

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2024

Process Technology

Computational modelling of two-phase oil-
water flow in pipes using OpenFOAM

Martin Færøvik Hamre

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master’s Thesis, 2024

Title: Computational modelling of two-phase oil-water flow in pipes using OpenFOAM

Number of pages: 128

Keywords: CFD, OpenFOAM, multiphase flow modelling, oil-water flow, interface

treatment, turbulence models.

Student: Martin Færøvik Hamre

Supervisor: Amaranath Sena Kumara

External partner: N/A

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Summary:

Two-phase oil-water flows in offshore pipelines are a common occurrence in the

petroleum industry. As an oil reservoir mature, the presence of water in the retrieved oil

increase. Understanding how this increased presence of water affects the hydrodynamic

properties of the mixture is of great importance as it affects the operating conditions for

the pipeline.

In this report, a review on the status of oil-water modelling is presented. The review covers

the three main modelling approaches: empirical, analytical and numerical. The review

highlights the different modelling techniques used in the studies and summarizes its

findings. Additionally, an OpenFOAM CFD model based on the experimental work

conducted by Kumara (2010) is made. The CFD model aims to predict the water volume

fraction and mean axial velocity of a horizontal oil-water pipe flow at various operating

conditions.

The findings from the review indicates that to increase the numerical accuracy for oil-

water flows, the oil-water interface needs additional treatment. The presence of a

turbulence damping scheme or boundary conditions are required to emulate the wall-like

effect the oil-water interface represents. This wall-like effect was observed in the CFD

simulations. The results showed that two-equation turbulence models like RNG k-ε,

realizable k-ε and SST k-ω, were unable to accurately predict the complex nature of an

oil-water flow. Of the three turbulence models, the SST k-ω model showed the best

accuracy and should be used in any further research. The study concludes that the addition

of a turbulence damping scheme, or similar interface treatment, is necessary to increase

the numerical accuracy.

 Preface

4

Preface
This master’s thesis is written at and submitted to the University of South-Eastern Norway as

the last part of the Master of Science program Process Technology. The fulfillment of this

thesis would not have been possible without the support and guidance from several

individuals.

I would like to thank my supervisor Dr. Amaranath Sena Kumara for guiding me throughout

the thesis. The work in this thesis would not have been possible without his help and

guidance. I want to issue a thank you to associate Professor Joachim Lundberg and Mathias

Henriksen for helping me troubleshoot obstacles I’ve run into when using OpenFOAM.

I want to thank my family for believing in me and supporting me throughout my studies. A

special thanks to my fellow students Pål and Sivert for making me and my partners life in

Porsgrunn enjoyable.

Lastly, I would like to thank my partner Maja for her unwavering support throughout my

studies. I want to thank her for putting up with my complaining and frustrations over the past

5 years. She has been invaluable as a discussion partner and has helped me see things from a

different perspective. Additionally, I want to thank her for the countless hours she has spent

proofreading my reports and generally supporting my studies. You truly are amazing.

Porsgrunn, 15th May 2024

Martin Færøvik Hamre

 Contents

5

Contents
1 Introduction ... 13

1.1 Background ... 13
1.2 Previous work ... 13
1.3 Objectives .. 14
1.4 Structure of thesis .. 14

2 Literature review ... 15

2.1 Introduction ... 15
2.2 Physics of two-phase oil-water pipe flow... 16

2.2.1 Oil-water flow terminology ... 16
2.2.2 Flow regimes ... 17
2.2.3 Phase inversion ... 19

2.3 Modelling of two-phase oil-water flow .. 20
2.3.1 Empirical models .. 20
2.3.2 Analytical models .. 24
2.3.3 CFD and Numerical models ... 26

2.4 Conclusion .. 33

3 CFD methodology for oil-water flow .. 34

3.1 CFD structure .. 34
3.2 Mesh generation ... 35

3.2.1 Mesh structure... 35
3.2.2 Mesh quality... 36

3.3 Modelling approaches .. 38
3.3.1 The Euler–Lagrange approach .. 39
3.3.2 Euler-Euler approach .. 39

3.4 Governing equations .. 40
3.4.1 Stratified flow solvers ... 40
3.4.2 Dispersed flow solvers ... 41

3.5 Turbulence models ... 42
3.5.1 k-ε model .. 42
3.5.2 k-ω model ... 46
3.5.3 Near wall treatment ... 48

4 Simulation strategy ... 50

4.1 OpenFOAM simulation structure .. 50
4.2 Pre-processing .. 50

4.2.1 Pipe geometry.. 50
4.2.2 Mesh generation. ... 51

4.3 Case structure ... 53
4.3.1 0 folder ... 53
4.3.2 Constant folder .. 56
4.3.3 System folder... 56

4.4 Interface treatment .. 59
4.5 Processing ... 59
4.6 Post-processing .. 60

5 Results & discussion .. 61

5.1 General comments .. 61
5.2 Solver comparison .. 61

5.2.1 RNG k-ε .. 61
5.2.2 SST k-ω .. 64

 Contents

6

5.3 Turbulence model comparisons ... 66
5.3.1 Realizable k-ε ... 66
5.3.2 Mixture velocity 0.50 m/s .. 70
5.3.3 Mixture velocity 0.68 m/s .. 75

6 Conclusion & future work .. 78

6.1 Conclusion .. 78
6.2 Future work ... 78

References ... 80

Appendices .. 87

 Contents

7

List of Figures

Figure.1.1 – Multiphase flow in transportation pipes due to water and gas coning: (a) Initial

condition, (b) After production (Kumara 2010). ... 13

Figure 2.1 - Pipe cross-sectional area for an oil-water flow (Kang et al. 2021). 17

Figure 2.2 - Horizontal oil-water flow patterns (Trallero et al., 1997) 18

Figure 2.3 - Observed segregated oil-water flow: (a) stratified smooth (ST), (b) stratified

wavy (SW), (c) stratified flow with mixing at the interface (ST&MI)(Kumara et al., 2009) . 18

Figure 2.4 - Observed dispersed oil-water flow: (a) dispersion of oil in water (Do/w&w), (b)

dispersion of oil in water (Do/w), (c) dispersion of oil in water and water in oil (Do/w&w/o),

(d) dispersion of water in oil (Dw/O)(Kumara et al., 2009). ... 19

Figure 2.5 - Changes in apparent viscosity (Luo et al. 2022). ... 20

Figure 2.6 - Evaluation of the proposed correlation against experimental data (Al-Wahaibi,

2012). ... 22

Figure 2.7 – Fanning friction factor variation with the mixture Reynolds number for different

pipe inclinations and different pipe diameters (Abubakar et al., 2016). 23

Figure 2.8 - Predicted pressure gradients using the developed correlation against experimental

pressure gradients(Abubakar et al., 2016). .. 23

Figure 2.9 Physical model for developing flow in an inclined plane channel (a) Stratified

Smooth and (b) Wavy Stratified flow. Channel wall, interface and boundary layers are

represented by thick-solid, solid and dash-dot lines, respectively. For WS flow, time-

averaged interface is represented by dashed line (Gada and Sharma, 2012). 24

Figure 2.10 - Comparison of total calculated oil fraction and experimental oil fraction for

horizontal oil-water flows used in the model validation (Hibiki and Rassame, 2019). 26

Figure 2.11- Measured and predicted pressure drop as a function of mixture flow velocity

(Burlutskii, 2018). .. 26

Figure 2.12 - Numerical solution strategy (Kang et al., 2021). ... 28

Figure 2.13 - Pressure gradient comparison for simulated results and experimental results

(Kang et al., 2021) ... 28

Figure 2.14 - Mean axial velocity for Um=0,61 m/s and a water cut of 0.5 (Kang et al., 2021,

Kumara 2010). ... 29

Figure 2.15 - Mean axial velocity for Um=0,68 m/s and a water cut of 0.25 (Kang et al.,

2021, Kumara 2010). ... 29

Figure 2.16 - Interface geometry (Liu et al., 2022). .. 30

Figure 2.17 – Comparison between calculated and experimental data for interface heights,

water holdup and pressure gradient with curved interface and planar interface (Liu et al.,

2022). ... 31

Figure 2.18 - Comparison of predicted and experimental mean axial velocity (Gao et al.,

2003). ... 32

 Contents

8

Figure 2.19 - Comparison of numerically and experimental data for the mean axial velocity

profiles (Liu et al., 2022). .. 33

Figure 3.1 – Structure elements for a CFD software (Versteeg and Malalasekera, 2007;

Tawekal 2015). .. 34

Figure 3.2 - (a) structured mesh and (b) unstructured mesh (Lande, 2021). 35

Figure 3.3 - Hybrid mesh (Lande, 2021). .. 36

Figure 3.4 – Examples of cell shapes (Setaih et al., 2010). ... 36

Figure 3.5 – Smoothness (What is a good Mesh?, 2014). ... 37

Figure 3.6 - Cell skewness(Asyikin, 2012). ... 37

Figure 3.7 – Aspect ratio (Lande, 2021). ... 37

Figure 3.8 - Mesh orthogonality (What is a good Mesh?, 2014). .. 38

Figure 3.9 - The two dominant methods of solving multi-phase flows in OpenFOAM (Multi-

phase flow simulations in OpenFOAM.). .. 38

Figure 4.1 - OpenFOAM case structure example (Medina et al., 2015). 50

Figure 4.2 – Simplified flow sheet of the test rig (Kumara et al., 2009). 51

Figure 4.3 - Test section for the experimental study by (Kumara et al., 2009). 51

Figure 4.4 - OH mesh 1 & 2 (Vindenes et al. 2021). ... 52

Figure 4.5 - Mesh iteration 3 (a) Cross sectional, (b) axial view and (c) isometric view

(Vindenes et al. 2021). ... 52

Figure 4.6 - Schematic representation of stratified oil-water flow (Kumara 2010)................. 53

Figure 4.7 - Inlet section in the OpenFOAM environment. ... 53

Figure 4.8 - PIMPLE algorithm in OpenFOAM (Niotis et al., 2019). 58

Figure 5.1 – Comparison of interFoam and multiphaseInterFoam for the RNG k- ε turbulence

model with λw=0.25. .. 62

Figure 5.2 - Comparison of interFoam and multiphaseInterFoam for the RNG k- ε turbulence

model with λw=0.50. ... 63

Figure 5.3 - Comparison of interFoam and multiphaseInterFoam for the RNG k- ε turbulence

model with λw=0.75 .. 63

Figure 5.4 - Comparison of interFoam and multiphaseInterFoam for the SST k- ω turbulence

model with λw=0.25. ... 64

Figure 5.5 - Comparison of interFoam and multiphaseInterFoam for the SST k- ω turbulence

model with λw=0.50. ... 65

Figure 5.6 - Comparison of interFoam and multiphaseInterFoam for the SST k- ω turbulence

model with λw=0.75 .. 65

Figure 5.7 - Realizable k-ε turbulence model compared to experimental data at 0.50 m/s

mixture velocity and λw=0.25. ... 67

 Contents

9

Figure 5.8 - Axial turbulent kinetic energy at 0.50 m/s mixture velocity and λw=0.25. 67

Figure 5.9 - Realizable k-ε turbulence model compared to experimental data at 0.50 m/s

mixture velocity and λw=0.50. .. 68

Figure 5.10 - Realizable k-ε turbulence model compared to experimental data at 0.50 m/s

mixture velocity and λw=0.75. .. 69

Figure 5.11 - Axial turbulent kinetic energy at 0.50 m/s mixture velocity and λw=0.75. 69

Figure 5.12 – y+ values for the realizable k-ε simulation at λw=0.75. 70

Figure 5.13 – Axial mean velocity and water volume fraction comparison of experimental

results and turbulence models at λw=0.25. ... 71

Figure 5.14 – Axial turbulent kinetic energy comparison for experimental data and turbulence

models at λw=0.25. ... 71

Figure 5.15 - Axial mean velocity and water volume fraction comparison of experimental

results and turbulence models at λw=0.50. ... 72

Figure 5.16 - Axial turbulent kinetic energy comparison for experimental data and turbulence

models at λw=0.25. ... 73

Figure 5.17 - Axial mean velocity and water volume fraction comparison of experimental

results and turbulence models at λw=0.75. ... 74

Figure 5.18 - Axial turbulent kinetic energy comparison for experimental data and turbulence

models for λw=0.25. ... 74

Figure 5.19 - Axial mean velocity and water volume fraction comparison of experimental

results and turbulence models at λw=0.25. .. 75

Figure 5.20 - Axial mean velocity and water volume fraction comparison of experimental

results and turbulence models at λw=0.50. ... 76

Figure 5.21 – Droplet formation at mixture velocity 0.68 m/s for (a) λw=0.25 and (b) λw=0.50

(Kumara et al., 2010a). .. 76

Figure 5.22 – Droplet formation at mixture velocity 0.50 m/s for (a) λw=0.25 and (b) λw=0.50

(Kumara et al., 2010a). .. 77

List of Tables

Table 4.1 - Boundary conditions for a simulation using the SST k-ω turbulence model and

interFoam solver. ... 55

Table 4.2 – Solution criteria used for the simulations. .. 58

Table 5.1 – Average simulation times for the different turbulence models at different water

cuts and Um=0.50 m/s. ... 61

 Nomenclature

10

Nomenclature
Latin letters

A Flow cross-sectional area [m2]

B Adjustable damping factor in Equation 2.20 [-]

Cµ Coefficient in Equation 3.22 [-]

C1ε Coefficient in Equation 3.24 [-]

C2ε Coefficient in Equation 3.24 [-]

C3ε Coefficient in Equation 3.24 [-]

d diameter [m]

D pipe diameter [m]

 Drag force [N]

E Eötvös number [-]

f Friction factor [-]

F Surface tension term [N/m3]

g Gravitational acceleration [m2/s2]

G Production of turbulent kinetic energy [kg/ms3]

I Turbulence intensity [%]

k Turbulent kinetic energy [m2/s2]

l length scale [-]

L Lift force[N]

M Momentum transfer [kgm/s]

n grid size [-]

N Froude number [-]

p Pressure [N/m2]

Q Volumetric flow rate [m3/s]

r Radial position [m]

 droplet radius [m]

R pipe radius [m]

 Oil droplet radius [m]

 Universal gas constant [J/Kmol]

S Slip ratio [-]

 Mean strain rate [1/s]

 Nomenclature

11

 Mass source term [kg/m3s]

t Time [s]

T Absolute temperature [K]

u Velocity [m/s]

U Bulk velocity [m/s]

x Cartesian axis direction [m]

y Cartesian axis direction [m]

Y Dissipation of turbulence kinetic energy and specific dissipation rate [kg/ms3]

z Cartesian axis direction [m]

Greek letters

α Volume fraction of phase [-]

β Closure coefficient in Equation 2.20

 Coefficient in Equation 3.52

ε Turbulent kinetic energy dissipation rate [m2/s3]

η Water hold-up [-]

θ inclination angle [°]

λ Water cut [-]

µ Dynamic viscosity [m2/s]

ʋ Kinematic viscosity [m2/s]

ρ Density [kg/m3]

σ Surface tension coefficient [N/m]

 Turbulent Prandtl number [-]

τ Wall shear stress [N/m]

φ Angular velocity [1/s]

Γ Effective diffusivity of turbulent kinetic energy and specific dissipation rate [kg/ms]

ω Specific dissipation [1/s]

𝑣 Coefficient in Equation 3.29 and 3.30 [-]

 Velocity scale [-]

γ Compressibility factor [-]

Ω Mean rate of rotation tensor [1/s]

 Nomenclature

12

Abbreviations

2D Two dimensional

3D Three dimensional

AR Aspect ratio

CFD Computational fluid dynamics

DNS Direct numerical simulation

FVM Finite volume method

PIP Phase inversion point

PIV Particle image velocimetry

RANS Reynolds-averaged Navier-Stokes

Re Reynolds number

ST Stratified

SW Stratified wavy

USN University of South-Eastern Norway

VOF Volume of Fluid

Subscripts

eff Effective

f fluid

Fr Froude

g Gas

I Interface

k Turbulent kinetic energy

 Represents oil and water in Equations 3.8-3.10

l Liquid

o Oil

so Superficial for oil phase

sw Superficial for water phase

t Turbulent

w Water

 1 Introduction

13

1 Introduction

1.1 Background

Two-phase oil-water flow in pipelines is a common occurrence in the petroleum industry. In

a reservoir the presence of gas, oil and water is frequently found and produces multiphase

mixtures when transported in pipelines. As an oil reservoir matures, the presence of gas and

water increases as illustrated in Figure 1.1. Knowing how an increased percentage of water

affects the hydrodynamic properties of the mixture is of great importance when designing

equipment and operating offshore pipelines.

Figure.1.1 – Multiphase flow in transportation pipes due to water and gas coning: (a) Initial condition, (b) After

production (Kumara 2010).

Understanding multiphase flows requires extensive experimental studies to produce reliable

data. Experimental studies that aim to obtain such data require the implementation of

sophisticated, and expensive, measurement techniques that are non-invasive (Kumara 2010).

Recent years have seen increasing interest in the development of computational models for

predicting multiphase flow fields. A major issue with current computational models is that

the phases are treated as a bulk flow. This leads to loss in computational accuracy as the

detailed hydrodynamic property of each phase is lost.

This thesis aims to review the current status of numerical modelling of two-phase oil-water

flows, as well as creating a computational fluid dynamics (CFD) model based on the

experimental study of Kumara (2010). The results from the CFD model are compared to the

data from the experimental study.

1.2 Previous work

This thesis is a continuation of the work done by the group project of Vindenes et al. (2021)

at the University of South-Eastern Norway (USN) during the fall of 2021. In the group

project a well-defined pipe geometry and mesh was created, and basic initial simulations

were performed. This thesis uses the computational domain created by Vindenes et al. (2021)

and aims to develop the simulation strategy further.

 1 Introduction

14

1.3 Objectives

The main scope of this thesis is to perform CFD simulations of a horizontal pipe with an oil-

water flow. The simulations are done using the OpenFOAM software. Within the scope there

are three main objectives:

1) Perform a literature review of recent advances in the numerical modelling of two-

phase oil-water models.

2) Implementation of computational model for oil-water flow using OpenFOAM. The

model will attempt to accurately predict the mean axial velocity profile of both water

and oil at varying mixture velocities and water cuts.

3) Validate the simulation data based on the experimental work performed by Kumara

(2010)

The signed project proposal is found in Appendix A

1.4 Structure of thesis

• Chapter 2: Literature review of the recent advances in numerical modelling of two-

phase oil-water flows with the aim of publishing.

• Chapter 3: Presentation of the methodology for CFD modelling of a two-phase oil-

water flow.

• Chapter 4: Simulation strategy for the simulations presented in this thesis.

• Chapter 5: Presentation of the results and discussion of the comparison against

experimental data.

• Chapter 6: Conclusion and suggestions for future work on oil-water simulations.

 2 Literature review

15

2 Literature review
In this section, basic physics and flow structure of an oil-water flow is presented and recent

advances in oil-water modelling is reviewed.

2.1 Introduction

Multiphase flow is a well-established phenomenon within the process industry, particularly in

the petroleum industry. Two-phase oil-water pipe flow has become of special importance

over the years due to the maturing of oil wells. As the oil wells mature, the water cut in the

extracted crude oil increases which leads to increasing technical difficulties during pumping

and separation. This results in the reduced efficiency of crude oil production in the reservoir.

Understanding the characteristics of an oil-water flow, such as flow patterns and separation

characteristics, is very important for efficient and safe production. Due to the complex nature

of oil-water flows, an accurate prediction of the flow is challenging. This is due to multiple

factors such as operating conditions, pipe inclination, pressure drop, geometrical parameters

and physical properties such as interfacial tension, density and viscosity affect the flow

(Ahmed and John, 2018; Kamp et al., 2017).

Characterization of oil-water pipe flow consists of identification of flow pattern, flow pattern

transitions, pressure drop, phase inversion point, droplet formation, droplet size(s)

distribution and viscosity estimations. The most important parameters in the petroleum

industry for a multiphase flow include: 1) Pressure drop at varying flow rates; 2)

water/oil/gas hold-up or accumulation and 3) thermal characteristics (Urdahl et al., 1997).

Extensive research has been done on two-phase oil-water pipe flow with regard to flow

patterns, and several flow regimes have been identified by multiple independent experimental

studies (Amundsen, 2011; Angeli and Hewitt, 2000; Barnea and Taitel, 1992; Charles et al.,

1961; Edomwonyi-Otu and Angeli, 2015; Elseth, 2001; Kumara et al., 2010b; Lovick and

Angeli, 2004; Lum et al., 2006; Panagiota Angeli, 1996; Rodriguez and Oliemans, 2006;

Trallero et al., 1997; Yang et al., 2021). Research shows an increasing amount of

understanding for mechanisms like flow regime patterns and transitions, flow properties such

as pressure drop and mixture viscosity. However, local hydrodynamic flow properties like

velocity and turbulence profiles have received less focus. These parameters are extremely

important in the development of numerical models and should receive an increased focus

(Kumara, 2010). Additionally, there is still a lack of understanding with regards to the phase

inversion phenomenon and its effects on the pressure drop and holdup.

Several reviews have been conducted on the intricacies of liquid-liquid flow systems. For

instance, Brauner (2003) focused on the flow and pipe configurations of an oil-water flow.

The review included experiments, models and formulations for liquid-liquid flow

phenomena. Xu (2007) aimed at giving a brief review on the research of oil-water pipe flows

in the past decade. His review had three focus areas: 1) flow pattern indication and its

transition; 2) phase inversion modelling and 3) pressure drop prediction. His review

concluded that the main difficulty with understanding oil-water flows is the existence of the

interface. Ismail et al. (2015) reviewed the current state of research on oil-water flows

highlighting the need for further research compared to gas-liquid flows. Ismail et al. (2015)

 2 Literature review

16

also discussed the complex interfacial chemistry. Ahmed and John (2018) discussed the use

of numerical modelling for predicting oil-water flows as well as reviewing recent research.

These reviews highlight the vast amount of research done on oil-water flows but also indicate

that the following areas require further studies: 1) investigation of the effect of less dense

fluid phase on the development of turbulence of the denser fluid phase and vice versa; 2)

improves correlation to predict heat transfer coefficients; 3) effect of temperature on the

evolution of flow patterns and 4) numerical simulations should be applied in the investigation

of oil-water flows.

In recent years, the use of computational and numerical models to solve complex flow

problems has increased. Recent technological advances have made computational tools more

readily available, making numerical models a powerful tool for analyzing and predicting

advanced flow problems. This review, based on technological advancements and previous

reviews, will focus on the recent advances in numerical modelling of oil-water flows.

2.2 Physics of two-phase oil-water pipe flow

2.2.1 Oil-water flow terminology

In oil-water modelling there are several basic definitions that are frequently used when

discussing oil-water flows. In a pipe with oil-water flow the input volumetric flow rates are

Qo and Qw, respectively. The input volumetric fractions are given by:

𝜆𝑤 =
𝑄𝑤

𝑄𝑤+𝑄𝑜
 𝜆𝑜 =

𝑄𝑜

𝑄𝑤+𝑄𝑜
 (2.1)

λw is often referred to as the inlet water cut in oil-water flows. Based on the input flow rates

and cross-sectional area of the pipe, the superficial velocity of the oil and water phase is

given by:

𝑈𝑠𝑤 =
𝑄𝑤

𝐴
 𝑈𝑠𝑜 =

𝑄𝑜

𝐴
 (2.2)

The relationship between superficial velocities and input phase fractions is given by combing

Equation 1.1 and 2.2:

𝑈𝑠𝑜

𝑈𝑠𝑤
=

𝜆𝑜

𝜆𝑤
 (2.3)

In-situ velocity, which is the actual velocity for each phase in the pipe, is calculated by the

input volumetric flow rate divided by the cross-sectional area the phase occupies. Figure 2.1

illustrate the cross-sectional area of the pipe. This means it’s different to the superficial

velocity which uses the entire cross-sectional area in the calculation. Therefore, the actual

velocities are given by:

𝑈𝑤 =
𝑄𝑤

𝐴𝑤
 𝑈𝑜 =

𝑄𝑜

𝐴𝑜
 (2.4)

 2 Literature review

17

Figure 2.1 - Pipe cross-sectional area for an oil-water flow (Kang et al. 2021).

In an oil-water flow the two phases will most likely not have the same average in-situ

velocities. This means that the in-situ volume fraction is different to the input phase fraction

and this new volume fraction is given by:

𝜂𝑤 =
𝐴𝑤

𝐴
 𝜂𝑜 =

𝐴𝑜

𝐴
 (2.5)

The ηw term, which describes the in-situ volume fractions, is more commonly referred to as

the water hold-up in oil-water systems. The ratio between the two in-situ velocities will give

the systems slip ratio, S, and it is calculated as follows:

𝑆 =
𝑈𝑜

𝑈𝑤
=

𝐴𝑤

𝐴𝑜

𝑈𝑠𝑜

𝑈𝑠𝑤
 (2.6)

The slip ratio provides the information about which phase travels fastest in the given system.

The slip ratio is dependent on several physical properties alongside the flow rates, flow

pattern and pipe geometry. A slip ratio above 1 means that the oil travels faster than the water

which means S<1 is the opposite scenario.

2.2.2 Flow regimes

Flow regimes, or flow pattern, describes the flow structure, or the distribution of one fluid

phase relative to the other. In two-phase oil-water pipe flow the interaction between the two

fluids leads to the formation of different flow patterns. Which pattern is formed is dependent

on several physical properties such as input water fraction, superficial velocities, liquid

densities etc. (Kumara et al., 2010b). The classification of the different flow patterns found in

oil-water pipe flow does not have a uniform nomenclature, nor are all the experimental

studies performed with the same conditions. Hence, there may exist several flow patterns

with different names, but with a similar flow structure. Trallero et al. (1997) classified three

sets of patterns with two subsets as seen in Figure 2.2: 1) Segregated flow (stratified flow and

stratified flow with mixing interface); 2) Water dominated dispersed flow (Oil in water and

water (O/W&W) and Oil in water emulsion (O/W)) and 3) Oil dominated dispersed flow

(water in oil and oil in water (W/O & O/W) and water in oil emulsion (W/O)).

 2 Literature review

18

Figure 2.2 - Horizontal oil-water flow patterns (Trallero et al., 1997)

Based on all the previously mentioned experimental studies done on the matter, the flow

pattern can be split into two main categories: Segregated/stratified flow and dispersed flow. A

short introduction to the two flow regimes follows.

2.2.2.1 Segregated flow

From an experimental study performed by Kumara et al. (2009), three segregated flow

patterns for oil-water flows were identified: 1) stratified smooth flow (ST); 2) stratified wavy

flow (SW) and 3) stratified flow with mixing interface (ST&MI). These observed patterns

were in agreement with the pattern classification proposed by Lum et al. (2006), Rodriguez

and Oliemans (2006) and Trallero et al. (1997). The three patterns are shown in Figure 2.3.

Figure 2.3 - Observed segregated oil-water flow: (a) stratified smooth (ST), (b) stratified wavy (SW), (c)

stratified flow with mixing at the interface (ST&MI)(Kumara et al., 2009)

Segregated flow (Figure 2.3 (a)) is observed at low superficial oil and water velocities, where

the flow is gravity dominated. With further increases in mixing velocities, the pattern shifts

towards a wavy structure (Figure 2.3 (b)). As the velocity continues to increase, water

droplets begin to form in the oil phase and oil droplets begin to form in the water phase.

These droplets exist along the interfacial waves, as seen in Figure 2.3 (c).

 2 Literature review

19

2.2.2.2 Dispersed flow

Every flow pattern that does not fall under the segregated classification represents different

dispersions. “Dispersions are always formed when the motion of oil-water flow is sufficiently

intense” (Kumara 2010). Which of the two liquids is dominant largely depends on the

superficial velocities of the liquids. Thus, the following two aspects can be noted for oil-

water flow: 1) The fluid phase with the higher momentum entrains the fluid with the lower

momentum and 2) the less dense fluid phase follows the Reynolds transition criterion and

attain instability at Re ~ 2000. Meanwhile, the denser fluid phase become unstable at much

higher values of Re ~ 18000, indicating the incompatibility of the Reynolds criterion (Ahmed

and John, 2018).

Experimental studies conducted by Elseth (2001), Hapanowicz (2010), Ibarra et al. (2015)

and Kumara et al. (2009), indicate that the flow turbulence is influenced by the interface and

the non-compatibility of Reynolds number criterion. Kumara et al. (2009) observed four

different dispersion flow patterns which are presented in Figure 2.4.

Figure 2.4 - Observed dispersed oil-water flow: (a) dispersion of oil in water (Do/w&w), (b) dispersion of oil in

water (Do/w), (c) dispersion of oil in water and water in oil (Do/w&w/o), (d) dispersion of water in oil

(Dw/O)(Kumara et al., 2009).

2.2.3 Phase inversion

Phase inversion in oil-water emulsion systems refer to the phenomenon in which, a small

change in the operational conditions causes the dispersion of oil droplets in water (Do/w) to

change to dispersion of water droplets in oil (Dw/o), or vice versa (Kumara, 2010). This

transition phase typically occurs with changes, often abrupt, in heat and mass transfer

between the two phases. Since the rheological characteristics of the dispersion and the

associated pressure drop change abruptly and significantly at, or near the Phase Inversion

Point (PIP), the PIP is a crucial factor to consider when designing oil–water transportation

pipelines (Luo et al., 2022; Xu, 2007).

Luo et al. (2022) outlined the importance of how the water cut influences the PIP. The study

demonstrated that with a low water cut, crude oils can emulsify all the water to form a stable

W/O emulsion. However, when the water cut of a system exceeds a certain critical value, the

 2 Literature review

20

crude oils lose the ability to emulsify all water; instead, they are enveloped by a water phase

and form unstable O/W emulsions. Luo et al. (2022) found that the critical water cut of a

specific system corresponds to an abrupt change in the apparent viscosity of the emulsion.

This marks the PIP for the emulsion, transitioning from W/O to O/W. Additionally, two

correlations were identified:

1) The apparent viscosity of a stable W/O emulsion decreases with increased shear rate

and temperature and increases with a higher water cut.

2) The apparent viscosity of an unstable O/W emulsion decreases with increased shear

rate, temperature and water cut.

These correlations are illustrated in Figure 2.5.

Figure 2.5 - Changes in apparent viscosity (Luo et al. 2022).

2.3 Modelling of two-phase oil-water flow

Correctly predicting two-phase oil-water flow is a highly complex process and currently there

exists no exact analytical solution. In the past, oil-water flows have mainly been studied

through experiments and have been very empirically oriented. With the technological

progress in the past few decades, the use of numerical techniques to solve the complex two-

phase flow has increased. This chapter will outline the three prediction methods for two-

phase oil-water flows which are: empirical models, analytical models and numerical models.

2.3.1 Empirical models

Empirical models for two-phase flow often draw from the analogous ones for gas-liquid

flows and are then adopted for liquid-liquid flows. These models rely on a rich variety of

correlations.

Govier and Omer (1962) compared a vast number of existing empirical correlations. The

investigated correlations suggested accurate prediction of pressure drops in oil-water flow.

However, it was reported that the number of restrictions in the models made them difficult to

apply and adapt to certain conditions. The correlations were limited to specific flow patterns

and assumed a static pipe diameter and static gas density.

 2 Literature review

21

Beggs and Brill (1973) were the first to predict multiphase flow behavior at all inclination

angles in a pipe using an empirical model. They conducted extensive testing at various pipe

inclinations ranging from 0° to 90°. The test fluids used were air and water. A correlation for

the pressure-gradient was developed based on their experiments:

𝑑𝑝

𝑑𝐿
=

(
𝑓𝜌𝑛ʋ𝑚

2

2𝑑
+𝜌𝑠𝑔𝑠𝑖𝑛𝜃)

1−𝐸𝑘
 (2.7)

Here, Ek is given by Equation 2.8:

 𝐸𝑘 =
ʋ𝑚ʋ𝑆𝑔𝜌𝑛

𝑝
(

𝑑𝑝

𝑑𝑍
) (2.8)

And

 𝜌𝑠 = 𝜌𝐿(𝜃) + 𝜌𝑔[1 − 𝐻𝐿(𝜃)] (2.9)

The pressure-gradient correlation is inaccurate when applied to an oil-water flow. However,

Beggs and Brill (1973) correlated the transition boundaries for the different flow patterns

with no-slip liquid holdup and mixture Froude number, which is shown as:

 𝑁𝐹𝑟 =
ʋ𝑚

2

𝑔𝑑
 (2.10)

Given a horizontal pipe, the following inequalities could be used to determine which flow

patterns exist in an oil-water flow:

Segregated:

𝜆L < 0.01 and 𝑁𝐹r < 𝐿1 or 𝜆1 ≥ 0.01 and 𝑁𝐹r < 𝐿2 (2.11)

Transition:

𝜆L ≥ 0.01 and 𝐿2 < 𝑁𝐹r ≤ 𝐿3 (2.12)

Intermittent:

0.01 ≤ 𝜆L < 0.4 and 𝐿3 < 𝑁𝐹r ≤ 𝐿1 or 𝜆L ≥ 0.4 and 𝐿3 < 𝑁𝐹r ≤ 𝐿4 (2.13)

Distributed:

𝜆L < 0.4 and 𝑁𝐹r ≥ 𝐿1 or 𝜆L ≥ 0.4 and 𝑁𝐹r > 𝐿4 (2.14)

where 𝜆L is the non-slip holdup factor, 𝐿1, 𝐿2, 𝐿3, 𝐿4 are the correlation variables and 𝑁𝐹r is

the Froude number.

Al-Wahaibi (2012) developed a correlation for the pressure gradient in horizontal oil-water

pipe flows. The correlation is based on the work of Angeli and Hewitt (1999). The correlation

for the developed pressure gradient is as follows:

𝑑𝑝

𝑑𝑥
= 2.4 (

(𝑓𝑐𝑜𝑟𝜌𝑚𝑈𝑚
2)

2𝐷
)

0.8

 (2.15)

 2 Literature review

22

Where 2.4 is a dimensional coefficient fitting parameter, ρm is the mixture density, Um is the

mixture velocity and D is the pipe diameter. The model was validated against 11 separate

experimental data sets which can be seen in Figure 2.6.

Figure 2.6 - Evaluation of the proposed correlation against experimental data (Al-Wahaibi, 2012).

The developed correlation was in good agreement with the experimental data. The average

absolute error ranged from 2.65% at the lowest, to 20.78% at the highest. The empirical

model showed a higher accuracy than the two-fluid model used by Angeli and Hewitt (1999).

Abubakar et al. (2016) continued the work of Al-Wahaibi (2012) and developed a new

friction factor correlation for oil-water flow which included drag-reducing polymers (DRP).

The study aimed to predict the pressure gradients of an oil-water flow after the addition of the

drag-reducing polymers. The friction factor correlation was found by plotting the calculated

DRP mixture friction factor against their corresponding mixture Reynolds number as seen in

figure 2.7.

 2 Literature review

23

Figure 2.7 – Fanning friction factor variation with the mixture Reynolds number for different pipe inclinations

and different pipe diameters (Abubakar et al., 2016).

The correlation was then tested against experimental data. Figure 2.8 shows the results of

applying the developed correlation against experimental data. The correlation offered

satisfactory predictions and Abubakar et al. (2016) argued it showed better performance than

the models it was compared to.

Figure 2.8 - Predicted pressure gradients using the developed correlation against experimental pressure gradients

(Abubakar et al., 2016).

 2 Literature review

24

2.3.2 Analytical models

Gada and Sharma (2012) developed a predictive analytical solution for fully developed

stratified oil-water flows in an inclined plane-channel. The model was validated through a

numerical study applying a level set method (LSM)-based Navier-Stokes solver. The

performance of the analytical solution was shown to be excellent when compared to the

numerical study. Additionally, a physical model was created to reproduce the results from the

analytical and numerical models. The model is depicted in Figure 2.9.

Figure 2.9 Physical model for developing flow in an inclined plane channel (a) Stratified Smooth and (b) Wavy

Stratified flow. Channel wall, interface and boundary layers are represented by thick-solid, solid and dash-dot

lines, respectively. For WS flow, time-averaged interface is represented by dashed line (Gada and Sharma,

2012).

The created model follows a set of assumptions:

- Fully developed stratified flow

- Density matched viscosity

- Incompressible Poiseuille flow

- No-slip at wall/interface.

- Continuity of velocity and shear-stress at the interface

Based on the given assumptions and performing the following substitutions: η=1 (property

ratio), Hfd=0,5 (interfacial height), Q1
*= Q2

*= 0,5, the analytical model proposed by Gada and

Sharma (2012) degenerates to the single fluid flow solution shown in Equation 2.16:

 2 Literature review

25

𝑈1 = 𝑈2 = 6𝑌(1 − 𝑌) 𝑌𝑈𝑚𝑎𝑥 = 0,5
∆𝛱

𝛥𝑥
= −12

 𝑃𝑂 = 12(1 − 2𝑌) 𝑃𝑂,𝐵 = −𝑃𝑂,𝑇 = 12 𝑈𝑚𝑎𝑥 = 1.5 (2.16)

Here, U1 and U2 is the velocity profiles, YU is the coordinate for the maximum U-velocity, Π

is the non-dimensional pressure, PO, PO,B, PO,T is the Poiseuille number for the pipe, bottom

wall, and top wall, respectively.

Hibiki and Rassame (2019) performed an analytical study aimed at creating a predictive

model for the oil fraction in an oil-water flow in a horizontal pipe, applicable to all flow

patterns. The proposed model by Hibiki and Rassame (2019) was validated through

comparison with existing experimental data obtained under varying test conditions. A total of

thirteen experimental datasets were used in the validation process to ensure the model was

tested under varying conditions.

Four assumptions were made to derive the oil fraction analytically (Hibiki and Rassame,

2019):

a) Stratified flow with two homogeneous mixture phases in the upper and lower parts.

b) Equal velocity head between the upper and lower homogeneous mixture phases (equal

velocity head model).

c) Homogeneous mixtures of liquid 1 and liquid 2 for both parts being considered as

single-phase fluids with mixture densities.

d) Thermal equilibrium condition.

The proposed model for predicting the oil fraction is a function of flow quality, density ratio,

and includes two entrainment constants, e1 and e2 (droplet entrainments for oil phase and

water phase). The oil fraction is defined as:

 𝛼𝑜𝑖𝑙 =
𝐴𝑜𝑖𝑙

𝐴𝑡
=

(𝐴1𝑐+𝐴2𝑑)

𝐴
=

𝑊2(1−𝑒2)

𝜌2𝐴𝑣𝑚2

=
𝑊2𝑒2

𝜌2𝐴𝑣𝑚1

 (2.17)

Where W2, e2, vm1, vm2 and ρ2 are the oil mass flow rate, entrainment factor upper part,

mixture velocity upper part, mixture velocity lower part and density of oil respectively. The

proposed analytical equation for predicting the oil fraction is as follows:

𝛼𝑜𝑖𝑙 = {[1 − 𝑒2 + ((
1−𝑥

𝑥
) (

𝜌2

𝜌1
)) 𝑒1] [(1 − 𝑒2) + 𝑒2 (

𝜌𝑚2

𝜌𝑚1
)

−
1

2
]

−1

+ [𝑒2 + (
1−𝑥

𝑥
) (

𝜌2

𝜌1
) (1 −

𝑒1)] [𝑒2 + (
𝜌𝑚2

𝜌𝑚1
)

1

2 (1 − 𝑒2)]

−1

}

−1

 (2.18)

Where ρm2 and ρm1 is the density of the upper and lower part of the pipe respectively.

The results from the model validation are presented in Figure 2.10. The validation process

demonstrated that the model predictions are in good agreement with the experimental data

with an accuracy of ±15%.

 2 Literature review

26

Figure 2.10 - Comparison of total calculated oil fraction and experimental oil fraction for horizontal oil-water

flows used in the model validation (Hibiki and Rassame, 2019).

The analytical model proposed by Hibiki and Rassame (2019) also demonstrated that it can

be applied to all six oil-water flow regimes identified by Trallero et al. (1997) in Figure 2.2.

2.3.3 CFD and Numerical models

Walvekar et al. (2009) utilized the CFD software ANSYS FLUENT to simulate a 3D

horizontal pipe flow with an oil-water system. They simulated a turbulent dispersed flow

using a Eulerian-Eulerian multiphase model along with the standard k-ε turbulence model.

Due to the nature of the turbulence model selected, the authors observed good results at high

mixture velocities and discrepancies at low mixture velocities. This discrepancy comes from

the k-ε turbulence model only being valid for fully turbulent flows, and therefore loses

accuracy at lower Reynolds-number flows.

Similarly, Burlutskii (2018) also utilized ANSYS FLUENT to simulate a dispersed oil-water

system with the k-ε turbulence model. Burlutskii (2018) used the Euler-Lagrange scheme to

resolve the interaction between the two phases in a vertical pipe. As with Walvekar et al.

(2009), the results exhibited good agreement at high mixture velocities as shown in Figure

2.11.

Figure 2.11- Measured and predicted pressure drop as a function of mixture flow velocity (Burlutskii, 2018).

 2 Literature review

27

Additionally, Burlutskii (2018) discovered that for highly turbulent liquid-liquid dispersed

pipe flows, the shear-lift force holds significantly higher importance for adequately flow

representation than detailed modelling of the break-up/coalescence phenomena.

When performing oil-water simulations, selecting the correct turbulence model for the system

is crucial for an accurate result. Shi et al. (2017) performed a CFD study on a horizontal oil-

water flow system with matched density and medium viscosity ratio (=18.8), involving

several different flow regimes (core annular flow, oil plugs/bubbles in water and dispersed

flow). In these flow regimes, surface tension and wall contact angle play a pivotal roles in the

calculations. Shi et al. (2017) showed that the volume of fluid (VOF) model, in conjunction

with the SST k-ω turbulence model and turbulence damping activated, can predict the flow

structures of core annular flow and oil plugs/bubbles in water. The turbulence damping

scheme added the following additional source terms to the ω-equation, which reduces the

destruction term:

𝑆𝜔 = 𝐴𝑖∆𝑛𝛽𝜌𝑖𝜔𝜔
2 (2.19)

𝜔𝜔 = 𝐵
6𝜇𝑖

𝛽𝜌𝑖∆𝑛2 (2.20)

𝐴𝑖 = 2𝛼𝑖|∇𝛼𝑖| (2.21)

Where Ai represents an interface area density that activates the correction term in the vicinity

of the interface, αi is the volume fraction of phase i, Δn is the grid size in the interface region,

β is a closure coefficient and B is an adjustable damping factor. The turbulence damping

function increased the accuracy of the results by 5%. However, the authors also highlighted

the shortcomings of using the VOF model for dispersed flows as the interface length scales

tend to become smaller than the computational grid sizes. This was emphasized further by

Chen et al. (2023), who performed CFD simulations for a dispersed oil-water flow. For

dispersed flows, a Eulerian approach is best suited as this method treats each phase as a

continuous fluid-a two-fluid model-with separate volume fractions for each phase. Chen et al.

(2023) used the OpenFOAM solver multiphaseEulerFoam, which applies the Eulerian

method coupled with population balance models and the mixture k-ε turbulence model.

MultiphaseEulerFoam also implements a blending factor that captures the retardation of

droplet rising and coalescing in the dense packed layer (DPL) of the flow. The study’s results

showed that there are two main challenges for dispersed flow simulations:

1) Modelling the turbulent dispersion force is highly system dependent.

2) Phase inversion and water release rates in the densely packed layer require further

research to improve existing drag and coalescence models.

These conclusions are consistent with other research, as Pouraria et al. (2021) reported

similar troubles for dispersed flows.

When dealing with dispersed flows a two fluid model must be used to achieve the desired

results with realistic accuracies. For segregated or stratified flows, a different modelling

approach can be employed. For a system with a stratified flow the VOF approach can be

applied as demonstrated by the studies of Gao et al. (2003), Kang et al. (2021), Al-Yaari and

Abu-Sharkh (2015), Pouraria et al. (2021), Sunday et al. (2023) and Kumara (2010).

Kang et al. (2021) performed a 2D numerical study where they compared three different

turbulence models against the experimental work of Kumara (2010). In a bipolar coordinate

 2 Literature review

28

system, the k-ε, k-ω and SST k-ω turbulence models were implemented, and the solution

strategy depicted in Figure 2.12 was utilized.

Figure 2.12 - Numerical solution strategy (Kang et al., 2021).

Kang et al. (2021) reached the same conclusion as in similar studies performed by

Archibong-Eso et al. (2019) and Shi et al. (2017), where the SST k-ω turbulence model

showed the highest accuracy for an oil-water system. Although the SST k-ω turbulence

model provided the best results compared to the two other models, it exhibited inaccuracies

when compared to the experimental data regarding the pressure gradient, as seen in Figure

2.13. The model showcased low accuracy at lower superficial velocities, but when the

superficial velocities of the two phases were relatively close, the accuracy improved, and the

deviation decreased below 15%.

Figure 2.13 - Pressure gradient comparison for simulated results and experimental results (Kang et al., 2021)

For the calculated mean axial velocity, all three turbulence models failed to predict the

correct profile. As seen in Figure 2.14, the models were unable to predict the asymmetric

profile around the oil-water interface and overpredicted the velocity compared to the

experimental data.

 2 Literature review

29

Figure 2.14 - Mean axial velocity for Um=0,61 m/s and a water cut of 0.5 (Kang et al., 2021, Kumara 2010).

The inaccuracy around the oil-water interface becomes very clear when the water cut is

lowered to 0.25 as seen in Figure 2.15.

Figure 2.15 - Mean axial velocity for Um=0,68 m/s and a water cut of 0.25 (Kang et al., 2021, Kumara 2010).

The discrepancy between the velocity profiles could be attributed to several factors:

1) The numerical model is based on a one-equation model for both phases, meaning one

set of momentum equations is applied across the entire system. This is likely the

reason that the velocity curve is symmetrical and insensitive to the changes at the

interface.

2) No turbulence damping or interface treatment has been implemented in the numerical

model to handle the complex physics around the oil-water interface.

3) The shape of the oil-water interface is not considered.

Kumara (2010) encountered a similar issue with the accuracy of mean axial velocity profile

in his CFD simulations, which were compared with his experimental study. A VOF based

solver in ANSYS FLUENT was used and a Piecewise-linear interface calculation (PLIC)

scheme was applied for the reconstruction of the interface. This approach did not manage to

capture the asymmetrical velocity profile.

These observations underscore that a numerical model using a single momentum equation,

and a VOF based solver for a multiphase flow is inadequate without the incorporation of

additional turbulence and interface treatment. To increase numerical accuracy, special

considerations, such as turbulence damping and flow physics, at the oil-water interface are

necessary.

These considerations were emphasized in the studies by Edomwonyi-Otu and Angeli (2015)

and Santos et al. (2019), which had a larger focus on the structure of the oil-water interface.

Reports from these studies indicate that in a two-phase oil-water system the interface takes a

concave shape. Furthermore, Liu et al. (2022) argue that in systems with a low density

difference between oil and water, the surface tension becomes increasingly important. The

 2 Literature review

30

surface tension between the liquids causes the wetting fluid to climb over the pipe wall,

leading to a curved interface as shown in Figure 2.16. This illustrates that special

considerations must be made for the interface shape, and that a planar interface assumption

will result in poor accuracy.

Figure 2.16 - Interface geometry (Liu et al., 2022).

The interface configuration in a stratified oil-water system can be characterized by the Eötvös

number, EO, given by:

𝐸𝑂 =
∆𝜌𝑔𝑅2

2𝜎
 (2.19)

Where ∆𝜌 is the density difference between the two liquids, R is the pipe radius, g is the

gravitational force and σ is the interfacial tension. The Eötvös number essentially

characterizes the shape of the interface between two fluids. As the Eötvös number increases,

which indicates either a decrease in surface tension or an increase in density difference, the

interface become more planar. Conversely, as the Eötvös number decreases, the more closely

the interface approaches a curved surface. For systems with a high Eötvös number, a more

standard approach could be employed, whilst for low Eötvös numbers more complex

interface capturing method must be used. Liu et al. (2022) demonstrated, through numerical

simulations, the existence of a concave interface when EO<10. The results, as shown in

Figure 2.17, show a better agreement with experimental results when assuming a curved

interface.

 2 Literature review

31

Figure 2.17 – Comparison between calculated and experimental data for interface heights, water holdup and

pressure gradient with curved interface and planar interface (Liu et al., 2022).

Gao et al. (2003) carried out a numerical study using the VOF approach, assuming a curved

interface. The model implemented a customized turbulence calculation, wherein the RNG k-

ε turbulence model in the fully turbulent regions and a low Reynolds number k-ε model at the

near-wall regions. Additionally, the Continuum Surface Force (CSF) model by Brackbill et

al. (1992) and turbulence damping by Lam and Bremhorst (1982), were applied at the wall.

The results were compared to the experimental work of Elseth (2001) and showed promising

results. The results are shown in Figure 2.18 and the produced velocity profiles show a good

agreement with the experimental data. The model was able to predict an asymmetrical axial

velocity profile and show close agreement with the experimental data for 50% and 75% water

cuts. Some discrepancies are seen for 25% water cut. The study shows the effectiveness of

turbulence damping and using the LRN k-ε model instead of wall functions.

 2 Literature review

32

Figure 2.18 - Comparison of predicted and experimental mean axial velocity (Gao et al., 2003).

Liu et al. (2022) employed the same turbulence scheme at the wall as Gao et al. (2003), while

applying the standard k-ε model for the turbulent region. Additional interface treatment was

applied to the numerical model of an oil-water pipe flow. Liu et al. (2022) established the

following conditions for their numerical calculations: 𝑘𝐼,𝑂 = 𝑘𝐼,𝑊 = 0 and (𝜇𝑡)𝐼,𝑂 =
(𝜇𝑡)𝐼,𝑊 = 0, resulting in the following coupling between the two phases at the interface:

𝑢𝐼,𝑂 = 𝑢𝐼,𝑊. These conditions were based on the finding of Newton and Behnia (2000), who

suggested that the presence of free surfaces reduces turbulence similarly to the presence of a

wall. Duan et al. (2015, 2014) proposed, as a preliminary approximation, that the existence of

a free surface could be treated as a moving wall. These conditions produced satisfactory

results with regards to the mean axial velocity, as seen in Figure 2.19. The simulated profile

are compared to the experimental work of Ibarra et al. (2018).

 2 Literature review

33

Figure 2.19 - Comparison of numerically and experimental data for the mean axial velocity profiles (Liu et al.,

2022).

It is argued that the oil-water interface behaves like a moving wall, causing less flow

resistance for the oil phase compared to near the pipe wall. Meanwhile, for the water phase

the interface behaves like a faster moving wall, dragging the water flow forward. While the

results are interesting, there isn’t sufficient data and variation in the flow conditions to fully

support the assumptions made. Nonetheless, the findings from Gao et al. (2003) and Liu et al.

(2022) provide an intriguing way on how the treatment of the two-phase oil-water interface

could be approached.

2.4 Conclusion

This review has attempted to present the recent advances in modelling of oil-water flows.

Additionally, it introduces flow terminologies and the physics of a two-phase flow. The

studies discussed in this review demonstrate that the complexity of an oil-water flow is still a

challenge in numerical modelling.

Although the studies presented did not reach the desired level of accuracy, several important

discoveries should be noted. When not applying any special conditions the SST k-ω

turbulence model showed clear advantages over the other turbulence models for stratified

flows. For dispersed flows where most of the flow region is turbulent, other factors such as

mesh size, drag forces, lift etc. influence the results as much as the choice of turbulence

model. Another notable discovery is the importance of how the oil-water interface is treated.

The studies indicate that special treatment must be applied to the oil-water interface and the

turbulence model to achieve more accurate results. While the studies presented show

promising results, it remains unclear what specific conditions must be implemented and the

how these conditions are applied to each specific system.

 3 CFD methodology for oil-water flow

34

3 CFD methodology for oil-water flow
Accurately predicting an oil-water flow is a highly complex process and currently no exact

analytical solution exists. Historically, studies on oil-water flows have predominantly relied

on physical experiments. Conducting these experiments can become very costly due to the

equipment required for non-invasive measurements. CFD studies offer a cost-effective

alternative for studying fluid flows as computational power is more easily accessible.

To fully access the capabilities of CFD, a thorough understanding of the technique is

required. Each study is unique and demands an approach that is suited for the simulated

system. This chapter aims to introduce the CFD methodology, how to approach the modelling

aspect and outline the governing equations for an oil-water flow.

3.1 CFD structure

All CFD software structures its interfaces differently, but they are all fundamentally

structured on the same principles (Versteeg and Malalasekera, 2007). In Figure 3.1 the three

main principles for a CFD software are shown.

Figure 3.1 – Structure elements for a CFD software (Versteeg and Malalasekera, 2007; Tawekal 2015).

1. Pre-processor:

The computational domain is defined with a geometry. The generated geometry is

then divided into smaller, non-overlapping sub-domains. This is often called a grid, or

mesh, of discrete cells (Versteeg and Malalasekera, 2007). A well-structured grid is

integral for achieving an accurate solution as all the calculations happen in these cells.

Once the computational domain is defined, the physical and chemical properties for

 3 CFD methodology for oil-water flow

35

the system must be specified. Based on these properties sensible boundary conditions

are chosen.

2. Solver:

There are three numerical solution techniques when it comes to CFD simulations: 1)

the finite difference method (FDM); 2) the finite element method (FEM) and 3) the

finite volume method (FVM). Which methods that is applied are different for each

system, but the FVM is the most used as this approach is suitable for any type of grid

(Versteeg and Malalasekera, 2007). The FVM method is used for this thesis. The

FVM method divides the computational domain into a finite number of continuous

control volumes (CV) and the conservation equations are applied in the control

volumes (Versteeg and Malalasekera, 2007).

3. Post-processor:

This is where the simulation results are processed and presented. Data visualization

tools such as 2D and 3D surface plots and particle tracking are applied at this stage to

collect data.

3.2 Mesh generation

The success of any CFD simulation relies on the quality of the mesh (grid). The quality of the

mesh affects the convergence, numerical solution and stability of a simulation (Lande, 2021).

This means that the mesh generation stage should receive adequate attention because as

shown by V. Hernandez-Perez et al. (2010): a high quality mesh will influence the results of

the simulation and affect the convergence rate for the chosen solver.

3.2.1 Mesh structure

As illustrated in Figure 3.2, the structure of a mesh can generally be divided into two groups:

structured and unstructured grids (Lande, 2021).

Figure 3.2 - (a) structured mesh and (b) unstructured mesh (Lande, 2021).

The choice of mesh structure depends on the complexity of the geometry. For complex

geometries, using a single-block structure may make it difficult to create a high-quality

structured grid. Often, this approach leads to high skewness and non-orthogonality. An

 3 CFD methodology for oil-water flow

36

advantage of the structured mesh is that the solution strategy for the solver is straightforward

due to the consistent number of neighboring cells.

An unstructured mesh is as the name implies, unstructured. This means that the elements do

not follow a regular pattern and every cell is considered to be a block. Generating a high-

quality unstructured mesh is difficult for several reasons:

- The solution of the numerical equations is complicated as each cell in the mesh

has an inconsistent number of neighboring cells.

- Solution time is increased as more demanding algorithms are required.

- Results in the near-wall areas are inaccurate as the boundary layers are not

properly resolved.

A hybrid mesh combines the elements of both structured and unstructured meshes. Figure 3.3

illustrates an example of a hybrid mesh, where cell shapes in the near-wall boundary layers

allow for improved resolution. The remaining mesh elements can take the shapes shown in

Figure 3.4.

Figure 3.3 - Hybrid mesh (Lande, 2021).

Figure 3.4 – Examples of cell shapes (Setaih et al., 2010).

3.2.2 Mesh quality

The quality of the generated mesh is assessed by observing and calculating the following

parameters:

1. Smoothness:

- Smoothness, also known as expansion rate, growth factor or uniformity, is the

transition between cell sizes in the grid. Figure 3.5 illustrates two transition steps

where a smooth transition is preferred.

 3 CFD methodology for oil-water flow

37

Figure 3.5 – Smoothness (What is a good Mesh?, 2014).

2. Skewness:

- Skewness defines the ideality of a cell or a face. It describes the angle between the

lines of a cell where 90° is the optimal angle. Angles smaller than 45° and larger

than 135° are considered highly skewed. It’s important to keep the skewness at an

acceptable level because initially the solver assumes that the cells are

equilateral/equiangular as illustrated in Figure 3.6 (Asyikin, 2012; Tawekal,

2015).

Figure 3.6 - Cell skewness(Asyikin, 2012).

3. Aspect ratio:

- Mesh aspect ratio is the ratio between the longest side, Δx, and the shortest side

Δy. See Figure 3.7 for an illustration.

Figure 3.7 – Aspect ratio (Lande, 2021).

- An aspect ratio (AR) as close to 1 is preferred as it means the cell is equilateral.

High aspect rations can increase the numerical diffusion and cause instabilities in

the solver (Greenshields, 2023). An AR between 1-20 is recommended in the most

important areas of the geometry like the near-wall boundary layers (Mesh Quality,

2022).

 3 CFD methodology for oil-water flow

38

4. Orthogonality:

- Mesh orthogonality is the angular deviation of the vector S (located at the face

center f) from the vector d connecting the two cell centers P and N (Figure 3.8)

(What is a good Mesh?, 2014).

- This factor mainly affects the diffusive terms and if the mesh has a high

orthogonality, non-orthogonal corrects must be used (Greenshields, 2023).

Figure 3.8 - Mesh orthogonality (What is a good Mesh?, 2014).

3.3 Modelling approaches

Most CFD software offer two main approaches for modelling multiphase flows: the Euler-

Lagrange approach and the Euler-Euler approach (Lian et al., 2022). In CFD software such as

OpenFOAM and ANSYS FLUENT, both approaches are available. Figure 3.9 show the

dominant modelling methods for multiphase flows in OpenFOAM, along with suggested

solvers.

Figure 3.9 - The two dominant methods of solving multi-phase flows in OpenFOAM (Multi-phase flow

simulations in OpenFOAM.).

 3 CFD methodology for oil-water flow

39

3.3.1 The Euler–Lagrange approach

The Euler-Lagrange approach treats the fluid phase as a continuum by solving the Navier–

Stokes equations. This approach is often used when the flow is a dispersion. The dispersed

phase is solved by tracking smaller particles like droplets or bubbles, via the computational

flow field. Momentum, mass and energy exchange can occur between the dispersed phase

and the fluid phase. This approach follows the assumption that the dispersed phase occupies a

small volume fraction. Droplet/particle trajectory calculations are done individually at

specified intervals during the fluid phase calculation (ANSYS FLUENT 12.0 Theory Guide,

2009).

3.3.2 Euler-Euler approach

In the Euler-Euler approach, the different phases are treated mathematically as

interpenetrating continua. Since the volume of a phase cannot be occupied by the other

phases, phasic volume fraction is introduced. These volume fractions follow two

assumptions: 1) They are continuous functions of space and time and 2) their sum is equal to

one. The derivation of the conservation equations for each phase is made to yield a set of

equations, with a similar structure for all phases (Adaze et al., 2019). Three different Euler-

Euler multiphase models are available in most CFD software: 1) The VOF model; 2) mixture

model and 3) Eulerian model.

3.3.2.1 The VOF model

Within the Euler-Euler approach, perhaps the most used model is the Volume of Fluid (VOF)

model. This model was developed by Hirt and Nichols (1979) and it received a lot attention

within the multiphase community. The VOF model is used for mixtures of two or more

immiscible fluids where tracking the interface between the different phases is of much

importance. This is done by a surface-tracking function applied to a fixed Eulerian mesh

(ANSYS FLUENT 12.0 Theory Guide 2009, Hirt and Nichols, 1979). This function will

calculate which fluid composition the cell is occupied by. Alongside the tracking function, a

single set of momentum equations is shared by the fluids. The use of the VOF model for two-

phase oil-water flows is well documented, please see the works of Alias et al. (2015), Chen et

al. (2023), Pouraria et al. (2016), Shuard et al. (2016), Song et al. (2021), Sunday et al. (2023)

and Kumara (2010).

3.3.2.2 The mixture model

In the mixture model, the phases are treated as interpenetrating continua. The model solves

the momentum equation for the mixture and prescribes relative velocities to describe the

dispersed phases (Multi-phase flow simulations in OpenFOAM). This model can be used as a

substitute for the Eulerian model as it’s less computationally expensive. For this scenario the

momentum, continuity and energy equations for the mixture, the volume fraction equations

for the secondary phases and the algebraic expressions for the relative velocities are solved

simultaneously. This model differs from the VOF model in two ways: 1) the mixture model

allows the phases to be interpenetrating. Therefore, the volume fractions α1 and α2 in a

control volume can be any value between 0 and 1, depending on the space occupied by the

phases and 2) the mixture model allows the phases to move at different velocities, using the

concept of slip velocities (ANSYS FLUENT 12.0 Theory Guide, 2009).

 3 CFD methodology for oil-water flow

40

3.3.2.3 Eulerian Model

The phases are treated as interpenetrating continua and a set of momentum and continuity

equations for each phase are solved. Coupling is achieved through the pressure and interphase

exchange coefficients. The way this coupling is handled depends on the types of phases

involved. This approach is often used if the system contains more than two phases (ANSYS

FLUENT 12.0 Theory Guide 2009).

3.4 Governing equations

The flow methodologies described in this section are based on the Reynolds-averaged

Navier-Stokes (RANS) equations as most cases require the need to solve turbulent flow. The

amount of computational resources needed to solve the instantaneous Navier-Stokes (N-S)

equations is unrealistic in most cases and the RANS approach is adopted (Adaze et al., 2019;

White, 1991). More details about RANS can be found in (Versteeg and Malalasekera, 2007).

Another approach, known as Direct numerical Simulation (DNS) (Hu et al., 2001;

Tryggvason et al., 2001), is based on the finite volume method. This approach completely

resolves the turbulence fluctuations, which is advantageous, but it demands significantly

more computational power compared to RANS (Sun and Xiao, 2015; Zhu et al., 2007). DNS

is slower and more expensive than the RANS approach and is therefore not widely used for

turbulent flows. DNS was not considered in this thesis for this reason.

When modelling an oil-water flow, several flow characteristics and assumptions are made to

develop a solvable model:

- The density difference and immiscibility of oil and water will cause the liquids to

form an interface between them.

- Mass transfers between the phases are ignored.

- The liquids are Newtonian and incompressible.

- Isothermal flow

3.4.1 Stratified flow solvers

When simulating stratified flows, the VOF method is commonly used due to its interface

tracking capabilities. In OpenFOAM, there are several solvers for multiphase flow that

utilizes the VOF method like interFoam and multiphaseInterFoam.

The total mass of the oil-water phases is constant throughout the cross-sectional area in the

axial direction, meaning the conservation equation is simplified to:

𝜕𝜌

𝜕𝑡
= 𝛻. (𝜌𝑈) = 0 (3.1)

where ρ and U are the density and velocity of the two-phase fluid, respectively.

Given the assumptions previously mentioned in chapter 3.4, the Navier-Stokes equations for

a fully developed flow in the axial direction is as follows:

𝜕𝜌𝑈

𝜕𝑡
+ ∇. (𝜌𝑈𝑈) = ∇𝑃 + ∇. [𝜇𝑒𝑓𝑓(∇𝑈 + ∇𝑈𝑇)] + (𝜌𝑔𝑠𝑖𝑛𝜃) + 𝐹𝑠 (3.2)

𝜕𝛼

𝜕𝑡
+ ∇. (𝛼𝑈) + ∇. (1 − 𝛼)𝛼𝑈𝑟 = 0 (3.3)

 3 CFD methodology for oil-water flow

41

where U is the axial velocity, ∇𝑃 is the pressure gradient, µeff is the effective dynamic

viscosity (µ+µt), g is the gravitational acceleration, θ is the inclination angle, Fs is the axial

direction body force and α is the fluid volume fraction.

Density and dynamic viscosity for the oil-water flow is calculated in each cell volume as

follows:

𝜌 = 𝛼𝑤𝜌𝑤 + (1 − 𝛼𝑤)𝜌𝑜 (3.4)

𝜇 = 𝛼𝑤𝜇𝑤 + (1 − 𝛼𝑤)𝜇𝑜 (3.5)

𝛼𝑤 + 𝛼𝑜 = 1 (3.6)

where subscript ‘o’ and ‘w’ represent oil and water respectively. The volume fraction has an

indicator function within the solver where α is represented as:

𝛼 {
1 𝑤𝑎𝑡𝑒𝑟
0 < 𝛼 < 1 𝑡𝑤𝑜 − 𝑝ℎ𝑎𝑠𝑒 𝑓𝑙𝑜𝑤
0 𝑜𝑖𝑙

 (3.7)

3.4.2 Dispersed flow solvers

When simulating dispersed flow, the solver framework needs to be able to handle the

complex fluid interactions that a dispersed flow regime introduces. This is handled by

implementing the Eulerian-Eulerian approach which treats each phase as a continuous fluid

with separate volume fractions for each phase (Greenshields, 2023). Below are the governing

equations for multiphaseEulerFoam from OpenFOAM which is based on the Eulerian-

Eulerian approach.

𝜕

𝜕𝑡
(∈𝑘 𝜌𝑘) + ∇ ∙ (∈𝑘 𝜌𝑘𝑈𝑘) = 0 (3.8)

𝜕

𝜕𝑡
(∈𝑘 𝜌𝑘𝑈𝑘) + ∇ ∙ (∈𝑘 𝜌𝑘𝑈𝑘𝑈𝑘) = −∈𝑘 ∇𝑝 + ∇ ∙ (∈𝑘 𝜏𝑘) +∈𝑘 𝜌𝑘𝑔 + 𝑀𝑘 (3.9)

Where subscript ‘k’ represents the water and oil phases, respectively. τ is the stress tensor and

is calculated as follows:

𝜏𝑘 = 𝜇𝑒𝑓𝑓 [𝛻𝑈𝑘 + (𝛻𝑈𝑘)𝑇 −
2

3
(𝛻 ∙ 𝑈𝑘)] 𝐼 (3.10)

As stated in Chen et al. (2023), the momentum transfer per unit of volume, Mk, is affected by

several forces. Drag, lift, virtual mass, turbulent dispersion, and wall lubrication forces will

affect the momentum transfer. The momentum transfer equation is expressed as:

Mo = −Mw = Mo
D + Mo

L + Mo
VM + Mo

TD + Mo
WL (3.11)

Where:

𝑀𝑜
𝐷 =

3

4
∈𝑜 𝜌𝑤

𝐶𝐷

𝑑𝑜
|𝑈𝑤 − 𝑈𝑜|(𝑈𝑤 − 𝑈𝑜) (3.12)

𝑀𝑜
𝐿 = −∈𝑜 𝜌𝑤𝐶𝐿(𝑈𝑤 − 𝑈𝑜) × (∇ × 𝑈𝑤) (3.13)

𝑀𝑜
𝑇𝐷 = −𝜌𝑤𝑘𝑤𝐶𝑇𝐷∇∈𝑜 (3.14)

𝑀𝑜
𝑉𝑀 =∈𝑜 𝜌𝑤𝐶𝑉𝑀 (

𝐷𝑈𝑤

𝐷𝑡
−

𝐷𝑈𝑜

𝐷𝑡
) (3.15)

 3 CFD methodology for oil-water flow

42

𝑀𝑜
𝑊𝐿 = −∈𝑜 𝜌𝑤 max (𝐶𝑤1 + 𝐶𝑤2

𝑅𝑜

𝑦
, 0)

|𝑈𝑟−(𝑈𝑟∙𝑛𝑤)𝑛𝑤|2

𝑅𝑜
𝑛𝑤 (3.16)

Here, Ro and do are the oil droplet radius and diameter, nw is the outward facing unit vector

on the wall and y is the distance from the wall. More details on the individual expressions in

the momentum equation can be found in the works of Cheng et al. (2018), Deen et al. (2001)

and Lopez de Bertodano et al. (1994). CD represents the drag coefficient and the model used

needs to be considered for each unique case. In the case of dispersed oil-water flow, the Ishii

and Zuber (1979) model can be applied as shown in Chen et al. (2023):

𝐶𝐷 =
2

3
 (

𝑔(𝜌𝑤−𝜌𝑜)𝑑𝑜
2

𝜎
)

1

2
{

1+17.67|𝑓(𝜖𝑜)|
6
7

18.67𝑓(𝜖𝑜)
}

2

 (3.17)

𝑓(𝜖𝑜) = √1 − 𝜖𝑜 (
𝜇𝑤

𝜇𝑚
) (3.18)

𝜇𝑚

𝜇𝑤
= (1 − 𝜖𝑜)

2.5(𝜇𝑜+0.4𝜇𝑤)

𝜇𝑜+𝜇𝑤 (3.19)

It is important to note that the presented equations are not valid when the system experiences

phase inversion or separating flows. The phase inversion creates a shift where the dispersed

phase can become the continuous phase and vice versa (phase inversion is discussed in

chapter 2.2.3). To resolve this, the OpenFOAM framework provides additional interface

treatment. Three variations are available: hyperbolic, linear and no blending. The treatment

allows for the dispersed phase and continuous phase to be determined locally in each cell.

The available blending treatment provides a feasible mechanism to correct the momentum

exchange as shown in Chen et al. (2023).

3.5 Turbulence models

Most pipe flow scenarios are turbulent and thus, must be included in the numerical model.

This is achieved by applying the RANS equations, supplemented with a turbulence model.

Within the RANS framework, the Reynolds stress tensor is modelled to account for the

effects of turbulence and increased viscosity. For the turbulence, the k-ε and k-ω models are

commonly used. These models are referred to as two-equation models, where the first

equation solves for the turbulent kinetic energy, k, and the second equation for the turbulent

dissipation, ε, or the specific turbulence dissipation rate, ω. The selected turbulence model is

integrated into the RANS framework and computed accordingly.

3.5.1 k-ε model

The k-ε model is a highly efficient turbulence model which can be effectively used for many

different two-phase flow situations. The model is popular due to its robustness, computational

economy, and reasonable accuracy for a wide range of flows such as stratified flows, churn

flows, annular flows, sedimentation and bubbly flows as reported by Han (2005). The k-ε

model was initially proposed by Launder and Spalding (1974), and is only valid for high

Reynolds numbers, e.g. fully turbulent flows. The equations for the standard k-ε turbulence

model are given below.

 3 CFD methodology for oil-water flow

43

The k-ε model uses k and ε to define the velocity scale ʋ and length scale Ɩ to represent the

large-scale turbulence as follows:

ʋ = 𝑘
1

2 (3.20)

Ɩ =
𝑘

3
2

𝜀
 (3.21)

The eddy viscosity, µ𝑡, is specified as:

µ𝑡 = 𝐶 𝜌 𝑣 𝑙 = 𝜌 𝐶µ (
𝑘2

𝜀
) (3.22)

The transport equations for k and ε are:

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑼𝒊) =

𝜕

𝜕𝑥𝑗
((𝜇 +

µ𝑡

𝜎𝑘
) (

𝜕𝑘

𝜕𝑥𝑗
)) + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜀 − 𝑌𝑀 (3.23)

𝜕(𝜌𝜀)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝜀𝑼𝒊) =

𝜕

𝜕𝑥𝑗
((𝜇 +

µ𝑡

𝜎𝜀
) (

𝜕𝜀

𝜕𝑥𝑗
)) + 𝐶1𝜀 (

𝜀

𝑘
) (𝐺𝑘 + 𝐶3𝜀𝐺𝑏) − 𝐶2𝜀𝜌 (

𝜀2

𝑘
) (3.24)

Where:

- Gk is the generation of turbulent kinetic energy due to the mean velocity gradients.

- Gb is the generation of turbulent kinetic energy due to buoyancy.

- YM is the fluctuating dilatation in compressible turbulence in the dissipation rate.

- C1ε, C2ε and C3ε are model constants.

- σk and σε are related to the turbulent Prandtl numbers.

For an oil-water flow, Gb=0 since the system has a constant temperature and YM is neglected

due to the flow being incompressible.

These equations contain a total of five adjustable constants which through comprehensive

data fitting for turbulent flow has been shown to have the following values (Versteeg and

Malalasekera, 2007):

𝐶µ = 0.09 𝜎𝑘 = 1.00 𝜎𝜀 = 1.30 𝐶1𝜀 = 1.44 𝐶2𝜀 = 1.92

To calculate the Reynolds stresses the Boussinesq relationship is used accordingly (Versteeg

and Malalasekera, 2007):

𝜌𝑢′𝑖𝑢′𝑗̅̅ ̅̅ ̅̅ ̅ = µ𝑡 (
𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) −

2

3
𝜌𝑘𝛿𝑖𝑗 = 2µ𝑡𝑆𝑖𝑗 −

2

3
𝜌𝑘𝛿𝑖𝑗 (3.25)

Several sub-models have been developed from the k-ε model to increase its accuracy for a

wider range of situations. One of these models are the RNG-based k-ε model. This model is

derived from the instantaneous Navier-Stokes equations using a renormalization group

(RNG) method. The model was proposed by Yakhot and Orszag (1986) and made four main

 3 CFD methodology for oil-water flow

44

changes to the standard k-ε model: 1) Additional term in the ε equation for improved

accuracy for rapidly strained flows; 2) Larger concentrations for swirl effects; 3) Analytical

solution for the turbulent Prandtl numbers and 4) Analytical solution for the effective

viscosity which accounts for low Reynolds number effects. The governing equations of RNG

k-ε are:

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑼𝒊) =

𝜕

𝜕𝑥𝑗
(𝛼𝑘𝜇𝑒𝑓𝑓(

𝜕𝑘

𝜕𝑥𝑗
)) + 𝐺𝑘 − 𝜌𝜀 (3.26)

and

𝜕(𝜌𝜀)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝜀𝑼𝒊) =

𝜕

𝜕𝑥𝑗
(𝛼𝜀𝜇𝑒𝑓𝑓(

𝜕𝜀

𝜕𝑥𝑗
)) + 𝐶1𝜀 (

𝜀

𝑘
) (𝐺𝑘) − 𝐶2𝜀

∗ 𝜌 (
𝜀2

𝑘
) (3.27)

where,

𝐺𝑘 = −𝜌𝑢′
𝑖𝑢′

𝑗
̅̅ ̅̅ ̅̅ ̅ 𝜕𝑈𝑗

𝜕𝑥𝑖
 (3.28)

𝐶2𝜀
∗ is calculated by:

𝐶2𝜀
∗ = 𝐶2𝜀 +

𝐶𝜇𝜌𝑣3(1−
𝑣

𝑣𝑜
)

1+𝛽𝑣3 (3.29)

where,

𝑣 =
𝑆𝑘

𝜀
 (3.30)

For better handling of how the effective turbulent transport varies with the effective Reynolds

number, the turbulent viscosity is calculated by the following equation:

𝑑 (
𝜌2𝑘

√𝜀𝜇
) = 1.72

𝑣̂

(√𝑣̂3−1+𝐶𝑣)
𝑑𝑉̂ (3.31)

where,

𝑣 =
𝜇𝑒𝑓𝑓

𝜇
 (3.32)

Equation 3.31 allows for better handling of low-Reynolds number and near-wall flows

(ANSYS FLUENT 12.0 Theory Guide, 2009).

αk and 𝛼𝜀 are the inverse effective Prandtl numbers and have the following relationship:

|
𝛼−1.3929

𝛼0−1.39290
|

0.6321

|
𝛼+2.3929

𝛼+2.3929
|

0.3679

=
𝜇

𝜇𝑒𝑓𝑓
 (3.33)

The commonly used model constants for the RNG k-ε model are given below (Versteeg and

Malalasekera, 2007):

𝐶µ = 0.0845 𝜎𝑘 = 0.7194 𝜎𝜀 = 0.7194 𝐶1𝜀 = 1.42 𝐶2𝜀 = 1.68 𝑣0 = 4.38 𝛽 = 0.012

 3 CFD methodology for oil-water flow

45

Another k-ε model derivative is the realizable k-ε model developed by Shih et al. (1995). The

model introduces a new dissipation rate equation and eddy viscosity formulation. For

instances with large mean strain rates (Sk/ε > 3.7), Speziale (1990) showed that the normal

stresses can become negative and Schwarz’ inequality for shear stresses can be violated. The

standard k-ε sets Cµ=0.09 to prevent this, while Shih et al. (1995) proposed the following

formulation for Cµ when calculating the eddy viscosity:

𝐶𝜇 =
1

𝐴0+𝐴𝑠
𝑘𝑈∗

𝜀

 (3.34)

where,

𝑈∗ = √(𝑆𝑖𝑗𝑆𝑖𝑗 + Ω̃𝑖𝑗 Ω̃𝑖𝑗 (3.35)

and,

 Ω̃𝑖𝑗 = Ω𝑖𝑗 − 2𝜀𝑖𝑗𝑘𝜔𝑘

 Ω𝑖𝑗 = Ω̃𝑖𝑗 − 𝜀𝑖𝑗𝑘𝜔𝑘

where Ω̃𝑖𝑗 is the mean rate of rotation tensor viewed in a rotating reference frame with the

angular velocity 𝜔𝑘.

where,

𝐴0 = 4.04 and 𝐴𝑠 = √6𝑐𝑜𝑠𝜑

𝜑 =
1

3
𝑎𝑟𝑐 cos(√6 𝑊) , 𝑊 =

𝑆𝑖𝑗𝑆𝑗𝑘𝑆𝑘𝑖

𝑆3̃
, 𝑆̃ = √𝑆𝑖𝑗𝑆𝑖𝑗 , 𝑆𝑖𝑗 =

1

2
(

𝜕𝑈𝑗

𝜕𝑥𝑖
+

𝜕𝑈𝑖

𝜕𝑥𝑗
)

The equations above shows that the Cµ variable is a function of the mean strain and rotation

rates, the angular velocity of the system rotation, and the turbulence fields (ANSYS FLUENT

12.0 Theory Guide, 2009).

The transport equations for the realizable k-ε model are as follows:

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑼𝒊) =

𝜕

𝜕𝑥𝑗
((𝜇 +

µ𝑡

𝜎𝑘
) (

𝜕𝑘

𝜕𝑥𝑗
)) + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜀 − 𝑌𝑀 (3.36)

𝜕(𝜌𝜀)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝜀𝑼𝒊) =

𝜕

𝜕𝑥𝑗
((𝜇 +

µ𝑡

𝜎𝜀
) (

𝜕𝜀

𝜕𝑥𝑗
)) + 𝜌𝐶1𝑆𝜀 − 𝜌𝐶2 (

𝜀2

𝑘+√𝑣𝜀
) + 𝐶1𝜀 (

𝜀

𝑘
) 𝐶3𝜀𝐺𝑏 (3.37)

𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜀
 (3.38)

Where 𝐶1 = max [0.43,
𝑣

𝑣+5
] , 𝑣 = 𝑆 (

𝑘

𝜀
) , 𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗 . 𝐺𝑘 𝑎𝑛𝑑 𝐺𝑏 , are the same as with the

standard k-ε model.

The realizable k–ε turbulence model is mostly used for high Reynolds-number water-air

flows (Passoni et al., 2023). As there is limited information about its use for oil-water flows,

little can be said for its accuracy in predicting such a flow. However, initial results from

studies by Adaze et al. (2019), Han (2005) and Shih et al. (1995) suggests that the realizable

k–ε turbulence model could provide increased accuracy in systems with complex secondary

 3 CFD methodology for oil-water flow

46

and separated flows. It remains uncertain whether this would apply to an oil-water flow and

should be investigated.

Additionally, there are Low-Reynolds-Number (LRN) versions of the k-ε model. These are

shown to be effective in certain cases (Rahman and Siikonen, 2005). For oil-water flows, the

model is often used in combination with the standard k-ε model. In these cases, the LRN

model deals with the near-wall area and the standard k-ε model is applied for the turbulent

flow. An example of this application is documented by Sunday et al. (2023).

3.5.2 k-ω model

Another well-known two-equation turbulence model is the k-ω model proposed by Wilcox

(2006). The model replaces the dissipation rate equation from the k–ε model with the eddy

frequency (ω), the specific dissipation rate. The model incorporates modifications for low-

Reynolds-number effects, compressibility and shear flow spreading (ANSYS FLUENT 12.0

Theory Guide, 2009). The k-ω model is advantageous compared to the k–ε model as it does

not require any wall functions for velocity distribution in the near-wall area. This leads to

better performance for flows with adverse pressure gradients compared to the k–ε model

(Blakeslee, 2021). The transport equations for the k-ω model are:

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑼𝒊) =

𝜕

𝜕𝑥𝑗
(𝛤𝑘 (

𝜕𝑘

𝜕𝑥𝑗
)) + 𝐺𝑘 − 𝑌𝑘 (3.39)

𝜕(𝜌𝜔)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝜔𝑼𝒊) =

𝜕

𝜕𝑥𝑗
(𝛤𝜔 (

𝜕𝜔

𝜕𝑥𝑗
)) + 𝐺𝜔 − 𝑌𝜔 (3.40)

Where:

- Gk is the generation of turbulent kinetic energy due to mean velocity gradients and

is defined in the same way as in the k–ε model (Equation 3.28).

- Gω is the generation of ω.

- 𝛤𝑘 and 𝛤𝜔 is the effective diffusivity of k and ω, respectively.

- 𝑌𝑘 and 𝑌𝜔 is the respective dissipation due to turbulence for k and ω.

The effective diffusivities are given by:

𝛤𝑘 = 𝜇 +
𝜇𝑡

𝜎𝑘
 (3.41)

𝛤𝜔 = 𝜇 +
𝜇𝑡

𝜎𝜔
 (3.42)

Where 𝜎𝑘 and 𝜎𝜔 is the turbulent Prandtl numbers. 𝜇𝑡 which represents the turbulent

viscosity is computed as follows:

𝜇𝑡 = 𝛼∗ 𝜌𝑘

𝜔
 (3.43)

𝛼∗ is a Low-Reynolds-Number correction coefficient that damps the turbulent viscosity. It is

given by:

𝛼∗ = 𝛼∞
∗ (

𝛼0
∗ +

𝑅𝑒𝑡
𝑅𝑘

1+
𝑅𝑒𝑡
𝑅𝑘

) (3.44)

 3 CFD methodology for oil-water flow

47

Where 𝑅𝑒𝑡 =
𝜌𝑘

𝜇𝜔
, 𝑅𝑘 = 6, 𝛼0

∗ =
𝛽𝑖

3
 and 𝛽𝑖 = 0.072. It’s important to note that in the k-ω

model for high-Reynolds-number 𝛼∗ = 𝛼∞
∗ = 1.

Gω is given by:

𝐺𝜔 = 𝛼 (
𝜔

𝑘
) 𝐺𝑘 (3.45)

In Equation 3.45, α is given by:

𝛼 =
𝛼∞

𝛼∗
(

𝛼0+
𝑅𝑒𝑡
𝑅𝜔

1+
𝑅𝑒𝑡
𝑅𝜔

) (3.46)

α behaves the same way as α* where its equal to 1 in the high-Reynolds numbers.

The dissipation of k is given as follows:

𝑌𝑘 = 𝜌𝛽∗𝑓𝛽∗𝑘𝜔 (3.47)

Where,

𝑓𝛽∗ = {
1 𝑥𝑘 ≤ 0
1+680𝑥𝑘

2

1+400𝑥𝑘
2 𝑥𝑘 > 0

 (3.48)

where

𝑋𝑘 =
1

𝜔3

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 (3.49)

And

𝛽∗ = 𝛽𝑖[1 + 𝜍∗𝐹(𝑀𝑡)] (3.50)

𝛽𝑖
∗ = 𝛽∞

((
4

15
)+(

𝑅𝑒𝑡
𝑅𝛽

)

4

)

1+(
𝑅𝑒𝑡
𝑅𝑒𝛽

)

4 (3.51)

The dissipation of ω is given by:

𝑌𝜔 = 𝜌𝛽𝑓𝛽𝜔2 (3.52)

where

𝑓𝛽 =
1+70𝑥𝜔

1+80𝑥𝜔
 (3.53)

𝑋𝜔 = |
Ω𝑖𝑗Ω𝑖𝑗𝑆𝑘𝑖

(𝛽∞
∗ 𝜔)^3

| (3.54)

Ω𝑖𝑗 =
1

2
 (

𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
) (3.55)

The strain rate tensor, 𝑆𝑘𝑖 =
1

2
(

𝜕𝑈𝑗

𝜕𝑥𝑖
+

𝜕𝑈𝑖

𝜕𝑥𝑗
) and 𝛽𝑖

∗ is defined in Equation 3.51, whilst β is

defined as:

 3 CFD methodology for oil-water flow

48

𝛽 = 𝛽𝑖 [1 −
𝛽𝑖

∗

𝛽𝑖
 𝜍∗𝐹(𝑀𝑡)] (3.56)

F(Mt) is the compressibility function and is given by:

𝐹(𝑀𝑡) = {
0 𝑀𝑡 ≤ 𝑀𝑡0

𝑀𝑡
2 − 𝑀𝑡0

2 𝑀𝑡 > 𝑀𝑡0
 (3.57)

Here 𝑀𝑡
2 =

2𝑘

𝑎2, 𝑀𝑡0 = 0.25 and 𝑎 = √𝛾𝑅𝑇. Here γ is the compressibility factor, R is the

universal gas constant and T the absolute temperature. It’s important to note that for ω, as

with k, that in the high-Reynolds number form of the k- ω model, 𝛽𝑖
∗ = 𝛽∞

∗ and for the

incompressible form 𝛽∗ = 𝛽𝑖
∗.

Due to the k- ω model’s strong sensitivity to the freestream boundary condition for external

flow applications (Wilcox 2006), a modified version was suggested by Menter (1994).

Menter (1994) proposed a new model called Shear Stress Transport k-ω where this sensitivity

is overcome. There’s been several iterations of this model over the years, but most CFD

software use the version developed by Menter et al. (2003). The SST model effectively

blends the robust and accurate formulation of the k-ω model in the near-wall region with the

free-stream independence of the k-ε model in the far field. This is done by converting the k-ε

model into a k-ω formulation. The SST model is similar to the k-ω model but includes the

following refinements (ANSYS FLUENT 12.0 Theory Guide, 2009):

• The SST model incorporates a damped cross-diffusion derivative term in the ω

equation.

• The model has a blending function which is designed to be one in the near-wall region

which activates the k-ω model, and zero away from the surface, which activates the k-

ε model.

• Turbulent viscosity is modified with regards to the transport of the turbulent shear

stress.

• The model constants are different.

Further details about the SST k-ω model and its equations can be found in ANSYS FLUENT

12.0 Theory Guide (2009). The refinements make the model more accurate and reliable than

the standard version. Additionally, the SST k-ω model makes it easier to estimate the onset

and degree of flow separation under adverse pressure gradients by including transport effects

into the eddy-viscosity approximation (De la Cruz-Ávila et al., 2022).

3.5.3 Near wall treatment

Near wall treatment considerations are important when dealing with turbulent flows, as the

presence of walls significantly influences turbulent behavior. The mean velocity field is

affected through the no-slip condition that must be satisfied at the wall. The turbulence is also

changed by the presence of a wall in non-trivial ways. Very close to the wall, viscous

damping reduces tangential velocity fluctuations, while kinematic blocking reduces the

normal fluctuations. Towards the outer part of the near wall region, turbulence is rapidly

augmented due to the production of turbulence kinetic energy due to the large gradients in the

mean velocity (ANSYS FLUENT 12.0 Theory Guide, 2009).

 3 CFD methodology for oil-water flow

49

There are two approaches to modelling the near-wall region. One approach involves

integrating the turbulence model to resolve the viscosity-affected region using a fine mesh all

the way to the wall, including the viscous sublayer (preferably y+=1). This approach fits

turbulence models that can solve the flow in the near-wall area like the SST k-ω model. The

second approach is using wall functions for the near-wall area. Wall functions are empirical

equations utilized to capture the physics of the flow in the near-wall region. The functions

bridge the inner region between the wall and the fully developed turbulence region, providing

near-wall boundary conditions for the momentum and turbulence transport equations, rather

than to specify those conditions directly at the wall itself (Versteeg and Malalasekera, 2007).

When used correctly, wall functions yield a relatively accurate result, while significantly

reducing computational time (Davidson, 2022).

 4 Simulation strategy

50

4 Simulation strategy
The simulation work in this thesis is done using the open source CFD software OpenFOAM.

OpenFOAM (Open Field Operation and Manipulation) is a Linux based C++ toolbox for

customized numerical solvers. The software is open source which allows the user to make

any changes to the source material. This makes OpenFOAM a very flexible numerical tool

and can be customized for almost any system. With the paraView utility the simulated data is

visualized and enables the creation of 2D/3D plots as well as extraction of data points.

4.1 OpenFOAM simulation structure

The case structure for a simulation in OpenFOAM is always the same regardless of the

system. The setup consists of 3 folders: 0, constant and system. Each folder contains a

different part of the simulation setup and must be configured correctly for each system.

Figure 4.1 illustrates an example of how a case structure could look like. Each part of the

simulation structure is presented and explained in detail in chapter 4.3.

Figure 4.1 - OpenFOAM case structure example (Medina et al., 2015).

4.2 Pre-processing

4.2.1 Pipe geometry.

The geometry for this CFD study is based on the experimental work of Kumara (2010) and

was created by the group project of Vindenes et al. (2021). The computational domain is set

up to emulate the test section of the test rig. The test rig is shown in Figure 4.2 and the test

 4 Simulation strategy

51

section is shown in Figure 4.3. The test section is a circular, stainless-steel pipe with a length

of 15 meters and diameter of 56 mm.

Figure 4.2 – Simplified flow sheet of the test rig (Kumara et al., 2009).

In the test section a single-beam gamma densitometry was used to ascertain the phase fraction

measurements over the cross-sectional area of the pipe. Particle image velocimetry (PIV) was

used to measure the velocity and differential pressure transmitters for the pressure drop over

the test section. Towards the end of the test section, a short transparent pipe section was fitted

for visual observations. Figures 4.2 and 4.3 are images taken from this pipe section.

Figure 4.3 - Test section for the experimental study by (Kumara et al., 2009).

4.2.2 Mesh generation.

The mesh used for this study is the one created by the group project of Vindenes et al. (2021).

The mesh is created using SALOME 9.7 which is an open-source 3D CAD software. This

software provides a parametric approach when designing and meshing geometries. This

allows for a visual approach when generating the mesh and gives the user more information

when controlling the mesh quality.

 4 Simulation strategy

52

When generating a mesh for a circular pipe there is two common structures that are used: the

OH structure (butterfly grid) and tetrahedral structure (Lande, 2021). The OH structure

effectively splits the pipe into five blocks. This allows for very fine boundary layers with

good resolution at the pipe wall but leaves the center of the pipe with a coarser mesh. In total

the group project made three mesh iterations in which two were OH meshes. The OH meshes

can be seen in Figure 4.4.

Figure 4.4 - OH mesh 1 & 2 (Vindenes et al. 2021).

From Figure 4.4 one can see that there is bending of the boundary layers at the corners of the

block structure. This reduces the quality of the mesh as the skewness increases, which can

cause instabilities for the solver. The second mesh used the same structure but with a finer

mesh. Some of the boundary layer bending was resolved but led to a doubling of the total

number of cells and required more computational power. The third iteration was created

using a MEFISTO tetrahedral grid (CAD Exchanger SDK: Computational meshers). This

mesh consists of 10 viscous layers and a linearly increasing spacing along the pipe. This

hybrid mesh had satisfactory resolution for the boundary layers while providing a finer mesh

in the central areas. The created mesh was imported from SALOME to OpenFOAM. More

details about the mesh are found in APPENDIX B. The final mesh iteration is shown in

Figure 4.5.

Figure 4.5 - Mesh iteration 3 (a) Cross sectional, (b) axial view and (c) isometric view (Vindenes et al. 2021).

 4 Simulation strategy

53

4.3 Case structure

In this section, each folder in the simulation setup is presented and explained. All the base

files are taken from the multiphase dam break tutorial in OpenFOAM and are customized for

this study. The different simulation files can be found in Appendix C-E.

4.3.1 0 folder

The boundary conditions for the simulations are found in the ‘0’ folder in OpenFOAM. For

stratified oil-water simulations the inlet section in the geometry is divided into two equal

sections as seen in Figure 4.6. Oil is introduced in the top section of the pipe and water at the

bottom part of the pipe. This leads to a stratified flow just behind the inlet section due to the

density differences of the fluids. Figure 4.7 shows how the inlet section is divided in

OpenFOAM. Here, blue and red represents the oil and water inlet, respectively.

Figure 4.6 - Schematic representation of stratified oil-water flow (Kumara 2010).

Figure 4.7 - Inlet section in the OpenFOAM environment.

The ‘0’ folder includes 6-7 different files, depending on what solver and turbulence model

are used, that are used to define the boundary conditions for the simulation. The boundary

conditions for a simulation applying the SST k-ω turbulence model and the interFoam solver

with a mixture velocity of 0.50 m/s and 0.25 water cut, are presented in table 4.1.

 4 Simulation strategy

54

The water cut is decided by manipulating the inlet velocities. Since the area of the inlets are

equal, Equation 2.1 and 2.4 can be used to determine the inlet velocity for oil and water. Most

outlet values are defined as zeroGradients which means that the specific value normal to the

flow outlet is zero. For the velocity (U), the no slip condition is applied at the walls, while

wall functions are utilized for the turbulence parameters such as omega, k, epsilon and nut.

For the hydrostatic pressure (p_rgh), a fixed flux pressure is applied. This adjusts the pressure

gradient so that the boundary flux matches the velocity boundary condition for solvers that

include body forces such as gravity and surface tension (Greenshields, 2023). Lastly, the k

and omega starting values are calculated using Equations 4.1-4.3.

𝑘 =
3

2
(𝐼|𝑈|)2 (4.1)

𝜔 =
𝑘0.5

𝐶𝜇
0.25𝐿

 (4.2)

𝐼 = 0.16 ∗ 𝑅𝑒−(
1

8
)
 (4.3)

where I is the turbulence intensity, U is the inlet velocity and Re is the Reynolds number.

 4 Simulation strategy

55

Table 4.1 - Boundary conditions for a simulation using the SST k-ω turbulence model and interFoam solver.

 U [m/s] Alpha.water

[-]

P_rgh [𝑘𝑔/𝑚𝑠2] Nut [m2s-1] Omega [s-1] K [m2s-2]

Inlet_water

fixedValue

Value: 0.25

fixedValue

Value: 1

fixedFluxPressure

Value: 100000

 fixedValue

Value: 1.3472

fixedValue

Value: 0.0017

Inlet_oil fixedValue

Value: 0.75

fixedValue

Value: 0

fixedFluxPressure

Value: 100000

 fixedValue

Value: 0.5136

fixedValue

Value: 0.00022

Outlet zeroGradient zeroGradient fixedFluxPressure

Value: 100000

 zeroGradient zeroGradient

Wall noSlip zeroGradient fixedFluxPressure

Value: 100000

nutkWallFunction

Value: 0

“.*” - calculated

omegaWallFunction

Value: 1

kqRWallFunction

Value: 0.003

defaultFaces Empty Empty Empty Empty Empty

 4 Simulation strategy

56

4.3.2 Constant folder

In the ‘constant’ folder, the physical properties of the fluid are specified. This folder contains

three files: ‘g’, ‘momentumTransport’ and ‘transportProperties’. The ‘g’ file defines the

gravitational force that affects the system. The ‘momentumTransport’ file specifies whether

the flow is laminar or turbulent, and which turbulence model is used is specified in this

folder, if turbulent flow is chosen. The ‘transportProperties’ file specifies the values of fluid

properties like kinematic viscosity, density and surface tension. Whether the liquid is

Newtonian or non-Newtonian, is also defined here. The generated mesh is also located in this

folder in the form of a “blockMeshDict” or a “polyMesh” folder. Since the generated mesh

was imported from SALOME, a polyMesh folder was created due to the size of the geometry.

4.3.3 System folder

The ‘system’ folder consists of five files which control how the simulation is performed. In

these files the time step, discretization schemes, solution criteria etc. are set.

4.3.3.1 Controldict

At the beginning of every OpenFOAM simulation the solver sets up a database that control

the input and output of the simulation. In the controldict dictionary several essential control

parameters can be adjusted, like time step, courant number and run time. For simulations

using the interFoam solver, the courant number should never exceed 0.5 (Greenshields,

2023). The courant number is defined as:

𝐶𝑜 =
∆𝑡|𝑈|

∆𝑥
 (4.4)

Where Δx is cell width in the velocity direction, U is the velocity and Δt is the time step. This

means in order for the solver to maintain a max courant number of 0.5, the time step must be

adjustable. This essentially means if the velocity increases, the time step must decrease. The

values used for the simulations in this thesis is:

- Δt = 0.001

- maxCo = 0.5

- maxDeltaT = 0.1

These values were chosen to ensure a smooth simulation as well as maintaining an accurate

solution.

4.3.3.2 decomposeParDict

Oil-water simulations are complex and requires a lot of calculations. To cut down on how

long each simulation took, the computational domain was decomposed (split) into several

sub-domains. The number of sub-domains is user specified but cannot exceed the number of

available CPUs on the computer. The computer that the simulations were performed on had a

6 core CPU, so 6 sub-domains with an equal number of cells were created.

 4 Simulation strategy

57

4.3.3.3 fvSchemes

Solving the equations required for the simulation involves discretizing them (Versteeg and

Malalasekera, 2007). OpenFOAM has a large library for this and can be customized

according to the requirements of the user. In the ‘fvscheme’ file all the discretization schemes

for the different equations are chosen. The different schemes are as follows (Greenshields,

2023):

- ddtSchemes: This sets the time scheme. For this thesis the Euler scheme is used

which is a transient, first order bounded implicit scheme. This scheme fits well

with the small-time steps that are used when bounding the courant number to 0.5.

- gradSchemes: The gradient term scheme. Here gauss linear is used which

indicates a standard finite volume discretization with Gaussian integration and

linear interpolation.

- divSchemes: Divergence scheme, i.e. terms of the form ∇ ∙. These are the most

important schemes in CFD simulations. These types of schemes always use the

Gauss scheme and the difference in selection comes from the interpolation

scheme. Depending on which field is discretized the interpolation schemes are

different. Most advective terms are usually in the form div(phi, …) where phi

denotes the volumetric flux of velocity on the cell faces. For example, in this

thesis the velocity flux field is denoted div(rho*phi, U) and uses the Gauss

linearUpwind grad(U) scheme. LinearUpwind is an unbounded second order,

upwind-biased scheme that is well suited for velocity. Additionally, for the two-

phase flow in this thesis, the div(phi, alpha) scheme is very important as this

calculates and reconstructs the cells that contain the oil-water interface.

- laplacianSchemes: Defines the Laplacian scheme which is applied to equation

terms with the Laplacian operator ∇2. This is set to the default option which is

Gauss linear corrected. ‘Corrected’ indicates an unbounded, conservative and

second order approach to the surface normal gradient.

- interpolationSchemes: This sub-dictionary contains terms that are interpolations of

values, typically from cell centers to face centers. Mostly used for the

interpolation of velocity to face centers in the calculations of the flux (phi). This is

by default set to linear.

- snGradSchemes: Stands for surface normal gradient schemes. This scheme

evaluates the gradient normal to the face center shared by two cells. This scheme

is set to ‘corrected’.

4.3.3.4 fvSolution

This sub-directory decides which equation solver is used, tolerances and solution algorithms.

In the simulations the PIMPLE algorithm is used for the pressure-velocity coupling. The

pimple algorithm combines the PISO and SIMPLE algorithms (Greenshields, 2023). Figure

4.8 illustrates the solution strategy for the PIMPLE algorithm. In the simulations

‘nCorrectors’ is set to 2, which indicate how many times the pressure equation is solved in

the outer loop.

 4 Simulation strategy

58

Figure 4.8 - PIMPLE algorithm in OpenFOAM (Niotis et al., 2019).

For the volume fraction several inputs must be made. ‘nAlphaCorr’ is set to 1 and indicate

how many times the algorithm loops the volume fraction calculation. ‘nAlphaSubCycles’ is

the number of times the volume fraction is calculated per ‘nAlphaCorr’. This number is set to

1 in the simulations. ‘cAlpha’ is the compression term at the interface for the transport

equation. Here a value of 2 is chosen meaning an enhanced treatment for the oil-water

interface. The remaining inputs in ‘fvSolution’ involve pressure correction and turbulence

model parameter corrections. Some of the ‘fvSolution’ settings are presented in table 4.2, and

the complete file is found in Appendix E.

Table 4.2 – Solution criteria used for the simulations.

 P_corr P_rgh P_rghFin

al

(U|k|omega|epsilon) (U|k|omega|epsilon)

Final

Solver PCG GAMG GAMG smoothSolver smoothSolver

Preconditioner GAMG

Smoother GaussSeidel GaussSeidel symGaussSeidel symGaussSeidel

Tolerance 1*10-5 5*10-9 5*10-9 1*10-6 1*10-8

relTol 0 0 0 0 0

 4 Simulation strategy

59

GAMG (Geometric-agglomerated Algebraic Multigrid) is used for its ability to generate a

quick solution. It does this by generating a quick solution on a mesh with small number of

cells; mapping this solution onto a finer mesh; using it as an initial guess to obtain an

accurate solution on the fine mesh (Greenshields, 2023). By applying a smoothing scheme

such as Gauss-Seidel this process results in a quicker calculation time.

4.3.3.5 setFieldsDict

The ‘setFieldsDict’ sub-directory is used to pre-fill the pipe with water before starting the

simulation. This technique is advantageous as it reduces the simulation time.

4.4 Interface treatment

As reviewed in chapter 2, the need for additional interface treatment for a two-phase oil-

water flow is essential for increasing the simulation accuracy. Two interface treatment

approaches were attempted in this thesis: 1) Customizing the k-ε turbulence model to apply

wall-like conditions to the oil-water interface and 2) turbulence damping at the oil-water

interface.

The application of the wall-like conditions to the oil-water interface as outlined in Liu et al.

(2022) was attempted. The source code for the k-ε turbulence model was taken from the

OpenFOAM framework. The code was then customized so that the proposed conditions only

applied in the cells that contained the oil-water interface. Several attempts were made to

make this work but ultimately failed due to lack of coding knowledge in C++. The

customized code “worked” but the logic implemented to find the interface cells was

unsuccessful, so the proposed conditions were never applied to the simulation. The

customized code can be found in Appendix F.

For the application of turbulence damping at the oil-water interface, the scheme developed by

Fan and Anglart (2019, 2020) was used. This turbulence damping scheme was applied to the

entire flow field, so it had to be customized so that it was only applied at the cells containing

the oil-water interface. As with the turbulence model, this was a complicated task. This

customization also failed due to the same reasons the customized turbulence model did. This

led to the simulations being performed with only the interface treatment provided by

OpenFOAM. The source-code for the turbulence damping scheme is found in Appendix G.

4.5 Processing

The chosen solvers for the two-phase oil-water simulations were interFoam and

multiphaseInterFoam. These solvers are based on the VOF model which is discussed in detail

in chapter 3. Although subtle, the difference between the two solvers is that the

multiphaseInterFoam solver includes additional surface-tension and contact-angle effects for

each phase. Initial simulations were performed to determine which solver to use going

forwards. The differences between the two solvers are discussed in chapter 5.2.

 4 Simulation strategy

60

The simulations performed in this study are done at three different water cuts for two

different mixture velocities. A mixture velocity of 0.50 m/s was used for water cuts 0.25,

0.50, 0.75, and 0.25 and 0.50 for a mixture velocity of 0.68 m/s.

4.6 Post-processing

The post-processing work is done with the paraView utility. ParaView is launched by writing

paraFoam in the terminal. Simulation data is analyzed using the plot over line tool which

allows for plotting data at any point, and any direction. The mean axial velocity and water

volume fraction is found by plotting a straight line through the center of the pipe in the Y-

direction. The data is then converted to an Excel sheet and plotted against experimental data.

 5 Results & discussion

61

5 Results & discussion
This section presents and discusses the results of the CFD study. An analysis of the

differences between interFoam and multiphaseInterFoam are presented first. A comparison of

the performance of different turbulence models against experimental data follows.

5.1 General comments

▪ The experimental data used for the comparisons are collected using an online graph

analyzing tool called Web Plot Digitizer. Hence, the accuracy for the gathered

experimental data will not be 100% accurate. The figures used to capture the

experimental data is found in Appendix H.

▪ The simulation data are gathered at 14.99m downstream of the inlet. This point was

chosen to ensure that the flow was fully developed.

▪ The total time in which each case was simulated were different. Each case was

simulated to the point where a steady state was reached. How long this took differed

for each case as different turbulence models were used and the initial conditions

changed for each case. The average solution time for each case is presented in table

5.1.

Table 5.1 – Average simulation times for the different turbulence models at different water cuts and Um=0.50

m/s.

Water cut SST k-ω [s] RNG k-ε [s] Realizable k-ε [s]

𝜆𝑤 = 0.25 60 60 430

𝜆𝑤 = 0.50 40 40 60

𝜆𝑤 = 0.75 70 70 520

5.2 Solver comparison

A part of the simulation study was to assess which solver was the most suitable to use for the

oil-water flow. Two solvers were assessed: interFoam and multiphaseInterFoam. A

comparative analysis was done for three different water cuts employing the RNG k-ε and

SST k-ω turbulence models at a mixture velocity of 0.50 m/s.

5.2.1 RNG k-ε

Figures 5.1-5.3 show the results from the two solvers obtained using the RNG k-ε turbulence

model for the three water cuts. For λw=0.25 and 0.50, the two solves produce near identical

results as observed in Figures 5.1 and 5.2. In Figure 5.3 it’s seen that when the water cut is

increased to 0.75, the interFoam solver predicts a slightly lower velocity in the water phase.

The two solvers consistently predict more or less the same position for the oil-water interface

 5 Results & discussion

62

for the three water cuts. It’s evident that when using the RNG k-ε turbulence model, the

additional contact angle and surface tension calculations in multiphaseInterFoam do not have

any significance on the results for this geometry.

Figure 5.1 – Comparison of interFoam and multiphaseInterFoam for the RNG k- ε turbulence model with

λw=0.25.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

RNG k-epsilon - 0.25 water cut - 0.50 Um

U - interFoam U - multiphaseInterFoam

water vol.frac - interFoam water vol.frac - multiphaseInterFoam

 5 Results & discussion

63

Figure 5.2 - Comparison of interFoam and multiphaseInterFoam for the RNG k- ε turbulence model with

λw=0.50.

Figure 5.3 - Comparison of interFoam and multiphaseInterFoam for the RNG k- ε turbulence model with

λw=0.75

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

RNG k-epsilon - 0.50 water cut - 0.50 Um

U - interFoam U - multiphaseInterFoam

Water vol.frac - interFoam Water vol.frac - multiphaseInterFoam

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

RNG k-epsilon - 0.75 water cut - 0.50 Um

U - interFoam U - multiphaseInterFoam

Water vol.frac - interFoam Water vol.frac - multiphaseInterFoam

 5 Results & discussion

64

5.2.2 SST k-ω

Figures 5.4-5.6 show the results from using the two solvers with the SST k-ω turbulence

model for the three water cuts. The results present a very similar trend to those obtained with

the RNG k-ε turbulence model, but with some differences. For λw=0.25, a slight deviation is

seen between the solvers. Figure 5.4 show that interFoam predicts a slightly higher velocity

in the oil phase, and as it transitions from the oil phase to the water phase, it predicts a

marginally lower velocity compared to multiphaseInterFoam. The position of the oil-water

interface for the two solvers shows very little difference, bar a slight deviation at radial

position -0.4 in Figure 5.4.

Figure 5.4 - Comparison of interFoam and multiphaseInterFoam for the SST k- ω turbulence model with

λw=0.25.

Figures 5.5 and 5.6 show that for λw=0.50, interFoam slightly underpredicts the oil phase

velocity, while for λw=0.75, it overpredicts the oil phase velocity compared to

multiphaseInterFoam. Additionally, as observed in the other simulations, the position of the

oil-water interface is near identical between the two solvers.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

SST k-ω - 0.25 water cut - 0.50 Um

U - interFoam U - multiphaseInterFoam

Water vol.frac - interFoam Water vol.frac - multiphaseinterFoam

 5 Results & discussion

65

Figure 5.5 - Comparison of interFoam and multiphaseInterFoam for the SST k- ω turbulence model with

λw=0.50.

Figure 5.6 - Comparison of interFoam and multiphaseInterFoam for the SST k- ω turbulence model with

λw=0.75

Although the differences in the results obtained using interFoam and multiphaseInterFoam

are minimal, there was a notable difference in the simulation time. For a mixture velocity of

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

SST k-ω - 0.50 water cut - 0.50 Um

U - interFoam U - multiphaseInterFoam

water vol.frac - interFoam water vol.frac - multiphaseInterFoam

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

SST k-ω - 0.75 water cut - 0.50 Um

U - interFoam U - multiphaseInterFoam

water vol.frac - interFoam water vol.frac - multiphaseInterFoam

 5 Results & discussion

66

0.50 m/s using the RNG k-ε model, the interFoam solver used around 8hours, compared to

the multiphaseInterFoam solver which used upwards of 14 hours. So, when considering the

choice between the two solvers, interFoam was the preferred option due to its shorter

computational time. However, if time is not a limiting factor, or more computational power is

available, then further research should be done on the performance of the two solvers.

5.3 Turbulence model comparisons

This section compares the simulation results from the three different turbulence models

against experimental data from Kumara (2010). The simulations are performed using the

interFoam solver. The choice to proceed with interFoam was made due to its reduced

simulation time compared to multiphaseInterFoam. The data for the realizable k-ε turbulence

model is discussed in its own section as the results showed notable deviations compared to

the other two models.

5.3.1 Realizable k-ε

CFD prediction of mean axial velocity, water volume fraction and turbulent kinetic energy

are compared against experimental data using the realizable k-ε model at λw=0.25 in Figures

5.7 and 5.8. As seen in Figure 5.7 the model slightly overpredicts the position of the oil-water

interface. However, it severely overpredicts the oil phase velocity as well as underpredicting

the water phase velocity. The model also fails to capture the correct shape of the velocity

field in both phases.

The reason for the inaccuracies is not immediately apparent. One potential explanation could

be attributed to the Cµ formulation in Equation 3.34 applied by the realizable k-ε model. For

this system the model underpredicts the turbulent kinetic energy in the near-wall areas, as

seen in Figure 5.8, resulting in a lower turbulent viscosity from the relationship in Equation

3.38. This affects the effective kinematic viscosity for the oil phase that leads to reduced flow

resistance and consequently, increased flow velocity. This could account for the significant

overprediction of velocity in the oil phase.

 5 Results & discussion

67

Figure 5.7 - Realizable k-ε turbulence model compared to experimental data at 0.50 m/s mixture velocity and

λw=0.25.

Figure 5.8 - Axial turbulent kinetic energy at 0.50 m/s mixture velocity and λw=0.25.

Figure 5.9 shows the simulated and experimental data for mean axial velocity and water

volume fraction at λw=0.50 compared to experimental data. The data show that the model

slightly underpredicts the position of the oil-water interface. Under these conditions, the

predicted mean axial velocity is symmetrical compared to the asymmetrical experimental

data profile. The highest mean axial velocity is observed at radial position 0.5 in the oil

phase. The model accurately predicts the highest velocity but incorrectly predicts it at the oil-

water interface. Thus, the model underpredicts the general velocity in the oil-phase. This is

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.002 0.004 0.006 0.008 0.01 0.012

N
o

rm
al

iz
er

d
 r

ad
ia

l p
o

si
ti

o
n

Turbulent kinetic energy [m2s-2]

k - exp k - RKE

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

U - exp Water vol.frac - exp U - RKE Water vol.frac - RKE

 5 Results & discussion

68

unsurprising as at λw=0.50, the initial velocities are equal which induces a “symmetrical

start”. As discussed in Kumara (2010), an oil-water flow is highly anisotropic meaning that

the velocity components and their derivatives are dependent on direction. The oil-water

interface acts like a moving wall due to the stable density stratification at the interface. This

has a damping effect, causing the axial velocity in the higher velocity phase to slow down as

it approaches the interface. This is the reason for the asymmetrical velocity profiles seen in

the experimental data. Hence, it’s evident that a two-equation model like the realizable k-ε, is

insensitive in capturing these effects without incorporating interface treatments, like a

turbulence damping function at the oil-water interface.

Figure 5.9 - Realizable k-ε turbulence model compared to experimental data at 0.50 m/s mixture velocity and

λw=0.50.

Figures 5.10 and 5.11 presents the simulated and experimental data for mean axial velocity,

water volume fraction and turbulent kinetic energy at λw=0.75. As with λw=0.25, the

predicted data show major deviations compared to the experimental data. Specifically, the

model underpredicts the position of the oil-water interface with deviations between radial

position 0.55 and 0.35. While the model accurately predicts the overall shape of the mean

axial velocity, it grossly overpredicts the velocity. Figure 5.11 shows that the model is

incapable of accurately predicting the turbulent kinetic energy and shows a major

underprediction, especially in the oil-phase. Furthermore, the model is insensitive to the

fluctuations in the turbulent kinetic energy that occurs in the oil-phase. A cause for the

deviations could stem from the mesh. The calculated y+ values for the simulation in Figure

5.12 indicate that the mesh used is not optimized for the realizable k-ε model. With an

average y+ value of 3, the mesh is too fine to utilize wall functions, and too coarse to ensure

full resolution at the walls without wall functions. Additionally, the k-ε models don’t perform

well at lower Reynolds numbers which is why wall functions are utilized. Ideally, the y+

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

U - exp Water vol.frac - exp U - rKE Water vol.frac - rKE

 5 Results & discussion

69

should be ~30 when using wall functions and 𝑦+≤ 1 for full boundary layer resolution. This

adds to the possibility that the mesh is too coarse for the realizable k-ε model to calculate the

viscous sub-layers correctly. Hence, the mesh should be optimized for wall functions when

using this model so that the y+ value is closer to 30.

Figure 5.10 - Realizable k-ε turbulence model compared to experimental data at 0.50 m/s mixture velocity and

λw=0.75.

Figure 5.11 - Axial turbulent kinetic energy at 0.50 m/s mixture velocity and λw=0.75.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

U - exp Water vol.frac - exp U - RKE water vol.frac - RKE

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

N
o

rm
al

iz
er

d
 r

ad
ia

l p
o

si
ti

o
n

Turbulent kinetic energy [m2s-2]

k - exp k - RKE

 5 Results & discussion

70

Figure 5.12 – y+ values for the realizable k-ε simulation at λw=0.75.

The results obtained with the realizable k-ε turbulence model demonstrate that it cannot

accurately predict the complex flow behavior of oil-water systems without additional

optimization. The model fails to predict the anisotropic behavior of the flow and should be

coupled with turbulence damping, or some other form of interface treatment to increase the

accuracy. There is a possibility that the model could’ve produced more accurate results with a

different mesh size, but it is difficult to predict by how much. Furthermore, the simulation

time posed a significant challenge when utilizing the realizable k-ε model. The simulations at

λw=0.25 and 0.75 did not reach a steady state until approximately 400 seconds of simulation

time, which equated to around 200 real-time hours. Therefore, the use of the realizable k-ε

turbulence model for oil-water flow is not recommended at this point.

5.3.2 Mixture velocity 0.50 m/s

5.3.2.1 0.25 water cut

Simulation results using the SST k-ω and RNG k-ε turbulence model at λw=0.25 are

compared to experimental data in Figures 5.13 and 5.14. The results show that both

turbulence models underpredict the position of the oil-water interface but the SST k-ω model

show the better accuracy of the two. The SST k-ω model also performs the best out of the

two in predicting the mean axial velocity. The SST k-ω closely matches the experimental

data until radial position 0.6, after which its accuracy decreases. The accuracy in the near-

wall area suggests that the boundary layers are properly resolved. Beyond this point, the SST

k-ω model begins to underpredict the velocity until approximately radial position -0.15. After

this point it starts to overpredict the velocity and shows insensitivity to changes in the

velocity field. In contrast, the RNG k-ε model predicts a symmetrical velocity profile and

shows poor accuracy in the near-wall areas. This could indicate that the wall functions do not

properly resolve the boundary layers.

The poor accuracy of the models is evident when examining Figure 5.14, where neither

model manages to accurately predict the turbulent kinetic energy, especially the fluctuations

around the oil-water interface. Both models overpredict the turbulent kinetic energy between

radial position 0.6 and -1. This is also the same area where the models are most inaccurate in

terms of axial velocity. The turbulent kinetic energy increases around the interface but the

velocity decreases for the oil-phase and increases for the water phase. This indicates that due

to viscous effects at the interface, the turbulence dissipation rate increases in the oil-phase

and decreases for the water phase. This leads to a damping effect in the oil-phase and the

opposite for the water phase. Neither model captures this turbulence damping effect at the

oil-water interface. The results suggest that the models are incapable of predicting the

anisotropic behavior of the oil-water flow and the wall-like effect of the oil-water interface.

 5 Results & discussion

71

Figure 5.13 – Axial mean velocity and water volume fraction comparison of experimental results and turbulence

models at λw=0.25.

Figure 5.14 – Axial turbulent kinetic energy comparison for experimental data and turbulence models at

λw=0.25.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

U-exp Water vol.frac - exp U - SST k-ω

Water vol.frac - SST k-ω U - RNG Water vol.frac - RNG

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.002 0.004 0.006 0.008 0.01 0.012

N
o

rm
al

iz
er

d
 r

ad
ia

l p
o

si
ti

o
n

Turbulent kinetic energy [m2s-2]

k - exp k - SST k-ω k - RNG

 5 Results & discussion

72

5.3.2.2 0.50 water cut

Simulation results using the SST k-ω and RNG k-ε turbulence model at λw=0.50 are

compared to experimental data in Figures 5.15 and 5.16. Both models are in good agreement

with the experimental data regarding the position of the oil-water interface. However, neither

model accurately predicts the axial mean velocity. Again, both models fail to capture the

fluctuations in the turbulent kinetic energy, which is reflected in their smooth velocity

profiles. The RNG k-ε model correctly predicts the highest velocity but predicts it at the oil-

water interface, instead of the oil phase. Furthermore, the RNG k-ε model severely

underpredicts the oil-phase velocity but show a good agreement in the water phase. In

contrast, the SST k-ω model show better agreement in the oil-phase but has larger deviations

in the water phase.

Figure 5.15 - Axial mean velocity and water volume fraction comparison of experimental results and turbulence

models at λw=0.50.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

U - exp Water vol.frac - exp U - SST k-ω

Water vol.frac - SST k-ω U - RNG Water vol.frac - RNG

 5 Results & discussion

73

Figure 5.16 - Axial turbulent kinetic energy comparison for experimental data and turbulence models at

λw=0.25.

5.3.2.3 0.75 water cut

Figures 5.17 and 5.18 display the predicted mean axial velocity, water volume fraction and

turbulent kinetic energy data compared to experimental data. Both models closely predict the

position of the oil-water interface, albeit with a slight under- and overprediction. However,

notable deviations are seen in the predicted mean axial velocity. Neither model is able to

capture the damping effect of the oil-water interface, which reflects in the overprediction of

the velocity around the interface. It also means that neither model predicts the fluctuations in

turbulent kinetic energy which are seen in Figure 5.18. Thus, producing the smooth velocity

profiles. The SST k-ω model show the best accuracy in the oil phase, while the RNG k-ε is

the more accurate model for the water phase.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

N
o

rm
al

iz
er

d
 r

ad
ia

l p
o

si
ti

o
n

Turbulent kinetic energy [m2s-2]

k - exp k - SST k-ω k - RNG

 5 Results & discussion

74

Figure 5.17 - Axial mean velocity and water volume fraction comparison of experimental results and turbulence

models at λw=0.75.

Figure 5.18 - Axial turbulent kinetic energy comparison for experimental data and turbulence models for

λw=0.25.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

U - exp Water vol.frac - exp U - SST k-ω

Water vol.frac - SST k-ω U - RNG Water vol.frac - RNG

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

N
o

rm
al

iz
er

d
 r

ad
ia

l p
o

si
ti

o
n

Turbulent kinetic energy [m2s-2]

k - exp k - SST k-ω k - RNG

 5 Results & discussion

75

5.3.3 Mixture velocity 0.68 m/s

Figures 5.19 and 5.20 compares the experimental data and predicted data for mean axial

velocity and water volume fraction data at mixture velocity 0.68 m/s, for λw=0.25 and 0.50.

Both turbulence models show significant deficiencies in predicting the oil-water interface at

this mixture velocity. The models underpredict the position with a large margin, with the

largest deviation observed at λw=0.25. The same trend is seen for the mean axial velocity. In

Figure 5.19, neither model accurately predicts the highest velocity point in the oil-phase and

underpredicts the velocity in the oil phase. Figure 5.20 show that both models underpredict

the entire velocity flow field. This insensitivity comes from the turbulence model’s inability

to predict the anisotropic behavior. This issue is increased at Um=0.68 m/s since the flow is

more turbulent compared to Um=0.50 m/s. Additionally, with a higher mixture velocity, a

higher production of droplets is observed at the interface. This effect is seen from Figures

5.21 and 5.22. The increased droplet production affects the model’s ability to accurately

predict the position of the oil-water interface. This deviation could be caused by the mesh

being too coarse to fully capture the droplets. The deviation could also stem from the droplets

interfering with the surface tracking employed by interFoam. Furthermore, the droplets will

influence the anisotropic behavior in the turbulence field at the interface and affect the local

viscosity distribution. Hence, the increased droplet formation significantly decreases the

accuracy of the turbulence models.

Figure 5.19 - Axial mean velocity and water volume fraction comparison of experimental results and turbulence

models at λw=0.25.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

U - exp Water vol.frac - exp U - k-ω SST

Water vol.frac - k-ω SST U - RNG Water vol.frac - RNG

 5 Results & discussion

76

Figure 5.20 - Axial mean velocity and water volume fraction comparison of experimental results and turbulence

models at λw=0.50.

Figure 5.21 – Droplet formation at mixture velocity 0.68 m/s for (a) λw=0.25 and (b) λw=0.50 (Kumara et al.,

2010a).

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

iz
ed

 r
ad

ia
l p

o
si

ti
o

n

Water vol.frac [-], U-mean [m/s]

U - exp Water vol.frac - exp U - SST k-ω

 5 Results & discussion

77

Figure 5.22 – Droplet formation at mixture velocity 0.50 m/s for (a) λw=0.25 and (b) λw=0.50 (Kumara et al.,

2010a).

Overall, the results indicate that the two-equation turbulence models utilized in this study are

incapable of accurately predicting the complexity of oil-water flows. Without additional

interface treatments, such as turbulence damping, the models are insensitive to the anisotropic

behavior of the flow. Additionally, possible challenges related to mesh resolution regarding

droplet formation were discovered. Nevertheless, some noteworthy observations emerged

from the study. The results in this thesis mirror some of the same velocity field characteristics

as discussed in Liu et al. (2022). Specifically, the position of the peak velocity of the

dominant phase, is followed by a downward shift in velocity. This effect is likely due to the

oil-water interface acting like a moving wall, which causes less flow resistance than near the

pipe wall. The peak velocity for the non-dominant phase is located at the oil-water interface.

This suggest that the oil-water interface does in fact behave like a wall for the dominant

phase, whereas for the non-dominant phase, the interface acts as a force that drags the flow

forwards.

 6 Conclusion & future work

78

6 Conclusion & future work
In this section the conclusions made based on the literature review and comparing the CFD

study to experimental data are summarized. Additionally, recommendations for future work

are proposed.

6.1 Conclusion

A review of recent advances in oil-water modelling which includes an introduction to basic

terminologies in oil-water flow have been presented. In addition to the review, a stratified oil-

water flow is numerically simulated using the CFD software OpenFOAM 9. The results

produced by the simulations are compared to the experimental data from Kumara (2010).

The review indicated that the numerical modelling of oil-water flows has shown good

progress in developing accurate models. However, the review also highlighted areas in the

numerical models that require additional attention. The studies presented suggests that the

oil-water interface requires additional modelling treatment alongside the chosen turbulence

model. What specific treatment that must be implemented will be different for each model

and must be customized for the specific system.

The developed CFD model utilized the VOF solver interFoam and employed three different

turbulence models: RNG k-ε, realizable k-ε and SST k-ω. The prediction of mean axial

velocity, water volume fraction and turbulent kinetic energy were compared to experimental

data. Large deviations were seen which highlighted the limitations of the two-equation

turbulence models in accurately capturing the complex behavior of the oil-water flow. It is

concluded that the turbulence models are unable to capture the anisotropic behavior of the

flow and that the flow requires additional treatment to mimic the characteristics of the oil-

water interface. The results show that the oil-water interface should be treated as a moving

wall and therefore a turbulence damping scheme should be applied to account for the wall-

like effect of the interface. The SST k-ω turbulence model performed the best out of the three

models used and should be used for this kind of flow problem.

Simulations done at a mixture velocity of 0.68 m/s indicated that the mesh was potentially too

coarse to accurately capture the effects of the increased droplet formation at the oil-water

interface. Additionally, uncertainties around the surface tracking capabilities of interFoam at

this mixture velocity was found. An increased mixture velocity further highlighted the

discrepancies between simulated and experimental data.

6.2 Future work

Recommendations for continued research from this thesis should include:

▪ A larger mesh sensitivity study should be conducted. The generated mesh needs be

optimized for the turbulence model chosen. Additionally, the mesh should consider

droplet formations if mixture velocities exceeding 0.50 m/s are used.

▪ Research turbulence damping schemes for multiphase flows and implement it at the

oil-water interface.

 Conclusion & future work

79

▪ Continue the numerical simulations using the SST k-ω turbulence model with an

optimized mesh and turbulence damping scheme applied.

▪ The customized turbulence model discussed in chapter. 4.4 should be developed

further. If successfully implemented, extensive testing should be performed.

▪ Investigate the possibilities of utilizing different solvers and turbulence models.

 References

80

References
Abubakar, A., Al-Wahaibi, T., Al-Hashmi, A.R., Al-Wahaibi, Y., Al-Ajmi, A., Eshrati, M.,

2016. Empirical correlation for predicting pressure gradients of oil-water flow with

drag-reducing polymer. Experimental Thermal and Fluid Science 79, 275–282.

https://doi.org/10.1016/j.expthermflusci.2016.07.023

Adaze, E., Al-Sarkhi, A., Badr, H.M., Elsaadawy, E., 2019. Current status of CFD modeling

of liquid loading phenomena in gas wells: a literature review. J Petrol Explor Prod

Technol 9, 1397–1411. https://doi.org/10.1007/s13202-018-0534-4

Ahmed, S.A., John, B., 2018. Liquid – Liquid horizontal pipe flow – A review. Journal of

Petroleum Science and Engineering 168, 426–447.

https://doi.org/10.1016/j.petrol.2018.04.012

Alias, A., Koto, J., Ahmed, Y., 2015. CFD Simulation for Stratified Oil-Water Two-Phase

Flow in a Horizontal Pipe. Journal of Subsea and Offshore -Science and Engineering-

2, 1–6.

Al-Wahaibi, T., 2012. Pressure gradient correlation for oil–water separated flow in horizontal

pipes. Experimental Thermal and Fluid Science 42, 196–203.

https://doi.org/10.1016/j.expthermflusci.2012.04.021

Amundsen, L., 2011. An experimental study of oil-water flow in horizontal and inclined

pipes (Doctoral thesis).

Angeli, P., Hewitt, G.F., 2000. Drop size distributions in horizontal oil-water dispersed flows.

Chemical Engineering Science 55, 3133–3143. https://doi.org/10.1016/S0009-

2509(99)00585-0

Angeli, P., Hewitt, G.F., 1999. Pressure gradient in horizontal liquid–liquid flows.

International Journal of Multiphase Flow 24, 1183–1203.

https://doi.org/10.1016/S0301-9322(98)00006-8

ANSYS FLUENT 12.0 Theory Guide [WWW Document], n.d. . ANSYS FLUENT 12.0

Theory Guide. URL

https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm (accessed

2.19.24).

Archibong-Eso, A., Shi, J., Baba, Y.D., Aliyu, A.M., Raji, Y.O., Yeung, H., 2019. High

viscous oil–water two–phase flow: experiments & numerical simulations. Heat Mass

Transfer 55, 755–767. https://doi.org/10.1007/s00231-018-2461-9

Asyikin, M.T., 2012. CFD Simulation of Vortex Induced Vibration of a Cylindrical Structure

(Master thesis). 82. Institutt for bygg, anlegg og transport.

Barnea, D., Taitel, Y., 1992. Structural and interfacial stability of multiple solutions for

stratified flow. International Journal of Multiphase Flow 18, 821–830.

https://doi.org/10.1016/0301-9322(92)90061-K

Beggs, D.H., Brill, J.P., 1973. A Study of Two-Phase Flow in Inclined Pipes. Journal of

Petroleum Technology 25, 607–617. https://doi.org/10.2118/4007-PA

 References

81

Blakeslee, M., n.d. Wilcox k-ω Model [WWW Document]. URL

https://2021.help.altair.com/2021/hwsolvers/acusolve/topics/acusolve/training_manua

l/wilcox_k_model_r.htm (accessed 3.13.24).

Brackbill, J., Kothe, D., CA, Z., 1992. A Continuum Method for Modeling Surface Tension.

Journal of Computational Physics 100. https://doi.org/10.1016/0021-9991(92)90240-

Y

Brauner, N., 2003. Liquid-Liquid Two-Phase Flow Systems, in: Bertola, V. (Ed.), Modelling

and Experimentation in Two-Phase Flow, International Centre for Mechanical

Sciences. Springer, Vienna, pp. 221–279. https://doi.org/10.1007/978-3-7091-2538-

0_5

Burlutskii, E., 2018. CFD study of oil-in-water two-phase flow in horizontal and vertical

pipes. Journal of Petroleum Science and Engineering 162, 524–531.

https://doi.org/10.1016/j.petrol.2017.10.035

C. K. G. Lam, K. Bremhorst, 1982. A Modified Form of the k-e Model for Predicting Wall

Turbulence 5.

C. W. Hirt, B. D. Nichols, 1979. Volume of Fluid (VOF) Method for Dynamics of Free

Boundaries.

CAD Exchanger SDK: Computational meshers [WWW Document], n.d. URL

https://docs.cadexchanger.com/sdk/sdk_meshing_advalgos_usage_page (accessed

4.20.24).

Charles, M.E., Govier, G.W., Hodgson, G.W., 1961. The horizontal pipeline flow of equal

density oil-water mixtures. The Canadian Journal of Chemical Engineering 39, 27–36.

https://doi.org/10.1002/cjce.5450390106

Chen, J., Anastasiou, C., Cheng, S., Basha, N.M., Kahouadji, L., Arcucci, R., Angeli, P.,

Matar, O.K., 2023. Computational fluid dynamics simulations of phase separation in

dispersed oil-water pipe flows. Chemical Engineering Science 267, 118310.

https://doi.org/10.1016/j.ces.2022.118310

Cheng, J., Li, Q., Yang, C., Zhang, Y., Mao, Z., 2018. CFD-PBE simulation of a bubble

column in OpenFOAM. Chinese Journal of Chemical Engineering 26, 1773–1784.

https://doi.org/10.1016/j.cjche.2017.11.012

David C. Wilcox, 2006. Turbulence modeling for CFD, 3rd ed. DCW Industries.

Davidson, L., 2022. An Introduction to Turbulence Models.

De la Cruz-Ávila, M., Carvajal-Mariscal, I., Sigalotti, L.D.G., Klapp, J., 2022. Numerical

Study of Water-Oil Two-Phase Flow Evolution in a Y-Junction Horizontal Pipeline.

Water 14, 3451. https://doi.org/10.3390/w14213451

Deen, N.G., Solberg, T., Hjertager, B.H., 2001. Large eddy simulation of the Gas–Liquid

flow in a square cross-sectioned bubble column. Chemical Engineering Science,

Proceedings of the 5th International Conference on Gas-Liquid and Gas-Liquid-Solid

Reactor Engineering 56, 6341–6349. https://doi.org/10.1016/S0009-2509(01)00249-4

Duan, J., Gong, J., Yao, H., Deng, T., Zhou, J., 2014. Numerical modeling for stratified gas–

liquid flow and heat transfer in pipeline. Applied Energy 115, 83–94.

https://doi.org/10.1016/j.apenergy.2013.10.050

 References

82

Duan, J., Liu, H., Wang, N., Gong, J., Jiao, G., 2015. Hydro dynamic modeling of stratified

smooth two-phase turbulent flow with curved interface through circular pipe.

International Journal of Heat and Mass Transfer 89, 1034–1043.

https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.093

Edomwonyi-Otu, L.C., Angeli, P., 2015. Pressure drop and holdup predictions in horizontal

oil–water flows for curved and wavy interfaces. Chemical Engineering Research and

Design 93, 55–65. https://doi.org/10.1016/j.cherd.2014.06.009

Elseth, G., 2001. An Experimental Study of Oil/Water Flow in Horizontal Pipes (Doctoral

thesis). 270. Fakultet for ingeniørvitenskap og teknologi.

Fan, W., Anglart, H., 2020. varRhoTurbVOF: A new set of volume of fluid solvers for

turbulent isothermal multiphase flows in OpenFOAM. Computer Physics

Communications 247, 106876. https://doi.org/10.1016/j.cpc.2019.106876

Fan, W., Anglart, H., 2019. Progress in Phenomenological Modeling of Turbulence Damping

around a Two-Phase Interface. Fluids 4, 136. https://doi.org/10.3390/fluids4030136

Frank M. White, 1991. VISCOUS FLUID FLOW, 2nd ed. McGraw-Hill.

Gada, V.H., Sharma, A., 2012. Analytical and level-set method based numerical study on oil–

water smooth/wavy stratified-flow in an inclined plane-channel. International Journal

of Multiphase Flow 38, 99–117.

https://doi.org/10.1016/j.ijmultiphaseflow.2011.08.015

Gao, H., Gu, H.-Y., Guo, L.-J., 2003. Numerical study of stratified oil–water two-phase

turbulent flow in a horizontal tube. International Journal of Heat and Mass Transfer

46, 749–754. https://doi.org/10.1016/S0017-9310(02)00321-6

Govier, G.W., Omer, M.M., 1962. The horizontal pipeline flow of air-water mixtures. The

Canadian Journal of Chemical Engineering 40, 93–104.

https://doi.org/10.1002/cjce.5450400303

Greenshields, C.J., 2023. OpenFOAM handbook.

Han, H., 2005. A study of entrainment in two-phase upward cocurrent annular flow in a

vertical tube. University of Saskatchewan.

Hapanowicz, J., 2010. Phase inversion in liquid–liquid pipe flow. Flow Measurement and

Instrumentation, Special Issue: Validation and Data Fusion for Process Tomographic

Flow Measurements 21, 284–291. https://doi.org/10.1016/j.flowmeasinst.2010.03.001

Hibiki, T., Rassame, S., 2019. Analytical model for predicting oil fraction in horizontal oil–

water two-phase flow. Exp. Comput. Multiph. Flow 1, 73–84.

https://doi.org/10.1007/s42757-019-0013-2

H.K. Versteeg, W. Malalasekera, 2007. An introduction to Computational Fluid Dynamics,

second edition. ed, The Finite Volume Method. Pearson.

Hu, H.H., Patankar, N.A., Zhu, M.Y., 2001. Direct Numerical Simulations of Fluid–Solid

Systems Using the Arbitrary Lagrangian–Eulerian Technique. Journal of

Computational Physics 169, 427–462. https://doi.org/10.1006/jcph.2000.6592

Ibarra, R., Matar, O., Markides, C., Zadrazil, I., 2015. An experimental study of oil-water

flows in horizontal pipes. Presented at the 17th International Conference on

Multiphase Technology, Cannes, France.

 References

83

Ibarra, R., Zadrazil, I., Matar, O.K., Markides, C.N., 2018. Dynamics of liquid–liquid flows

in horizontal pipes using simultaneous two–line planar laser–induced fluorescence

and particle velocimetry. International Journal of Multiphase Flow 101, 47–63.

https://doi.org/10.1016/j.ijmultiphaseflow.2017.12.018

Ishii, M., Zuber, N., 1979. Drag coefficient and relative velocity in bubbly, droplet or

particulate flows. AIChE Journal 25, 843–855. https://doi.org/10.1002/aic.690250513

Ismail, A.S.I., Ismail, I., Zoveidavianpoor, M., Mohsin, R., Piroozian, A., Misnan, M.S.,

Sariman, M.Z., 2015. Review of oil–water through pipes. Flow Measurement and

Instrumentation 45, 357–374. https://doi.org/10.1016/j.flowmeasinst.2015.07.015

Kamp, J., Villwock, J., Kraume, M., 2017. Drop coalescence in technical liquid/liquid

applications: a review on experimental techniques and modeling approaches. Reviews

in Chemical Engineering 33, 1–47. https://doi.org/10.1515/revce-2015-0071

Kang, Q., Gu, J., Qi, X., Wu, T., Wang, S., Chen, S., Wang, W., Gong, J., 2021.

Hydrodynamic Modeling of Oil–Water Stratified Smooth Two-Phase Turbulent Flow

in Horizontal Circular Pipes. Energies 14, 5201. https://doi.org/10.3390/en14165201

Kumara, W.A.S., Elseth, G., Halvorsen, B.M., Melaaen, M.C., 2010a. Comparison of Particle

Image Velocimetry and Laser Doppler Anemometry measurement methods applied to

the oil–water flow in horizontal pipe. Flow Measurement and Instrumentation 21,

105–117. https://doi.org/10.1016/j.flowmeasinst.2010.01.005

Kumara, W.A.S., Halvorsen, B.M., Melaaen, M.C., 2010b. Particle image velocimetry for

characterizing the flow structure of oil–water flow in horizontal and slightly inclined

pipes. Chemical Engineering Science 65, 4332–4349.

https://doi.org/10.1016/j.ces.2010.03.045

Kumara, W.A.S., Halvorsen, B.M., Melaaen, M.C., 2009. Pressure drop, flow pattern and

local water volume fraction measurements of oil–water flow in pipes. Meas. Sci.

Technol. 20, 114004. https://doi.org/10.1088/0957-0233/20/11/114004

Lande, A.M., 2021. Complex Mesh Generation with OpenFOAM. University of South-

Eastern Norway.

Launder, B., Spalding, D.B., 1974. The Numerical Computation of Turbulent Flow Computer

Methods. Computer Methods in Applied Mechanics and Engineering 3, 269–289.

https://doi.org/10.1016/0045-7825(74)90029-2

Lian, J., Yang, X., Ma, B., Gou, W., 2022. A novel method for bounding the phase fractions

at both ends in Eulerian multi-fluid model. Computers & Fluids 243, 105512.

https://doi.org/10.1016/j.compfluid.2022.105512

Liu, H., Duan, J., Li, J., Gu, K., Lin, K., Wang, J., Yan, H., Guan, L., Li, C., 2022. Numerical

quasi-three dimensional modeling of stratified oil-water flow in horizontal circular

pipe. Ocean Engineering 251, 111172.

https://doi.org/10.1016/j.oceaneng.2022.111172

Lopez de Bertodano, M., Lahey, R.T., Jones, O.C., 1994. Turbulent bubbly two-phase flow

data in a triangular duct. Nuclear Engineering and Design 146, 43–52.

https://doi.org/10.1016/0029-5493(94)90319-0

 References

84

Lovick, J., Angeli, P., 2004. Droplet size and velocity profiles in liquid–liquid horizontal

flows. Chemical Engineering Science 59, 3105–3115.

https://doi.org/10.1016/j.ces.2004.04.035

Lum, J.Y.-L., Al-Wahaibi, T., Angeli, P., 2006. Upward and downward inclination oil–water

flows. International Journal of Multiphase Flow 32, 413–435.

https://doi.org/10.1016/j.ijmultiphaseflow.2006.01.001

Luo, H., Wen, J., Jiang, R., Shao, Q., Wang, Z., 2022. Modeling of the Phase Inversion Point

of Crude Oil Emulsion by Characterization of Crude Oil Physical Properties. ACS

Omega 7, 39136–39146. https://doi.org/10.1021/acsomega.2c04989

Medina, H., Beechook, A., Saul, J., Porter, S., Aleksandrova, S., Benjamin, S., 2015. Open

source Computational Fluid Dynamics using OpenFOAM.

https://doi.org/10.13140/RG.2.1.1930.9843

Menter, F., Kuntz, M., Langtry, R., 2003. Ten years of industrial experience with the SST

turbulence model. Heat and Mass Transfer 4.

Menter, F.R., 1994. Two-equation eddy-viscosity turbulence models for engineering

applications. AIAA Journal 32, 1598–1605. https://doi.org/10.2514/3.12149

Mesh Quality [WWW Document], n.d. . SimScale. URL

https://www.simscale.com/docs/simulation-setup/meshing/mesh-quality/ (accessed

4.20.24).

Mohammaed A. Al-Yaari, Basel F. Abu-Sharkh, 2015. CFD Prediction of Stratified Oil-

Water Flow in a Horizontal Pipe. yumpu.com 01.

Multi-phase flow simulations in OpenFOAM [WWW Document], n.d. URL

https://www.cfdyna.com/Home/of_multiPhase.html (accessed 2.21.24).

Newton, C.H., Behnia, M., 2000. Numerical calculation of turbulent stratified gas–liquid pipe

flows. International Journal of Multiphase Flow 26, 327–337.

https://doi.org/10.1016/S0301-9322(99)00010-5

Niotis, A., Vassalos, D., Boulougouris, E., Cichowicz, J., Atzampos, G., Paterson, D., 2019.

Verification of damage ship survivability with computational fluid dynamics.

Panagiota Angeli, object, 1996. Liquid-liquid dispersed flows in horizontal pipes. University

of London.

Passoni, S., Carraretto, I.M., Mereu, R., Colombo, L.P.M., 2023. Two-phase stratified flow in

horizontal pipes: A CFD study to improve prediction of pressure gradient and void

fraction. Chemical Engineering Research and Design 191, 38–49.

https://doi.org/10.1016/j.cherd.2023.01.016

Pouraria, H., Park, K.-H., Seo, Y., 2021. Numerical Modelling of Dispersed Water in Oil

Flows Using Eulerian-Eulerian Approach and Population Balance Model. Processes

9, 1345. https://doi.org/10.3390/pr9081345

Pouraria, H., Seo, J.K., Paik, J.K., 2016. Numerical modelling of two-phase oil–water flow

patterns in a subsea pipeline. Ocean Engineering 115, 135–148.

https://doi.org/10.1016/j.oceaneng.2016.02.007

 References

85

Rahman, M., Siikonen, T., 2005. Low Reynolds number k-epsilon model for near-wall flow.

International Journal for Numerical Methods in Fluids 47, 325–338.

https://doi.org/10.1002/fld.809

Rodriguez, O.M.H., Oliemans, R.V.A., 2006. Experimental study on oil–water flow in

horizontal and slightly inclined pipes. International Journal of Multiphase Flow 32,

323–343. https://doi.org/10.1016/j.ijmultiphaseflow.2005.11.001

Santos, D.S., Faia, P.M., Garcia, F.A.P., Rasteiro, M.G., 2019. Oil/water stratified flow in a

horizontal pipe: Simulated and experimental studies using EIT. Journal of Petroleum

Science and Engineering 174, 1179–1193.

https://doi.org/10.1016/j.petrol.2018.12.002

Setaih, K., Mohammed, M.A., Hamza, N., S., D., Townshend, T., 2010. Crafting and

Assessing Urban Environments Using Computational Fluid Dynamics. Presented at

the ASCAAD, p. 8.

Shi, J., Gourma, M., Yeung, H., 2017. CFD simulation of horizontal oil-water flow with

matched density and medium viscosity ratio in different flow regimes. Journal of

Petroleum Science and Engineering 151, 373–383.

https://doi.org/10.1016/j.petrol.2017.01.022

Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J., 1995. A new k-ϵ eddy viscosity

model for high reynolds number turbulent flows. Computers & Fluids 24, 227–238.

https://doi.org/10.1016/0045-7930(94)00032-T

Shuard, A.M., Mahmud, H.B., King, A.J., 2016. Comparison of Two-Phase Pipe Flow in

OpenFOAM with a Mechanistic Model. IOP Conf. Ser.: Mater. Sci. Eng. 121,

012018. https://doi.org/10.1088/1757-899X/121/1/012018

Song, X., Li, D., Sun, X., Mou, X., Cheng, Y.F., Yang, Y., 2021. Numerical modeling of the

critical pipeline inclination for the elimination of the water accumulation on the pipe

floor in oil-water fluid flow. Petroleum 7, 209–221.

https://doi.org/10.1016/j.petlm.2020.07.001

Speziale, 1990. Analytical Methods for the Development of Reynolds Stress Closures in

Turbulence. INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND

ENGINEERING HAMPTON 60.

Sun, R., Xiao, H., 2015. Diffusion-based coarse graining in hybrid continuum–discrete

solvers: Applications in CFD–DEM. International Journal of Multiphase Flow 72,

233–247. https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.014

Sunday, N., Settar, A., Chetehouna, K., Gascoin, N., 2023. Numerical modeling and

parametric sensitivity analysis of heat transfer and two-phase oil and water flow

characteristics in horizontal and inclined flowlines using OpenFOAM. Petroleum

Science 20, 1183–1199. https://doi.org/10.1016/j.petsci.2022.10.008

Tawekal, J.R., 2015. CFD simulation of the flow over a 2-dimensional pipe and vortex

induced vibration of the pipe with 1 degree of freedom (Master thesis). University of

Stavanger, Norway.

Trallero, J.L., Sarica, C., Brill, J.P., 1997. A Study of Oil/Water Flow Patterns in Horizontal

Pipes. SPE Production & Facilities 12, 165–172. https://doi.org/10.2118/36609-PA

 References

86

Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J.,

Nas, S., Jan, Y.-J., 2001. A Front-Tracking Method for the Computations of

Multiphase Flow. Journal of Computational Physics 169, 708–759.

https://doi.org/10.1006/jcph.2001.6726

Urdahl, O., Fredheim, A.O., Løken, K.-P., 1997. Viscosity measurements of water-in-crude-

oil emulsions under flowing conditions: A theoretical and practical approach. Colloids

and Surfaces A: Physicochemical and Engineering Aspects, Frontiers in Colloid

Chemistry an International Festschrift to Professor Stig E. Friberg 123–124, 623–634.

https://doi.org/10.1016/S0927-7757(96)03801-0

V. Hernandez-Perez, M. Abdulkadir, B.J Azzopardi, 2011. Grid Generation Issues in the

CFD Modelling of Two-Phase Flow in a Pipe. The Journal of Computational

Multiphase Flows 3, 14.

Vindenes, Eikeseth, Ramachandran, 2021. Review and computational modelling of oil-water

flow in pipes (Project work No. MP-01-21). University of South-Eastern Norway.

W. Amaranath Sena Kumara, 2010. An Experimental Study of Oil-Water Flow in Pipes.

University of South-Eastern Norway, Porsgrunn.

Walvekar, R.G., Choong, T.S.Y., Hussain, S.A., Khalid, M., Chuah, T.G., 2009. Numerical

study of dispersed oil–water turbulent flow in horizontal tube. Journal of Petroleum

Science and Engineering 65, 123–128. https://doi.org/10.1016/j.petrol.2008.12.019

What is a good Mesh?, 2014.

Xu, X.-X., 2007. Study on oil–water two-phase flow in horizontal pipelines. Journal of

Petroleum Science and Engineering 59, 43–58.

https://doi.org/10.1016/j.petrol.2007.03.002

Yakhot, Orszag, 1986. Renormalization Group Analysis of Turbulence. J Sci Comput 1, 3–

51. https://doi.org/10.1007/BF01061452

Yang, J., Li, P., Zhang, X., Lu, X., Li, Q., Mi, L., 2021. Experimental investigation of oil–

water flow in the horizontal and vertical sections of a continuous transportation pipe.

Sci Rep 11, 20092. https://doi.org/10.1038/s41598-021-99660-8

Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B., 2007. Discrete particle simulation of particulate

systems: Theoretical developments. Chemical Engineering Science, Frontier of

Chemical Engineering - Multi-scale Bridge between Reductionism and Holism 62,

3378–3396. https://doi.org/10.1016/j.ces.2006.12.089

 Appendices

87

Appendices
Appendix A – Project topic description

Figure A.1: Task description

 Appendices

88

Appendix B – Mesh quality

Figure B.1 – Mesh stats.

Figure B.2 – Geometry topology.

 Appendices

89

Appendix C: ‘0’ folder for – 𝑼𝑴 = 𝟎. 𝟓𝟎, 𝝀𝒘 = 𝟎. 𝟐𝟓 – SST k-ω

Alpha.orig

/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 format ascii;

 class volScalarField;

 location "0";

 object alpha.oil;

}

// *

* * * * //

dimensions [0 0 0 0 0 0 0];

internalField uniform 0;

boundaryField

{

 inlet_oil

 {

 type fixedValue;

 value uniform 0;

 }

 inlet_water

 {

 type fixedValue;

 value uniform 1;

 }

 Wall

 {

 type zeroGradient;

 }

 outlet

 {

 type zeroGradient;

 }

 defaultFaces

 {

 type empty;

 Appendices

90

 }

}

Epsilon

//

**

***** //

/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object epsilon;

}

// *

* * * * //

dimensions [0 2 -3 0 0 0 0];

internalField uniform 0.007;

boundaryField

{

 inlet_oil

 {

 type fixedValue;

 value uniform 0.0001;

 }

 inlet_water

 {

 type fixedValue;

 value uniform 0.0001;

 }

 Wall

 {

 type epsilonWallFunction;

 value uniform 0.000015;

 }

 Appendices

91

 outlet

 {

 type zeroGradient;

 }

 defaultFaces

 {

 type empty;

 }

}

//

**

***** //

K

/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object k;

}

// *

* * * * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0.003;

boundaryField

{

 inlet_oil

 {

 type fixedValue;

 value uniform 0.0017;

 }

 inlet_water

 {

 type fixedValue;

 value uniform 0.00022;

 }

 Appendices

92

 Wall

 {

 type kqRWallFunction;

 value $internalField;

 }

 outlet

 {

 type zeroGradient;

 }

 defaultFaces

 {

 type empty;

 }

}

//

**

***** //

Nut

/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object nut;

}

// *

* * * * //

dimensions [0 2 -1 0 0 0 0];

internalField uniform 0;

boundaryField

{

 Wall

 {

 type nutkWallFunction;

 value uniform 0;

 Appendices

93

 }

 ".*"

 {

 type calculated;

 value uniform 0;

 }

 defaultFaces

 {

 type empty;

 }

}

//

**

***** //

Omega

/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 format ascii;

 class volScalarField;

 object omega.water;

}

// *

* * * * //

dimensions [0 0 -1 0 0 0 0];

internalField uniform 0.9;

boundaryField

{

 inlet_oil

 {

 type fixedValue;

 value uniform 1.3472;

 }

 inlet_water

 {

 type fixedValue;

 value uniform 0.5136;

 Appendices

94

 }

 outlet

 {

 type zeroGradient;

 }

 wall

 {

 type omegaWallFunction;

 value uniform 1;

 }

 defaultFaces

 {

 type empty;

 }

}

//

**

***** //

P_rgh

/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object p_rgh;

}

// *

* * * * //

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 100000;

boundaryField

{

 inlet_oil

 {

 type fixedFluxPressure;

 gradient uniform 0;

 Appendices

95

 value uniform 100000;

 }

 inlet_water

 {

 type fixedFluxPressure;

 gradient uniform 0;

 value uniform 100000;

 }

 Wall

 {

 type fixedFluxPressure;

 gradient uniform 0;

 value uniform 100000;

 }

 outlet

 {

 type fixedValue;

 value uniform 100000;

 }

 defaultFaces

 {

 type empty;

 }

}

//

**

***** //

U

/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 version 2.0;

 format ascii;

 class volVectorField;

 object U;

}

 Appendices

96

// *

* * * * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (1 0 0);

boundaryField

{

 inlet_oil

 {

 type fixedValue;

 value uniform (0.75 0 0);

 }

 inlet_water

 {

 type fixedValue;

 value uniform (0.25 0 0);

 }

 Wall

 {

 type noSlip;

 }

 outlet

 {

 type zeroGradient;

 }

 defaultFaces

 {

 type empty;

 }

}

//

**

***** //

 Appendices

97

Appendix D: ‘Constant’ folder – 𝑼𝑴 = 𝟎. 𝟓𝟎, 𝝀𝒘 = 𝟎. 𝟐𝟓 – SST k-ω

g

/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 version 2.0;

 format ascii;

 class uniformDimensionedVectorField;

 location "constant";

 object g;

}

// *

* * * * //

dimensions [0 1 -2 0 0 0 0];

value (0 -9.81 0);

//

**

***** //

momentumTransport
/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object momentumTransport;

}

// *

* * * * //

simulationType RAS;

 Appendices

98

RAS

{

 model kOmegaSST;

 turbulence on;

 printCoeffs on;

}

//

**

***** //

transportProperties

/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object transportProperties;

}

// *

* * * * //

phases (water oil);

water

{

 transportModel Newtonian;

 nu 1e-06;

 rho 996;

}

oil

{

 transportModel Newtonian;

 nu 1.64e-06;

 rho 790;

}

sigma 0.043;

 Appendices

99

//

**

***** //

 Appendices

100

Appendix E: ‘system’ folder - – 𝑼𝑴 = 𝟎. 𝟓𝟎, 𝝀𝒘 = 𝟎. 𝟐𝟓 – SST k-ω

controlDict

/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

}

// *

* * * * //

application interFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 60;

deltaT 0.001;

writeControl adjustableRunTime;

writeInterval 5;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

 Appendices

101

adjustTimeStep yes;

maxCo 0.5;

maxAlphaCo 0.5;

maxDeltaT 0.1;

functions

{

 #includeFunc fieldAverage(U, p, prime2Mean = yes)

}

//

**

***** //

/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object decomposeParDict;

}

// *

* * * * //

numberOfSubdomains 6;

method simple;

simpleCoeffs

{

 n (6 1 1);

 delta 0.001;

}

hierarchicalCoeffs

{

 n (2 2 2);

 delta 0.001;

 order xyz;

}

manualCoeffs

 Appendices

102

{

 dataFile "";

}

distributed no;

roots ();

//

**

***** //

fvSchemes

/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSchemes;

}

// *

* * * * //

ddtSchemes

{

 default Euler;

}

gradSchemes

{

 default Gauss linear;

}

divSchemes

{

 default none;

 div(rho*phi,U) Gauss linearUpwind grad(U);

 div(phi,alpha) Gauss PLIC interfaceCompression vanLeer 1;

// div(phirb,alpha) Gauss interfaceCompression;

 div(phi,k) Gauss upwind;

 div(phi,omega) Gauss upwind;

// div(phi,R) Gauss upwind;

// div(R) Gauss linear;

 Appendices

103

// div(phi,nuTilda) Gauss upwind;

// div((nuEff*dev(T(grad(U))))) Gauss linear;

 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

 div(rhoPhi,U) Gauss linearUpwind grad(U);

}

laplacianSchemes

{

 default Gauss linear corrected;

}

interpolationSchemes

{

 default linear;

}

snGradSchemes

{

 default corrected;

}

wallDist

{

 method meshWave;

}

//

**

***** //

fvSolution

/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSolution;

}

// *

* * * * //

 Appendices

104

solvers

{

 "alpha.water.*"

 {

 nAlphaCorr 1;

 nAlphaSubCycles 1;

 cAlpha 2;

 MULESCorr yes;

 nLimiterIter 3;

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-8;

 relTol 0;

 }

 "pcorr.*"

 {

 solver PCG;

 preconditioner

 {

 preconditioner GAMG;

 tolerance 1e-5;

 relTol 0;

 smoother GaussSeidel;

 }

 tolerance 1e-5;

 relTol 0;

 maxIter 50;

 }

 p_rgh

 {

 solver GAMG;

 tolerance 5e-9;

 relTol 0.01;

 smoother GaussSeidel;

 maxIter 50;

 };

 p_rghFinal

 {

 $p_rgh;

 tolerance 5e-9;

 relTol 0;

 }

 "(U|k|omega)"

 {

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-6;

 relTol 0;

 nSweeps 1;

 Appendices

105

 }

 "(U|k|omega)Final"

 {

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-08;

 relTol 0;

 }

}

PIMPLE

{

 momentumPredictor no;

 nCorrectors 2;

 nNonOrthogonalCorrectors 0;

}

relaxationFactors

{

 equations

 {

 ".*" 1;

 }

}

//

**

** //

setFieldsDict

/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object setFieldsDict;

}

// *

* * * * //

 Appendices

106

defaultFieldValues

(

 volScalarFieldValue alpha.water 0

);

regions

(

 boxToCell

 {

 box (-10 -20 -10) (50 20 2.2);

 fieldValues

 (

 volScalarFieldValue alpha.water 1

);

 }

);

//

**

***** //

decomposeParDict

/*--------------------------------*- C++ -*-------------------------

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 9

 \\/ M anipulation |

*--

---------*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object decomposeParDict;

}

// *

* * * * //

numberOfSubdomains 6;

method simple;

simpleCoeffs

{

 n (6 1 1);

 delta 0.001;

}

 Appendices

107

hierarchicalCoeffs

{

 n (2 2 2);

 delta 0.001;

 order xyz;

}

manualCoeffs

{

 dataFile "";

}

distributed no;

roots ();

//

**

***** //

 Appendices

108

Appendix F: Customized k-ε turbulence model
/*--

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Copyright (C) 2011-2021 OpenFOAM

Foundation

 \\/ M anipulation |

--

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details. You should have received a

copy of the GNU General Public License along with OpenFOAM. If not,

see <http://www.gnu.org/licenses/>.

*--

---------*/

#include "mykEpsilon.H"

#include "fvModels.H"

#include "fvConstraints.H"

#include "bound.H"

#include "fvCFD.H"

#include "twoPhaseMixture.H"

// *

* * * * //

namespace Foam

{

namespace RASModels

{

// * * * * * * * * * * * * Protected Member Functions * * * * * * *

* * * * //

template<class BasicMomentumTransportModel>

void mykEpsilon<BasicMomentumTransportModel>::correctNut()

{

 if (!this->turbulence_)

 {

 return;

 Appendices

109

 }

 // Access mesh object

 const fvMesh& mesh = this->mesh_;

 // Define threshold for interface detection (e.g., alpha = 0.5)

 const scalar interfaceThreshold = 0.5;

 // Iterate over cells

 forAll(mesh.cells(), cellI)

 {

 // Check if the volume fraction at the current cell is close

to the interface

 if (fabs(this->alpha_[cellI] - interfaceThreshold) < 0.1) //

Adjust tolerance as needed

 {

 // Set turbulent kinetic energy and dissipation rate to

0.0001

 this->k_[cellI] = 0.0001;

 this->epsilon_[cellI] = 0.0001;

 }

 }

 // Correct boundary conditions for nut outside the loop

 this->nut_ = Cmu_ * sqr(this->k_) / this->epsilon_;

 this->nut_.correctBoundaryConditions();

 fvConstraints::New(this->mesh_).constrain(this->nut_);

}

template<class BasicMomentumTransportModel>

tmp<fvScalarMatrix>

mykEpsilon<BasicMomentumTransportModel>::kSource() const

{

 return tmp<fvScalarMatrix>

 (

 new fvScalarMatrix

 (

 k_,

 dimVolume*this->rho_.dimensions()*k_.dimensions()

 /dimTime

)

);

}

template<class BasicMomentumTransportModel>

tmp<fvScalarMatrix>

mykEpsilon<BasicMomentumTransportModel>::epsilonSource() const

{

 return tmp<fvScalarMatrix>

 (

 new fvScalarMatrix

 (

 epsilon_,

 Appendices

110

 dimVolume*this->rho_.dimensions()*epsilon_.dimensions()

 /dimTime

)

);

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * *

* * * * //

template<class BasicMomentumTransportModel>

mykEpsilon<BasicMomentumTransportModel>::mykEpsilon

(

 const alphaField& alpha,

 const rhoField& rho,

 const volVectorField& U,

 const surfaceScalarField& alphaRhoPhi,

 const surfaceScalarField& phi,

 const transportModel& transport,

 const word& type

)

:

 eddyViscosity<RASModel<BasicMomentumTransportModel>>

 (

 type,

 alpha,

 rho,

 U,

 alphaRhoPhi,

 phi,

 transport

),

 Cmu_

 (

 dimensioned<scalar>::lookupOrAddToDict

 (

 "Cmu",

 this->coeffDict_,

 0.09

)

),

 C1_

 (

 dimensioned<scalar>::lookupOrAddToDict

 (

 "C1",

 this->coeffDict_,

 1.44

)

),

 C2_

 (

 dimensioned<scalar>::lookupOrAddToDict

 Appendices

111

 (

 "C2",

 this->coeffDict_,

 1.92

)

),

 C3_

 (

 dimensioned<scalar>::lookupOrAddToDict

 (

 "C3",

 this->coeffDict_,

 0

)

),

 sigmak_

 (

 dimensioned<scalar>::lookupOrAddToDict

 (

 "sigmak",

 this->coeffDict_,

 1.0

)

),

 sigmaEps_

 (

 dimensioned<scalar>::lookupOrAddToDict

 (

 "sigmaEps",

 this->coeffDict_,

 1.3

)

),

 k_

 (

 IOobject

 (

 IOobject::groupName("k", alphaRhoPhi.group()),

 this->runTime_.timeName(),

 this->mesh_,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 this->mesh_

),

 epsilon_

 (

 IOobject

 (

 IOobject::groupName("epsilon", alphaRhoPhi.group()),

 this->runTime_.timeName(),

 this->mesh_,

 IOobject::MUST_READ,

 Appendices

112

 IOobject::AUTO_WRITE

),

 this->mesh_

)

{

 bound(k_, this->kMin_);

 bound(epsilon_, this->epsilonMin_);

 if (type == typeName)

 {

 this->printCoeffs(type);

 }

}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * *

* * * * //

template<class BasicMomentumTransportModel>

bool mykEpsilon<BasicMomentumTransportModel>::read()

{

 if

(eddyViscosity<RASModel<BasicMomentumTransportModel>>::read())

 {

 Cmu_.readIfPresent(this->coeffDict());

 C1_.readIfPresent(this->coeffDict());

 C2_.readIfPresent(this->coeffDict());

 C3_.readIfPresent(this->coeffDict());

 sigmak_.readIfPresent(this->coeffDict());

 sigmaEps_.readIfPresent(this->coeffDict());

 return true;

 }

 else

 {

 return false;

 }

}

template<class BasicMomentumTransportModel>

void mykEpsilon<BasicMomentumTransportModel>::correct()

{

 if (!this->turbulence_)

 {

 return;

 }

 // Local references

 const alphaField& alpha = this->alpha_;

 const rhoField& rho = this->rho_;

 const surfaceScalarField& alphaRhoPhi = this->alphaRhoPhi_;

 const volVectorField& U = this->U_;

 volScalarField& nut = this->nut_;

 Appendices

113

 const Foam::fvModels& fvModels(Foam::fvModels::New(this-

>mesh_));

 const Foam::fvConstraints& fvConstraints

 (

 Foam::fvConstraints::New(this->mesh_)

);

 eddyViscosity<RASModel<BasicMomentumTransportModel>>::correct();

 const scalar interfaceThreshold = 0.5; // Interface detection

threshold

 forAll(this->mesh_.cells(), cellI)

 {

 if (fabs(this->alpha_[cellI] - interfaceThreshold) < 0.1)

 {

 this->nut_[cellI] = 0.0001; // Set eddy viscosity near

interfaces

 }

 }

 this->nut_.correctBoundaryConditions();

 volScalarField::Internal divU

 (

 fvc::div(fvc::absolute(this->phi(), U))()

);

 tmp<volTensorField> tgradU = fvc::grad(U);

 volScalarField::Internal G

 (

 this->GName(),

 nut()*(dev(twoSymm(tgradU().v())) && tgradU().v())

);

 tgradU.clear();

 // Update epsilon and G at the wall

 epsilon_.boundaryFieldRef().updateCoeffs();

 // Dissipation equation

 tmp<fvScalarMatrix> epsEqn

 (

 fvm::ddt(alpha, rho, epsilon_)

 + fvm::div(alphaRhoPhi, epsilon_)

 - fvm::laplacian(alpha*rho*DepsilonEff(), epsilon_)

 ==

 C1_*alpha()*rho()*G*epsilon_()/k_()

 - fvm::SuSp(((2.0/3.0)*C1_ - C3_)*alpha()*rho()*divU,

epsilon_)

 - fvm::Sp(C2_*alpha()*rho()*epsilon_()/k_(), epsilon_)

 + epsilonSource()

 + fvModels.source(alpha, rho, epsilon_)

);

 Appendices

114

 epsEqn.ref().relax();

 fvConstraints.constrain(epsEqn.ref());

 epsEqn.ref().boundaryManipulate(epsilon_.boundaryFieldRef());

 solve(epsEqn);

 fvConstraints.constrain(epsilon_);

 bound(epsilon_, this->epsilonMin_);

 // Turbulent kinetic energy equation

 tmp<fvScalarMatrix> kEqn

 (

 fvm::ddt(alpha, rho, k_)

 + fvm::div(alphaRhoPhi, k_)

 - fvm::laplacian(alpha*rho*DkEff(), k_)

 ==

 alpha()*rho()*G

 - fvm::SuSp((2.0/3.0)*alpha()*rho()*divU, k_)

 - fvm::Sp(alpha()*rho()*epsilon_()/k_(), k_)

 + kSource()

 + fvModels.source(alpha, rho, k_)

);

 kEqn.ref().relax();

 fvConstraints.constrain(kEqn.ref());

 solve(kEqn);

 fvConstraints.constrain(k_);

 bound(k_, this->kMin_);

 correctNut();

}

// *

* * * * //

} // End namespace RASModels

} // End namespace Foam

//

**

***** //

 Appendices

115

Appendix G: Turbulence damping scheme.

C file

/*--

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Copyright (C) 2015-2018 OpenFOAM

Foundation

 \\/ M anipulation |

--

License

This file is part of OpenFOAM. OpenFOAM is free software: you can

redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation, either

version 3 of the License, or (at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY, without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details. You should have received a

copy of the GNU General Public License along with OpenFOAM. If not,

see <http://www.gnu.org/licenses/>.

*--

---------*/

#include "turbulenceDamping.H"

#include "fvMatrices.H"

#include "addToRunTimeSelectionTable.H"

// * * * * * * * * * * * * * Static Member Functions * * * * * * * *

* * * * //

namespace Foam

{

namespace fv

{

 defineTypeNameAndDebug(turbulenceDamping, 0);

 addToRunTimeSelectionTable

 (

 option,

 turbulenceDamping,

 dictionary

);

}

}

// * * * * * * * * * * * * * Private Member Functions * * * * * * *

* * * * //

 Appendices

116

volScalarField::Internal

Foam::fv::turbulenceDamping::calculateSource

(

 fvMatrix<scalar>& eqn,

 const label fieldi

)

{

 const volScalarField& Alpha =

 mesh().lookupObject<volScalarField>(primaryPhaseName_);

 const volVectorField grad_Alpha = fvc::grad(Alpha);

 const volScalarField grad_Alpha_mag = mag(grad_Alpha);

 // calculate interfacial area density

 volScalarField::Internal A1 = 2.0*Alpha*grad_Alpha_mag;

 volScalarField::Internal A2 = 2.0*(1.0-Alpha)*grad_Alpha_mag;

 // calculate the inverse of the length scale

 const volScalarField::Internal& V = mesh_.V();

 volScalarField oneByDn

 (

 IOobject

 (

 "oneByDn",

 mesh_.time().timeName(),

 mesh_,

 IOobject::NO_READ,

 IOobject::NO_WRITE

),

 mesh_,

 dimensionedScalar("oneByDn", dimless/dimLength, 0.0)

);

 if (lengthScale_ == "FA")

 {

 const labelUList& owner = mesh_.owner();

 const labelUList& neighbour = mesh_.neighbour();

 const surfaceVectorField& sf = mesh_.Sf();

 forAll(owner, facei)

 {

 oneByDn[owner[facei]] +=

 mag(sf[facei] & grad_Alpha[owner[facei]]);

 oneByDn[neighbour[facei]] +=

 mag(sf[facei] & grad_Alpha[neighbour[facei]]);

 }

 forAll(mesh_.boundary(), patchi)

 {

 const labelUList& pFaceCells =

 Appendices

117

 mesh_.boundary()[patchi].faceCells();

 const fvsPatchField<vector>& psf =

sf.boundaryField()[patchi];

 forAll(mesh_.boundary()[patchi], facei)

 {

 oneByDn[pFaceCells[facei]] +=

 mag(psf[facei] & grad_Alpha[pFaceCells[facei]]);

 }

 }

 forAll(oneByDn, celli)

 {

 if (grad_Alpha_mag[celli] > SMALL)

 {

 oneByDn[celli] *= 0.5/V[celli]/grad_Alpha_mag[celli];

 }

 else

 {

 oneByDn[celli] = 0;

 }

 }

 }

 else if (lengthScale_ == "cubeRoot")

 {

 oneByDn.ref() = pow(V,-1.0/3.0);

 }

 // calculate separate damping terms

 volScalarField::Internal coeffs =

36.0*sqr(B_)/beta_*pow(oneByDn, 3.0);

 volScalarField::Internal source1 = coeffs*A1*rho1_*sqr(nu1_);

 volScalarField::Internal source2 = coeffs*A2*rho2_*sqr(nu2_);

 // calculate the total damping term

 dimensionedScalar heavy("heavy", dimless, 0.0);

 volScalarField::Internal source = 0.0 * source1;

 if (dampingTreatment_ == "heavyNegative")

 {

 if (rho1_ > rho2_)

 {

 heavy = - rho2_/rho1_*sqr(nu2_)/sqr(nu1_);

 source = source1*heavy + source2;

 }

 else

 {

 Appendices

118

 heavy = - rho1_/rho2_*sqr(nu1_)/sqr(nu2_);

 source = source1 + source2*heavy;

 }

 }

 else if (dampingTreatment_ == "heavyZero")

 {

 if (rho1_ > rho2_)

 {

 source = source2;

 }

 else

 {

 source = source1;

 }

 }

 else if (dampingTreatment_ == "symmetric")

 {

 source = sign(B_)*(source1 + source2);

 }

 // return source term for omega equation

 if (fieldNames_[0] == "omega")

 {

 return source;

 }

 // return source term for epsilon equation

 else

 {

 const volScalarField& k =

mesh().lookupObject<volScalarField>("k");

 return C2_*sqr(Cmu_)/beta_*k.internalField()*source;

 }

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * *

* * * * //

Foam::fv::turbulenceDamping::turbulenceDamping

(

 const word& sourceName,

 const word& modelType,

 const dictionary& dict,

 const fvMesh& mesh

)

:

 option(sourceName, modelType, dict, mesh),

 B_(readScalar(coeffs_.lookup("B"))),

 Appendices

119

 C2_(coeffs_.lookupOrDefault<scalar>("C2", 1.92)),

 beta_(coeffs_.lookupOrDefault<scalar>("beta", 0.075)),

 Cmu_(coeffs_.lookupOrDefault<scalar>("Cmu", 0.09)),

 lengthScale_(coeffs_.lookupOrDefault<word>("lengthScale",

"FA")),

 dampingTreatment_

 (

 coeffs_.lookupOrDefault<word>("dampingTreatment",

"heavyNegative")

),

 explicitSourceTreatment_

 (

 coeffs_.lookupOrDefault<Switch>("explicitSourceTreatment",

true)

),

 transportProperties

 (

 mesh_.lookupObject<IOdictionary>

 (

 "transportProperties"

)

),

 phase1Name_(wordList(transportProperties.lookup("phases"))[0]),

 phase2Name_(wordList(transportProperties.lookup("phases"))[1]),

 primaryPhaseName_("alpha." + phase1Name_),

 rho1_("rho", dimDensity,

transportProperties.subDict(phase1Name_)),

 nu1_("nu", dimViscosity,

transportProperties.subDict(phase1Name_)),

 rho2_("rho", dimDensity,

transportProperties.subDict(phase2Name_)),

 nu2_("nu", dimViscosity,

transportProperties.subDict(phase2Name_))

{

 coeffs_.lookup("fields") >> fieldNames_;

 if (fieldNames_.size() != 1)

 {

 FatalErrorInFunction

 << "settings are:" << fieldNames_ << exit(FatalError);

 }

 // only omega or epsilon is allowed

 if (fieldNames_[0] != "omega" && fieldNames_[0] != "epsilon")

 {

 FatalErrorInFunction

 << "The field is set to" << fieldNames_

 << ", it should be epsilon or omega!" <<

exit(FatalError);

 }

 // make sure the field name is consistent with the turbulence

model

 // the following line should fail if inconsistent

 Appendices

120

 const volScalarField& epsilonOrOmega =

 mesh_.lookupObject<volScalarField>(fieldNames_[0]);

 Info << "Turbulence damping works in " << epsilonOrOmega.name()

 << " mode"<< endl;

 applied_.setSize(fieldNames_.size(), false);

 Info << "B is set to " << B_.value() << endl;

 Info << "C2 is set to " << C2_.value() << endl;

 Info << "beta is set to " << beta_.value() << endl;

 Info << "Cmu is set to " << Cmu_.value() << endl;

 Info << "lengthScale is set to " << lengthScale_ << endl;

 Info << "dampingTreatment is set to " << dampingTreatment_ <<

endl;

}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * *

* * * * //

void Foam::fv::turbulenceDamping::addSup

(

 fvMatrix<scalar>& eqn,

 const label fieldi

)

{

 const volScalarField& Rho =

mesh().lookupObject<volScalarField>("rho");

 const volScalarField& epsilonOrOmega =

 mesh().lookupObject<volScalarField>(fieldNames_[fieldi]);

 volScalarField::Internal source = calculateSource(eqn,

fieldi)/epsilonOrOmega/Rho;

 eqn += fvm::Sp(source, epsilonOrOmega);

}

void Foam::fv::turbulenceDamping::addSup

(

 const volScalarField& rho,

 fvMatrix<scalar>& eqn,

 const label fieldi

)

{

 const dimensionSet& dimEqn = eqn.dimensions();

 Appendices

121

 const volScalarField& epsilonOrOmega =

 mesh().lookupObject<volScalarField>(fieldNames_[fieldi]);

 const dimensionSet& dimEorW = epsilonOrOmega.dimensions();

 volScalarField::Internal source = calculateSource(eqn, fieldi);

 // divide density for strict incompressible turbulence models

 if (dimEqn == dimEorW/dimTime*dimVolume)

 {

 const volScalarField& Rho =

mesh().lookupObject<volScalarField>("rho");

 source /= Rho;

 }

 if (explicitSourceTreatment_)

 {

 eqn += source;

 }

 else

 {

 eqn += fvm::Sp(source/epsilonOrOmega, epsilonOrOmega);

 }

}

bool Foam::fv::turbulenceDamping::read(const dictionary& dict)

{

 NotImplemented;

 return false;

}

//

**

***** //

H file

/*--

---------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Copyright (C) 2015-2019 OpenFOAM

Foundation

 \\/ M anipulation |

--

License

This file is part of OpenFOAM. OpenFOAM is free software: you can

redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation, either

version 3 of the License, or (at your option) any later version.

 Appendices

122

OpenFOAM is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY, without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details. You should have received a

copy of the GNU General Public License along with OpenFOAM. If not,

see <http://www.gnu.org/licenses/>.

Class

 Foam::fv::turbulenceDamping

Description

Calculates and applies the interficial turbulence damping term to

the omega or epsilon equation. Therefore, this fvOptions can only

handle omega- or epsilon-based RANS models. In addition, this

implementation only applies to multiphase flows where the flow is

treated as a (VOF mixture in turbulence modelling. Also, each phase

should have constant properties. For backward compatibility, the

current implementation supports turbulence models with and without

the variable-density effect being considered.

Reference:

\verbatim

 Original model for omega-based equations:

 Egorov, Y. (2004).

 Validation of CFD codes with PTS-relevant test cases.

 5th Euratom Framework Programme ECORA project, pp.

91“116.

 Extension to epsilon-based equations:

 Frederix, E.M.A., Mathur, A., Dovizio, D., Geurts, B.J.,

 Komen, E.M.J. (2018).

 Reynolds-averaged modeling of turbulence damping near a

 large-scale interface in two-phase flow.

 Nuclear Engineering and Design, 333, pp. 122â€“130.

 The current implementation is based on:

 Fan, W. & Anglart, H. (2019).

 Progress in Phenomenological Modeling of Turbulence

Damping

 around a Two-Phase Interface.

 Fluids, 4(3), 136.

\endverbatim

Usage

Example usage:

\verbatim

fields (omega); // Name of the field: omega or epsilon

B 0; // Damping coefficient, 0 means no

damping

lengthScale FA; // Optional parameter to specify the

method

 Appendices

123

 // to calculate the length scale

for damping.

 // The alternative is "cubeRoot".

dampingTreatment heavyNegative; // Optional parameter to specify

the

 // treatment for the heavier

phase.

 // Alternatives are

"heavyZero" and

 // "symmetric".

explicitSourceTreatment true; // Optional parameter to specify

whether the

 // source term should be treated

explicitly.

\endverbatim

Author

 Wenyuan Fan

SourceFiles

 turbulenceDamping.C

*--

---------*/

#ifndef turbulenceDamping_H

#define turbulenceDamping_H

#include "fvCFD.H"

#include "fvOption.H"

#include "uniformDimensionedFields.H"

// *

* * * * //

namespace Foam

{

namespace fv

{

/*--

---------*\

 Class turbulenceDamping Declaration

*--

---------*/

class turbulenceDamping

:

 public option

{

 // Private Data

 dimensionedScalar B_;

 Appendices

124

 dimensionedScalar C2_;

 dimensionedScalar beta_;

 dimensionedScalar Cmu_;

 word lengthScale_;

 word dampingTreatment_;

 Switch explicitSourceTreatment_;

 const dictionary& transportProperties;

 word phase1Name_;

 word phase2Name_;

 const word primaryPhaseName_;

 dimensionedScalar rho1_;

 dimensionedScalar nu1_;

 dimensionedScalar rho2_;

 dimensionedScalar nu2_;

 //- Source term to omega or epsilon equation

 volScalarField::Internal calculateSource

 (

 fvMatrix<scalar>& eqn,

 const label fieldi

);

public:

 //- Runtime type information

 TypeName("turbulenceDamping");

 // Constructors

 //- Construct from explicit source name and mesh

 turbulenceDamping

 (

 const word& sourceName,

 const word& modelType,

 const dictionary& dict,

 const fvMesh& mesh

);

 //- Disallow default bitwise copy construction

 Appendices

125

 turbulenceDamping(const turbulenceDamping&) = delete;

 // Member Functions

 // Evaluate

 //- Add turbulence damping to strict incompressible

equation

 virtual void addSup

 (

 fvMatrix<scalar>& eqn,

 const label fieldi

);

 //- Add turbulence damping to full-form equation

 virtual void addSup

 (

 const volScalarField& rho,

 fvMatrix<scalar>& eqn,

 const label fieldi

);

 // IO

 //- Read source dictionary

 virtual bool read(const dictionary& dict);

 // Member Operators

 //- Disallow default bitwise assignment

 void operator=(const turbulenceDamping&) = delete;

};

// *

* * * * //

} // End namespace fv

} // End namespace Foam

// *

* * * * //

#endif

//

**

***** //

 Appendices

126

Appendix H – Experimental data

Figure H.1 – Experimental data for Um=0.50 m/s and λw=0.25.

Figure H.2 - Experimental data for Um=0.50 m/s and λw=0.50.

 Appendices

127

Figure H.3 - Experimental data for Um=0.50 m/s and λw=0.75.

Figure H.4 - Experimental data for Um=0.68 m/s and λw=0.25.

 Appendices

128

Figure H.5 - Experimental data for Um=0.68 m/s and λw=0.50.

