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Summary:  

Two-phase oil-water flows in offshore pipelines are a common occurrence in the 

petroleum industry. As an oil reservoir mature, the presence of water in the retrieved oil 

increase. Understanding how this increased presence of water affects the hydrodynamic 

properties of the mixture is of great importance as it affects the operating conditions for 

the pipeline. 

 

In this report, a review on the status of oil-water modelling is presented. The review covers 

the three main modelling approaches: empirical, analytical and numerical. The review 

highlights the different modelling techniques used in the studies and summarizes its 

findings. Additionally, an OpenFOAM CFD model based on the experimental work 

conducted by Kumara (2010) is made. The CFD model aims to predict the water volume 

fraction and mean axial velocity of a horizontal oil-water pipe flow at various operating 

conditions. 

 

The findings from the review indicates that to increase the numerical accuracy for oil-

water flows, the oil-water interface needs additional treatment. The presence of a 

turbulence damping scheme or boundary conditions are required to emulate the wall-like 

effect the oil-water interface represents. This wall-like effect was observed in the CFD 

simulations. The results showed that two-equation turbulence models like RNG k-ε, 

realizable k-ε and SST k-ω, were unable to accurately predict the complex nature of an 

oil-water flow. Of the three turbulence models, the SST k-ω model showed the best 

accuracy and should be used in any further research. The study concludes that the addition 

of a turbulence damping scheme, or similar interface treatment, is necessary to increase 

the numerical accuracy. 
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Nomenclature 
Latin letters 

A Flow cross-sectional area [m2] 

B  Adjustable damping factor in Equation 2.20 [-] 

Cµ Coefficient in Equation 3.22 [-] 

C1ε Coefficient in Equation 3.24 [-] 

C2ε Coefficient in Equation 3.24 [-] 

C3ε Coefficient in Equation 3.24 [-] 

d diameter [m] 

D pipe diameter [m] 

 Drag force [N] 

E Eötvös number [-] 

f Friction factor [-] 

F Surface tension term [N/m3] 

g Gravitational acceleration [m2/s2] 

G Production of turbulent kinetic energy [kg/ms3] 

I Turbulence intensity [%] 

k Turbulent kinetic energy [m2/s2] 

l length scale [-] 

L Lift force[N] 

M Momentum transfer [kgm/s] 

n grid size [-] 

N Froude number [-] 

p Pressure [N/m2] 

Q Volumetric flow rate [m3/s] 

r Radial position [m] 

 droplet radius [m] 

R pipe radius [m] 

 Oil droplet radius [m] 

 Universal gas constant [J/Kmol] 

S Slip ratio [-] 

 Mean strain rate [1/s] 
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 Mass source term [kg/m3s] 

t Time [s] 

T Absolute temperature [K] 

u Velocity [m/s] 

U Bulk velocity [m/s] 

x Cartesian axis direction [m] 

y Cartesian axis direction [m] 

Y Dissipation of turbulence kinetic energy and specific dissipation rate [kg/ms3] 

z Cartesian axis direction [m] 

 

Greek letters 

α Volume fraction of phase [-]  

β Closure coefficient in Equation 2.20 

 Coefficient in Equation 3.52 

ε Turbulent kinetic energy dissipation rate [m2/s3] 

η Water hold-up [-] 

θ inclination angle [°] 

λ  Water cut [-] 

µ Dynamic viscosity [m2/s] 

ʋ Kinematic viscosity [m2/s] 

ρ Density [kg/m3] 

σ Surface tension coefficient [N/m] 

 Turbulent Prandtl number [-] 

τ Wall shear stress [N/m] 

φ Angular velocity [1/s] 

Γ Effective diffusivity of turbulent kinetic energy and specific dissipation rate [kg/ms] 

ω Specific dissipation [1/s] 

𝑣  Coefficient in Equation 3.29 and 3.30 [-] 

 Velocity scale [-] 

γ Compressibility factor [-] 

Ω Mean rate of rotation tensor [1/s] 
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Abbreviations 

2D Two dimensional 

3D Three dimensional 

AR Aspect ratio 

CFD Computational fluid dynamics 

DNS Direct numerical simulation 

FVM Finite volume method 

PIP Phase inversion point 

PIV Particle image velocimetry 

RANS Reynolds-averaged Navier-Stokes 

Re Reynolds number 

ST Stratified 

SW Stratified wavy 

USN University of South-Eastern Norway 

VOF Volume of Fluid 

 

Subscripts 

eff Effective 

f fluid 

Fr Froude 

g Gas 

I Interface 

k Turbulent kinetic energy 

 Represents oil and water in Equations 3.8-3.10

l Liquid 

o Oil 

so Superficial for oil phase 

sw Superficial for water phase 

t Turbulent 

w Water 
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1 Introduction 

1.1 Background 

Two-phase oil-water flow in pipelines is a common occurrence in the petroleum industry. In 

a reservoir the presence of gas, oil and water is frequently found and produces multiphase 

mixtures when transported in pipelines. As an oil reservoir matures, the presence of gas and 

water increases as illustrated in Figure 1.1. Knowing how an increased percentage of water 

affects the hydrodynamic properties of the mixture is of great importance when designing 

equipment and operating offshore pipelines. 

 

Figure.1.1 – Multiphase flow in transportation pipes due to water and gas coning: (a) Initial condition, (b) After 

production (Kumara 2010). 

Understanding multiphase flows requires extensive experimental studies to produce reliable 

data. Experimental studies that aim to obtain such data require the implementation of 

sophisticated, and expensive, measurement techniques that are non-invasive (Kumara 2010). 

Recent years have seen increasing interest in the development of computational models for 

predicting multiphase flow fields. A major issue with current computational models is that 

the phases are treated as a bulk flow. This leads to loss in computational accuracy as the 

detailed hydrodynamic property of each phase is lost.  

This thesis aims to review the current status of numerical modelling of two-phase oil-water 

flows, as well as creating a computational fluid dynamics (CFD) model based on the 

experimental study of Kumara (2010). The results from the CFD model are compared to the 

data from the experimental study. 

1.2 Previous work 

This thesis is a continuation of the work done by the group project of Vindenes et al. (2021) 

at the University of South-Eastern Norway (USN) during the fall of 2021. In the group 

project a well-defined pipe geometry and mesh was created, and basic initial simulations 

were performed. This thesis uses the computational domain created by Vindenes et al. (2021) 

and aims to develop the simulation strategy further. 
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1.3 Objectives 

The main scope of this thesis is to perform CFD simulations of a horizontal pipe with an oil-

water flow. The simulations are done using the OpenFOAM software. Within the scope there 

are three main objectives: 

1) Perform a literature review of recent advances in the numerical modelling of two-

phase oil-water models. 

2) Implementation of computational model for oil-water flow using OpenFOAM. The 

model will attempt to accurately predict the mean axial velocity profile of both water 

and oil at varying mixture velocities and water cuts. 

3) Validate the simulation data based on the experimental work performed by Kumara 

(2010) 

The signed project proposal is found in Appendix A 

1.4 Structure of thesis 

• Chapter 2: Literature review of the recent advances in numerical modelling of two-

phase oil-water flows with the aim of publishing. 

• Chapter 3: Presentation of the methodology for CFD modelling of a two-phase oil-

water flow. 

• Chapter 4: Simulation strategy for the simulations presented in this thesis. 

• Chapter 5: Presentation of the results and discussion of the comparison against 

experimental data. 

• Chapter 6: Conclusion and suggestions for future work on oil-water simulations. 
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2 Literature review 
In this section, basic physics and flow structure of an oil-water flow is presented and recent 

advances in oil-water modelling is reviewed. 

2.1 Introduction 

Multiphase flow is a well-established phenomenon within the process industry, particularly in 

the petroleum industry. Two-phase oil-water pipe flow has become of special importance 

over the years due to the maturing of oil wells. As the oil wells mature, the water cut in the 

extracted crude oil increases which leads to increasing technical difficulties during pumping 

and separation. This results in the reduced efficiency of crude oil production in the reservoir.  

Understanding the characteristics of an oil-water flow, such as flow patterns and separation 

characteristics, is very important for efficient and safe production. Due to the complex nature 

of oil-water flows, an accurate prediction of the flow is challenging. This is due to multiple 

factors such as operating conditions, pipe inclination, pressure drop, geometrical parameters 

and physical properties such as interfacial tension, density and viscosity affect the flow 

(Ahmed and John, 2018; Kamp et al., 2017). 

Characterization of oil-water pipe flow consists of identification of flow pattern, flow pattern 

transitions, pressure drop, phase inversion point, droplet formation, droplet size(s) 

distribution and viscosity estimations. The most important parameters in the petroleum 

industry for a multiphase flow include: 1) Pressure drop at varying flow rates; 2) 

water/oil/gas hold-up or accumulation and 3) thermal characteristics (Urdahl et al., 1997). 

Extensive research has been done on two-phase oil-water pipe flow with regard to flow 

patterns, and several flow regimes have been identified by multiple independent experimental 

studies (Amundsen, 2011; Angeli and Hewitt, 2000; Barnea and Taitel, 1992; Charles et al., 

1961; Edomwonyi-Otu and Angeli, 2015; Elseth, 2001; Kumara et al., 2010b; Lovick and 

Angeli, 2004; Lum et al., 2006; Panagiota Angeli, 1996; Rodriguez and Oliemans, 2006; 

Trallero et al., 1997; Yang et al., 2021). Research shows an increasing amount of 

understanding for mechanisms like flow regime patterns and transitions, flow properties such 

as pressure drop and mixture viscosity. However, local hydrodynamic flow properties like 

velocity and turbulence profiles have received less focus. These parameters are extremely 

important in the development of numerical models and should receive an increased focus 

(Kumara, 2010). Additionally, there is still a lack of understanding with regards to the phase 

inversion phenomenon and its effects on the pressure drop and holdup. 

Several reviews have been conducted on the intricacies of liquid-liquid flow systems. For 

instance, Brauner (2003) focused on the flow and pipe configurations of an oil-water flow. 

The review included experiments, models and formulations for liquid-liquid flow 

phenomena. Xu (2007) aimed at giving a brief review on the research of oil-water pipe flows 

in the past decade. His review had three focus areas: 1) flow pattern indication and its 

transition; 2) phase inversion modelling and 3) pressure drop prediction. His review 

concluded that the main difficulty with understanding oil-water flows is the existence of the 

interface. Ismail et al. (2015) reviewed the current state of research on oil-water flows 

highlighting the need for further research compared to gas-liquid flows. Ismail et al. (2015) 
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also discussed the complex interfacial chemistry. Ahmed and John (2018) discussed the use 

of numerical modelling for predicting oil-water flows as well as reviewing recent research. 

These reviews highlight the vast amount of research done on oil-water flows but also indicate 

that the following areas require further studies: 1) investigation of the effect of less dense 

fluid phase on the development of turbulence of the denser fluid phase and vice versa; 2) 

improves correlation to predict heat transfer coefficients; 3) effect of temperature on the 

evolution of flow patterns and 4) numerical simulations should be applied in the investigation 

of oil-water flows. 

In recent years, the use of computational and numerical models to solve complex flow 

problems has increased. Recent technological advances have made computational tools more 

readily available, making numerical models a powerful tool for analyzing and predicting 

advanced flow problems. This review, based on technological advancements and previous 

reviews, will focus on the recent advances in numerical modelling of oil-water flows. 

2.2 Physics of two-phase oil-water pipe flow 

2.2.1 Oil-water flow terminology 

In oil-water modelling there are several basic definitions that are frequently used when 

discussing oil-water flows. In a pipe with oil-water flow the input volumetric flow rates are 

Qo and Qw, respectively. The input volumetric fractions are given by: 

𝜆𝑤 =
𝑄𝑤

𝑄𝑤+𝑄𝑜
        𝜆𝑜 =

𝑄𝑜

𝑄𝑤+𝑄𝑜
     (2.1) 

 

λw is often referred to as the inlet water cut in oil-water flows. Based on the input flow rates 

and cross-sectional area of the pipe, the superficial velocity of the oil and water phase is 

given by: 

 

𝑈𝑠𝑤 =
𝑄𝑤

𝐴
        𝑈𝑠𝑜 =

𝑄𝑜

𝐴
               (2.2) 

 

The relationship between superficial velocities and input phase fractions is given by combing 

Equation 1.1 and 2.2: 

𝑈𝑠𝑜

𝑈𝑠𝑤
=

𝜆𝑜

𝜆𝑤
           (2.3) 

 

In-situ velocity, which is the actual velocity for each phase in the pipe, is calculated by the 

input volumetric flow rate divided by the cross-sectional area the phase occupies. Figure 2.1 

illustrate the cross-sectional area of the pipe. This means it’s different to the superficial 

velocity which uses the entire cross-sectional area in the calculation. Therefore, the actual 

velocities are given by: 

𝑈𝑤 =
𝑄𝑤

𝐴𝑤
         𝑈𝑜 =

𝑄𝑜

𝐴𝑜
      (2.4) 
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Figure 2.1 - Pipe cross-sectional area for an oil-water flow (Kang et al. 2021).  

In an oil-water flow the two phases will most likely not have the same average in-situ 

velocities. This means that the in-situ volume fraction is different to the input phase fraction 

and this new volume fraction is given by: 

𝜂𝑤 =
𝐴𝑤

𝐴
         𝜂𝑜 =

𝐴𝑜

𝐴
    (2.5) 

 

The ηw term, which describes the in-situ volume fractions, is more commonly referred to as 

the water hold-up in oil-water systems. The ratio between the two in-situ velocities will give 

the systems slip ratio, S, and it is calculated as follows: 

𝑆 =
𝑈𝑜

𝑈𝑤
=

𝐴𝑤

𝐴𝑜

𝑈𝑠𝑜

𝑈𝑠𝑤
           (2.6) 

 

The slip ratio provides the information about which phase travels fastest in the given system. 

The slip ratio is dependent on several physical properties alongside the flow rates, flow 

pattern and pipe geometry. A slip ratio above 1 means that the oil travels faster than the water 

which means S<1 is the opposite scenario. 

2.2.2 Flow regimes 

Flow regimes, or flow pattern, describes the flow structure, or the distribution of one fluid 

phase relative to the other. In two-phase oil-water pipe flow the interaction between the two 

fluids leads to the formation of different flow patterns. Which pattern is formed is dependent 

on several physical properties such as input water fraction, superficial velocities, liquid 

densities etc. (Kumara et al., 2010b). The classification of the different flow patterns found in 

oil-water pipe flow does not have a uniform nomenclature, nor are all the experimental 

studies performed with the same conditions. Hence, there may exist several flow patterns 

with different names, but with a similar flow structure. Trallero et al. (1997) classified three 

sets of patterns with two subsets as seen in Figure 2.2: 1) Segregated flow (stratified flow and 

stratified flow with mixing interface); 2) Water dominated dispersed flow (Oil in water and 

water (O/W&W) and Oil in water emulsion (O/W)) and 3) Oil dominated dispersed flow 

(water in oil and oil in water (W/O & O/W) and water in oil emulsion (W/O)). 
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Figure 2.2 - Horizontal oil-water flow patterns (Trallero et al., 1997) 

Based on all the previously mentioned experimental studies done on the matter, the flow 

pattern can be split into two main categories: Segregated/stratified flow and dispersed flow. A 

short introduction to the two flow regimes follows. 

2.2.2.1 Segregated flow  

From an experimental study performed by Kumara et al. (2009), three segregated flow 

patterns for oil-water flows were identified: 1) stratified smooth flow (ST); 2) stratified wavy 

flow (SW) and 3) stratified flow with mixing interface (ST&MI). These observed patterns 

were in agreement with the pattern classification proposed by Lum et al. (2006), Rodriguez 

and Oliemans (2006) and Trallero et al. (1997). The three patterns are shown in Figure 2.3. 

 

Figure 2.3 - Observed segregated oil-water flow: (a) stratified smooth (ST), (b) stratified wavy (SW), (c) 

stratified flow with mixing at the interface (ST&MI)(Kumara et al., 2009) 

Segregated flow (Figure 2.3 (a)) is observed at low superficial oil and water velocities, where 

the flow is gravity dominated. With further increases in mixing velocities, the pattern shifts 

towards a wavy structure (Figure 2.3 (b)). As the velocity continues to increase, water 

droplets begin to form in the oil phase and oil droplets begin to form in the water phase. 

These droplets exist along the interfacial waves, as seen in Figure 2.3 (c). 
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2.2.2.2 Dispersed flow 

Every flow pattern that does not fall under the segregated classification represents different 

dispersions. “Dispersions are always formed when the motion of oil-water flow is sufficiently 

intense” (Kumara 2010). Which of the two liquids is dominant largely depends on the 

superficial velocities of the liquids. Thus, the following two aspects can be noted for oil-

water flow: 1) The fluid phase with the higher momentum entrains the fluid with the lower 

momentum and 2) the less dense fluid phase follows the Reynolds transition criterion and 

attain instability at Re ~ 2000. Meanwhile, the denser fluid phase become unstable at much 

higher values of Re ~ 18000, indicating the incompatibility of the Reynolds criterion (Ahmed 

and John, 2018).  

Experimental studies conducted by Elseth (2001), Hapanowicz (2010), Ibarra et al. (2015) 

and Kumara et al. (2009), indicate that the flow turbulence is influenced by the interface and 

the non-compatibility of Reynolds number criterion. Kumara et al. (2009) observed four 

different dispersion flow patterns which are presented in Figure 2.4. 

 

Figure 2.4 - Observed dispersed oil-water flow: (a) dispersion of oil in water (Do/w&w), (b) dispersion of oil in 

water (Do/w), (c) dispersion of oil in water and water in oil (Do/w&w/o), (d) dispersion of water in oil 

(Dw/O)(Kumara et al., 2009). 

2.2.3 Phase inversion 

Phase inversion in oil-water emulsion systems refer to the phenomenon in which, a small 

change in the operational conditions causes the dispersion of oil droplets in water (Do/w) to 

change to dispersion of water droplets in oil (Dw/o), or vice versa (Kumara, 2010). This 

transition phase typically occurs with changes, often abrupt, in heat and mass transfer 

between the two phases. Since the rheological characteristics of the dispersion and the 

associated pressure drop change abruptly and significantly at, or near the Phase Inversion 

Point (PIP), the PIP is a crucial factor to consider when designing oil–water transportation 

pipelines (Luo et al., 2022; Xu, 2007).  

Luo et al. (2022) outlined the importance of how the water cut influences the PIP. The study 

demonstrated that with a low water cut, crude oils can emulsify all the water to form a stable 

W/O emulsion. However, when the water cut of a system exceeds a certain critical value, the 
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crude oils lose the ability to emulsify all water; instead, they are enveloped by a water phase 

and form unstable O/W emulsions. Luo et al. (2022) found that the critical water cut of a 

specific system corresponds to an abrupt change in the apparent viscosity of the emulsion. 

This marks the PIP for the emulsion, transitioning from W/O to O/W. Additionally, two 

correlations were identified: 

1) The apparent viscosity of a stable W/O emulsion decreases with increased shear rate 

and temperature and increases with a higher water cut. 

2) The apparent viscosity of an unstable O/W emulsion decreases with increased shear 

rate, temperature and water cut. 

These correlations are illustrated in Figure 2.5. 

 

Figure 2.5 - Changes in apparent viscosity (Luo et al. 2022). 

2.3 Modelling of two-phase oil-water flow 

Correctly predicting two-phase oil-water flow is a highly complex process and currently there 

exists no exact analytical solution. In the past, oil-water flows have mainly been studied 

through experiments and have been very empirically oriented. With the technological 

progress in the past few decades, the use of numerical techniques to solve the complex two-

phase flow has increased. This chapter will outline the three prediction methods for two-

phase oil-water flows which are: empirical models, analytical models and numerical models. 

2.3.1 Empirical models 

Empirical models for two-phase flow often draw from the analogous ones for gas-liquid 

flows and are then adopted for liquid-liquid flows. These models rely on a rich variety of 

correlations. 

Govier and Omer (1962) compared a vast number of existing empirical correlations. The 

investigated correlations suggested accurate prediction of pressure drops in oil-water flow. 

However, it was reported that the number of restrictions in the models made them difficult to 

apply and adapt to certain conditions. The correlations were limited to specific flow patterns 

and assumed a static pipe diameter and static gas density. 
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Beggs and Brill (1973) were the first to predict multiphase flow behavior at all inclination 

angles in a pipe using an empirical model. They conducted extensive testing at various pipe 

inclinations ranging from 0° to 90°. The test fluids used were air and water. A correlation for 

the pressure-gradient was developed based on their experiments:  

𝑑𝑝

𝑑𝐿
=

(
𝑓𝜌𝑛ʋ𝑚

2

2𝑑
+𝜌𝑠𝑔𝑠𝑖𝑛𝜃)

1−𝐸𝑘
            (2.7) 

Here, Ek is given by Equation 2.8: 

 𝐸𝑘 =
ʋ𝑚ʋ𝑆𝑔𝜌𝑛

𝑝
(

𝑑𝑝

𝑑𝑍
)          (2.8) 

And  

 𝜌𝑠 = 𝜌𝐿(𝜃) + 𝜌𝑔[1 − 𝐻𝐿(𝜃)]                    (2.9) 

The pressure-gradient correlation is inaccurate when applied to an oil-water flow. However, 

Beggs and Brill (1973) correlated the transition boundaries for the different flow patterns 

with no-slip liquid holdup and mixture Froude number, which is shown as: 

 𝑁𝐹𝑟 =
ʋ𝑚

2

𝑔𝑑
                    (2.10) 

Given a horizontal pipe, the following inequalities could be used to determine which flow 

patterns exist in an oil-water flow: 

Segregated:  

𝜆L < 0.01 and 𝑁𝐹r < 𝐿1  or   𝜆1 ≥ 0.01 and 𝑁𝐹r < 𝐿2                (2.11)  

  

Transition:  

𝜆L ≥ 0.01 and 𝐿2 < 𝑁𝐹r ≤ 𝐿3                                          (2.12)  

  

Intermittent:  

0.01 ≤ 𝜆L < 0.4 and 𝐿3 < 𝑁𝐹r ≤ 𝐿1  or   𝜆L ≥ 0.4 and 𝐿3 < 𝑁𝐹r ≤ 𝐿4                           (2.13)  

  

Distributed:  

𝜆L < 0.4 and 𝑁𝐹r ≥ 𝐿1   or   𝜆L ≥ 0.4 and 𝑁𝐹r > 𝐿4              (2.14)  

  

where 𝜆L is the non-slip holdup factor, 𝐿1, 𝐿2, 𝐿3, 𝐿4 are the correlation variables and 𝑁𝐹r is 

the Froude number. 

Al-Wahaibi (2012) developed a correlation for the pressure gradient in horizontal oil-water 

pipe flows. The correlation is based on the work of Angeli and Hewitt (1999). The correlation 

for the developed pressure gradient is as follows: 

𝑑𝑝

𝑑𝑥
= 2.4 (

(𝑓𝑐𝑜𝑟𝜌𝑚𝑈𝑚
2 )

2𝐷
)

0.8

                   (2.15) 
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Where 2.4 is a dimensional coefficient fitting parameter, ρm is the mixture density, Um is the 

mixture velocity and D is the pipe diameter. The model was validated against 11 separate 

experimental data sets which can be seen in Figure 2.6. 

 

Figure 2.6 - Evaluation of the proposed correlation against experimental data (Al-Wahaibi, 2012). 

The developed correlation was in good agreement with the experimental data. The average 

absolute error ranged from 2.65% at the lowest, to 20.78% at the highest. The empirical 

model showed a higher accuracy than the two-fluid model used by Angeli and Hewitt (1999). 

Abubakar et al. (2016) continued the work of Al-Wahaibi (2012) and developed a new 

friction factor correlation for oil-water flow which included drag-reducing polymers (DRP). 

The study aimed to predict the pressure gradients of an oil-water flow after the addition of the 

drag-reducing polymers. The friction factor correlation was found by plotting the calculated 

DRP mixture friction factor against their corresponding mixture Reynolds number as seen in 

figure 2.7. 
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Figure 2.7 – Fanning friction factor variation with the mixture Reynolds number for different pipe inclinations 

and different pipe diameters (Abubakar et al., 2016). 

The correlation was then tested against experimental data. Figure 2.8 shows the results of 

applying the developed correlation against experimental data. The correlation offered 

satisfactory predictions and Abubakar et al. (2016) argued it showed better performance than 

the models it was compared to. 

 

Figure 2.8 - Predicted pressure gradients using the developed correlation against experimental pressure gradients 

(Abubakar et al., 2016). 
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2.3.2 Analytical models 

Gada and Sharma (2012) developed a predictive analytical solution for fully developed 

stratified oil-water flows in an inclined plane-channel. The model was validated through a 

numerical study applying a level set method (LSM)-based Navier-Stokes solver. The 

performance of the analytical solution was shown to be excellent when compared to the 

numerical study. Additionally, a physical model was created to reproduce the results from the 

analytical and numerical models. The model is depicted in Figure 2.9. 

 

Figure 2.9 Physical model for developing flow in an inclined plane channel (a) Stratified Smooth and (b) Wavy 

Stratified flow. Channel wall, interface and boundary layers are represented by thick-solid, solid and dash-dot 

lines, respectively. For WS flow, time-averaged interface is represented by dashed line (Gada and Sharma, 

2012). 

The created model follows a set of assumptions: 

- Fully developed stratified flow 

- Density matched viscosity 

- Incompressible Poiseuille flow 

- No-slip at wall/interface. 

- Continuity of velocity and shear-stress at the interface 

Based on the given assumptions and performing the following substitutions: η=1 (property 

ratio), Hfd=0,5 (interfacial height), Q1
*= Q2

*= 0,5, the analytical model proposed by Gada and 

Sharma (2012) degenerates to the single fluid flow solution shown in Equation 2.16: 
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𝑈1 = 𝑈2 = 6𝑌(1 − 𝑌)   𝑌𝑈𝑚𝑎𝑥 = 0,5  
∆𝛱

𝛥𝑥
= −12    

 𝑃𝑂 = 12(1 − 2𝑌)   𝑃𝑂,𝐵 = −𝑃𝑂,𝑇 = 12  𝑈𝑚𝑎𝑥 = 1.5            (2.16) 

  

Here, U1 and U2 is the velocity profiles, YU is the coordinate for the maximum U-velocity, Π 

is the non-dimensional pressure, PO, PO,B, PO,T is the Poiseuille number for the pipe, bottom 

wall, and top wall, respectively. 

 

Hibiki and Rassame (2019) performed an analytical study aimed at creating a predictive 

model for the oil fraction in an oil-water flow in a horizontal pipe, applicable to all flow 

patterns. The proposed model by Hibiki and Rassame (2019) was validated through 

comparison with existing experimental data obtained under varying test conditions. A total of 

thirteen experimental datasets were used in the validation process to ensure the model was 

tested under varying conditions.  

Four assumptions were made to derive the oil fraction analytically (Hibiki and Rassame, 

2019): 

a) Stratified flow with two homogeneous mixture phases in the upper and lower parts. 

b) Equal velocity head between the upper and lower homogeneous mixture phases (equal 

velocity head model). 

c) Homogeneous mixtures of liquid 1 and liquid 2 for both parts being considered as 

single-phase fluids with mixture densities. 

d) Thermal equilibrium condition. 

The proposed model for predicting the oil fraction is a function of flow quality, density ratio, 

and includes two entrainment constants, e1 and e2 (droplet entrainments for oil phase and 

water phase). The oil fraction is defined as: 

 𝛼𝑜𝑖𝑙 =
𝐴𝑜𝑖𝑙

𝐴𝑡
=

(𝐴1𝑐+𝐴2𝑑)

𝐴
=

𝑊2(1−𝑒2)

𝜌2𝐴𝑣𝑚2

=
𝑊2𝑒2

𝜌2𝐴𝑣𝑚1

                (2.17) 

Where W2, e2, vm1, vm2 and ρ2 are the oil mass flow rate, entrainment factor upper part, 

mixture velocity upper part, mixture velocity lower part and density of oil respectively. The 

proposed analytical equation for predicting the oil fraction is as follows: 

𝛼𝑜𝑖𝑙 = {[1 − 𝑒2 + ((
1−𝑥

𝑥
) (

𝜌2

𝜌1
)) 𝑒1] [(1 − 𝑒2) + 𝑒2 (

𝜌𝑚2

𝜌𝑚1
)

−
1

2
]

−1

+ [𝑒2 + (
1−𝑥

𝑥
) (

𝜌2

𝜌1
) (1 −

𝑒1)] [𝑒2 + (
𝜌𝑚2

𝜌𝑚1
)

1

2 (1 − 𝑒2)]

−1

}

−1

                   (2.18) 

Where ρm2 and ρm1 is the density of the upper and lower part of the pipe respectively. 

The results from the model validation are presented in Figure 2.10. The validation process 

demonstrated that the model predictions are in good agreement with the experimental data 

with an accuracy of ±15%.  
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Figure 2.10 - Comparison of total calculated oil fraction and experimental oil fraction for horizontal oil-water 

flows used in the model validation (Hibiki and Rassame, 2019). 

The analytical model proposed by Hibiki and Rassame (2019) also demonstrated that it can 

be applied to all six oil-water flow regimes identified by Trallero et al. (1997) in Figure 2.2. 

2.3.3 CFD and Numerical models 

Walvekar et al. (2009) utilized the CFD software ANSYS FLUENT to simulate a 3D 

horizontal pipe flow with an oil-water system. They simulated a turbulent dispersed flow 

using a Eulerian-Eulerian multiphase model along with the standard k-ε turbulence model. 

Due to the nature of the turbulence model selected, the authors observed good results at high 

mixture velocities and discrepancies at low mixture velocities. This discrepancy comes from 

the k-ε turbulence model only being valid for fully turbulent flows, and therefore loses 

accuracy at lower Reynolds-number flows.  

Similarly, Burlutskii (2018) also utilized ANSYS FLUENT to simulate a dispersed oil-water 

system with the k-ε turbulence model. Burlutskii (2018) used the Euler-Lagrange scheme to 

resolve the interaction between the two phases in a vertical pipe. As with Walvekar et al. 

(2009), the results exhibited good agreement at high mixture velocities as shown in Figure 

2.11.  

 

Figure 2.11- Measured and predicted pressure drop as a function of mixture flow velocity (Burlutskii, 2018). 
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Additionally, Burlutskii (2018) discovered that for highly turbulent liquid-liquid dispersed 

pipe flows, the shear-lift force holds significantly higher importance for adequately flow 

representation than detailed modelling of the break-up/coalescence phenomena. 

When performing oil-water simulations, selecting the correct turbulence model for the system 

is crucial for an accurate result. Shi et al. (2017) performed a CFD study on a horizontal oil-

water flow system with matched density and medium viscosity ratio (=18.8), involving 

several different flow regimes (core annular flow, oil plugs/bubbles in water and dispersed 

flow). In these flow regimes, surface tension and wall contact angle play a pivotal roles in the 

calculations. Shi et al. (2017) showed that the volume of fluid (VOF) model, in conjunction 

with the SST k-ω turbulence model and turbulence damping activated, can predict the flow 

structures of core annular flow and oil plugs/bubbles in water. The turbulence damping 

scheme added the following additional source terms to the ω-equation, which reduces the 

destruction term: 

𝑆𝜔 = 𝐴𝑖∆𝑛𝛽𝜌𝑖𝜔𝜔
2                     (2.19) 

𝜔𝜔 = 𝐵
6𝜇𝑖

𝛽𝜌𝑖∆𝑛2                    (2.20) 

𝐴𝑖 = 2𝛼𝑖|∇𝛼𝑖|                    (2.21) 

Where Ai represents an interface area density that activates the correction term in the vicinity 

of the interface, αi is the volume fraction of phase i, Δn is the grid size in the interface region, 

β is a closure coefficient and B is an adjustable damping factor. The turbulence damping 

function increased the accuracy of the results by 5%. However, the authors also highlighted 

the shortcomings of using the VOF model for dispersed flows as the interface length scales 

tend to become smaller than the computational grid sizes. This was emphasized further by 

Chen et al. (2023), who performed CFD simulations for a dispersed oil-water flow. For 

dispersed flows, a Eulerian approach is best suited as this method treats each phase as a 

continuous fluid-a two-fluid model-with separate volume fractions for each phase. Chen et al. 

(2023) used the OpenFOAM solver multiphaseEulerFoam, which applies the Eulerian 

method coupled with population balance models and the mixture k-ε turbulence model. 

MultiphaseEulerFoam also implements a blending factor that captures the retardation of 

droplet rising and coalescing in the dense packed layer (DPL) of the flow. The study’s results 

showed that there are two main challenges for dispersed flow simulations: 

1) Modelling the turbulent dispersion force is highly system dependent.  

2) Phase inversion and water release rates in the densely packed layer require further 

research to improve existing drag and coalescence models. 

These conclusions are consistent with other research, as Pouraria et al. (2021) reported 

similar troubles for dispersed flows. 

When dealing with dispersed flows a two fluid model must be used to achieve the desired 

results with realistic accuracies. For segregated or stratified flows, a different modelling 

approach can be employed. For a system with a stratified flow the VOF approach can be 

applied as demonstrated by the studies of Gao et al. (2003), Kang et al. (2021), Al-Yaari and 

Abu-Sharkh (2015), Pouraria et al. (2021), Sunday et al. (2023) and Kumara (2010).  

Kang et al. (2021) performed a 2D numerical study where they compared three different 

turbulence models against the experimental work of Kumara (2010). In a bipolar coordinate 
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system, the k-ε, k-ω and SST k-ω turbulence models were implemented, and the solution 

strategy depicted in Figure 2.12 was utilized. 

 

Figure 2.12 - Numerical solution strategy (Kang et al., 2021). 

Kang et al. (2021) reached the same conclusion as in similar studies performed by 

Archibong-Eso et al. (2019) and Shi et al. (2017), where the SST k-ω turbulence model 

showed the highest accuracy for an oil-water system. Although the SST k-ω turbulence 

model provided the best results compared to the two other models, it exhibited inaccuracies 

when compared to the experimental data regarding the pressure gradient, as seen in Figure 

2.13. The model showcased low accuracy at lower superficial velocities, but when the 

superficial velocities of the two phases were relatively close, the accuracy improved, and the 

deviation decreased below 15%. 

 

Figure 2.13 - Pressure gradient comparison for simulated results and experimental results (Kang et al., 2021) 

For the calculated mean axial velocity, all three turbulence models failed to predict the 

correct profile. As seen in Figure 2.14, the models were unable to predict the asymmetric 

profile around the oil-water interface and overpredicted the velocity compared to the 

experimental data. 
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Figure 2.14 - Mean axial velocity for Um=0,61 m/s and a water cut of 0.5 (Kang et al., 2021, Kumara 2010). 

The inaccuracy around the oil-water interface becomes very clear when the water cut is 

lowered to 0.25 as seen in Figure 2.15. 

 

Figure 2.15 - Mean axial velocity for Um=0,68 m/s and a water cut of 0.25 (Kang et al., 2021, Kumara 2010). 

The discrepancy between the velocity profiles could be attributed to several factors: 

1) The numerical model is based on a one-equation model for both phases, meaning one 

set of momentum equations is applied across the entire system. This is likely the 

reason that the velocity curve is symmetrical and insensitive to the changes at the 

interface. 

2) No turbulence damping or interface treatment has been implemented in the numerical 

model to handle the complex physics around the oil-water interface. 

3) The shape of the oil-water interface is not considered. 

Kumara (2010) encountered a similar issue with the accuracy of mean axial velocity profile 

in his CFD simulations, which were compared with his experimental study. A VOF based 

solver in ANSYS FLUENT was used and a Piecewise-linear interface calculation (PLIC) 

scheme was applied for the reconstruction of the interface. This approach did not manage to 

capture the asymmetrical velocity profile.  

These observations underscore that a numerical model using a single momentum equation, 

and a VOF based solver for a multiphase flow is inadequate without the incorporation of 

additional turbulence and interface treatment. To increase numerical accuracy, special 

considerations, such as turbulence damping and flow physics, at the oil-water interface are 

necessary. 

These considerations were emphasized in the studies by Edomwonyi-Otu and Angeli (2015) 

and Santos et al. (2019), which had a larger focus on the structure of the oil-water interface. 

Reports from these studies indicate that in a two-phase oil-water system the interface takes a 

concave shape. Furthermore, Liu et al. (2022) argue that in systems with a low density 

difference between oil and water, the surface tension becomes increasingly important. The 
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surface tension between the liquids causes the wetting fluid to climb over the pipe wall, 

leading to a curved interface as shown in Figure 2.16. This illustrates that special 

considerations must be made for the interface shape, and that a planar interface assumption 

will result in poor accuracy.  

 

Figure 2.16 - Interface geometry (Liu et al., 2022). 

The interface configuration in a stratified oil-water system can be characterized by the Eötvös 

number, EO, given by: 

𝐸𝑂 =
∆𝜌𝑔𝑅2

2𝜎
                     (2.19) 

Where ∆𝜌 is the density difference between the two liquids, R is the pipe radius, g is the 

gravitational force and σ is the interfacial tension. The Eötvös number essentially 

characterizes the shape of the interface between two fluids. As the Eötvös number increases, 

which indicates either a decrease in surface tension or an increase in density difference, the 

interface become more planar. Conversely, as the Eötvös number decreases, the more closely 

the interface approaches a curved surface. For systems with a high Eötvös number, a more 

standard approach could be employed, whilst for low Eötvös numbers more complex 

interface capturing method must be used. Liu et al. (2022) demonstrated, through numerical 

simulations, the existence of a concave interface when EO<10. The results, as shown in 

Figure 2.17, show a better agreement with experimental results when assuming a curved 

interface. 
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Figure 2.17 – Comparison between calculated and experimental data for interface heights, water holdup and 

pressure gradient with curved interface and planar interface (Liu et al., 2022). 

Gao et al. (2003) carried out a numerical study using the VOF approach, assuming a curved 

interface. The model implemented a customized turbulence calculation, wherein the RNG k- 

ε turbulence model in the fully turbulent regions and a low Reynolds number k-ε model at the 

near-wall regions. Additionally, the Continuum Surface Force (CSF) model by Brackbill et 

al. (1992) and turbulence damping by Lam and Bremhorst (1982), were applied at the wall. 

The results were compared to the experimental work of Elseth (2001) and showed promising 

results. The results are shown in Figure 2.18 and the produced velocity profiles show a good 

agreement with the experimental data. The model was able to predict an asymmetrical axial 

velocity profile and show close agreement with the experimental data for 50% and 75% water 

cuts. Some discrepancies are seen for 25% water cut. The study shows the effectiveness of 

turbulence damping and using the LRN k-ε model instead of wall functions. 
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Figure 2.18 - Comparison of predicted and experimental mean axial velocity (Gao et al., 2003). 

Liu et al. (2022) employed the same turbulence scheme at the wall as Gao et al. (2003), while 

applying the standard k-ε model for the turbulent region. Additional interface treatment was 

applied to the numerical model of an oil-water pipe flow. Liu et al. (2022) established the 

following conditions for their numerical calculations: 𝑘𝐼,𝑂 = 𝑘𝐼,𝑊 = 0 and (𝜇𝑡)𝐼,𝑂 =
(𝜇𝑡)𝐼,𝑊 = 0, resulting in the following coupling between the two phases at the interface: 

𝑢𝐼,𝑂 = 𝑢𝐼,𝑊. These conditions were based on the finding of Newton and Behnia (2000), who 

suggested that the presence of free surfaces reduces turbulence similarly to the presence of a 

wall. Duan et al. (2015, 2014) proposed, as a preliminary approximation, that the existence of 

a free surface could be treated as a moving wall. These conditions produced satisfactory 

results with regards to the mean axial velocity, as seen in Figure 2.19. The simulated profile 

are compared to the experimental work of Ibarra et al. (2018). 
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Figure 2.19 - Comparison of numerically and experimental data for the mean axial velocity profiles (Liu et al., 

2022). 

It is argued that the oil-water interface behaves like a moving wall, causing less flow 

resistance for the oil phase compared to near the pipe wall. Meanwhile, for the water phase 

the interface behaves like a faster moving wall, dragging the water flow forward. While the 

results are interesting, there isn’t sufficient data and variation in the flow conditions to fully 

support the assumptions made. Nonetheless, the findings from Gao et al. (2003) and Liu et al. 

(2022) provide an intriguing way on how the treatment of the two-phase oil-water interface 

could be approached. 

2.4 Conclusion 

This review has attempted to present the recent advances in modelling of oil-water flows. 

Additionally, it introduces flow terminologies and the physics of a two-phase flow. The 

studies discussed in this review demonstrate that the complexity of an oil-water flow is still a 

challenge in numerical modelling.  

Although the studies presented did not reach the desired level of accuracy, several important 

discoveries should be noted. When not applying any special conditions the SST k-ω 

turbulence model showed clear advantages over the other turbulence models for stratified 

flows. For dispersed flows where most of the flow region is turbulent, other factors such as 

mesh size, drag forces, lift etc. influence the results as much as the choice of turbulence 

model. Another notable discovery is the importance of how the oil-water interface is treated. 

The studies indicate that special treatment must be applied to the oil-water interface and the 

turbulence model to achieve more accurate results. While the studies presented show 

promising results, it remains unclear what specific conditions must be implemented and the 

how these conditions are applied to each specific system. 
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3 CFD methodology for oil-water flow 
Accurately predicting an oil-water flow is a highly complex process and currently no exact 

analytical solution exists. Historically, studies on oil-water flows have predominantly relied 

on physical experiments. Conducting these experiments can become very costly due to the 

equipment required for non-invasive measurements. CFD studies offer a cost-effective 

alternative for studying fluid flows as computational power is more easily accessible. 

To fully access the capabilities of CFD, a thorough understanding of the technique is 

required. Each study is unique and demands an approach that is suited for the simulated 

system. This chapter aims to introduce the CFD methodology, how to approach the modelling 

aspect and outline the governing equations for an oil-water flow. 

 

3.1 CFD structure 

All CFD software structures its interfaces differently, but they are all fundamentally 

structured on the same principles (Versteeg and Malalasekera, 2007). In Figure 3.1 the three 

main principles for a CFD software are shown. 

 

Figure 3.1 – Structure elements for a CFD software (Versteeg and Malalasekera, 2007; Tawekal 2015). 

1. Pre-processor: 

The computational domain is defined with a geometry. The generated geometry is 

then divided into smaller, non-overlapping sub-domains. This is often called a grid, or 

mesh, of discrete cells (Versteeg and Malalasekera, 2007). A well-structured grid is 

integral for achieving an accurate solution as all the calculations happen in these cells. 

Once the computational domain is defined, the physical and chemical properties for 
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the system must be specified. Based on these properties sensible boundary conditions 

are chosen. 

2. Solver: 

There are three numerical solution techniques when it comes to CFD simulations: 1) 

the finite difference method (FDM); 2) the finite element method (FEM) and 3) the 

finite volume method (FVM). Which methods that is applied are different for each 

system, but the FVM is the most used as this approach is suitable for any type of grid 

(Versteeg and Malalasekera, 2007). The FVM method is used for this thesis. The 

FVM method divides the computational domain into a finite number of continuous 

control volumes (CV) and the conservation equations are applied in the control 

volumes (Versteeg and Malalasekera, 2007). 

3. Post-processor: 

This is where the simulation results are processed and presented. Data visualization 

tools such as 2D and 3D surface plots and particle tracking are applied at this stage to 

collect data. 

3.2 Mesh generation 

The success of any CFD simulation relies on the quality of the mesh (grid). The quality of the 

mesh affects the convergence, numerical solution and stability of a simulation (Lande, 2021). 

This means that the mesh generation stage should receive adequate attention because as 

shown by V. Hernandez-Perez et al. (2010): a high quality mesh will influence the results of 

the simulation and affect the convergence rate for the chosen solver. 

3.2.1 Mesh structure 

As illustrated in Figure 3.2, the structure of a mesh can generally be divided into two groups: 

structured and unstructured grids (Lande, 2021).  

 

Figure 3.2 - (a) structured mesh and (b) unstructured mesh (Lande, 2021). 

The choice of mesh structure depends on the complexity of the geometry. For complex 

geometries, using a single-block structure may make it difficult to create a high-quality 

structured grid. Often, this approach leads to high skewness and non-orthogonality. An 
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advantage of the structured mesh is that the solution strategy for the solver is straightforward 

due to the consistent number of neighboring cells. 

An unstructured mesh is as the name implies, unstructured. This means that the elements do 

not follow a regular pattern and every cell is considered to be a block. Generating a high-

quality unstructured mesh is difficult for several reasons: 

- The solution of the numerical equations is complicated as each cell in the mesh 

has an inconsistent number of neighboring cells. 

- Solution time is increased as more demanding algorithms are required. 

- Results in the near-wall areas are inaccurate as the boundary layers are not 

properly resolved. 

A hybrid mesh combines the elements of both structured and unstructured meshes. Figure 3.3 

illustrates an example of a hybrid mesh, where cell shapes in the near-wall boundary layers 

allow for improved resolution. The remaining mesh elements can take the shapes shown in 

Figure 3.4. 

 

Figure 3.3 - Hybrid mesh (Lande, 2021). 

  

Figure 3.4 – Examples of cell shapes (Setaih et al., 2010). 

3.2.2 Mesh quality 

The quality of the generated mesh is assessed by observing and calculating the following 

parameters: 

1. Smoothness: 

- Smoothness, also known as expansion rate, growth factor or uniformity, is the 

transition between cell sizes in the grid. Figure 3.5 illustrates two transition steps 

where a smooth transition is preferred. 
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Figure 3.5 – Smoothness (What is a good Mesh?, 2014). 

2. Skewness: 

- Skewness defines the ideality of a cell or a face. It describes the angle between the 

lines of a cell where 90° is the optimal angle. Angles smaller than 45° and larger 

than 135° are considered highly skewed. It’s important to keep the skewness at an 

acceptable level because initially the solver assumes that the cells are 

equilateral/equiangular as illustrated in Figure 3.6 (Asyikin, 2012; Tawekal, 

2015). 

 

Figure 3.6 - Cell skewness(Asyikin, 2012). 

3. Aspect ratio: 

- Mesh aspect ratio is the ratio between the longest side, Δx, and the shortest side 

Δy. See Figure 3.7 for an illustration. 

 

Figure 3.7 – Aspect ratio (Lande, 2021).  

- An aspect ratio (AR) as close to 1 is preferred as it means the cell is equilateral. 

High aspect rations can increase the numerical diffusion and cause instabilities in 

the solver (Greenshields, 2023). An AR between 1-20 is recommended in the most 

important areas of the geometry like the near-wall boundary layers (Mesh Quality, 

2022). 
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4. Orthogonality: 

- Mesh orthogonality is the angular deviation of the vector S (located at the face 

center f) from the vector d connecting the two cell centers P and N (Figure 3.8) 

(What is a good Mesh?, 2014). 

- This factor mainly affects the diffusive terms and if the mesh has a high 

orthogonality, non-orthogonal corrects must be used (Greenshields, 2023). 

 

Figure 3.8 - Mesh orthogonality (What is a good Mesh?, 2014). 

3.3 Modelling approaches 

Most CFD software offer two main approaches for modelling multiphase flows: the Euler-

Lagrange approach and the Euler-Euler approach (Lian et al., 2022). In CFD software such as 

OpenFOAM and ANSYS FLUENT, both approaches are available. Figure 3.9 show the 

dominant modelling methods for multiphase flows in OpenFOAM, along with suggested 

solvers. 

 

Figure 3.9 - The two dominant methods of solving multi-phase flows in OpenFOAM (Multi-phase flow 

simulations in OpenFOAM.). 
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3.3.1 The Euler–Lagrange approach  

The Euler-Lagrange approach treats the fluid phase as a continuum by solving the Navier–

Stokes equations. This approach is often used when the flow is a dispersion. The dispersed 

phase is solved by tracking smaller particles like droplets or bubbles, via the computational 

flow field. Momentum, mass and energy exchange can occur between the dispersed phase 

and the fluid phase. This approach follows the assumption that the dispersed phase occupies a 

small volume fraction. Droplet/particle trajectory calculations are done individually at 

specified intervals during the fluid phase calculation (ANSYS FLUENT 12.0 Theory Guide, 

2009). 

3.3.2 Euler-Euler approach 

In the Euler-Euler approach, the different phases are treated mathematically as 

interpenetrating continua. Since the volume of a phase cannot be occupied by the other 

phases, phasic volume fraction is introduced. These volume fractions follow two 

assumptions: 1) They are continuous functions of space and time and 2) their sum is equal to 

one. The derivation of the conservation equations for each phase is made to yield a set of 

equations, with a similar structure for all phases (Adaze et al., 2019). Three different Euler-

Euler multiphase models are available in most CFD software: 1) The VOF model; 2) mixture 

model and 3) Eulerian model. 

3.3.2.1 The VOF model  

Within the Euler-Euler approach, perhaps the most used model is the Volume of Fluid (VOF) 

model. This model was developed by Hirt and Nichols (1979) and it received a lot attention 

within the multiphase community. The VOF model is used for mixtures of two or more 

immiscible fluids where tracking the interface between the different phases is of much 

importance. This is done by a surface-tracking function applied to a fixed Eulerian mesh 

(ANSYS FLUENT 12.0 Theory Guide 2009, Hirt and Nichols, 1979). This function will 

calculate which fluid composition the cell is occupied by. Alongside the tracking function, a 

single set of momentum equations is shared by the fluids. The use of the VOF model for two-

phase oil-water flows is well documented, please see the works of Alias et al. (2015), Chen et 

al. (2023), Pouraria et al. (2016), Shuard et al. (2016), Song et al. (2021), Sunday et al. (2023) 

and Kumara (2010). 

3.3.2.2 The mixture model 

In the mixture model, the phases are treated as interpenetrating continua. The model solves 

the momentum equation for the mixture and prescribes relative velocities to describe the 

dispersed phases (Multi-phase flow simulations in OpenFOAM). This model can be used as a 

substitute for the Eulerian model as it’s less computationally expensive. For this scenario the 

momentum, continuity and energy equations for the mixture, the volume fraction equations 

for the secondary phases and the algebraic expressions for the relative velocities are solved 

simultaneously. This model differs from the VOF model in two ways: 1) the mixture model 

allows the phases to be interpenetrating. Therefore, the volume fractions α1 and α2 in a 

control volume can be any value between 0 and 1, depending on the space occupied by the 

phases and 2) the mixture model allows the phases to move at different velocities, using the 

concept of slip velocities (ANSYS FLUENT 12.0 Theory Guide, 2009). 
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3.3.2.3 Eulerian Model 

The phases are treated as interpenetrating continua and a set of momentum and continuity 

equations for each phase are solved. Coupling is achieved through the pressure and interphase 

exchange coefficients. The way this coupling is handled depends on the types of phases 

involved. This approach is often used if the system contains more than two phases (ANSYS 

FLUENT 12.0 Theory Guide 2009).  

3.4 Governing equations 

The flow methodologies described in this section are based on the Reynolds-averaged 

Navier-Stokes (RANS) equations as most cases require the need to solve turbulent flow. The 

amount of computational resources needed to solve the instantaneous Navier-Stokes (N-S) 

equations is unrealistic in most cases and the RANS approach is adopted (Adaze et al., 2019; 

White, 1991). More details about  RANS can be found in (Versteeg and Malalasekera, 2007). 

Another approach, known as Direct numerical Simulation (DNS) (Hu et al., 2001; 

Tryggvason et al., 2001), is based on the finite volume method. This approach completely 

resolves the turbulence fluctuations, which is advantageous, but it demands significantly 

more computational power compared to RANS (Sun and Xiao, 2015; Zhu et al., 2007). DNS 

is slower and more expensive than the RANS approach and is therefore not widely used for 

turbulent flows. DNS was not considered in this thesis for this reason. 

When modelling an oil-water flow, several flow characteristics and assumptions are made to 

develop a solvable model: 

- The density difference and immiscibility of oil and water will cause the liquids to 

form an interface between them. 

- Mass transfers between the phases are ignored. 

- The liquids are Newtonian and incompressible. 

- Isothermal flow 

3.4.1 Stratified flow solvers 

When simulating stratified flows, the VOF method is commonly used due to its interface 

tracking capabilities. In OpenFOAM, there are several solvers for multiphase flow that 

utilizes the VOF method like interFoam and multiphaseInterFoam. 

The total mass of the oil-water phases is constant throughout the cross-sectional area in the 

axial direction, meaning the conservation equation is simplified to: 

𝜕𝜌

𝜕𝑡
= 𝛻. (𝜌𝑈) = 0           (3.1) 

where ρ and U are the density and velocity of the two-phase fluid, respectively. 

Given the assumptions previously mentioned in chapter 3.4, the Navier-Stokes equations for 

a fully developed flow in the axial direction is as follows: 

𝜕𝜌𝑈

𝜕𝑡
+ ∇. (𝜌𝑈𝑈) = ∇𝑃 + ∇. [𝜇𝑒𝑓𝑓(∇𝑈 + ∇𝑈𝑇)] + (𝜌𝑔𝑠𝑖𝑛𝜃) + 𝐹𝑠     (3.2) 

𝜕𝛼

𝜕𝑡
+ ∇. (𝛼𝑈) + ∇. (1 − 𝛼)𝛼𝑈𝑟 = 0         (3.3) 
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where U is the axial velocity, ∇𝑃 is the pressure gradient, µeff is the effective dynamic 

viscosity (µ+µt), g is the gravitational acceleration, θ is the inclination angle, Fs is the axial 

direction body force and α is the fluid volume fraction. 

Density and dynamic viscosity for the oil-water flow is calculated in each cell volume as 

follows: 

𝜌 = 𝛼𝑤𝜌𝑤 + (1 − 𝛼𝑤)𝜌𝑜          (3.4) 

𝜇 = 𝛼𝑤𝜇𝑤 + (1 − 𝛼𝑤)𝜇𝑜          (3.5) 

𝛼𝑤 + 𝛼𝑜 = 1            (3.6) 

where subscript ‘o’ and ‘w’ represent oil and water respectively. The volume fraction has an 

indicator function within the solver where α is represented as: 

𝛼 {
1                               𝑤𝑎𝑡𝑒𝑟           
0 < 𝛼 < 1 𝑡𝑤𝑜 − 𝑝ℎ𝑎𝑠𝑒 𝑓𝑙𝑜𝑤
0                                 𝑜𝑖𝑙                

         (3.7) 

3.4.2 Dispersed flow solvers  

When simulating dispersed flow, the solver framework needs to be able to handle the 

complex fluid interactions that a dispersed flow regime introduces. This is handled by 

implementing the Eulerian-Eulerian approach which treats each phase as a continuous fluid 

with separate volume fractions for each phase (Greenshields, 2023). Below are the governing 

equations for multiphaseEulerFoam from OpenFOAM which is based on the Eulerian-

Eulerian approach. 

𝜕

𝜕𝑡
(∈𝑘 𝜌𝑘) + ∇ ∙ (∈𝑘 𝜌𝑘𝑈𝑘) = 0         (3.8) 

𝜕

𝜕𝑡
(∈𝑘 𝜌𝑘𝑈𝑘) + ∇ ∙ (∈𝑘 𝜌𝑘𝑈𝑘𝑈𝑘) = −∈𝑘 ∇𝑝 + ∇ ∙ (∈𝑘 𝜏𝑘) +∈𝑘 𝜌𝑘𝑔 + 𝑀𝑘   (3.9) 

Where subscript ‘k’ represents the water and oil phases, respectively. τ is the stress tensor and 

is calculated as follows: 

𝜏𝑘 = 𝜇𝑒𝑓𝑓 [𝛻𝑈𝑘 + (𝛻𝑈𝑘)𝑇 −
2

3
(𝛻 ∙ 𝑈𝑘)] 𝐼                 (3.10) 

As stated in Chen et al. (2023), the momentum transfer per unit of volume, Mk, is affected by 

several forces. Drag, lift, virtual mass, turbulent dispersion, and wall lubrication forces will 

affect the momentum transfer. The momentum transfer equation is expressed as: 

Mo = −Mw = Mo
D + Mo

L + Mo
VM + Mo

TD + Mo
WL                (3.11) 

Where: 

𝑀𝑜
𝐷 =

3

4
∈𝑜 𝜌𝑤

𝐶𝐷

𝑑𝑜
|𝑈𝑤 − 𝑈𝑜|(𝑈𝑤 − 𝑈𝑜)                 (3.12) 

𝑀𝑜
𝐿 = −∈𝑜 𝜌𝑤𝐶𝐿(𝑈𝑤 − 𝑈𝑜) × (∇ × 𝑈𝑤)                (3.13) 

𝑀𝑜
𝑇𝐷 = −𝜌𝑤𝑘𝑤𝐶𝑇𝐷∇∈𝑜                   (3.14) 

𝑀𝑜
𝑉𝑀 =∈𝑜 𝜌𝑤𝐶𝑉𝑀 (

𝐷𝑈𝑤

𝐷𝑡
−

𝐷𝑈𝑜

𝐷𝑡
)                 (3.15) 
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𝑀𝑜
𝑊𝐿 = −∈𝑜 𝜌𝑤 max (𝐶𝑤1 + 𝐶𝑤2

𝑅𝑜

𝑦
, 0)

|𝑈𝑟−(𝑈𝑟∙𝑛𝑤)𝑛𝑤|2

𝑅𝑜
𝑛𝑤              (3.16) 

Here, Ro and do are the oil droplet radius and diameter, nw is the outward facing unit vector 

on the wall and y is the distance from the wall. More details on the individual expressions in 

the momentum equation can be found in the works of Cheng et al. (2018), Deen et al. (2001) 

and Lopez de Bertodano et al. (1994). CD represents the drag coefficient and the model used 

needs to be considered for each unique case. In the case of dispersed oil-water flow, the Ishii 

and Zuber (1979) model can be applied as shown in Chen et al. (2023):  

𝐶𝐷 =
2

3
 (

𝑔(𝜌𝑤−𝜌𝑜)𝑑𝑜
2

𝜎
)

1

2
{

1+17.67|𝑓(𝜖𝑜)|
6
7

18.67𝑓(𝜖𝑜)
}

2

                  (3.17) 

𝑓(𝜖𝑜) = √1 − 𝜖𝑜 (
𝜇𝑤

𝜇𝑚
)                    (3.18) 

𝜇𝑚

𝜇𝑤
= (1 − 𝜖𝑜)

2.5(𝜇𝑜+0.4𝜇𝑤)

𝜇𝑜+𝜇𝑤                   (3.19) 

It is important to note that the presented equations are not valid when the system experiences 

phase inversion or separating flows. The phase inversion creates a shift where the dispersed 

phase can become the continuous phase and vice versa (phase inversion is discussed in 

chapter 2.2.3). To resolve this, the OpenFOAM framework provides additional interface 

treatment. Three variations are available: hyperbolic, linear and no blending. The treatment 

allows for the dispersed phase and continuous phase to be determined locally in each cell. 

The available blending treatment provides a feasible mechanism to correct the momentum 

exchange as shown in Chen et al. (2023). 

3.5 Turbulence models 

Most pipe flow scenarios are turbulent and thus, must be included in the numerical model. 

This is achieved by applying the RANS equations, supplemented with a turbulence model. 

Within the RANS framework, the Reynolds stress tensor is modelled to account for the 

effects of turbulence and increased viscosity. For the turbulence, the k-ε and k-ω models are 

commonly used. These models are referred to as two-equation models, where the first 

equation solves for the turbulent kinetic energy, k, and the second equation for the turbulent 

dissipation, ε, or the specific turbulence dissipation rate, ω. The selected turbulence model is 

integrated into the RANS framework and computed accordingly. 

3.5.1 k-ε model 

The k-ε model is a highly efficient turbulence model which can be effectively used for many 

different two-phase flow situations. The model is popular due to its robustness, computational 

economy, and reasonable accuracy for a wide range of flows such as stratified flows, churn 

flows, annular flows, sedimentation and bubbly flows as reported by Han (2005). The k-ε 

model was initially proposed by Launder and Spalding (1974), and is only valid for high 

Reynolds numbers, e.g. fully turbulent flows. The equations for the standard k-ε turbulence 

model are given below. 
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The k-ε model uses k and ε to define the velocity scale ʋ and length scale Ɩ to represent the 

large-scale turbulence as follows: 

ʋ = 𝑘
1

2                      (3.20) 

Ɩ =
𝑘

3
2

𝜀
                      (3.21) 

 

The eddy viscosity, µ𝑡, is specified as: 

µ𝑡 = 𝐶 𝜌 𝑣 𝑙 = 𝜌 𝐶µ (
𝑘2

𝜀
)                     (3.22) 

 

The transport equations for k and ε are: 

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑼𝒊) =

𝜕

𝜕𝑥𝑗
((𝜇 +

µ𝑡

𝜎𝑘
) (

𝜕𝑘

𝜕𝑥𝑗
) ) + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜀 − 𝑌𝑀                        (3.23) 

𝜕(𝜌𝜀)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝜀𝑼𝒊) =

𝜕

𝜕𝑥𝑗
((𝜇 +

µ𝑡

𝜎𝜀
) (

𝜕𝜀

𝜕𝑥𝑗
)) + 𝐶1𝜀 (

𝜀

𝑘
) (𝐺𝑘 + 𝐶3𝜀𝐺𝑏) − 𝐶2𝜀𝜌 (

𝜀2

𝑘
)             (3.24) 

Where: 

- Gk is the generation of turbulent kinetic energy due to the mean velocity gradients. 

- Gb is the generation of turbulent kinetic energy due to buoyancy. 

- YM is the fluctuating dilatation in compressible turbulence in the dissipation rate. 

- C1ε, C2ε and C3ε are model constants. 

- σk and σε are related to the turbulent Prandtl numbers. 

For an oil-water flow, Gb=0 since the system has a constant temperature and YM is neglected 

due to the flow being incompressible. 

These equations contain a total of five adjustable constants which through comprehensive 

data fitting for turbulent flow has been shown to have the following values (Versteeg and 

Malalasekera, 2007):  

𝐶µ = 0.09 𝜎𝑘 = 1.00 𝜎𝜀 = 1.30 𝐶1𝜀 = 1.44 𝐶2𝜀 = 1.92 

 

To calculate the Reynolds stresses the Boussinesq relationship is used accordingly (Versteeg 

and Malalasekera, 2007): 

𝜌𝑢′𝑖𝑢′𝑗̅̅ ̅̅ ̅̅ ̅ = µ𝑡 (
𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) −

2

3
𝜌𝑘𝛿𝑖𝑗 = 2µ𝑡𝑆𝑖𝑗 −

2

3
𝜌𝑘𝛿𝑖𝑗               (3.25) 

 

Several sub-models have been developed from the k-ε model to increase its accuracy for a 

wider range of situations. One of these models are the RNG-based k-ε model. This model is 

derived from the instantaneous Navier-Stokes equations using a renormalization group 

(RNG) method. The model was proposed by Yakhot and Orszag (1986) and made four main 
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changes to the standard k-ε model: 1) Additional term in the ε equation for improved 

accuracy for rapidly strained flows; 2) Larger concentrations for swirl effects; 3) Analytical 

solution for the turbulent Prandtl numbers and 4) Analytical solution for the effective 

viscosity which accounts for low Reynolds number effects. The governing equations of RNG 

k-ε are: 

 

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑼𝒊) =

𝜕

𝜕𝑥𝑗
(𝛼𝑘𝜇𝑒𝑓𝑓(

𝜕𝑘

𝜕𝑥𝑗
) ) + 𝐺𝑘 − 𝜌𝜀                                                (3.26) 

and 

𝜕(𝜌𝜀)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝜀𝑼𝒊) =

𝜕

𝜕𝑥𝑗
(𝛼𝜀𝜇𝑒𝑓𝑓(

𝜕𝜀

𝜕𝑥𝑗
)) + 𝐶1𝜀 (

𝜀

𝑘
) (𝐺𝑘) − 𝐶2𝜀

∗ 𝜌 (
𝜀2

𝑘
)                                (3.27) 

where, 

𝐺𝑘 = −𝜌𝑢′
𝑖𝑢′

𝑗
̅̅ ̅̅ ̅̅ ̅ 𝜕𝑈𝑗

𝜕𝑥𝑖
                     (3.28) 

𝐶2𝜀
∗  is calculated by: 

𝐶2𝜀
∗ = 𝐶2𝜀 +

𝐶𝜇𝜌𝑣3(1−
𝑣

𝑣𝑜
)

1+𝛽𝑣3                   (3.29) 

where, 

𝑣 =
𝑆𝑘

𝜀
                    (3.30) 

For better handling of how the effective turbulent transport varies with the effective Reynolds 

number, the turbulent viscosity is calculated by the following equation: 

𝑑 (
𝜌2𝑘

√𝜀𝜇
) = 1.72

𝑣̂

(√𝑣̂3−1+𝐶𝑣)
𝑑𝑉̂                  (3.31) 

where, 

𝑣 =
𝜇𝑒𝑓𝑓

𝜇
                    (3.32) 

Equation 3.31 allows for better handling of low-Reynolds number and near-wall flows 

(ANSYS FLUENT 12.0 Theory Guide, 2009). 

αk and 𝛼𝜀 are the inverse effective Prandtl numbers and have the following relationship: 

|
𝛼−1.3929

𝛼0−1.39290
|

0.6321

|
𝛼+2.3929

𝛼+2.3929
|

0.3679

=
𝜇

𝜇𝑒𝑓𝑓
                 (3.33) 

The commonly used model constants for the RNG k-ε model are given below (Versteeg and 

Malalasekera, 2007): 

𝐶µ = 0.0845 𝜎𝑘 = 0.7194 𝜎𝜀 = 0.7194 𝐶1𝜀 = 1.42 𝐶2𝜀 = 1.68 𝑣0 = 4.38 𝛽 =  0.012 
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Another k-ε model derivative is the realizable k-ε model developed by Shih et al. (1995). The 

model introduces a new dissipation rate equation and eddy viscosity formulation. For 

instances with large mean strain rates (Sk/ε > 3.7), Speziale (1990) showed that the normal 

stresses can become negative and Schwarz’ inequality for shear stresses can be violated. The 

standard k-ε sets Cµ=0.09 to prevent this, while Shih et al. (1995) proposed the following 

formulation for Cµ when calculating the eddy viscosity: 

𝐶𝜇 =
1

𝐴0+𝐴𝑠
𝑘𝑈∗

𝜀

                     (3.34) 

where, 

𝑈∗ = √(𝑆𝑖𝑗𝑆𝑖𝑗 + Ω̃𝑖𝑗 Ω̃𝑖𝑗                  (3.35) 

and, 

 Ω̃𝑖𝑗 = Ω𝑖𝑗 − 2𝜀𝑖𝑗𝑘𝜔𝑘 

 Ω𝑖𝑗 = Ω̃𝑖𝑗 − 𝜀𝑖𝑗𝑘𝜔𝑘   

where Ω̃𝑖𝑗 is the mean rate of rotation tensor viewed in a rotating reference frame with the 

angular velocity 𝜔𝑘.  

where, 

𝐴0 = 4.04 and 𝐴𝑠 = √6𝑐𝑜𝑠𝜑  

𝜑 =
1

3
𝑎𝑟𝑐 cos(√6 𝑊)  ,  𝑊 =

𝑆𝑖𝑗𝑆𝑗𝑘𝑆𝑘𝑖

𝑆3̃
,   𝑆̃ = √𝑆𝑖𝑗𝑆𝑖𝑗 ,  𝑆𝑖𝑗 =

1

2
(

𝜕𝑈𝑗

𝜕𝑥𝑖
+

𝜕𝑈𝑖

𝜕𝑥𝑗
) 

The equations above shows that the Cµ variable is a function of the mean strain and rotation 

rates, the angular velocity of the system rotation, and the turbulence fields (ANSYS FLUENT 

12.0 Theory Guide, 2009). 

The transport equations for the realizable k-ε model are as follows: 

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑼𝒊) =

𝜕

𝜕𝑥𝑗
((𝜇 +

µ𝑡

𝜎𝑘
) (

𝜕𝑘

𝜕𝑥𝑗
) ) + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜀 − 𝑌𝑀             (3.36) 

𝜕(𝜌𝜀)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝜀𝑼𝒊) =

𝜕

𝜕𝑥𝑗
((𝜇 +

µ𝑡

𝜎𝜀
) (

𝜕𝜀

𝜕𝑥𝑗
)) + 𝜌𝐶1𝑆𝜀 − 𝜌𝐶2 (

𝜀2

𝑘+√𝑣𝜀
) + 𝐶1𝜀 (

𝜀

𝑘
) 𝐶3𝜀𝐺𝑏                (3.37) 

𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜀
                     (3.38) 

Where 𝐶1 = max [0.43,
𝑣

𝑣+5
] , 𝑣 = 𝑆 (

𝑘

𝜀
) , 𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗 . 𝐺𝑘 𝑎𝑛𝑑 𝐺𝑏 , are the same as with the 

standard k-ε model. 

The realizable k–ε turbulence model is mostly used for high Reynolds-number water-air 

flows (Passoni et al., 2023). As there is limited information about its use for oil-water flows, 

little can be said for its accuracy in predicting such a flow. However, initial results from 

studies by Adaze et al. (2019), Han (2005) and Shih et al. (1995) suggests that the realizable 

k–ε turbulence model could provide increased accuracy in systems with complex secondary 
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and separated flows. It remains uncertain whether this would apply to an oil-water flow and 

should be investigated. 

Additionally, there are Low-Reynolds-Number (LRN) versions of the k-ε model. These are 

shown to be effective in certain cases (Rahman and Siikonen, 2005). For oil-water flows, the 

model is often used in combination with the standard k-ε model. In these cases, the LRN 

model deals with the near-wall area and the standard k-ε model is applied for the turbulent 

flow. An example of this application is documented by Sunday et al. (2023). 

3.5.2 k-ω model 

Another well-known two-equation turbulence model is the k-ω model proposed by Wilcox 

(2006). The model replaces the dissipation rate equation from the k–ε model with the eddy 

frequency (ω), the specific dissipation rate. The model incorporates modifications for low-

Reynolds-number effects, compressibility and shear flow spreading (ANSYS FLUENT 12.0 

Theory Guide, 2009). The k-ω model is advantageous compared to the k–ε model as it does 

not require any wall functions for velocity distribution in the near-wall area. This leads to 

better performance for flows with adverse pressure gradients compared to the k–ε model 

(Blakeslee, 2021). The transport equations for the k-ω model are: 

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑼𝒊) =

𝜕

𝜕𝑥𝑗
(𝛤𝑘 (

𝜕𝑘

𝜕𝑥𝑗
) ) + 𝐺𝑘 − 𝑌𝑘                           (3.39) 

𝜕(𝜌𝜔)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝜔𝑼𝒊) =

𝜕

𝜕𝑥𝑗
(𝛤𝜔 (

𝜕𝜔

𝜕𝑥𝑗
) ) + 𝐺𝜔 − 𝑌𝜔                           (3.40) 

Where: 

- Gk is the generation of turbulent kinetic energy due to mean velocity gradients and 

is defined in the same way as in the k–ε model (Equation 3.28).  

- Gω is the generation of ω. 

- 𝛤𝑘 and 𝛤𝜔 is the effective diffusivity of k and ω, respectively. 

- 𝑌𝑘 and 𝑌𝜔 is the respective dissipation due to turbulence for k and ω. 

The effective diffusivities are given by: 

𝛤𝑘 =  𝜇 +
𝜇𝑡

𝜎𝑘
                     (3.41) 

𝛤𝜔 =  𝜇 +
𝜇𝑡

𝜎𝜔
                      (3.42) 

Where 𝜎𝑘 and 𝜎𝜔 is the turbulent Prandtl numbers. 𝜇𝑡 which represents the turbulent 

viscosity is computed as follows: 

𝜇𝑡 = 𝛼∗ 𝜌𝑘

𝜔
                      (3.43) 

𝛼∗ is a Low-Reynolds-Number correction coefficient that damps the turbulent viscosity. It is 

given by: 

𝛼∗ = 𝛼∞
∗ (

𝛼0
∗ +

𝑅𝑒𝑡
𝑅𝑘

1+
𝑅𝑒𝑡
𝑅𝑘

)                    (3.44) 
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Where 𝑅𝑒𝑡 =
𝜌𝑘

𝜇𝜔
, 𝑅𝑘 = 6, 𝛼0

∗ =
𝛽𝑖

3
 and 𝛽𝑖 = 0.072. It’s important to note that in the k-ω 

model for high-Reynolds-number 𝛼∗ = 𝛼∞
∗ = 1.  

Gω is given by: 

𝐺𝜔 = 𝛼 (
𝜔

𝑘
) 𝐺𝑘                    (3.45) 

In Equation 3.45, α is given by: 

𝛼 =
𝛼∞

𝛼∗
(

𝛼0+
𝑅𝑒𝑡
𝑅𝜔

1+
𝑅𝑒𝑡
𝑅𝜔

)                    (3.46) 

α behaves the same way as α* where its equal to 1 in the high-Reynolds numbers.  

The dissipation of k is given as follows: 

𝑌𝑘 = 𝜌𝛽∗𝑓𝛽∗𝑘𝜔                   (3.47)   

Where, 

𝑓𝛽∗ = {
1             𝑥𝑘 ≤ 0
1+680𝑥𝑘

2

1+400𝑥𝑘
2  𝑥𝑘 > 0

                   (3.48) 

where 

𝑋𝑘 =
1

𝜔3

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
                     (3.49) 

And 

𝛽∗ = 𝛽𝑖[1 + 𝜍∗𝐹(𝑀𝑡)]                   (3.50) 

𝛽𝑖
∗ = 𝛽∞

((
4

15
)+(

𝑅𝑒𝑡
𝑅𝛽

)

4

)

1+(
𝑅𝑒𝑡
𝑅𝑒𝛽

)

4                     (3.51) 

The dissipation of ω is given by: 

𝑌𝜔 = 𝜌𝛽𝑓𝛽𝜔2                    (3.52) 

where 

𝑓𝛽 =
1+70𝑥𝜔

1+80𝑥𝜔
                     (3.53) 

𝑋𝜔 = |
Ω𝑖𝑗Ω𝑖𝑗𝑆𝑘𝑖

(𝛽∞
∗ 𝜔)^3 

|                    (3.54) 

Ω𝑖𝑗 =
1

2
 (

𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
)                    (3.55) 

The strain rate tensor, 𝑆𝑘𝑖 =
1

2
(

𝜕𝑈𝑗

𝜕𝑥𝑖
+

𝜕𝑈𝑖

𝜕𝑥𝑗
) and 𝛽𝑖

∗ is defined in Equation 3.51, whilst β is 

defined as: 
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𝛽 = 𝛽𝑖 [1 −
𝛽𝑖

∗

𝛽𝑖
 𝜍∗𝐹(𝑀𝑡)]                   (3.56) 

F(Mt) is the compressibility function and is given by: 

𝐹(𝑀𝑡) = {
0                𝑀𝑡 ≤ 𝑀𝑡0

𝑀𝑡
2 − 𝑀𝑡0

2  𝑀𝑡 > 𝑀𝑡0
                  (3.57) 

Here 𝑀𝑡
2 =

2𝑘

𝑎2, 𝑀𝑡0 = 0.25 and 𝑎 = √𝛾𝑅𝑇. Here γ is the compressibility factor, R is the 

universal gas constant and T the absolute temperature. It’s important to note that for ω, as 

with k, that in the high-Reynolds number form of the k- ω model, 𝛽𝑖
∗ = 𝛽∞

∗  and for the 

incompressible form 𝛽∗ = 𝛽𝑖
∗.  

Due to the k- ω model’s strong sensitivity to the freestream boundary condition for external 

flow applications (Wilcox 2006), a modified version was suggested by Menter (1994). 

Menter (1994) proposed a new model called Shear Stress Transport k-ω where this sensitivity 

is overcome. There’s been several iterations of this model over the years, but most CFD 

software use the version developed by Menter et al. (2003). The SST model effectively 

blends the robust and accurate formulation of the k-ω model in the near-wall region with the 

free-stream independence of the k-ε model in the far field. This is done by converting the k-ε 

model into a k-ω formulation. The SST model is similar to the k-ω model but includes the 

following refinements (ANSYS FLUENT 12.0 Theory Guide, 2009): 

• The SST model incorporates a damped cross-diffusion derivative term in the ω 

equation. 

• The model has a blending function which is designed to be one in the near-wall region 

which activates the k-ω model, and zero away from the surface, which activates the k-

ε model. 

• Turbulent viscosity is modified with regards to the transport of the turbulent shear 

stress. 

• The model constants are different. 

Further details about the SST k-ω model and its equations can be found in ANSYS FLUENT 

12.0 Theory Guide (2009). The refinements make the model more accurate and reliable than 

the standard version. Additionally, the SST k-ω model makes it easier to estimate the onset 

and degree of flow separation under adverse pressure gradients by including transport effects 

into the eddy-viscosity approximation (De la Cruz-Ávila et al., 2022). 

3.5.3 Near wall treatment 

Near wall treatment considerations are important when dealing with turbulent flows, as the 

presence of walls significantly influences turbulent behavior. The mean velocity field is 

affected through the no-slip condition that must be satisfied at the wall. The turbulence is also 

changed by the presence of a wall in non-trivial ways. Very close to the wall, viscous 

damping reduces tangential velocity fluctuations, while kinematic blocking reduces the 

normal fluctuations. Towards the outer part of the near wall region, turbulence is rapidly 

augmented due to the production of turbulence kinetic energy due to the large gradients in the 

mean velocity (ANSYS FLUENT 12.0 Theory Guide, 2009). 
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There are two approaches to modelling the near-wall region. One approach involves 

integrating the turbulence model to resolve the viscosity-affected region using a fine mesh all 

the way to the wall, including the viscous sublayer (preferably y+=1). This approach fits 

turbulence models that can solve the flow in the near-wall area like the SST k-ω model. The 

second approach is using wall functions for the near-wall area. Wall functions are empirical 

equations utilized to capture the physics of the flow in the near-wall region. The functions 

bridge the inner region between the wall and the fully developed turbulence region, providing 

near-wall boundary conditions for the momentum and turbulence transport equations, rather 

than to specify those conditions directly at the wall itself (Versteeg and Malalasekera, 2007). 

When used correctly, wall functions yield a relatively accurate result, while significantly 

reducing computational time (Davidson, 2022).  
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4 Simulation strategy 
The simulation work in this thesis is done using the open source CFD software OpenFOAM. 

OpenFOAM (Open Field Operation and Manipulation) is a Linux based C++ toolbox for 

customized numerical solvers. The software is open source which allows the user to make 

any changes to the source material. This makes OpenFOAM a very flexible numerical tool 

and can be customized for almost any system. With the paraView utility the simulated data is 

visualized and enables the creation of 2D/3D plots as well as extraction of data points.  

4.1 OpenFOAM simulation structure 

The case structure for a simulation in OpenFOAM is always the same regardless of the 

system. The setup consists of 3 folders: 0, constant and system. Each folder contains a 

different part of the simulation setup and must be configured correctly for each system. 

Figure 4.1 illustrates an example of how a case structure could look like. Each part of the 

simulation structure is presented and explained in detail in chapter 4.3. 

 

Figure 4.1 - OpenFOAM case structure example (Medina et al., 2015). 

4.2 Pre-processing 

4.2.1 Pipe geometry. 

The geometry for this CFD study is based on the experimental work of Kumara (2010) and 

was created by the group project of Vindenes et al. (2021). The computational domain is set 

up to emulate the test section of the test rig. The test rig is shown in Figure 4.2 and the test 
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section is shown in Figure 4.3. The test section is a circular, stainless-steel pipe with a length 

of 15 meters and diameter of 56 mm.  

 

Figure 4.2 – Simplified flow sheet of the test rig (Kumara et al., 2009). 

In the test section a single-beam gamma densitometry was used to ascertain the phase fraction 

measurements over the cross-sectional area of the pipe. Particle image velocimetry (PIV) was 

used to measure the velocity and differential pressure transmitters for the pressure drop over 

the test section. Towards the end of the test section, a short transparent pipe section was fitted 

for visual observations. Figures 4.2 and 4.3 are images taken from this pipe section.  

 

Figure 4.3 - Test section for the experimental study by (Kumara et al., 2009). 

4.2.2 Mesh generation. 

The mesh used for this study is the one created by the group project of Vindenes et al. (2021). 

The mesh is created using SALOME 9.7 which is an open-source 3D CAD software. This 

software provides a parametric approach when designing and meshing geometries. This 

allows for a visual approach when generating the mesh and gives the user more information 

when controlling the mesh quality. 
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When generating a mesh for a circular pipe there is two common structures that are used: the 

OH structure (butterfly grid) and tetrahedral structure (Lande, 2021). The OH structure 

effectively splits the pipe into five blocks. This allows for very fine boundary layers with 

good resolution at the pipe wall but leaves the center of the pipe with a coarser mesh. In total 

the group project made three mesh iterations in which two were OH meshes. The OH meshes 

can be seen in Figure 4.4. 

 

Figure 4.4 - OH mesh 1 & 2 (Vindenes et al. 2021). 

From Figure 4.4 one can see that there is bending of the boundary layers at the corners of the 

block structure. This reduces the quality of the mesh as the skewness increases, which can 

cause instabilities for the solver. The second mesh used the same structure but with a finer 

mesh. Some of the boundary layer bending was resolved but led to a doubling of the total 

number of cells and required more computational power. The third iteration was created 

using a MEFISTO tetrahedral grid (CAD Exchanger SDK: Computational meshers). This 

mesh consists of 10 viscous layers and a linearly increasing spacing along the pipe. This 

hybrid mesh had satisfactory resolution for the boundary layers while providing a finer mesh 

in the central areas. The created mesh was imported from SALOME to OpenFOAM. More 

details about the mesh are found in APPENDIX B. The final mesh iteration is shown in 

Figure 4.5. 

 

Figure 4.5 - Mesh iteration 3 (a) Cross sectional, (b) axial view and (c) isometric view (Vindenes et al. 2021). 
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4.3 Case structure 

In this section, each folder in the simulation setup is presented and explained. All the base 

files are taken from the multiphase dam break tutorial in OpenFOAM and are customized for 

this study. The different simulation files can be found in Appendix C-E. 

4.3.1 0 folder 

The boundary conditions for the simulations are found in the ‘0’ folder in OpenFOAM. For 

stratified oil-water simulations the inlet section in the geometry is divided into two equal 

sections as seen in Figure 4.6. Oil is introduced in the top section of the pipe and water at the 

bottom part of the pipe. This leads to a stratified flow just behind the inlet section due to the 

density differences of the fluids. Figure 4.7 shows how the inlet section is divided in 

OpenFOAM. Here, blue and red represents the oil and water inlet, respectively. 

 

Figure 4.6 - Schematic representation of stratified oil-water flow (Kumara 2010). 

 

Figure 4.7 - Inlet section in the OpenFOAM environment. 

The ‘0’ folder includes 6-7 different files, depending on what solver and turbulence model 

are used, that are used to define the boundary conditions for the simulation. The boundary 

conditions for a simulation applying the SST k-ω turbulence model and the interFoam solver 

with a mixture velocity of 0.50 m/s and 0.25 water cut, are presented in table 4.1.  
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The water cut is decided by manipulating the inlet velocities. Since the area of the inlets are 

equal, Equation 2.1 and 2.4 can be used to determine the inlet velocity for oil and water. Most 

outlet values are defined as zeroGradients which means that the specific value normal to the 

flow outlet is zero. For the velocity (U), the no slip condition is applied at the walls, while 

wall functions are utilized for the turbulence parameters such as omega, k, epsilon and nut. 

For the hydrostatic pressure (p_rgh), a fixed flux pressure is applied. This adjusts the pressure 

gradient so that the boundary flux matches the velocity boundary condition for solvers that 

include body forces such as gravity and surface tension (Greenshields, 2023). Lastly, the k 

and omega starting values are calculated using Equations 4.1-4.3. 

𝑘 =
3

2
(𝐼|𝑈|)2           (4.1) 

𝜔 =
𝑘0.5

𝐶𝜇
0.25𝐿

               (4.2)  

𝐼 = 0.16 ∗ 𝑅𝑒−(
1

8
)
           (4.3) 

where I is the turbulence intensity, U is the inlet velocity and Re is the Reynolds number. 
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Table 4.1 - Boundary conditions for a simulation using the SST k-ω turbulence model and interFoam solver. 

 U [m/s] Alpha.water 

[-] 

P_rgh [𝑘𝑔/𝑚𝑠2] Nut [m2s-1] Omega [s-1] K [m2s-2] 

Inlet_water 

 

fixedValue 

Value: 0.25 

fixedValue 

Value: 1 

fixedFluxPressure 

Value: 100000 

 fixedValue 

Value: 1.3472 

fixedValue 

Value: 0.0017 

Inlet_oil fixedValue 

Value: 0.75 

fixedValue 

Value: 0 

fixedFluxPressure 

Value: 100000 

 fixedValue 

Value: 0.5136 

fixedValue 

Value: 0.00022 

Outlet zeroGradient zeroGradient fixedFluxPressure 

Value: 100000 

 zeroGradient zeroGradient 

Wall noSlip zeroGradient fixedFluxPressure 

Value: 100000 

nutkWallFunction 

Value: 0 

“.*” - calculated 

omegaWallFunction 

Value: 1 

kqRWallFunction 

Value: 0.003 

defaultFaces Empty  Empty Empty Empty Empty 
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4.3.2 Constant folder 

In the ‘constant’ folder, the physical properties of the fluid are specified. This folder contains 

three files: ‘g’, ‘momentumTransport’ and ‘transportProperties’. The ‘g’ file defines the 

gravitational force that affects the system. The ‘momentumTransport’ file specifies whether 

the flow is laminar or turbulent, and which turbulence model is used is specified in this 

folder, if turbulent flow is chosen. The ‘transportProperties’ file specifies the values of fluid 

properties like kinematic viscosity, density and surface tension. Whether the liquid is 

Newtonian or non-Newtonian, is also defined here. The generated mesh is also located in this 

folder in the form of a “blockMeshDict” or a “polyMesh” folder. Since the generated mesh 

was imported from SALOME, a polyMesh folder was created due to the size of the geometry. 

4.3.3 System folder 

The ‘system’ folder consists of five files which control how the simulation is performed. In 

these files the time step, discretization schemes, solution criteria etc. are set. 

4.3.3.1 Controldict 

At the beginning of every OpenFOAM simulation the solver sets up a database that control 

the input and output of the simulation. In the controldict dictionary several essential control 

parameters can be adjusted, like time step, courant number and run time. For simulations 

using the interFoam solver, the courant number should never exceed 0.5 (Greenshields, 

2023). The courant number is defined as: 

𝐶𝑜 =
∆𝑡|𝑈|

∆𝑥
            (4.4) 

Where Δx is cell width in the velocity direction, U is the velocity and Δt is the time step. This 

means in order for the solver to maintain a max courant number of 0.5, the time step must be 

adjustable. This essentially means if the velocity increases, the time step must decrease. The 

values used for the simulations in this thesis is: 

- Δt = 0.001 

- maxCo = 0.5 

- maxDeltaT = 0.1 

These values were chosen to ensure a smooth simulation as well as maintaining an accurate 

solution. 

4.3.3.2 decomposeParDict 

Oil-water simulations are complex and requires a lot of calculations. To cut down on how 

long each simulation took, the computational domain was decomposed (split) into several 

sub-domains. The number of sub-domains is user specified but cannot exceed the number of 

available CPUs on the computer. The computer that the simulations were performed on had a 

6 core CPU, so 6 sub-domains with an equal number of cells were created. 
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4.3.3.3 fvSchemes 

Solving the equations required for the simulation involves discretizing them (Versteeg and 

Malalasekera, 2007). OpenFOAM has a large library for this and can be customized 

according to the requirements of the user. In the ‘fvscheme’ file all the discretization schemes 

for the different equations are chosen. The different schemes are as follows (Greenshields, 

2023): 

- ddtSchemes: This sets the time scheme. For this thesis the Euler scheme is used 

which is a transient, first order bounded implicit scheme. This scheme fits well 

with the small-time steps that are used when bounding the courant number to 0.5. 

- gradSchemes: The gradient term scheme. Here gauss linear is used which 

indicates a standard finite volume discretization with Gaussian integration and 

linear interpolation. 

- divSchemes: Divergence scheme, i.e. terms of the form ∇ ∙. These are the most 

important schemes in CFD simulations. These types of schemes always use the 

Gauss scheme and the difference in selection comes from the interpolation 

scheme. Depending on which field is discretized the interpolation schemes are 

different. Most advective terms are usually in the form div(phi, …) where phi 

denotes the volumetric flux of velocity on the cell faces. For example, in this 

thesis the velocity flux field is denoted div(rho*phi, U) and uses the Gauss 

linearUpwind grad(U) scheme. LinearUpwind is an unbounded second order, 

upwind-biased scheme that is well suited for velocity. Additionally, for the two-

phase flow in this thesis, the div(phi, alpha) scheme is very important as this 

calculates and reconstructs the cells that contain the oil-water interface.  

- laplacianSchemes: Defines the Laplacian scheme which is applied to equation 

terms with the Laplacian operator ∇2. This is set to the default option which is 

Gauss linear corrected. ‘Corrected’ indicates an unbounded, conservative and 

second order approach to the surface normal gradient. 

- interpolationSchemes: This sub-dictionary contains terms that are interpolations of 

values, typically from cell centers to face centers. Mostly used for the 

interpolation of velocity to face centers in the calculations of the flux (phi). This is 

by default set to linear. 

- snGradSchemes: Stands for surface normal gradient schemes. This scheme 

evaluates the gradient normal to the face center shared by two cells. This scheme 

is set to ‘corrected’. 

4.3.3.4 fvSolution 

This sub-directory decides which equation solver is used, tolerances and solution algorithms. 

In the simulations the PIMPLE algorithm is used for the pressure-velocity coupling. The 

pimple algorithm combines the PISO and SIMPLE algorithms (Greenshields, 2023). Figure 

4.8 illustrates the solution strategy for the PIMPLE algorithm. In the simulations 

‘nCorrectors’ is set to 2, which indicate how many times the pressure equation is solved in 

the outer loop. 
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Figure 4.8 - PIMPLE algorithm in OpenFOAM (Niotis et al., 2019).  

For the volume fraction several inputs must be made. ‘nAlphaCorr’ is set to 1 and indicate 

how many times the algorithm loops the volume fraction calculation. ‘nAlphaSubCycles’ is 

the number of times the volume fraction is calculated per ‘nAlphaCorr’. This number is set to 

1 in the simulations. ‘cAlpha’ is the compression term at the interface for the transport 

equation. Here a value of 2 is chosen meaning an enhanced treatment for the oil-water 

interface. The remaining inputs in ‘fvSolution’ involve pressure correction and turbulence 

model parameter corrections. Some of the ‘fvSolution’ settings are presented in table 4.2, and 

the complete file is found in Appendix E. 

Table 4.2 – Solution criteria used for the simulations. 

 P_corr P_rgh P_rghFin

al 

(U|k|omega|epsilon) (U|k|omega|epsilon)

Final 

Solver PCG GAMG GAMG smoothSolver smoothSolver 

Preconditioner GAMG     

Smoother GaussSeidel GaussSeidel  symGaussSeidel symGaussSeidel 

Tolerance 1*10-5 5*10-9 5*10-9 1*10-6 1*10-8 

relTol 0 0 0 0 0 
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GAMG (Geometric-agglomerated Algebraic Multigrid) is used for its ability to generate a 

quick solution. It does this by generating a quick solution on a mesh with small number of 

cells; mapping this solution onto a finer mesh; using it as an initial guess to obtain an 

accurate solution on the fine mesh (Greenshields, 2023). By applying a smoothing scheme 

such as Gauss-Seidel this process results in a quicker calculation time. 

4.3.3.5 setFieldsDict 

The ‘setFieldsDict’ sub-directory is used to pre-fill the pipe with water before starting the 

simulation. This technique is advantageous as it reduces the simulation time. 

 

4.4 Interface treatment 

As reviewed in chapter 2, the need for additional interface treatment for a two-phase oil-

water flow is essential for increasing the simulation accuracy. Two interface treatment 

approaches were attempted in this thesis: 1) Customizing the k-ε turbulence model to apply 

wall-like conditions to the oil-water interface and 2) turbulence damping at the oil-water 

interface.  

The application of the wall-like conditions to the oil-water interface as outlined in Liu et al. 

(2022) was attempted. The source code for the k-ε turbulence model was taken from the 

OpenFOAM framework. The code was then customized so that the proposed conditions only 

applied in the cells that contained the oil-water interface. Several attempts were made to 

make this work but ultimately failed due to lack of coding knowledge in C++. The 

customized code “worked” but the logic implemented to find the interface cells was 

unsuccessful, so the proposed conditions were never applied to the simulation. The 

customized code can be found in Appendix F. 

For the application of turbulence damping at the oil-water interface, the scheme developed by 

Fan and Anglart (2019, 2020) was used. This turbulence damping scheme was applied to the 

entire flow field, so it had to be customized so that it was only applied at the cells containing 

the oil-water interface. As with the turbulence model, this was a complicated task. This 

customization also failed due to the same reasons the customized turbulence model did. This 

led to the simulations being performed with only the interface treatment provided by 

OpenFOAM. The source-code for the turbulence damping scheme is found in Appendix G.      

4.5 Processing 

The chosen solvers for the two-phase oil-water simulations were interFoam and 

multiphaseInterFoam. These solvers are based on the VOF model which is discussed in detail 

in chapter 3. Although subtle, the difference between the two solvers is that the 

multiphaseInterFoam solver includes additional surface-tension and contact-angle effects for 

each phase. Initial simulations were performed to determine which solver to use going 

forwards. The differences between the two solvers are discussed in chapter 5.2.  
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The simulations performed in this study are done at three different water cuts for two 

different mixture velocities. A mixture velocity of 0.50 m/s was used for water cuts 0.25, 

0.50, 0.75, and 0.25 and 0.50 for a mixture velocity of 0.68 m/s. 

4.6 Post-processing 

The post-processing work is done with the paraView utility. ParaView is launched by writing 

paraFoam in the terminal. Simulation data is analyzed using the plot over line tool which 

allows for plotting data at any point, and any direction. The mean axial velocity and water 

volume fraction is found by plotting a straight line through the center of the pipe in the Y-

direction. The data is then converted to an Excel sheet and plotted against experimental data. 
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5 Results & discussion 
This section presents and discusses the results of the CFD study. An analysis of the 

differences between interFoam and multiphaseInterFoam are presented first. A comparison of 

the performance of different turbulence models against experimental data follows. 

5.1 General comments 

▪ The experimental data used for the comparisons are collected using an online graph 

analyzing tool called Web Plot Digitizer. Hence, the accuracy for the gathered 

experimental data will not be 100% accurate. The figures used to capture the 

experimental data is found in Appendix H.  

▪ The simulation data are gathered at 14.99m downstream of the inlet. This point was 

chosen to ensure that the flow was fully developed.  

▪ The total time in which each case was simulated were different. Each case was 

simulated to the point where a steady state was reached. How long this took differed 

for each case as different turbulence models were used and the initial conditions 

changed for each case. The average solution time for each case is presented in table 

5.1. 

Table 5.1 – Average simulation times for the different turbulence models at different water cuts and Um=0.50 

m/s. 

Water cut SST k-ω [s] RNG k-ε [s] Realizable k-ε [s] 

𝜆𝑤 = 0.25 60 60 430 

𝜆𝑤 = 0.50 40 40 60 

𝜆𝑤 = 0.75 70 70 520 

 

5.2 Solver comparison 

A part of the simulation study was to assess which solver was the most suitable to use for the 

oil-water flow. Two solvers were assessed: interFoam and multiphaseInterFoam. A 

comparative analysis was done for three different water cuts employing the RNG k-ε and 

SST k-ω turbulence models at a mixture velocity of 0.50 m/s. 

5.2.1 RNG k-ε 

Figures 5.1-5.3 show the results from the two solvers obtained using the RNG k-ε turbulence 

model for the three water cuts. For λw=0.25 and 0.50, the two solves produce near identical 

results as observed in Figures 5.1 and 5.2. In Figure 5.3 it’s seen that when the water cut is 

increased to 0.75, the interFoam solver predicts a slightly lower velocity in the water phase. 

The two solvers consistently predict more or less the same position for the oil-water interface 
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for the three water cuts. It’s evident that when using the RNG k-ε turbulence model, the 

additional contact angle and surface tension calculations in multiphaseInterFoam do not have 

any significance on the results for this geometry. 

 

 

Figure 5.1 – Comparison of interFoam and multiphaseInterFoam for the RNG k- ε turbulence model with 

λw=0.25. 
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Figure 5.2 - Comparison of interFoam and multiphaseInterFoam for the RNG k- ε turbulence model with 

λw=0.50. 

 

Figure 5.3 - Comparison of interFoam and multiphaseInterFoam for the RNG k- ε turbulence model with 

λw=0.75 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

RNG k-epsilon - 0.50 water cut - 0.50 Um

U - interFoam U -  multiphaseInterFoam

Water vol.frac - interFoam Water vol.frac - multiphaseInterFoam

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

RNG k-epsilon - 0.75 water cut - 0.50 Um

U - interFoam U -  multiphaseInterFoam

Water vol.frac - interFoam Water vol.frac - multiphaseInterFoam



 5 Results & discussion 

64 

5.2.2 SST k-ω 

Figures 5.4-5.6 show the results from using the two solvers with the SST k-ω turbulence 

model for the three water cuts. The results present a very similar trend to those obtained with 

the RNG k-ε turbulence model, but with some differences. For λw=0.25, a slight deviation is 

seen between the solvers. Figure 5.4 show that interFoam predicts a slightly higher velocity 

in the oil phase, and as it transitions from the oil phase to the water phase, it predicts a 

marginally lower velocity compared to multiphaseInterFoam. The position of the oil-water 

interface for the two solvers shows very little difference, bar a slight deviation at radial 

position -0.4 in Figure 5.4. 

 

Figure 5.4 - Comparison of interFoam and multiphaseInterFoam for the SST k- ω turbulence model with 

λw=0.25. 

Figures 5.5 and 5.6 show that for λw=0.50, interFoam slightly underpredicts the oil phase 

velocity, while for λw=0.75, it overpredicts the oil phase velocity compared to 

multiphaseInterFoam. Additionally, as observed in the other simulations, the position of the 

oil-water interface is near identical between the two solvers. 
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Figure 5.5 - Comparison of interFoam and multiphaseInterFoam for the SST k- ω turbulence model with 

λw=0.50. 

 

Figure 5.6 - Comparison of interFoam and multiphaseInterFoam for the SST k- ω turbulence model with 

λw=0.75 
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0.50 m/s using the RNG k-ε model, the interFoam solver used around 8hours, compared to 

the multiphaseInterFoam solver which used upwards of 14 hours. So, when considering the 

choice between the two solvers, interFoam was the preferred option due to its shorter 

computational time. However, if time is not a limiting factor, or more computational power is 

available, then further research should be done on the performance of the two solvers. 

5.3 Turbulence model comparisons 

This section compares the simulation results from the three different turbulence models 

against experimental data from Kumara (2010). The simulations are performed using the 

interFoam solver. The choice to proceed with interFoam was made due to its reduced 

simulation time compared to multiphaseInterFoam. The data for the realizable k-ε turbulence 

model is discussed in its own section as the results showed notable deviations compared to 

the other two models. 

5.3.1 Realizable k-ε 

CFD prediction of mean axial velocity, water volume fraction and turbulent kinetic energy 

are compared against experimental data using the realizable k-ε model at λw=0.25 in Figures 

5.7 and 5.8. As seen in Figure 5.7 the model slightly overpredicts the position of the oil-water 

interface. However, it severely overpredicts the oil phase velocity as well as underpredicting 

the water phase velocity. The model also fails to capture the correct shape of the velocity 

field in both phases.  

The reason for the inaccuracies is not immediately apparent. One potential explanation could 

be attributed to the Cµ formulation in Equation 3.34 applied by the realizable k-ε model. For 

this system the model underpredicts the turbulent kinetic energy in the near-wall areas, as 

seen in Figure 5.8, resulting in a lower turbulent viscosity from the relationship in Equation 

3.38. This affects the effective kinematic viscosity for the oil phase that leads to reduced flow 

resistance and consequently, increased flow velocity. This could account for the significant 

overprediction of velocity in the oil phase. 
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Figure 5.7 - Realizable k-ε turbulence model compared to experimental data at 0.50 m/s mixture velocity and 

λw=0.25. 

 

Figure 5.8 - Axial turbulent kinetic energy at 0.50 m/s mixture velocity and λw=0.25. 
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predicted mean axial velocity is symmetrical compared to the asymmetrical experimental 
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unsurprising as at λw=0.50, the initial velocities are equal which induces a “symmetrical 

start”. As discussed in Kumara (2010), an oil-water flow is highly anisotropic meaning that 

the velocity components and their derivatives are dependent on direction. The oil-water 

interface acts like a moving wall due to the stable density stratification at the interface. This 

has a damping effect, causing the axial velocity in the higher velocity phase to slow down as 

it approaches the interface. This is the reason for the asymmetrical velocity profiles seen in 

the experimental data. Hence, it’s evident that a two-equation model like the realizable k-ε, is 

insensitive in capturing these effects without incorporating interface treatments, like a 

turbulence damping function at the oil-water interface. 

 

Figure 5.9 - Realizable k-ε turbulence model compared to experimental data at 0.50 m/s mixture velocity and 

λw=0.50. 
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should be ~30 when using wall functions and 𝑦+≤ 1 for full boundary layer resolution. This 

adds to the possibility that the mesh is too coarse for the realizable k-ε model to calculate the 

viscous sub-layers correctly. Hence, the mesh should be optimized for wall functions when 

using this model so that the y+ value is closer to 30.  

 

Figure 5.10 - Realizable k-ε turbulence model compared to experimental data at 0.50 m/s mixture velocity and 

λw=0.75. 

 

Figure 5.11 - Axial turbulent kinetic energy at 0.50 m/s mixture velocity and λw=0.75. 
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Figure 5.12 – y+ values for the realizable k-ε simulation at λw=0.75. 

The results obtained with the realizable k-ε turbulence model demonstrate that it cannot 

accurately predict the complex flow behavior of oil-water systems without additional 

optimization. The model fails to predict the anisotropic behavior of the flow and should be 

coupled with turbulence damping, or some other form of interface treatment to increase the 

accuracy. There is a possibility that the model could’ve produced more accurate results with a 

different mesh size, but it is difficult to predict by how much. Furthermore, the simulation 

time posed a significant challenge when utilizing the realizable k-ε model. The simulations at 

λw=0.25 and 0.75 did not reach a steady state until approximately 400 seconds of simulation 

time, which equated to around 200 real-time hours. Therefore, the use of the realizable k-ε 

turbulence model for oil-water flow is not recommended at this point. 

5.3.2 Mixture velocity 0.50 m/s 

5.3.2.1 0.25 water cut 

Simulation results using the SST k-ω and RNG k-ε turbulence model at λw=0.25 are 

compared to experimental data in Figures 5.13 and 5.14. The results show that both 

turbulence models underpredict the position of the oil-water interface but the SST k-ω model 

show the better accuracy of the two. The SST k-ω model also performs the best out of the 

two in predicting the mean axial velocity. The SST k-ω closely matches the experimental 

data until radial position 0.6, after which its accuracy decreases. The accuracy in the near-

wall area suggests that the boundary layers are properly resolved. Beyond this point, the SST 

k-ω model begins to underpredict the velocity until approximately radial position -0.15. After 

this point it starts to overpredict the velocity and shows insensitivity to changes in the 

velocity field. In contrast, the RNG k-ε model predicts a symmetrical velocity profile and 

shows poor accuracy in the near-wall areas. This could indicate that the wall functions do not 

properly resolve the boundary layers.  

The poor accuracy of the models is evident when examining Figure 5.14, where neither 

model manages to accurately predict the turbulent kinetic energy, especially the fluctuations 

around the oil-water interface. Both models overpredict the turbulent kinetic energy between 

radial position 0.6 and -1. This is also the same area where the models are most inaccurate in 

terms of axial velocity. The turbulent kinetic energy increases around the interface but the 

velocity decreases for the oil-phase and increases for the water phase. This indicates that due 

to viscous effects at the interface, the turbulence dissipation rate increases in the oil-phase 

and decreases for the water phase. This leads to a damping effect in the oil-phase and the 

opposite for the water phase. Neither model captures this turbulence damping effect at the 

oil-water interface. The results suggest that the models are incapable of predicting the 

anisotropic behavior of the oil-water flow and the wall-like effect of the oil-water interface. 
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Figure 5.13 – Axial mean velocity and water volume fraction comparison of experimental results and turbulence 

models at λw=0.25. 

 

Figure 5.14 – Axial turbulent kinetic energy comparison for experimental data and turbulence models at 

λw=0.25. 
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5.3.2.2 0.50 water cut 

Simulation results using the SST k-ω and RNG k-ε turbulence model at λw=0.50 are 

compared to experimental data in Figures 5.15 and 5.16. Both models are in good agreement 

with the experimental data regarding the position of the oil-water interface. However, neither 

model accurately predicts the axial mean velocity. Again, both models fail to capture the 

fluctuations in the turbulent kinetic energy, which is reflected in their smooth velocity 

profiles. The RNG k-ε model correctly predicts the highest velocity but predicts it at the oil-

water interface, instead of the oil phase. Furthermore, the RNG k-ε model severely 

underpredicts the oil-phase velocity but show a good agreement in the water phase. In 

contrast, the SST k-ω model show better agreement in the oil-phase but has larger deviations 

in the water phase. 

 

Figure 5.15 - Axial mean velocity and water volume fraction comparison of experimental results and turbulence 

models at λw=0.50. 
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Figure 5.16 - Axial turbulent kinetic energy comparison for experimental data and turbulence models at 

λw=0.25. 

5.3.2.3 0.75 water cut 

Figures 5.17 and 5.18 display the predicted mean axial velocity, water volume fraction and 

turbulent kinetic energy data compared to experimental data. Both models closely predict the 

position of the oil-water interface, albeit with a slight under- and overprediction. However, 

notable deviations are seen in the predicted mean axial velocity. Neither model is able to 

capture the damping effect of the oil-water interface, which reflects in the overprediction of 

the velocity around the interface. It also means that neither model predicts the fluctuations in 

turbulent kinetic energy which are seen in Figure 5.18. Thus, producing the smooth velocity 

profiles. The SST k-ω model show the best accuracy in the oil phase, while the RNG k-ε is 

the more accurate model for the water phase. 
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Figure 5.17 - Axial mean velocity and water volume fraction comparison of experimental results and turbulence 

models at λw=0.75. 

 

Figure 5.18 - Axial turbulent kinetic energy comparison for experimental data and turbulence models for 

λw=0.25. 
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5.3.3 Mixture velocity 0.68 m/s 

Figures 5.19 and 5.20 compares the experimental data and predicted data for mean axial 

velocity and water volume fraction data at mixture velocity 0.68 m/s, for λw=0.25 and 0.50. 

Both turbulence models show significant deficiencies in predicting the oil-water interface at 

this mixture velocity. The models underpredict the position with a large margin, with the 

largest deviation observed at λw=0.25. The same trend is seen for the mean axial velocity. In 

Figure 5.19, neither model accurately predicts the highest velocity point in the oil-phase and 

underpredicts the velocity in the oil phase. Figure 5.20 show that both models underpredict 

the entire velocity flow field. This insensitivity comes from the turbulence model’s inability 

to predict the anisotropic behavior. This issue is increased at Um=0.68 m/s since the flow is 

more turbulent compared to Um=0.50 m/s. Additionally, with a higher mixture velocity, a 

higher production of droplets is observed at the interface. This effect is seen from Figures 

5.21 and 5.22. The increased droplet production affects the model’s ability to accurately 

predict the position of the oil-water interface. This deviation could be caused by the mesh 

being too coarse to fully capture the droplets. The deviation could also stem from the droplets 

interfering with the surface tracking employed by interFoam. Furthermore, the droplets will 

influence the anisotropic behavior in the turbulence field at the interface and affect the local 

viscosity distribution. Hence, the increased droplet formation significantly decreases the 

accuracy of the turbulence models.  

 

Figure 5.19 - Axial mean velocity and water volume fraction comparison of experimental results and turbulence 

models at λw=0.25. 
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Figure 5.20 - Axial mean velocity and water volume fraction comparison of experimental results and turbulence 

models at λw=0.50. 

 

Figure 5.21 – Droplet formation at mixture velocity 0.68 m/s for (a) λw=0.25 and (b) λw=0.50 (Kumara et al., 

2010a). 
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Figure 5.22 – Droplet formation at mixture velocity 0.50 m/s for (a) λw=0.25 and (b) λw=0.50 (Kumara et al., 

2010a). 

Overall, the results indicate that the two-equation turbulence models utilized in this study are 

incapable of accurately predicting the complexity of oil-water flows. Without additional 

interface treatments, such as turbulence damping, the models are insensitive to the anisotropic 

behavior of the flow. Additionally, possible challenges related to mesh resolution regarding 

droplet formation were discovered. Nevertheless, some noteworthy observations emerged 

from the study. The results in this thesis mirror some of the same velocity field characteristics 

as discussed in Liu et al. (2022). Specifically, the position of the peak velocity of the 

dominant phase, is followed by a downward shift in velocity. This effect is likely due to the 

oil-water interface acting like a moving wall, which causes less flow resistance than near the 

pipe wall. The peak velocity for the non-dominant phase is located at the oil-water interface. 

This suggest that the oil-water interface does in fact behave like a wall for the dominant 

phase, whereas for the non-dominant phase, the interface acts as a force that drags the flow 

forwards. 
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6 Conclusion & future work 
In this section the conclusions made based on the literature review and comparing the CFD 

study to experimental data are summarized. Additionally, recommendations for future work 

are proposed.

6.1 Conclusion 

A review of recent advances in oil-water modelling which includes an introduction to basic 

terminologies in oil-water flow have been presented. In addition to the review, a stratified oil-

water flow is numerically simulated using the CFD software OpenFOAM 9. The results 

produced by the simulations are compared to the experimental data from Kumara (2010). 

The review indicated that the numerical modelling of oil-water flows has shown good 

progress in developing accurate models. However, the review also highlighted areas in the 

numerical models that require additional attention. The studies presented suggests that the 

oil-water interface requires additional modelling treatment alongside the chosen turbulence 

model. What specific treatment that must be implemented will be different for each model 

and must be customized for the specific system. 

The developed CFD model utilized the VOF solver interFoam and employed three different 

turbulence models: RNG k-ε, realizable k-ε and SST k-ω. The prediction of mean axial 

velocity, water volume fraction and turbulent kinetic energy were compared to experimental 

data. Large deviations were seen which highlighted the limitations of the two-equation 

turbulence models in accurately capturing the complex behavior of the oil-water flow. It is 

concluded that the turbulence models are unable to capture the anisotropic behavior of the 

flow and that the flow requires additional treatment to mimic the characteristics of the oil-

water interface. The results show that the oil-water interface should be treated as a moving 

wall and therefore a turbulence damping scheme should be applied to account for the wall-

like effect of the interface. The SST k-ω turbulence model performed the best out of the three 

models used and should be used for this kind of flow problem. 

Simulations done at a mixture velocity of 0.68 m/s indicated that the mesh was potentially too 

coarse to accurately capture the effects of the increased droplet formation at the oil-water 

interface. Additionally, uncertainties around the surface tracking capabilities of interFoam at 

this mixture velocity was found. An increased mixture velocity further highlighted the 

discrepancies between simulated and experimental data. 

6.2 Future work 

Recommendations for continued research from this thesis should include: 

▪ A larger mesh sensitivity study should be conducted. The generated mesh needs be 

optimized for the turbulence model chosen. Additionally, the mesh should consider 

droplet formations if mixture velocities exceeding 0.50 m/s are used. 

▪ Research turbulence damping schemes for multiphase flows and implement it at the 

oil-water interface. 
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▪ Continue the numerical simulations using the SST k-ω turbulence model with an 

optimized mesh and turbulence damping scheme applied. 

▪ The customized turbulence model discussed in chapter. 4.4 should be developed 

further. If successfully implemented, extensive testing should be performed. 

▪ Investigate the possibilities of utilizing different solvers and turbulence models. 



 

 

  References 

80 

References 
Abubakar, A., Al-Wahaibi, T., Al-Hashmi, A.R., Al-Wahaibi, Y., Al-Ajmi, A., Eshrati, M., 

2016. Empirical correlation for predicting pressure gradients of oil-water flow with 

drag-reducing polymer. Experimental Thermal and Fluid Science 79, 275–282. 

https://doi.org/10.1016/j.expthermflusci.2016.07.023 

Adaze, E., Al-Sarkhi, A., Badr, H.M., Elsaadawy, E., 2019. Current status of CFD modeling 

of liquid loading phenomena in gas wells: a literature review. J Petrol Explor Prod 

Technol 9, 1397–1411. https://doi.org/10.1007/s13202-018-0534-4 

Ahmed, S.A., John, B., 2018. Liquid – Liquid horizontal pipe flow – A review. Journal of 

Petroleum Science and Engineering 168, 426–447. 

https://doi.org/10.1016/j.petrol.2018.04.012 

Alias, A., Koto, J., Ahmed, Y., 2015. CFD Simulation for Stratified Oil-Water Two-Phase 

Flow in a Horizontal Pipe. Journal of Subsea and Offshore -Science and Engineering- 

2, 1–6. 

Al-Wahaibi, T., 2012. Pressure gradient correlation for oil–water separated flow in horizontal 

pipes. Experimental Thermal and Fluid Science 42, 196–203. 

https://doi.org/10.1016/j.expthermflusci.2012.04.021 

Amundsen, L., 2011. An experimental study of oil-water flow in horizontal and inclined 

pipes (Doctoral thesis). 

Angeli, P., Hewitt, G.F., 2000. Drop size distributions in horizontal oil-water dispersed flows. 

Chemical Engineering Science 55, 3133–3143. https://doi.org/10.1016/S0009-

2509(99)00585-0 

Angeli, P., Hewitt, G.F., 1999. Pressure gradient in horizontal liquid–liquid flows. 

International Journal of Multiphase Flow 24, 1183–1203. 

https://doi.org/10.1016/S0301-9322(98)00006-8 

ANSYS FLUENT 12.0 Theory Guide [WWW Document], n.d. . ANSYS FLUENT 12.0 

Theory Guide. URL 

https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm (accessed 

2.19.24). 

Archibong-Eso, A., Shi, J., Baba, Y.D., Aliyu, A.M., Raji, Y.O., Yeung, H., 2019. High 

viscous oil–water two–phase flow: experiments & numerical simulations. Heat Mass 

Transfer 55, 755–767. https://doi.org/10.1007/s00231-018-2461-9 

Asyikin, M.T., 2012. CFD Simulation of Vortex Induced Vibration of a Cylindrical Structure 

(Master thesis). 82. Institutt for bygg, anlegg og transport. 

Barnea, D., Taitel, Y., 1992. Structural and interfacial stability of multiple solutions for 

stratified flow. International Journal of Multiphase Flow 18, 821–830. 

https://doi.org/10.1016/0301-9322(92)90061-K 

Beggs, D.H., Brill, J.P., 1973. A Study of Two-Phase Flow in Inclined Pipes. Journal of 

Petroleum Technology 25, 607–617. https://doi.org/10.2118/4007-PA 



 

 

  References 

81 

Blakeslee, M., n.d. Wilcox k-ω Model [WWW Document]. URL 

https://2021.help.altair.com/2021/hwsolvers/acusolve/topics/acusolve/training_manua

l/wilcox_k_model_r.htm (accessed 3.13.24). 

Brackbill, J., Kothe, D., CA, Z., 1992. A Continuum Method for Modeling Surface Tension. 

Journal of Computational Physics 100. https://doi.org/10.1016/0021-9991(92)90240-

Y 

Brauner, N., 2003. Liquid-Liquid Two-Phase Flow Systems, in: Bertola, V. (Ed.), Modelling 

and Experimentation in Two-Phase Flow, International Centre for Mechanical 

Sciences. Springer, Vienna, pp. 221–279. https://doi.org/10.1007/978-3-7091-2538-

0_5 

Burlutskii, E., 2018. CFD study of oil-in-water two-phase flow in horizontal and vertical 

pipes. Journal of Petroleum Science and Engineering 162, 524–531. 

https://doi.org/10.1016/j.petrol.2017.10.035 

C. K. G. Lam, K. Bremhorst, 1982. A Modified Form of the k-e Model for Predicting Wall 

Turbulence 5. 

C. W. Hirt, B. D. Nichols, 1979. Volume of Fluid (VOF) Method for Dynamics of Free 

Boundaries. 

CAD Exchanger SDK: Computational meshers [WWW Document], n.d. URL 

https://docs.cadexchanger.com/sdk/sdk_meshing_advalgos_usage_page (accessed 

4.20.24). 

Charles, M.E., Govier, G.W., Hodgson, G.W., 1961. The horizontal pipeline flow of equal 

density oil-water mixtures. The Canadian Journal of Chemical Engineering 39, 27–36. 

https://doi.org/10.1002/cjce.5450390106 

Chen, J., Anastasiou, C., Cheng, S., Basha, N.M., Kahouadji, L., Arcucci, R., Angeli, P., 

Matar, O.K., 2023. Computational fluid dynamics simulations of phase separation in 

dispersed oil-water pipe flows. Chemical Engineering Science 267, 118310. 

https://doi.org/10.1016/j.ces.2022.118310 

Cheng, J., Li, Q., Yang, C., Zhang, Y., Mao, Z., 2018. CFD-PBE simulation of a bubble 

column in OpenFOAM. Chinese Journal of Chemical Engineering 26, 1773–1784. 

https://doi.org/10.1016/j.cjche.2017.11.012 

David C. Wilcox, 2006. Turbulence modeling for CFD, 3rd ed. DCW Industries. 

Davidson, L., 2022. An Introduction to Turbulence Models. 

De la Cruz-Ávila, M., Carvajal-Mariscal, I., Sigalotti, L.D.G., Klapp, J., 2022. Numerical 

Study of Water-Oil Two-Phase Flow Evolution in a Y-Junction Horizontal Pipeline. 

Water 14, 3451. https://doi.org/10.3390/w14213451 

Deen, N.G., Solberg, T., Hjertager, B.H., 2001. Large eddy simulation of the Gas–Liquid 

flow in a square cross-sectioned bubble column. Chemical Engineering Science, 

Proceedings of the 5th International Conference on Gas-Liquid and Gas-Liquid-Solid 

Reactor Engineering 56, 6341–6349. https://doi.org/10.1016/S0009-2509(01)00249-4 

Duan, J., Gong, J., Yao, H., Deng, T., Zhou, J., 2014. Numerical modeling for stratified gas–

liquid flow and heat transfer in pipeline. Applied Energy 115, 83–94. 

https://doi.org/10.1016/j.apenergy.2013.10.050 



 

 

  References 

82 

Duan, J., Liu, H., Wang, N., Gong, J., Jiao, G., 2015. Hydro dynamic modeling of stratified 

smooth two-phase turbulent flow with curved interface through circular pipe. 

International Journal of Heat and Mass Transfer 89, 1034–1043. 

https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.093 

Edomwonyi-Otu, L.C., Angeli, P., 2015. Pressure drop and holdup predictions in horizontal 

oil–water flows for curved and wavy interfaces. Chemical Engineering Research and 

Design 93, 55–65. https://doi.org/10.1016/j.cherd.2014.06.009 

Elseth, G., 2001. An Experimental Study of Oil/Water Flow in Horizontal Pipes (Doctoral 

thesis). 270. Fakultet for ingeniørvitenskap og teknologi. 

Fan, W., Anglart, H., 2020. varRhoTurbVOF: A new set of volume of fluid solvers for 

turbulent isothermal multiphase flows in OpenFOAM. Computer Physics 

Communications 247, 106876. https://doi.org/10.1016/j.cpc.2019.106876 

Fan, W., Anglart, H., 2019. Progress in Phenomenological Modeling of Turbulence Damping 

around a Two-Phase Interface. Fluids 4, 136. https://doi.org/10.3390/fluids4030136 

Frank M. White, 1991. VISCOUS FLUID FLOW, 2nd ed. McGraw-Hill. 

Gada, V.H., Sharma, A., 2012. Analytical and level-set method based numerical study on oil–

water smooth/wavy stratified-flow in an inclined plane-channel. International Journal 

of Multiphase Flow 38, 99–117. 

https://doi.org/10.1016/j.ijmultiphaseflow.2011.08.015 

Gao, H., Gu, H.-Y., Guo, L.-J., 2003. Numerical study of stratified oil–water two-phase 

turbulent flow in a horizontal tube. International Journal of Heat and Mass Transfer 

46, 749–754. https://doi.org/10.1016/S0017-9310(02)00321-6 

Govier, G.W., Omer, M.M., 1962. The horizontal pipeline flow of air-water mixtures. The 

Canadian Journal of Chemical Engineering 40, 93–104. 

https://doi.org/10.1002/cjce.5450400303 

Greenshields, C.J., 2023. OpenFOAM handbook. 

Han, H., 2005. A study of entrainment in two-phase upward cocurrent annular flow in a 

vertical tube. University of Saskatchewan. 

Hapanowicz, J., 2010. Phase inversion in liquid–liquid pipe flow. Flow Measurement and 

Instrumentation, Special Issue: Validation and Data Fusion for Process Tomographic 

Flow Measurements 21, 284–291. https://doi.org/10.1016/j.flowmeasinst.2010.03.001 

Hibiki, T., Rassame, S., 2019. Analytical model for predicting oil fraction in horizontal oil–

water two-phase flow. Exp. Comput. Multiph. Flow 1, 73–84. 

https://doi.org/10.1007/s42757-019-0013-2 

H.K. Versteeg, W. Malalasekera, 2007. An introduction to Computational Fluid Dynamics, 

second edition. ed, The Finite Volume Method. Pearson. 

Hu, H.H., Patankar, N.A., Zhu, M.Y., 2001. Direct Numerical Simulations of Fluid–Solid 

Systems Using the Arbitrary Lagrangian–Eulerian Technique. Journal of 

Computational Physics 169, 427–462. https://doi.org/10.1006/jcph.2000.6592 

Ibarra, R., Matar, O., Markides, C., Zadrazil, I., 2015. An experimental study of oil-water 

flows in horizontal pipes. Presented at the 17th International Conference on 

Multiphase Technology, Cannes, France. 



 

 

  References 

83 

Ibarra, R., Zadrazil, I., Matar, O.K., Markides, C.N., 2018. Dynamics of liquid–liquid flows 

in horizontal pipes using simultaneous two–line planar laser–induced fluorescence 

and particle velocimetry. International Journal of Multiphase Flow 101, 47–63. 

https://doi.org/10.1016/j.ijmultiphaseflow.2017.12.018 

Ishii, M., Zuber, N., 1979. Drag coefficient and relative velocity in bubbly, droplet or 

particulate flows. AIChE Journal 25, 843–855. https://doi.org/10.1002/aic.690250513 

Ismail, A.S.I., Ismail, I., Zoveidavianpoor, M., Mohsin, R., Piroozian, A., Misnan, M.S., 

Sariman, M.Z., 2015. Review of oil–water through pipes. Flow Measurement and 

Instrumentation 45, 357–374. https://doi.org/10.1016/j.flowmeasinst.2015.07.015 

Kamp, J., Villwock, J., Kraume, M., 2017. Drop coalescence in technical liquid/liquid 

applications: a review on experimental techniques and modeling approaches. Reviews 

in Chemical Engineering 33, 1–47. https://doi.org/10.1515/revce-2015-0071 

Kang, Q., Gu, J., Qi, X., Wu, T., Wang, S., Chen, S., Wang, W., Gong, J., 2021. 

Hydrodynamic Modeling of Oil–Water Stratified Smooth Two-Phase Turbulent Flow 

in Horizontal Circular Pipes. Energies 14, 5201. https://doi.org/10.3390/en14165201 

Kumara, W.A.S., Elseth, G., Halvorsen, B.M., Melaaen, M.C., 2010a. Comparison of Particle 

Image Velocimetry and Laser Doppler Anemometry measurement methods applied to 

the oil–water flow in horizontal pipe. Flow Measurement and Instrumentation 21, 

105–117. https://doi.org/10.1016/j.flowmeasinst.2010.01.005 

Kumara, W.A.S., Halvorsen, B.M., Melaaen, M.C., 2010b. Particle image velocimetry for 

characterizing the flow structure of oil–water flow in horizontal and slightly inclined 

pipes. Chemical Engineering Science 65, 4332–4349. 

https://doi.org/10.1016/j.ces.2010.03.045 

Kumara, W.A.S., Halvorsen, B.M., Melaaen, M.C., 2009. Pressure drop, flow pattern and 

local water volume fraction measurements of oil–water flow in pipes. Meas. Sci. 

Technol. 20, 114004. https://doi.org/10.1088/0957-0233/20/11/114004 

Lande, A.M., 2021. Complex Mesh Generation with OpenFOAM. University of South-

Eastern Norway. 

Launder, B., Spalding, D.B., 1974. The Numerical Computation of Turbulent Flow Computer 

Methods. Computer Methods in Applied Mechanics and Engineering 3, 269–289. 

https://doi.org/10.1016/0045-7825(74)90029-2 

Lian, J., Yang, X., Ma, B., Gou, W., 2022. A novel method for bounding the phase fractions 

at both ends in Eulerian multi-fluid model. Computers & Fluids 243, 105512. 

https://doi.org/10.1016/j.compfluid.2022.105512 

Liu, H., Duan, J., Li, J., Gu, K., Lin, K., Wang, J., Yan, H., Guan, L., Li, C., 2022. Numerical 

quasi-three dimensional modeling of stratified oil-water flow in horizontal circular 

pipe. Ocean Engineering 251, 111172. 

https://doi.org/10.1016/j.oceaneng.2022.111172 

Lopez de Bertodano, M., Lahey, R.T., Jones, O.C., 1994. Turbulent bubbly two-phase flow 

data in a triangular duct. Nuclear Engineering and Design 146, 43–52. 

https://doi.org/10.1016/0029-5493(94)90319-0 



 

 

  References 

84 

Lovick, J., Angeli, P., 2004. Droplet size and velocity profiles in liquid–liquid horizontal 

flows. Chemical Engineering Science 59, 3105–3115. 

https://doi.org/10.1016/j.ces.2004.04.035 

Lum, J.Y.-L., Al-Wahaibi, T., Angeli, P., 2006. Upward and downward inclination oil–water 

flows. International Journal of Multiphase Flow 32, 413–435. 

https://doi.org/10.1016/j.ijmultiphaseflow.2006.01.001 

Luo, H., Wen, J., Jiang, R., Shao, Q., Wang, Z., 2022. Modeling of the Phase Inversion Point 

of Crude Oil Emulsion by Characterization of Crude Oil Physical Properties. ACS 

Omega 7, 39136–39146. https://doi.org/10.1021/acsomega.2c04989 

Medina, H., Beechook, A., Saul, J., Porter, S., Aleksandrova, S., Benjamin, S., 2015. Open 

source Computational Fluid Dynamics using OpenFOAM. 

https://doi.org/10.13140/RG.2.1.1930.9843 

Menter, F., Kuntz, M., Langtry, R., 2003. Ten years of industrial experience with the SST 

turbulence model. Heat and Mass Transfer 4. 

Menter, F.R., 1994. Two-equation eddy-viscosity turbulence models for engineering 

applications. AIAA Journal 32, 1598–1605. https://doi.org/10.2514/3.12149 

Mesh Quality [WWW Document], n.d. . SimScale. URL 

https://www.simscale.com/docs/simulation-setup/meshing/mesh-quality/ (accessed 

4.20.24). 

Mohammaed A. Al-Yaari, Basel F. Abu-Sharkh, 2015. CFD Prediction of Stratified Oil-

Water Flow in a Horizontal Pipe. yumpu.com 01. 

Multi-phase flow simulations in OpenFOAM [WWW Document], n.d. URL 

https://www.cfdyna.com/Home/of_multiPhase.html (accessed 2.21.24). 

Newton, C.H., Behnia, M., 2000. Numerical calculation of turbulent stratified gas–liquid pipe 

flows. International Journal of Multiphase Flow 26, 327–337. 

https://doi.org/10.1016/S0301-9322(99)00010-5 

Niotis, A., Vassalos, D., Boulougouris, E., Cichowicz, J., Atzampos, G., Paterson, D., 2019. 

Verification of damage ship survivability with computational fluid dynamics. 

Panagiota Angeli,  object, 1996. Liquid-liquid dispersed flows in horizontal pipes. University 

of London. 

Passoni, S., Carraretto, I.M., Mereu, R., Colombo, L.P.M., 2023. Two-phase stratified flow in 

horizontal pipes: A CFD study to improve prediction of pressure gradient and void 

fraction. Chemical Engineering Research and Design 191, 38–49. 

https://doi.org/10.1016/j.cherd.2023.01.016 

Pouraria, H., Park, K.-H., Seo, Y., 2021. Numerical Modelling of Dispersed Water in Oil 

Flows Using Eulerian-Eulerian Approach and Population Balance Model. Processes 

9, 1345. https://doi.org/10.3390/pr9081345 

Pouraria, H., Seo, J.K., Paik, J.K., 2016. Numerical modelling of two-phase oil–water flow 

patterns in a subsea pipeline. Ocean Engineering 115, 135–148. 

https://doi.org/10.1016/j.oceaneng.2016.02.007 



 

 

  References 

85 

Rahman, M., Siikonen, T., 2005. Low Reynolds number k-epsilon model for near-wall flow. 

International Journal for Numerical Methods in Fluids 47, 325–338. 

https://doi.org/10.1002/fld.809 

Rodriguez, O.M.H., Oliemans, R.V.A., 2006. Experimental study on oil–water flow in 

horizontal and slightly inclined pipes. International Journal of Multiphase Flow 32, 

323–343. https://doi.org/10.1016/j.ijmultiphaseflow.2005.11.001 

Santos, D.S., Faia, P.M., Garcia, F.A.P., Rasteiro, M.G., 2019. Oil/water stratified flow in a 

horizontal pipe: Simulated and experimental studies using EIT. Journal of Petroleum 

Science and Engineering 174, 1179–1193. 

https://doi.org/10.1016/j.petrol.2018.12.002 

Setaih, K., Mohammed, M.A., Hamza, N., S., D., Townshend, T., 2010. Crafting and 

Assessing Urban Environments Using Computational Fluid Dynamics. Presented at 

the ASCAAD, p. 8. 

Shi, J., Gourma, M., Yeung, H., 2017. CFD simulation of horizontal oil-water flow with 

matched density and medium viscosity ratio in different flow regimes. Journal of 

Petroleum Science and Engineering 151, 373–383. 

https://doi.org/10.1016/j.petrol.2017.01.022 

Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J., 1995. A new k-ϵ eddy viscosity 

model for high reynolds number turbulent flows. Computers & Fluids 24, 227–238. 

https://doi.org/10.1016/0045-7930(94)00032-T 

Shuard, A.M., Mahmud, H.B., King, A.J., 2016. Comparison of Two-Phase Pipe Flow in 

OpenFOAM with a Mechanistic Model. IOP Conf. Ser.: Mater. Sci. Eng. 121, 

012018. https://doi.org/10.1088/1757-899X/121/1/012018 

Song, X., Li, D., Sun, X., Mou, X., Cheng, Y.F., Yang, Y., 2021. Numerical modeling of the 

critical pipeline inclination for the elimination of the water accumulation on the pipe 

floor in oil-water fluid flow. Petroleum 7, 209–221. 

https://doi.org/10.1016/j.petlm.2020.07.001 

Speziale, 1990. Analytical Methods for the Development of Reynolds Stress Closures in 

Turbulence. INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND 

ENGINEERING HAMPTON 60. 

Sun, R., Xiao, H., 2015. Diffusion-based coarse graining in hybrid continuum–discrete 

solvers: Applications in CFD–DEM. International Journal of Multiphase Flow 72, 

233–247. https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.014 

Sunday, N., Settar, A., Chetehouna, K., Gascoin, N., 2023. Numerical modeling and 

parametric sensitivity analysis of heat transfer and two-phase oil and water flow 

characteristics in horizontal and inclined flowlines using OpenFOAM. Petroleum 

Science 20, 1183–1199. https://doi.org/10.1016/j.petsci.2022.10.008 

Tawekal, J.R., 2015. CFD simulation of the flow over a 2-dimensional pipe and vortex 

induced vibration of the pipe with 1 degree of freedom (Master thesis). University of 

Stavanger, Norway. 

Trallero, J.L., Sarica, C., Brill, J.P., 1997. A Study of Oil/Water Flow Patterns in Horizontal 

Pipes. SPE Production & Facilities 12, 165–172. https://doi.org/10.2118/36609-PA 



 

 

  References 

86 

Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., 

Nas, S., Jan, Y.-J., 2001. A Front-Tracking Method for the Computations of 

Multiphase Flow. Journal of Computational Physics 169, 708–759. 

https://doi.org/10.1006/jcph.2001.6726 

Urdahl, O., Fredheim, A.O., Løken, K.-P., 1997. Viscosity measurements of water-in-crude-

oil emulsions under flowing conditions: A theoretical and practical approach. Colloids 

and Surfaces A: Physicochemical and Engineering Aspects, Frontiers in Colloid 

Chemistry an International Festschrift to Professor Stig E. Friberg 123–124, 623–634. 

https://doi.org/10.1016/S0927-7757(96)03801-0 

V. Hernandez-Perez, M. Abdulkadir, B.J Azzopardi, 2011. Grid Generation Issues in the 

CFD Modelling of Two-Phase Flow in a Pipe. The Journal of Computational 

Multiphase Flows 3, 14. 

Vindenes, Eikeseth, Ramachandran, 2021. Review and computational modelling of oil-water 

flow in pipes (Project work No. MP-01-21). University of South-Eastern Norway. 

W. Amaranath Sena Kumara, 2010. An Experimental Study of Oil-Water Flow in Pipes. 

University of South-Eastern Norway, Porsgrunn. 

Walvekar, R.G., Choong, T.S.Y., Hussain, S.A., Khalid, M., Chuah, T.G., 2009. Numerical 

study of dispersed oil–water turbulent flow in horizontal tube. Journal of Petroleum 

Science and Engineering 65, 123–128. https://doi.org/10.1016/j.petrol.2008.12.019 

What is a good Mesh?, 2014. 

Xu, X.-X., 2007. Study on oil–water two-phase flow in horizontal pipelines. Journal of 

Petroleum Science and Engineering 59, 43–58. 

https://doi.org/10.1016/j.petrol.2007.03.002 

Yakhot, Orszag, 1986. Renormalization Group Analysis of Turbulence. J Sci Comput 1, 3–

51. https://doi.org/10.1007/BF01061452 

Yang, J., Li, P., Zhang, X., Lu, X., Li, Q., Mi, L., 2021. Experimental investigation of oil–

water flow in the horizontal and vertical sections of a continuous transportation pipe. 

Sci Rep 11, 20092. https://doi.org/10.1038/s41598-021-99660-8 

Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B., 2007. Discrete particle simulation of particulate 

systems: Theoretical developments. Chemical Engineering Science, Frontier of 

Chemical Engineering - Multi-scale Bridge between Reductionism and Holism 62, 

3378–3396. https://doi.org/10.1016/j.ces.2006.12.089 

 



 

 

  Appendices 

87 

Appendices 
Appendix A – Project topic description 

 

Figure A.1: Task description 
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Appendix B – Mesh quality 

 

Figure B.1 – Mesh stats. 

 

 

Figure B.2 – Geometry topology. 
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Appendix C: ‘0’ folder for – 𝑼𝑴 = 𝟎. 𝟓𝟎, 𝝀𝒘 = 𝟎. 𝟐𝟓 – SST k-ω  

 

Alpha.orig 

/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      alpha.oil; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

dimensions      [0 0 0 0 0 0 0]; 

 

internalField   uniform 0; 

 

boundaryField 

{ 

    inlet_oil 

    { 

        type            fixedValue; 

        value           uniform 0; 

    } 

    inlet_water 

    { 

        type            fixedValue; 

        value           uniform 1; 

    } 

 

    Wall 

    { 

        type            zeroGradient; 

    } 

     

    outlet 

    { 

        type            zeroGradient; 

    } 

 

    defaultFaces 

    { 

        type            empty; 
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    } 

} 

 

Epsilon 
 
// 

********************************************************************

***** // 

 

/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0";  

    object      epsilon;  

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

dimensions      [0 2 -3 0 0 0 0]; 

 

internalField   uniform 0.007; 

 

boundaryField 

{ 

    inlet_oil 

    { 

        type            fixedValue; 

        value           uniform 0.0001; 

    } 

     

    inlet_water 

    { 

        type            fixedValue; 

        value           uniform 0.0001; 

    } 

 

    Wall 

    { 

        type            epsilonWallFunction; 

        value           uniform 0.000015; 

    } 

     



 

 

  Appendices 

91 

    outlet 

    { 

        type            zeroGradient; 

 

    } 

     

    defaultFaces 

    { 

        type            empty; 

 

    } 

} 

 

// 

********************************************************************

***** // 

K 

/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    object      k; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

dimensions      [0 2 -2 0 0 0 0]; 

 

internalField   uniform 0.003; 

 

boundaryField 

{ 

    inlet_oil 

    { 

        type            fixedValue; 

        value           uniform 0.0017; 

    } 

     

    inlet_water 

    { 

        type            fixedValue; 

        value           uniform 0.00022; 

    } 
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    Wall 

    { 

        type            kqRWallFunction; 

        value           $internalField; 

    } 

     

    outlet 

    { 

        type            zeroGradient; 

    } 

     

    defaultFaces 

    { 

        type            empty; 

    } 

} 

 

// 

********************************************************************

***** // 

 

Nut 

/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      nut; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

dimensions      [0 2 -1 0 0 0 0]; 

 

internalField   uniform 0; 

 

boundaryField 

{ 

    Wall 

    { 

        type            nutkWallFunction; 

        value           uniform 0; 
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    } 

     

    ".*" 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

     

    defaultFaces 

    { 

        type            empty; 

    } 

} 

 

 

// 

********************************************************************

***** // 

Omega 

/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    format      ascii; 

    class       volScalarField; 

    object      omega.water; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

dimensions      [0 0 -1 0 0 0 0]; 

 

internalField   uniform 0.9; 

 

boundaryField 

{ 

    inlet_oil 

    { 

       type            fixedValue; 

       value           uniform 1.3472; 

    } 

     

    inlet_water 

    { 

       type            fixedValue; 

       value           uniform 0.5136; 
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    } 

    outlet 

    { 

        type            zeroGradient; 

    } 

 

    wall 

    { 

        type            omegaWallFunction; 

        value           uniform 1; 

    } 

     

    defaultFaces 

    { 

        type            empty; 

 

    } 

} 

 

// 

********************************************************************

***** // 

 

P_rgh 

/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    object      p_rgh; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

dimensions      [1 -1 -2 0 0 0 0]; 

 

internalField   uniform 100000; 

 

boundaryField 

{ 

    inlet_oil 

    { 

        type            fixedFluxPressure; 

        gradient        uniform 0; 
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        value           uniform 100000; 

 

    } 

     

    inlet_water 

    { 

        type            fixedFluxPressure; 

        gradient        uniform 0; 

        value           uniform 100000; 

 

    } 

 

    Wall 

    { 

        type            fixedFluxPressure; 

        gradient        uniform 0; 

        value           uniform 100000; 

    } 

 

    outlet 

    { 

        type            fixedValue; 

        value           uniform 100000; 

    } 

 

    defaultFaces 

    { 

        type            empty; 

    } 

} 

 

// 

********************************************************************

***** // 

 

U 

/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volVectorField; 

    object      U; 

} 
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// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

dimensions      [0 1 -1 0 0 0 0]; 

 

internalField   uniform (1 0 0); 

 

boundaryField 

{ 

    inlet_oil 

    { 

        type            fixedValue; 

        value           uniform (0.75 0 0); 

 

    } 

        inlet_water 

    { 

        type            fixedValue; 

        value           uniform (0.25 0 0); 

 

    } 

 

    Wall 

    { 

        type            noSlip; 

    } 

     

    outlet 

    { 

        type            zeroGradient; 

    } 

 

    defaultFaces 

    { 

        type            empty; 

    } 

} 

 

// 

********************************************************************

***** // 
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Appendix D: ‘Constant’ folder – 𝑼𝑴 = 𝟎. 𝟓𝟎, 𝝀𝒘 = 𝟎. 𝟐𝟓 – SST k-ω 

g 

/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       uniformDimensionedVectorField; 

    location    "constant"; 

    object      g; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

dimensions      [0 1 -2 0 0 0 0]; 

value           (0 -9.81 0); 

 

// 

********************************************************************

***** // 

 

momentumTransport 
/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "constant"; 

    object      momentumTransport; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

simulationType  RAS; 
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RAS 

{ 

    model           kOmegaSST; 

 

    turbulence      on; 

 

    printCoeffs     on; 

} 

 

 

// 

********************************************************************

***** // 

 

transportProperties 

/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "constant"; 

    object      transportProperties; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

phases (water oil); 

 

water 

{ 

    transportModel  Newtonian; 

    nu              1e-06; 

    rho             996; 

} 

 

oil 

{ 

    transportModel  Newtonian; 

    nu              1.64e-06; 

    rho             790; 

} 

 

sigma           0.043; 
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// 

********************************************************************

***** // 
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Appendix E: ‘system’ folder - – 𝑼𝑴 = 𝟎. 𝟓𝟎, 𝝀𝒘 = 𝟎. 𝟐𝟓 – SST k-ω 

controlDict 

/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      controlDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

application     interFoam; 

 

startFrom       startTime; 

 

startTime       0; 

 

stopAt          endTime; 

 

endTime         60; 

 

deltaT          0.001; 

 

writeControl    adjustableRunTime; 

 

writeInterval   5; 

 

purgeWrite      0; 

 

writeFormat     ascii; 

 

writePrecision  6; 

 

writeCompression off; 

 

timeFormat      general; 

 

timePrecision   6; 

 

runTimeModifiable yes; 
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adjustTimeStep  yes; 

 

maxCo           0.5; 

maxAlphaCo      0.5; 

maxDeltaT       0.1; 

 

functions 

{ 

    #includeFunc fieldAverage(U, p, prime2Mean = yes) 

} 

 

// 

********************************************************************

***** // 

/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      decomposeParDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

numberOfSubdomains 6; 

 

method          simple; 

 

simpleCoeffs 

{ 

    n               (6 1 1); 

    delta           0.001; 

} 

 

hierarchicalCoeffs 

{ 

    n               (2 2 2); 

    delta           0.001; 

    order           xyz; 

} 

 

manualCoeffs 
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{ 

    dataFile        ""; 

} 

 

distributed     no; 

 

roots           ( ); 

 

 

// 

********************************************************************

***** // 

fvSchemes 

/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      fvSchemes; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

ddtSchemes 

{ 

    default         Euler; 

} 

 

gradSchemes 

{ 

    default         Gauss linear; 

} 

 

divSchemes 

{ 

    default             none; 

    div(rho*phi,U)  Gauss linearUpwind grad(U);  

    div(phi,alpha)  Gauss PLIC interfaceCompression vanLeer 1;  

//    div(phirb,alpha) Gauss interfaceCompression;  

    div(phi,k)      Gauss upwind;  

    div(phi,omega) Gauss upwind;  

//    div(phi,R)      Gauss upwind;  

//    div(R)          Gauss linear;  
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//    div(phi,nuTilda) Gauss upwind;  

//    div((nuEff*dev(T(grad(U))))) Gauss linear; 

    div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;  

    div(rhoPhi,U)       Gauss linearUpwind grad(U); 

} 

 

laplacianSchemes 

{ 

    default         Gauss linear corrected; 

} 

 

interpolationSchemes 

{ 

    default         linear; 

} 

 

snGradSchemes 

{ 

    default         corrected; 

} 

 

wallDist 

{ 

    method meshWave; 

} 

 

 

// 

********************************************************************

***** // 

 

fvSolution 
 

/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      fvSolution; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 
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solvers  

{  

    "alpha.water.*" 

    { 

        nAlphaCorr      1; 

        nAlphaSubCycles 1; 

 cAlpha          2;  

        MULESCorr       yes; 

        nLimiterIter    3; 

 

        solver          smoothSolver; 

        smoother        symGaussSeidel; 

        tolerance       1e-8; 

        relTol          0; 

    } 

 

    "pcorr.*" 

    { 

        solver          PCG; 

        preconditioner 

        { 

            preconditioner  GAMG; 

            tolerance       1e-5; 

            relTol          0; 

            smoother        GaussSeidel; 

        } 

        tolerance       1e-5; 

        relTol          0; 

        maxIter         50; 

    } 

     

    p_rgh 

    { 

        solver           GAMG; 

        tolerance        5e-9; 

        relTol           0.01; 

        smoother         GaussSeidel; 

        maxIter          50; 

    }; 

 

    p_rghFinal 

    { 

        $p_rgh; 

        tolerance       5e-9; 

        relTol          0; 

    } 

  

    "(U|k|omega)"  

    {  

        solver          smoothSolver; 

        smoother        symGaussSeidel; 

        tolerance       1e-6; 

        relTol          0; 

        nSweeps         1; 
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    }  

  

    "(U|k|omega)Final"  

    {  

        solver          smoothSolver; 

        smoother        symGaussSeidel; 

        tolerance       1e-08;  

        relTol          0;  

    }  

}  

 

 

PIMPLE 

{ 

    momentumPredictor no; 

    nCorrectors     2; 

    nNonOrthogonalCorrectors 0; 

} 

 

relaxationFactors 

{ 

    equations 

    { 

        ".*" 1; 

    } 

} 

  

  

// 

********************************************************************

** // 

 

setFieldsDict 

/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      setFieldsDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 
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defaultFieldValues 

( 

    volScalarFieldValue alpha.water 0 

); 

 

regions 

( 

    boxToCell 

    { 

        box (-10 -20 -10) (50 20 2.2); 

        fieldValues 

        ( 

            volScalarFieldValue alpha.water 1 

        ); 

    } 

); 

 

 

// 

********************************************************************

***** // 

decomposeParDict 

/*--------------------------------*- C++ -*-------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  9 

     \\/     M anipulation  | 

\*------------------------------------------------------------------

---------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      decomposeParDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

numberOfSubdomains 6; 

 

method          simple; 

 

simpleCoeffs 

{ 

    n               (6 1 1); 

    delta           0.001; 

} 
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hierarchicalCoeffs 

{ 

    n               (2 2 2); 

    delta           0.001; 

    order           xyz; 

} 

 

manualCoeffs 

{ 

    dataFile        ""; 

} 

 

distributed     no; 

 

roots           ( ); 

 

 

// 

********************************************************************

***** // 
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Appendix F: Customized k-ε turbulence model 
/*------------------------------------------------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Copyright (C) 2011-2021 OpenFOAM 

Foundation 

     \\/     M anipulation  | 

--------------------------------------------------------------------

----------- 

License 

This file is part of OpenFOAM. 

OpenFOAM is free software: you can redistribute it and/or modify it 

under the terms of the GNU General Public License as published by 

the Free Software Foundation, either version 3 of the License, or 

at your option) any later version. 

 

OpenFOAM is distributed in the hope that it will be useful, but 

WITHOUT ANY WARRANTY; without even the implied warranty of 

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 

General Public License for more details. You should have received a 

copy of the GNU General Public License along with OpenFOAM.  If not, 

see <http://www.gnu.org/licenses/>. 

 

\*------------------------------------------------------------------

---------*/ 

 

#include "mykEpsilon.H" 

#include "fvModels.H" 

#include "fvConstraints.H" 

#include "bound.H" 

#include "fvCFD.H" 

#include "twoPhaseMixture.H" 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

namespace Foam 

{ 

namespace RASModels 

{ 

 

// * * * * * * * * * * * * Protected Member Functions  * * * * * * * 

* * * * // 

 

template<class BasicMomentumTransportModel> 

void mykEpsilon<BasicMomentumTransportModel>::correctNut() 

{ 

 

    if (!this->turbulence_) 

    { 

        return; 
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    } 

    // Access mesh object 

    const fvMesh& mesh = this->mesh_; 

 

    // Define threshold for interface detection (e.g., alpha = 0.5) 

    const scalar interfaceThreshold = 0.5; 

 

    // Iterate over cells 

    forAll(mesh.cells(), cellI) 

    { 

        // Check if the volume fraction at the current cell is close 

to the interface 

        if (fabs(this->alpha_[cellI] - interfaceThreshold) < 0.1) // 

Adjust tolerance as needed 

        { 

            // Set turbulent kinetic energy and dissipation rate to 

0.0001 

            this->k_[cellI] = 0.0001; 

            this->epsilon_[cellI] = 0.0001; 

        } 

    } 

 

    // Correct boundary conditions for nut outside the loop 

    this->nut_ = Cmu_ * sqr(this->k_) / this->epsilon_; 

    this->nut_.correctBoundaryConditions(); 

    fvConstraints::New(this->mesh_).constrain(this->nut_); 

}     

 

 

template<class BasicMomentumTransportModel> 

tmp<fvScalarMatrix> 

mykEpsilon<BasicMomentumTransportModel>::kSource() const 

{ 

    return tmp<fvScalarMatrix> 

    ( 

        new fvScalarMatrix 

        ( 

            k_, 

            dimVolume*this->rho_.dimensions()*k_.dimensions() 

            /dimTime 

        ) 

    ); 

} 

 

 

template<class BasicMomentumTransportModel> 

tmp<fvScalarMatrix> 

mykEpsilon<BasicMomentumTransportModel>::epsilonSource() const 

{ 

    return tmp<fvScalarMatrix> 

    ( 

        new fvScalarMatrix 

        ( 

            epsilon_, 
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            dimVolume*this->rho_.dimensions()*epsilon_.dimensions() 

            /dimTime 

        ) 

    ); 

} 

 

 

// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * 

* * * * // 

 

template<class BasicMomentumTransportModel> 

mykEpsilon<BasicMomentumTransportModel>::mykEpsilon 

( 

    const alphaField& alpha, 

    const rhoField& rho, 

    const volVectorField& U, 

    const surfaceScalarField& alphaRhoPhi, 

    const surfaceScalarField& phi, 

    const transportModel& transport, 

    const word& type 

) 

: 

    eddyViscosity<RASModel<BasicMomentumTransportModel>> 

    ( 

        type, 

        alpha, 

        rho, 

        U, 

        alphaRhoPhi, 

        phi, 

        transport 

    ), 

 

    Cmu_ 

    ( 

        dimensioned<scalar>::lookupOrAddToDict 

        ( 

            "Cmu", 

            this->coeffDict_, 

            0.09 

        ) 

    ), 

    C1_ 

    ( 

        dimensioned<scalar>::lookupOrAddToDict 

        ( 

            "C1", 

            this->coeffDict_, 

            1.44 

        ) 

    ), 

    C2_ 

    ( 

        dimensioned<scalar>::lookupOrAddToDict 
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        ( 

            "C2", 

            this->coeffDict_, 

            1.92 

        ) 

    ), 

    C3_ 

    ( 

        dimensioned<scalar>::lookupOrAddToDict 

        ( 

            "C3", 

            this->coeffDict_, 

            0 

        ) 

    ), 

    sigmak_ 

    ( 

        dimensioned<scalar>::lookupOrAddToDict 

        ( 

            "sigmak", 

            this->coeffDict_, 

            1.0 

        ) 

    ), 

    sigmaEps_ 

    ( 

        dimensioned<scalar>::lookupOrAddToDict 

        ( 

            "sigmaEps", 

            this->coeffDict_, 

            1.3 

        ) 

    ), 

 

    k_ 

    ( 

        IOobject 

        ( 

            IOobject::groupName("k", alphaRhoPhi.group()), 

            this->runTime_.timeName(), 

            this->mesh_, 

            IOobject::MUST_READ, 

            IOobject::AUTO_WRITE 

        ), 

        this->mesh_ 

    ), 

    epsilon_ 

    ( 

        IOobject 

        ( 

            IOobject::groupName("epsilon", alphaRhoPhi.group()), 

            this->runTime_.timeName(), 

            this->mesh_, 

            IOobject::MUST_READ, 
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            IOobject::AUTO_WRITE 

        ), 

        this->mesh_ 

    ) 

{ 

    bound(k_, this->kMin_); 

    bound(epsilon_, this->epsilonMin_); 

 

    if (type == typeName) 

    { 

        this->printCoeffs(type); 

    } 

} 

 

 

// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * 

* * * * // 

 

template<class BasicMomentumTransportModel> 

bool mykEpsilon<BasicMomentumTransportModel>::read() 

{ 

    if 

(eddyViscosity<RASModel<BasicMomentumTransportModel>>::read()) 

    { 

        Cmu_.readIfPresent(this->coeffDict()); 

        C1_.readIfPresent(this->coeffDict()); 

        C2_.readIfPresent(this->coeffDict()); 

        C3_.readIfPresent(this->coeffDict()); 

        sigmak_.readIfPresent(this->coeffDict()); 

        sigmaEps_.readIfPresent(this->coeffDict()); 

 

        return true; 

    } 

    else 

    { 

        return false; 

    } 

} 

 

 

template<class BasicMomentumTransportModel> 

void mykEpsilon<BasicMomentumTransportModel>::correct() 

{ 

    if (!this->turbulence_) 

    { 

        return; 

    } 

 

    // Local references 

    const alphaField& alpha = this->alpha_; 

    const rhoField& rho = this->rho_; 

    const surfaceScalarField& alphaRhoPhi = this->alphaRhoPhi_; 

    const volVectorField& U = this->U_; 

    volScalarField& nut = this->nut_; 
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    const Foam::fvModels& fvModels(Foam::fvModels::New(this-

>mesh_)); 

    const Foam::fvConstraints& fvConstraints 

    ( 

        Foam::fvConstraints::New(this->mesh_) 

    ); 

 

    eddyViscosity<RASModel<BasicMomentumTransportModel>>::correct(); 

 

    const scalar interfaceThreshold = 0.5; // Interface detection 

threshold 

 

    forAll(this->mesh_.cells(), cellI) 

    { 

        if (fabs(this->alpha_[cellI] - interfaceThreshold) < 0.1)  

        { 

            this->nut_[cellI] = 0.0001; // Set eddy viscosity near 

interfaces 

        } 

    } 

 

    this->nut_.correctBoundaryConditions(); 

 

    volScalarField::Internal divU 

    ( 

        fvc::div(fvc::absolute(this->phi(), U))() 

    ); 

 

    tmp<volTensorField> tgradU = fvc::grad(U); 

    volScalarField::Internal G 

    ( 

        this->GName(), 

        nut()*(dev(twoSymm(tgradU().v())) && tgradU().v()) 

    ); 

    tgradU.clear(); 

 

    // Update epsilon and G at the wall 

    epsilon_.boundaryFieldRef().updateCoeffs(); 

 

    // Dissipation equation 

    tmp<fvScalarMatrix> epsEqn 

    ( 

        fvm::ddt(alpha, rho, epsilon_) 

      + fvm::div(alphaRhoPhi, epsilon_) 

      - fvm::laplacian(alpha*rho*DepsilonEff(), epsilon_) 

     == 

        C1_*alpha()*rho()*G*epsilon_()/k_() 

      - fvm::SuSp(((2.0/3.0)*C1_ - C3_)*alpha()*rho()*divU, 

epsilon_) 

      - fvm::Sp(C2_*alpha()*rho()*epsilon_()/k_(), epsilon_) 

      + epsilonSource() 

      + fvModels.source(alpha, rho, epsilon_) 

    ); 
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    epsEqn.ref().relax(); 

    fvConstraints.constrain(epsEqn.ref()); 

    epsEqn.ref().boundaryManipulate(epsilon_.boundaryFieldRef()); 

    solve(epsEqn); 

    fvConstraints.constrain(epsilon_); 

    bound(epsilon_, this->epsilonMin_); 

 

    // Turbulent kinetic energy equation 

    tmp<fvScalarMatrix> kEqn 

    ( 

        fvm::ddt(alpha, rho, k_) 

      + fvm::div(alphaRhoPhi, k_) 

      - fvm::laplacian(alpha*rho*DkEff(), k_) 

     == 

        alpha()*rho()*G 

      - fvm::SuSp((2.0/3.0)*alpha()*rho()*divU, k_) 

      - fvm::Sp(alpha()*rho()*epsilon_()/k_(), k_) 

      + kSource() 

      + fvModels.source(alpha, rho, k_) 

    ); 

 

    kEqn.ref().relax(); 

    fvConstraints.constrain(kEqn.ref()); 

    solve(kEqn); 

    fvConstraints.constrain(k_); 

    bound(k_, this->kMin_); 

 

    correctNut(); 

} 

 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

} // End namespace RASModels 

} // End namespace Foam 

 

// 

********************************************************************

***** // 
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Appendix G: Turbulence damping scheme. 

C file 

/*------------------------------------------------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Copyright (C) 2015-2018 OpenFOAM 

Foundation 

     \\/     M anipulation  | 

--------------------------------------------------------------------

----------- 

License 

This file is part of OpenFOAM. OpenFOAM is free software: you can 

redistribute it and/or modify it under the terms of the GNU General 

Public License as published by the Free Software Foundation, either 

version 3 of the License, or (at your option) any later version. 

OpenFOAM is distributed in the hope that it will be useful, but 

WITHOUT ANY WARRANTY, without even the implied warranty of 

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 

General Public License for more details. You should have received a 

copy of the GNU General Public License along with OpenFOAM.  If not, 

see <http://www.gnu.org/licenses/>. 

 

\*------------------------------------------------------------------

---------*/ 

 

#include "turbulenceDamping.H" 

#include "fvMatrices.H" 

#include "addToRunTimeSelectionTable.H" 

 

// * * * * * * * * * * * * * Static Member Functions * * * * * * * * 

* * * * // 

 

namespace Foam 

{ 

namespace fv 

{ 

    defineTypeNameAndDebug(turbulenceDamping, 0); 

 

    addToRunTimeSelectionTable 

    ( 

        option, 

        turbulenceDamping, 

        dictionary 

    ); 

} 

} 

 

// * * * * * * * * * * * * * Private Member Functions  * * * * * * * 

* * * * // 
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volScalarField::Internal 

Foam::fv::turbulenceDamping::calculateSource 

( 

    fvMatrix<scalar>& eqn, 

    const label fieldi 

) 

{ 

    const volScalarField& Alpha = 

        mesh().lookupObject<volScalarField>(primaryPhaseName_); 

 

    const volVectorField grad_Alpha = fvc::grad(Alpha); 

    const volScalarField grad_Alpha_mag = mag(grad_Alpha); 

 

    // calculate interfacial area density 

    volScalarField::Internal A1 = 2.0*Alpha*grad_Alpha_mag; 

    volScalarField::Internal A2 = 2.0*(1.0-Alpha)*grad_Alpha_mag; 

 

 

    // calculate the inverse of the length scale 

    const volScalarField::Internal& V = mesh_.V(); 

 

    volScalarField oneByDn 

    ( 

        IOobject 

        ( 

            "oneByDn", 

            mesh_.time().timeName(), 

            mesh_, 

            IOobject::NO_READ, 

            IOobject::NO_WRITE 

        ), 

        mesh_, 

        dimensionedScalar("oneByDn", dimless/dimLength, 0.0) 

    ); 

 

    if (lengthScale_ == "FA") 

    { 

        const labelUList& owner = mesh_.owner(); 

        const labelUList& neighbour = mesh_.neighbour(); 

 

        const surfaceVectorField& sf = mesh_.Sf(); 

 

        forAll(owner, facei) 

        { 

            oneByDn[owner[facei]] += 

                mag(sf[facei] & grad_Alpha[owner[facei]]); 

 

            oneByDn[neighbour[facei]] += 

                mag(sf[facei] & grad_Alpha[neighbour[facei]]); 

        } 

 

        forAll(mesh_.boundary(), patchi) 

        { 

            const labelUList& pFaceCells = 
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                mesh_.boundary()[patchi].faceCells(); 

 

            const fvsPatchField<vector>& psf = 

sf.boundaryField()[patchi]; 

 

            forAll(mesh_.boundary()[patchi], facei) 

            { 

                oneByDn[pFaceCells[facei]] += 

                    mag(psf[facei] & grad_Alpha[pFaceCells[facei]]); 

            } 

        } 

 

       forAll(oneByDn, celli) 

       { 

           if (grad_Alpha_mag[celli] > SMALL) 

           { 

               oneByDn[celli] *= 0.5/V[celli]/grad_Alpha_mag[celli]; 

           } 

           else 

           { 

               oneByDn[celli] = 0; 

           } 

       } 

 

    } 

 

    else if (lengthScale_ == "cubeRoot") 

    { 

        oneByDn.ref() = pow(V,-1.0/3.0); 

    } 

 

 

    // calculate separate damping terms 

    volScalarField::Internal coeffs = 

36.0*sqr(B_)/beta_*pow(oneByDn, 3.0); 

    volScalarField::Internal source1 = coeffs*A1*rho1_*sqr(nu1_); 

    volScalarField::Internal source2 = coeffs*A2*rho2_*sqr(nu2_); 

 

    // calculate the total damping term 

    dimensionedScalar heavy("heavy", dimless, 0.0); 

 

    volScalarField::Internal source = 0.0 * source1; 

 

    if (dampingTreatment_ == "heavyNegative") 

    { 

        if (rho1_ > rho2_) 

        { 

            heavy = - rho2_/rho1_*sqr(nu2_)/sqr(nu1_); 

 

            source = source1*heavy + source2; 

        } 

 

        else 

        { 
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            heavy = - rho1_/rho2_*sqr(nu1_)/sqr(nu2_); 

 

            source = source1 + source2*heavy; 

        }    

    } 

 

    else if (dampingTreatment_ == "heavyZero") 

    { 

        if (rho1_ > rho2_) 

        { 

            source = source2; 

        } 

 

        else 

        { 

            source = source1; 

        }    

    } 

 

    else if (dampingTreatment_ == "symmetric") 

    { 

        source = sign(B_)*(source1 + source2);    

    } 

 

    // return source term for omega equation 

    if (fieldNames_[0] == "omega") 

    { 

        return source; 

    } 

    // return source term for epsilon equation 

    else 

    { 

        const volScalarField& k = 

mesh().lookupObject<volScalarField>("k"); 

 

        return C2_*sqr(Cmu_)/beta_*k.internalField()*source; 

    } 

} 

 

 

 

// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * 

* * * * // 

 

Foam::fv::turbulenceDamping::turbulenceDamping 

( 

    const word& sourceName, 

    const word& modelType, 

    const dictionary& dict, 

    const fvMesh& mesh 

) 

: 

    option(sourceName, modelType, dict, mesh), 

    B_(readScalar(coeffs_.lookup("B"))), 
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    C2_(coeffs_.lookupOrDefault<scalar>("C2", 1.92)), 

    beta_(coeffs_.lookupOrDefault<scalar>("beta", 0.075)), 

    Cmu_(coeffs_.lookupOrDefault<scalar>("Cmu", 0.09)), 

    lengthScale_(coeffs_.lookupOrDefault<word>("lengthScale", 

"FA")), 

    dampingTreatment_ 

    ( 

        coeffs_.lookupOrDefault<word>("dampingTreatment", 

"heavyNegative") 

    ), 

    explicitSourceTreatment_ 

    ( 

        coeffs_.lookupOrDefault<Switch>("explicitSourceTreatment", 

true) 

    ), 

    transportProperties 

    ( 

         mesh_.lookupObject<IOdictionary> 

        ( 

            "transportProperties" 

        ) 

    ), 

    phase1Name_(wordList(transportProperties.lookup("phases"))[0]), 

    phase2Name_(wordList(transportProperties.lookup("phases"))[1]), 

    primaryPhaseName_("alpha." + phase1Name_), 

    rho1_("rho", dimDensity, 

transportProperties.subDict(phase1Name_)), 

    nu1_("nu", dimViscosity, 

transportProperties.subDict(phase1Name_)), 

    rho2_("rho", dimDensity, 

transportProperties.subDict(phase2Name_)), 

    nu2_("nu", dimViscosity, 

transportProperties.subDict(phase2Name_)) 

{ 

    coeffs_.lookup("fields") >> fieldNames_; 

 

    if (fieldNames_.size() != 1) 

    { 

        FatalErrorInFunction 

            << "settings are:" << fieldNames_ << exit(FatalError); 

    } 

 

    // only omega or epsilon is allowed 

    if (fieldNames_[0] != "omega" && fieldNames_[0] != "epsilon") 

    { 

        FatalErrorInFunction 

            << "The field is set to" << fieldNames_  

            << ", it should be epsilon or omega!" << 

exit(FatalError); 

    } 

 

    // make sure the field name is consistent with the turbulence 

model 

    // the following line should fail if inconsistent 
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    const volScalarField& epsilonOrOmega = 

        mesh_.lookupObject<volScalarField>(fieldNames_[0]); 

 

    Info << "Turbulence damping works in " << epsilonOrOmega.name()  

         << " mode"<< endl; 

 

    applied_.setSize(fieldNames_.size(), false); 

 

    Info << "B is set to " << B_.value() << endl; 

 

    Info << "C2 is set to " << C2_.value() << endl; 

 

    Info << "beta is set to " << beta_.value() << endl; 

 

    Info << "Cmu is set to " << Cmu_.value() << endl; 

 

    Info << "lengthScale is set to " << lengthScale_ << endl; 

 

    Info << "dampingTreatment is set to " << dampingTreatment_ << 

endl; 

} 

 

 

// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * 

* * * * // 

 

void Foam::fv::turbulenceDamping::addSup 

( 

    fvMatrix<scalar>& eqn, 

    const label fieldi 

) 

{ 

    const volScalarField& Rho = 

mesh().lookupObject<volScalarField>("rho"); 

 

    const volScalarField& epsilonOrOmega = 

        mesh().lookupObject<volScalarField>(fieldNames_[fieldi]); 

 

    volScalarField::Internal source = calculateSource(eqn, 

fieldi)/epsilonOrOmega/Rho; 

 

    eqn += fvm::Sp(source, epsilonOrOmega); 

} 

 

 

void Foam::fv::turbulenceDamping::addSup 

( 

    const volScalarField& rho, 

    fvMatrix<scalar>& eqn, 

    const label fieldi 

) 

{ 

    const dimensionSet& dimEqn = eqn.dimensions(); 
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    const volScalarField& epsilonOrOmega = 

        mesh().lookupObject<volScalarField>(fieldNames_[fieldi]); 

 

    const dimensionSet& dimEorW = epsilonOrOmega.dimensions(); 

 

    volScalarField::Internal source = calculateSource(eqn, fieldi); 

 

    // divide density for strict incompressible turbulence models 

    if (dimEqn == dimEorW/dimTime*dimVolume) 

    { 

        const volScalarField& Rho = 

mesh().lookupObject<volScalarField>("rho"); 

 

        source /= Rho; 

    } 

 

    if (explicitSourceTreatment_) 

    { 

        eqn += source; 

    } 

    else 

    { 

        eqn += fvm::Sp(source/epsilonOrOmega, epsilonOrOmega); 

    } 

} 

 

bool Foam::fv::turbulenceDamping::read(const dictionary& dict) 

{ 

    NotImplemented; 

 

    return false; 

} 

 

// 

********************************************************************

***** // 

 

H file 

/*------------------------------------------------------------------

---------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Copyright (C) 2015-2019 OpenFOAM 

Foundation 

     \\/     M anipulation  | 

--------------------------------------------------------------------

----------- 

License 

This file is part of OpenFOAM. OpenFOAM is free software: you can 

redistribute it and/or modify it under the terms of the GNU General 

Public License as published by the Free Software Foundation, either 

version 3 of the License, or (at your option) any later version. 
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OpenFOAM is distributed in the hope that it will be useful, but 

WITHOUT ANY WARRANTY, without even the implied warranty of 

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 

General Public License for more details. You should have received a 

copy of the GNU General Public License along with OpenFOAM.  If not, 

see <http://www.gnu.org/licenses/>. 

 

Class 

    Foam::fv::turbulenceDamping 

 

Description 

Calculates and applies the interficial turbulence damping term to 

the omega or epsilon equation. Therefore, this fvOptions can only 

handle omega- or epsilon-based RANS models. In addition, this 

implementation only applies to multiphase flows where the flow is 

treated as a (VOF mixture in turbulence modelling. Also, each phase 

should have constant properties. For backward compatibility, the 

current implementation supports turbulence models with and without 

the variable-density effect being considered. 

 

Reference: 

\verbatim 

        Original model for omega-based equations: 

            Egorov, Y. (2004). 

            Validation of CFD codes with PTS-relevant test cases. 

            5th Euratom Framework Programme ECORA project, pp. 

91“116. 

 

        Extension to epsilon-based equations: 

            Frederix, E.M.A., Mathur, A., Dovizio, D., Geurts, B.J., 

            Komen, E.M.J. (2018). 

            Reynolds-averaged modeling of turbulence damping near a 

            large-scale interface in two-phase flow. 

            Nuclear Engineering and Design, 333, pp. 122â€“130. 

 

        The current implementation is based on: 

            Fan, W. & Anglart, H. (2019). 

            Progress in Phenomenological Modeling of Turbulence 

Damping 

            around a Two-Phase Interface. 

            Fluids, 4(3), 136. 

\endverbatim 

 

 

Usage 

Example usage: 

\verbatim 

fields             (omega);   // Name of the field: omega or epsilon 

 

B                  0;         // Damping coefficient, 0 means no 

damping 

 

lengthScale        FA;        // Optional parameter to specify the 

method 
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                                  // to calculate the length scale 

for damping. 

                                  // The alternative is "cubeRoot". 

 

dampingTreatment   heavyNegative; // Optional parameter to specify 

the  

                                      // treatment for the heavier 

phase. 

                                      // Alternatives are 

"heavyZero" and 

                                      // "symmetric". 

 

explicitSourceTreatment true; // Optional parameter to specify 

whether the 

                                  // source term should be treated 

explicitly. 

\endverbatim 

 

Author 

    Wenyuan Fan 

 

SourceFiles 

    turbulenceDamping.C 

 

\*------------------------------------------------------------------

---------*/ 

 

#ifndef turbulenceDamping_H 

#define turbulenceDamping_H 

#include "fvCFD.H" 

#include "fvOption.H" 

#include "uniformDimensionedFields.H" 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

namespace Foam 

{ 

namespace fv 

{ 

 

/*------------------------------------------------------------------

---------*\ 

               Class turbulenceDamping Declaration 

\*------------------------------------------------------------------

---------*/ 

 

class turbulenceDamping 

: 

    public option 

{ 

    // Private Data 

 

        dimensionedScalar B_; 
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        dimensionedScalar C2_; 

 

        dimensionedScalar beta_; 

 

        dimensionedScalar Cmu_; 

 

        word lengthScale_; 

 

        word dampingTreatment_; 

 

        Switch explicitSourceTreatment_; 

 

        const dictionary& transportProperties; 

 

        word phase1Name_; 

 

        word phase2Name_; 

 

        const word primaryPhaseName_; 

 

        dimensionedScalar rho1_; 

 

        dimensionedScalar nu1_; 

 

        dimensionedScalar rho2_; 

 

        dimensionedScalar nu2_; 

 

        //- Source term to omega or epsilon equation 

        volScalarField::Internal calculateSource 

        ( 

            fvMatrix<scalar>& eqn, 

            const label fieldi 

        ); 

 

public: 

 

    //- Runtime type information 

    TypeName("turbulenceDamping"); 

 

 

    // Constructors 

 

        //- Construct from explicit source name and mesh 

        turbulenceDamping 

        ( 

            const word& sourceName, 

            const word& modelType, 

            const dictionary& dict, 

            const fvMesh& mesh 

        ); 

 

        //- Disallow default bitwise copy construction 
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        turbulenceDamping(const turbulenceDamping&) = delete; 

 

 

    // Member Functions 

 

        // Evaluate 

 

            //- Add turbulence damping to strict incompressible 

equation 

            virtual void addSup 

            ( 

                fvMatrix<scalar>& eqn, 

                const label fieldi 

            ); 

 

            //- Add turbulence damping to full-form equation 

            virtual void addSup 

            ( 

                const volScalarField& rho, 

                fvMatrix<scalar>& eqn, 

                const label fieldi 

            ); 

 

 

        // IO 

 

            //- Read source dictionary 

            virtual bool read(const dictionary& dict); 

 

 

    // Member Operators 

 

        //- Disallow default bitwise assignment 

        void operator=(const turbulenceDamping&) = delete; 

}; 

 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

} // End namespace fv 

} // End namespace Foam 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

 

#endif 

 

// 

********************************************************************

***** // 
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Appendix H – Experimental data  

 

Figure H.1 – Experimental data for Um=0.50 m/s and λw=0.25. 

 

 

Figure H.2 - Experimental data for Um=0.50 m/s and λw=0.50. 
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Figure H.3 - Experimental data for Um=0.50 m/s and λw=0.75. 

 

Figure H.4 - Experimental data for Um=0.68 m/s and λw=0.25. 
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Figure H.5 - Experimental data for Um=0.68 m/s and λw=0.50. 


