps as condition detection, condition analysis, action 
planning, and action control. The model was contextualized to the maritime collision avoidance setting 
such that the information from the GDTA could be structured into unique and distinct layers. This 
dissertation suggested that this model may serve as a means to structure the agent’s information 
processing steps to create layers of transparency and to be used as a framework for transparent design. 

RQ4. How should a maritime collision avoidance system be made transparent to a human supervisor? 

Traffic situation situations and symbology were developed to operationalise transparency for a 
collision avoidance system. The symbology was integrated into the primary task display for collision 
avoidance and the information processing model was used to create distinct levels of transparency. 
This activity provided the groundwork for the empirical evaluation of transparency in a maritime 
collision avoidance context. In addition, the results demonstrated the value of the model as a design 
framework for creating levels of transparency for autonomous agents. 

RQ5. What is the relationship between agent transparency and Situation Awareness, mental workload, 
and task performance in maritime autonomous collision avoidance? 

Through a controlled experiment with licensed navigators, the effect of transparency on SA, mental 
workload, and task performance was evaluated. This dissertation demonstrated a promising effect of 
transparency on SA without affecting mental workload. However, the time to comprehend the 
situation increased with increased levels of transparency. These results indicate the benefits of 
applying transparency principles to autonomous collision avoidance systems, but that care should be 
taken in time-critical conditions where the added transparency information may affect timely decision 
making. Furthermore, considering the absence of the effect of transparency on mental workload, these 
results also indicate the value of applying a structured and systematic design process, as applied in this 
dissertation. 

6.2 Contributions 
This dissertation has provided several theoretical and practical contributions for transparency research 
and its applications (see Table 10).  
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In terms of theoretical contributions, this dissertation advanced the body of knowledge by 
systematically mapping and assessing transparency research (Article 1; van de Merwe, Mallam, & 
Nazir, 2024). Although earlier attempts had been made to provide overviews (Bhaskara et al., 2020; 
Rajabiyazdi & Jamieson, 2020), the systematic focus of Article 1, based on the PRISMA approach, 
reduced the review’s potential for bias, and enhanced clarity, auditability, replicability, and 
transparency. Furthermore, this dissertation provided a detailed analysis of the change in information 
requirements from conventional to supervised collision avoidance (Article 2; van de Merwe, Mallam, 
Nazir, et al., 2024a). By mapping this information, based on a variety of quality sources, a deeper 
understanding was created of the potential future role of the operator, and the information needed to 
support this. In addition, this dissertation contributed by exploring the application of an adapted and 
repurposed model for information processing (Article 3; van de Merwe et al., 2023b). By using the 
well-known PSW model as a transparency model, a pragmatic approach to development of transparent 
design concepts was explored. Finally, this dissertation contributed by generating knowledge about the 
relationship between transparency, SA, mental workload, and task performance by performing a 
controlled experiment with experienced and licensed SMEs (Article 5; van de Merwe, Mallam, Nazir, 
et al., 2024b). The results of the experiment highlighted the effects of transparency on these variables 
and expanded the knowledge regarding transparency as a design principle for agents applied in safety 
critical domains. 

Practically, this dissertation contributed with providing evidence for transparency as a design principle 
for supporting supervision of autonomous agents (Article 1; van de Merwe, Mallam, & Nazir, 2024; 
Article 5; van de Merwe, Mallam, Nazir, et al., 2024b). Based on the evidence provided in these 
articles, developers have an incentive to create transparent designs for their users knowing that, by 
following a set of design principles and processes, their efforts will have an effect in terms of human 
performance. Furthermore, this dissertation has made explicit the potential role-change that may be 
anticipated when introducing collision avoidance systems (Article 2; van de Merwe, Mallam, Nazir, et 
al., 2024a). Based on this information, ship owners may better understand what may be expected, in 
terms of change in cognitive activities, when introducing autonomous collision avoidance systems. In 
addition, the repurposed information processing model provides a pragmatic framework for 
developing transparent agents (Article 3; van de Merwe et al., 2023b). Although the model may be an 
oversimplification of human information processing, for the purpose of structuring the information 
processing of an agent, this conceptualisation is as simple as it is useful. Moreover, this dissertation 
developed a set of realistic traffic situations and symbology, that may be useful for re-use in future 
research and testing activities (Article 4; van de Merwe et al., 2023a). Finally, the layers and levels of 
transparency that were created to represent the agent’s internal information processing provide 
developers with concrete examples of how collision avoidance systems can be made transparent to 
their users (Article 4; van de Merwe et al., 2023a).  



Agent Transparency and Human Performance in Supervisory Control 

70 

Table 10. Contributions of this dissertation. 

RQ Article title Key points Contributions 

Main N/A Planned, performed, and reported 
on applied research on a relevant 
and timely topic 

Published in relevant-, and 
recognised journals and 
conferences 

Theoretical contributions: 
• The publications and dissertation

contribute to enhancing and
progressing the knowledge,
methods, and tools regarding
agent transparency and human
performance

• The dissertation provides clear
directions for future research

Practical contributions: 
• The results show that

transparency is a viable design
principle for providing insight
into an agent’s information
processing, decisions, and
planned actions

1 Agent Transparency, 
Situation Awareness, 
Mental Workload, and 
Operator Performance: 
A Systematic 
Literature Review  

Published in: 
Human Factors (2024) 

Systematically gathered and 
assessed empirical evidence for 
the relationship between agent 
transparency and key human 
factors variables 

Described domains, models, 
operationalisations, and human-
automation interaction types 

Found a promising effect of 
transparency on SA and task 
performance without the cost of 
added mental workload 

Theoretical contributions: 
• The results contribute to the

knowledge regarding
transparency as a design
principle for effective human-
automation interaction

Practical contributions: 
• The results provide incentives to

designers for applying
transparency principles,
especially for when humans
respond to proposals and perform
supervisory control

2 Supporting human 
supervision in 
autonomous collision 
avoidance through 
agent transparency 

Published in: 
Safety Science (2024) 

Goals, decisions, and cognitive 
tasks were identified for 
conventional- and supervised 
collision avoidance  

SA requirements for agent 
transparency were defined using 
a GDTA 

Theoretical contributions: 
• The results provide a detailed

analysis of the change in
information requirements from
conventional to supervised
collision avoidance

Practical contributions: 
• The results provide concrete

insights into the SA requirements
for supervised collision
avoidance
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RQ Article title Key points Contributions 
3 Towards an approach to 

define transparency 
requirements for 
maritime collision 
avoidance 

Published in: 
Proceedings of the 
Human Factors and 
Ergonomics Society 
Annual Meeting (2023) 

Argued for using the PSW model 
as a transparency model 

Adapted the PSW model to the 
maritime collision avoidance 
domain 

Used the model to organise the 
SA requirements from Article 2 
into layers of transparency  

Theoretical contributions: 
• The results expand the

applicability of the PSW model
to represent a model for agent
transparency

Practical contributions: 
• The results provide a set of

minimum SA requirements,
organised per layer of
transparency

4 Operationalising 
Automation 
Transparency for 
Maritime Collision 
Avoidance 

Published in: 
TransNav, 
International Journal 
on Marine Navigation 
and Safety of Sea 
Transportation (2023) 

Developed 70 realistic traffic 
situations to support empirical 
evaluation 

Applied transparency model and 
SA requirements to develop 
realistic HMIs 

Theoretical contributions: 
• The results provide the

groundwork for empirical
evaluations of transparency
layers

Practical contributions: 
• The results provide insight into

the practical value of the model
as a design framework for
transparent agents

5 The Influence of Agent 
Transparency and 
Complexity on 
Situation Awareness, 
Mental Workload, and 
Task Performance 

Published in: 
Journal of Cognitive 
Engineering and 
Decision Making 
(2024) 

Experimentally evaluated the 
transparency model in an 
autonomous collision avoidance 
context 

Found effects of transparency on 
SA and task performance, but 
not on mental workload 

Participants preferred HMIs 
where analytical information 
was depicted 

Theoretical contributions: 
• The results add to the knowledge

of the effects of transparency on
key human factors variables

• The results empirically evaluate
the proposed transparency model

Practical contributions: 
• The results provide insight into

the anticipated human
performance effects of
transparency when applied to
autonomous agents

6.3 Concluding remarks 
The rapid development and deployment of advanced technologies across society will affect the way 
work is organised and has the potential to significantly alter the role of the human herein. In the 
maritime domain, AI-enabled systems may perform tasks previously performed by navigators, 
allowing for ships to sail autonomously and without direct human involvement. However, considering 
the current limitations of such systems to manage novel and complex situations, human operators are 
foreseen to play a critical role in overseeing their functioning and ensuring they perform according to 
requirements. Therefore, the operator’s ability to understand, predict, and evaluate system behaviour 
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becomes a critical aspect of the human’s supervisory task repertoire and lays the foundation for 
effective human-agent teams.  

This dissertation investigated the role of agent transparency in supporting operators in this new role 
and contributed with knowledge, methods, and tools regarding transparency in general and its 
application to the maritime domain specifically. The aim of this dissertation was to generate and 
advance the knowledge on how supervisory control can be supported through agent transparency. This 
dissertation has contributed to this aim by recognising the importance of transparency in safety critical 
domains in terms of human performance, exploring and understanding the impact of autonomy on the 
operator’s cognitive tasks, constructing and contextualising a model for transparency, operationalising 
transparency for the maritime context, and assessing its effects in an experimental setting. The results 
have implications for scientific research and for the application of transparency as a design principle 
for autonomous agents. In addition, this dissertation has made explicit the role-change that may be 
anticipated when introducing autonomous systems. In understanding the cognitive underpinnings, the 
results from this dissertation may be expanded towards competence and learning programs addressing 
supervisory control, the deployment of AI-enabled systems in operational settings, and the exploration 
of effective human-autonomy collaboration strategies. With these new insights, meaningful human 
work may be created where the combined capabilities of human-agent teams can be optimised. 
Ultimately, this dissertation advocates the relevance of affording human operators with insight into the 
reasoning of autonomous systems and established transparency as an important prerequisite on the 
path towards safe and effective human-supervisory control. 
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Appendix A – Coupling the Goal-Directed Task Analysis, PSW model, and HMI 
Table 11. The (condensed) results from the Goal-Directed Task Analysis (WP2), structured using the PSW model (WP3), and linked to HMI symbology (WP4). 

COLREGs GDTA PSW model CAGA system HMI 

No. Title Goals Decisions Information requirements Step Symbology 

2 Responsibility To clarify that deviation 
from the rules may be 
necessary to avoid 
immediate danger 

How can immediate danger 
be avoided? 

Location of detected constraints 1. Information acquisition Target identifier 
Location of detected vessels 2. Information analysis Target risk classifier 
Estimated collision risk 2. Information analysis Risk compass 
Location of detected vessels 2. Information analysis Target risk classifier 
The CAGA system’s intended trajectory and speed 3. Decision selection Own ship future track 
The CAGA system’s intended trajectory and speed 3. Decision selection Action table 

5  Look-out To determine the 
presence of vessels, 
terrain and other 
navigational constraints  

How can a full appraisal of 
the situation be achieved? 

Location of detected constraints/objects 1. Information acquisition Target identifier 
Location of detected vessels 1. Information acquisition Target identifier 
Estimated collision risk 1. Information acquisition Target conflict type classifier 

To determine risk of 
collision 

How can it be determined 
that a collision risk exists? 

Estimated collision risk 2. Information analysis Risk compass 
Estimated collision risk 2. Information analysis Target risk classifier 
Estimated collision risk 2. Information analysis Target information table 

6a Safe speed To determine safe speed How can safe speed be 
determined? 

The parameters the chosen speed is based on, i.e.,  
(i) Visibility estimates 
(ii) Observed targets and constraints 
(iii) Meteorological estimates 
(iii) Load and ballasting values 
(iv) Observed targets and constraints 
(v) Observed meteorological conditions 
(v) Radar echoes from navigational hazards 
(v) Charted navigational hazards 
(vi) Lowest water level contours 
(vi) Free space between vessel and bottom 
(vi) Vessel draught (based on load and ballasting) 

The effect of the parameters on safe speed, i.e., 
(i) The effect of visibility on ability to detect other vessels 
(ii) The number of vessels in the vicinity, concentration and type 

2. Information analysis Safe speed table 
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COLREGs GDTA PSW model CAGA system HMI 

No. Title Goals Decisions Information requirements Step Symbology 

(iii) The effect of meteorological conditions on manoeuvrability 
(iii) The effect of load and ballasting on manoeuvrability 
(iv) Origin of light sources 
(v) The ability of vessel to stay on its course 
(vi) Vessel listing (one side of vessel lies deeper than other side) 
(vi) The effects of squat in relation to actual speed 

6b Safe speed To take into account 
limitations or radar 
equipment in determining 
safe speed 

What is the effect of radar 
limitations on determining 
safe speed? 

Limitations to the radar/ sensors 1. Information acquisition Sensor status table 
Uncertainties in the radar/ sensor data 1. Information acquisition Sensor status table 

7a  Risk of 
Collision 

To determine collision 
risk  

What is the collision risk? Which vessels/objects are detected 1. Information acquisition Target identifier 
Which vessels/objects form a collision risk 1. Information acquisition Target conflict type classifier 
Status of relevant sensors that are used by the CAGA system 1. Information acquisition Sensor status table 
Which vessels/objects form a collision risk 2. Information analysis Target risk classifier 
Which vessels/objects form a collision risk 2. Information analysis Target predicted track 
Which vessels/objects form a collision risk 2. Information analysis Target information table 

7b Risk of 
Collision 

To obtain early warning 
of collision risk  

How can collision risk be 
determined early? 

Detected objects in the short to long range 1. Information acquisition Target identifier 
Plotting of targets 1. Information acquisition Target conflict type classifier 
Targets that form a potential collision risk 1. Information acquisition Target conflict type classifier 
Status of sensors 1. Information acquisition Sensor status table 
Plotting of targets 2. Information analysis Target risk classifier 
Targets that form a potential collision risk 2. Information analysis Target risk classifier 
Plotting of targets 2. Information analysis Target predicted track 
Targets that form a potential collision risk 2. Information analysis Target predicted track 
Plotting of targets 2. Information analysis Target risk classifier 
Targets that form a potential collision risk 2. Information analysis Target risk classifier 
Targets that form a potential collision risk 2. Information analysis Target information table 

7c Risk of 
Collision 

To obtain adequate level 
of information for risk 
estimation 

How can sufficient and 
reliable information be 
obtained? 

The number of sensors detecting targets 1. Information acquisition Target information table 
The reliability of the sensors 1. Information acquisition Sensor status table 

7d Risk of 
Collision 

To use compass bearings How can collision risk be 
determined? 

Target vessel type and size 1. Information acquisition Target type identifier 
Changes to bearing of target vessel over time 1. Information acquisition Target conflict type classifier 
Changes to bearing of target vessel over time 2. Information analysis Target risk classifier 
Target vessel type and size 2. Information analysis Target information table 
Target vessel type and size 2. Information analysis Target type identifier 
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COLREGs GDTA PSW model CAGA system HMI 

No. Title Goals Decisions Information requirements Step Symbology 

Changes to bearing of target vessel over time 2. Information analysis Target predicted track 
Changes to bearing of target vessel over time 2. Information analysis Risk compass 
Changes to bearing of target vessel over time 2. Information analysis Target risk classifier 
CPA sufficiently large to take into account size, tow and 
distance to target 

2. Information analysis CPA indicator 

CPA sufficiently large to take into account size, tow and 
distance to target 

3. Decision selection Own ship future track 

8a Action to 
avoid collision 

To execute collision 
avoidance manoeuvres by 
taking positive, timely 
and actions with good 
seamanship, in 
accordance with the rules 

What is a positive and 
timely collision avoidance 
manoeuvre with the 
observance of good 
seamanship? 

What actions it plans to perform (course and/or speed changes) 
upon detection of collision risk 

3. Decision selection Own ship future track 

When it will perform these planned actions 3. Decision selection Own ship future track 
What actions it plans to perform (course and/or speed changes) 
upon detection of collision risk 

3. Decision selection Action table 

When it will perform these planned actions 3. Decision selection Action table 
8b Action to 

avoid collision 
To execute changes in 
course and/ or speed that 
are clear to the other 
vessel 

Which ship manoeuvres 
are readily observable by 
another vessel? 

The CAGA system’s changes to current course and/or speed 3. Decision selection Own ship future track 
3. Decision selection Action table 

8c Action to 
avoid collision 

To execute early and 
substantial changes to the 
course of the vessel 

Can a conflict be resolved 
with course corrections 
alone? 

The CAGA system’s intended course 3. Decision selection Own ship future track 
The CAGA system’s intended course 3. Decision selection Action table 

8d Action to 
avoid collision 

To pass target vessel at a 
safe distance 

How can safe distance be 
determined? 

CPA to target vessel during avoidance manoeuvre 2. Information analysis CPA indicator 
The vessel's intended trajectory 3. Decision selection Own ship future track 

8e Action to 
avoid collision 

To avoid a collision or 
allow for more time to 
assess the situation 

Can a conflict be resolved 
with speed corrections 
alone? 

The CAGA system’s current speed 3. Decision selection Own ship future track 
The CAGA system’s intention of engine reversing  3. Decision selection Own ship future track 
The CAGA system’s current speed 3. Decision selection Action table 
The CAGA system’s intention of engine reversing  3. Decision selection Action table 
The CAGA system’s current speed 3. Decision selection Safe speed table 

8f Action to 
avoid collision  

Give-way vessel: To take 
early action to allow for 
safe passage of the stand-
on vessel 

How can vessel priority be 
determined, and collision 
avoided? 

Vessel priorities (i.e., not to be impeded/ not to impede) 2. Information analysis Target information table 
Vessel priorities (i.e., not to be impeded/ not to impede) 2. Information analysis Target manoeuvrability 

identifier 
Vessel priorities (i.e., not to be impeded/ not to impede) 3. Decision selection Own ship action indicator 
Vessel priorities (i.e., not to be impeded/ not to impede) 3. Decision selection Target ship action indicator 
The CAGA system’s intended trajectory and speed 3. Decision selection Own ship future track 
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COLREGs GDTA PSW model CAGA system HMI 

No. Title Goals Decisions Information requirements Step Symbology 

Stand-on vessel: To take 
appropriate action with 
consideration of the rules 
in case of collision risk 

How can vessel priority be 
determined, and collision 
avoided? 

The CAGA system’s intended trajectory and speed 3. Decision selection Action table 

13a Overtaking To avoid collision risk in 
overtaking situations 

How can overtaking be 
safely executed? 

Identified target vessel as vessel to be overtaken 1. Information acquisition Target conflict type classifier 

How can overtaking be 
safely executed? 

The CAGA system’s intended trajectory (i.e., CPA during 
passing manoeuvre) and speed 

2. Information analysis CPA indicator 

How can overtaking be 
safely executed? 

The CAGA system’s intended trajectory (i.e., CPA during 
passing manoeuvre) and speed 

3. Decision selection Own ship future track 

How can overtaking be 
safely executed? 

The CAGA system’s intention to overtake 3. Decision selection Own ship future track 

13b Overtaking To clarify if a vessel is 
overtaking another when 
coming up with another 
vessel 

How can an overtaking 
situation be determined 
when coming up with 
another vessel? 

Identified that own vessel is approaching target vessel (own 
vessel has higher speed than target vessel) 

1. Information acquisition Target conflict type classifier 

Identified that own vessel is in sector of more than 22,5 degrees 
abaft beam 

1. Information acquisition Target conflict type classifier 

Identified that own vessel is approaching target vessel (own 
vessel has higher speed than target vessel) 

2. Information analysis Target conflict type classifier 

Identified that own vessel is in sector of more than 22,5 degrees 
abaft beam 

2. Information analysis Target conflict type classifier 

13c Overtaking To clarify if a vessel is 
overtaking another when 
in doubt 

How can overtaking 
situations be determined? 

Identified target vessel as vessel to be overtaken 1. Information acquisition Target conflict type classifier 
Identified target vessel as vessel to be overtaken 2. Information analysis Target conflict type classifier 

13d Overtaking To avoid becoming a 
crossing vessel when 
overtaking 

How can it be avoided to 
become a crossing vessel 
when overtaking? 

The CAGA system’s intended trajectory in relation to target 
vessel (CPA during passing manoeuvre) 

2. Information analysis CPA indicator 
3. Decision selection Own ship future track 

14a Head-on 
situation 

To avoid collision risk in 
head-on situations 

How can head-on 
situations be safely 
resolved? 

Identified target vessel as head-on vessel 1. Information acquisition Target conflict type classifier 
Identified target vessel as head-on vessel 2. Information analysis Target conflict type classifier 
The CAGA system’s intended collision avoidance trajectory and 
speed, i.e., that course change is to starboard 

3. Decision selection Own ship future track 

The CAGA system’s intended collision avoidance trajectory and 
speed, i.e., that course change is to starboard 

3. Decision selection Action table 

14b Head-on 
situation 

To define when two 
vessels are in a head-on 
collision situation 

How can head-on 
situations be determined? 

Identified target vessel as head-on vessel 1. Information acquisition Target conflict type classifier 
Target vessel's course 2. Information analysis Target predicted track 
Identified target vessel as head-on vessel 2. Information analysis Target conflict type classifier 
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COLREGs GDTA PSW model CAGA system HMI 

No. Title Goals Decisions Information requirements Step Symbology 

14c Head-on 
situation 

To clarify if a vessel is in 
head-on collision 
situation when in doubt 

How can head-on 
situations be determined? 

Identified target vessel as head-on vessel 1. Information acquisition Target conflict type classifier 
Identified target vessel as head-on vessel 2. Information analysis Target conflict type classifier 

15 Crossing 
situation 

To avoid collision risk in 
crossing situations 

How can priority be 
determined in crossing 
situations? 

Identified collision risk 1. Information acquisition Target conflict type classifier 
Identified target vessel as crossing 1. Information acquisition Target conflict type classifier 
Identified collision risk 2. Information analysis Target risk classifier 
Identified collision risk 2. Information analysis Risk compass 
Identified collision risk 2. Information analysis Target information table 
Identified target vessel as crossing 2. Information analysis Target conflict type classifier 

How can crossing 
situations be safely 
resolved? 

Assigned own vessel priority (i.e., give-way/stand-on) 2. Information analysis Target information table 
Assigned own vessel priority (i.e., give-way/stand-on) 3. Decision selection Own ship action indicator 
Assigned own vessel priority (i.e., give-way/stand-on) 3. Decision selection Target ship action indicator 
Give-way: The CAGA system’s intended collision avoidance 
trajectory and speed, i.e., that course change avoids passing in 
front 

3. Decision selection Own ship future track 

Stand-on: The CAGA system’s intended collision avoidance 
trajectory and speed, i.e., no change in course and speed 

3. Decision selection Own ship future track 

Stand-on: The CAGA system’s intended collision avoidance 
trajectory and speed, i.e., no change in course and speed 

3. Decision selection Action table 

16 Action by 
give-way 
vessel 

To avoid collision risk as 
a vessel directed to keep 
out of the way 

How can vessel priority be 
determined? 

Assigned own vessel priority (i.e., give-way/stand-on) 2. Information analysis Target information table 
Assigned own vessel priority (i.e., give-way/stand-on) 3. Decision selection Own ship action indicator 
Assigned own vessel priority (i.e., give-way/stand-on) 3. Decision selection Target ship action indicator 

How can a vessel directed 
to keep out of the way keep 
clear? 

The CAGA system’s intended collision avoidance trajectory 
involves route changes 

3. Decision selection Own ship future track 

Identified target vessel at early stage 3. Decision selection Own ship future track 
The CAGA system’s intended collision avoidance trajectory 
involves route changes 

3. Decision selection Action table 

17a Action by 
stand-on 
vessel 

To avoid collision risk as 
a stand-on vessel 

How can vessel priority be 
determined? 

Identified target vessel 1. Information acquisition Target identifier 
Assigned own vessel priority (i.e., give-way/stand-on) 3. Decision selection Own ship action indicator 
Assigned own vessel priority (i.e., give-way/stand-on) 3. Decision selection Target ship action indicator 

How can inappropriate 
action by the give-way 
vessel be determined? 

The CAGA system’s intended trajectory and speed 3. Decision selection Own ship future track 
The CAGA system’s intended trajectory and speed 3. Decision selection Action table 
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COLREGs GDTA PSW model CAGA system HMI 

No. Title Goals Decisions Information requirements Step Symbology 

17b Action by 
stand-on 
vessel 

To avoid collision risk 
when the actions of the 
give-way vessel alone are 
not sufficient 

How can insufficient 
actions by the give-way 
vessel be determined? 

Target vessel course and speed 2. Information analysis Target predicted track 
The CAGA system’s intended trajectory and speed 3. Decision selection Own ship future track 
Minimum critical CPA limit reached 3. Decision selection Own ship future track 
The CAGA system’s intended trajectory and speed 3. Decision selection Action table 

17c Action by 
stand-on 
vessel 

To avoid taking actions to 
port in crossing situations 

How can crossing 
situations be safely 
resolved? 

The CAGA system’s intended trajectory does not involve course 
changes to port when other vessel is on port side 

3. Decision selection Own ship future track 
3. Decision selection Action table 
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Appendix B – Guide to Human-Machine Interface and symbology 
Figure 23 below shows a typical traffic situation used for this experiment, including additional overlaid information. Each information item is explained in the 
tables below. 

Figure 23. A typical traffic situation depicted on the radar screen. 
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Table 12. Common information elements depicted on the radar screen. 

Item Explanation As shown on the interface 

Radar echoes Electromagnetic reflections detected by the radar 

Echo trails Past residual image of radar echo 

Echo numbering Target numbers assigned by the radar 

Own ship vector 6 mins for all situations, red 

Target ship Vectors 6 mins for all situations, white 

Radar range 6nm for all situations 

CPA limit 0.5nm is chosen as the CPA Limit for all situations 

TCPA limit 15 mins is chosen as the TCPA Limit for all situations 

Collision warning Min. CPA exceeded for one or more targets, as plotted by ARPA 

Own ship Only course, speed, and location are relevant for the situations 
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Item Explanation As shown on the interface 

Target details Top two targets as assigned by ARPA 

Other Other information elements part of ARPA are not used in the traffic 
situations. 

Table 13. Information specific to the collision avoidance system. 

Item Explanation As shown on the interface 

Own ship Current track Current track for own ship 
The length of the red vector indicates the position and heading in 6 minutes 
The dotted red line is own ship’s current route 

Own ship Future track Future track by own ship depicted by up to three vectors in white.  
The angle of the vectors represents the course over ground 
The length of the vectors indicates its future position and heading per 6 
minutes 
The dashes do not correlate with time (they are not to scale) and should not 
be used to determine precise future location 

Own ship Action indicator GW: Own ship/ target ship will give-way 

SO: Own ship will stand-on 
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Item Explanation As shown on the interface 

Target ship action indicator GW: Target ship will give-way 
Symbol is only shown when own ship is stand-on for a risk target 

Risk compass A circle around the ship shows the risk associated with changing course for 
15 degrees increments: 
Red: Risk of collision is high when changing to this direction 
Orange: Risk of collision is medium when changing to this direction  
Green: Risk of collision is medium when changing to this direction  

CPA indicator Shown in red on own ship future track.  
CPA indicator indicates at what point own ship is closest to another ship. 
This may not be the original collision target. 

Target identifier White circle: Target has been detected 

Target risk classifier Green circle: Target does not pose a collision danger 

Orange square: Target poses collision danger 

Red triangle: Minimum CPA to be exceeded for this target 

Target conflict type classifier OT: Overtaking 
Red: For targets violating CPA 
Orange: For other critical targets 
CR: Crossing 
Red: For targets exceeding CPA 
Orange: For other critical targets 
HO: Head-on 
Red: For targets exceeding CPA 
Orange: For other critical targets 
/: Neither OT, CR, nor HO is applicable 
For example, a target is sailing away from own ship, or is a buoy 
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Item Explanation As shown on the interface 

Target type identifier Target name (example) 

MV: Motor vessel 

FV: Fishing vessel 

Z: Stationary 

BY: Buoy 

Target manoeuvrability 
identifier 

RAM: Target vessel is restricted in its ability to manoeuvre 

Target predicted track Red: Predicted track, in 6 minutes increments, for target that is exceeding 
minimum CPA  

Yellow = Predicted track, in 6 minutes increments, for target that is relevant 
during the evasion manoeuvre and may exceed minimum CPA 
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Table 14. Information presented adjacent to the radar screen. 

Tables Explanation As shown on the interface 

Action A table showing own ship’s current and next actions:  
Numerical representation of heading and speed 
6 minutes relative vectors indicating heading and speed 

Note that the vectors show actions relative to the current one. 

Safe speed A table showing the chosen safe speed and the factors affecting it: 
SOA: Speed of Advance 
Input 
Visibility 
Vessel concentration 
Weather 
Ship status 
Squat 
Sensor uncertainty 

Target information A table showing supplemental target information: 
Target number, prioritised 
Manoeuvrability: Low, Medium, High, RAM, FV 
Conflict type: OT, HO, CR 
Action of own ship against target if minimum CPA is exceeded: GW, SO 
Number of sensors detecting the target: 0-3 
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Tables Explanation As shown on the interface 

Sensor status A table showing additional sensor status information for radar, AIS, and 
camera: 
Green: Status is OK 
Yellow: Status is degraded 
Red = Sensor is offline 
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Appendix C – Examples of transparency levels 
In Figure 24, based on the structured SA requirements from Table 7, own ship indicates its intended avoidance manoeuvre by drawing its planned track for the 
next three manoeuvring steps (each step corresponds to one vector length and equals six minutes). The system also depicts “GW” next to the own ship symbol 
which indicates it intends to give-way. This way, minimum transparency is provided to allow supervisors to understand that the system is about to initiate a 
12-degree starboard turn and that it intends to give-way.

Figure 24. Traffic situation with a low level of transparency. 
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Figure 25 depicts that own ship considers two targets as especially relevant in this traffic situation. The target ship in red is depicted as the highest risk as for 
this ship, the minimum CPA limit is exceeded and is thus on collision course. The target in orange is also highlighted as own ship has considered this target to 
be of importance during the avoidance manoeuvre. Additional indicators next to the target symbols add information regarding the type of conflict and type of 
vessel, i.e., HO for head-on and MV for motor vessel. A manoeuvrability indicator is provided to indicate where own ship can manoeuvre within a one vector 
length. Finally, the factors influencing safe speed information is provided in table form on the left of the screen. Speed information can also be derived from 
the length of the vector. 

Figure 25. Traffic situation with a medium (A) level of transparency. 
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Figure 26 provides an example of how a transparent CAGA system could look like when all layers are depicted except the “information analysis” layer. In this 
transparency configuration, the supervisor is provided with information regarding the system’s decisions and actions, and which information is has acquired. 
However, it does not provide information about how it analyses this information, e.g., which risks it has determined. This level of transparency was included 
to provide an alternative to the cumulative approach discussed above where each level of transparency was added to the next one, i.e., low, medium, high.  

Figure 26. Traffic situation with a medium (B) level of transparency. 
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Finally, Figure 27 provides a depiction of what a transparent collision avoidance system could look like when all transparency information identified through 
the task analysis is provided on the HMI. Here, all targets have received identifiers (green circles), and initial classifications (ship types and relevant conflict 
type indicators). In addition, information regarding the status of the system’s sensors is provided in the tables to the left of the radar screen.  

Figure 27. Traffic situation with a high level of transparency. 
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Appendix D – Traffic situations used in the experiment 

Figure 28. Trial 1 - complexity = low, transparency = low, head-on (7HOLLT3). 
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Figure 29. Trial 1 - complexity = low, transparency = medium (A), crossing (2CRLLT32). 
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Figure 30. Trial 1 - complexity = low, transparency = medium (B), head-on (2HOLLT31). 
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Figure 31. Trial 1 - complexity = low, transparency = high, overtaking (10OTLLT321). 
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Figure 32. Trial 1 - complexity = high, transparency = low, head-on (15HOHLT3). 



Agent Transparency and Human Performance in Supervisory Control 

108 

Figure 33. Trial 1 - complexity = high, transparency = medium (A), crossing (21CRHLT32). 
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Figure 34. Trial 1 - complexity = high, transparency = medium (B), head-on (11HOHLT31). 
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Figure 35. Trial 1 - complexity = high, transparency = high, overtaking (17OTHLT321). 
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Figure 36. Trial 2 - complexity = low, transparency = low, head-on (9HOLTL3). 
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Figure 37. Trial 2 - complexity = low, transparency = medium (A), crossing (13CRLTL32). 
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Figure 38. Trial 2 - complexity = low, transparency = medium (B), head-on (5HOLTL31). 
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Figure 39. Trial 2 - complexity = low, transparency = high, overtaking (9OTLTL321).  
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Figure 40. Trial 2 - complexity = high, transparency = low, head-on, (10HOHTL3).   
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Figure 41. Trial 2 - complexity = high, transparency = medium (A), crossing (15CRHTL32).   
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Figure 42. Trial 2 - complexity = high, transparency = medium (B) head-on (13HOHTL31). 
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Figure 43. Trial 2 - complexity = high, transparency = high, crossing (13OTHTL321).
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Appendix E – Generic SAGAT queries 
Requirements for the questions: 

1. Questions should probe the participant’s understanding of how the autonomous collision avoidance system is managing the traffic situation
2. Questions should not probe the participant’s understanding of COLREGs directly
3. Questions should be answerable for all levels of transparency

In short: “What is your ship perceiving, thinking, and doing?” 

Table 15. Generic Level 1 SAGAT queries. 

*Three alternatives only in the situation-specific query.

Condition detection - “How does the system perceive the 
elements of the current situation?” 

Queries participant’s 
understanding of… 

Can be answered by… Trial 1 Trial 2 

1.1 Which/ How many targets are forward of your ship’s 
beam? 

a. N-M
b. O-P
c. Q-R

Own ship’s detection of 
targets 

Target identifier 10_OT_L_LT321 
21_CR_H_LT32 

15_CR_H_TL32 

1.2 How many targets, within a +/- 20 degrees of arc forward 
of your ship’s beam, are currently sailing approximately 
in the same direction as you? 

a. N-M
b. O-P
c. Q-R

Own ship’s detection of 
targets 
Own ship’s risk 
determination 

Target conflict type 
classifier 

15_HO_H_LT3 10_HO_H_TL3 

1.3 How many targets, within +/- 20 degrees of arc forward 
of your ship’s beam, are sailing approximately in the 
opposite direction of you? 

a. N-M
b. O-P
c. Q-R

Own ship’s detection of 
targets 
Own ship’s risk 
determination 

Target conflict type 
classifier 

2_HO_L_LT31 13_OT_H_TL321 



Agent Transparency and Human Performance in Supervisory Control 

120 

Condition detection - “How does the system perceive the 
elements of the current situation?” 

Queries participant’s 
understanding of… 

Can be answered by… Trial 1 Trial 2 

1.4 How many targets, within a +/- 20 degrees of arc forward 
of your ship’s beam, are currently sailing approximately 
away from you? 

a. N-M
b. O-P
c. Q-R

Own ship’s risk 
determination 

Target conflict type 
classifier 

2_CR_L_LT32 13_CR_L_TL32 

1.5 How many targets, within a +/- 20 degrees of arc forward 
of your ship’s beam, are currently sailing approximately 
towards you? 

a. N-M
b. O-P
c. Q-R

Own ship’s risk 
determination 

Target conflict type 
classifier 

17_OT_H_LT321 9_OT_L_TL321 

1.6 How many targets, within a +/- 20 degrees of arc forward 
of your ship’s beam, are crossing your bow? 

a. N-M
b. O-P
c. Q-R

Own ship’s risk 
determination 

Target conflict type 
classifier 

7_HO_L_LT3 5_HO_L_TL31 

1.7 What is the location of target X?* 
a. Starboard
b. Port
c. Forward
d. Aft

Own ship’s detection of 
targets 

Target identifier 
Target conflict type 
classifier 

11_HO_H_LT31 9_HO_L_TL3 
13_HO_H_TL31 
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Table 16. Generic Level 2 SAGAT queries. 

*Three alternatives only in the situation-specific query.

Condition analysis - “How does the system comprehend the 
current situation?” 

Queries participant’s 
understanding of… 

Can be answered 
by… 

Trial 1 Trial 2 

2.1 In which collision situation is your ship in?* 
a. Head-on
b. Overtaking
c. Crossing
d. No collision situation

Own ship’s 
understanding of 
collision situation type 

Target conflict type 
classifier 
Target information 
table 

2_HO_L_LT31 9_OT_L_TL321 

2.2 Which targets pose a collision risk to your ship? 
a. Target X & Y
b. Target X & Z
c. None of the above

Own ship’s risk 
determination 

Target risk classifier 
Target conflict type 
classifier 
Target predicted track 
Target information 
table 

15_HO_H_LT3 15_CR_H_TL32 

2.3 Which target poses the highest collision risk to your 
ship?  

a. Target X
b. Target Y
c. No collision risk

Own ship’s risk 
determination 

Target risk classifier 
Target conflict type 
classifier 
Target predicted track 
Target information 
table 

10_OT_L_LT321 13_CR_L_TL32 

2.4 What target poses a secondary risk, i.e., limiting your 
ability to perform an avoidance manoeuvre? 

a. Target X
b. Target Y
c. No secondary risk

Own ship’s risk 
determination 

Target predicted track 13_OT_H_TL321 

2.5 What is the speed of target X relative to your own ship’s 
speed?  

a. Faster than own ship
b. Slower than own ship
c. Approximately the same speed

Own ship’s risk 
determination 

Target predicted track 11_HO_H_LT31 10_HO_H_TL3 
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Condition analysis - “How does the system comprehend the 
current situation?” 

Queries participant’s 
understanding of… 

Can be answered 
by… 

Trial 1 Trial 2 

2.6 What is the course of the target X relative to your own 
ship’s course? 

a. Crossing from starboard 
b. Crossing from port 
c. Not crossing 

Own ship’s risk 
determination 

Target predicted track 
 

  

2.7 What is the direction of target X relative to your own 
ship’s course? 

a. Towards own ship 
b. Away from own ship 
c. In the same direction as own ship 

Own ship’s risk 
determination 

Target predicted track 
 

7_HO_L_LT3 5_HO_L_TL31 

2.8 What does your ship intend to do for target X? 
a. Give-way 
b. Stand-on 
c. Take no action 

Own ship’s 
understanding of target 
ship priority 

Target conflict type 
classifier 
Target predicted track 
Target information 
table 

17_OT_H_LT321 13_HO_H_TL31 

2.9 Which target, within a +/- 20 degrees of arc forward of 
your ship’s beam, is sailing in approximately the same 
direction as you? 

a. Target X 
b. Target Y 
c. None of the above 

Own ship’s risk 
determination 

Target conflict type 
classifier 
Target predicted track 
Target information 
table 

  

2.10 Which target, within +/- 20 degrees of arc forward of 
your ship’s beam, is sailing approximately in the 
opposite direction of you? 

a. Target X 
b. Target Y 
c. None of the above 

 

Own ship’s risk 
determination 

Target conflict type 
classifier 
Target predicted track 
Target information 
table 
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Condition analysis - “How does the system comprehend the 
current situation?” 

Queries participant’s 
understanding of… 

Can be answered 
by… 

Trial 1 Trial 2 

2.11 Which target, within +/- 20 degrees of arc forward of 
your ship’s beam, is sailing approximately away from 
you? 

a. Target X 
b. Target Y 
c. None of the above 

Own ship’s risk 
determination 

Target conflict type 
classifier 
Target predicted track 
Target information 
table 

2_CR_L_LT32  

2.12 Which target, within +/- 20 degrees of arc forward of 
your ship’s beam, is currently sailing towards you? 

a. Target X 
b. Target Y 
c. None of the above 

Own ship’s risk 
determination 

Target conflict type 
classifier 
Target predicted track 
Target information 
table 

 9_HO_L_TL3 

2.13 Which target, within +/- 20 degrees of arc forward of 
your ship’s beam, is currently crossing your bow? 

a. Target X 
b. Target Y 
c. None of the above 

Own ship’s risk 
determination 

Target conflict type 
classifier 
Target predicted track 
Target information 
table 

21_CR_H_LT32  
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Table 17. Generic Level 3 SAGAT queries. 

*Three alternatives only in the situation-specific query.

Action planning - “What is the system’s projection of the 
situation’s future state?” 

Queries participant’s 
understanding of… 

Can be answered 
by… 

Trial 1 Trial 2 

3.1 What does your ship intend to do? 
a. Give-way
b. Stand-on
c. Take no action

Priority for own ship Own ships future track 
Own ships action 
indicator  
Target ship action 
indicator 
Action table 

21_CR_H_LT32 15_CR_H_TL32 

3.2 Which action does your ship plan to take?* 
a. Course change
b. Speed change
c. Both course and speed change
d. No action

Own ship’s intended 
manoeuvre (course and 
speed) 

Own ship future track 
Action table 

3.3 In which direction does your ship plan to make a course 
change? 

a. Starboard
b. Port
c. No change in direction

Own ship’s intended 
course  

Own ship future track 
Action table 

13_CR_L_TL32 

3.4 For target ship X, what is your ship’s intention? 
a. Keep on its starboard side
b. Keep on its port side
c. Pass its bow

Own ship’s intended 
course 

Own ship future track 2_CR_L_LT32 13_OT_H_TL321 

3.5 What is the absolute course your ship intends to sail in 
the next six minutes? 

a. A-B degrees
b. B-C degrees
c. C-D degrees

Own ship’s intended 
course 

Own ship future track 
Action table 

7_HO_L_LT3 13_HO_H_TL31 
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3.6 What is the relative course change your ships intends to 
implement in the next six minutes?  

a. A-B degrees 
b. B-C degrees 
c. C-D degrees 

Own ship’s intended 
course 

Own ship future track 
Action table 

17_OT_H_LT321  

3.7 What is the speed your ship intends to sail for the next 
six minutes?  

a. X kn 
b. Y kn 
c. Z kn 

Own ship’s intended 
speed 

Safe speed table 
Own ship future track 

2_HO_L_LT31 10_HO_H_TL3 

3.8 What is the absolute speed change your ship intends to 
implement in the next six minutes? 

a. 0 kn (no change) 
b. X-Y kn 
c. Y-Z kn 

Own ship’s intended 
speed 

Action table 
Safe speed table 
Own ship future track 

15_HO_H_LT3 9_HO_L_TL3 

3.9 What speed change does your ship plan to make? 
a. Increase 
b. Decrease 
c. No change 

Own ship’s intended 
speed 

Own ship future track 
Action table 
Safe speed table 

11_HO_H_LT31 9_OT_L_TL321 

3.10 When does your ship intend to perform its avoidance 
manoeuvre? 

a. Immediately 
b. After X amount of minutes 
c. No manoeuvre 

Own ship’s intended 
manoeuvre 

Own ship future track 
Action table 

10_OT_L_LT321 5_HO_L_TL31 
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Appendix F – NASA-TLX 
Figure 44. The rating sheets used for the NASA-TLX (Hart & Staveland, 1988). 

Mental demand 

How much mental and perceptual activity was required? 
(For example, thinking, deciding, calculating, remembering, looking, searching, etc.) 

Was the task easy or demanding, simple or complex, forgiving or exacting? 

Physical demand 

How much physical activity was required? 
(For example, pushing, pulling, turning, controlling, activating, etc.) 

Was the task easy or demanding, slow or brisk, slack or strenuous, restful or laborious? 

Temporal demand 

How much time pressure did you feel due to the rate or pace at which the tasks or tasks elements occurred? 
Was the pace slow and leisurely or rapid and frantic? 

Performance 

How successful do you think you were in accomplishing the goals of the task set by the experimenter (or 
yourself)? 

How satisfied were you with your performance in accomplishing these goals? 

Note the location of the endpoints are different before answering. 
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Effort 

How hard did you have to work (mentally and physically) to accomplish your level of performance? 

Frustration 

How insecure, discouraged, irritated, stressed, and annoyed versus, secure, gratified, content, relaxed, and 
complacent did you feel during the task? 

Figure 45. Weighting mental workload scores with pairwise comparisons (Hart & Staveland, 1988). 

No. Pair 

1 Effort or Performance 
2 Temporal demand or Effort 
3 Performance or Frustration 
4 Physical demand or Performance 
5 Temporal demand or Frustration 
6 Physical demand or Frustration 
7 Physical demand or Temporal demand 
8 Temporal demand or Mental demand 
9 Frustration or Effort 
10 Performance or Temporal demand 
11 Mental demand or Physical demand 
12 Frustration or Mental demand 
13 Performance or Mental demand 
14 Mental demand or Effort 
15 Effort  or Physical demand 
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Appendix G – Ranking transparency levels 
Table 18. The traffic situations used for ranking participants' preferences. 

Top-left: Low, Top-right: Medium (A), Bottom-left: Medium (B), Botton-right: High. For larger versions, see Appendix C – Examples of transparency levels. 
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Table 19. Definitions and examples that were read verbatim to the participants prior to ranking. 

Dimension Definition Example 

Observability Observability means the system proactively 
communicates with you to let you know what it’s 
thinking and doing and tells you how far along it is in 
accomplishing your joint work. 

A collision avoidance system that 
tells you how it interprets the 
current traffic situation. 

Predictability Predictability means the system communicates with 
you about its intentions, goals, and future actions in 
various contexts. 

A collision avoidance system that 
tells you how it predicts the current 
traffic situation will develop in the 
future. 

Table 20. Ranking preferences for transparency levels. 

Dimension Transparency level Ranking (forced choice) 

Observability Low 
Medium (A) 
Medium (B) 
High 

Predictability Low 
Medium (A) 
Medium (B) 
High 
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Agent Transparency, Situation Awareness, MentalWorkload,
and Operator Performance: A Systematic Literature Review

Koen van de Merwe, DNV, Høvik, Norway, University of South-Eastern Norway,
Borre, Norway, Steven Mallam and Salman Nazir, University of South-Eastern
Norway, Borre, Norway

Objective: In this review, we investigate the relationship
between agent transparency, Situation Awareness, mental work-
load, and operator performance for safety critical domains.

Background: The advancement of highly sophisticated au-
tomation across safety critical domains poses a challenge for ef-
fective human oversight. Automation transparency is a design
principle that could support humans by making the automation’s
inner workings observable (i.e., “seeing-into”). However, experi-
mental support for this has not been systematically documented to
date.

Method: Based on the PRISMA method, a broad and sys-
tematic search of the literature was performed focusing on iden-
tifying empirical research investigating the effect of transparency on
central Human Factors variables.

Results:Our final sample consisted of 17 experimental studies
that investigated transparency in a controlled setting. The studies
typically employed three human-automation interaction types:
responding to agent-generated proposals, supervisory control of
agents, and monitoring only. There is an overall trend in the data
pointing towards a beneficial effect of transparency. However, the
data reveals variations in Situation Awareness, mental workload,
and operator performance for specific tasks, agent-types, and level
of integration of transparency information in primary task displays.

Conclusion: Our data suggests a promising effect of auto-
mation transparency on Situation Awareness and operator per-
formance, without the cost of added mental workload, for instances
where humans respond to agent-generated proposals and where
humans have a supervisory role.

Application: Strategies to improve human performance when
interacting with intelligent agents should focus on allowing humans
to see into its information processing stages, considering the in-
tegration of information in existing Human Machine Interface
solutions.

Keywords: PRISMA, human-automation interaction, automation
transparency, information disclosure, seeing into

INTRODUCTION

The human factors community has long had
an interest in understanding the interactions
between humans and automation, that is, the
tasks executed by a machine agent of a function
previously performed by a human (Parasuraman
&Riley, 1997; Rasmussen, 1983). Central topics
of research include understanding the benefits
and concerns of replacing humans with auto-
mation (e.g., Bainbridge, 1983; Strauch, 2018),
the need for appropriate design of automation
(Norman, 1990), the effect of automation fail-
ures on human take-over responses (Endsley &
Kiris, 1995), factors pertaining to automation
use, disuse, and misuse (Parasuraman & Riley,
1997), human performance in taking over from
automation (Eriksson & Stanton, 2017; Hergeth
et al., 2017; Weaver & DeLucia, 2020), and the
consequences of levels of automation on Situ-
ation Awareness (SA), mental workload, and
operator performance (Endsley & Kaber, 1999;
Jamieson & Skraaning, 2020; Onnasch et al.,
2014). Combined, these studies culminate to the
notion of an automation conundrum (Endsley,
2017), which is the problem that the more re-
liable and robust automation becomes, the less
likely it is that a human supervisor will notice
critical information and will be able to effec-
tively intervene when required. This problem
may be exacerbated with advanced automation
or intelligent agents able to function in-
dependently, but still require human supervision.
Considering the rapidly developing and ubiq-
uitous presence of technology in our society,
there is an urgent and continuous need of re-
search into understanding and enhancing inter-
actions between humans and automation such
that collaboration and performance can be
supported (Hancock et al., 2013; O’Neill et al.,
2020; Warden et al., 2019).
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Automation and Agents

The terms “automation” and “agent” are used
interchangeably in the literature. For example,
Lee and See define automation as “technology
that actively selects data, transforms in-
formation, makes decisions and controls pro-
cesses” (2004, p. 1). Parasuraman and Riley
define automation as “the execution by a ma-
chine agent (usually a computer) of a function
that was previously carried out by a human”
(1997, p. 231). Rao and Georgeff (1995) de-
scribe a rational agent as one having certain
“mental attitudes of Belief, Desires and Intention
(BDI), representing, respectively, the in-
formation, motivational, and deliberative states
of the agent” (1995, p. 1). In AI, the term “in-
telligent agent” refers to an autonomous entity
having goal-directed behavior in an environ-
ment using observation through sensors and
execution actions through actuators (Russell &
Norvig, 2022). Examples of the application of
agents can be seen in the automotive industry
(Society of Automotive Engineers, 2021),
healthcare (Coronato et al., 2020; Loftus et al.,
2020), unmanned aerial vehicles (UAV)
(Hocraffer & Nam, 2017), manufacturing
(Elghoneimy & Gruver, 2012), and recent de-
velopment towards maritime autonomous sur-
face ships (IMO, 2018). Even though agents can
be very sophisticated and can perform certain
task with a high degree of independence, they
often require some form of human supervision in
case of failures or unforeseen situations. How-
ever, human supervision of such agents may
pose challenges as AI behavior and reasoning
can be difficult or even impossible to understand
for humans (Doshi-Velez & Kim, 2017; Lipton,
2017). Still, to enable interaction between hu-
mans and agents, a system component capable
of handling human-machine interactions is
typically deployed, that is, the Human Machine
Interface (HMI). The HMI supports human-
machine interactions by providing relevant
feedback to support SA and by allowing for
appropriate input commands to support action
execution.

Norman (1990) has previously advocated the
use of appropriate feedback when interacting
with automation, arguing that the problem with

keeping humans in the loop is not necessarily
automation itself, but the lack of adequate in-
formation provided to them. Likewise, Chris-
toffersen and Woods (Christoffersen & Woods,
2002) have discussed the need for systems to be
observable to humans to enhance human-agent
collaboration. That is, providing feedback to the
operator in terms of its changes to the agent’s
current state (events) allows for anticipatory
reasoning (future states) and for quick detection
of abnormalities through pattern recognition.
Also, Lee and See (2004) argued for a number of
elements that should be conveyed to the user,
such as showing the automation’s purpose, past
performance, and its processes and algorithms. In
addition, intermediate internal process results
should be shown that are understandable to the
operator in a simplified way. Also, the purpose,
design basis, and range of application should be
conveyed that relate to the user’s goals. Sup-
plying this information to the operator would
result in appropriate reliance and trust in the
automation. Hence, when humans interact with
agents, the HMI can be used to convey the agent’s
state, its modes, and limitations, and provide
understandability and predictability regarding its
current actions and future actions, that is, pro-
viding “transparency” to its user (Endsley, 2017).

Transparency

There are two common interpretations of
agent transparency found in the literature:
“seeing-through” and “seeing-into” (Ososky
et al., 2014; Sheridan & Verplank, 1978;
Skraaning et al., 2020). The “seeing-through”
interpretation states that automation should be
designed in such a way as to appear invisible to
its user. For example, in teleoperation using
robots, transparent automation, for example,
through means of low latency devices, effective
feedback mechanisms, and immersive HMIs,
allows an operator to perceive and manipulate
the environment as if there was no automation in
between. In this case, the automation is pur-
posefully made invisible to the user allowing for
enhanced awareness and “presence” of the re-
mote environment. Conversely, the “seeing-
into” interpretation aims to make the automation
or agent visible to the human to allow for
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enhanced understanding of the agent itself. In
this case, the agent is made transparent, or better:
“apparent” (Sheridan & Verplank, 1978;
Skraaning et al., 2020), to its user by purpose-
fully conveying what it is doing, why it is doing
it, and what it will do next. In this perspective,
transparency is an HMI design principle applied
to the technology, based on the notion that in-
formation from and about the agent is directly
observable to the user. In this paper, we will
adopt the “seeing-into” perspective when re-
ferring to transparency.

Transparency information should allow for
a user to “see into” the agent and better understand
its inner processes, thereby enhancing the user’s
ability to assess the agent’s performance and
knowing when to manually take-over or not.
Conversely, a lack of “transparency” (Endsley
et al., 2003), “observability” (Christoffersen &
Woods, 2002), “interpretability, explainability
and predictability” (Hepworth et al., 2020), or
“affordance” (Chen et al., 2014) of the agent may
make it difficult for an operator to grasp what it is
doing, why it is doing it, and what it is going to do
next. This, in turn, may lead to poor decision
making regarding when to use (and when not use)
automation (Beck et al., 2007; Endsley & Kiris,
1995; Parasuraman & Riley, 1997). As such,
exposing the inner workings of the automation to
its human supervisor should, at least theoretically,
enhance the operator’s performance.

Transparency and Human Performance

Recent publications have explored evidence
regarding automation transparency, that is,
“seeing-into.” Bhaskara et al. (2020) identified
and compared the dominant transparency
models in the contemporary literature: Human-
Robot Transparency Model (Lyons, 2013);
Situation-Awareness Agent-based Transparency
model (SAT; Chen et al., 2014). For these
models, the authors reviewed five experimental
studies that implemented transparency across
a range of tasks and domains. Results from key
human factors variables, including operator
performance, SA, and mental workload in-
dicated that there is emerging evidence re-
garding accurate use of automation with
increased transparency, potential evidence for its

effect on SA and a potential cost in terms of
mental workload, as measured through pupil
diameter in one study (Wright et al., 2017).
However, results were not consistent in terms of
the correlation between the degree of trans-
parency and performance variables. In other
words, more transparency did not consistently
produce improved operator performance out-
comes. Hence, the effect of transparency may be
dependent on other factors such as context and
information type.

In a similar review, Rajabiyazdi and Jamieson
(2020) reviewed the experimental evidence for
four transparency models: Human-Robot Trans-
parency Model (Lyons, 2013); (Dynamic)
Situation-Awareness Agent-based Transparency
model (SAT; Chen et al., 2014, DSAT; Chen
et al., 2018); and the Coactive System Model
based on Observability, Predictability, and Di-
rectability (Johnson et al., 2014). Five experi-
mental studies were reviewed for their empirical
evidence, of which two studies overlapped with
Bhaskara et al. (2020). The authors concluded
that the validation efforts for the transparency
models have been largely incomplete or have
provided inconclusive evidence. For example,
there were differences among the studies in how
the SAT model was interpreted and operation-
alized, that is, what level of transparency relates
to which type of information, potentially leading
to differences in outcomes. Also, even though
some of the studies were based on the same
theoretical model and applied in a similar context,
they yielded inconsistent human performance
outcomes in terms of SA, workload, and operator
performance, amongst others. Nevertheless,
considering the continuous development of ad-
vanced automation, the authors concluded that
there is an ongoing and increasing need to further
understand the means with which to convey its
inner workings to the operators and assess its
effect on human factors variables.

This Study

This review aims to expand on the evidence
base for automation transparency and operator
performance by focusing on a broader body of
literature beyond those studies discussed in the
reviews mentioned earlier. This is to be achieved
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by taking the original concept of transparency as
the starting point for the review regardless of the
transparency model. As the concept of “seeing-
into” transparency is about conveying the inner
workings of the automation to provide un-
derstandability and predictability about its ac-
tions, a broader scope may reveal additional
insights not captured by model-specific studies
(Bhaskara et al., 2020; Rajabiyazdi & Jamieson,
2020). This approach may uncover other studies
not included in the abovementioned reviews that
nevertheless provide evidence for the relationship
between transparency and central human factors
variables: SA, mental workload, and operator
performance. These variables were chosen because
information disclosure to reveal the inner workings
of an agent is closely linked to the operator’smental
picture of the agent’s present and future state. As
such, if the agent can convey to the user which
information it is presently processing, how it is
processing it, and what its future state will be, this
would suggest that this information would have
a positive effect on operator SA (Endsley, 1988,
1995). However, because transparent automation
provides “understandability and predictability of
actions” to a human operator (Endsley, 2017;
Endsley et al., 2003), the HMI between the agent
and the operator is often manipulated to allow for
this. As mental workload concerns the allocation of
limited internal resources in meeting external de-
mands (Hancock et al., 2021), adding information
increases the amount of information required to
build and maintain SA, potentially requiring ad-
ditional cognitive effort (Chen et al., 2014, 2018;
Helldin et al., 2014). On the other hand, it may also
be reasoned that assessing the performance of an
agent is facilitated when information about the
agent is made directly available to the user com-
pared to when it is not (Chen et al., 2018). As such,
the consequences of transparency information for
mental workload may be mediated by other factors
than amount of information only, for example,
display design (Li et al., 2020; Vicente, 2002).
Nevertheless, as transparent automation should
allow an operator to better assess the agent’s per-
formance, that is, its reliability, predictability, and
ability (Lee & See, 2004), it should also improve
the operator’s ability to perceive, comprehend and
project the performance of the agent and thereby
deciding whether to use the automation or not

(Beck et al., 2007; Parasuraman & Riley, 1997).
This potential “free lunch” (Wickens, 2018), that is,
the ability of transparency to alleviate some of the
effect of the automation conundrum without re-
ducing automation’s benefit, warrants a further and
systematic focus.

METHOD

This study uses the Preferred Reporting Items
for Systematic review and Meta-Analysis pro-
tocol (PRISMA) as a basis for the systematic
literature review (SLR; Moher et al., 2009, 2015).
The PRISMA protocol provides a pre-defined and
structured methodological approach to literature
reviews including its data gathering, analysis, and
reporting. Using a pre-defined approach reduces
the potential for bias and enhances clarity, au-
ditability, replicability, and transparency of the
review (Booth et al., 2016). In brief, the PRISMA
protocol uses a three-step approach starting with
searching for relevant literature in relevant data-
bases using a specified search string where the
literature data is screened based on a pre-defined
set of eligibility criteria. Second, an in-depth
assessment is performed based on a review of
the full texts generating a final dataset of litera-
ture. And finally, this dataset is analyzed as part of
the qualitative data analysis.

Database Search and Data Screening

The following inclusion criteria were estab-
lished for the initial screening of the literature
sample. First, only peer-reviewed studies pub-
lished between the 1st of January 2000 and the
5th of January 2021 (the sample date) were
considered. Second, studies that describe
transparency effects on operator performance
using experimental studies as a data source were
considered.

The following exclusion criteria were estab-
lished for the initial screening. First, non-English
articles, articles from outside the time-period, non-
peer reviewed, or gray literature (i.e., white papers,
books, technical reports, book chapters, posters),
and articles that not explicitly address automation
transparency in experimental studies.

For screening the full-text literature, the
following inclusion criteria were used. First, this
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SLR was interested in studies presenting primary
data that compared degrees of implementation of
transparency in terms of SA and/or mental work-
load and/or operator performance metrics. Second,
studieswere considered if theymet all the following
characteristics based on the PICOC criteria (Booth
et al., 2016; Petticrew & Roberts, 2006):

• Population: Users in the safety critical domain
• Intervention: Application of transparency in au-

tomation design
• Comparison: Comparing degrees of transparency
• Outcomes: The studies reported on SA, and/or

mental workload, and/or operator performance
metrics as dependent variables

• Context: The studies reported on findings obtain
from a simulated- (experimental) and/or opera-
tional environment

To obtain the dataset, relevant databases were
chosen based on their publication scope within
the domains of psychology, technology, and
engineering. The chosen databases were Scopus
(with ScienceDirect for the full-text journals),
IEEE Xplore, and Web of Science and were
sampled using a search string.

The search string contains three components: the
object of interest (e.g., automation), its character-
istics (e.g., transparency), and its effect on operators
(e.g., behavioral indicators and psychological
constructs). The search aimed to balance breadth
and depth of the field, and therefore the search was
based on keywords only. The following search
string was used in each of the chosen databases:

(Autom� OR Autonom� OR Robot OR
Machine OR Agent)

AND

(Transparen� OR Observab� OR Ex-
plainab� OR Afford�)
AND

(“Operator performance” OR “Human
performance” OR “Situation Awareness”
OR Workload OR Effectiv�)

Figure 1 provides the process and results of
the database search. The search resulted in

a combined sample of 1714 articles of which
there were 139 duplicates. Based on the sample
of 1575 papers, the initial screening was per-
formed based on the eligibility criteria described
above. This consisted of a review of the titles
and abstracts against the criteria. When in doubt,
the paper was kept for full-text review. This
resulted in a reduced sample of 59 articles for
full-text review.

Full-Text Review

The full-text review was performed by the first
author based on the full-text eligibility criteria. A
subset of 25 full-text papers out of the 59 papers
were reviewed independently by the other au-
thors. The results from this independent review of
papers were cross verified with the results of the
first author in a workshop. Any disagreements
were resolved, and reasons for exclusion were
noted. Of the full-text sample of 59 papers, 42
papers were excluded with reasons based on the
pre-defined criteria (see Figure 1). As such, a final
dataset of 17 full-text articles remained for in-
clusion in the qualitative analysis: 11 journal
articles and six conference papers.

Data Extraction and Analysis

Data from each individual study from the final
dataset was extracted including the domain in
which transparency was studied, the sample size,
which (if any) transparency model was used, the
Human-Automation Interaction type (HAI), how
transparency was operationalized, and the com-
parisons that were made in the experimental study
(see Table 1). For each of the studies the results
were extracted, including SA effects of using the
automation in the study, the effect on mental
workload, and the behavioral/performance
measures employed in the study (see Table 2).

RESULTS

There are multiple ways in which the data in
Tables 1 and 2 can be organized and interpreted
depending on specific research needs. For our
analysis, we have chosen to organize the data
according to human-automation interaction type.
For readers interested in looking into other
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relations in the dataset, the tables are made
available as Supplemental Material on the jour-
nal’s Web site.

Mapping Out How Transparency Has
Been Studied

Table 1 describes the characteristics of the
individual papers from the data sample. Each
characteristic is discussed below.

Research Domains. The domain which had
most focus on transparency research is the
military (53%), with studies primarily focusing
on UAV operations and ground troops support,
and one study focused on the interactions with
an automated pilot flying with a human in for-
mation (wingman). Two (12%) studies were
performed in the automotive domain in relation
to autonomous vehicles. The other domains in
which automation transparency was researched
were civil defense (12%), civil aviation (12%),
nuclear (6%), and robotics (6%).

Transparency Models. Eight studies (47%)
used the SAT model (Chen et al., 2014) as
a basis for the design of the automation. The
studies that employed this model typically used

the various levels described by the model to
develop user interfaces that provide users with
relevant transparency information. For example,
Selkowitz et al. (2017) developed a user in-
terface showing an autonomous squadmember’s
current resource levels (Level 1), prioritizations
when following the squad (Level 2), con-
sequences on future resource levels (Level 3),
and the uncertainties related to this information.
The other studies from the sample that used the
SAT model have developed interfaces based on
a similar approach (Bhaskara et al., 2021;
Guznov et al., 2020; Mercado et al., 2016; Roth
et al., 2020; Selkowitz et al., 2015; Stowers
et al., 2020; Wright et al., 2020).

One study (6%) used Lyons’ Human-Robot
Transparency model (2013). Lyons describes the
need for sharing information from the automa-
tion to the human (robot-to-human factors), as
well as from the human to the automation (robot-
of-human factors). Hence, Lyons’ transparency
model focuses on the requirements to the au-
tomation’s information provision to the user, as
well as the automation’s capability to understand
the human. Pokam et al. (2019) applied this
model to develop the interface for an auto-
mated driving solution showing the conditions
for when autonomous mode was available,

Figure 1. Flow diagram of the study selection based on the PRISMA protocol.
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understand the actions by the vehicle, why
a given maneuver was carried out and showing
what the automation perceived in order to un-
derstand its analyses and decisions.

Eight studies (47%) were not limited to
a single transparency model but used various
transparency sources as the basis for automa-
tion design. For example, Skraaning and
Jamieson (2021) stated that the automation
displays that were used in their nuclear control
room study were designed “with the trans-
parency principle in mind” (2021, p. 380).
They define transparency as “the design
principle that the responsibilities, capabilities,
goals, activities and/or effects of automation
should be directly observable in the [Human
System Interface]” and refer to Norman
(1990), Christoffersen and Woods (2002),
Johnson et al. (2014), and others as their in-
spirational sources. Likewise, Du et al. (2019)
focused on explanations provided by the au-
tomation as a means to expose users “to the
inner workings or logic used by the automated
system” (2019, p. 429). Also, Chen et al. (2014,
2015), Sanders et al. (2014), Göritzlehner et al.
(2014), Sadler et al. (2016), and Panganiban
et al. (2020) have used various transparency
sources as inspiration for their automation design.

The dataset did not include experimental
studies for the Coactive System Model based on
Observability, Predictability, and Directability
(Johnson et al., 2014).

Human-Automation Interaction Type.
In six studies (35%) participants were tasked
with responding to proposals provided by the
automation. Mercado et al. (2016) and Stowers
et al. (2020) performed similar experiments
where participants were asked to monitor and
control multiple unmanned vehicles (land, air,
and sea; UxV) in a base-defense task. An in-
telligent agent generated proposals on how to
best defend the base based on speed, coverage,
and capabilities of the unmanned vehicles. The
participants were required to choose the most
optimal plan. Similarly, Bhaskara et al. (2021)
required participants to select the best unmanned
vehicle to perform a task. Participants were
assisted by a system that provided two plans
with regards to which unmanned vehicle was

most capable based on its time to reach a search
area, search time needed and fuel consumption.
The participantswere asked to check the accuracy
of the proposals against a set of criteria and
choose the best one. Roth et al. (2020) also re-
quired participants to check the validity of the
agent’s proposals and find violations to pre-
viously given constraints for an UAV mission.
Participants in the experiment by Göritzlehner
et al. (2014) took the role of an air traffic con-
troller and were tasked with ensuring conflict-free
traffic in a simulated airspace. The automation
provided advisories to resolve conflict situations,
and the participants were required to either accept
or reject these based on their perception of the
situation. Finally, Sadler et al. (2016) used airline
pilots in the role of enhanced ground operators
that were required to land aircraft at alternative
landing sites when their primary destination was
unavailable. An Autonomous Constrained Flight
Planner was used to provide the operators with
recommended diversions which they were asked
to check for its validity.

Five studies (30%) required participants to
supervise the automation (i.e., monitor, respond
to, and manually operate) when required. In
three separate experiments, Skraaning and
Jamieson (2021) required licensed operators to
monitor, control, and operate a nuclear plant
under different levels of transparency and types
of automation. For the condition where trans-
parency was applied at the component level, the
operators were required to operate the plant and
respond to system upsets. For the condition with
plant-wide automation, the operators were re-
quired to monitor an agent in operating the plant
by itself but intervene in case of interrupts. On
a much more limited scale, Guznov et al. (2020)
asked their participants to monitor and operate
a simple robot in navigating a track. Each time
the robot went off-track, the participants were
required to intervene and put the robot back on
track. Similarly, Sanders et al. (2014) requested
their participants to maneuver a soldier through
an environment whilst looking for civilians and
mark these on a map. In addition, they were
asked to assist the soldier’s robotic teammate in
responding to navigational requests (i.e., de-
ciding where to go in ambiguous situations).
Finally, Chen et al. (2014, 2015) tasked their
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participants with monitoring UAV and perform
manual avoidance maneuvers as a result of
hazardous situations in the environment. In
addition, a search task was performed where
participants marked items of interest at the target
area.

In six studies (35%) participants were tasked
with only monitoring the automation. In
Selkowitz et al. (2015), Selkowitz et al. (2017),
and Wright et al. (2020), participants were re-
quired to monitor an autonomous squad member
through a video feed where their primary task
was to monitor the actions and information
provided by the autonomous squad member. As
a secondary task they were asked to monitor the
environment for threats. No manual intervention
was required for the autonomous squad member.
Du et al. (2019) and Pokam et al. (2019) required
participants to monitor the behavior of a self-
driving vehicle. No intervention was required by
the participants irrespective of the scenario or
the level of transparency applied. In the study by
Panganiban et al. (2020), participants were
supported by an automated wingman that was
tasked with countering threats by enemy
Surface-to-Air missiles. The participants were
required to monitor the automation only for the
level of support it provided for the mission and
the way it communicated its support to the
participant.

Operationalizations of Transparency
and Comparisons. The design of transparent
automation depends on the task, the context, and
the domain in which the automation is applied.
As such, what and how information is displayed
to the user is affected by the specific domain in
which transparency is applied and what tasks the
agent and user are expected to perform. Table 1
provides an overview of the various oper-
ationalizations in our sample. As illustration,
Selkowitz et al. (2017) and Wright et al. (2020),
using the same simulator test-bed, operational-
ized transparency through displaying icons and
colors representing the agent’s status (e.g.,
a battery indicator), its goals (e.g., a number
within an icon representing a way-point on
a map), its reasoning (e.g., a time indicator show
this as its priority), its projected outcomes (e.g.,
a red box next to a clock icon indicating a loss of

time), and its uncertainty (e.g., a light red border
around an event icon). The level of transparency
was manipulated by showing more or less of this
information per experimental run.

In terms of experimental comparisons, all
studies employed a cumulative approach where
transparency followed a continuum, that is, from
less to more transparent automation. Sub-
sequently, the experiments compared designs
with varying levels of transparency and mea-
sured their effect on relevant dependent varia-
bles. As illustration, Mercado et al. (2016) used
the SAT model to develop the user interface for
unmanned vehicle operations and designed an
experiment to assess the effect of each of the
levels of transparency described by the model:
Level 1 transparency provided only basic plan
information, Level 2 transparency provided the
automation’s reasoning and rationale behind
the recommendations, and Level 3 provided
the automation’s projections and uncertainties.
Based on this experimental design, compar-
isons were made between the levels of trans-
parency in terms of their effect on their dependent
variables.

Describing the Empirical Evidence

Table 2 describes the empirical evidence from
each of the studies.

Automation Transparency and SA. Situation
Awareness was measured in nine out of 17
studies. The instruments that were used to
measure the construct were Situation Aware-
ness Global Assessment Technique (SAGAT),
Situation Awareness Rating Technique (SART),
a confidence in own SA measure, and a Process
overview Measure. The results of the studies
fell in two categories, improved SA, and no
effect.

Selkowitz et al. (2017) reported an effect of
transparency on SA in terms of improved L2 and
L3 SA when monitoring an autonomous squad
member navigating through an urban area.
Adding affordances, hazards, environmental
constraints, and uncertainties seems to help the
operators in obtaining a better picture of the
situation. Likewise, Roth et al. (2020) also found
improved SA for tasks relating to mission
planning and system management for a manned-
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unmanned helicopter teaming operation. When
adding symbols that represented the agent’s
reasoning (e.g., the events that justified an in-
tervention), projected outcomes, and un-
certainties, improved SA was reported by the
participants when using the SAGAT method.
Furthermore, Skraaning and Jamieson (2021)
found improved SA in their second experi-
ment using SART. Here, nuclear control room
operators were given explicit verbal and visual
information about automation activities. When
verbal feedback was both behavioral and di-
agnostic (i.e., what equipment failed and why) in
contrast to only behavioral or no verbal feed-
back, operators reported improved SA. Finally,
Chen et al. (2014, 2015) reported evidence for
the effect of transparency on SAwhen providing
the UAV’s capability to the user. When the UAV
provided visual information regarding the
changes to its flight path, that is, a presentation
of the agent’s previous, present, or projected
flight path, SA improved. Likewise, when the
operator was able to communicate with the agent
using a natural language dialogue (e.g., a mes-
sage reading “Please control my altitude and
speed, I can follow my flight path”) participants
reported improved SA.

Some studies found that transparency did not
positively affect SA. For example, in their first
and third experiment, Skraaning and Jamieson
(2021) did not find differences between a tradi-
tional and transparent HMI, as measured by
SART, when the feedback by the system was
limited to behavioral information only (i.e., what
equipment failed and not why; first experiment).
Furthermore, no effect was found, as measured
by the Process Overview Measure, when plant-
wide agent-like automation was introduced
(third experiment), including detailed in-
formation regarding the agent’s historical and
ongoing activities. Likewise, Wright et al.
(2020) did not find differences in SA between
their transparency manipulations. For an au-
tonomous squad member task, they provided in-
depth information on the HMI indicating the
underlying factors as to why specific surface-
level information was presented. However,
adding in-depth information did not lead to
better SA amongst the participants. Also,
Guznov et al. (2020) did not find evidence for

improved SA. Participants were tasked with
monitoring and controlling a robot through an
environment. When the robot communicated
its perceptions and actions only (e.g., “I see
an obstacle on the right, so I am turning left”),
no differences for SA were found compared
to when the robot also included its projected
future outcomes (i.e., “I see an obstacle on
the left, so I will turn right in order to avoid
a collision”; emphasis added). Moreover,
Pokam et al. (2019) found similar results
when participants were asked to monitor the
actions of an autonomous vehicle. Finally,
Selkowitz et al. (2017, 2015) and Roth et al.
(2020) did not find an effect of transparency on
SA when monitoring an autonomous squad
member or when evaluating proposals for an
UAV mission (when using the SART method),
respectively.

Automation Transparency and Mental
Workload. Mental workload was measured in
two ways: objectively (eye-movements, sec-
ondary task performance) and subjectively
(NASA-Task Load Index (NASA-TLX), Per-
ceived Task Complexity scale, Dundee Stress
State Questionnaire (DSSQ), a 0-100 scale, and
the Bedford Mental Workload scale).

First, Selkowitz et al. (2017) used eye-
tracking and found that the duration of fix-
ations on the displays increased as a function of
transparency. This experiment introduced ad-
ditional symbology on the display (e.g., moti-
vators for the autonomous squad member,
predicted outcomes, uncertainty information),
and it appears that adding this information led
to increased dwell time on the display. Second,
Guznov et al. (2020) also found an increase
in mental workload, measured by using the
NASA-TLX, as a result of transparency. They
found that the primary driver was a significant
difference in the “physical workload” sub-scale
of the NASA-TLX. The authors concluded that
an increase in the amount of text led to addi-
tional reading load, which may have been in-
terpreted by the participants as increased physical
demand.

Some studies either did not record a differ-
ence in mental workload as a function of
transparency or recorded a reduction. For ex-
periment 3 in Skraaning and Jamieson’s study
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(2021), the authors developed two additional
displays with which the plant-wide agent-
oriented automation could be monitored.
These displays showed for example, which part
of an automated sequence was being executed, if
there were any alerts, the list of actions to be
taken, historical and ongoing activities. This
information, presented on separate displays, was
available in addition to the information in the
non-transparent condition. Nevertheless, the
operators reported no differences in terms of
mental workload. Similarly, Mercado et al.
(2016) developed a user interface for evaluat-
ing proposed plans for monitoring and con-
trolling multiple unmanned vehicles.
Transparency information consisted of text
boxes, sprocket graphics, opacity of icons,
colors, and bullet points. Mental workload was
measured using the NASA-TLX and a range of
eye-tracking measures. No differences were
found between the transparency levels in terms
of mental workload.

Skraaning and Jamieson (2021) measured
mental workload using the Perceived Task
Complexity scale on nuclear control room op-
erators. In experiment 1 and 2, transparency was
introduced at the component-level. That is,
transparent automation in this experiment was
operationalized in terms of visual presentation of
automatic activity next to the components on the
displays, dedicated displays for detailed moni-
toring of controllers and programs and verbal
and visual information about the automation’s
activities. Providing this additional information
resulted in lower perceived mental workload by
the participants. For a different task and setting,
Panganiban et al. (2020) also found reduced
mental workload when an automated wingman
communicated its intentions to support the hu-
man and to correct the human’s errors. Ac-
cording to this result, knowing that there is an
automated teammate present to support one’s
actions results in reduced mental effort on the
participants’ own tasks. Finally, Chen et al.
(2014, 2015) found that providing UAV capa-
bility information to the participants resulted in
lower workload, as measured by the NASA-
TLX.

One study reported that two workload
measures were used (NASA-TLX and DSSQ)

but did not report the results (Sanders et al.,
2014).
Automation Transparency and Operator
Performance. Operator performance was mea-
sured in two ways: objectively (task and re-
sponse accuracy, response time, detection of
events, goal achievement), and subjectively
(self-rated task performance). In addition, some
studies used more general measures of behavior:
verification activities upon receiving advice by
the automation, exploration of alternatives and
agreement to proposals.

Participants in Mercado et al.’s (2016) study
reported improvements in correct acceptances
(i.e., an acceptance of a proposal when it was
correct) and correct rejections (i.e., a rejection of
a proposal when it was incorrect) with increased
transparency. Stowers et al. (2020), in a similar
study, replicated these results by showing higher
percentages of correct responses on proposed
plans. Bhaskara et al. (2021) also provided
evidence that increased automation transparency
leads to improved decision accuracy on pro-
posals provided by an automated agent (“the
Recommender”). In terms of response time,
Skraaning and Jamieson (2021) found reduced
response times for component-level trans-
parency. Transparency focused display design
led to faster responses to minor and major
systems upsets. In addition, there is some sup-
porting evidence of the positive effect of
transparency in terms of faster initiation of
evasive maneuvers of UAVs to hazardous events
(Chen et al., 2015) and in the time needed to
evaluate the validity of planning proposals in
a joint helicopter and UAV mission (Roth et al.,
2020). Finally, Skraaning and Jamieson (2021)
found that increased transparency at the
component-level increased detection of process
deviations (e.g., alarms) and goal achievement
(e.g., successfully executing all steps in a start-
up sequence). This result was corroborated by
Chen et al. (2015) who found improved goal
achievement in terms of items of interest found
when performing an UAV search task.

Wright et al. (2020) found little evidence for
the effect of transparency on the accuracy of
detecting targets in the surrounding environment
when monitoring an autonomous squad mem-
ber. Similarly, Skraaning and Jamieson (2021)
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reported that when operators were tasked with
monitoring plant-wide, agent-like automation
performing a cold start-up of a nuclear power
plant (experiment 3), no clear benefits were
reported when responding to system upsets. In
the low transparency condition, the operators
had to derive the state of the plant based on
process parameters only. In the high trans-
parency condition, the operators had dedicated
displays available to show the agent’s plant-
wide activities. Still, no differences were
found in terms of goal achievement and self-
rated task performance. Finally, Mercado et al.
(2016) found little evidence for the effect of
transparency on response time to planning
proposals in an unmanned vehicle military pe-
rimeter defense task.

Stowers et al. (2020) reported slower response
times to proposed plans made by an intelligent
agent when monitoring and controlling multiple
unmanned vehicles. Also, Skraaning and
Jamieson (2021) reported a reduction in detect-
ing process deviations and in performing ver-
ifications of system information when dedicated
displays were used showing the activities of the
agent-oriented plant-wide automation.

DISCUSSION

Whilst performing the review, variations in
terms of scientific rigor between the studies
became apparent. As noted earlier by Bhaskara
et al. (2020), experimental studies regarding
automation transparency have primarily used
non-subject matter experts as participants. It is
important that research set in the context of
applied-, and safety critical domains, translates
to the actual domain it purports to be relevant
for. Twelve studies (71%) in our review reported
using non-subject matter experts as participants
in their experiments. Typically, these studies
used university students or laypeople from the
local community who were compensated for
their effort in terms of course credits or financial
payment. Only four studies (23%) used subject
matter experts. Skraaning and Jamieson (2021)
used licensed nuclear control room operators,
Sadler et al. (2016) used airline pilots, and
Pokam et al. (2019) and Du et al. (2019) used
automobile drivers. One study did not mention

what type of participants were used (Guznov
et al., 2020). Furthermore, there were large
differences in sample sizes between the studies,
from 10 to 176 participants. Although more
challenging to perform, especially with typically
difficult to recruit subject matter experts, studies
with larger sample sizes do provide more robust
statistical results (Funder & Ozer, 2019;
Schönbrodt & Perugini, 2013). This means that
the results from some of the studies with rela-
tively small sample sizes should be treated with
some caution. Moreover, different studies used
different techniques to measure the constructs of
SA, mental workload, and operator perfor-
mance. For example, Roth et al. (2020) mea-
sured SA using the SAGAT and the SART
method. The SAGAT found a positive effect of
automation transparency and the SART did not.
Possibly, the SART is more an indicator of
confidence in one’s own SA than of SA itself
(Endsley, 1988). Nevertheless, comparing re-
sults that were based on different measurement
methods can be challenging because of differ-
ences in sensitivities and reliabilities of these
methods. In this study, we have focused on the
experimental outcomes, as opposed to the
methodological analysis and discussion of the
various measurement tools implemented across
the reviewed studies.

Transparency, SA, Mental Workload, and
Operator Performance

In the introduction, we alluded to the re-
lationship between SA, mental workload, and
operator performance by stating that transparency
might alleviate some of the negative effects of
automation for SA and operator performance,
albeit at the potential cost of mental effort. In-
creased mental workload arises in cases where
multiple tasks are competing for the same re-
sources and task requirements exceed mental
capacity (Wickens et al., 2013). When the re-
sources required to build and maintain SA
overlap with resources required for task perfor-
mance, mental capacity may be exceeded which
may affect SA and subsequently performance
(Endsley, 1995; Endsley & Garland, 2000).

For the relationship between transparency and
SA, there are some indications for the increased
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disclosure of information by an agent and im-
proved SA. Notwithstanding information clutter
due to poor interface design (Kim et al., 2011),
transparency information may make it easier for
an operator to assess what the agent is doing and
why by making relevant information readily
available to the operator (Endsley, 2017). The
studies by Chen et al. (2014, 2015) show overall
improvements in SA, the study by Selkowitz
et al. (2017) found improved SA for Level 2
and 3 SA (but did not report overall results),
and the results from Skraaning and Jamieson
(2021) and Roth et al. (2020) show some mixed
results depending on how transparency was
implemented and which measurement in-
strument was used respectively. Still, having
the information directly perceivable on the
interface could reduce the burden on mental
processing capacity by reducing the need for
keeping multiple information elements in
working memory (van Doorn et al., 2021).

For mental workload, only two studies in our
sample showed an increase, the remaining studies
found either no effect or found a reduction. In-
terestingly, one of these was measured using eye-
tracking and showed an increase in fixation du-
rations, indicating increased information pro-
cessing with increased transparency (Selkowitz
et al., 2017). However, the other study that also
measured fixation duration using eye-tracking
did not find any significant result (Mercado
et al., 2016). Nevertheless, most of our studies
seem to indicate that increasing transparency did
not affect the participants to such an extent that it
led to information overload. Conversely, adding
transparency information did not consistently
lead to reductions in workload either. In all the
experiments in our sample, participants were
required to assess the performance of an agent,
either through evaluating decision options, in-
tervening in an ongoing process, performing
manual activities, or monitoring the agent. One
may expect that assessing the performance of an
agent, and its associated cognitive effort, would
be facilitated when the information about the
agent was made available to the user compared to
when it was not. Only the studies by Chen et al.
(2014, 2015), Skraaning and Jamieson (2021;
experiment 1 and 2), and Panganiban et al. (2020)
found this effect.

For operator performance, it was expected
that performance would improve with increased
transparency. There are some indications that
transparent automation leads to better discrim-
ination between correct use of proposals and
correct rejections in those studies in which this
was measured (Bhaskara et al., 2021; Mercado
et al., 2016; Stowers et al., 2020). Although
some studies did not report any differences in
decision accuracy (Guznov et al., 2020; Roth
et al., 2020; Wright et al., 2020), there were also
no studies that reported a deterioration. This
seems to indicate there is some merit in applying
transparency principles for tasks where auto-
mation usage decisions need to be made. We
also found a moderately positive relationship
between transparency and response times to
events, that is, system prompts or proposals
(Bhaskara et al., 2021; Chen et al., 2015; Roth
et al., 2020; Skraaning & Jamieson, 2021; ex-
periment 1 and 2).

As good SA, without requiring excessive
mental effort, increases the probability for good
operator performance (Endsley, 1995; van de
Merwe et al., 2012; van Doorn et al., 2021), we
assessed those studies in which SA, mental
workload, and performance were measured to-
gether. Five of the 17 studies measured these
three variables in conjunction. For three of these
studies, we see neutral or improved SA scores,
neutral or reduced workload together with im-
proved response times (Chen et al., 2015; Roth
et al., 2020, for SAGAT only; Skraaning &
Jamieson, 2021, experiment 1 and 2), goal
achievement (Chen et al., 2015; Skraaning &
Jamieson, 2021, experiment 1 and 2), and de-
tecting process deviations and performing ver-
ifications (Skraaning & Jamieson, 2021,
experiment 1 and 2). Guznov et al. (2020) found
increased workload scores but no effects for SA
and the number of correct responses and correct
rejections. Wright et al. (2020) did not find any
effect for SA, mental workload, and perfor-
mance on detecting target and time to identify
and assess events. Finally, Skraaning and
Jamieson (2021, experiment 3) found no ef-
fects for SA, workload, and operator perfor-
mance, and even reduced performance for
detecting and verifying events, when participants
were using plant-wide, agent-like automation
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where transparency information was made
available through dedicated displays. This in-
dicates that the benefits of transparency may be
affected by agent type, but also how transparency
information is made available to operators. The
absence of transparency benefits for this study
may be attributed to operator capacity issues in
simultaneously monitoring the process and the
agent, in addition to the attention-grabbing effect
of the (separate) transparency interface.

Transparency and Human-Automation
Interaction types

In the results section, we identified that the
studies from the sample can be categorized in
three distinct human-automation interaction
types; that is, participants were tasked with re-
sponding to proposals, supervising automation,
and monitoring automation. Knowing that the
automation interaction paradigm influences sys-
tem oversight and intervention (Endsley, 2017),
a better understanding for which types of tasks
transparent automation would provide the most
benefit may provide valuable insights to en-
gineers developing transparent designs. The al-
location of roles between humans and
automation, as well as the automation’s level of
sophistication, is important determinants in this
relationship (Endsley & Kaber, 1999). For ex-
ample, automation may provide decision support
to a human in direct control (Manzey et al., 2012;
Metzger & Parasuraman, 2005; Rieger &
Manzey, 2020), or automation may take the
form of an intelligent agent that works largely
independent, but with the human in a supervisory
role, ready to intervene when needed (Borst et al.,
2017). As the function distribution between
agents and humans dictate the distribution of
tasks, this in turn dictates the human information
needs to perform these tasks. Different function
distributions therefore lead to different operator
tasks, which lead to different information (i.e.,
transparency) needs (van Doorn et al., 2017).
Hence, how functions and tasks are distributed
between humans and agents is therefore an im-
portant element in understanding the relationship
between transparency and human performance.
As designing collaborative human-agent systems
entails making choices with regards to “who does

what with what information,” it is important to
understand how the purported transparency
benefits translate across different human-agent
interaction types.

For the studies where participants responded
to proposals, the data in Table 2 suggests a re-
lation between transparency and improved
correct evaluation of proposals without affecting
workload. None of the studies found changes to
workload as measured through rating scales,
secondary task performance and eye-tracking.
For operator performance, the studies by
Mercado et al. (2016), Stowers et al. (2020), and
Bhaskara et al. (2021) found improved use of
correct proposals and improved correct rejection
of incorrect proposals. Only Roth et al. (2020)
did not find an effect. In terms of response times
to proposals however, the picture is less clear.
Stowers et al. (2020) found an increase,
Mercado et al. (2016) and Bhaskara et al. (2021)
found a reduction, and Roth et al. (2020) found
no differences. Furthermore, the study by
Göritzlehner et al. (2014) showed a reduction in
number of separation conflicts, and Sadler et al.
(2016) found a reduction in the pilots’ verifi-
cation of the proposed plans. Unfortunately,
there is insufficient data to conclude on SA, as
for this interaction type, only one study mea-
sured the construct and it showed contrasting
outcomes (Roth et al., 2020). Still, the results
indicate that transparency has performance
benefits for this interaction type without adding
workload.

For supervising automation, a moderately
positive relation was seen between transparency,
improved SA, reduced workload, and improved
operator performance. The studies by Chen et al.
(2014, 2015) and Skraaning and Jamieson
(2021) found no change to SA (experiment 1)
or improved SA (experiment 2), reduced mental
workload and improved response times, ability
to detect events and goal achievement.
Skraaning and Jamieson’s third experiment did
not replicate these findings. Here they found no
differences for SA and workload and a decrease
in operator performance. Only Guznov et al.
(2020) found an increase in mental workload,
when supervising a robot through a maze, with
no differences for SA and operator performance
reported. Nevertheless, also for this interaction
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type, the results tend towards performance
benefits with limited effect on mental workload.

For monitoring automation, the relationship
between the HF variables and transparency is
somewhat unclear, however. Only the study by
Wright et al. (2020) measured the three con-
structs for this interaction type but found no
differences. None of the other studies captured
operator performance, so the data for this con-
struct is rather limited for this interaction type.
This is understandable as the participants were
not required to do anything other than moni-
toring. For SA and mental workload, there are
some indications for improved SA at the cost of
visual processing in monitoring an autonomous
squad member (Selkowitz et al., 2017). Reduced
mental workload was found when collaborating
with an automated wingman (Panganiban et al.,
2020). However, the study by Selkowitz et al.
(2015) did not find any relationship between
transparency, SA, and mental workload. Also,
the rest of the (individual) study results did not
indicate a relationship with transparency for this
interaction type.

Practical Implications

The results from these studies are relevant for
whenever systems are developed where humans
are required to work with agents to achieve
a common goal. However, the use of agents may
provide challenges for human interaction as
agents using neural networks are known to be
opaque and difficult to interpret (Sanneman &
Shah, 2020). As such, although these agents are
powerful and flexible in their application, they
may come at the cost of interpretability and
understandability for a human operator (Doshi-
Velez & Kim, 2017). For an agent to be trans-
parent to a human, it would imply the system
should provide understandability and pre-
dictability of its actions (Endsley, 2017); that is,
see into the information processing stages of the
agent such that its outcomes are understandable
to its user (Hepworth et al., 2020).

Research into strategic conformance, that is,
the extent of compatibility between human and
agent information processing, seems to suggest
improved automation acceptance rates and
reduced response times to system proposals.

This suggests that systems that “make sense” to
the human are easier to supervise as it alleviates
some of the workload related to trying to un-
derstand what the system is doing and why
(Hilburn et al., 2014; Westin et al., 2015). To
this end, the well-known human information
processing model by Parasuraman et al. (2000)
may be used as a basis for developing trans-
parent displays to achieve increased compati-
bility between human and agent information
processing. For example, an agent operating in
a real-world setting, for example, an anti-
collision tool for autonomous maritime navi-
gation (Statheros et al., 2008), may be able to
detect and integrate information based on
a suite of sensors, perform object classification,
create a representation of its environment,
plan actions considering relevant constraints,
and execute appropriate actions (DNV, 2018).
Making these stages understandable to a user
could imply graphically depicting relevant
information it has detected (e.g., using
bounding boxes around objects), classify this
information (e.g., the type of objects and their
characteristics), represent their relevance
(e.g., in terms of potential collision risks), and
indicate potential and highlight optimal sol-
utions based on a cost function (e.g., fuel,
time, safety), possibly including un-
certainties. Finally, these solutions could be
presented as a choice to the operator or au-
tomatically executed, depending on the
agent’s capabilities.

Adding information to the HMI of an in-
telligent agent that is compatible with human
information processing strategies, provided ade-
quate display design, should imply improved
human decision making without adding mental
workload. Furthermore, when the human is re-
quired to monitor, respond to, and manually op-
erate a function (i.e., supervise), improvements in
operator performance, mental workload, and SA
can be anticipated when the agent presents the
underlying information for its decision making
and (proposed) actions. However, careful con-
sideration should be given to how transparency is
practically implemented and integrated in existing
HMI solutions (i.e., primary task displays) such
that operator performance is sufficiently sup-
ported (National Academies of Sciences, 2021).
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Limitations

Performing a systematic literature review
requires making choices regarding the speci-
ficity of the study and its replicability. This
review appreciates that there may be research
on transparency that is published in non-
scientific channels (e.g., reports from re-
search institutes), studies that have researched
the construct without using the terms in our
search string or have published in channels not
captured in our databases. This means that,
although this study has aimed to perform
a broad review of the literature, it is likely there
is research on transparency that is not covered
by our SLR. However, for the sake of repli-
cability, this paper has chosen to make the
sampling and analysis of the data as objective
and open as possible. This means that no ad-
ditional research was added to the sample that
was not found in the search results.

The search spanned a range of over 20 years of
research on automation transparency. However,
results revealed that experimental studies focus-
ing specifically on automation transparency is
a recent topic of interest, at least in terms of
number of hits in our data sample. The oldest
study in the sample that meets our eligibility
criteria was published in 2014. A possible ex-
planation for this are the strict eligibility criteria
used. This SLR only includes experimental
studies on the topic of transparency, in safety
critical domains, for which a limited set of human
factors variables were measured. As such, articles
that discuss transparency conceptually (e.g.,
presenting models, frameworks, definitions), that
were outside the safety critical domain (e.g., care-
giving robots, explainability of algorithms for
loan application decisions), that presented sec-
ondary data (e.g., reviews), or that did not
measure SA, mental workload, or operator per-
formance (e.g., only usability, acceptance, or
trust), were not considered. A broader set of el-
igibility criteria could have resulted in additional
data, albeit at the cost of specificity. As such,
although transparency has been discussed in
publications before (e.g., Endsley et al., 2003;
Meister, 1999), there seems to be a relationship
between the time the construct was formalized
into theoretical models (Chen et al., 2014;

Johnson et al., 2014; Lyons, 2013) and the ex-
perimental studies these generated.

Finally, differences in statistical reporting
made comparison between the studies chal-
lenging. Some studies provided full statistical
disclosure in terms of p-values, effect sizes,
confidence intervals, sample sizes, and graphi-
cal representations of the data, whereas other
studies provided very limited to no statistical
information. As such, this made comparison
across the studies challenging and prohibited
a more rigorous quantitative comparison.

Conclusions and Future Work

This review mapped the “seeing-into” trans-
parency literature to address the relationships
between transparency and central human factors
variables. The data provided indications that hu-
man performance is enhanced when a function
keeps the operator in the loop by presenting
proposals and stating the reasons for them. Fur-
thermore, when the human is required to monitor,
respond to, and manually operate a function (i.e.,
supervise), improvements in operator perfor-
mance, mental workload, and SA can be antici-
pated when the agent presents the underlying
information for its decision making and (pro-
posed) actions. Adding this information to the
HMI of an intelligent agent, provided adequate
display design, should imply improved human
performance without adding mental workload.
However, there are subtle variations in SA, mental
workload, and operator performance for specific
tasks, agent-types, levels of information disclo-
sure, and level of integration of transparency in-
formation in primary task displays. Future work
should focus on understanding which information
types are valuable in conveying agent trans-
parency information (see alsoNational Academies
of Sciences, 2021). As a starting point, the in-
formation processing model by Parasuraman et al.
(2000) was suggested to allow increased com-
patibility between the agent’s and human’s in-
formation processing (Hilburn et al., 2014;Westin
et al., 2015). However, the degree to which this
model is suitable as tool to set agent transparency
requirements should be investigated further.

This study focused on the relationship between
agent transparency and operator performance in
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combination with two primary psychological
constructs SA and mental workload. However,
automation transparency is frequently researched
in relation to other variables, such as trust in au-
tomation (Chen et al., 2018; Lee & See, 2004;
Oliveira et al., 2020; Schmidt et al., 2020). Trust is
the attitude that an agent (or automation) will help
achieve a goal in uncertain and vulnerable cir-
cumstances (Lee & See, 2004) and is an important
element in determining automation usage. Oper-
ators may not use automation when they don’t trust
it, even though it is reliable. Conversely, high trust
in automation may lead to overreliance, that is,
using automation when it should not be
(Parasuraman & Riley, 1997). Transparent auto-
mation should help an operator to calibrate their
trust in automation such that automation is only
used when it should be (Lee & See, 2004). Al-
though this study did not include trust as part of its
inclusion criteria, the relevance of trust in relation
to automation transparency is not disputed. Like-
wise, additional variables such as cognitive pro-
cesses, system design features, environmental
features, and emergent characteristics involved in
automation oversight and interaction performance
(Endsley, 2017) were similarly excluded. As such,
this study focused on the key human variables SA
and mental workload in addition to operator per-
formance. Future studies could focus on estab-
lishing comprehensive evidence regarding
additional key variables in agent transparency and
assess their scientific consensus and practicalmerit.
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KEY POINTS

• Automation transparency is a design principle
aimed at enabling operators to understand what
automation is doing, why it is doing it, and what it

will do next (i.e., “seeing-into” transparency). It is
a means to address the challenges related to human
performance in interacting with systems that have
high degrees of automation.

• This study systematically gathered and assessed
empirical evidence for the relationship between
automation transparency, Situation Awareness,
mental workload, and operator performance using
the PRISMA method.

• There are three transparency models that dom-
inate the transparency research, however, there is
a significant body of research investigating
transparency without conforming to any partic-
ular model. The human-automation interaction
types employed in the research can be catego-
rized into responding to agent-generated pro-
posals, supervisory control, and monitoring
only. All studies investigated the effect of the
amount and type of transparency information on
performance variables.

• The empirical results from the studies point towards
a promising effect of automation transparency on
operator performance, without the cost of added
mental workload, for instances where humans re-
spond to agent-generated proposals and where
humans have a supervisory role.

• There are subtle variations in SA, mental workload,
and operator performance for specific tasks, agent-
types, levels of information disclosure, and level of
integration of transparency information in primary
task displays. There were limited findings for our
variables when humans were monitoring automa-
tion only.

• The outcomes have practical implications for the
design of systems where humans and automation
work towards a common goal.
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Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do
correlations stabilize? Journal of Research in Personality,
47(5), 609–612. https://doi.org/10.1016/j.jrp.2013.05.009

Selkowitz, A., Lakhmani, S., Chen, J. Y. C., & Boyce, M. (2015).
The effects of agent transparency on human interaction with an
autonomous robotic agent. Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, 59(1), 806–810.
https://doi.org/10.1177/1541931215591246

Selkowitz, A. R., Lakhmani, S. G., & Chen, J. Y. C. (2017). Using
agent transparency to support situation awareness of the Au-
tonomous Squad Member. Cognitive Systems Research,
46(194), 13–25. https://doi.org/10.1016/j.cogsys.2017.02.003

Sheridan, T. B., & Verplank, W. L. (1978). Human and computer
control of undersea teleoperators. Defense Technical In-
formation Center. https://doi.org/10.21236/ADA057655

Skraaning, G., Jamieson, G., & Jeffrey, J. (2020). Towards a deeper
understanding of automation transparency in the operation of
nuclear plants (INL/EXT-20-59469). U.S. Department of En-
ergy. https://doi.org/10.2172/1668828.

Skraaning, G., & Jamieson, G. A. (2021). Human performance
benefits of the automation transparency design principle: val-
idation and variation. Human Factors: The Journal of the
Human Factors and Ergonomics Society, 63(3), 379–401.
https://doi.org/10.1177/0018720819887252

Society of Automotive Engineers (2021). Taxonomy and definitions
for terms Related to driving automation systems for on-road
motor vehicles (J3016_202104 (pp. 1–41). Society of Auto-
motive Engineers. https://doi.org/10.4271/J3016_202104

Statheros, T., Howells, G., & Maier, K. M. (2008). Autonomous
ship collision avoidance navigation concepts, technologies and
techniques. The Journal of Navigation, 61(1), 129–142. https://
doi.org/10.1017/S037346330700447X

Stowers, K., Kasdaglis, N., Rupp, M. A., Newton, O. B., Chen,
J. Y. C., & Barnes, M. J. (2020). The IMPACT of agent
transparency on human performance. IEEE Transactions on
Human-Machine Systems, 50(3), 245–253. https://doi.org/10.
1109/THMS.2020.2978041.

Strauch, B. (2018). Ironies of automation: Still unresolved after all
these years. IEEE Transactions on Human-Machine Systems,
48(5), 419–433. https://doi.org/10.1109/THMS.2017.2732506

van de Merwe, K., Oprins, E., Eriksson, F., & van der Plaat, A.
(2012). The influence of automation support on performance,
workload, and situation awareness of air traffic controllers. The
International Journal of Aviation Psychology, 22(2), 120–143.
https://doi.org/10.1080/10508414.2012.663241
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Supporting human supervision in autonomous collision avoidance through 
agent transparency 
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A B S T R A C T

Ongoing trends in society point towards the adoption of intelligent agents across safety critical industries. In the 
maritime domain, artificially intelligent agents may soon be capable of autonomously performing collision and 
grounding avoidance (CAGA); a task traditionally performed by humans. Consequently, the role of humans is 
anticipated to change from those performing collision avoidance to those supervising an agent performing 
collision avoidance. One of the key concerns with regards to human factors is avoiding the out-of-the-loop 
performance problem where humans lose situation awareness (SA) and become susceptible to misinterpreting 
the agent’s decisions and planned actions. Despite previous research addressing human factors in autonomous 
shipping and remote control, few studies have focused on how to support the humans’ mental processes in this 
new role. Therefore, this study performed a goal-directed task analysis addressing goals, decisions, and SA re-
quirements for human-supervised collision avoidance. Data was obtained from in situ observations and in-
terviews with nine navigators onboard passenger ferries, an appraisal of the collision regulations, and of relevant 
company documentation. The task analysis identified specific SA requirements to make agents, capable of 
collision and grounding avoidance, transparent to their users. The results further indicate a change towards 
increased cognitive activities required to verify agent performance. Therefore, providing insight into the agents’ 
internal reasoning and actions becomes a key consideration in supporting future supervisors. Given the trends 
towards the application of artificially intelligent agents capable of autonomous behaviour, this study anticipates 
that transparency becomes an essential prerequisite for safe and effective human-autonomy system oversight.   

1. Introduction

1.1. Towards autonomous shipping

In recent years, the maritime industry has shown increased interest 
in developing autonomous solutions with the aim to achieve more effi-
cient, punctual, and safer operations (Kretschmann et al., 2017; Wróbel 
et al., 2017). To illustrate, the MUNIN research project (Maritime Un-
manned Navigation through Intelligence in Networks) explored safety 
and autonomy in a dry bulk carrier for deep-sea shipping (Burmeister 
et al., 2014) and DNV demonstrated its ReVolt concept to explore 
crewless short-sea shipping (DNV, 2018). Furthermore, Rolls Royce 
proposed an autonomous ferry in Finland showing its capabilities for 
fusing sensor information, detecting obstacles, avoiding conflicts and 
berthing automatically (Rolls Royce, 2018). The AUTOSHIP research 

project aimed to build, test, and operate two autonomous vessels with 
capabilities for short sea shipping and inland waterway scenarios 
(AUTOSHIP, 2019). In Japan the commercial ship Suzaku conducted a 
790-kilometre trial using a container ship, testing its autonomous nav-
igation capabilities (NYK, 2022). Finally, in Norway, the Yara Birkeland 
container ship and ASKO barges have commenced service with the aim 
is to sail without crew onboard, with remote supervision, in the near 
future (ASKO, 2022; Yara International, 2022).Table 1 

Although the reasons for pursuing autonomous operations are 
diverse, the prospect of reduced manning has sparked the interest of the 
industry. Autonomous and unmanned ships may allow for new and more 
efficient ship designs enabling lighter structures, reduced voyage costs, 
and/or increased payload capacity (Kretschmann et al., 2017; Kurt and 
Aymelek, 2022). In addition, the prospects of reduced crew (Kooij and 
Hekkenberg, 2020), and reduced number of fatalities by removing 
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personnel from the sharp end of the operations are also motivating 
factors (Wróbel et al., 2017). One key challenge to be resolved in moving 
towards autonomous and potentially unmanned shipping is collision 
and grounding avoidance. The ability to safely sail from port-to-port, 
resolve potential collisions with other ships, whilst avoiding 
grounding is an essential part of ship navigation. As such this piece of the 
autonomy puzzle has received much attention in ship autonomy 
research (Chaal et al., 2023; Li et al., 2023; Ramos et al., 2019; Statheros 
et al., 2008; Wróbel et al., 2017). 

1.2. The role of humans in collision avoidance 

The current legal framework concerning the obligations of the ship’s 
master (Vojković and Milenković, 2019) and the International Maritime 
Organisation’s Resolution A.1047 – Principles of minimum safe mann-
ing (IMO, 2011) have requirements for the presence of humans onboard 
ships. The objective of this regulation is “to ensure that a ship is suffi-
ciently, effectively and efficiently manned to provide safety and security 
of the ship, safe navigation and operations at sea […]” (2011, p. 3). 
However, the regulation also stipulates that the ship’s manning level 
should be based on an evaluation of factors including the ship’s level of 
automation and the degree of shore-side support. Notwithstanding other 
regulations, such as International Convention for the Safety of Life at Sea 
(SOLAS; IMO, 1974) and the International Convention on Standards of 
Training, Certification and Watchkeeping for Seafarers (STCW; IMO, 
1978), this means that to allow for unmanned and autonomous ships, 
the level of ship automation and shore-side support needs to be suffi-
cient. However, as there are challenges related to developing highly 
reliable systems capable of performing collision avoidance in all rele-
vant situations, most of the maritime autonomy concepts currently 
under development employ a human supervisor that monitors the ship’s 
operation and can intervene when the system’s performance is insuffi-
cient (Rødseth et al., 2021). Although the idea of having a human as a 
backup to compensate for system limitations is attractive, the intro-
duction of humans in a supervisory position to monitor advanced 
autonomous systems can introduce new and unknown risks (Ramos 
et al., 2019, 2018; Veitch and Alsos, 2022). 

At present, navigators determine the presence of collision risk and 
perform relevant avoidance manoeuvres supported by a range of 
instrumentation and control systems (Boissier, 2018; Cockcroft and 
Lameijer, 2011). In the future, autonomous ships are envisioned to 
deploy artificially intelligent agents capable of sensing its environment 
and executing goal-directed behaviour using actuators (Russell and 
Norvig, 2022). Such agents are anticipated to be able to perform the 
navigational tasks, independent of human input, by having an ability to 
detect targets, determine collision risks, decide how to avoid collisions, 
and execute avoidance manoeuvres. To understand how navigational 
risk changes when transitioning from human- to autonomous collision 
avoidance, Fan et al. (2020) explored a range of factors influencing the 
navigational risk of autonomous ships. They found that humans super-
vising autonomous systems may, among others, be prone to information 
overload, reduced vigilance, automation bias, data misinterpretation, 
inappropriate SA, lack of knowledge or skills, and lack of mechanisms to 
intervene. As such, among the human-, ship-, environmental-, and 

technological factors considered, human-related factors were most 
frequent among these four. These findings corroborate with the state-of- 
the-art regarding human factors related challenges associated with 
monitoring complex systems, such as complacency (Parasuraman and 
Manzey, 2010), automation bias (Wickens et al., 2015), reduced vigi-
lance (Wohleber et al., 2019), increased workload during manual take- 
overs (Endsley, 2017), and SA related issues (Endsley and Kiris, 1995). 
Given these findings in the context of autonomous shipping, it becomes 
clear that further understanding is needed regarding the role of the 
human as a supervisor in autonomous collision avoidance. 

1.3. Human-supervised collision avoidance 

Collision avoidance is internationally regulated through the collision 
avoidance rules and were developed to provide the “rules of the road” 
for maritime traffic. The collision regulations (“COLREGs”) came into 
force in 1977 and, although the rules have been amended several times 
since, they do not consider autonomous ships (IMO, 1977). However, 
ongoing work at the IMO is considering how to amend the rules to 
accommodate for the presence of autonomous ships in national and 
international waters (IMO, 2022, 2018). Nevertheless, for the foresee-
able future, it is assumed that the COLREGs will apply for all ships; 
autonomous and conventional alike (Ringbom, 2019; Zhou et al., 2020). 

An important challenge to consider in accommodating the COLREGs 
for autonomous ships is how to address the qualitative and interpreta-
tive nature of the rules (Porathe, 2019a). For example, Rule 8 “Action to 
avoid collision” states: “any action to avoid collision shall be taken in 
accordance with the Rules of this Part and shall, if the circumstances of 
the case admit, be positive, made in ample time and with due regard to 
the observance of good seamanship.” This rule is a good example of the 
use of terminology that may make sense to a human, but that an 
autonomous system may find difficult to conform with. That is, what 
does “ample time” mean in this context? And how does one quantify 
“good seamanship” (Porathe, 2019b; Zhou et al., 2020)? Furthermore, 
Rule 2 “Responsibility” states: “In construing and complying with these 
Rules due regard shall be had to all dangers of navigation and collision 
and to any special circumstances, including the limitations of the vessels 
involved, which may make a departure from these Rules necessary to 
avoid immediate danger.” Interestingly, this rule takes interpretability 
one step further by stating that every ship has the responsibility to avoid 
collisions even if this implies breaking the rules. It may be a challenge to 
envision an autonomous CAGA system designed to adhere to the rules 
whilst at the same time designed to break them (Miyoshi et al., 2022). 

One could consider setting boundaries for the autonomous system by 
defining when collision avoidance responsibility is performed by the 
system and when it is performed by the navigator. This would allow the 
system to operate autonomously within clearly defined limits and 
delegate responsibility when it cannot perform its function to a sufficient 
degree. For example, some authors have argued for an “operational 
envelope” concept where the ship’s design, intended operations and 
environment are defined to scope the intended operations of the system 
(Rødseth et al., 2021). Within these limits, all foreseen tasks and oper-
ations reside, including tasks by the system and the human supervisor. 
When an autonomous CAGA system is unable to resolve a collision sit-
uation, it can prompt the supervisor by providing a take-over request 
allowing the supervisor to assume the collision avoidance task or 
otherwise take control of the ship. Alternatively, a supervisor may be 
unsatisfied with the performance of the system and initiate an inter-
vention at the supervisor’s own discretion. Regardless of the type of 
intervention, the introduction of a CAGA system changes the role of 
navigators from the ones performing collision avoidance to ones supervising 
an agent performing collision avoidance. 

To better understand this change, some studies have focused on how 
to design remote control centres to support humans in performing 
remote supervision of autonomous vessels (Man et al., 2018, 2016; 
Porathe, 2021, 2014). In addition, some have built and evaluated 

Table 1 
Interviewee demographics and experience with selected technologies.   

Min Max Mean Median Std. dev. Yes No 

Navigational licence (D2/D1)      9 0 
Navigational experience (yrs.) 7 48 30,6 35,0 13,9   
Experience at sea (yrs.) 15 53 36,3 41,0 14,2   
Experience with:        
Track control autopilot      9 0 
Auto-docking      6 3 
Auto-crossing      9 0 
Auto-departure      5 4  
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control centre research facilities to study human factors in potential 
remote supervision scenarios (Alsos et al., 2022; Hoem et al., 2022). 
Others have focused on developing risk models and methods to 
accommodate human reliability in maritime autonomous collision 
avoidance with remote supervision (Ramos et al., 2020, 2019; Thieme 
and Utne, 2017; Ventikos et al., 2020). However, few studies have 
focused on the human’s cognitive changes related to this role change. In 
addition, few studies have focused on how to support the cognitive 
processes to aid human supervisory performance in an autonomy 
context. To this end, this paper investigates how goals, decision making, 
and information needs change and which requirement need to be set on 
the information provided by the autonomous system to support effective 
human oversight. 

1.4. This study 

This study aims to explore human-supervised autonomous collision 
and grounding avoidance by systematically investigating two case 
studies: a case where collision and grounding avoidance is performed by 
a navigator, and a case where this task is performed by a human- 
supervised system. In particular, this study aims to systematically 
explore how human supervisors will be able to understand the system’s 
collision and grounding avoidance decisions and actions through map-
ping goals, decision, and information needs. By focusing on the cogni-
tive aspects rather than the technology, the analysis is not constrained 
by how autonomous collision avoidance technology is implemented. 

For example, according to the degrees of autonomy as defined by 
IMO (2018), CAGA systems may be deployed on a manned bridge where 
only the collision avoidance and grounding task is allocated to the CAGA 

system (degree 1). The system may be deployed on a remotely controlled 
manned ship where local seafarers can be called to the bridge and assess 
the CAGA system’s plans (degree 2). The system may be deployed on an 
unmanned ship with remote supervision by operators from a remote- 
control centre (degree 3). Finally, the system may be deployed on an 
unmanned and autonomous ship capable of independent operations 
(degree 4). Although the latter case is the most futuristic and visionary, 
for the foreseeable future it is unlikely that such vessels will be devoid of 
human interaction and are thus likely to have some form of supervision. 

Given the multitude of potential control configurations, function 
allocation possibilities, and degrees of autonomy, this study has chosen 
to focus on the common denominator, i.e., CAGA systems and their 
interaction with human users. That is, the study concentrates on iden-
tifying the information required to make CAGA systems understandable 
and predictable to the human user irrespective of how autonomy is 
solved. This allows the analysis to focus on what humans ideally would 
like to know to make decisions and achieve their goals within their 
operational context (Endsley et al., 2003). As such, this study aims to 
establish an information basis for developing human supervised CAGA 
systems in the ship autonomy context. 

2. Method 

2.1. Establishing a framework 

A Goal-Directed Task Analysis (GDTA) was performed to determine 
and describe the cognitive processes involved in collision avoidance 
(Endsley et al., 2003). Specifically, the goals, decisions, and SA re-
quirements relevant for avoiding collisions were captured providing an 

Fig. 1. The Goal-Directed Task Analysis approach (Endsley et al., 2003).  

Fig. 2. The analysis framework employed in this study.  

K. van de Merwe et al.                                                                                                                                                                                                                        



Safety Science 169 (2024) 106329

4

understanding of how decisions are made when handling vessel collision 
situations (see Fig. 1). Task analysis is typically performed prior to 
system design to understand what humans are required to do, in terms of 
tasks and/or cognitive processes, to achieve an overall goal. With this 
method, a detailed picture of human involvement in a system is created, 
and requirements are established to ensure the goals can be achieved 
(Kirwan and Ainsworth, 1992). 

As depicted in Fig. 2, the analysis encompassed two case studies: a 
baseline case, where a navigator was in direct control of the vessel, and a 
case where a system performs collision avoidance autonomously under 
human supervision, including intervention. The baseline case was used 
to analyse how collision avoidance is performed in the present, and to 
form the information basis for analysing this task in future supervised 
autonomous collision avoidance. Based on four data sources, the anal-
ysis was performed for each case, and the results were validated with 
independent SMEs. 

2.2. Input data 

Four information sources were used as input data: in situ interviews 
with navigators, in situ observations on ship bridges, the COLREGS, and 
collision avoidance procedures of a ferry operator. 

2.2.1. In situ interviews with navigators 
Nine navigators, all of whom had an active navigational license at 

the time of data collection (see Table 2) were interviewed using a semi- 
structured format on the bridge of ro-ro ferries whilst on active duty. The 
interviews were conducted over a period of two months and were per-
formed on multiple ships operated by the same company, sailing the 
same route. The first part of the interview focused on conventional 
collision avoidance and aimed to capture goals, decisions, and the in-
formation elements navigators typically use in collision avoidance (i.e., 
the baseline case). The questions for this part of the interview focused on 
how navigators establish an awareness of the surrounding traffic, 
determine collision risk, and decide on the actions needed to avoid 
collisions. In addition, the interviews captured which information and 
equipment navigators typically need to perform these tasks. The second 
part of the interviews focused on the navigators’ potential interaction 
with an autonomous CAGA system (i.e., the supervision case). For this 
part, a series of questions based on a modified MITRE Human-Machine 
Teaming Systems Engineering Guide (MITRE, 2018) was used to identify 
SA requirements when humans team with advanced automation to 
perform a task. 

Participation in the interviews was based on informed written con-
sent, voluntary, and was approved by the Norwegian Centre for 
Research Data’s ethics committee (reference nr. 579620). As the in-
terviews were performed whilst the navigators were on active duty, 
questions were only asked when these did not interfere with their work, 
and at their discretion. As such, the total interview time was between 
four and six hours per interview. 

2.2.2. In situ observations 
In situ observations were performed of how potential collision situ-

ations were handled by navigators on duty. The observations were 

performed whilst interviewing the navigators and were conveniently 
used as examples and objects of enquiry during the interviews. There-
fore, potential collision situations that arose during the visits were 
observed, noted, and discussed in detail. 

2.2.3. COLREGs 
An appraisal of the COLREGs was performed to identify goals, de-

cisions, tasks, and information needs provided in the rule descriptions. 
For this study, the analysis focused on the general conduct of ships in 
any cases of visibility. The COLREGs describe, to a degree, the tasks to be 
performed in ship-to-ship encounters. As such, the information already 
embedded in the rule descriptions was used to understand how navi-
gators establish an awareness of the traffic, estimate safe speed, deter-
mine collision risk, and decide on which actions are needed to avoid 
collisions. Specifically, the following rules described in COLREGs Part B 
– “Steering and Sailing Rules, Section I - Conduct of vessels in any
condition of visibility” were within the scope of the analysis (IMO,
1977):

• Rule 5 – Look-out
• Rule 6 – Safe speed
• Rule 7 – Risk of collision
• Rule 8 – Action to avoid collision

This subset of the COLREGs is concerned with the process of estab-
lishing awareness of the environment, how to choose a safe sailing speed 
given the circumstances, how to assess if a risk of collision is present, and 
how to decide which actions to take to avoid collisions. This subset of the 
rules lays the foundation of the collision avoidance process, applicable 
in all circumstances, traffic situations, and visibilities. However, these 
rules do not describe how to address specific collision situation types, e. 
g., overtaking, head-on, and crossing situations, as these are described in 
rules 14, 15, and 16 respectively. Therefore, this analysis does not 
address specific traffic encounters, but focuses on the generic processes 
of building SA through look-out, establishing a risk picture, and per-
forming collision avoidance manoeuvring through avoidance actions 
and safe speed. Therefore, as this study is interested in the goals, 
decision-making, and SA requirements for collision avoidance, the 
analysis was limited to this subset of the COLREGs only. Also, this study 
focused on ship-to-ship situations where both parties are in motion and 
allision was therefore out of scope of this analysis. 

2.2.4. Company procedures 
Operational procedures from a ferry operator were reviewed to 

supplement and support the COLREGs appraisal and identify any con-
crete operationalisations relevant for collision avoidance. Specific focus 
was on written documentation about the ferry operator’s interpretation 
of the rules and the roles, responsibilities, and actions relevant in 
avoiding collisions. 

2.3. Analysis 

Two cases were analysed: a baseline case, and a supervision case. The 
baseline case concentrated on collision avoidance performed by a 
navigator on the bridge and assumed a modern sea-going ship sailing in 
open waters. The collision avoidance task was assumed to be exclusively 
performed by the navigator, supported by modern navigational equip-
ment, e.g., a radar with automatic plotting aids (ARPA), automatic 
identification system (AIS), and electronic chart display and information 
system (ECDIS). The analysis focused on the navigator’s cognitive ac-
tivities associated with building and maintaining SA of the ship in its 
operational environment (Rule 5), determining safe sailing speed (Rule 
6), determining collision risk (Rule 7), and planning and executing 
avoidance manoeuvres (Rule 8) according to COLREGs (see Fig. 3). 

Table 2 
Workshop participant demographics and experience with selected technologies.   

Min Max Mean Std. dev. Yes No 

Navigational license (D2/D1)     2 0 
Navigational experience (yrs.) 5 18 11,5 9,2   
Experience at sea (yrs.) 5 10 7,5 3,5   
Experience with:       
Track control autopilot     2 0 
Auto-docking     0 2 
Auto-crossing     1 1 
Auto-departure     0 2  
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The supervision case concentrated on the human supervision of a 
CAGA system to which the collision avoidance function was allocated. 
This system was assumed to be able to sense and keep track of its 
environment through a suite of sensors, estimate a safe sailing speed, 
determine collision risk, and calculate, plan, and execute avoidance 
manoeuvres, in accordance with COLREGs. In this case, the navigator 
was assumed to retain the final authority of the collision avoidance 
manoeuvring of the ship and therefore had the role of the user of the 
CAGA system tasked with its supervision. The location of the user was 
not defined as this case aimed to answer the question as to what infor-
mation the system should disclose about its itself to provide under-
standability and predictability to its user. This case is therefore 
implementation agnostic, and the analysis is therefore limited to iden-
tifying the SA requirements for CAGA such that monitoring, and inter-
vention can be performed by a human user (see Fig. 4). 

2.4. Validation 

Data gathering and analysis was performed by the first author. To 
validate the data, workshops were held with two independent naviga-
tors (see Table 2 for demographics and experience). In these workshops, 
the analysed data was reviewed and discussed, and changes, clarifica-
tions, and revisions were made where needed. The use of independent 
navigators provided validation of the data set and additional confidence 
in its contents. 

3. Results 

The results for the analyses are described for each of the COLREGs 
rules 5 to 8 respectively. 

3.1. Rule 5: Look-out 

According to COLREGS rule 5 - Lookout, “every vessel shall at all times 
maintain a proper look-out by sight and hearing as well as by all available 
means appropriate in the prevailing circumstances and conditions so as to 
make a full appraisal of the situation and of the risk of collision” (IMO, 
1977). Establishing and maintaining a lookout is a continuous task that 
lies at the foundation of collision risk avoidance. For the baseline case, as 
depicted in Fig. 5, key goals for the navigator to perform lookout include 
determining the presence of vessels and other navigational constraints 
to perform an appraisal of the situation and determine collision risk. To 
achieve these goals, many information sources are available to the 
navigator, including information obtained from direct sensory percep-
tion (i.e., through sight and hearing), and information obtained through 
instruments (e.g., radar, AIS). Initial collision risk estimation is achieved 
by observing the relative motion of targets, e.g., by taking a visual 
bearing, if possible, and through available radar and AIS functionality 
on the bridge, e.g., (Time to) Closest Point of Approach (TCPA/CPA) 
estimates, Bow Crossing Range/Time (BCR/BCT) estimates, the use of 
true- and relative vectors, target vessel course changes, messages from 
Vessel Traffic Services (VTS) and other vessels. 

In the supervision case, the look-out function is now performed by 
the CAGA system, and the aim of the user of CAGA is to verify that the 
system has performed an adequate appraisal of the situation and 
determined collision risk. In order for the user to obtain insight into the 
system’s perception of its environment, the CAGA system should, at 
minimum, show which elements in its environment it has identified (e. 
g., vessels, objects, terrain, and other navigational constraints) and 
which of these pose a collision risk (see Fig. 5). By providing insight into 
what the system perceives and how it appraises its environment, the user 
should have an adequate information basis to understand the system’s 
interpretation of its surroundings. An intervention by the user could be 
driven by a mismatch between the information the system depicts and 
the user’s perception of the environment. As such, Fig. 5 also depicts the 
need for the information from the baseline case to be available to the 
user. For example, an incompatibility between the targets, objects, or 
terrain identified by the CAGA system and reality may trigger scrutiny 
by the user and initiate a possible intervention. This may especially be 
relevant when a missed target has consequences for the collision risk. 
Therefore, for a user to be able to assess the veracity of the information 
provided access should be provided to independent information sources. 
In a degree 1 level of autonomy, this may be provided by systems already 
available on the ship’s bridge, including the outside view. However, in a 
remote supervision case (degree of autonomy 2, 3, and 4), this infor-
mation should be provided through sources independent of the CAGA 
system. 

3.2. Rule 6: Safe speed 

Rule 6 – Safe speed is described as “every vessel shall at all times 
proceed at a safe speed so that she can take proper and effective action to 
avoid collision and be stopped within a distance appropriate to the prevailing 
circumstances and conditions” (IMO, 1977). In determining safe speed, 
the navigator shall consider several influencing factors that shall be 
taken into account such as the state of visibility, traffic density, 
manoeuvrability, background lights, meteorological conditions, and 
draught in relation to water depth. In addition, limitations of equipment, 
i.e., radar, shall be considered. The resulting safe speed is therefore not a 
value that can be determined upfront (notwithstanding speed re-
strictions imposed by local authorities) but is derived from a continuous 
cognitive process performed by the navigator in which these variables 
are mentally weighted resulting at a speed that is deemed safe (see 
Fig. 6). 

In the supervision case, the primary goal of the user is to verify if the 
CAGA system provides adequate speed input to the control system of the 
vessel such that the vessel’s speed is adapted to the circumstances. This 

Fig. 3. The baseline case, in which the navigator performs the look-out task, 
determines safe sailing speed, identifies potential collision risks, and performs 
collision avoidance manoeuvring. 

Fig. 4. The supervision case, in which the user is tasked with supervising the 
CAGA system and perform intervention when needed. 
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means that the user should be able to evaluate if the speed the CAGA 
system has chosen is within an acceptable operational range. Any de-
viations from this range (e.g., speed too high or too low) may trigger 
intervention, or at a minimum, a search for better understanding the 
reason for the speed setting. For example, as depicted in Fig. 6, rule 6a 
describes the range of parameters to be considered in the estimation of 
safe speed. An error in CAGA’s interpretation of one of these parameters 
may result in incorrect speed estimations. Also, rule 6b states that lim-
itations to radar equipment should be taken into consideration when 
determining safe speed. For the CAGA system, this means uncertainties 
in its sensor systems (e.g., cameras) shall be considered when estimating 
speed. In cases of uncertainties in the sensor information, or errors in the 
CAGA system’s interpretation of sensor uncertainty, user intervention 
can be considered. 

3.3. Rule 7: Risk of collision 

Rule 7 – Risk of collision is described as “a. every vessel shall use all 
available means appropriate to the prevailing circumstances and conditions to 
determine if risk of collision exists. If there is any doubt such risk shall be 
deemed to exist” (IMO, 1977). In addition, the subsections to rule 7 
describe that “b. […] proper use shall be made of radar equipment […]”, “c. 

[…] assumptions shall not be made on the basis of scanty information […]”, 
and d. that compass bearing estimations shall be used whilst being 
aware of its limitations at close range, when target vessel is large, or 
when target vessel uses a tow. After the initial risk estimation as 
described in rule 5, rule 7 describes the risk assessment process in more 
detail. Here, the goal for the navigator is ultimately to determine the 
collision risk through a process of obtaining sufficient and reliable in-
formation and applying risk estimation techniques. An important 
element here is how uncertainty is handled. As the navigator estimates 
risk through primary senses (sight and hearing) and with the help of 
decision aids (e.g., radar and AIS), uncertainty in the information 
available to the navigator can hamper accurate risk estimation. Reliable 
and multiple independent information sources should minimize the 
need for assuming collision risk, but if these are not available, a risk of 
collision shall be deemed to exist (see Fig. 7). 

In the supervision case, the primary goal of the user is to verify that 
the CAGA system has correctly determined a risk of collision. This task is 
at the centre of the CAGA system as correct risk estimation is a pre-
requisite for correct risk avoidance. Essentially, this means the user 
should be able to verify that the system has determined collision risk 
given the detected targets, their estimated future tracks, and CPA esti-
mates. A mismatch between the system’s estimation of collision risk and 

Fig. 5. GDTA for COLREGs Rule 5 – Look-out. Key: COG: Course Over Ground.  
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the user’s estimation may be a reason for the user to intervene or at 
minimum to understand the background for the system’s collision risk 
estimate. For example, rule 7b, c, and d state the need to evaluate risk of 
collision as early as possible, not to make assumptions based on scanty 
information, use compass bearings, and that risk estimations should 
consider vessel size, tow, or proximity to the target vessel. This means 
that a late detection, a detection based on uncertain sensor information, 
or one that fails to consider vessel type, size, and distance may lead to 

insufficient collision estimation and may require intervention (see 
Fig. 7). 

3.4. Rule 8: Action to avoid collision 

Rule 8 – Action to avoid collision is described as “a. any action to 
avoid collision shall be taken in accordance with the Rules of this Part and 
shall, if the circumstances of the case admit, be positive, made in ample time 

Fig. 6. GDTA for COLREGs Rule 6 – Safe speed.  
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and with due regard to the observance of good seamanship” (IMO, 1977). 
Furthermore, the rules’ subsections describe that, b. actions by the 
vessel shall “[…] be large enough to be readily apparent to another vessel 
[…]”, “c. […] alteration of course alone may be the most effective action 
[…]”, d. when avoiding collision, the action “[…] shall be such as to result in 
passing at a safe distance […]”, e. a reduction in speed can be used “if 
necessary to avoid collision or allow more time to assess the situation […]”, 
and f. there are a number of priorities to take into account when 
deciding to give-way or stand-on. For rule 8, the goal of the navigator is 

to execute actions as to avoid collision with another vessel (including 
knowing when to stand-on). A central element in rule 8 is that actions by 
the vessel avoiding collision shall be readily apparent to the other, 
positive, and executed in good time and with the observance of good 
seamanship. A key decision to be made by the navigator is therefore to 
decide on actions that meet these requirements. Although there are no 
hard acceptance criteria for what a manoeuvre with the observance of 
good seamanship is, the results indicate that a manoeuvre which ensures 
that the other vessel has understood one’s intention meets these criteria, 

Fig. 7. GDTA for COLREGs Rule 7 – Risk of collision.  
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Fig. 8. GDTA for COLREGs Rule 8 – Actions to avoid collision.  
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e.g., a minimum 10-degree course change, and/or a 5–10 knots speed
change was suggested.

For the supervision case, the primary goal of the supervisor is to 
verify that the CAGA system executes collision avoidance manoeuvring 
according to the COLREGs. That is, according to rule 8a, collision 
avoidance manoeuvres should be executed using positive, timely, and 
actions with good seamanship. As mentioned in the baseline case, there 
are no explicit acceptance criteria for what constitutes a manoeuvre with 
good seamanship, but it was clear that movements that clearly demon-
strate the vessel’s intention are central to this notion. This means that a 
CAGA system built to manoeuvre according to COLREGs should be able 
to make its avoidance manoeuvres apparent to other vessels (rule 8b), 
using substantial route and/or speed changes (rule 8c and 8e), ensuring 
sufficient distance to the target vessel (rule 8d), such that its intentions 
are clearly understood. This also applies to cases where the CAGA sys-
tem is the stand-on vessel and required to continue its course (rule 8f), 
and where it is the other vessel’s obligation to take evasive action. 
Therefore, when collision avoidance is required, the task of the user is to 
verify if the CAGA system’s current and intended avoidance manoeuvres 
satisfy the notion of good seamanship. Incorrect, insufficient, or un-
timely (intended) actions may trigger a decision to intervene (see Fig. 8). 

4. Discussion

4.1. Information support for decision-making in a dynamic context

Transitioning from conventional collision avoidance to human- 
supervised autonomous collision avoidance has consequences for the 
locus of the decisions and actions associated with this task. In conven-
tional collision avoidance, decisions, and avoidance actions are per-
formed by the navigator. In the supervision case, these have now been 
outsourced to an artificially intelligent agent capable of collision and 
grounding avoidance. In turn, the supervisor is left with the task of 
overseeing the agent’s decision-making and actions. The CAGA system 
continuously detects and analyses its environment in search for traffic 
conflicts, and subsequently makes decisions and executes manoeuvres to 
avoid collisions whilst informing the human supervisor about its actions. 
As the system is not dependent on input from the supervisor to perform 
its actions unless deemed necessary, this type of automation imple-
mentation requires a high degree of sophistication. The role of the 
human has therefore changed from an active one to supervisory one that 
manages a system by means of exception (Cummings et al., 2007; 
Sheridan and Verplank, 1978). 

In this type of supervisory control, the system informs the supervisor 
of a collision avoidance solution and allows for a restricted time to veto 
before the solution is executed. In our supervision case, the system may 
detect a ship on collision course, determines that own-ship is the give- 
way vessel, calculate evasion alternatives and select the optimal op-
tion based on a cost function. This alternative is subsequently presented 
to the supervisor to evaluate, and the supervisor is given a limited 
amount of time to veto the solution before it is executed. However, as 
navigating is an activity performed in a continuously evolving dynamic 
context, vessel-to-vessel encounters may occur at any given moment or 
change over time. As such, a supervisor should not depend on, and wait 
for, avoidance solutions from the system to present themselves. For 
example, as identified for rule 8a in Fig. 8, a supervisor may intervene in 
the system in cases of errors in the CAGA system’s current actions, 
planned actions, or timeliness of its actions. Furthermore, rule 7a states 
that a supervisor may intervene if there is an error in the risk estimation 
capabilities of the system. For such cases, it would not be prudent for a 
supervisor to wait for the system to come up with a (potentially unre-
liable) solution, but to act proactively and intervene at own initiative. 

Self-paced transitions have demonstrated potential benefits in terms 
of control performance, compared to system-initiated transitions in 
automated driving tasks (Eriksson and Stanton, 2017; Kircher et al., 
2014). Self-paced take-overs, however, imply that the supervisor can 

assess system performance, i.e., able to assess the system’s and/or ship’s 
behaviour close to the edge of the operational envelope but which has 
not (yet) led to a take-over request. For example, upon detecting a 
collision situation with another vessel, the supervisor may notice the 
absence of an avoidance manoeuvre by their own ship, despite expecting 
there to be one (Fig. 8, rule 8a). Alternatively, the system may perform 
an avoidance manoeuvre that, according to the supervisor, is not 
deemed sufficiently safe in terms of distance (Fig. 8, rule 8d), leading the 
supervisor to decide to perform an avoidance manoeuvre manually. 
Such deviations between system behaviour and the supervisor’s expec-
tations of the system’s behaviour may prompt a decision to intervene at 
own discretion. To make such decisions in an ever-changing context, and 
to intervene at any moment and at one’s own initiative, the supervisor 
needs to have appropriate SA based on access to continuous, sufficient, 
and relevant information (Endsley et al., 2003; Sheridan, 2002). This 
study has made explicit which information elements would be needed to 
support supervisors performing this task. 

4.2. Disclosing the agent’s reasoning 

Evaluating agent behaviour in a dynamic high-risk context puts re-
sponsibility on the human to adequately perform the supervisory task. 
Essentially, in the supervisory case the role of the human is transformed 
from one actively performing collision avoidance, to a supervisor veto-
ing the CAGA system’s solutions (Veitch et al., 2022). Earlier and 
ongoing research have explored the complexities of humans interacting 
with highly sophisticated automation in terms of human performance 
(Bainbridge, 1983; Endsley, 2017; Strauch, 2018). An intricate chal-
lenge exists in cases where humans interact with systems to which more 
automation is added. The addition of automation adds to the overall 
reliability and robustness of the system, whilst the human’s ability to 
take over manually decreases due to reduced SA. This “automation 
conundrum” and its effects need to be well understood when developing 
human-supervised CAGA systems in which humans take a management- 
by-exception role (Endsley, 2017). That is, despite some evidence for 
improved overall operator performance, management-by-exception 
may, amongst others, come at the cost of increased levels of automa-
tion bias (Cummings and Mitchell, 2007). 

Automation bias occurs when operators do not search for informa-
tion disconfirming the proposed solution by the system (Parasuraman 
and Manzey, 2010). The consequences of automation bias in supervisory 
control of autonomous CAGA systems are a concern because of the risks 
associated with erroneously executed avoidance manoeuvres. Automa-
tion bias may manifest itself when humans interact with agents designed 
to aid decision making in complex environments. The tendency to rely 
on the agent’s decisions makes humans less critical to scrutinise the 
background information for the proposed solution. Therefore, placing 
too high trust in the agent’s proposals becomes a problem when the 
agent is not fully reliable (Bowden et al., 2021; Hutchinson et al., 2022; 
Lee and See, 2004). However, some have suggested that insight into the 
agent’s reasoning, allowing a supervisor to understand its internal ac-
tivities, may alleviate some of the effects of automation bias (Gegoff 
et al., 2023; Wright et al., 2016). Also, in a recent study with navigators 
using a tool to perform collision avoidance manoeuvring, agent trans-
parency was suggested as a means to increase trust and reliance in the 
technology (Aylward et al., 2022). 

Making an agent’s internal reasoning available to its user, i.e., 
making it transparent, should provide the ability for a user to understand 
what the agent is doing, why it is doing it, and what it will do next 
(Endsley, 2017). Several recent reviews have investigated the relation 
between automation transparency and typical human factors variables, 
demonstrating a promising effect in terms of improved operator per-
formance variables (e.g., decision making) and SA without the added 
cost of mental workload (Bhaskara et al., 2020; van de Merwe et al., 
2022). Despite variations in theoretical models underpinning the 
transparency concept (Rajabiyazdi and Jamieson, 2020), most 
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definitions agree that transparency constitutes an agent property (e.g., 
Chen et al., 2014; Christoffersen and Woods, 2002; Endsley et al., 2003; 
Norman, 1990; Skraaning and Jamieson, 2021). In other words, un-
derstandability and predictability of the agent’s actions is something 
that can, theoretically, be designed in its human machine interface. 

For supervising autonomous CAGA systems, the results of this study 
depict the SA requirements to allow the user to understand and predict 
the systems’ actions. For example, to understand that the CAGA system 
is performing the lookout function (rule 5), it should show which ves-
sels, terrain, and other objects and constraints it has detected. In 
determining which speed is safe given the circumstances (rule 6), the 
system should provide the chosen safe speed, the parameters this is 
based on, and any uncertainties in the sensor data affecting the chosen 
safe speed. In terms of estimating collision risk (rule 7), the system 
should show which vessels, in the short to long range, form a collision 
risk, including its understanding of vessel type, size, distance to target 
and the presence of a tow. Finally, in determining the collision avoid-
ance manoeuvre (rule 8), the system should show, amongst others, 
which actions it intends to perform, when it intends to perform these 
actions, including its understanding of vessel priorities, i.e., which ship 
will stand-on, and which ship will give-way. As such, by using a 
cognitive task analysis approach, this study derived at SA requirements 
for making autonomous CAGA systems transparent to its user for this 
type of supervisory control. 

4.3. Practical implications and future work 

This study assumed a change in function allocation and task distri-
bution between the baseline- and the supervision case. That is, in the 
baseline case, the collision avoidance function was allocated to the 
human navigator, and in the supervision case, this function was per-
formed to the CAGA system. Furthermore, the supervision case was 
analysed independent of how autonomy was solved. That is, as this 
study aimed to specifically derive at requirements to CAGA systems, we 
intended to avoid defining and analysing information sources that were 
specific to the context in which the system was deployed. In other words, 
whether CAGA systems are used as decision support systems for navi-
gators on a manned bridge or deployed on autonomous ships remotely 
supervised by operators, should not influence the information depicting 
the system’s internal reasoning regarding a collision situation. Still, when 
practically implementing autonomous solutions in their operational 
context, additional requirements to how the system can be indepen-
dently verified need to be defined. In addition, future studies should 
address means for how supervisors can effectively intervene in the sys-
tem. For example, on a bridge, a navigator may look out the window to 
cross-check the information from the collision avoidance system and 
may intervene using the ship’s existing control options. In a remote- 
control centre, a supervisor may need access to information other than 
that coming from the collision avoidance system itself. Also, options for 
intervention depend on the control philosophy of the control facility and 
the autonomous ship defining capabilities for manual control. There-
fore, to complement this work, future studies should extend this analysis 
to derive at context-specific requirements relevant for independent 
verification of CAGA system information and its intervention. 

This study has not explicitly addressed how to implement and 
operationalise the SA requirements in a practical human machine 
interface. Designing a human machine interface for supervising a CAGA 
system requires a structured, human centred, and iterative process (e.g., 
ISO, 2019), and was outside the scope of this study. However, based on 
our results, acknowledging the study’s limit to rules 5 to 8 only, it is 
clear that care should be taken not to overload the user with informa-
tion. Implementing transparency is “as much an art as it is a science”, 
and the potential for visual clutter and distraction should be considered 
as this may potentially offset transparency’s benefits (Wickens, 2018, p. 
39). Presenting all information identified in this study, as depicted in 
Figs. 5, 6, 7, 8, continuously is likely not prudent, and further work 

should focus on teasing out which information has precedent over other 
information and in which circumstances (see van de Merwe et al., 2023 
for preliminary results). 

5. Conclusions 

This study focused on deriving SA requirements for supervising 
autonomous CAGA systems based on a task analysis approach. The 
analysis showed the changes in goals, decisions, cognitive tasks, and SA 
requirements when transitioning towards supervisory control. The study 
also depicted changes to the navigators’ role from those performing 
collision avoidance to those verifying a system performing collision 
avoidance, including deciding on whether to intervene. Decisions of this 
kind require the supervisor to perceive the current and anticipated ac-
tions of the CAGA system, create a mental model of its behaviour, and 
evaluate its adequacy in its context. Given the foreseen supervisory role 
of the human in autonomous shipping, these types of decisions are 
therefore likely to become an increasingly important part of the human’s 
task repertoire (Banks et al., 2014). Therefore, it is essential that future 
supervisors of autonomous systems are supported in this role by 
ensuring agent reasoning is disclosed such that they remain on the in-
formation loop. 

Current societal trends point towards the application of intelligent 
agents across safety critical industries, e.g., automobile (Society of 
Automotive Engineers, 2021), healthcare (Coronato et al., 2020; Loftus 
et al., 2020), and manufacturing (Elghoneimy and Gruver, 2012). Also 
in the maritime industry, ships with advanced autonomous capabilities 
are impending (IMO, 2021). Despite ongoing progress and advances, 
humans are anticipated to play a central role as supervisors tasked with 
the assurance of safe system performance. Given the well-known human 
performance challenges with supervisory control of highly automated 
systems, finding ways to assist supervisors in performing this task 
therefore becomes a key focus area going forward. This study has 
elucidated the relevance of affording human supervisors with insight 
into an autonomous system’s reasoning to support human-autonomy 
system oversight and discussed transparency as an important prerequi-
site on the path towards safe and effective human-supervisory control. 
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Introduction

Continuous technological development is pushing the 
boundaries of automation capabilities in the maritime 
industry. The deployment of advanced technologies is envi-
sioned to be able to allow unmanned ships to navigate from 
port to port without human intervention, avoiding colli-
sions along the way. As collision avoidance is a complex 
and multi-faceted aspect of navigation, solving this prob-
lem is critical to realizing autonomous shipping. 
Consequently, autonomous collision avoidance has received 
much focus in recent years (Aylward et al., 2022; Miyoshi 
et al., 2022; Ramos et al., 2019).

At present, collision avoidance manoeuvring is a task 
that relies primarily on human performance. Navigators, 
located on the ship’s bridge, determine the presence of col-
lision risk during the ship’s journey and perform avoidance 
manoeuvres when needed. On most modern ships, naviga-
tors are supported by a range of instrumentation and control 
systems to ensure traffic is detected early and effective 
avoidance manoeuvres are executed in accordance with the 
“rules of the road” for maritime traffic, i.e., the collision 
regulations (IMO, 1977).

Autonomous collision avoidance systems are envisioned 
to perform this task by having the capability to perceive their 

surroundings, estimate collision risks, decide on how to 
resolve a collision situation, and execute timely avoidance 
manoeuvres. However, as there are challenges related to 
developing reliable automated collision avoidance systems 
that can resolve conflict situations under all circumstances, 
most autonomy concepts use some kind of human oversight 
to monitor the system’s performance (Mackinnon et al., 
2015; Pietrzykowski et al., 2017; Wróbel et al., 2022). 
However, there are well-known issues related to the role of 
human supervisors of automated systems that puts the feasi-
bility of this vision into question (e.g., Endsley, 2017; 
Onnasch et al., 2014; Strauch, 2018).

Some of the main challenges with supervising autono-
mous systems is the impact on operator’s situation aware-
ness (SA) and the ability to successfully intervene when 
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needed (Endsley & Kiris, 1995). A key factor contributing to 
facilitating SA is the feedback the system gives to the human 
user (Norman, 1990). When a system does not provide suf-
ficient and useful information to the supervisor, the human 
is left with an incomplete understanding with regards to the 
system under control (Endsley, 2017). Therefore, disclosing 
information with regards to the system’s actions and behav-
iours becomes an important factor in building and maintain-
ing situation awareness where humans take a supervisory 
role of autonomous systems (Endsley, 2023). In other words, 
by making the reasoning of a system available to its user, the 
system should allow for understandability of its decisions, 
predictability of its actions, and consequently support 
human supervision of such systems (Chen et al., 2014, 2018; 
Christoffersen & Woods, 2002; Endsley, 2017; Lyons, 
2013).

Automation transparency is described as the ability of a 
system to convey what it is doing, why it is doing it, and 
what it will do next (Endsley, 2017). Recent reviews have 
explored the relationship between automation transparency 
and human performance variables based on the findings from 
several empirical studies from various safety critical domains 
(Bhaskara et al., 2020; Rajabiyazdi & Jamieson, 2020; van 
de Merwe, Mallam, & Nazir, 2022). A promising effect of 
transparency was identified in terms of increased operator 
situation awareness, and task performance, without adding 
additional mental workload. Applying these findings to the 
autonomous shipping domain implies that providing human 
supervisors of autonomous collision avoidance systems with 
insight into the reasoning process behind the system’s deci-
sions and actions should enhance system understanding 
without mentally burdening the supervisor. However, given 
the lack of maritime-specific empirical evidence in the 
abovementioned studies, it is unclear what the specific impli-
cations are for transparency of autonomous collision avoid-
ance systems for this domain.

To consider this gap, a recent study led by the first author 
focused on establishing information requirements for super-
vising a hypothetical autonomous collision avoidance sys-
tems using a cognitive task analysis (van de Merwe et al., 
under review; van de Merwe, Mallam, Engelhardtsen, et al., 
2022). The analysis made explicit which information ele-
ments a supervisor would need to effectively perform the 
supervisory task. However, given the dynamic nature of col-
lision avoidance, the information needed to supervise the 
system may vary given the circumstances.

To address this, the current study examines how the use of 
a layered approach, based on an information processing 
model, can be used as a means for the supervisor to scruti-
nize the system’s internal reasoning. The method discloses 
the system’s information acquisition, -analysis, decision 
making, and action implementation in a stepwise manner, 
such that understandability and predictability are supported 
in a dynamic setting.

Method

To determine understandability and predictability in a colli-
sion avoidance context, a method was established that con-
sisted of three steps. First, the data from the cognitive task 
analysis was used as input to this study. Second, the informa-
tion processing model was adapted to the collision avoidance 
context. Third, the information to be disclosed to the human 
supervisor was generated (see Figure 1).

First, the information requirements described in Van de 
Merwe et al. (under review; 2022) provided the information 
elements a supervisor requires to understand the system’s 
reasoning in the collision avoidance context. In contrast 
with conventional collision avoidance, the primary task of 
the supervisor is to verify the collision avoidance system’s 
functioning through an assessment of the information pro-
vided by it. As such, the cognitive task analysis provided the 
information requirements for determining whether the sys-
tem was performing its task in accordance with the collision 
regulations.

Second, the information processing model by 
Parasuraman, Sheridan, and Wickens (“PSW model”) was 
used as a framework to represent the inner reasoning of the 
system (Parasuraman et al., 2000). The PSW model was 
originally developed to represent human information pro-
cessing steps and to assist in function allocation between 
humans and systems. For this study, it was assumed that all 
functions are performed by a hypothetical collision avoid-
ance system, and that the human takes the role of a supervi-
sor. As such, the model was adapted to this context allowing 
the categories of information belonging to each stage of the 
system’s information processing to be defined and conse-
quently, which type of information the system to be provided 
to the supervisor.

Third, the information requirements identified in the task 
analysis were structured and organised according to the cat-
egories of the PSW model. As a result, the model was used to 
make the individual information processing stages of the col-
lision avoidance system visible, and thereby support under-
standability and predictability of its actions.

Results

Establishing information needs for human 
supervision

The cognitive task analysis compared two cases: a conven-
tional collision avoidance, and a supervision case where a 
human took the role of a supervisor of an autonomous colli-
sion avoidance system (see Figure 2). Based on a series of in 
situ interviews, in situ observations, a review of ferry opera-
tors’ procedures, and a detailed and systematic analysis of the 
collision regulations, a set of goals, decisions, tasks, and 
information needs were established for conventional collision 
avoidance maneuvering. These results were subsequently 
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extrapolated to the supervised collision avoidance case. The 
detailed results are discussed in Van de Merwe et al. (2022) 
and Van de Merwe et al. (under review).

In the supervised collision avoidance case, the supervi-
sor’s primary role is to verify that the system’s actions are in 
accordance with the collision regulations, i.e., that objects 
are accurately detected early, an adequate risk assessment is 
performed, an avoidance maneuver is planned, and safely 
executed. Since the supervisor is only monitoring the colli-
sion avoidance system’s actions, the supervisor is dependent 
on the information coming from the system to perform this 
verification task.

The analysis identified the need for the system to convey 
its perception of the situation, its identified collision risks 
herein, and its plans to resolve these. This includes, amongst 
others, depicting the location of detected terrain and objects 
in the short- and long-term, terrain, estimated collision risks 
and type (i.e., crossing, head-on, overtaking/overtaken), 
information about target vessel type and size, (time to) 

closest point of approach for risk targets, what actions it 
intends to perform against these targets, when it will perform 
these actions, its own priority against risk targets (give-way 
or stand-on), the target ship’s predicted track, and any limita-
tions to sea-room it has identified that will affect its maneu-
vering capabilities. Given the dynamic- and potentially 
complex nature of maritime traffic situations, conveying this 
amount of information may prove to be challenging to effec-
tively depict on a Human Machine Interface (HMI). Also, 
regardless of the graphical presentation, making sense of a 
continuously changing stream of information, which the 
supervisor is only monitoring, is a challenging task in itself. 
As such, to determine how the system can provide under-
standability and observability of its actions whilst limiting 
the information conveyed to the supervisor, the PSW model 
was used to provide structure to this approach.

Information processing in autonomous collision 
avoidance

In the PSW model, information processing is assumed to 
take place in four stages: information acquisition, informa-
tion analysis, decision selection, and action implementation 
(see Figure 3, Parasuraman et al., 2000).

The initial information processing stage refers to the step 
where information is acquired, registered, and initial data 
processing is performed. Adapting this model to the collision 
avoidance context, it can be inferred that in this stage the 
system determines the presence of objects, provides basic 
information regarding these objects, such as whether the 
object is moving or stationary, and provides own ship rela-
tive motion with regards to these objects (e.g., whether these 
objects are crossing, head-on, or overtaking).

Figure 1. The framework for the analysis.
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Figure 2. Conventional and supervised collision avoidance.
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In the information analysis stage, the analytical and infer-
ential processes are performed, and algorithms are applied to 
allow for extrapolation of the data over time, such that pre-
dictions can be made about future states. In our case, this 
means that target objects are tracked (i.e., followed over 
time), classified (e.g., in terms of ship types and their 
manoeuvrability), and future states are predicted (e.g., based 
on target course and speed). Based on this analysis, the colli-
sion avoidance system can determine the risk of collision 
with own ship.

In the decision selection stage solution alternatives are 
determined and decisions are made with regards to the opti-
mal solution among these. For the collision avoidance con-
text, this means that actions are planned based on the 
outcomes of the risk analysis with which the risk of collision 
can best be avoided whilst adhering to the collision regula-
tions. This includes determining own ship- and target ship 
priority (e.g., give-way or stand-on) and the changes to 
course and speed needed (if any) to clearly indicate own 
ship’s intention to avoid collision.

Finally, the action implementation stage refers to the 
execution of a response or action that is consistent with the 
decision choice, i.e., the actual execution of the action. For 
our context, this means that the collision avoidance system 
sends the parameters of the updated passage plan to the con-
trol- and machinery system for effectuation. Limited infor-
mation processing is performed in this stage as it is primarily 
concerned with the execution of decisions made earlier.

Adapting the PSW model to the collision avoidance con-
text allowed the model to be used as a method to categorize 
the information from the cognitive task analysis. This way, a 
contextualised adaptation of the theoretical model was used 
to assist in creating structure in the information requirements 
for supervising the collision avoidance system (see Figure 4).

A layered approach to information disclosure

Table 1 describes excerpts of the information requirements 
that were obtained in the task analysis and that were struc-
tured using the contextualised PSW model. As a result, a set 
of information elements was derived, per stage of informa-
tion processing, that depicts the information to be provided 
to the supervisor of a collision avoidance system.

The results show that each of the information processing 
stages of the system can be depicted using a unique set of 
information parameters such that each stage is clearly distin-
guishable. Also, each set of information elements are addi-
tive in terms of that they convey information that other 
elements do not. For example, in the condition detection 
stage, the purpose of the information is to provide insight 
into what the system has detected in its surroundings and 
how this is interpreted, including some rudimentary informa-
tion processing. Therefore, the information provided here 
aims to convey how the system perceives the world.

The aim of the information provided in the condition 
analysis stage is to convey how the system interprets this 

Informa�on 
acquisi�on

Informa�on 
analysis

Decision 
selec�on

Ac�on 
implementa�on

Figure 3. A model for human information processing (adopted from Parasuraman et al., 2000).

Figure 4. Adapting the PSW model to a collision avoidance context in which a human supervises a collision avoidance system. The 
dashed arrows indicate information flow from the system to the supervisor.
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information. Here, the primary focus lies on conveying own 
ship collision risk with other vessels by estimating future tra-
jectories of target vessels. Hence, the information depicted 
here aims to convey how the system understands the world 
around it in terms of collision risk.

The aim of the action planning stage is to convey how the 
system sees the solution to the collision risk situation. Here, 
priorities are determined guiding the decision to give-way or 
stand-on. Finally, and most importantly, here it is conveyed 
what actions the system intends to perform, including if this 
means keeping current course and speed. Hence, in this 
phase, the system conveys how it plans to safely manoeuvre 
through its surroundings given its interpretation of it.

The final stage, action control, aims to convey that the 
system is executing the plan. Since there is limited informa-
tion processed in this stage, i.e., the execution of the plan is 
monitored only and any deviations from the original plan, 
detected, analysed, decided upon and planned in the preced-
ing stages, there is limited information depicted to the super-
visor in this stage.

Discussion

This paper described the rationale and approach to derive 
information requirements to disclose the inner reasoning 
of autonomous collision avoidance systems to human 
supervisors. The PSW model was used to provide a frame-
work to drive the categorisation of the information require-
ments from the task analysis into unique and distinguishable 
categories.

Given the dynamic nature of the collision avoidance 
task, a flexible information solution is needed that supports 

supervisors in attaining and maintaining SA of the autono-
mous system and the environment it is operating in. Passive 
information presentation depicting the reasoning of the col-
lision avoidance system may not adequately represent the 
dynamic nature of the collision avoidance task and may 
therefore not fully support the supervisor herein. As such, 
the structuring of system reasoning into layers of transpar-
ency allows the information provision to be adjusted to its 
context. That is, depending on the needs of the task, the 
layers allow for adjusting the degree of transparency 
depending on the level of understandability and predictabil-
ity required for effective supervision.

An approach to determining which degree of transparency 
supports which degree of understandability and predictabil-
ity can be derived from the cognitive task analysis. That is, 
although the model describes the different layers of informa-
tion processing pertaining to the collision avoidance system, 
a supervisor may choose to prioritise one aspect of the sys-
tem’s processing over another depending on the task and its 
context. For example, depending on the complexity of the 
traffic situation, a supervisor may only be interested in the 
system’s decisions and actions without requiring understand-
ing of the underlying reasoning. Conversely, a supervisor 
may want to understand why the system has chosen a par-
ticular solution and as a result, requires a full overview of the 
system’s sensor input for this. Consequently, the supervision 
task executed in the dynamic context of collision avoidance, 
determines which layer of transparency take precedence over 
another. Still, an attempt is made here to argue for a mini-
mum level of transparency to support the supervision task.

A potential starting point is to determine which informa-
tion a supervisor would like to know as a minimum to per-
form the supervision task. Given the collision avoidance 
context, a minimum degree of information a supervisor 
requires is to determine whether the system is capable of 
resolving a collision situation at all. Understanding the 
intentions of the collision avoidance system requires infor-
mation regarding the system’s decisions and planned 
actions. In other words, by depicting the system’s decisions 
(i.e., give-way or stand-on) and its actions (i.e., intended 
changes to its course and speed) a supervisor should be able 
to verify the system’s intentions regarding the collision 
situation. Consequently, the action planning stage should 
be able to provide a level of information sufficient to com-
prehend the primary intentions of the system, and therefore 
could serve as the minimum degree of transparency for this 
type of system.

Additional information from the information analysis, 
and information acquisition stages may be made available to 
the supervisor should the task, and its context, require this. 
As such, a cumulative approach, starting at the action plan-
ning stage, may be used to “dig deeper” into the reasoning 
process behind the system’s decisions and planned actions. 
This way, each level allows for increased understandability 
of the system’s decision making and action implementation 

Table 1. Applying the PSW model to information requirements 
from the task analysis. Key: OT= overtaking/overtaken, 
HO=head-on, CR=crossing, GW=give-way, SO=stand-on.

Information processing stage
Information requirements for 

supervision (excerpts)

1. Condition detection:
- Object detection
- Basic classification
- Object relative motion

- Detected objects short & long range
- Identified target ship
- Target object type and size
- Identified target object as OT/HO/CR
- Uncertainties in the radar/ sensor data
- Status of sensors

2. Condition analysis:
- Object classification
- Object tracking
- Situation analysis
- Risk estimation

- Objects that pose risk
- Plotted objects
- Risk object type and size
- Risk object priority
- Risk object course and speed
- Risk object intended trajectory
- Risk object conflict type
- Safe speed parameters

3. Action planning:
- Collision avoidance decision
- Updated passage plan

- Own ship priority (GW/SO)
- Target vessel priority (GW/SO)
- Own ship intended track and speed

4. Action control:
- Execution of plan

N/A: only action implementation
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by making the system’s information inputs and internal rea-
soning incrementally observable.

Conclusion

By organising the information from the cognitive task analy-
sis using the context specific PSW model, a set of informa-
tion layers were defined for supervision of the autonomous 
collision avoidance system that is adaptable to its dynamic 
context. Using this approach, HMIs can be developed that 
support supervisors in understanding the system by provid-
ing information depending on user needs in the given situa-
tion. Since each of the information processing steps reflects 
the system’s internal reasoning, the layered approach driven 
by the PSW model enables a structured means to create 
transparent systems.
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1 INTRODUCTION 

1.1 Human supervision in autonomous collision 
avoidance 

The  last  decade  has  shown  an  increasing  interest  in 
research  and  development  efforts  towards  use  of 
autonomy  in  the maritime  industry. The  purpose  of 
increased automation is diverse, but improvements in 
cost, efficiency and safety for sharp‐end personnel are 
major drivers  [1]–[3]. Yara Birkeland,  and  the ASKO 
barges  are  examples  of  the  ambition  of  the  industry 
when it comes to the application of highly automated 
functions  to  support  and/or  substitute  onboard 
personnel [4], [5]. In this development, remote‐control 
centres  are  foreseen  to  play  a  role  from  where 
operators can perform oversight of autonomous ships 
and  can make  critical  decisions with  regards  to  the 
operations of the ship [6].   

The  purpose  of  remote‐control  centres  is  to 
provide  shore‐side  support  for autonomous ships,  to 
be  compliant with  current  regulations  on minimum 
safe manning,  and  to provide  an  equivalent  level of 
safety  (or  better)  compared  to  conventional  ship 
operations  [7],  [8].  The  idea  is  that  from  a  remote‐
control  position  operators  can  supervise  the  ship’s 
operations and monitor, assist, and take over from the 
autonomous systems when the circumstances require 
this.  In  this  case,  it  is  assumed  that  humans  can 
perceive and understand  the  information  concerning 
the  ship  under  supervision  such  that  adequate 
situation awareness can be attained and maintained.   

A key challenge to be resolved in moving towards 
autonomous,  and potentially unmanned,  shipping  is 
how unforeseen  circumstances,  such as  collision and 
grounding  situations,  are  handled  without  the 
presence  of navigators  onboard  the  ship  [9]–[12]. At 
present,  navigators  determine  collision  risk  and 
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perform  relevant  avoidance  manoeuvres  supported 
by  a  range  of  systems,  e.g.,  radar, AIS,  and  ECDIS. 
Also,  collision  and  grounding  avoidance  requires 
knowledge, skills, and experience  to be performed  in 
accordance with  the  collision  regulations. When  this 
task  is  performed  by  an  autonomous  Artificial 
Intelligence‐powered  collision  avoidance  system, 
adequate  and  sufficient  contextual  information  is 
essential  to  support  human  oversight  (see  Figure  1) 
[13].   

Figure 1. Conceptualization of control  in conventional‐ and 
supervised collision avoidance. 

An earlier  study  led by  the  first author  identified 
the  information  required  to  supervise  the 
performance  of  an  autonomous  collision  avoidance 
system through a mapping and assessment of relevant 
cognitive  tasks  [12],  [14].  This  study  concluded  that 
adequately  supervising an autonomous  collision and 
grounding avoidance system requires insight into the 
system’s  information  processing  to  understand  its 
decisions  and  actions.  Based  on  the  knowledge  that 
human  supervision  of  automated  functions  has 
challenges  in  terms  of  human  performance,  keeping 
humans in the loop, or rather “on the loop”, becomes 
an  essential  design  requirement  [15],  [16].  Thus, 
providing sufficient information about the automated 
system’s reasoning process has been proposed as one 
of  the elements that could support humans  in such a 
role.  In  other  words,  by  disclosing  the  system’s 
internal decision‐making process to its supervisor, the 
system is made transparent with regards to its intent, 
performance, future plans, and reasoning process [17]. 

Automation  transparency  is  concerned  with 
making  the  inner  reasoning  of  systems  observable, 
such  that  its  actions  are  understandable  and 
predictable  [15],  [18],  [19].  Therefore,  transparency 
should make  it  clear  to human  supervisors what  the 
system is currently doing, why it is doing it, and what 
it will do next [15]. Earlier reviews have indicated that 
transparency  has  a  promising  effect  on  human 
performance  and  situation  awareness  [20]–[22]. 
However,  there  is  limited  knowledge  regarding 
transparency  in  the  maritime  domain,  especially  in 
relation  to  autonomous  collision  and  grounding 
avoidance.  To  this  end,  further  work  is  needed  to 
investigate  the  role  of  transparency  in  supervised 
autonomous  shipping  and  to  explore  its  relationship 
with human performance in this context.   

This  paper  discusses  ongoing  work  towards 
performing an empirical evaluation to study differing 
levels and types of transparency concepts in a realistic 

traffic  collision  avoidance  setting.  An  empirical 
evaluation  is planned  in which participants  take  the 
role  of  a  supervisor  of  an  autonomous  collision 
avoidance  system.  An  approach  is  used  in  which 
participants  are  tasked  with  evaluating  traffic 
situations  for  their  understandability,  whilst  being 
measured  on  human  performance  variables.  The 
purpose  of  this  evaluation  is  to  better  understand 
which  levels  and  types  of  transparency  information 
support human supervisors and how this knowledge 
can  be  applied  to  a  dynamic  collision  avoidance 
context. This paper describes the groundwork for this 
evaluation by describing  the systematic development 
process  behind  the  traffic  situations,  as  well  as  the 
levels and  types of  transparency  concepts developed 
for this. 

2 DEVELOPING TRAFFIC SITUATIONS 

2.1 Defining criteria to ensure variation 

To  provide  participants  of  the  planned  empirical 
evaluation  with  realistic  conflicts,  traffic  situations 
were  developed  that  reflected  the  variation  in 
collision  type and context  that may occur  in real‐life. 
Also,  to  avoid  familiarisation  with  the  traffic 
situations,  and  thereby  unintentionally  influencing 
the  results  of  the  evaluation,  multiple  variants  of 
traffic  situations  were  developed  based  on  a  set  of 
criteria (see Table 1).   

Table 1. Criteria for establishing a varied set of traffic 
situations. ________________________________________________ 
Criterion              Variation ________________________________________________ 
Complexity avoidance    Low ‐ No limitations 
manoeuvre own ship    High ‐ Limitations manoeuvre 
Collision type    CR ‐ Crossing 

  HO ‐ Head‐on 
  OT ‐ Overtaking/overtaken 
  NC ‐ No collision 

Avoidance actions own ship Give‐way 
  Stand‐on 

Restrictions target        No restrictions 
  Restricted in manoeuvrability 

Traffic density          Few other ship and objects 
  Many other ships and objects 

Geography             Land 
                    Open water ________________________________________________ 

Variability was ensured through differing levels of 
complexity,  collision  types,  the  avoidance  actions  of 
own  ship,  restrictions  to  target  ships,  traffic density, 
and geography. First, in high complex situations, own 
ship  was  restricted  in  its  avoidance  manoeuvring 
ability compared to low complex situations. That is, in 
low  complexity  situations,  own  ship  was  free  to 
manoeuvre  in  any  direction  to  avoid  a  collision, 
whereas  in  high  complexity  situations,  there  were 
obstacles  prohibiting  own  ship  to  perform  certain 
manoeuvres.  Second,  for  collision  type,  traffic 
situations  consisted  of  crossing‐,  head‐on‐, 
overtaking‐/overtaken  situations.  Also,  situations 
were  developed  in  which  no  collision  was  present. 
Third,  for  avoidance  actions,  situations  were 
developed  for  which  own  ship  was  the  give‐way 
vessel  or  the  stand‐on  vessel.  Fourth,  for  some 
situations,  target  ships  were  restricted  in  their 
manoeuvrability, e.g., because of ongoing bunkering. 
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Fifth,  situations were developed with  low‐  and high 
traffic  densities.  Finally,  traffic  situations  were 
developed  in  which  contextual  factors  were  varied 
that were  external  to  the  traffic  situations  (i.e.,  land 
formations or open water).   

To  constrain  the  amount  of  variation  and  retain 
controllability  in  the  traffic  situations,  some 
limitations  were  set  in  terms  of  number  of  ships 
posing  a  collision  risk  and  the  number  of 
simultaneous  collision  situations.  That  is,  own  ship 
could only be in direct conflict with one other ship for 
one collision type (e.g., not in a crossing and head‐on 
situation  simultaneously),  own  ship  could  not  be  in 
both  a  give‐way  and  stand‐on  situation 
simultaneously, and own ship was never restricted in 
its manoeuvrability.  Also,  although  is  it  recognised 
that  grounding  avoidance  is  an  essential  part  of 
collision avoidance, the traffic situations in this paper 
were  limited  to  collision  situations  only.  Finally, 
external factors that could affect the collision situation 
or  own‐ship’s  capabilities,  such  as  weather  or 
technical failures, were not included.     

2.2 Development process   

For  each  criterion  in  Table  1,  two  scenarios  were 
created resulting in a set of 70 situations (see Table 2). 
The  traffic  situations  were  created  in  a  desktop 
simulator from a popular equipment manufacturer by 
a  navy‐certified  navigator  with  five  years  of 
navigational  experience. Upon  creating  an  initial  set 
of  traffic  situations,  a  review  was  performed  with 
independent navigators. 

Table 2. The traffic situations created based on the set of 
criteria. Key: HO = Head‐on, CR = Crossing, OT = 
Overtaking/overtaken, NC = No collision, L = Low, H = 
High, T = Total. *Note: in a head‐on situation with one 
motorised target ship and no other exceptions, own ship 
cannot be stand‐on. ________________________________________________ 

HO    CR      OT      T 
Variant/Complexity  L    H    L    H    L    H ________________________________________________ 
Type (HO/CR/OT)    5    5    4    4    4    4    26 
Type (NC)  2    2    2    2    2    2    12 
Own ship stand‐on*  0    0    2    2    2    2    8 
Restrictions target    2    2    2    2    2    2    12 
Geography (land)    2    2    2    2    2    2    12 ________________________________________________ 
Total             11   11   12   12   12   12   70 ________________________________________________ 

2.3 Verification and validation workshop 

The  final verification and validation were performed 
with  two  independent  navigators  holding  active 
navigational  licenses  (D1/D2), with an average of 6.5 
years  of  navigational  experience  (SD=2.1,  min=5, 
max=8). The  review was performed  in  the  form of  a 
1,5‐day workshop. 

In the workshop traffic situations were shown on a 
display  and  participants were  asked  to  state  if  own 
ship was  in  a  collision  situation,  if  yes, which  type 
(HO/CR/OT),  and  the  avoidance  action  required  by 
own  ship  (give‐way/  stand‐on).  In  addition,  three 
questions  were  asked,  using  a  7‐point  Likert  scale, 
probing  the  situation’s  realism,  complexity,  and 
likelihood  of  occurrence.  With  these  questions,  a 
comparison  between  the  situation’s  intended 

depiction  and  the  navigator’s  perception  was 
obtained.  Discrepancies  were  discussed  and 
suggestions  for  improving  the  design  of  the  traffic 
situations were noted. A  final set of  traffic situations 
were  produced,  incorporating  the  inputs  from  the 
workshop (see Figures 2, 3, 4, and 5 for examples). 

Figure 2. Own ship  is  in a head‐on situation  in open water 
where  it  is  required  to  give‐way.  The  situation  is  of  low 
complexity  as  there  are  no  restrictions  to  own  ship’s 
avoidance manoeuvrability. 

Figure  3. Own  ship  is  in  an  overtaking  situation  in  open 
waters where  it  is required  to give‐way. The situation  is of 
high  complexity  as  there  are  restrictions  to  own  ship’s 
avoidance manoeuvrability (both port and starboard). 

Figure 4. Own ship is in a crossing situation in open waters 
where  it  is  required  to  stand‐on.  The  situation  is  of  high 
complexity  as  there  are  restrictions  to  the  target  ship’s 
avoidance manoeuvrability (the ship crossing at port side).   
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Figure 5. Own ship is in a crossing situation in open waters 
where  it  is  required  to  give‐way.  The  situation  is  of  high 
complexity  as  there  are  restrictions  to  the  target  ship’s 
avoidance manoeuvrability (a buoy). 

3 DEVELOPING TRANSPARENCY FOR 
COLLISION AVOIDANCE 

3.1 Defining transparency layers 

An  earlier  study  led by  the  first author performed  a 
cognitive  task  analysis  to  identify  the  information 
required  to  perform  supervision  of  a  collision 
avoidance system [12], [14]. The analysis describes the 
information  pertaining  to  the  supervisory  task  and 
depicts  which  information  should  be  disclosed  to 
human supervisors  to make the  internal reasoning of 
the  collision avoidance  system observable. However, 
the  analysis only describes what  information  should 
be made available and it does not dictate which type, 
or how much of the  identified  information should be 
disclosed.  Simply  depicting  all  information 
simultaneously will  likely  put  too  large  a  cognitive 
burden  on  the  supervisor’s  information  processing 
capabilities, resulting in high mental workload. At the 
same  time,  only  limiting  the  information  from  the 
system  to  single  information  elements  may  not 
provide  the  full  picture  about  the  system’s  internal 
reasoning either. In addition, considering the dynamic 
nature of the collision avoidance task, the information 
needed  to effectively  supervise  the  system may vary 
given the circumstances and the task analysis does not 
define which  information  should be disclosed when. 
As  such,  providing  transparency  to  supervisors 
means  making  choices  as  to  which  information  is 
made available to allow supervisors to understand the 
system’s behaviour. 

The  rationale  for  specifying  what  constitutes 
transparency  information  in  a  collision  avoidance 
context,  together  with  how  this  information  can  be 
categorised  into  distinct  information  types  is 
discussed  in a  separate  study  [23].  In brief, a  simple 
information  processing model was  used  (see  Figure 
6),  consisting of  information  acquisition,  information 
analysis,  decision  selection,  and  action 
implementation stages,  to  identify and categorise  the 
information into discrete steps [24]. As such, a layered 
approach  to  transparency  was  used  allowing 
supervisors  to  observe  the  different  facets  of  the 

system’s  input parameters,  reasoning, decisions,  and 
actions pertaining to the collision situation. 

Information 
acquisition

Information 
analysis

Decision 
selection

Action 
implementation

Figure 6. A simple model of human information processing 
adopted from [24]. 

This  model  provides,  at  minimum,  a  means  to 
organize  the  information  describing  the  system’s 
information  processing  into  several  distinct  parts. 
However, the model does not provide guidance as to 
which  information  takes  priority  over  the  other.  A 
potential starting point is to try answer the question of 
what information supervisors would like to know at a 
minimum,  before  adding  layers  of  transparency  to 
allow  for  increased  understandability.  A  plausible 
means  for  human  supervisors  to  obtain  an 
understanding  of  the  collision  avoidance  system’s 
performance is to be informed whether the system can 
avoid  a  potential  collision  at  all.  In  other  words, 
supervisors  likely  need  to  be  informed  about  the 
system’s decisions and actions first, before needing to 
“dig deeper”  into the system’s underlying reasoning. 
This  indicates  that  the  starting  point  for  providing 
transparency  to  supervisors  is  thus  the  “decision 
selection”  step  of  the  information  processing model 
depicted  in  Figure  6  and  not  the  “information 
acquisition”  step.  (Note  that  in  the  “action 
implementation”  step  there  is  no  information 
processing, only execution.) Further understanding of 
how and why  the  system has derived at  its decision 
and planned actions can subsequently be obtained by 
“going  backwards”  through  the model.  That  is,  the 
“information  analysis”  stage  of  the model  provides 
the  relevant  information  pertaining  to  the  analysis 
that  underlie  the  system’s  decisions  and  actions. 
Finally,  when  the  full  picture  is  required  for 
understanding the system’s decisions and actions, the 
“information acquisition” stage of the model provides 
all  the  input data  the  system uses  in  its  information 
processing. 

3.2 Development process 

A  concept  illustration  is  provided  of  a  radar  screen 
depicting a traffic situation in which own ship, in the 
centre  of  the  radar  screen,  is  involved  in  a  head‐on 
situation (see Figure 7). Own ship depicts its intended 
avoidance manoeuvre  by  drawing  its  planned  track 
for  the  next  three  manoeuvring  steps  (each  step 
corresponds  to  one  vector  length  and  equals  six 
minutes).  It also  states “GW”  indicating  it  intends  to 
give‐way. Additional  information  about  current  and 
next actions, including speed, are depicted on the left 
side  of  the  figure. With  this  information, minimum 
transparency  is  provided  to  allow  supervisors  to 
understand  that  the  system  is  about  to  initiate  a  12‐
degree starboard turn and that it intends to give‐way. 
The  information provided  in Figure  7 was proposed 
as  the  minimum  information  needed  to  obtain  an 
understanding  of  the  own  ship’s  decisions  and 
actions. 
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Figure 7.  Traffic  situation  with  transparency  information 
overlaid (decision selection). 

Figure  8  depicts  that  own  ship  considers  two 
targets  as  especially  relevant  in  this  traffic  situation. 
The target ship in red is depicted as the highest risk as 
this  ship  is  the  one  considered  to  be  on  collision 
course  with  own  ship  (minimum  predicted  CPA 
exceeded). The target in orange is also highlighted as 
own  ship  has  considered  this  target  to  be  of 
importance during the avoidance manoeuvre. Further 
information  regarding  the  targets  that  own  ship 
considers  is provided  through  the  indicators next  to 
the  targets  depicting  the  conflict  situation  (e.g., HO 
for  head‐on,  and MV  for motor  vessel).  In  addition, 
further  information regarding  the system’s reasoning 
is  provided  through  a  manoeuvrability  indicator 
around own ship  indicating where  it can manoeuvre 
within one vector  length. Finally,  tables  to  the  left of 
the  radar  screen depict additional  target  information 
and  the  variables  own  ship  has  considered  in 
determining safe speed. 

Figure 8.  Traffic  situation  with  transparency  information 
overlaid (decision selection + information analysis). 

Figure  9  provides  a  depiction  of  what  a 
transparent collision avoidance system could look like 
when  all  transparency  information  described  in  the 
task  analysis  is  provided.  Here,  all  targets  have 
received  identifiers  (green  circles),  and  initial 
classifications  (ship  types  and  relevant  conflict  type 
indicators).  In  addition,  information  regarding  the 
status  of  the  system’s  sensors  are  provided  in  the 
tables to the left of the radar screen.   

Figure 9.  Traffic  situation  with  transparency  information 
overlaid  (decision  selection  +  information  analysis  + 
information acquisition). 

3.3 Verification and validation workshop 

The transparency concepts were developed through a 
series of iterations based on the information from the 
task  analysis  and  the  information  processing model. 
Final verification and validation of the interfaces was 
performed  in  a  second  workshop  with  two 
independent  navigators  holding  active  navigational 
licenses with  an  average  of  12  years  of  navigational 
experience (SD=9.9, min=5, max=19). 

The  purpose  of  this  second  workshop  was  to 
evaluate  a  selected  set  of  traffic  situations  that 
included  the  transparency  layers as described above. 
A representative subset of  five  traffic situations were 
included for review in this workshop, including head‐
on, crossing with own ship as stand‐on, overtaken by 
a ship restricted in its manoeuvrability, crossing with 
speed‐only  as  the  avoidance  manoeuvre  and 
overtaking  a  slower  ship  when  approaching  a 
harbour.  A  talk  aloud  protocol  was  used  where 
participants  were  asked  to  describe  their 
interpretation  of  the  traffic  situation  with  primary 
focus on the information the system provided through 
the Human Machine Interface (HMI). In other words, 
the focus in the workshop was on how they perceived 
the  collision  avoidance  system  would  solve  the 
conflict  situation,  and  not  how  they would  solve  it. 
The  independent  navigator’s  interpretations  were 
noted,  including  all  comments  related  to 
recommendations  for  improvement,  corrections,  and 
additions  which  were  included  in  the  final 
transparency iteration.   

4 SUMMARY AND FURTHER WORK 

When a collision situation occurs that requires human 
intervention,  the collision avoidance system needs  to 
facilitate human  supervisors  in gaining SA  such  that 
successful  decisions  can  be  made.  This  paper 
described  the  systematic  development  of  a  realistic 
and  validated  foundation  for  evaluating  the 
relationship  between  automation  transparency  and 
human  supervisory  performance  in  an  autonomous 
collision  avoidance  context.  First,  a  set  of  traffic 
situations  were  developed  based  on  navigational 
experience  aimed  at  capturing  the  variability 
encountered  in  real‐life  situations.  Second,  a  set  of 
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transparency  concepts  were  developed  based  on  a 
cognitive  task  analysis  and  a  model  for  human 
information processing. Together,  these preparations 
provide  the  groundwork  for  the  planned  empirical 
work to explore this relationship. 

As the maritime industry moves towards increased 
use of automation,  including deploying  systems  that 
can  perform  (part  of)  the  collision  and  grounding 
avoidance  functions,  there  is  an  urgent  need  to 
understand  how  humans  will  interact  with  these 
systems. Automation transparency has been proposed 
as  a  critical  element  that  can  support  human 
supervisors  in  obtaining  situation  awareness  of  the 
system’s  behaviours  and  actions  [16].  Conversely, 
without  transparency,  i.e.,  systems  that  have  low 
degrees  of  observability  and  predictability,  humans 
will be highly challenged  in understanding what  the 
system is doing, why it is doing it, and what it will do 
next.  As  such,  given  the  critical  nature  of  the 
supervisory  task  for  autonomous maritime  collision 
and grounding avoidance systems, it is pertinent that 
further understanding  is needed with  regards  to  the 
application of the transparency in this domain.   

This  paper  aimed  to  address  this  need  by 
investigating  how  an  information  processing model 
could  be  used  to  drive  the  development  of 
transparency  layers.  Given  the  dynamic  nature  of 
collision  and  grounding  avoidance  the  amount  and 
type of information needed to understand the system 
may  depend  on  the  type  of  situation,  the  degree  of 
human oversight,  the  complexity of  the  situation, or 
the  time  available  to  intervene.  The  transparency 
concepts  discussed  in  this  paper  have  attempted  to 
address  this.  In  addition,  an  empirical  evaluation  is 
underway  in  which  the  relationship  between 
automation  transparency  and  human  performance 
variables  are  evaluated  in  a  collision  avoidance 
context. This way,  the  relation between  transparency 
and  human  performance  variables  can  be  explored, 
and its practical benefits can be assessed.     
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Abstract
Transparency is a design principle intended to make the inner workings of autonomous agents visible to
end-users such that humans can evaluate the reasoning behind its decisions and actions. To test the effect
of agent transparency on situation awareness, mental workload, and task performance, an experiment was
performed where 34 nautical navigators were tasked with interpreting the information provided by an
autonomous collision and grounding avoidance system. Sixteen traffic situations were created with two
levels of complexity. Four levels of transparency varied the amount and type of information in terms of the
system’s decisions, planned actions, reasoning, and input parameters. The results show that increased
transparency improves SA without increasing mental workload. However, the time to comprehend the
system’s decisions and planned actions increased when its reasoning was depicted. Traffic complexity
impaired SA, mental workload, and time-to-comprehension regardless of transparency level. However,
for level 2 SA, transparency was found to negate the influence of complexity, resulting in improved
comprehension of the agent’s reasoning despite high traffic complexity. These outcomes demonstrate the
merits of agent transparency as a design principle in supporting human supervision of autonomous agents.
However, developers should take care when extending these principles to time-critical applications.

Keywords
human-automation interaction, autonomous agents, supervisory control, human-machine interface,
experimental design

Introduction

Autonomous Shipping and Human
Supervisory Control

Systems with autonomous capabilities, typically
based on Artificial Intelligence (AI) and Machine
Learning algorithms, are proliferating across so-
ciety and industries. In the maritime domain, ships
are envisioned to deploy advanced automation, or
‘agents’, capable of sensing their environment and
executing goal-directed behaviour using actuators,

allowing for advanced functions to be performed
with increasing levels of autonomy (IMO, 2018;
Russell & Norvig, 2022). For example, in Japan, a
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commercial container ship conducted a 790-km
trial to test its autonomous navigation capabilities
without human intervention (Nippon Yusen Kai-
sha; NYK, 2022). In Norway, the Yara Birkeland
container ship and the ASKO barges have com-
menced operation with the aim to navigate auton-
omouslywithin a few years (ASKolonialgrossistene;
ASKO, 2022; Yara International, 2022). Here, op-
erators are envisioned to work in positions from
which single or multiple autonomous ships can be
continuously monitored and supervised (e.g. see
Massterly, 2023). In this context, supervisory per-
formance is dependent on the operator’s ability to
‘[perceive] elements in the environment within a
volume of time and space, [comprehend] their
meaning, and [project] their status in the near future’,
that is, to obtain and maintain situation awareness
(SA; Endsley, 1995, p. 36). In other words, this
means that operators should be able to perceive
critical parameters made available through the con-
trol and safety systems, analyse the ship’s current and
planned behaviour, and evaluate the plan’s adequacy
considering its context (van de Merwe, et al, 2024a).
To support operators in achieving and maintaining
SA of an autonomous ship’s performance, it is
critical to understand how effective human super-
visory performance can be achieved whilst avoiding
potential human performance pitfalls.

Challenges related to the human supervision of
highly automated systems are well documented in
the scientific literature (Endsley, 2017). For ex-
ample, the out-of-the-loop (OOTL) performance
problem is attributed to a loss of skills and SA, and
occurs when operators are no longer an active part
of a system’s information loop (Endsley & Kiris,
1995; Metzger & Parasuraman, 1999). In addition,
transitioning back into the information loop often
results in high workload because of the need to
build SA and regain manual control (Endsley,
2017; Onnasch, Wickens, Li, & Manzey, 2014;
Weaver & DeLucia, 2020). Taken together, these
challenges are described as the ‘automation co-
nundrum’ which states that ‘the more automation
is added to a system, and the more reliable and
robust that automation is, the less likely the human
operators overseeing the automation will be aware
of critical information and able to take over manual
control when needed’ (Endsley, 2017, p. 8). This
means the safe implementation of systems with
autonomous capabilities thus depends on the

degree to which humans can oversee the agent’s
decisions and actions, and the agent’s ability to
afford humans insight into its reasoning processes
(J. Y. C. Chen, Procci, et al., 2014a).

Human Performance and
Agent Transparency

‘Agent transparency’ (J. Y. C. Chen, Procci, et al.,
2014a), ‘system transparency’ (Ososky, et al,
2014), ‘display transparency’ (National Acade-
mies of Sciences, Engineering and Medicine,
2022), ‘automation transparency’ (Skraaning &
Jamieson, 2021), or simply ‘transparency’ are
terms used to describe the ‘understandability and
predictability of [a] system’ (Endsley, 2023;
Endsley, Bolté, & Jones, 2003, p. 146). Endsley
(2017) defined transparency as a means to enhance
the understandability and predictability of systems
by making observable what it is doing, why it is
doing it, and what it will do next. J.Y.C. Chen et al.
described agent transparency as ‘the descriptive
quality of an interface pertaining to its abilities to
afford an operator’s comprehension about an in-
telligent agent’s intent, performance, future plans,
and reasoning process’ (2014b, p. 2). Finally,
Lyons depicted transparency as the ability of an
operator to perceive an agent’s abilities, intents,
and situational constraints (2013). The aim of
agent transparency is to provide ‘a real-time un-
derstanding of the actions of the AI system’

(National Academies of Sciences, Engineering and
Medicine, 2022, p. 31) and enable ‘the operator to
maintain proper SA of the system in its tasking
environment without becoming overloaded’
(Mercado et al., 2016, p. 402). In addition,
transparency intends to facilitate human-agent
collaboration when humans are tasked with su-
pervising automated systems. That is, when an
agent communicates what it does, why it does it,
and what it will do next, human supervision should
be supported (Endsley, 2023). Conversely, opaque
agents can be challenging to supervise as they may
be difficult to interpret because of a lack of in-
formation provision (Doshi-Velez & Kim, 2017;
Lipton, 2017). In other words, when the agent’s
inner workings are made apparent to the user, the
user’s comprehension of the agent may be en-
hanced (Ososky et al., 2014).
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In recent years, there has been an increasing
interest in understanding the effect of transparency
on selected human performance variables includ-
ing, SA (Selkowitz, Lakhmani, & Chen, 2017;
Skraaning & Jamieson, 2021; Wright, Chen, &
Lakhmani, 2020), decision making (Bhaskara
et al., 2021; Loft et al., 2023), mental workload
(Mercado et al., 2016; Stowers et al., 2020), and
automation trust (J. Y. C. Chen et al., 2018;
Ezenyilimba et al., 2023; Schmidt, Biessmann, &
Teubner, 2020). Furthermore, a recent review of
the transparency literature studied the relation
between agent transparency and human perfor-
mance variables finding positive effects on SA and
task performance, without negatively affecting
mental workload, for increasing levels of trans-
parency (van de Merwe et al., 2024b). These
findings indicate the potential benefit transparency
can have in cases where operators need to un-
derstand the behaviour of a system and perform
manual intervention when required. Thus, trans-
parency can be especially relevant in safety critical
domains where understandability and predict-
ability are essential for safe and effective control of
processes (Endsley, 2023; Jamieson, Skraaning, &
Joe, 2022).

Agent Transparency and
Autonomous Shipping

Several recent studies have addressed agent
transparency within the autonomous shipping
domain. For example, Ramos et al. (2019) per-
formed a task analysis to derive potential human
failures when monitoring autonomous ships. Here,
the study identified the importance of the super-
visors’ ability to collect and evaluate information
from the autonomous ship through ‘an adequate
HMI’ (human-machine interface), such that a
strategy for intervention could be determined
should the automation fail (Ramos et al., 2019,
p. 43). Van de Merwe et al. (2024a) identified
specific information requirements for supervising
autonomous collision and grounding avoidance
(CAGA) systems based on a Goal-Directed Task
Analysis (GDTA; Endsley et al., 2003). The study
highlighted the need for continuous, sufficient,
and adequate information about the CAGA sys-
tem’s decisions, planned actions, and underlying

information processing, that is, transparency in-
formation, to alleviate some of the human per-
formance issues in supervision and support safe
and effective oversight of CAGA systems. Fur-
thermore, Porathe (2021) discussed the use of
‘expert systems’ to aid operators in supervising
one or more autonomous ships. Here, HMI con-
cepts were proposed aiding operators to obtain at-
a-glance understanding of how the system per-
ceives and understands the nearby traffic and its
intentions for solving collision situations. This
includes showing how the CAGA system plans to
solve a situation by graphically displaying the
various options it has considered, and which so-
lution it intends to execute. Also, Van de Merwe
et al. (2023a) operationalised transparency for
autonomous ships by developing concepts for how
an autonomous CAGA system may display its
perception and analysis of its environment, de-
termination of collision risk, and plans to resolve
the situation. Moreover, Alsos et al. (2022) ex-
amined how the transparency concept could be
operationalised for autonomous ships. Here, the
aim was to assess how autonomous ships can share
intent information to external stakeholders, such as
passengers, traffic services, and other nearby ships.
Finally, operationalising this idea, Simic and Alsos
(2023) developed a concept for autonomous urban
ferries in which the ship’s perceptions, current
state, and future intentions are communicated to
external stakeholders through light strips and
displays mounted on the outside of the ferry.

Although these studies address the potential
benefits of agent transparency in relation to human
supervisory control in an autonomous shipping
context, they fall short on measuring its purported
effects. That is, to the best of our knowledge, no
studies have been performed that have empirically
tested the effect of transparency on human su-
pervisory performance in an autonomous shipping
context and have considered the complexities that
can arise in realistic traffic-dense environments. As
such, given the concrete developments towards
autonomy in the maritime domain, there is a need
for knowledge with regards to the application of
transparency within this context and study its ef-
fect on human performance variables. Therefore,
this study aims to extend the literature by empir-
ically evaluating the application of transparency
in a maritime autonomous shipping context.
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Specifically, this study asks what the effects of
agent transparency and traffic complexity are on
the supervisor’s (1) SA, (2) mental workload, and
(3) task performance.

Situation Awareness, Mental Workload, and
Task Performance

In complex and dynamic environments, such as
shipping, action execution is highly dependent on
the human’s ability to make accurate and timely
decisions in a constantly changing state of the
environment. When the collision avoidance task is
performed by an autonomous agent, the supervi-
sor’s mental model is of particular relevance in
understanding if its behaviour is according to
expectations or whether intervention is needed
(Endsley, 2017). In addition, to effectively assess
the real-time and future performance of an au-
tonomous collision and grounding avoidance
system, supervisors need to have SA of the system
in its tasking environment (Endsley, 2023). To
support this, CAGA systems should provide de-
tailed and relevant information regarding its in-
ternal processing, for example, which elements in
its environment it has perceived (ships, objects,
and shallow waters), how these affect the ship’s
collision and grounding risk (collision, no colli-
sion), and how it plans to resolve the situation
(give-way and stand-on). This way, SA knowl-
edge, that is, the system’s perceptual, compre-
hended, and projected knowledge (van Doorn,
Rusák, & Horváth, 2017), is directly provided to
the supervisor and understandability and predict-
ability of the system should be improved
(Bhaskara et al., 2020; Endsley, 2023; van de
Merwe et al., 2024b). In other words, when in-
formation is provided in a manner that supports the
cognitive processes needed for supervision, for
example, by providing information compatible
with how humans process information and make
decisions (Westin, Borst, & Hilburn, 2015), im-
proved SA should be expected. Specifically, it is
expected that level 1 SA is improved when the
CAGA system depicts its perception of the envi-
ronment, level 2 SA is improved when the system
depicts its analysis, and level 3 SA is improved
when it provides its decision and planned actions
(see Table 1). Furthermore, it is hypothesised that

transparencymay especially be beneficial in complex
traffic situations where making sense of the system’s
reasoning may be challenged by the high amount of
information available for interpretation. Presenting
information that supports transparency, provided this
is presented in a salient, well-organised, and inte-
grated manner, is expected to support SA in such
cases (Endsley, 2023; Endsley et al., 2003; Skraaning
& Jamieson, 2021).

As agent transparency is about disclosing
system-internal information, the degree of trans-
parency can typically be varied by increasing or
decreasing the amount of information it presents
about its internal processes, decisions, and planned
actions (see Bhaskara et al. (2021) and Pokam et al.
(2019) for examples). Although increased levels of
agent transparency imply increased insight into the
agent’s reasoning, full disclosure of the system’s
internal state may pose challenges in terms of the
user’s cognitive processing capabilities (Bhaskara
et al., 2020; Wickens, 2018). That is, although
increased transparency may benefit SA, this may
also add an additional cognitive processing burden
due to the resources required for selecting and
dividing attention and keeping information in
working memory (Wickens & Carswell, 2021).
This may be exacerbated in situations where the
baseline level of information is already high, that
is, in complex traffic situations (Moacdieh &
Sarter, 2017). Here, increased levels of transpar-
ency information may provide an additional in-
formation burden and the risk of overloading the
operator with information that supports transpar-
ency is high, especially when increased informa-
tion leads to display clutter (Moacdieh & Sarter,
2015a). However, despite risks of increased
workload with agent transparency, recent studies
have not found a clear relationship between these
variables (Ezenyilimba et al., 2023; Loı̈ck, Guérin,
Rauffet, Chauvin, & Éric, 2023; Tatasciore,
Bowden, & Loft, 2023), possibly because of the
use of graphical symbols and integration of
transparency information in task displays (Gegoff,
Tatasciore, Bowden, McCarley, & Loft, 2023; van
de Merwe, et al, 2024a; van Doorn, Horváth, &
Rusák, 2021). Building on these findings, this
study anticipates that when, first, information re-
quirements are identified based on an iterative
human-centred design approach (Endsley et al., 2003;
ISO, 2019), second, symbology is developed based
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on context-specific industry standards (IEC, 2022),
and third, transparency information is integrated in
the primary task display (Skraaning & Jamieson,
2021; van Doorn et al., 2021), mental workload
will not be affected by agent transparency (see
Table 1).

Future supervisors of autonomous systems are
likely to divide their attention between multiple
units and/or have other concurrent tasks to perform
(Cummings & Guerlain, 2007; Mercado et al.,
2016; Wohleber, Stowers, Barnes, & Chen,
2023). Such roles may require shifting attention
between one unit and another, or between one task
and another, emphasising the need for rapid as-
sessment of agent performance and ‘to quickly get
in-the-loop’ (Porathe, Fjortoft, & Bratbergsengen,
2020, p. 3). Assuming that human-centred design
principles are adequately applied in this study
(Endsley et al., 2003; ISO, 2019), this study an-
ticipates that the availability of information that
supports transparency, in the form of SA knowl-
edge directly perceivable on the CAGA system’s
interface, expedites the supervisor’s attainment of
SA (van Doorn et al., 2021). Therefore, it is hy-
pothesized that users spend less time to

comprehend the CAGA system’s reasoning when
this information is available (Kunze, Summerskill,
Marshall, & Filtness, 2019; Roth, Schulte,
Schmitt, & Brand, 2020) (see Table 1). Further-
more, it is hypothesised that transparency has a
benefit in situations where essential system-
internal information may get lost among other
information elements, that is, in complex traffic
situations. In these cases, provided that transpar-
ency information is made salient, presented in a
well-organised manner, and integrated in the user’s
primary task display, this should facilitate com-
prehension of the system, despite increased
complexity (Moacdieh & Sarter, 2015b, 2017).

Method

Participants

To study the effects of transparency on operator
performance variables, an experiment was de-
signed addressing SA, mental workload, and task
performance. For this study, 34 navigators with a
deck officer license (32 males and 2 females) were
recruited as participants (see Table 2). Of these,

Table 1. Summary of Predictions Regarding the Effect of Transparency and Complexity on Situation Awareness,
Mental Workload, and Task Performance.

Measure Impact of Transparency Impact of Complexity Interaction

SA Improved SA with increased
transparency

Reduced SA with high
complexity

Increased transparency may
negate effect of high complexity

Mental
workload

No effect predicted Increased mental workload
with high complexity

No interaction predicted

Task
performance

Improved task performance
with increased transparency

Reduced task performance
with high complexity

Increased transparency may
negate effect of high complexity

Table 2. Participant Demographics and Selected Experience With Technologies.

Min Max Mean Median Std. dev Yes No

Age 25 67 42.7 43.5 11.5
Navigational experience (yrs.) 1 40 13.0 11.0 9.4
Experience at sea (yrs.) 2 43 14.5 12.0 10.3
Active navigational licence (D1-D3) 30 4
Experience with
- Track control autopilot 28 6
- Auto-docking/departure 12 22
- Auto-crossing 16 18
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30 participants held an active license whilst
4 participants have navigation experience, but at
the time of the study their licenses expired between
1 and 5 years prior.

Technical Setup

To maximise recruitment, the first author travelled
to locations most suitable for the participants to
perform the study, including onboard a passenger
ferry where participants worked or at various
national nautical training institutes. Nevertheless,
the technical setup, conditions, and conduct of the
experiment was standardised and consistent re-
gardless of the location where the data was
gathered (see Figure 1). The experiment was
conducted on a standard portable office computer
using a 2400 screen with 1920x1200 resolution
running Windows 10. E-Prime 3.0 served as the
experimental platform in which the experimental
stimuli were provided and primary data was
recorded (Psychology Software Tools, Inc, 2023).
Finally, post-experiment interviews were recorded
using pen and paper.

Execution of the Experiment

Procedure. Figure 2 depicts the execution of the
experiment. After a brief introduction, participants
signed an informed consent form stating that
participation is voluntary and that they had the
liberty to withdraw at any stage during the ex-
periment, without reason or penalty. This research
complied with the American Psychological As-
sociation Code of Ethics and was approved by the
Norwegian Centre for Research Data reference
number 986652. Informed consent was obtained
from each participant. Participants were briefed on
the experimental procedure, what was expected of
them, and the HMI used in the experiment. A
practice session was performed to familiarise the
participants of the execution of the experiment,
including stimuli and questionnaires. After this,
the experiment commenced, and the experimental
trials and measurements were performed. Two
trials were performed that were identical in set up,
but with new traffic situations to avoid familiar-
isation. After the trials, the pairwise comparisons,
as part of the workload measurements, were per-
formed, and a semi-structured interview was

Figure 1. The technical setup used for the experiment: on location onboard of one of the passenger ferries, and at
the university’s experimental lab.
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conducted. Depending on the participant’s prog-
ress, the entire experiment lasted between one and
2 hours and the experimental trials between 10 and
30 minutes each.

Experimental Tasks. Participants took the role of a
supervisor of a ship equipped with an autonomous
CAGA system. They were tasked with observing
and understanding a traffic situation depicting own
ship in conflict with a target ship and own ship’s
proposed solution to resolve it. Once the partici-
pant felt they had sufficiently understood the sit-
uation, including the system’s solution, they were
to press a button on the keyboard after which the
screen was blanked, and questions were presented
concerning SA and mental workload. To provide
participants with a sense of urgency, participants
were told they had a 90 second time limit to
evaluate the traffic situation after which the radar
image would disappear automatically. However, in
practice, there was no time limit imposed by the
researchers to avoid a ceiling effect in the mea-
surements. No time keeping device was available
to the participants. Once the questions were an-
swered, the participant pressed a key to continue,
and a new traffic situation was shown. This process
was repeated until all traffic situations for all ex-
perimental conditions were completed.

The traffic situations were developed by a li-
censed navigator and reviewed by two indepen-
dent, and licensed navigators (see Van de Merwe
et al. (2023a) for further details). The traffic

situations were created on a desktop simulator at a
maritime education and training institution. Each
traffic situation was configured such that they
represented a potential collision situation involv-
ing own ship and one other vessel in either a head-
on-, crossing-, or overtaking situation. To avoid
familiarisation with the traffic situations, multiple
variations were developed including conflict sit-
uations in coastal- and confined waters, restrictions
in target ship’s ability to manoeuvre, and own ship
as a stand-on vessel (IMO, 1977). However, to
ensure equivalence in difficulty between the sit-
uations, they only consisted of one-to-one ship
encounters. This meant that, although traffic sit-
uations could depict multiple ships, own ship was
only in conflict with one other target ship. As
such, traffic situations were created with varia-
tions in terms of type of conflict situation (head-
on, crossing, overtaking/overtaken), who has
right of way (own ship is the give-way vessel or
the stand-on vessel), type of relevant avoidance
actions proposed by the CAGA system (route-
and/or speed change), and any restrictions in
target ship manoeuvrability (restricted in ability
to manoeuvre). In total, 20 unique traffic situa-
tions were used for the experiment: four for the
familiarisation phase, eight for trial one and eight
for trial two, that is, 16 situations for the ex-
perimental trials in total. For readers interested in
the traffic situations and their configurations, a
table is made available as Supplemental Material
on the journal’s web site.

Figure 2. An illustration of the procedure for the experiment.
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Experimental Design. This study used a repeated
measures approach in which all participants per-
formed all eight experimental conditions: four
transparency levels x two complexity levels.
Participants were shown one traffic situation for
each condition in each trial. Since the experiment
comprised of two trials, participants performed
16 experimental runs in total. The data for each
experimental condition was averaged between trial
one and two. To avoid familiarisation and order
effects, the conditions were administered in ran-
dom order within each trial.

Independent Variables

Transparency. For this study, four levels of trans-
parency were defined based on the amount and
type of information to disclose to the supervisor.
Which information to disclose was identified in
an earlier study based on a GDTA of collision
avoidance manoeuvring (van de Merwe, et al.,
2024b). These information requirements were
subsequently structured based on an information
processing model (Parasuraman, Sheridan, &
Wickens, 2000; van de Merwe, et al, 2023b)
(see Figure 3).

Applying this model to the collision avoidance
context allowed the information from the task
analysis to be organised into distinct categories
with specific information elements belonging to
each information processing step (see Table 3).
This, in turn, defined which information was de-
picted (van de Merwe et al., 2023b). In the
‘condition detection’ step, information regarding
the system’s input parameters were depicted, in-
cluding which objects it had detected, a basic
classification of these in terms of object type and
size, the object’s relative motion to own ship, its
sensor status, and any uncertainties in these. In the
‘condition analysis’ step, information regarding
the outcome of the system’s analytical process
were depicted in terms of objects that posed a
collision risk, priorities, intended trajectories and
safe speed parameters. In the ‘action planning’
step, the CAGA system depicted its collision
avoidance decision and updated passage plan only.
Finally, note that the ‘action control’ step was
omitted as there was no information processing
performed in this stage, only the execution of
earlier made decisions and action plans.

Based on this structure, four levels of trans-
parency were defined in which the amount and
type of information was varied. These levels were
defined based on the minimum requirements for
supervising an autonomous CAGA system. A
‘low’ level of transparency was defined as the
information an operator needs at minimum for
supervision. In this case, the low transparency
level depicts the information about the system’s
decisions and planned actions (the ‘action plan-
ning’ stage in Figure 3). Additional transparency is
provided by adding information from previous
information processing steps; in other words, by
‘going backwards’ through the model. As such, the
‘medium (A)’ level of transparency is a combi-
nation of the ‘action planning’ and ‘condition
analysis’ steps and the ‘medium (B)’ layer is a
combination of the ‘action planning’ and ‘condi-
tion detection’ steps. The latter level was devel-
oped to explore the effects of providing
participants with information regarding the sys-
tem’s detection and action planning only, that is,
leaving out the analysis part, and thereby not only
varying the amount of information but also the
type. Finally, the ‘high’ level provides the infor-
mation from all steps: the ‘action planning’,
‘condition analysis’, and ‘condition detection’
steps (see Table 4).

Traffic Complexity. Two levels of complexity were
defined for this study: traffic situations with low-
and with high complexity. Traffic complexity was
defined by the degree to which own ship had the
space to perform an avoidance manoeuvre. In
cases where there was limited manoeuvring space,
for example, because of another ship, the vessel
was considered ‘boxed in’ and own ship may
needed to postpone an avoidance manoeuvre until
the obstruction had been passed, change speed, or
choose an alternative solution. Given the addi-
tional analysis and decision making that was re-
quired for such cases, these were considered more
complex than those where a single and unob-
structed solution could be implemented. As such,
complexity was operationalised by adding objects
to the traffic situation and ensuring own ship is
boxed in.

Human-Machine Interface. During the experimen-
tal trials, participants were shown traffic situations
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Figure 3. The framework for establishing transparency requirement for a CAGA system based on a model of human
information processing (adapted from Parasuraman et al., 2000; and adopted from van de Merwe et al., 2023b).

Table 3. Information Elements Corresponding to Each Information Processing Step (van de Merwe et al., 2023b).
Key: OT = overtaking/overtaken, HO = head-On, CR = crossing, GW = give-way, SO = stand-on.

Information Processing Step
Information Elements CAGA Should Depict

(Excerpts)

1. Condition detection - Detected objects short and long range
CAGA performs object detection, basic classification, object tracking,
and status

- Identified target ship
- Target object type and size
- Identified target object as OT/HO/CR
- Uncertainties in the radar/sensor data
- Status of sensors

2. Condition analysis - Objects that pose a risk
CAGA performs object classification, tracking, situation analysis, and
risk estimation

- Plotted objects
- Risk object type and size
- Risk object priority
- Risk object course and speed
- Risk object intended trajectory
- Risk object conflict type
- Safe speed parameters

3. Action planning - Own ship priority (GW/SO)
CAGA decides on collision avoidance manoeuvring and determines
an updated passage plan

- Target vessel priority (GW/SO)
- Own ship intended track and speed

Table 4. Levels of Transparency.

Level of Transparency

Information Processing Steps

Condition Detection Condition Analysis Action Planning

Low X
Medium (A) X X
Medium (B) X X
High X X X
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in the form of a static radar image depicted on a
radar display from a popular maritime equipment
manufacturer (see Figure 4 for an example). On
this image, vessels, objects and other radar echoes
were shown representing a realistic traffic situa-
tion. Information such as settings, range, targets,
and (time to) closest point of approach limits were
also available and could be freely used by the
participant to make sense of the traffic situation.

Information about the CAGA system’s infor-
mation processing was added to the radar display
(see Figure 5 for an example) and integrated in the
primary task display as much as possible (Endsley,
2023; Endsley et al., 2003). The symbology rep-
resenting information that supports transparency
was developed by a licensed navigator using an
iterative development process (ISO, 2019), based
on the IEC 62288 standard for maritime navigation
and radiocommunication equipment (IEC, 2022),
and reviewed by two independent and
licensed navigators (see Van de Merwe et al.,
2023a for more details on the development pro-
cess). In this case, central information regarding own

ship actions, risk analysis, and detections, were
overlaid onto the primary information source for
collision avoidance, that is, the radar display. De-
pending on the experimental condition, this infor-
mation varied depending on the relevant level of
transparency (see Table 4) and thereby which ele-
ments of the system’s information processing were
depicted (see Table 3). An example of a traffic sit-
uation with four different levels of transparency is
made available as Supplemental Material on the
journal’s web site.

Dependent Variables

Situation Awareness. SA about the system’s solu-
tion and information provision was measured after
each experimental run using the Situation
Awareness Global Assessment Technique (SA-
GAT; Endsley & Garland, 2000). The SAGAT is
an assessment of a person’s SA that is typically
applied in experiments where simulations are used.
At random intervals during the simulation, the
participant’s screen is blanked and specific queries

Figure 4. A typical traffic situation representing a collision situation (overtaking) with high complexity (without
transparency).
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about the scenario are asked. Because the partic-
ipant’s answers can be evaluated against the data
from the simulator, the SAGAT provides an ob-
jective assessment of SA (Endsley & Garland,
2000). For this experiment, a pool of 30 generic
SAGAT queries were developed and distributed
across the traffic situations. These queries were
subsequently tailored to specifically fit the situa-
tion (see Table 5 for an example). Three SA queries
were administered per traffic situation, one for
each level of SA, one at a time, and starting at level
1 SA. Participants answered by selecting one of
three multiple-choice alternatives per query of
which only one alternative was correct. Scores
were recorded per level of SA where ‘1’ was
correctly answered and ‘0’ was incorrectly
answered.

Workload. Workload was measured using the
NASA-TLX (Hart & Staveland, 1988). This scale
measures self-reported subjective experience of
workload across six dimensions (mental demand,
physical demand, temporal demand, performance,
effort, and frustration level). As part of this scale,
participants perform a pairwise comparison to

create weights for the dimensions. The sum of the
weighted workload scores for all dimensions de-
fines the total workload score. However, as setting
the weights after each run is somewhat time-
consuming and as the type of task is constant
across the experiment, a version of the NASA-
TLX was used where participants only perform
pairwise comparisons once, and only after all
experimental trials were performed. As such,
the weights derived from the pairwise compari-
son applied to all workload scores for the
individual runs.

Task Performance. Task performance was defined
as the time required for participants to feel they had
obtained an understanding of the traffic situation
through the information provided by the CAGA
system, that is, time-to-comprehension (TTC).
Similar to other time-related performance mea-
sures, such as eye-tracking, reading speed, search
time, and time to task completion, this variable was
chosen as an indicator of how quickly humans are
able to process information (Gawron, 2019). TTC
was self-guided and consisted of the participant
deciding that the traffic situation and the visualised

Figure 5. A typical traffic situation representing a collision situation (overtaking) with high complexity (with
transparency).
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solution was sufficiently understood. The time
measurement started at the moment the traffic
situation was displayed and ended upon a key
press by the participant after which the screen was
blanked. Time was measured in seconds with no
time limit imposed. Still, the participants were
urged to be as quick and accurate as possible.

Ranking. After the experimental trials, one repre-
sentative high complexity traffic situation from the
experiment was shown but with different levels of
transparency presented. Participants were asked to
rank the four variants for each of the dimensions of
transparency: observability and predictability
(MITRE, 2018). Definitions for these dimensions
were read verbatim to the participants and were
available on paper, including an example of its
application in the collision avoidance context. A
think-aloud protocol was used to record the par-
ticipant’s verbal reasoning of the ranking (Eccles
& Arsal, 2017). The traffic situation with four
levels of transparency that was used for the ranking
is made available as Supplemental Material on the
journal’s web site.

Results

Data Analysis and Statistics

In the experiment, two trials were performed (trial
1 and trial 2) that were identical in experimental
setup and execution, but for which different traffic

situations were used. The data from these trials
were averaged, and screened for missing values,
outliers, and tested for normality. Due to technical
issues with the experimental setup, recording of
TTC was incomplete for the initial set of partici-
pants, and led to missing values for six partici-
pants. This issue was corrected, and no missing
values were reported for the remaining partici-
pants. As a result, of the 272 measurements for
TTC, 20 measurements (7%) were missing. Fi-
nally, there were three participants with outliers for
the TTC variable that were removed in the final
data analysis. An outlier was defined as a data
point lying outside 1.5 times the inter-quartile
range of that variable. Thus, the data of 25 par-
ticipants were used in the analysis of this variable.

The dependent variables were tested for nor-
mality using the Shapiro-Wilk test (Shapiro &
Wilk, 1965). Significant deviations from normal-
ity were found for the SA scores. However, the
number of observations per cell for these variables
was sufficient and equal for each cell (N = 34),
such that robustness against normality was at-
tained. As such, it was decided to use the standard
Repeated Measures – Analysis of Variance (RM-
ANOVA). Main and interaction effects were
tested using the F-test, and follow-up pairwise
comparisons between the levels of the independent
variables were performed using t-tests with Bon-
ferroni corrections.

Table 6 presents the overall descriptive statistics
and correlations for the dependent variables. For

Table 5. Examples Situation Awareness Queries for the Traffic Situation Depicted in the Above figures. Correct
Answers are in Bold Font.

Level of SA Query

1 Howmany targets, within 40 degrees of either side of your bow, are sailing approximately in the opposite
direction of you?

a) None
b) 1
c) 3

2 What target ship limits your ability to perform an avoidance manoeuvre?
a) ‘ISAR HIGHWAY’ (target 004)
b) ‘RT STAR’ (target 007)
c) ‘NIMBUS’ (target 008)

3 For ‘NIMBUS’ (target 008), what is your ship’s intention?
a) Pass on its starboard side
b) Pass on its port side
c) Pass on its aft

van de Merwe et al. 167

https://journals.sagepub.com/doi/suppl/10.1177/15553434241240553


calculating the correlations, the overall mean
scores per participant were calculated for each
dependent variable. This resulted in five new
variables representing the mean values for each
dependent variable, irrespective of transparency-
or complexity level. Subsequently, the Pearson
correlation was calculated between these depen-
dent variables. Significant positive correlations
were found between TTC and level 1 SA (r(23) =
.43, p < .05), and TTC and level 3 SA (r(23) = .43,
p < .05). In other words, increased TTC were
positively associated with the ability to perceive
elements in the traffic situation, and the ability to
project the status of these elements into the future.
In addition, a positive correlation between level
2 SA and level 3 SA was found (r(32) = .51, p <
.05), indicating a positive association between the
comprehension of the current traffic situation and
its projection into the future. No significant cor-
relations were found between TTC and level 2 SA,
TTC and workload, and level 1 SAwith level 2 SA,
level 3 SA, and mental workload.

Table 7, Table 8, and Table 9 depict the means
and standard deviations for the dependent vari-
ables as a function of transparency, complexity,

and their interactions. The statistical results for
each of these variables, including the figures de-
picting the interaction between transparency and
complexity, are presented in their respective sub-
sections below. For readers interested in the graphs
depicting the main effects for transparency and
complexity, figures are made available as
Supplemental Material on the journal’s web site.

Situation Awareness

A main effect for transparency was found for level
1 SA (F (3, 31) = 9.37, p < .001, ηp

2 = .48). The
high transparency level (Mhigh = .71) resulted in
improved awareness of elements in the environ-
ment compared to the low transparency and the
medium (B) condition (Mlow = .46, Mmedium (B) =
.57; see Table 7). No differences were found be-
tween the medium (A) condition and the other
conditions (Mmedium (A) = .60). A main effect for
complexity was found where traffic situations with
high complexity indicate lower level 1 SA (F (1,
33) = 30.35, p < .001, ηp

2 = .48;Mlow = .70,Mhigh =
.47; see Table 8). A weak and non-significant in-
teraction was found between the transparency and

Table 6. Overall Means, Standard Deviations, and Pearson Correlations Between the Dependent Variables.

N Mean SD Level 1 SA Level 2 SA Level 3 SA WL TTC

Level 1 SA 34 .59 .12 --
Level 2 SA 34 .74 .13 .30 --
Level 3 SA 34 .76 .14 .33 .51** --
WL 34 59 21 �.20 �.05 �.18 --
TTC 25 46.72 13.47 .43* .38 .43* .16 --

*p < .05 and**p < .01. Note that TTC is measured in seconds.

Table 7. Means and Standard Deviations for the Dependent Variables as a Function of Transparency Level only. Note
That TTC is Measured in Seconds.

Transparency Level

Low Medium (A) Medium (B) High

M SD M SD M SD M SD

Level 1 SA .46 .22 .60 .24 .57 .19 .71 .23
Level 2 SA .65 .25 .84 .20 .85 .18 .64 .24
Level 3 SA .73 .19 .69 .23 .77 .20 .85 .21
WL 60.19 20.58 58.37 21.98 60.12 21.67 60.80 24.39
TTC 38.40 14.17 52.62 14.24 44.78 14.75 51.07 14.62
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complexity conditions (F (3, 31) = 2.89, p = .051,
ηp

2 = .22; see Table 9). As Figure 6 depicts, there
are differences between the level 1 SA scores
between the low- and high complexity conditions
across the transparency levels, except for medium
(A) transparency, albeit this difference is not sta-
tistically significant.

A main effect of transparency on level 2 SAwas
found (F (3, 31) = 10.57, p < .001, ηp

2 = .51). The
SAGAT level 2 scores for medium (A) transpar-
ency level (Mmedium (A) = .84) are higher than the
low- and high condition (Mlow = .65, Mhigh = .64).
Also, the scores for the medium (B) condition are
higher than the scores for the low condition and did
not differ from the medium (A) condition (Mmedium

(B) = .85; see Table 7). Furthermore, a main effect

of complexity on level 2 SAwas found (F (1, 33) =
24.71, p < .001, ηp

2 = .43;Mlow = .82,Mhigh = .67).
This indicates that a lower level 2 SAwas achieved
in high complexity cases compared to low com-
plexity ones (see Table 8). Finally, a significant
interaction between complexity and transparency
was found for level 2 SA (F (3, 31) = 3.21, p <
.037, ηp

2 = .24) showing significant differences in
level 2 SA scores for medium (A) transparency and
complexity (see Table 9 and Figure 7).

A main effect of transparency on level 3 SAwas
found (F (3, 31) = 4.36, p < .011, ηp

2 = .30). The
scores on SAGAT were highest for the high
transparency condition (Mhigh = .85) and signifi-
cantly higher than the low- and medium (A)
transparency conditions (Mlow = .73, Mmedium (A) =
.69; see Table 7). No difference between the
medium (B) transparency level and the other levels
was found (Mmedium (B) = .77). A main effect for
complexity was found in which the low com-
plexity level resulted in higher scores on the
SAGAT compared to the high complexity level (F
(1, 33) = 38.60, p < .001, ηp

2 = .54; Mlow = .85,
Mhigh = .67; see Table 8). No interaction between
complexity and transparency was found for level
3 SA (see Table 9 and Figure 8).

Mental Workload

No main effect of transparency on mental
workload was found (see Table 6). However,

Table 8. Means and Standard Deviations for the
Dependent Variables as a Function of Complexity only.
Note That TTC is Measured in Seconds.

Complexity

Low High

M SD M SD

Level 1 SA .70 .18 .47 .16
Level 2 SA .82 .16 .67 .16
Level 3 SA .85 .15 .67 .18
WL 55.29 21.75 64.45 22.72
TTC 40.30 10.88 53.14 16.99

Table 9. Means and Standard Deviations for the Dependent Variables as a Function of Level of Transparency and
Complexity. Note That TTC is Measured in Seconds.

Transparency Level

Low Medium (A) Medium (B) High

M SD M SD M SD M SD

Complexity Low Level 1 SA .56 .34 .65 .34 .72 .31 .88 .22
Level 2 SA .79 .30 .85 .26 .94 .20 .71 .35
Level 3 SA .82 .24 .78 .28 .85 .26 .94 .16
WL 56.07 20.80 55.19 23.81 53.21 22.55 56.69 24.04
TTC 31.81 13.38 45.50 11.30 36.55 13.61 47.32 11.98

High Level 1 SA .37 .33 .56 .30 .43 .25 .54 .40
Level 2 SA .50 .30 .82 .30 .77 .31 .57 .35
Level 3 SA .63 .33 .60 .27 .69 .28 .75 .35
WL 64.31 22.22 61.54 22.05 67.03 23.85 64.91 26.66
TTC 44.99 16.73 59.75 18.72 53.00 18.14 54.82 20.37
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individual dimensions as measured through the
NASA-TLX were analysed and showed an effect
on the ‘Performance’ sub-dimension (F (3, 28) =
7.79, p < .001, ηp

2 = .46). Here, the participants
reported they were more satisfied with

‘achieving the goals set by the experimenter’
(Hart & Staveland, 1988, p. 30) for the medium
(A) transparency level compared to the other
levels. Also, a main effect for complexity on
mental workload was found (F (1, 33) = 21.96,

Figure 6. Mean scores for level 1 SA as a function of transparency and complexity. Note the error bars represent the
95% confidence interval.

Figure 7. Mean scores for level 2 SA as a function of transparency and complexity. Note the error bars represent the
95% confidence interval.
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p < .001, ηp
2 = .40;Mlow = 55.29,Mhigh = 64.45).

This indicates that participants reported higher
levels of workload in the high complexity cases
compared to the low complexity cases (see
Table 8). Finally, no interaction between com-
plexity and transparency was found (see Table 9
and Figure 9).

Task Performance

Amain effect for transparency was found for mean
TTC (F (3, 22) = 24.73, p < .001, ηp

2 = .77). The
medium (A)-, medium (B)-, and high transparency
conditions (Mmedium (A) = 52.62, Mmedium (B) =
60.12, Mhigh = 60.80) led to increased mean
comprehension times compared to the low trans-
parency condition (Mlow = 38.40). Also, the me-
dium (A)- and high transparency conditions
resulted in higher mean comprehension times
compared to the low- and medium (B) conditions.
No difference in TTC was found between the
medium (A)- and high transparency conditions
(see Table 7). For complexity, a main effect was
found on the mean TTC (F (1, 24) = 46.65, p <
.001, ηp

2 = .66; Mlow = 40.30, Mhigh = 53.14). A
high traffic complexity resulted in increased mean
comprehension times for the participants (see
Table 8). For the interaction between transparency

and complexity no effect was found (see Table 9
and Figure 10).

Preference

A main effect of transparency was found on
the subjective ranking of the transparency
levels (F (3, 31) = 616.64, p < .001, ηp

2 = .98).
The medium (A)- and high transparency levels
were preferred compared to the low- and me-
dium (B) levels. The low transparency was
rated the least preferred, followed by the me-
dium (B) level, and a shared highest preference
for the medium (A)- and high transparency
level (see Figure 11).

Results Summary

To summarise, the results from the experiment
showed that SA improved with transparency,
indicating that level 1 SA was highest for the
high transparency condition, level 2 SA was
highest in the medium (A) transparency condi-
tion, and level 3 SA was highest in the high
transparency condition. For all SA measure-
ments, high complexity traffic situations resulted
in reduced levels of SA. Moreover, no significant
effect of transparency on mental workload was

Figure 8. Mean scores for level 3 SA as a function of transparency and complexity. Note the error bars represent the
95% confidence interval.
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observed, although a significant effect for
complexity was found showing that higher
traffic complexity resulted in higher perceived
mental workload. Furthermore, TTC was highest
for the medium (A)- and high level. TTC was
also highest for the high complexity traffic sit-
uations. Finally, the medium (A)- and high
transparency levels were rated as the most pre-
ferred by the participants.

Discussion

This study aimed to investigate the relationship
between agent transparency, complexity, and se-
lected human performance variables in a maritime
autonomous collision avoidance context. Trans-
parency was predicted to have a positive effect on
SA and task performance without affecting mental
workload. Complexity was predicted to have a

Figure 9. Mean scores for mental workload as a function of transparency and complexity. Note the error bars
represent the 95% confidence interval.

Figure 10. Mean scores for TTC as a function of transparency and complexity. Note the error bars represent the
95% confidence interval.
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negative effect on SA, mental workload, and task
performance. Finally, it was predicted that higher
transparency levels could mitigate the effect of
complexity on SA and task performance. No in-
teraction effect was predicted for mental workload.
The hypotheses and corresponding results are
summarised in Table 10.

Situation Awareness

For level 1 SA, the highest SAGAT scores were
achieved with the highest level of transparency. In
Endsley’s definition of SA (1995), level 1 SA is
concerned with the perception of elements in their
environment and provides the foundation for the
higher levels of SA. In this study, it was anticipated
that when the system provided information re-
garding its perception of its environment, that is,
‘condition detection’ (see Table 4), this would
support level 1 SA. In this level of transparency,
the CAGA system depicts which targets it has
detected in the short and long range, the type of
conflict with all detected targets, uncertainties in
the sensor data, and the status of its sensors (see
Table 3). This study anticipated that level 1 SA
would be best for transparency levels in which the
‘condition detection’ information would be pre-
sented, that is, the medium (B)- and the high
conditions. However, the results indicate that the
highest level 1 SA scores were achieved only in the

high transparency condition and not in the medium
(B) condition. Furthermore, no significant differ-
ence was found between the high- and the medium
(A) transparency condition in terms of level 1 SA,
indicating similar SAGAT scores. This may indi-
cate that the information depicted in the ‘condition
analysis’ step (e.g. risk objects, intended trajec-
tories, and priorities; absent in the medium (B)
transparency condition yet present in the medium
(A) condition) may have played a role in achieving
improved level 1 SA. Possibly, the additional in-
formation regarding collision risk have made the
participants more observant of the ship’s sur-
rounding traffic and thus better able to achieve
level 1 SA.

For level 2 SA, the highest level of SA was
achieved with the medium (A) level of transpar-
ency regardless of complexity level. Again, this is
as hypothesized as it is at this level the system’s
analysis is depicted on the HMI and made avail-
able to the supervisor, for example, depicting risk
objects, risk priorities, intended trajectories, con-
flict type, and safe speed parameters (see Table 3
and Table 4). However, the same level of level
2 SAwas also achieved for the medium (B) level of
transparency compared to the medium (A) level. In
the medium (B) level of transparency, the CAGA
system depicts which objects were detected in the
short and long range, target type, relative motion,
status and uncertainties of sensor data, that is no

Figure 11. The participants’ preferences for the transparency levels. Note that a lower score indicates a higher
preference (most preferred = 1 and least preferred score = 4).
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analytical information, yet participants were able
to achieve equally high level 2 scores compared to
the medium (A) level, where the system’s ana-
lytical information was readily available. For ex-
ample, at the medium (A) level of transparency, the
system depicts which objects it sees as posing a
collision danger by extrapolating the objects’
current vector and highlighting the level of risk
using specific symbology and colours. This way,
participants could directly perceive the outcomes
of the system’s risk analysis process and use this
information to understand the system’s interpre-
tation of the traffic situation. In addition to the
medium (B) results, what is somewhat unexpected
is that the same level of SAwas not achieved in the
high level of transparency condition. As the high
transparency level includes all information from
the medium (A) transparency level, that is, also the
analytical information (see Table 3 and Table 4),
one could reasonably expect that participants
would score equally well on level 2 SA for both the
medium (A)- and high transparency conditions. As
this is not the case, one explanation may be that the
additional information about the system’s detec-
tion and sensor information, as shown in the high
transparency case (see Figure 5), may have dis-
tracted the participants in establishing an under-
standing of the system’s analysis.

Finally, for level 3 SA, the highest level was
achieved with the highest transparency level. No
differences were observed between the low and
medium (A) transparency levels. To support level
3 SA, the system provided the future state pre-
diction of own ship and target objects. The future
state of own ship, that is, its future track and speed
(see Table 4), was depicted for each level of
transparency. The future state of target ships was
depicted for the medium (A)- and high transpar-
ency levels but not for the other levels. As such, it
would follow that either all transparency levels
scored equal on level 3 SA, or that the medium
(A)- and high transparency levels scored equal.
However, given that only the high transparency
level resulted in the highest level 3 SA scores
makes this finding somewhat challenging to in-
terpret. One explanation is that the high trans-
parency level provided the complete picture of the
system’s interpretation of the traffic situation: its
decision and future actions, its analysis, and its
object detections, including sensors states. Possi-
bly, providing participants with a complete in-
formation overview allowed them to understand
own ship’s future state more adequately, consid-
ering that they now have a more comprehensive
information basis to build this on. In addition,
based on the full picture, participants may be better

Table 10. Summary of Predictions and Results Regarding the Effect of Transparency and Complexity on Situation
Awareness, Mental Workload, and Task Performance.

Measure
Impact of
Transparency

Results
Match
Prediction?

Impact of
Complexity

Results
Match
Prediction? Interaction

Results
Match
Prediction?

SA Improved SA
with increased
transparency

Level of SA: Reduced SA with
high
complexity

Level of SA: Increased
transparency
may negate
effect of high
complexity

Level of SA:
1: Yes 1: Yes 1: No
2: Yes 2: Yes 2: Yes
3: Yes 3: Yes 3: No

Mental
workload

No effect
predicted

Yes Increased mental
workload with
high
complexity

Yes No interaction
predicted

Yes

Task
performance

Improved task
performance
with increased
transparency

No Reduced task
performance
with high
complexity

Yes Increased
transparency
may negate
effect of high
complexity

No
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able to reason towards the correct answer when
answering the SAGAT.

For traffic complexity, SAGAT scores were
lower for the high complexity traffic situations
indicating it was more challenging to achieve a
similar level of SA in the high complexity cases
compared to the low complexity ones. This finding
is consistent with earlier observations where in-
creased number of objects presented to a super-
visor, including their interactions, increases the
number of goals and decisions to be made which,
given the limitations of human information pro-
cessing capabilities, will have an effect on how
well SA can be achieved (Endsley, 1995). In terms
of interactions between transparency and com-
plexity, an effect was found for level 2 SA pointing
towards a positive contribution of the depiction of
the system’s reasoning, for example, risk objects,
intended trajectories, and priorities, as present in
the medium (A) transparency level, for high
complexity cases.

Comparing our results to similar studies in
which the relationship between transparency and
SA was investigated, we find comparable results.
For example, Roth et al. (2020) found improve-
ments in SAGAT scores when participants were
evaluating agent-generated proposals in an
unmanned-manned helicopter teaming operation.
In their study, level 3 SAwas most improved in the
high transparency condition compared to the low
condition. Chen et al. (2014b, 2015) found im-
provements in SA when participants were super-
vising unmanned aerial vehicles in a search
operation, and Selkowitz et al. (2017) reported
improved SAGAT scores when monitoring an
autonomous robot for level 2 and 3 SA, but not for
level 1. However, some studies failed to identify a
relationship between transparency and SA for
supervision (Skraaning & Jamieson, 2021; Ex-
periment 3) and monitoring tasks (Pokam et al.,
2019; Selkowitz, Lakhmani, Chen, & Boyce,
2015; Wright et al., 2020). Overall, these studies
point towards an overall neutral to positive rela-
tionship between transparency and SA, and this
study has strengthened these findings.

Mental Workload

No effect of transparency on mental workload was
found. For complexity, increased workload scores

were found for all high complexity traffic situa-
tions, but there was no interaction effect with
transparency.

Still, for one sub-dimension of the NASA-TLX
scale: ‘Performance’ a significant relationship
between transparency and mental workload was
found. Here, participants rated their own perfor-
mance in relation to the experimental task as better
for the medium (A) transparency level compared to
the other transparency levels. In other words, as the
experimental task was to understand the traffic
situation and the system’s handling of it, partici-
pants felt they achieved this best in the medium (A)
transparency condition. Possibly, participants felt
they had sufficient information in the medium (A)
condition and therefore felt they were able to meet
the goals of the experiment.

When comparing these results to similar studies
where participants were tasked with monitoring an
autonomous agent only, limited effects of trans-
parency on mental workload were also reported
(e.g. Du et al., 2019; Selkowitz et al., 2015, 2017;
Wright et al., 2020). A study by Panganiban et al.
(2020) found a reduction in mental workload as
measured through the NASA-TLX when an au-
tonomous agent communicated its intensions to
support the participant in its task execution.
Conversely, a study by Selkowitz et al. (2017)
reported an increase in eye-fixation duration, a
measure of visual search and mental processing
(Di Nocera, Camilli, & Terenzi, 2007; Harris,
Glover, & Spady, 1986), when monitoring an
autonomous robot’s display for its actions.

In studies where participants took the role as a
supervisor of an autonomous agent, mostly re-
ductions in workload were found (T. Chen et al.,
2014b, e.g. 2015; Skraaning & Jamieson, 2021;
Experiment 1 and 2), although an increase
(Guznov et al., 2020) and no effect (Skraaning &
Jamieson, 2021; Experiment 3) were also reported.
Finally, in studies where participants were asked to
respond to system-generated proposals, no effect
on mental workload was reported (e.g. Bhaskara
et al., 2021; Loft et al., 2023; Mercado et al., 2016;
Roth et al., 2020; Stowers et al., 2020).

This may imply that the relationship between
transparency and mental workload depends on the
type of task and role given to the participant (van
de Merwe, et al, 2024a). In this experiment, par-
ticipants did not interact with the autonomous
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CAGA system as they were only asked to perceive
and comprehend its information. Although several
of the studies mentioned above found a relation-
ship between transparency and mental workload,
17 out of 23 indicators, as reported in the study by
van de Merwe, et al, 2024a did not. This experi-
ment’s result does not change the overall con-
clusion that adding information that supports
transparency to an HMI has a limited effect on
mental workload.

Task Performance

The results indicate participants take more time in
building up a mental picture in the medium (A)-
and high transparency conditions and less time in
the low- and medium (B) transparency conditions.
Participants consistently took more time to com-
prehend the traffic situation in the medium (A)-
and high levels compared to the low transparency
level. This was the case for both the low- and high
complexity conditions indicating an equal effect of
traffic complexity regardless of transparency level.
The results were inconsistent with the hypothesis
that the cognitive processes associated with de-
veloping a mental picture of the traffic situation
would be supported when much of the information
needed was readily available on the HMI for the
higher transparency cases. It was also hypothe-
sized that this effect would be stronger for the high
complexity condition than the low complexity
condition, but this was not the case.

Earlier studies have shown inconsistent effects
for time-related performance measures associated
with transparency. A recent study investigating the
impact of transparency on decision risk in human-
agent teams measured the time it took for partic-
ipants to choose between two options suggested by
a recommender system (Loft et al., 2023). No
differences between various levels of transparency
and decision time were found, except for an in-
teraction between decision time and decision risk
indicating that transparency alleviated the negative
effect of increased risk on response time. A study
performed by Skraaning and Jamieson (2021)
found reduced response times to events in a nu-
clear control room simulation study. Here, control
room operators were tasked with controlling a
simulated nuclear power plant and handle small to
large system upsets, including taking corrective

action. A reduction in response time to system
upsets were found in the transparency condition
indicating a better task performance when infor-
mation that supports transparency was integrated
in the primary task HMI. Conversely, a study by
Stowers et al. (2020) found an increase in response
time with increased levels of transparency. In this
study, participants were tasked with monitoring
and controlling multiple unmanned vehicles and
evaluate plans for these provided by an intelligent
agent. Here, the addition of information that
supports transparency in the form of basic pro-
jection and uncertainty information significantly
increased response time, albeit with a small effect
size. Finally, Wright et al. (2020) found no dif-
ference in the time participants took to identify and
assess events when monitoring an autonomous
robot.

In our study, response time was driven by the
instruction for the participants to ‘continue to the
next step when you feel you have built up a suf-
ficient understanding of the traffic situation’, that
is, the time needed for comprehension. In contrast
with the aforementioned studies, in which par-
ticipants were asked to evaluate plans, respond to
events, or monitor autonomous agents, this study
asked participants to build a mental representation
of the traffic situation only. Considering that there
were no significant differences in TTC between the
medium (A)- and high transparency conditions and
that both showed significantly higher TTCs than
the low- and medium (B) conditions indicates that
the analytical information contributed to the par-
ticipants’ time needed to comprehend the traffic
situations. Conversely, this also implies that the
addition of the system’s detection information did
not contribute to the participants’ TTC.

Considering Table 3 and Table 4, the infor-
mation presented in the condition analysis step,
represented in the medium (A)- and high trans-
parency conditions, depicts elements primarily
concerned with collision risk, for example, objects
that pose a risk, risk object priority, conflict type,
and their predicted course and speed. This infor-
mation is essential in understanding the CAGA
system’s risk determination and is the primary
basis for interpreting the reasoning behind its
avoidance actions. The information in the condi-
tion detection step, represented in the low- and
medium (B) transparency conditions, primarily
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consists of elements depicting what the ship has
detected, for example, objects in the short and long
range, object type and size, and basic classification
of relative motion. That is, whereas the analytical
information is specific to objects posing a risk, the
detection information covers all objects irre-
spective of risk.

In this experiment, the participants, all expe-
rienced navigators, took the role of a supervisor of
a ship equipped with a CAGA system with the task
to observe and understand the system’s depicted
solutions to traffic conflict situations. Since the
system’s analysis and avoidance actions are the
most safety critical information to understand,
participants may have taken additional time to
evaluate the analytical information provided by the
CAGA system, as presented in the medium (A)-
and high transparency conditions, because they
wanted to understand the situation as accurately as
possible. The correlational results between TTC
and SA support this assumption as participants
with higher TTC values also have higher level
1 SA and level 3 SA scores. In other words, those
that spent more time observing, interpreting, and
understanding the traffic situations also scored
better on the SAGAT. Similar results have been
reported in eye-tracking studies where increased
focus on critical information elements was cor-
related with improved SA (van de Merwe, et al,
2012). Alternatively, participants in the medium
(A)- and high transparency conditions may also
have taken more time to analyse the traffic situ-
ations because they were comparing CAGA’s
analysis with their own. That is, rather than taking
the system’s interpretation of the traffic situation at
face value, the participants may have performed
their own analysis first to ensure they were
equipped with sufficient knowledge to be able to
scrutinise the systems. Also, given that the CAGA
system’s analytical information was not depicted
in the low- and medium (B) transparency condi-
tions, the TTC was less than the medium (A) and
high transparency conditions because there was
less critical information to evaluate and compare.
Similar observations have been reported when
operators are required to evaluate recommenda-
tions and need to compare these to system infor-
mation and other information sources (Endsley,
2017). As such, considering the potential role of
humans in the ship autonomy context where a

thorough understanding of the CAGA system’s
performance is essential for supervisory perfor-
mance (van de Merwe et al., 2024b), this finding
demonstrates the importance of addressing the
type of information in developing transparent
agents and not only the amount.

Practical Considerations

The results of this study imply that transparency
has value as a design principle for designing
CAGA systems given the positive results for SA.
In addition, the qualitative feedback from the
navigators about which of the levels of transpar-
ency they prefer clearly indicates a positive atti-
tude towards HMIs depicting the system’s
analytical information at minimum. Conversely,
these results also clearly indicate which of the
transparency levels were not preferred. For ex-
ample, the low transparency level, that is, where
the system only showed its decisions and planned
actions, was the least preferred. In addition, the
medium (B) transparency level, that is, where the
system’s analytical information was not depicted,
ranked just slightly better than the low level.
Clearly, our participants preferred to have infor-
mation about the system’s analytical information
in addition to its decisions and planned actions, as
indicated by the shared highest ranking of the
medium (A) and high transparency levels. Nev-
ertheless, there is no clear result pointing towards
the optimal level of transparency across our de-
pendent variables. This means that, when de-
signing for transparency, it may be challenging to
decide on which level to implement. Possibly, a
more demand-driven transparency, that is, where
users adjust the level of transparency depending on
the task and context, can be used to provide control
to the supervisor over the amount of system in-
formation presented. A study by Vered et al. (2020)
demonstrated that such an approach could avoid
the downsides of presenting transparency infor-
mation whilst maintaining its benefits. For ex-
ample, when applied to autonomous shipping,
supervisors may only depict a low level of
transparency in situations with little to no traffic
whilst ‘dialling up’ the level of transparency for
situations that require closer supervision. This
way, this approach may improve comprehension
times compared to the sequential transparency
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approach as used in our study. However, a po-
tential risk associated with this approach is the
potential for choosing an inappropriate transpar-
ency level and thereby overseeing important in-
formation. Furthermore, this approach allows for
potentially large variation in how information is
presented on the HMI and the possibility for
confusion regarding which level is active. Al-
though an iterative and human-centred design
process should address these concerns when de-
veloping HMIs, future studies should investigate
these risks further.

Limitations and Future Work

This experiment adjusted the transparency of a
CAGA system for which information was overlaid
onto static radar images. Our approach assumed
that future operators of autonomous ships may
need to divide their attention between multiple
ships and/or tasks and may not continuously
monitor a single ship. Therefore, when a ship
requires attention, the supervisor may be ‘dropped-
into’ the specifics of the operational traffic situa-
tion. Our study hypothesized that transparency
facilitates this sense-making process needed to
quickly build SA. However, despite significant
effort put into making the traffic situations as re-
alistic as possible, real-world situations are, of
course, dynamic. As such, in dynamic situations
supervisors would be able to build a mental rep-
resentation of the developing traffic situation over
time. Although this study provided insights into
the effects of transparency on human performance
variables in a maritime collision avoidance setting,
future research should focus on the application
of transparency implementation in dynamic set-
tings, for example, by using real-time simulation
facilities.

In this experiment, the CAGA system provided
information about its perceptions, analysis, and
future intentions regarding a traffic situation to the
participants. Participants were only required to
answer SA queries about the traffic situation and
the system’s proposed handling of it. Through the
development of the traffic situations and the
transparency levels, significant effort was put into
ensuring that the system provided sound conflict
resolutions such that disagreements between the
participants’ solution to a situation and the

system’s solution were kept at a minimum and
would not confound the results (van de Merwe
et al., 2023a). As such, this experiment did not
study the effects of incorrect resolutions or solu-
tions that which the supervisor disagreed with.
However, given the body of knowledge available
about the potential pitfalls for humans in super-
vising automation (Endsley, 2017; Onnasch et al.,
2014; Strauch, 2018), future work should elaborate
on the effect of transparency on the supervisor’s
ability to detect and resolve performance devia-
tions, especially when performing under concur-
rent task demands, such as supervising multiple
autonomous ships (Burmeister et al., 2014; Gegoff
et al., 2023; Porathe, 2014; Tatasciore et al., 2023).

Conclusions

This study highlighted the relationships between
agent transparency and human performance vari-
ables, SA, mental workload, and task performance.
Our overall findings point towards improvements
in all levels of SA as a consequence of transpar-
ency, albeit that different levels of transparency
affect different levels of SA. In addition, this study
found that more time was needed to create a mental
representation of the situation when the system’s
reasoning was depicted. Interestingly, no signifi-
cant correlations between mental workload and
SA, and mental workload and TTC were found.
Given the relationship between task performance,
SA, and mental workload (Wickens, Hollands,
Banbury, & Parasuraman, 2013), these findings
indicate an effort-performance trade-off where
participants with increased SA scores also used
more time to comprehend the traffic situations,
albeit without increased mental workload ratings.
Moreover, this study showed clear and consistent
effects of complexity on both SA scores, workload
ratings, and TTC, consistent with predictions from
earlier models (e.g. Endsley, 1995, 2017). No
interaction effects between transparency and
complexity were found, except for level 2 SA,
where transparency negated the effect of traffic
complexity. Finally, the medium (A)- and high
transparency levels were also the most preferred by
the participants.

To summarise, as agent transparency is fre-
quently operationalised through an HMI, our re-
sults imply that agent transparency has merits as a
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design philosophy when developing highly auto-
mated systems that require human supervision
(e.g. see MITRE, 2018 for guidance). However,
implementing transparency ‘is as much an art as it
is a science’ given the risk of visual clutter and
potential distractions caused by additional infor-
mation (Wickens, 2018, p. 39). Also, the exact
operationalisation of transparency depends on the
domain it is applied to and the function allocation
between humans and systems (Holder, Huang,
Chiou, Jeon, & Lyons, 2021). Although, there is
limited evidence-based guidance available for
designers to develop transparent agents (Jamieson
et al., 2022), this study demonstrated that, by
basing the transparency design on a structured
human-centred design approach, the purported
effects of clutter and information overload were
kept to a minimumwhilst achieving improvements
in SA. Hence, given supervisors have sufficient
time available to process the additional transpar-
ency information, improved levels of SA may be
achieved without burdening supervisors with ad-
ditional mental workload. As such, if effort is
made to integrate information supporting trans-
parency in the primary task interface, human
performance benefits can be expected.
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(2022). Maritime autonomous surface ships: Auto-
mation transparency for nearby vessels. Journal of
Physics: Conference Series, 2311(1), 012027. https://
doi.org/10.1088/1742-6596/2311/1/012027

ASKO. (2022). Verdens første batterielektriske auton-
ome sjødroner har ankommet Norge!. ASKO. Re-
trieved May 10, 2022, from.https://asko.no/
nyhetsarkiv/verdens-forste-autonome-sjodroner-har-
ankommet-norge/

Bhaskara, A., Duong, L., Brooks, J., Li, R., McInerney,
R., Skinner, M., Pongracic, H., & Loft, S. (2021).
Effect of automation transparency in the manage-
ment of multiple unmanned vehicles. Applied Er-
gonomics, 90, 103243. https://doi.org/10.1016/j.
apergo.2020.103243

Bhaskara, A., Skinner, M., & Loft, S. (2020). Agent
transparency: A review of current theory and evi-
dence. IEEE Transactions on Human-Machine
Systems, 50(3), 215–224. https://doi.org/10.1109/
THMS.2020.2965529

Burmeister, H.-C., Bruhn, W., Rødseth, Ø. J., & Porathe,
T. (2014). Autonomous unmanned merchant vessel
and its contribution towards the e-navigation im-
plementation: The MUNIN perspective. Interna-
tional Journal of E-Navigation and Maritime
Economy, 1, 1–13. https://doi.org/10.1016/j.enavi.
2014.12.002

Chen, J. Y. C., Lakhmani, S. G., Stowers, K., Selkowitz,
A. R., Wright, J. L., & Barnes, M. J. (2018). Situation
awareness-based agent transparency and human-
autonomy teaming effectiveness. Theoretical Issues
in Ergonomics Science, 19(3), 259–282. https://doi.
org/10.1080/1463922X.2017.1315750

Chen, J. Y. C., Procci, K., Boyce,M.,Wright, J., Garcia, A.,
& Barnes, M. J. (2014a). Situation awareness-based
agent transparency (No. ARL-TR-6905). U.S. Army
Research Laboratory. Aberdeen Proving Ground.
https://doi.org/10.21236/ADA600351

Chen, T., Campbell, D. A., Gonzalez, F., & Coppin, G.
(2014b). The effect of autonomy transparency in

van de Merwe et al. 179

https://orcid.org/0000-0002-0168-872X
https://orcid.org/0000-0002-0168-872X
https://orcid.org/0000-0002-0168-872X
https://doi.org/10.1088/1742-6596/2311/1/012027
https://doi.org/10.1088/1742-6596/2311/1/012027
https://asko.no/nyhetsarkiv/verdens-forste-autonome-sjodroner-har-ankommet-norge/
https://asko.no/nyhetsarkiv/verdens-forste-autonome-sjodroner-har-ankommet-norge/
https://asko.no/nyhetsarkiv/verdens-forste-autonome-sjodroner-har-ankommet-norge/
https://doi.org/10.1016/j.apergo.2020.103243
https://doi.org/10.1016/j.apergo.2020.103243
https://doi.org/10.1109/THMS.2020.2965529
https://doi.org/10.1109/THMS.2020.2965529
https://doi.org/10.1016/j.enavi.2014.12.002
https://doi.org/10.1016/j.enavi.2014.12.002
https://doi.org/10.1080/1463922X.2017.1315750
https://doi.org/10.1080/1463922X.2017.1315750
https://doi.org/10.21236/ADA600351


human-robot interactions: A preliminary study on
operator cognitive workload and situation awareness
in multiple heterogeneous uav management. In
Proceedings of Australasian conference on robotics
and automation 2014. Australian Robotics and
Automation Association. Retrieved from. https://
www.araa.asn.au/acra/acra2014/papers/pap166.pdf

Chen, T., Campbell, D. A., Gonzalez, L. F., & Coppin,
G. (2015). Increasing Autonomy Transparency
through capability communication in multiple het-
erogeneous UAV management. In 2015 IEEE/
RSJ international conference on intelligent robots
and systems (IROS), 2434–2439. IEEE. https://doi.
org/10.1109/IROS.2015.7353707

Cummings, M. L., & Guerlain, S. (2007). Developing
operator capacity estimates for supervisory control
of autonomous vehicles. Human Factors, 49(1),
1 – 1 5 . h t t p s : / / d o i . o r g / 1 0 . 1 5 1 8 /
001872007779598109

Di Nocera, F., Camilli, M., & Terenzi, M. (2007). A
random glance at the flight deck: Pilots’ scanning
strategies and the real-time assessment of mental
workload. Journal of Cognitive Engineering and
Decision Making, 1(3), 271–285. https://doi.org/10.
1518/155534307X255627

Doorn, E. V., Rusák, Z., & Horváth, I. (2017). A situ-
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