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these algorithms for flow rate estimation provides a more accurate representation of the oil
and gas production process.
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These models are used to predict the flow rates of oil, gas and water from the wells. Two oil
wells are evaluated here. Ten machine learning algorithms are evaluated. LSTM provides
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good noise reduction. Finally the uncertainty of the prediction are quantified using 95%
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1 Introduction

A system for producing oil and gas is usually made up of several wells connected to a
flowline that transports the generated fluid from the wellheads to an inlet separator of
a processing facility. If the field is submerged, a riser connects the flowline to the inlet
separator. Choke valves positioned at the wellheads regulate the flowrate of the produced
fluid. The oil and gas from the wells usually is in the form of a multiphase fluid. Here the
multiphase fluid can be three or two phase fluids. It can be oil/water mixture, oil/gas,
oil/gas/water and so on.

Accurate flow rate of each phase is necessary to optimized the production. This also
enables safe operation and efficient control. To this end the fluids are usually physically
separated to obtain accurate flow rate of constituent phases. Multiphase flow meters are
another technology that can be deployed to increase the accuracy of measurements. With
these meters there is no need to physically separate the phases of the multiphase fluid
[1].

1.1 Background

In response to the cost of MPFMs and the disadvantages of relying only on them for mul-
tiphase flow measurement, VFM methods were developed. Machine learning modelling is
one part of VFM that aims to address this. Research is ongoing on how to increase the ac-
curacy and robustness of these methods. With better models, the production optimization
and safety of the oil and gas production from reservoirs and wells can be improved.

The use of data driven modelling (also called machine learning modelling) in the oil and
gas industry has been increasing with the availability of and storage of process data. As
early as 1993 Qin and Toral [2] have used neural networks to estimate the flow rates
of multiphase flow. Since then, there has been considerable research to improve the
application of machine learning models in the oil and gas industry. A more detailed
explanation and literature survey on use of machine learning in oil and gas industry is
described in Chapter 2.
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1 Introduction

1.2 Objective

The main objective of this thesis to explore the use of machine learning algorithms in oil
and gas industry. To this end, the problem can be subdivided into:

• Literature review on use of machine learning algorithm in oil and gas industry.

• Data collection and preprocessing.

• Predictions of flow rates of oil, gas using machine learning.

• Evaluate the effect of measurement noise on machine learning algorithms perform-
ance.

• Quantify the uncertainty in the predictions.

1.3 System Sketch

Fig 1.1 shows the scope and work flow of the thesis.

Figure 1.1: System sketch

1.4 Limitations

The limitations of the Thesis are:

• The data is based on simulator, which is based on a model.

• The models limitations are mentioned in Chapter 3.

13



1 Introduction

• The sample size of 5762 is small for a machine learning problem.

• The work probably cannot be used in a production environment.

1.5 Report Structure

The report is structured as follows:

1. Chapter 1: Contains the Introduction to the thesis, the objectives, scope and lim-
itations of the thesis.

2. Chapter 2: The literature review about the oil and gas production process is de-
scribed here. The use of machine learning algorithms is explored.

3. Chapter 3: The mathematical model of the single oil well is described. Brief explan-
ations of the machine learning algorithms that are used in the thesis is included.

4. Chapter 4: The results from the machine learning models are described

5. Chapter 5: The effects of measurement errors is explored.

6. Chapter 6: Uncertainty in the predictions is quantified.

7. Chapter 7: The results and discussions are described.

8. Chapter 8: The conclusion of the thesis is explained.

14



2 Literature Review

This chapter describes the oil and gas production process, and details the current literature
on the use of machine learning algorithms in them for various purposes..

2.1 Oil and gas production

The production of oil and gas requires measurements of various process data. This process
data is used to ensure a optimal production of oil and gas, and also ensures the safe
operation of the production system. One of the most important variables that is necessary
for this is the accurate measurement of oil, gas and liquid flow rates from the oil wells.
Since there is multiphase flow from the oil wells, (here multiphase refers to the combination
of different phases in a fluid, for oil wells it is oil mixed with gas/water or sand/mud) it
is a challenge to obtain the individual flow rates of oil and gas. Traditional a separator
is used as shown in Fig 2.1 to obtain an accurate flow rate of oil, gas and water. Here
to measure the individual phases the multiphase mixture are separated physically with a
separators. Phase flow meters are used to obtain accurate flow measurements.(add ref).
This process requires a steady state flow from the given oil well. In addition to this, the
other oil wells have to be shut down to avoid interference with the results. This is a costly
and time consuming process.

2.1.1 Multiphase Flow metering

To solve this problem multiphase flow meters (MPFMs) can be deployed as an alternate
to well testing. These are devices used to measure the individual flow rates of oil, gas, and
water in a single pipeline. Multiphase flow meters provide several key advantages over
traditional separation-based measurement systems. The advantages of using MPFMs
are:

1. Continuous, real-time monitoring: MPFMs can provide instantaneous measure-
ments of the individual phase flow rates, allowing for continuous monitoring of
well performance without the need for periodic well testing. This enables faster
decision-making and optimization of production

15



2 Literature Review

Figure 2.1: Example of sub-sea oil production

2. Reduced infrastructure: Multiphase flow meters eliminate the need for bulky and
expensive test separators, reducing topside equipment and infrastructure, especially
in offshore applications. This can lead to significant cost savings [3]

3. Improved reservoir management: Accurate knowledge of the individual phase flow
rates allows for better reservoir characterization, production allocation, and optim-
ization of field development. This is crucial as oil and gas fields mature and become
more complex

There are different technologies that can be used for MPFM, they are briefly described
here:

1. Tomography: Tomography-based MPFMs use a series of sensors to create a cross-
sectional image of the flow, allowing the individual phase flow rates to be determ-
ined. This technology can handle a wide range of flow conditions but requires
complex data processing [4].

2. Gamma Densitometry: Gamma densitometry MPFMs use radioactive sources to
measure the density of the multiphase flow, which can then be used to calculate the
individual phase flow rates. These meters tend to have high accuracy but require
special handling of the radioactive materials [4][5].

3. Differential Pressure Meters: Differential pressure MPFMs measure the pressure
drop across a restriction in the flow, such as a Venturi, to infer the individual phase
flow rates. These are relatively simple and low-cost but can have limited accuracy,
especially at high gas volume fractions [4][5].

16
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4. Wet Gas: Wet gas MPFMs are designed to measure gas and liquid flow rates in
gas-dominant flows, where the liquid content is low. They often use a combination
of differential pressure and gamma densitometry techniques [6].

5. Ultrasonic Sensing: Ultrasonic MPFMs use high-frequency sound waves to measure
the velocity and density of the multiphase flow, which can then be used to calculate
the individual phase flow rates. This technology can be non-intrusive but may
struggle with high gas volume fractions [7].

6. Coriolis: Coriolis MPFMs measure the Coriolis effect induced by the multiphase
flow to determine the individual phase flow rates. They can provide high accuracy
but may be limited in their ability to handle high gas volume fractions [8].

2.2 Virtual Flow Metering

While MPFMs has many advantages in measurement of multiphase flow, they are very
expensive. Also, the accuracy of them can be degraded over time. In addition maintenance
of these sensors are important to ensure good working conditions.

Oil and gas production systems will already have many sensors installed which monitor
certain physical quantities. These can be used to develop a model which can be used to
predict the flow rates. This process is called virtual flow metering.

For VFM the process data usually collected are:

• Bottomhole pressure and temperature.

• Wellhead pressure and temperature upstream of the choke.

• Wellhead pressure and temperature downstream of the choke.

• Choke opening.

VFM can be subdivided into First principles VFM and Data driven VFM. In most liter-
ature for oil and gas production, the use of machine learning is referred to as Data driven
VFM. They can be further subdivided into steady state and dynamic models. For this
thesis the focus is on steady state data driven VFM.

17



2 Literature Review

2.2.1 Data driven VFM

Data driven VFM (also called machine learning VFM) is the method where a model of
the oil and gas production system is created using the available sensor data. Here in
depth domain knowledge about the process is not necessary to create a model. A typical
schematic for a sub-sea oil and gas production systems which used data driven VFM is
shown in Fig 2.2. Broadly the steps involved are as follows:

1. Data collection

2. Data pre processing

3. Model development

4. Predictions of flow rates

5. Data reconciliation

Figure 2.2: Data driven VFM

2.2.1.1 Data collection

The first step to creating a data driven model is the collection of relevant data. In Virtual
Flow Metering systems, information is transmitted from wells and processing facilities and
this includes sensor readings. This data may be wireless transmitted using IoT systems or
through physical communication wires. It can will involve different communication pro-
tocols to ensure proper transmission of data . Historical data from the same or analogous
fields may also be used as a calibrating data set for fine-tuning the model. Generally, the

18



2 Literature Review

data collected tends to be unclean, contaminated, and may have missing values, outliers
and redundant inputs.

2.2.1.2 Data pre processing

Data filtering, where the removal of noise from raw data is performed is part of this step.
There exists many filters that can be deployed to clean the raw data. In addition outlier
detection, correcting missing values can be included. Preprocessing can also involve data
transformation, which might yield new insights about the information the data contains.
Feature engineering is the common term for this technique. Numerous strategies are
employed in feature engineering, such as the linear and non-linear combination of raw
data, feature selection techniques, and dimensionality reduction algorithms by Principal
Component Analysis (PCA).

2.2.1.3 Model development

In order to create a model, an algorithm that can map input features to output (target)
variables must be developed. The mapping process, also known as training or learning,
involves the algorithm modifying the parameters so that it can precisely estimate the de-
sired variables. Depending on the algorithm being used, the parameters must be changed.
The weights that connect the neurons in a neural network, for example, are the paramet-
ers. In regression trees, on the other hand, the parameter may be the tree depth. Reduce
the difference between the algorithm’s predicted values and the actual (measured) values
to minimise a cost function, which is how training is accomplished. Mean squared error
(MSE) is usually used as a cost function to solve regression problems such as Virtual Flow
Metering.

To make sure the trained model will function properly on data that it hasn’t encountered
during training, it needs to be validated and tested on additional datasets after train-
ing. Model generalisation is the capacity to provide precise predictions on novel data.
Determining the model’s precise hyper-parameters to get a good match with the data
is another goal of validation. The model parameters known as hyper-parameters are
those that are predetermined and not learned during training. For example, the number
of layers, the number of nodes in the hidden layers, the regularisation parameters, etc.
are examples of hyper-parameters in neural networks. The regularisation parameters are
hyper-parameters that enable the final method to be less affected by noise and outliers.
In order to prevent the algorithm from over fitting the data, Arnold et al [9] gives a
thorough explanation of how hyperparameters affect the model’s performance, along with
more specific definitions.
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The method used for validation for the regression problem is described in detail in Chapter
4. In brief, there are two methods used: 1)K-fold cross validation and 2)Early stopping.
These are used to obtain the best hyper-parameters for each model.

2.2.1.4 Prediction of flow rates

Once the training and validation for the model is completed, the model is tested on unseen
data. New predictions from this data are noted and the effectiveness of model can be
determined. For oil and gas flow rate predictions the commonly used performance metric
is the Mean absolute percentage error (MAPE). With this the performance across various
algorithms can be compared. It is easy to interpret and can be used across different input
data scales. MAPE can be found by:

MAPE(y, ŷ) = 1
nsamples

nsamples−1

∑
i=0

|yi − ŷi|
max(ε, |yi|)

(2.1)

2.2.1.5 Data reconciliation

An optimization algorithm adjusts the model parameters, for instance, flow rates, choke
discharge coefficient, gas and water fractions, and friction and heat transfer coefficients
such that the model outputs match the validated measured data being constrained to
process conditions, for instance, the material balances . In Virtual Flow Metering systems,
the reconciliation algorithm is often written in the constrained least-squares form The
reconciliation procedure in virtual flow metering systems is frequently expressed in the
constrained least squares form.

2.3 Previous work on machine learning

Much research has already been done on the use of data driven models to predict flow
rates of oil and gas and other parameters in the oil industry. The next sections details
some of the findings of previous research on these.

2.3.1 ANN

Artificial neural networks are one of the most popular types of machine learning algorithms
that has wide use. In the oil industry the feed forward neural network or Multilayer
perceptrons(MLP) are widely used. These networks are supposed to resemble the human
biological neuron and the connections between them.
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The earliest research on use of neural network was performed in 1993 by Qiu and Toral
[2], on the extraction of stochastic features from pressure signals, to find their relation
to water-cut and liquid and gas flowrates by training back-propagation neural networks
with calibration samples.

Al-Qutami et al, have developed a method of using neural networks to estimate phase
flow rates. Using typical observations in oil and gas production wells, a soft sensor is used
this work. Because common metering facilities are used, there is limited production mon-
itoring, which is addressed by the designed system. It serves as a backup for multiphase
flow metres, lowers operating and maintenance costs, and provides an affordable way to
satisfy the demands of real-time monitoring. Feed-forward neural networks are used to
create the soft sensor, and K-fold cross-validation and early stopping techniques are used
to control generalisation and network complexity [10].

A VFM that can estimate the gas flow rate in multiphase flow production lines is de-
veloped using radial basis function network, as proposed in this study. The created VFM
has exceptional performance and generalizability, as demonstrated by the testing results
obtained from real well tests. The importance of measuring choke valves and bottom
holes in order to make precise forecasts is also covered in this work. The suggested VFM
model offers a potentially appealing and affordable way to satisfy the demands of real-time
production monitoring while lowering operating and maintenance expenses [11].

Another paper by Al-Qutami et at, proposes an ensemble learning-based VFM system
for fields with shared metering infrastructure and little data generation. The suggested
approach produces a variety of neural network learners by adjusting the learning traject-
ory, NN architecture, and training data. To choose the ideal combining technique and the
best subset of learners, adaptive simulated annealing optimisation is suggested. Using real
well test data, the proposed approach was assessed and shown impressive performance,
with average errors for liquid and gas flow rates of 2.4% and 4.7%, respectively. Using a
cumulative deviation plot, which shows that predictions are within a maximum variation
of ±15%, the accuracy of the created VFM was also examined [12].

Ahmadi et al, presents a novel approach to oil rate prediction, based on an actual
MPFM situation.Artificial Neural Networks (ANN), Imperialist Competitive Algorithm,
and fuzzy logic-based wells are presented. The network’s input variables are line temper-
atures and pressures, while the output variable is the rate of oil flow. In this instance, a
database was constructed using a 1600 data set comprising 50 wells in one of Iran’s north-
ern Persian Gulf oil fields. ICA-ANN is a dependable substitute that doesn’t cause issues
for people or the environment. Additionally, a comparison of the ICA-ANN model’s per-
formance against the ANN and fuzzy models has been made. The outcomes demonstrate
the efficiency, dependability, and compatibility of the ICA-ANN mode [13].

AlAjmi et al, takes an engineering examination of the production surveillance system’s
integration of AI data-driven models to improve welltest data validation and lower produc-
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tion allocation uncertainty. Data-driven oil flow rate computational models were created
using artificial neural networks, fuzzy logic, and functional networks for both critical and
subcritical flow circumstances. 31 distinct wells 595 production rate tests were used to
train and evaluate these AI models. As a function of choke size and operating conditions,
the prediction findings demonstrated a significant correlation with real field data, offering
a dependable tool or methodology for estimating oil flow rate [14].

Al-Jasmi et al, uses NNs to forecast liquid rate and water cut performance in a mature
reservoir with a water cut of more than 20%. The available surface and downhole, real-
time production, time-dependent, and completion design data were used to train the
neural network. The time-dependent data are presented as time series that can be altered
by users to create different scenarios through adjustments to well operations. In addition
to offering a base-case forecast, this method simulates the outcomes of modifications to
control factors like pump frequency and tubing head pressure (THP). Users can model
production to predict and avoid negative well pump events by varying the pumping head
and frequency [15].

Alimonti et al, proposes an alternate method for analysing producing wells using fuzzy
logic (FL), knowledge discovery in databases (KDD), and MFM. KDD is the automated
extraction of implicit knowledge from large-scale information sources using patterns. It is
possible to process distributed, ad hoc field measurements (such as MFM and downhole
measurements) using artificial intelligence (AI), data integration, data cleaning, data
mining, and pattern analysis. After that, FL can handle the information in terms of
production optimisation and flow assurance.The reservoir and production network can also
be analysed using the same methods to create an integrated production-system analysis
[16].

Berneti and Shahbazian, developed a novel approach based on the feed-forward artifi-
cial neural network (ANN) and Imperialist Competitive Algorithm (ICA) to estimate
the oil flow rate of the wells. The suggested method combines the global searching cap-
ability of the imperialist competitive algorithm with the local searching capability of the
gradient-based back-propagation (BP) technique. The Imperialist Competitive Algorithm
is employed to determine the neural network’s starting weights. Using a data set of 31
wells in one of Iran’s northern Persian Gulf oil fields, the ICA-ANN is used to estimate
the wells’ oil flow rates. The effectiveness of the ICA-ANN is shown by the comparison
of its performance with that of ANN [17].

Hasanvand and Berneti, created a new approach to well oil rate prediction using artificial
neural networks, based on a real-world example including multiphase flow metres. The
network’s input variables are line temperatures and pressures, while the output variable
is the rate of oil flow. In this instance, a 600 data set comprising 31 wells in an Iranian
oil field near the northern Persian Gulf was used. The data was gathered for each well
over the course of three months, from December 2002 to November 2010 [18].
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García et al, present a method that uses information from sensors, well testing, and
simulations to measure each well’s oil production is based on a neural network and online
correlation logic. The approach for data selection, sensor validation analysis, modelling,
online implementation, and outcome quality control is described in the study. The primary
advantage of this implementation has been the ability to detect production deviations
above or below well potential promptly, as well as the ability to determine and modify
the elements influencing these deviations [19].

Denney et al, demonstrated NeuralFlow’s effectiveness in the field over a nine-month
period without the need for recalibration. Additionally, there are instances of data-driven
VFM systems being used in fields when they were designed with a particular field scenario
in mind [20].

Omrani et al, have looked into using artificial neural networks, totally data-driven ap-
proach for virtual flow metering and real-time back-allocation in oil and gas production
wells. Simulated and real-world data from multiple gas wells were used to evaluate the
suggested methodology. Two different type of artificial neural networks (ANNs) were
tested on simulated and field data to assess the accuracy of estimations for steady-state,
transients and dynamics in productions due to cyclic operation (shut-ins and restart).
The outcomes demonstrated that ANN could correctly predict the multiphase flow rates
in both field and simulated data [21].

Olivares et al, created a new workflow using a set of predictive proxy models, that combines
high-frequency and sporadic data with artificial intelligence methods like neural networks
and nodal analysis to enable engineers to process and comprehend production behaviour
from the vast amounts of data collected in accordance with the system under study or
evaluation. In addition to improving the accuracy of hydrocarbon accounting from the
pumping process to the marine terminal and implementing an early detection system for
anomalies that is published on the Internet for sharing with the entire asset management,
this workflow allows validation of field well test data, thereby reducing uncertainties in
well production allocation [22].

Shaban and Tavoularis, developed a method using Principal Component Analysis (PCA)
to preprocess the raw data, while independent component analysis was used to identify
dependent features. Phase flow rates were obtained as the output of multi-layer back-
propagation neural networks, which were fed the extracted characteristics as inputs. In
order to estimate the flow rates of both phases in an air-water flow in a vertical pipe with
a diameter of 32.5 mm and in the pressure range of 100 to 140 kPa, the current method
was utilised to calibrate a differential pressure sensor. Direct flow rate measurements and
the current method’s predictions agreed fairly well [23].
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2.3.2 LSTM

Recurrent neural network (RNN) have been more recently used in the oil industry, here
the Long Short-Term Memory (LSTM), a type of model is popularly used. In this type
of models, the long-term dependencies in time series data can be handled.

Andrianov showed that a recurrent neural network with Long Short-Term Memory (LSTM)
may be used to forecast the rates for a series of future time instants in addition to re-
liably estimating the multiphase rates at the current time (i.e., functioning as a virtual
flow metre). The outcomes of hydrodynamical modelling and LSTM forecasts compare
favourably for a synthetic severe slugging event. LSTM results for a variable rate well
test’s synthetic noisy dataset demonstrate that the model can also accurately predict
multiphase rates for a system with fluctuating flow patterns [24].

Loh et al, customised a LSTM model for predicting gas flow rates in mature gas wells,
accounting for input parameter uncertainty. Furthermore, the Ensemble Kalman Filter
(EnKF) is utilised to update the flow rate predictions based on fresh observations in order
to improve the prediction’s accuracy and robustness owing to changes in the system over
time. The new method was evaluated using data from two mature gas production wells
that have extremely dynamic production and salt deposition issues [25].

Sun et al, proposed a new method for modelling time-series-related issues (such pro-
duction forecasting) utilising RNN-based sequence-to-sequence models was presented in
this paper. For assets with or without reliable operation history data, the established
data-driven strategy increases the efficiency and accuracy of the history matching and
forecasting processes. Furthermore, open-source libraries were used to construct the case
studies and methods in this article. These libraries might easily be integrated into pro-
prietary or in-house software [26].

2.3.3 Other methods

Xu et al, used a Support Vector Machine technique, which performed better than a Neural
Network approach, to estimate the flowrates based on the Venturi pressure difference
measurements from the experiments [27].

Zang et al, contrasts a back-propagation neural network (ANN), a classification approach
(random forest), and a very basic regression method (MLR). Step rate well testing from
three different wells provide real-time data that is used to train all three systems. All three
trained models are put through a blind test to compare how predictable each approach
is. All methods gave good results with low errors [28].

Gerrard and Taylor, discussed how Shell employs data-driven VFM software called Field-
Ware Production Universe (FW PU) in its fields all over the world. The Smart Fields
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programme provided the inspiration for this software’s development. Its goal was to op-
timise field production in Shell’s fields by utilising smart machinery, technologies, and
procedures [29][30].

Grimstad et al, used B-spline surrogate models to estimate flowrate. They employed
Prosper’s pressure drop, choke, and inflow performance models to get the data for the
method, and they fitted the outcomes using a cubic spline interpolation tool [31].

Bikmukhametov and J¨aschke, used regression trees and the gradient boosting method
as a VFM system to forecast oil flowrates in various field development scenarios. They
examined the situations in which VFM is employed as a stand-alone system and as a
backup for an MPFM. The data produced by the OLGA programme was used to train the
algorithm. As demonstrated by the results, the algorithm has a fair chance of predicting
multiphase flowrates even with relatively modest datasets from the MPFM measurements
and well testing. To increase the accuracy of flowrate prediction, the technique can also
be integrated with neural networks inside ensembles [32].

Bello et al, describes a novel method for creating a virtual flow metre for production
wells using well configuration data, available time series field data, and hybrid intelligent
modelling technology. Real-world field data is contrasted with the simulation results from
the hybrid intelligent virtual flow rate metre. Future performance of currently operational
wells is predicted using the proven model. To find their influence on the novel approachs
predicted accuracy, different factors are tested [33].

Al-Qutami et al, suggests using a heterogeneous ensemble of regression trees and neural
networks to create a VFM model that uses parameter perturbation and bootstrapping
to create variability among learners. Simulated annealing optimisation is used to prune
the ensemble in order to better guarantee accuracy and lower ensemble complexity. Eight
production wells’ worth of well-test data spanning five years are used to validate the
suggested VFM model. The performance of the results is better than that of homogeneous
ensemble approaches [34].
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This chapter describes the mathematical model of the gas lifted oil well system. It also
includes a brief explanation of the machine learning algorithms used for creating models
for flow rate predictions.

3.1 Description of the oil well

The modelling of the oil well is based on the work of Janatian et al. A single gas lifted
oil well is shown in Figure 3.1. Through the gas lift choke valve, high-pressurized natural
gas is continually injected into the wells annulus in this system, which is mostly utilised
to extract lighter crude oils. The injected gas finds its way into tubing at some points
located at proper depths and mixes with the multiphase fluid from the reservoir. As a
result of this mixing, the density of the fluid in the tubing will be reduced, which means
that the flowing pressure losses in the tubing reduce. Consequently, the reservoir pressure
will be able to overcome the flowing resistance in the well and push the reservoir fluid to
the surface. Each well has its own inflow characteristics [35].

In addition there are some assumptions made to simplify the modelling process as de-
scribed in the paper by Janatian et al [36].

• Pressure of the reservoir is constant.

• Density of liquid is constant and not a function of pressure and temperature.

• Loss of pressure heads due to friction in the pipes has been neglected.

• Temperature of gas and oil is constant at all points in the pipelines.

• All phases of multiphase fluid in the tubing are evenly distributed (no slugging).

• Flashing does not occur in any section of the oil well.
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Figure 3.1: Simplified single oil well

3.1.1 Mathematical model of gas lifted oil well

From the work of Janatian et al [36], the mass balance differential equations governing
the mass flows is given by: (i superscript is for the well number)

ṁi
ga = wi

ga −wi
gin j (3.1)

ṁi
gt = wi

gin j +wi
gr +wi

gp (3.2)
ṁi

lt = wi
lr −wi

l p (3.3)

Where,
mi

ga - mass of lift gas in annulus,
mi

gt - mass of gas in the tubing above the injection point,
mi

lt - mass of liquid in the tubing above the injection point,
wi

ga - mass flow flow rate of injected lift gas into ith well from the gas lift choke valve,
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wi
gin j - mass flow rate of gas injection from the annulus into the tubing,

wi
gp - mass flow rate of gas phase through production choke valve,

wi
l p - mass flow rate of liquid phase through production choke valve,

wi
gr - mass flow rate of gas from reservoir into well,

wi
lr - mass flow rate of liquid from reservoir into well.

The flow equations are as follows:

wi
ging = KiY i

2

√
ρ i

gamax(Pi
ain j −Pi

tin j,0) (3.4)

wi
gp =

mi
gt

mi
gt +mi

lt
wi

gl p (3.5)

wi
l p =

mi
lt

mi
gt +mi

lt
wi

gl p (3.6)

wi
l p = PIimax(Pr −Pi

w f ) (3.7)
wi

gp = GORiwi
l p (3.8)

wi
glp =Cv(ui

2)Y
i
3

√
ρ i

mmax(Pi
wh −Pm,0) (3.9)

wi
op =

ρo

ρw
(1−WCi)wi

l p (3.10)

Where,
Ki - gas injection valve constant,
Y i

2 - gas expandability factor for the gas that passes through the gas injection valve,
ρ i

ga - average density of gas in the annulus,
Pi

ain j - pressure upstream of the gas injection valve in the annulus,
Pi

tin j - pressure downstream of the gas injection valve in the tubing,
wi

gl p - total mass flow rate of all phases from the production choke valve,
PIi - productivity index,
Pr - reservoir pressure,
Pi

w f - bottomhole pressure,
GOR - gas to oil ratio,
Cv(ui

2) - production choke valve characteristics as it is opening,
Y i

3 - gas expandability factor for the gas that passes through the production choke valve,
ρ i

m - density of multiphase mixture in tubing above injection point,
Pi

wh - wellhead pressure,
Pm - gathering manifold pressure,
wi

op - oil compartment of the liquid produced from production choke valve wi
l p,

ρo - density of oil,
ρw - density of water,
WCi - water cut.
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The pressure equations are given by:

Pi
a =

Zmi
gaRT i

a

MAi
aLi

a_tl
(3.11)

Pi
ain j = Pi

a +
mi

ga

Ai
aLi

a_tl
gLi

a_vl (3.12)

Pi
tin j =

Zmi
gtRT i

t

MV i
G

+
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mgLi
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2
(3.13)

Pi
wh =

Zmi
gtRT i

t

MV i
G

−
ρ i

mgLi
t_vl

2
(3.14)

Pi
w f = Pi

tin j +ρ
i
l gLi

r_vl (3.15)

Where,
Pi

a - pressure of gas in annulus downstream of the gas lift choke valve,
Z - gas compressibility factor,
R - universal gas constant,
T i

a - temperature in tubing,
M - molar mass,
Ai

a - annulus cross-section area,
Li

a_tl - total length of annulus,
Pi

ain j - pressure upstream of the gas injection valve in the annulus,
g - acceleration due to gravity,
Li

a_vl - vertical length of annulus,
Pi

tin j - pressure downstream of the gas injection valve in the tubing,
T i

t - temperature in tubing,
ρ i

m - density of multiphase mixture in tubing above injection point,
Li

t_vl - vertical length of tubing above injection point,
V i

G - volume of the gas in the tubing above the gas injection point,
ρ i

l - average density of the liquid phase,
Li

r_vl - vertical length of tubing below injection point.
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The densities and remaining equations are:

ρ
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ρ
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ρ
i
m =

mi
gt +mi

lt

Ai
tLi

t_vl
(3.18)
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V i
G = Ai

tL
i
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mi
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ρ i
l

(3.21)

Where,
ρ i

ga - average density of gas in the annulus,
Ai

t - annulus cross-section area,
Y i

2 - gas expandability factor through the gas injection valve.

Table 3.1.1 shows the Well 1 and Well 2 parameters, using these and the equations de-
scribed an open loop simulation of the systems is created in Matlab. With this simulation
the data for creating machine learning models can be created.

Table 3.1: Parameters for Well 1 and Well 2
Parameter Well 1 Well 2 Unit

K 68.43 67.82 [

√
kgm2
bar

hr ]

PI(1e+4) 2.51 1.63 [kg/hr
bar ]

GOR 0.05 0.07 -
WC 0.20 0.10 -
La_tl/Lt_tl 2758 2559 [m]
La_vl/Lt_vl 2271 2344 [m]
Aa 0.0174 0.0174 [m2]
At 0.0194 0.0194 [m2]
Lr_vl 114 67 [m]
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3.2 Machine learning algorithms

There are many machine learning algorithms that have been developed for regression
tasks. The algorithms that are used in this thesis for predicting the flow rates are briefly
described here [37].

3.2.1 Multivariate Linear Regression

Linear Regression is the simplest machine learning algorithm. It makes a prediction by
simply computing a weighted sum of the input features, plus a constant called the bias
term, as shown in equation 3.22

ŷ = θ0 +θ1x1 +θ2x2 + · · ·+θnxn (3.22)

Where,
ŷ - predicted value,
n - number of features,
xi - ith feature value,
θ j - jth model parameter,
θ0 - bias term.
This can be modified to output multiple ŷ values. Multivariate linear regression is a
statistical technique that models the linear relationship between multiple independent
variables and a single dependent variable. It extends simple linear regression by allowing
for the inclusion of more than one predictor variable. The goal is to find the linear equation
that best predicts the dependent variable based on the independent variables [38].

3.2.2 k-Nearest Neighbors Regression

he k-nearest neighbors (kNN) algorithm is a non-parametric, supervised learning method
used for classification and regression tasks. It works by identifying the k closest training
examples to a given data point and assigning a class or value based on the majority vote
or average of those neighbors [39][40]. The key steps in KNN are:

1. Determine the distance metric to measure proximity between data points, such as
Euclidean or Manhattan distance.

2. Select the value of k, which represents the number of nearest neighbors to consider.

3. For a new data point, identify the k closest training examples and assign the class
or value based on those neighbors.
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kNN is a versatile algorithm that can handle both numerical and categorical data without
making assumptions about the underlying data distribution. It is commonly used in
applications like recommendation systems, pattern recognition, and anomaly detection.
The choice of k is important, as lower values can lead to overfitting while higher values
may cause underfitting [41].

3.2.3 Support Vector Regression

Support Vector Regression (SVR) is a nonparametric technique that uses kernel functions
to estimate a function from a set of training data. The goal is to find a function f(x) that
deviates from the target values y by no more than ε , while being as flat as possible. This is
achieved by solving a convex optimization problem that minimizes the norm of w, subject
to the constraint that the regression errors are within ε [42].

SVR can handle high-dimensional data and nonlinear relationships by implicitly mapping
the input data into a higher-dimensional feature space using kernel functions. Unlike other
regression models that try to minimize the error between the real and predicted values,
SVR tries to fit the best line within a threshold value (distance between hyperplane and
boundary line). The data points on either side of the hyperplane that are closest to the
hyperplane are called Support Vectors, which are used to predict the output [43].

SVR has several advantages, such as being robust to outliers, having excellent generaliz-
ation capability, and easy implementation. However, it is not suitable for large datasets,
and its performance may degrade when the number of features exceeds the number of
training samples [44].

3.2.4 Decision Tree Regression

A decision tree algorithm is a supervised machine learning technique used for both clas-
sification and regression tasks. It constructs a tree-like model of decisions based on the
data’s attributes. The process starts at the root node and splits the data into subsets
using the most significant attribute based on selection criteria like information gain or
Gini impurity [45].

Each internal node of the tree represents a ”test” on an attribute, each branch represents
the outcome of that test, and each leaf node represents a class label or a continuous
outcome. The paths from root to leaf represent classification rules or regression paths.
Decision trees handle both numerical and categorical data and are intuitive, as they
mimic human decision-making processes. They are particularly useful in scenarios where
relationships between parameters are non-linear or complex [46].
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However, decision trees can suffer from overfitting, especially with very complex trees.
Techniques such as pruning are used to remove parts of the tree that do not provide
additional power in order to reduce overfitting and improve the model’s generalizability.
Decision trees are foundational elements in more complex algorithms like Random Forests
and boosting methods, enhancing their stability and accuracy [47].

3.2.5 Gradient Boosting Regression

Gradient Boosting Regression is a powerful machine learning algorithm that combines
multiple weak models to form a strong learner. It is particularly effective for regression
problems where the goal is to predict continuous values. The algorithm works by it-
eratively training decision trees on the residuals of previous predictions, which are the
differences between the actual and predicted values. Each tree is trained to minimize the
error of the previous tree, and the learning rate determines the contribution of each tree
to the final prediction [48].

The process begins with an initial guess, typically the mean of the target variable. Then,
at each iteration, a new tree is trained to predict the residuals from the previous tree.
The residuals are the differences between the actual and predicted values. The new tree
is added to the previous trees, and the process is repeated until a stopping criterion is
reached, such as a maximum number of trees or a minimum improvement in the model’s
performance [49].

The final prediction is the sum of the predictions from all the trees, weighted by their
learning rates. This approach allows the algorithm to capture complex relationships
between the input variables and the target variable, making it highly effective for regres-
sion problems [50].

3.2.6 XGBoost Regression

XGBoost is a powerful algorithm for building supervised regression models. It was de-
veloped by Chen and Guestrin [51]. It is an implementation of gradient boosting that
is designed to be highly efficient and scalable. The algorithm is particularly effective for
regression problems where the goal is to predict continuous or real values. XGBoost is
based on the concept of ensemble learning, where multiple base learners are trained and
combined to produce a single prediction.

The core components of XGBoost for regression include the objective function, base
learners, and regularization. The objective function is responsible for defining the loss
function and the regularization term. The base learners are the individual models that
are trained and combined to produce the final prediction. Regularization is used to pre-
vent overfitting by penalizing complex models [52].
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XGBoost uses a unique approach to building regression trees. Each tree starts with a
single leaf and all residuals go into that leaf. The algorithm then calculates a similarity
score for this leaf based on the residuals. The similarity score is used to determine how
to split the data into two groups. This process is repeated recursively until a stopping
criterion is reached. XGBoost is widely used in various applications due to its high
accuracy and efficiency. It is particularly effective for large datasets and can be easily
integrated with other tools and packages such as scikit-learn and Apache Spark [53].

3.2.7 PC Regression

Principal component regression (PCR) is a regression analysis technique that combines
principal component analysis (PCA) and linear regression. The key idea behind PCR is
to first perform PCA on the predictor variables to obtain a set of uncorrelated principal
components, and then use these principal components as the new predictors in a linear
regression model, instead of the original variables [54].

The main advantages of PCR are that it can help address issues like multicollinearity
and high dimensionality in the predictor variables. By using a subset of the principal
components, PCR can reduce the number of predictors in the regression model, which
can improve the model’s interpretability and generalization performance. However, PCR
does not perform feature selection, as each principal component is a linear combination
of all the original predictors [55].

While PCR can be a useful technique, it has some limitations. It relies on the assumption
that the directions of maximum variance in the predictor variables are also the most
predictive of the response variable, which is not always the case. Additionally, PCR can
result in information loss, as it discards some of the principal components during the
regression step.

3.2.8 PLS Regression

PLS regression is a powerful statistical technique that is particularly useful for analyzing
high-dimensional data with many predictor variables.The key idea behind PLS regression
is to find a set of latent components (linear combinations of the original predictors)
that maximize the covariance between the predictors and the response variable. Unlike
traditional linear regression, PLS does not require the predictors to be orthogonal or the
number of predictors to be less than the number of observations [56].

PLS regression works by iteratively extracting latent components that explain as much
of the covariance between the predictors and response as possible. The resulting PLS
model provides both dimension reduction and regression coefficients, allowing for accurate
prediction of the response variable from the original high-dimensional predictors [57].
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PLS regression has several advantages over other regression methods, including its ability
to handle multicollinearity, its robustness to noise, and its suitability for datasets with
more predictors than observations. As a result, PLS is a widely used technique in fields
such as chemometrics, bioinformatics, and marketing research.

3.2.9 MLP Neural network

A Multilayer Perceptron (MLP) is a type of artificial neural network that consists of
multiple layers of interconnected nodes, or neurons. Unlike a single-layer perceptron,
which can only learn linearly separable patterns, an MLP can learn more complex, non-
linear relationships in data [58].

The key components of an MLP are the input layer, one or more hidden layers, and an
output layer. The input layer receives the data, which is then passed through the hidden
layers, where the network learns to represent the data in a more abstract way. Each
hidden layer applies a non-linear activation function to the weighted sum of its inputs,
allowing the network to learn complex patterns. The final output layer produces the
predicted result.MLPs are trained using a supervised learning algorithm, typically back
propagation, which adjusts the weights of the connections between neurons to minimize
the error between the predicted and actual outputs. This iterative process allows the
MLP to learn the underlying structure of the data and make accurate predictions on new,
unseen data [59].

3.2.10 LSTM

LSTMs (Long Short-Term Memory) are a type of recurrent neural network designed to
address the vanishing gradient problem in traditional RNNs. The key feature of LSTMs is
their memory cell, which can selectively retain or discard information as it flows through
the network [60].

LSTMs have three gates that control the flow of information: the input gate, forget gate,
and output gate. The input gate decides what new information from the current input
and previous output should be added to the memory cell. The forget gate determines
what information from the previous memory cell should be retained or forgotten. The
output gate controls what information from the current memory cell and input should
be used to produce the output. This gating mechanism allows LSTMs to learn long-
term dependencies in sequential data, making them well-suited for tasks like language
modeling, machine translation, speech recognition, and time series forecasting. LSTMs
have been widely adopted and have significantly advanced the state-of-the-art in many
sequence-to-sequence learning problems [61].
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This chapter describes the implementation of the machine learning algorithms to create
models. These models are used to predict the flow rates of oil, gas and water.

4.1 Setup

The data to be used for creating machine learning models are generated using Matlab.
The equations described in Chapter 4 are used to create an open loop simulator in Matlab.
The gas injection is varied from 10% to 100% in each well. Ten datasets are obtained for
each well. To simplify the modelling process, the mean of the datasets are used. In total
one model is created for each well. A sample time of 1 minute is used to generate the
simulation data.

4.2 Data splitting

For machine learning it is very important to split the data into train and test sets. This
ensures the model is not over fitted and the performance of the model can be evaluated
on the test set. Here the data is split into 70% train and 30% test data.

4.3 Data visualization

The test data is not used for any analysis or visualization, this is to reduce any human
bias from contaminating the results. The co-relations between the features can also be
found. This calculated using the standard correlation coefficient (Pearson’s r) between
pairs of variables.
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4.3.1 Well 1

The input variables from the dataset for well 1 and well 2 are Wga, the mass flow rate of
injected lift gas into ith well from the gas lift choke valve, Pwh, the wellhead pressure and
Pw f , bottomhole pressure.

The target variables are Wop, mass flow rate of liquid phase through production choke
valve, Wl p, the mass flow rate of liquid phase through production choke valve and Wgp,
the mass flow rate of gas phase through production choke valve.

The correlation graphs between the output variables and the input features for well 1 is
shown in Fig 4.2. It can be observed from the last column that Pw f has positive correlation
with all the three target variables. A perfect positive correlation would be a 45 degree
straight line, but here it can be seen that the non linearities are also present.Pw f more
non linearity with the target variables, it have as a slightly negative correlation with
them.(Wga shows a more discrete effect on the target variables. This is excepted as mass
flow injected into the wells cause the change in oil, gas and liquid production).
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Figure 4.1: Plots of input features in red, output variables in blue (Well 1)
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Figure 4.2: Plots of correlation graphs (Well 1)
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4.3.2 Well 2

The input and target variables for well 2 are the same as described for well 1. The
correlation graphs between the output variables and the input features for well 1 is shown
in Fig 4.4. Here the observations are similar to the Well 1.

Figure 4.3: Plots of input features in red, output variables in blue (Well 2)
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Figure 4.4: Plots of correlation graphs (Well 2)
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4 Predictions

4.4 Nested Validation

To tune the models, nested k fold cross validation is deployed. Since the data is a time
dependant, the future data points should not be used to train the model. With the Time
Series cross-validator of ”scikit-learn” it is easier to split the train data into train and
validation sets. Two splits are chosen here, since the dataset is not large. To prevent over-
fitting early stopping is implemented. A visual representation of this splitting is shown
in Fig 4.5.Feature scaling through standardization, is preformed on the train dataset. It
involves rescaling each feature such that it has a standard deviation of 1 and a mean of
0.

Figure 4.5: Nested k fold validation

4.5 LSTM Regression

Here a LSTM Regression model is trained and validated. The model is then used on the
test set to obtain the MAPE metric. The predictions of the model on both sets are shown
in Figures 4.6 and 4.7

• MAPE is 1.92% for well 1.

• MAPE is 2.11% for well 2.

The early stopping is determined by plotting the Training vs Validation loss as shown in
Fig 4.8. This ensures the model is not overfitted on the training data. It can be easily
implemented in Tensorflow. For the future algorithms a similar loss curves are obtained.
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Figure 4.6: LSTM Regression model outputs on test set (Well 1)

Figure 4.7: LSTM Regression model outputs on test set (Well 2)

For well 1, 32 memory cells were used. For well 2, 40 memory cells were used. The ’adam’
optimizer with loss function of mean squared error is used for training both models. A
linear activation unit is used in the output layer
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Figure 4.8: Training vs Validation loss
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4.6 Multivariate Linear Regression

Here a Multivariate Linear Regression model is trained and validated. The model is then
used on the test set to obtain the flow rate predictions. GridSearchCV from Sklearn is
used to find the best parameters for the models. The best parameters here are using the
Intercept and overwriting the X parameter.

• MAPE is 2.14% for well 1.

• MAPE is 7.57% for well 2.

It can seen that the prediction for the W i
gp, the mass flow rate of gas the model output is

almost perfect in both wells. Well 1 has slightly more offset for oil and liquid flow rate
compared to Well 2.

Figure 4.9: Multivariate Linear Regression outputs on test set (Well 1)
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Figure 4.10: Multivariate Linear Regression outputs on test set (Well 2)
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4.7 kNN Regression

Here a kNN Regression model is trained and validated. The model is then used on the
test set to obtain the flow rate predictions. With GridSerachCV Euclidean distance and
8 number of neighbours produces the best model for well 1. But for well 2 the Manhattan
distance is found to give best model.

Figure 4.11: kNN Regression model outputs on test set (Well 1)

Figure 4.12: kNN Regression model outputs on test set (Well 2)

• MAPE is 8.05% for well 1.

• MAPE is 5.41% for well 2.
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4.8 Support Vector Regression

Here a Support Vector Regression model is trained and validated. The model is then
used on the test set to obtain the flow rate predictions. From GridSearchCV kernel=’rbf’,
C=1.0, gamma=0.1 are the best parameters for well 1. kernel=’rbf’, C=10.0, gamma=0.01
are best parameters for well 2.

Figure 4.13: Support Vector Regression model outputs on test set (Well 1)

Figure 4.14: Support Vector Regression model outputs on test set (Well 2)

• MAPE is 5.05% for well 1.

• MAPE is 4.31% for well 2.
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4.9 Decision Tree Regression

Here a Decision Tree Regression model is trained and validated. The model is then used
on the test set to obtain the flow rate predictions. From GridSearchCV , the max depth
is one, max features is sqrt, min samples leaf is one , min samples split is two for well
1. For well 2, the max depth is ten, max features is log2, min samples leaf is one, min
samples split is ten. This shows that each well has to be tuned individually to obtain best
models.

Figure 4.15: Decision Tree Regression model outputs on test set (Well 1)

Figure 4.16: Decision Tree Regression model outputs on test set (Well 2)

• MAPE is 9.26% for well 1.

• MAPE is 5.31% for well 2.
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4.10 Gradient Boosting Regression

Here a Gradient Boosting Regression model is trained and validated. The model is then
used on the test set to obtain the flow rate predictions. For well 1, learning rate=0.01, max
depth=3, estimators=100. For well 2, learning rate=0.05, max depth=3, estimators=100
are the best hyper parameters.

Figure 4.17: Gradient Boosting Regression model outputs on test set (Well 1)

Figure 4.18: Gradient Boosting Regression model outputs on test set (Well 2)

• MAPE is 4.95% for well 1.

• MAPE is 5.55% for well 2.

In this algorithm the importance of the features on the model can also be found. Pwh, the
wellhead pressure hows the maximum effect.
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Figure 4.19: Feature importance from Gradient Boosting model
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4.11 XGBoost Regression

XGBoost is a faster and more advanced version of Gradient Boosting algorithm. Here
a XGBoost Regression model is trained and validated. The model is then used on the
test set to obtain the flow rate predictions. For well 1, learning rate=0.01, max depth=7,
estimators=300. For well 2, learning rate=0.1, max depth=3, estimators=100 are the
best hyper parameters.

Figure 4.20: XGBoost Regression model outputs on test set (Well 1)

Figure 4.21: XGBoost Regression model outputs on test set (Well 2)

• MAPE is 4.23% for well 1.

• MAPE is 5.56% for well 2.
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4.12 Principal component Regression

Here a Principal component model is trained and validated. The model is then used on
the test set to obtain the flow rate predictions. One PC is used in both models.

Figure 4.22: Principal Component Regression model outputs on test set (Well 1)

Figure 4.23: Principal Component Regression model outputs on test set (Well 2)

• MAPE is 9.52% for well 1.

• MAPE is 16.69% for well 2.
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4.13 Partial Least Squares Regression

Here a Partial least squares Regression model is trained and validated. The model is then
used on the test set to obtain the flow rate predictions.

Figure 4.24: Partial least squares Regression model outputs on test set (Well 1)

Figure 4.25: Partial least squares Regression model outputs on test set (Well 2)

• MAPE is 2.14% for well 1.

• MAPE is 7.57% for well 2.
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4.14 MLP Neural Network Regression

Here a MLP neural network Regression model is trained and validated. The model is
then used on the test set to obtain the flow rate predictions.

Figure 4.26: MLP neural network Regression model outputs on test set (Well 1)

Figure 4.27: MLP neural network Regression model outputs on test set (Well 2)

• MAPE is 2.43% for well 1.

• MAPE is 5.49% for well 2.
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5 Measurement Errors

This chapter describes various types of measurement errors which occur in the collection
of process data. Methods to filter out and correct the errors are also explored. Outlier
detection is also explored.

5.1 Types of errors

The three main types of measurement errors in process data are:

• Systematic errors

• Random errors

• Gross errors

Systematic errors, also known as determinate errors, are consistent and predictable de-
viations from the true value in measurements. These errors occur due to flaws in the
measurement process, such as faulty equipment, incorrect calibration, or procedural mis-
takes. Systematic errors are consistent and always in the same direction. This consistency
makes them particularly challenging to detect and correct, as they can significantly skew
the results of an experiment or study. Examples of systematic errors include offset errors,
where the instrument does not accurately return to zero, and scale factor errors, where
measurements are consistently too high or too low by a certain percentage. Identifying
and correcting these errors requires careful analysis of the measurement process and the
use of control samples or standards to assess the accuracy of the measurements.

Random errors are a type of measurement error that affect measurements in unpredictable
ways, meaning the measurements are equally likely to be higher or lower than the true
values. This type of error is often referred to as ”noise” because it blurs the true value
or the ”signal” of what’s being measured. Random errors are almost always present in
research, even in highly controlled settings,their impact can be reduced using various
methods. To reduce random errors, sample size can be increased, as large samples have
less random error than small samples. This is because the errors in different directions
cancel each other out more efficiently when you have more data points. Collecting data
from a large sample increases precision and statistical power.
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Gross errors in the measurement of process data refer to significant mistakes or oversights
that occur during the measurement process, leading to a substantial deviation from the
true value. These errors are primarily attributed to human factors, such as lack of ex-
perience, improper handling of instruments, poor judgment, and equipment failure. They
can also be influenced by human factors like fatigue or stress, which can affect a user’s
ability to operate the measuring instrument accurately.

5.2 Effect of error on models

The effects of systematic and gross errors requires in-depth statistical analysis and will
not be analysed here. The main focus here is to check the effect of random errors, in
the form of noise. The effect of random errors will be tested on three machine learning
models. XGBoost, MLP NN and LSTM.

5.2.1 Impulse noise

Impulse noise introduces sudden jumps or falls in the data values, simulating real-world
data with occasional spikes at random locations. First a noise sample of 3% is created.
The values in the sample are uniformly distributed between 20% of the minimum value
of the column and 30% of the maximum value of the column. This ensures that the
noise added is relative to the range of the data in the column. The noise is randomly
distributed across the column and added to the 3 input features. The 3 algorithms are
trained and tested. Here the figures are shown of only Well 1, since the effects are very
similarly observed in Well 2.
The MAPE for well 1 is reduced to 5.98% and 4.67% for Well 2. For MLP NN the MAPE

Figure 5.1: Effect of Impulse noise on LSTM model
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Figure 5.2: Effect of Impulse noise on MLP NN model

is reduced to 8.76% for well 1 and 5.13% for well 2. Fig 5.2 shows the model output. For

Figure 5.3: Effect of Impulse noise on XGBoost model

XGBoost the MAPE is reduced to 7.51% for well 1 and 5.17% for well 2. Fig 5.3 shows
the model output.

5.2.2 Filtering noise

To solve the problem of impulse noise, there are many filters that can be used. For
example Median filter, Order statistic filters, and so on.

Here the Median Filter is used to reduce the impulse noise. SciPy is used her which has
a median filter function is well-suited for removing impulse noise, as it replaces each data
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5 Measurement Errors

Figure 5.4: Median noise filter

point with the median of the neighboring data points within a specified window size. The
results of the median filter is shown in Fig 5.4. A window size of 3 is used. Each data
point is replaced with the median of itself and its two neighbors. Most of the impulses
are filtered out. The prediction accuracy of the 3 models is improved.

Table 5.1: Impulse noise effects
Well no. LSTM (%) MLP NN (%) XGBoost (%)
Well 1 5.98 8.76 7.51
Well 2 4.67 5.13 5.77

Table 5.2: Median Filter effects
Well no. LSTM (%) MLP NN (%) XGBoost (%)
Well 1 1.87 4.97 6.47
Well 2 2.86 5.51 5.29
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6 Uncertainty

Uncertainty refers to a state of limited knowledge or information, where it is impossible to
precisely describe an existing state, future outcome, or multiple possible outcomes. There
are two main types of uncertainty [62]:

• Aleatory Uncertainty: This type of uncertainty arises from the inherent randomness
or variability in natural phenomena or processes. It is an irreducible uncertainty
that cannot be reduced through additional measurements or increased knowledge.
Aleatory uncertainty is best modelled using probability distributions and is often
referred to as ”irreducible” or ”objective” uncertainty.

• Epistemic Uncertainty: Epistemic uncertainty stems from a lack of knowledge or
incomplete information about a system or phenomenon. It is a ”reducible” uncer-
tainty that can potentially be reduced through additional measurements, experi-
ments, or increased understanding. Epistemic uncertainty can arise from various
sources, such as imprecise measurements, incomplete data, inadequate models, or a
lack of understanding of the underlying processes.

6.0.1 Uncertainty in machine learning

There are many methods to quantify the uncertainty in predictions for machine learning
models. Some of them are: Confidence intervals, Quantile regression, Bootstrapping,
Ensemble methods and Bayesian optimization.

Using XGBoost the confidence intervals can be easily added. For other algorithms like
LSTM it is more difficult. Fig 6.1 and Fig 6.2 shows the confidence intervals of 95% for
XGBoost model for well 1 and well 2.
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Figure 6.1: Confidence intervals for XGBoost (Well 1)

Figure 6.2: Confidence intervals for XGBoost (Well 2)
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7 Results and Discussions

Ten algorithms were used to create models for Well 1 and Well 2. This is detailed in
Chapter 4. MAPE is used to describe the performance. The LSTM model produces the
best results. The disadvantages of using this is the training time is longer. Also to find
the proper parameters is a time consuming process. It is observed that for each well
the hyper-parameters has to be tuned. GridSearchCV helps with this, but it is still a
complicated process.

For the algorithms that are generally used for classification tasks like SVM, kNN, some
modification is required to enabling its use for regression. Many of these algorithms in-
cluding linear regression, and tree based, require modification to predict multiple outputs.
With modifications it is possible to get the results, but the downside is the hyperparameter
tuning becomes more complex.

Neural networks and the LSTM model can be made more complex, giving better results.
This takes more time and computation power. For finding the best hyper-parameters
multiple runs are required. Since the programs were executed on a laptop, these take
more time. For decrease in computation time a sample size of 5762 was used. If more
samples were used in the modelling the results would probably be much better.

Table 7 shows the MAPE for each model for Well 1 and Well 2

Table 7.1: MAPE for Well 1 and Well 2
Algorithm Well 1 (%) Well 2 (%)
LSTM 1.96 1.53
MLP NN 2.43 5.49
MV Linear Regression 2.14 7.57
SVR 5.04 4.31
KNN 8.05 5.41
Decision Tree 9.26 5.43
Gradient Boost 4.95 5.55
XGBoost 4.23 5.56
PLS 9.54 7.57
PCR 9.52 16.69
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7 Results and Discussions

The effects of impulse noise on the prediction performance is shown in Chapter 5. With
the median filter the effects of noise can be removed. With further experimentation better
filtering can be obtained.

Using 95% confidence intervals in XGBoost model the prediction uncertainty has been
quantified. This is easy in XGBoost, but for other algorithms like LSTM, neural networks,
SVM the implementation is harder.

7.1 Future Work

More filters can be used in removing measurement noise. Different methods of uncertainty
quntification can also be tested.

The outlier detection and correction was not executed due to time constraints. This can
be added in future. Unsupervised techniques like Local Outlier Factor, Isolation Forest,
Kernel Density Estimation can be tested.

Data reconciliation can also be added. Here the process flow diagram is necessary, the
constraints of the each well are also needed.
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8 Conclusion

Considering the objectives of the Thesis as mention in Section 1.2, all the of them are
completed. The literature review has shown that considerable work has been done on
use of machine learning in the oil and gas industry. Research is ongoing to improve the
algorithms for this estimation of various parameters. The data collection and prepro-
cessing is the first step of any machine learning project. It can be said that with the
proper data the future steps of machine learning are useless. For this thesis ten machine
learning algorithms were studied. For the two wells the best performing algorithm is
LSTM. As mentioned in the previous section, it has limitations. The effect of errors on
the prediction performance in the form of impulse noise has been explored. This shows
that filtering of the data is very important. The influence of errors can have a impact on
the machine learning prediction. Finally the uncertainty in the prediction is quantified
using confidence intervals.

The application of machine learning for flow rate estimation in oil and gas productions is
a complex process. From the data collection to uncertainty quantification, considerable
has work to be done to obtain useful results. The applicability of the results depends
on the situation. It may be best to use the predictions from the models as a backup for
more robust systems. Each well has to be modelled individually since they have different
characteristics. In addition more process data would probably improve the accuracy of
the flow rate predictions.
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Appendix B

Program codes

The Matlab codes for the simulator and the python machine learning code can be accessed
here: https://github.com/dsouzaneville/FMH606-1-Masters-Thesis
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