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Abstract 

Natural disasters have become an important global problem. Every year, catastrophic events 

such as floods, earthquakes, landslides, tornadoes, tsunamis, and volcanic eruptions cause 

extensive damage to property and infrastructure, and most tragically there is significant loss 

of human life. Floods, one of the most common types of natural disasters, are increasingly 

frequent and severe worldwide, leading to increasing financial losses. In Norway, floods 

occur every year and continuously cause noticeable impacts. Therefore, investing in flood 

research to develop comprehensive flood management strategies is essential.  

The aim of this master’s thesis is to study and identify potential flood zones in the Bø-Seljord 

basin of Telemark County, Norway, suing Multi-Criteria Modelling and Geographic 

Information Systems (GIS). To achieve this, a total of ten flood indicators were prepared 

using multi-sourced geospatial data. These indicators include elevation, slope, distance from 

rivers, drainage density, Topographic Wetness Index (TWI), Stream Power Index (SPI), 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Snow Index (NDSI), 

land use and land cover, and geology. A multicollinearity analysis was then conducted for 

these indicators. The indicators were then analysed and assigned weights using Multi-

Criteria Decision Analysis (MCDA). This process led to the generation of a fluvial flood 

susceptibility map. Finally, historical flood records were utilized to evaluate the accuracy of 

the map.   

The results show that 16.5%, 9.7%, and 4.68% of the study area are classified as 

moderately, highly, and very highly susceptible to flooding, respectively. Overall, most of the 

study area, accounting for more than 65%, is found to be non-susceptible to flooding. The 

model’s ROC-AUC value indicates of 0.957 indicates high predictive accuracy. Furthermore, 

the susceptibility map underwent sensitivity analysis, which also yielded favourable results.  

The flood susceptibility map generated from this research may offer significant utility for local 

authorities, providing essential insights and information to improve decision-making 

processes and support the implementation of effective risk management strategies.  

Keywords: GIS, MCDA, AHP, Flooding, Flood Susceptibility, ROC-AUC, and Natural 

Disaster 
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Sammendrag 

Naturkatastrofer har blitt et viktig globalt problem.  Hvert år katastrofale hendelser som flom, 

jordskjelv, jordskred, tornadoer, tsunamier og vulkanutbrudd omfattende skade på eiendom 

og infrastruktur, og mest tragisk er betydelig tap av menneskeliv. Flom, en av de vanligste 

typene naturkatastrofer, blir stadig hyppigere og mer alvorlige over hele verden, noe som 

fører til økende økonomiske tap. I Norge oppstår det flom hvert år, og det har kontinuerlig 

merkbare virkninger. Derfor er det viktig å investere in flomforskning for å utvikle omfattende 

flomhåndteringsstrategier 

Målet med denne masteroppgaven er å studere og identifisere potensielle flomsoner i Bø-

Seljord-bassenget i Telemark fylke, Norge, ved bruk av Multi-Criteria Modelling og 

Geografiske Informasjonssystemer (GIS). For å oppnå dette ble til sammen ti flomindikatorer 

utarbeidet ved bruk av geospatiale data fra flere kilder. Disse indikatorene inkluderer høyde, 

helning, avstand fra elver, dreneringstetthet, topografisk våthetsindeks (TWI), 

strømmekraftindeks (SPI), Normalisert Differanse Vegetasjons indeks (NDVI), Normalisert 

Differanse Snø indeks (NDSI), arealbruk og dekke, og geologi. En multikollineartets analyse 

ble deretter utført for disse indikatorene. Indikatorene ble deretter analysert og tildelt vekter 

ved bruk av Multi-Criteria Decision Analysis (MCDA). Denne prosessen førte til generering 

av et fluvialt flomktsomhetskart. Til slutt ble historiske flomregistre brukt for å evaluere kartets 

nøyaktighet. 

Resultatene viser at 16.5%, 9.7% og 4.68% av studieområdet er klassifisert som moderat, 

høyt og svært høyt utsatt for flom. Totalt sett er det funnet at mesteparten av studieområdet, 

mer enn 65%, ikke et utsatt for flom. Modellens ROC-AUC-verdi på 0.957 indikerer høy 

prediktiv nøyaktighet. Videre gjennomgikk flomaktsomhetskartet en sensitivitetsanalyse, som 

også ga gunstige resultater. 

Flomaktsomhetskartet som ble generert fra denne forskningen kan tilby betydelig for lokale 

myndigheter ved å gi essensiell innsikt og informasjon for å forbedre beslutningsprosesser 

og støtte implementeringen av effektive risikohåndteringsstrategier. 

Nøkkelord: GIS, MCDA, AHP, Flom, Flomaktsomhet, ROC-AUC, Naturkatastrofe 
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1 Introduction 

1.1 Background 

Floods continue to be one of the most devastating weather-related disasters worldwide, 

causing a significant number of deaths each year and having a profound impact on socio-

economic progress and environmental equilibrium (Melgar-García et al., 2023). Despite 

extensive measures taken to mitigate flooding, the resulting impact on human lives and 

property remains significant. Floods constitute for 34% of all natural disasters worldwide in 

terms of frequency and 40% in terms of economic losses (Zhu et al., 2023). The world lost an 

average of nearly USD 651 million due to riverine floods every year on average over the last 

ten years (UNDPR 2020). Projections suggest that flood-related problems will worsen as a 

result of increasing global warming and climate change, which are anticipated to lead to 

more frequent occurrences of intense rainfall events worldwide (Mishra & Kumar, 2020). 

According to (Rentschler et al., 2022), approximately 1.81 billion people, which is equivalent 

to around 23% of the world’s population, are directly affected by floods that occur once every 

100 years. Moreover, forecasts indicate that by 2050, around 68% of the population will live 

in urban regions (Rentschler et al., 2022). Therefore, it is essential to give priority to investing 

in research and innovation to improve flood forecasting techniques and establish efficient 

flood management strategies.   

In Europe, floods have a significant impact, with damages increasingly driven by the 

expansion of human settlements and economic activities in flood-prone areas. This 

expansion has led to increased exposure and reduced natural storage capacities (Merz et 

al., 2012). Current estimates indicate that in the European Union and United Kingdom 

(collectively known as EU+ UK), river floods annually inflict damages totalling approximately 

76 billion (ranging from 5.6 to 11.2 billion) and expose roughly 166,000 individuals (with a 

range of €124,000 to €276,000) to flood waters each year (Dottori et al., 2023). If the current 

climate mitigation and adaptation efforts are not altered, it is projected that the temperature 

will increase by 3⁰ C by the year 2100, resulting in the annual flood damages in Europe 

expected to increase by 44 billion (with a range of 30 to 61 billion) by the end of the century. 

Simultaneously, an estimated €370,000 to €675,000 Europeans would face the potential 

danger of being exposed to river floods annually (Dottori et al., 2023). 

In Norway, flood have occurred in various locations within its river network, causing damage 

to both natural and man-made assets. The occurrence of floods can result in significant 

economic losses although they typically do not lead to a high number of fatalities. The flood 

in Norway can be influenced by various factors: rainfall, snowmelt, topography, discharge, 

land-use, and geology. Meanwhile, the primary factor contributing to the occurrence of 
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significant floods in Norway is precipitation, frequently accompanied by the melting of snow. 

The magnitude of a flood is primarily influenced by the meteorological conditions specifically 

the distribution of precipitation and temperature levels. The water storage capacity of the 

vegetation, surface features, bedrock, lakes, and streams are an essential factor to consider. 

The vast climatic, topographical, and hydrographic variations in Norway cause river basins to 

vary greatly. 

In western and northern Norway, along the coast and in the mountainous regions, 

precipitation is at its highest. Both spring and autumn are prime times for river flooding in 

Norway. In most cases, spring floods are caused by snowmelt or a combination of melting 

snow and precipitation. Large inlands river basins in mountainous and eastern Norway are 

particularly prone to these types of floods. Autumn floods, prevalent along the coastlines, are 

primarily caused by precipitation. The most significant flood in the study area occurred in late 

June 1927. The inundation was triggered by an extended period of intense rainfall. A rainfall 

of 76mm was recorded at the measuring station at Lifjell sanatorium in Bø on June 27th, 

1927, among other observations. Furthermore, a significant flood occurred on May8, 1964 in 

Hørte, which was likely caused by a combination of rainfall and snowmelt (NVE 2007).  

Given the current circumstances, it is of utmost importance to evaluate and categorise the 

risks associated with flooding disasters on a regional level. Although floods pose significant 

challenges in terms of prevention; however, it is possible to proactively anticipate and 

prepare for such catastrophic events. Efforts to mitigate and prevent the catastrophic 

consequences of floods are crucial for protecting lives, infrastructure, and ecosystems. Flood 

risk management plays a critical role in these endeavours, encompassing the evaluation of 

flood susceptibility. This procedure entails examining geographical and climatic variables to 

pinpoint regions that are most susceptible to risk. Through the identification of flood-prone 

areas, governments, planners, and communities can strategically implement measures such 

as enhancing drainage systems, building flood barriers, and enforcing land use policies that 

restrict development in high-risk zones. The prioritisation of resources and interventions, 

ultimately reduces the risk of catastrophic damage and improves community resilience 

against future flood events. 

Flooding is a complicated phenomenon, with numerous human and natural elements 

contributing to the incidence and progression of floods. Climate change, for example, has a 

significant impact on the occurrence of extreme floods (Samson et al., 2015). For example, 

changes in climate may have an impact on land use and increase the risk of flooding 

(Emerton et al., 2017). Global research has recently been conducted on the effects of climate 

change on flood risk and frequency (Wu et al., 2010). Numerous researchers have carried 

out Flood Susceptibility Mapping (FSM) and natural hazard assessment using remote 

sensing (RS) and Geographic Information System (GIS) tools, greatly contributing to hazard 

analysis(Tehrany et al., 2015; White et al., 2010). Historically, the major goal of creating flood 



 

Mahesh Bhandari 16 2024 

models has been to accurately assess the discharge over the watersheds. To generate 

susceptibility maps, prediction methods combine various conditioning factors and weight their 

importance using decision-making rules.  

Theoretically, FSM is capable of precisely identifying and defining potential flood hazards in 

the future, either deterministically or statistically. Both qualitative and quantitative analyses 

can be used to determine a region's susceptibility to flooding. Many scholars from around the 

world have studied flood disaster risks and proposed various solutions(Nguyen et al., 2023; 

Vojtek & Vojteková, 2019). Over the last ten years, Geographic Information Systems (GIS) 

and data from remote sensing have been used in FSM. Weights of evidence (Tehrany et al., 

2015), Logistic regression (LR) (Tehrany et al., 2014), and Analytic Hierarchy Process (AHP) 

(Kazakis et al., 2015). 

Among these methods and techniques, Multi-Criteria Decision Analysis (MCDA) is 

particularly well-suited for flood susceptibility mapping because:  

▪ Integration of Diverse Factors: Multi-Criteria Decision Analysis (MCDA) facilitates the 

incorporation of various factors that influence flood risk, such as hydrological data, 

land use patterns, soil characteristics, topographical features, and climate conditions. 

The comprehensive assessment of flood is achieved by considering of a wide range 

of variables in MCDA. 

▪ Flexibility in Weighting Criteria: The use of Multi-Criteria Decision Analysis (MCDA) 

allows experts to assign varying weights to different criteria, based on their relative 

importance in assessing flood risk. The flexibility of the system allows for a greater 

influence of critical factors on the outcome, resulting in more precise and customised 

flood susceptibility maps. 

▪ Decision-Making Support: The Multi-Criteria Decision Analysis (MCDA) methodology 

facilitates decision-making processes by offering a well-defined framework that 

systematically assesses the potential consequences of various scenarios and 

interventions. The purpose of this solution is to assist stakeholders in making well-

informed decisions regarding the allocation of resources for flood prevention and 

mitigation. 

▪ Transparency and consistency: The methodological framework of Multi-Criteria 

Decision Analysis (MCDA) is designed to enhance transparency and ensure 

consistency in the analysis process. The process of selecting criteria, weighting them, 

and combining them is clearly defined at each step. This approach enhances the 

reliability and comprehensibility of the results for all stakeholders involved. 

▪ Facilitates Stakeholder Involvement: The Multi- Criteria Decision Analysis (MCDA) 

processes typically encompass the participation of various stakeholders, such as 

government agencies, community representatives, and subject matter experts. The 
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incorporation of diverse perspectives and needs in the analysis helps to promote 

inclusivity, resulting in outcomes that are both widely accepted and effective. 

▪ Scenario Analysis: Multi-Criteria Decision Analysis (MCDA) enables the simulation of 

various scenarios to assess the impact of modifications in one or more criteria on 

flood susceptibility. Understanding potential impacts of climate change and urban 

development on flood risks is crucial, and this capability plays a vital role in achieving 

that understanding. 

The distinct domains of Geographical Information System (GIS) and Multi-Criteria Decision 

Analysis (MCDA) can collaborate to leverage the intersections between spatial 

representation and multiple influential factors (Çetinkaya et al., 2016). Geographic 

Information Systems (GIS) enable the integration of flood factors that are associated with 

specific locations on a map. On the other hand, Multi-Criteria Decision Analysis (MCDA) 

provides a structured approach to the design, evaluation, and prioritization of decisions. The 

relative importance of each component in relation to the flood issue is determined using the 

Analytical Hierarchy Process (AHP) method. It is recognized that each component does not 

contribute in the same proportion.  

The process of GIS-based Multi-Criteria Decision Analysis (MCDA) involves two essential 

components: the calculation of factor weights using the Analytic Hierarchy Process (AHP) 

and the aggregation of weighted factors using the Weighted Linear Combination (WLC) 

method. These steps are employed to generate a flood risk map, as described by (Azareh et 

al., 2019) and Rahman et al. (2019). The use of Multi-Criteria Decision Analysis (MCDA) has 

been documented in several countries for flood risk assessment. For instance, in Greece, 

Papaioannou and Vasiliades (2014) employed MCDA for this purpose. Similarly, (Khosravi et 

al., 2019) utilized MCDA in the Republic of China, while Rincon Romero et al. (2018) applied 

MCDA in Canada. The metropolitan urban area of Athens was evaluated using the Analytic 

Hierarchy Process (AHP) and multi-criteria Geographic Information System (GIS) analysis to 

determine the locations that are susceptible to flash floods(Bathrellos et al., 2016). (de Brito 

& Evers, 2016) (Khosravi et al., 2019) conducted a study that revealed an 82% rise in the 

adoption of Multi-Criteria Decision Analysis (MCDA) for flood analysis since 2009. This 

increase was determined by examining advanced flood models. The MCDA technique 

enables the incorporation of social, environmental, and cultural factors into flood risk 

assessment, in contrast to other approaches that mainly focus on economic and physical 

risks (Meyer et al., 2009). The incorporation of socio-economic variability enables the 

identification of socially vulnerable communities and facilitates the development of more 

equitable policy decisions. 
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1.2 Research questions and Objective for the study 

Aim: The purpose of this master’s thesis is to comprehensively assess the effectiveness and 

practicality of Multi-Criteria Decision Making (MCDM) and Geographic Information Systems 

(GIS) techniques for fluvial flood susceptibility mapping in Telemark County, Norway.  

1.2.1 In order to evaluate it, this study aims to: 

1. Integrate Diverse Geospatial Data Sources in GIS: Utilize data from multiple sources, 

including topographic maps, hydrological data, and historical flood records, to create a 

comprehensive dataset for analysis. 

2. Assess the Capability of MCDM and GIS: Determine how well MCDM integrated with GIS 

can map areas susceptible to flooding. This involves an analysis of various criteria that 

influence flood.  

3. Develop a Flood Susceptibility Map: Create a detailed map that highlights areas in Bø and 

Seljord municipalities of Telemark County at different levels of flood susceptibility. This map 

may serve as a critical tool for local planners and decision-makers in implementing flood risk 

management strategies.  

4. Analyse the Impact of Criteria weighting: examine how different weightings of criteria affect 

the outcomes of the flood susceptibility analysis. This includes sensitivity analysis to 

understand the robustness of the results. 

5. Evaluate the model's accuracy by utilizing the ROC-AUC. The findings could be valuable 

to local governments and decision-makers in the field of catastrophic risk reduction. 

1.2.2 Anticipated responses and results 

Overall, the responses and results from this master’s thesis are expected to contribute 

significantly to the field of disaster management, particularly in enhancing methodologies for 

flood risk analysis and mitigation planning. 

1.Enhanced Flood Risk Identification: The application of MCDM and GIS is expected to yield 

a detailed and accurate flood susceptibility map that identifies areas at varying degrees of 

susceptibilities with a high level of spatial resolution. This map should highlight not only the 
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most vulnerable areas but also zones of potential risk that may not have been previously 

considered. 

 2.Validation of MCDM and GIS efficacy: The thesis aims to validate the effectiveness of 

various MCDM techniques in synthesizing intricate datasets into practical insights through a 

comparative analysis. The results should showcase the efficacy of these integrated methods 

in delivering unambiguous and dependable evaluations of flood risk, considering a wide 

range of criteria. 

3. Insights into Criteria Weighting: The study will provide insights into the influence of various 

weightings of criteria on the outcomes of flood susceptibility mapping. This analysis could 

unveil the key factors, such as elevation, precipitation patterns, or land cover, that play a 

crucial role in determining the level of flood risk in Telemark County.  

4. Policy and Planning Recommendations: This thesis should have the capacity to propose 

precise policies or planning measures derived from the identified flood-prone areas. These 

recommendations may encompass proposals for zoning regulations, enhancements to 

infrastructure, or strategies for emergency preparedness 

5. Scalability and Adaptability Analysis: The result may also address the scalability and 

adaptability of the methods used in other regions or for different types of environmental risk 

assessments, potentially expanding the influence of the thesis beyond Telemark County.  

6. Identification of Limitations and Future Research Directions: The thesis is expected to 

delineate any limitations encountered during the study, including issues related to data 

quality, methodological constraints, or difficulties in engaging stakeholders. Additionally, it 

proposes potential avenues for further investigation to enhance the evaluation and control of 

flood hazards.  

1.3 Importance and value of the research 

This research holds value not only due to its scientific rigor and practical application, but also 

because it has the potential to greatly improve communities’ understanding, preparedness, 

and response to flood risks. 
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Scientific Contribution 

Methodological Advancement: This research enhances the ongoing progress of combining 

methods in environmental science and disaster management by improving and evaluating 

the effectiveness of Multi-Criteria Decision Making (MCDM) and Geographic Information 

System (GIS). It enhances the scientific community’s comprehension of how these 

technologies can be utilized to analyse and interpret intricate environmental data with greater 

efficiency. 

Enhanced Analytical Precision: The study improves the precision of risk assessment models 

by prioritising the accuracy of flood susceptibility maps. This enhancement is essential for the 

advancement of more dependable predictions and evaluations in the field of environmental 

science. 

Potential Impact 

Improved Disaster Preparedness and Response: The flood susceptibility maps generated 

can be utilized by local authorities to enhance their preparedness and response strategies. 

This data aids in formulating more efficient evaluation strategies, implementing measures to 

safeguard infrastructure, and allocating resources effectively in the event of floods. 

Policy Making and Planning: The findings of this research can provide valuable guidance to 

policy makers and planners in making informed decisions regarding land use, infrastructure 

development, and community zoning to minimize the effects of flooding. 

Community Safety and Resilience: The research contributes directly to improving community 

safety and resilience by identifying areas that are prone to flooding. This is accomplished by 

implementing focused educational and awareness initiatives, enhancing early warning 

systems, and implementing adaptation strategies that involve the local community. 

Economic Benefits 

Cost Effectiveness: Efficient flood risk management can greatly diminish economic losses 

caused by property damage. Disruptions in business operations, and expenses related to 

recovery and reconstruction. The research assists in prioritizing investments in flood defense 

by offering precise data and predictive models. 
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Environmental Considerations 

Environmental Conservation and Management: A comprehensive understanding of flood 

dynamics is essential for effectively managing natural resources, including water bodies and 

wetlands, which play a critical role in mitigating floods. This study can provide valuable 

guidance for environmental conservation efforts aimed at preserving or improving these 

natural mechanisms that protect against flooding. 

Global Relevance 

Scalability and Application in Other Regions: The research primarily examines Telemark 

County, but its methodologies and findings can be applied to other regions worldwide that 

encounter comparable flood hazards. The study’s scalability enhances its global significance 

by offering a risk assessment model that can be customized and utilized in various regions 

across the globe. 

1.4 The structure of the thesis 

Section 2  

This section provides the necessary foundation for comprehending the present condition of 

flooding and the endeavours undertaken by global authorities to formulate the most effective 

prediction methods. The study investigates the amalgamation of Geographic Information 

Systems (GIS) and Multi-Criteria Decision Analysis (MCDA) methodologies to forecast floods 

in areas with a high likelihood of risk.  

Sections 3 and 4 

These sections provide a comprehensive overview of the study area and in-depth analysis of 

data preprocessing steps. In addition, the report discusses several important aspects of flood 

susceptibility analysis. These include assessing the structural framework, using AHP-based 

grading, and weighting methods, ensuring consistency among the factors used, mapping 

flood susceptibility zones, evaluating the effectiveness of the AHP technique, and assessing 

the accuracy of the model. 
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Section 5 

This section provides the results obtained from the thesis, which are depicted using figures, 

tables, maps, and graphs. Additionally, it provides a concise overview of the main findings 

pertaining to the five objectives of the thesis, emphasizing the most noteworthy observations.  

Section 6 

This section delivers a comprehensive analysis of the results obtained from the research. 

Sections 7 and 8 

These sections provide comprehensive conclusions derived from the research regarding the 

study area, summarizing the implications and insights obtained through the study.  

2. Literature review 

2.1 Definitions and concepts 

2.1.1 Types and causes of flood 

Floods are commonly referred to as the result of rivers exceeding their banks, which poses a 

threat of harm or destruction (Prinos et al., 2008). Floods are discussed when the volume of 

water reaches a specific level, even though this does not necessarily result in flooding. Some 

areas may experience high water levels and flooding, even if the water flow is not 

significantly large. Obstructed drainage outlets and the buildup of ricer ice are factors that 

can cause a river to exceed its banks. In highly populated regions, heavy rainfall or rapid 

snow melting can cause flooding, even if the water flow in the river basin is not at flood 

levels. 

Floods are a prevalent natural disaster that has been increasingly encountered worldwide in 

recent times. The intensity and occurrence of flooding have experienced a predominance in 

recent years. There are various instances where Norway has experienced big flood events. 

Several of the most devastating floods in Norway are identified by their specific names. One 

of the most well-known flood events is the Storofsen, Ofsen, or Skriusommaren flood, which 

took place in July 1789 in eastern Norway and had devastating consequences. The flood that 

occurred in Glomma River between 1675 and 1773 are referred to as Storfloden. Prior to the 
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occurrence of Black Death, a significant flood resulted in substantial alterations at Vågåmo in 

River Otta. Additionally, the catastrophic flood that occurred in eastern Norway in December 

1743 is referred to as Troeflaumen in Hardanger. The severe flood that occurred in South 

Norway in June 1860 is commonly known as Ofsen. The flood that occurred in 2011 and 

2103 in River Glomma and River Gudbrandsdalsågen are collectively referred to as whit-

Sunday flood (NVE 2021). 

The primary factor contributing to significant floods in Norway is precipitation, frequently 

accompanied by the melting of snow (NVE 2000). The magnitude of floods is primarily 

influenced by weather conditions, specifically the distribution of precipitation and temperature 

levels. The water storage capacity of vegetation, bed rocks, lakes, streams, and rivers is a 

crucial factor to consider. The conditions of floods can also influence human activities. The 

process is achieved by implementing demanding development plans in areas adjacent to 

rivers by clearing forests and other vegetation. The emission of greenhouse gases is a less 

direct method of affecting flood conditions (NVE 2000). The increase in temperature can 

result in significant alterations to the weather. An outcome of this phenomenon could 

potentially manifest as a rise in the occurrence of floods, hurricanes, forest fires, and 

landslides. It can be argued that individuals bear responsibility for both the causes and 

consequences of floods. 

Urban Flooding 

Urban flooding is the term used to describe a flooding event caused by heavy precipitation, 

independent of an overflowing water body (Kundzewicz & Pińskwar, 2022). Urban drainage 

is the most prevalent form of pluvial flooding. In less developed areas, the natural 

environment naturally takes care of draining excess water. However, in developed areas, it 

becomes necessary to find methods to remove excess water that can seep into the ground 

because of impermeable surfaces (Prinos et al., 2008). Urban drainage involves the 

implementation of an enclosed network of channels to collect and remove surplus rainwater 

from the surface. This philosophy asserts that regardless of the intensity or duration of the 

rainfall, the drainage system must have the capacity to collect and eliminate the runoff 

(Ghanbari et al., 2024). 

River flood 

Flooding caused by rivers occurs when the amount of water in a river exceeds the capacity 

of the channels, whether they are natural or human-made, causing the water to overflow into 

nearby low-lying regions (Kundzewicz & Pińskwar, 2022). The changing patterns of floods by 

rivers vary according to the characteristics of the terrain. Runoff in mountainous areas can 

manifest within minutes following intense precipitation, whereas in flat and low-lying regions, 
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water accumulation may persist for days or even weeks. River flooding can be classified into 

distinct types: overbank flooding and flash flooding (Gruntfest & Handmer, 2001). Overbank 

flooding refers to the situation where the amount of water in a river or stream rises beyond its 

capacity and spills over into nearby flood areas. This typically happens as a result of surface 

water runoff following heavy rainfall, the release of water from dams, the melting of snow, or 

the formation of ice blocks(Enríquez de Salamanca, 2023). Meanwhile, flash flood refers to 

the rapid and perilous influx of a large amount of water into an area that is typically dry, or a 

sudden and significant increase in the water level of a stream or river beyond a pre-

established flood threshold(Gruntfest & Handmer, 2001). It is defined as a rapid and forceful 

surge of water that occurs suddenly in a pre-existing river channel with minimal or no 

warning. Flash floods pose a greater threat to life and property compared to the overbank 

flooding due to their rapid onset and the significant number of debris they carry (Tockner & 

Stanford, 2002). 

Coastal flooding 

Coastal flooding occurs when intense storms or the other extreme weather conditions 

coincide with high tides, resulting in an elevation of sea levels above standard and the 

intrusion of seawater onto lands (Kundzewicz & Pińskwar, 2022). Flooding from storms and 

earthquakes are the primary causes of coastal flooding. A storm surge is the elevation of 

seawater above its usual tide levels caused primarily by the combination of low pressure in 

the atmosphere and the force of wind over a large area of open water. During a storm or 

hurricane, low pressure inside the eye of the storm generates suction, resulting in the 

formation of a water dome. If the storm is near land, the powerful winds within the storm 

propel the dome of water towards the land, resulting in a surge. Underwater earthquakes, 

resulting from the displacement of tectonic plates, cause significant shifts in the ocean floor 

(Doornkamp, 1998).  

Types of floods in Norway 

According to a report published by (NVE 2021), it has highlighted various types of causes of 

flooding in Norway. Snowmelt floods, rainfall floods, Ice run foods, slide-induced floods, and 

floods from glacial dams are some natural causes of flooding in Norway. Additionally, land 

use changes, effect of hydropower regulation are anthropogenic causes of floods in Norway. 

In Norway, there are four flood types that are relevant for significant flood risk: 

• Fluvial floods refer to the floods that occur in the rivers. 

• Flash floods refer to the sudden and rapid flooding that may happen beyond the usual 

river channel network. 

• Storm water floods refer to the floods that occur in the urban areas. 
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• Coastal flooding 

2.1.2 Spatial Scale of flood 

The significance of flood processes and the level of detail in flood maps differ depending on 

their spatial scale. In accordance with (Moel et al., 2015), we also differentiate between local, 

regional, national, and supra-national scales. The selection of scales is frequently based on 

personal preference, but the following is a logical classification: 

• Large scale pertains to limited geographical areas, such as towns or specific 

segments of a river. If the study area has a measurement, we classify it in this 

category if the area is less than 100 square kilometres. 

• Regional scale refers to a defined geographic area such as a province, watershed, 

or a large city. Study areas with an area of less than 100000 square kilometres are 

within this scale. 

• National scale pertains to evaluations of entire countries, utilizing consistent data. To 

eliminate small countries, the study area must exceed 100000 square kilometres. 

• Supra-national scales refer to evaluations that encompass an entire continent or the 

entire planet. 

2.1.3 Flood inventory 

A flood inventory is a thorough collection of information regarding previous flood 

occurrences, including their scope, intensity, consequences, and destruction (Al-Abadi & 

Pradhan, 2020). The information provided usually consists of floodplain maps. Historical 

flood records, evaluations of damage, and details about measures taken to mitigate flood 

hazards. Through the systematic documentation and analysis of this data, authorities and 

stakeholders can acquire valuable insights into the patterns and characteristics of flooding in 

a specific region. This information can then be used to develop effective strategies for 

managing and reducing the risks associated with flooding (Haltas et al., 2021). Adopting a 

proactive approach is crucial in improving the ability of communities to withstand floods and 

reducing the resulting social, economic, and environmental consequences. 

2.1.4 Flood susceptibility 

 Flood susceptibility is the probability or capacity of a particular area to undergo flooding, 

determined by the arrangement of geographical and environmental factors (Li et al., 2018). 

Flood susceptibility is determined by various factors, including topography, soil composition, 

vegetation cover, and hydrological features such as proximity to water bodies and drainage 
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patterns. Flood susceptibility does not forecast the timing of a flood, but rather identifies the 

regions that are more prone to being impacted by floods given appropriate circumstances 

(Rosmadi et al., 2023). Evaluating flood susceptibility is essential for disaster preparedness 

and management, enabling planners and authorities to enact preventive measures, devise 

effective mitigation strategies, and ensure swift response efforts to minimize the impact of 

floods on communities and infrastructure. 

Flood susceptibility map assesses the likelihood of flooding in each area by analysing its 

physical attributes (Vojtek & Vojteková, 2019). This measure lacks quantitative analysis and 

does not assess any flood variables. Nevertheless, it can offer dependable information in the 

absence of quantitative data and can be utilized to conveniently evaluate areas at risk on a 

large scale. Flood susceptibility mapping is conducted by considering various factors, 

including topography, geography, and meteorology. These factors, such as altitude, slope, 

lithology, land use, and rainfall, are analysed and compared with historical flood events to 

determine the areas at risk. This analysis is conducted using multivariate techniques and 

Multi-Criteria Decision Analysis (Kazakis et al., 2015; Tehrany et al., 2014). 

2.1.5 Flood Hazards 

A Flood hazard is defined as the probability of potentially damaging flood events occurring in 

a given area within a specified time horizon (Nones, 2017). One way to get a hazard map is 

by using numerical methods (Dottori et al., 2022). This method does have some limitations, 

but it is generally useful. Fast and accurate flood simulations continue to be a challenge, 

despite the robustness and effectiveness of numerical methods for flood hazard modelling 

(Costabile et al., 2016). Several methods exist to make the simulations run faster. The latter 

is established by statistical analysis that takes flood frequency and intensity into account 

(Dottori et al., 2022). To create flood hazards maps, numerical models discretise the realm of 

computation and equations that govern how to replicate flood events. 

2.1.6 Flood risk and vulnerability 

Vulnerability refers to the susceptibility to harm when there is a lack of ability to adapt and 

exposure to stresses caused by changes in society and the environment. The awareness 

and mitigation of flooding repercussions for communities and ecosystems heavily rely on the 

assessment of flood risk and vulnerability. Flood risk is defined as the combined likelihood of 

an event and the potential negative impacts it can have on individuals, buildings, 

infrastructure, and the natural surroundings. The term vulnerability pertains to the 

susceptibility of these elements to potential harm or damage caused by flooding. This 

susceptibility is influenced by various factors, including socio-economic status, land use 

patterns, infrastructure resilience, and environmental conditions (Mitra et al., 2022). 
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Comprehending the concepts of flood risk and vulnerability is crucial in the development of 

efficient flood risk management strategies. These strategies encompass various aspects 

such as land-use planning, infrastructure investment, early warning systems, and community 

preparedness initiatives (Jongman et al., 2018). 

2.2 Flood Susceptibility Mapping 

Flood susceptibility mapping involves the identification and visualization of areas that are 

susceptible to flooding, considering a range of environmental and geographical factors. This 

mapping technique employs various data, including topography, soil types, land use, rainfall 

patterns, and proximity to water bodies, to evaluate the probability of different regions 

encountering flood events(Shokouhifar et al., 2022). The resultant maps classify areas based 

on their degree of vulnerability to flooding, ranging from low to high susceptibility. 

These maps are indispensable instruments for urban planners, emergency management 

officials, and policymakers. They assist in the formulation of strategic plans for managing 

flood risks by providing guidance for land use decisions, informing the development of 

infrastructure, improving readiness for emergencies, and implementing measures to reduce 

the impact of floods. Flood susceptibility maps visually depict areas that are at risk of 

flooding, helping to improve comprehension and communication of flood risks to the public 

and stakeholders (Bajracharya et al., 2021). This enables more informed decision-making 

and strengthens community resilience to floods. 

Furthermore, flood susceptibility mapping (FSM) often utilizes statistical analysis, fuzzy logic, 

hybrid methods, machine learning, and physical-based model (Kaya & Derin, 2023). Several 

techniques, including statistical analysis, can be employed to determine significant factors. 

Alternative approaches, such as fuzzy logic, offer the benefit of incorporating multiple 

parameters and accounting for inconsistencies in the data. Furthermore, machine learning 

algorithms possess the ability to acquire knowledge from data and reveal intricate 

connections between factors. The combination of various sources of data is necessary for 

the implementation of a flood susceptibility mapping (FSM). These data sources include 

hydrological, topographical, and meteorological data. Identifying appropriate techniques and 

factors is crucial to successfully incorporating and utilising these data sources to produce 

precise flood susceptibility maps.  

 



 

Mahesh Bhandari 28 2024 

2.2.1 Flood Indicators 

Natural Catastrophes, such as floods, landslides, and erosion are predominantly influenced 

by the presence of various conditions in the specific area (Ali et al., 2019). To assess the 

flood susceptibility for any area, it is imperative to examine a range of flood-triggering factors, 

as well as their correlation with flooding (Sahana & Patel, 2019). The researchers in the 

reviewed articles utilised various flood indicators based on the applicability of the study area. 

Deciding on parameters for generating flood susceptibility maps is frequently regarded as a 

complex endeavour in the field of Flood Susceptibility Modelling (FSM) (Tariq et al., 2022). 

The choice of flood indicators is contingent upon the physical and natural attributes of the 

study area, as well as the accessibility of the data (Ullah & Zhang, 2020). 

The researchers in the reviewed articles utilised a range of indicators for flood susceptibility 

mapping, with a maximum of 21 indicators and a minimum of 5 indicators. According to Table 

1, it shows the number of flood indicators used in the reviewed articles. From the reviewed 

articles, it is found that most of the researchers prefer to have 10 indicators or less for the 

flood susceptibility mapping. Meanwhile, the preferred indicators for the research by the 

researcher include elevation, slope rainfall, LULC, TWI, geology, soil, and distance from 

river. 

Table 1: Review of flood indicators used for flood susceptibility mapping. E: Elevation, S: Slope, A: 

Aspect, TWI: Topographic Wetness Index, DFR: Distance from river, DD: Drainage Density, 

NDVI: Normalized Difference Vegetation Index, LULC: Land use Land cover, G: Geology, C: 

Curvature, R: Rainfall, SPI: Stream Power Index, NDSI: Normalized Difference Snow Index, 

F: Flow Accumulation. 

References  Flood indicators 

E S A TWI DFR DD NDVI LULC G Soil R C SPI NDSI F 

(Nguyen et 

al., 2021) 

x x x x x - x - - x x x x - x 

(Sahana & 

Patel, 2019) 

x x x x x x - x x x x x - - - 

(Tehrany et x x  x x - - - x x -  - - - 



 

Mahesh Bhandari 29 2024 

al., 2015)  

(Bui et al., 

2019) 

x x  x x - x x x x x  - - - 

(Khosravi 

et al., 2019) 

x x  x x - x x x x x  x - - 

(Yaseen et 

al., 2022) 

x x  x x x x x x x x  x - - 

(Vojtek & 

Vojteková, 

2019) 

x x   x x - - x - -  - - - 

(Rahmati et 

al., 2015) 

x x  x x x - x x x -  - - - 

(Nguyen et 

al., 2023) 

x x  x - - x x x x x  x x x 

(Al-Juaidi 

et al., 2018) 

x x  - - - - x - x x  - - - 

(Ali et al., 

2019) 

x x  x x - - x - x x  - - - 

(Azareh et 

al., 2019) 

x x  x x x - x - x -  - - - 
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2.2.2 Method and Techniques 

When exploring studies on flood susceptibility in the literature, it becomes apparent that 

various methods are employed in susceptibility analysis. However, certain methods are more 

commonly favoured in practice over others. However, there is ongoing debate among 

scientists in this field regarding the superiority of commonly used methods over others. The 

literature commonly employs Multi-Criteria Decision-Making (MCDM) methods, physically 

based hydrological models, statistical methods, and various soft computing methods to 

evaluate flood sensitivity. Various methods proposed by researchers for creating more 

objective flood susceptibility maps differ in terms of their reliance on expert opinion and ease 

of application. 

a. Multi-Criteria Decision-Making  
 

The process of decision making involves selecting from a range of alternatives. Multi-Criteria 

Decision Making (MCDM), is a systematic process that enables the evaluating multiple 

criteria and the assigning values to alternatives in complex problems, such as disasters. 

MCDM methods are a set of techniques that facilitate the selection of the optional choice 

from a range of criteria applied simultaneously (Leake & Malczewski, 2000). Multi-Criteria 

Decision Analysis (MCDA) offers a comprehensive set of technical methodologies for 

organizing decision problems and developing, assessing, and ranking alternative decisions 

(Leake & Malczewski, 2000). The described approach is a decision-making method that 

enables decision-makers to select the most suitable decision based on the problem 

prevailing and relevant factors. It takes into consideration the effectiveness of numerous 

independent variables. Alternatively, there exist techniques that enable the assessment of 

inferences using a shared language in situations where conflicting factors arise or when 

factors cannot be quantified. The various MCDM techniques used by multiple scholars 

include the Analytical Hierarchy Process (AHP) (Kazakis et al., 2015), Analytical Network 

Process (ANP) (Dano et al., 2019), Weighted Linear Combination (WLC) (Azareh et al., 

2019), and Decision-Making Trial and Evaluation Laboratory (DEMATEL) (Wang et al., 

2018). 

b. Statistical methods  
 

The correlation between flood triggers and floods can be evaluated using statistical methods, 

which are indirect methods based on mathematical expressions (Dai). When assessing a 

building’s vulnerability to flooding, bivariate and multi-variate statistical analyses are the tools 

of choice. Among other statistical analyses, the frequency ratio (FR) method is among the 
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most popular methods for determining how each class affects the flood. One common MSA 

is Logistic Regression (LR) (Tehrany et al., 2014), which is used to find the impact of each 

factor on flood formation. Research conducted by scholars (Rahmati et al., 2015) indicates 

that statistical analysis methods perform admirably when it comes to assessing flood 

susceptibility. Statistical methods typically use linear hypotheses to predict the variables; 

however, flooding is a complex phenomenon, so these variables are not always linear 

(Costache & Bui, 2019). Because floods are so complicated, researchers have begun to use 

cognitive approaches, which are more in line with easy computing, rather than conventional, 

precise, and inflexible methods. 

c. Physical-based models 
 

When it comes to flood modelling, real-world hydrological models work well (Dimitriadis et al., 

2016). A few examples of these models are one-dimensional Mike 11, ISIS, and HEC-RAS, 

and two-dimensional TELEMAC-2D, RMA2, and SRH-2D (Tehrany et al., 2018). Physical-

based models are not ideal for large-scale studies because they require fieldwork to collect 

data, a substantial budget, and significant computational capabilities (Rahmati et al., 2015; 

Tehrany et al., 2018).  Both agree that alternative methods should not be used in place in 

conventional hydraulic modelling. Nevertheless, (Vojtek & Vojteková, 2019) note that these 

alternatives can be useful in scale analyses and in developing nations. Because of the 

methodological disparity, this thesis study did not include studies that included physical-

based hydrological models and flood susceptibility analysis in their assessment. 

d. Machine learning:  

Recently, there has been a lot of interest in using machine learning techniques for flood 

susceptibility mapping. Many studies have been conducted to investigate different predictive 

models and their effectiveness in different geographical areas. A review of the literature 

reveals a strong trend toward employing advanced algorithms such as Support Vector 

Machines (SVM), Random Forests, and Artificial Neural Networks (ANNs) to enhance the 

accuracy and reliability of flood risk predictions. For instance, studies by (Tehrany et al., 

2015) and (Lai et al., 2015) have shown that Random Forest outperforms traditional 

statistical methods in capturing intricate relationships among various flood-inducing factors, 

such as rainfall intensity, land slope, and soil type. The results emphasize the capability of 

machine learning to offer comprehensive spatial risk evaluations that are crucial for efficient 

disaster management and planning. 

Additionally, the literature also discusses the difficulties related to implementing machine 

learning in flood susceptibility mapping, specifically concerning data accuracy and the 
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problem of model overfitting. The efficacy of machine learning models relies significantly on 

extensive superior datasets, encompassing past flooding occurrences, topographic 

information, and hydrological characteristics. 

3 Materials and methods 

3.1 Study Area 

Telemark is the tenth largest county in Norway, with a total area of 15,299 square kilometres. 

The county is situated in the southeastern region of Norway which spreads to the ocean from 

the south and extends to the Hardangervidda plateau in the North. Additionally, the county 

has numerous hydropower resources because of its favourable climate and topography. 

Hence, it has 40 hydropower stations (Council 2016). Besides, the county is blessed with 

dynamic landscapes, mountains, valleys, rivers, and lakes.  

However, the thesis research is centred on the Bø-Seljord catchment area, which is situated 

in the municipalities of Bø and Seljord. The study area covers a total of 1,058 square 

kilometres and is situated at elevations ranging from 15 meters to 1,536 meters above sea 

level. Located at 59.617⁰ N and 8.6825⁰ E. The Bø-Slejord catchment area is characterized 

by rugged mountains, deep valleys, and abundant waterways, creating a diverse and varied 

terrain. The topography of the region is shaped by the geological processes, primarily 

characterized by the presence of Precambrian rocks such as basalt, granitic gneiss, rhyolite, 

quartz slate, and lampro. The geological features present in this area offer a diverse and 

scenic environment that is well-suited for various activities. The soil composition of this area 

exhibits variation throughout its terrain, characterised by the presence of fertile soil in valley 

bottoms and the prevalence of rocky and infertile soils in mountainous regions. 

The study area for the thesis is known for its abundant lakes, rivers, and waterfalls, such as 

Seljordsåna river, and Tinnelva river. The major population centres within the study area are 

Bø. Seljord, Nome, Hørte, Gvarv, and Lunde. Likewise, the land use and land cover of the 

research are mainly dominated by forest. The average annual precipitation of the study area 

is 137.46 mm with a substantial amount of snowfall in the winter. Telemark experiences a 

subarctic climate characterized by severe winters, the absence of dry season, and cool 

summers. The annual temperature of the County is 5.24⁰ C, which is 0.21% higher than the 

average temperature in Norway. Meanwhile, the summer temperature may reach a 

maximum of 30⁰ C, while it can drop as low as -25⁰ C in winter. 
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Figure 1: Study area within Bø and Seljord municipalities in Telemark County, Norway. 

 

3.2 Data used 

3.2.1 Fluvial food inventory map 

The accuracy of flood susceptibility maps can be assessed using historical flood data, also 

known as flood inventories (Bui et al., 2019; Khosravi et al., 2019); therefore, flood inventory 

maps (FIM) are considered a crucial requirement in Flood Susceptibility Mapping (FSM) 

(Tehrany et al., 2015). Multiple techniques exist for the creation of the flood inventory map 

and the selection of a more suitable approach relies on various factors, including the 

objective of the analysis, the environmental circumstances of the research area, and the 

availability of Remote Sensing (RS) and Geographic Information System (GIS) 

data(Pradhan, 2009). For this thesis research, we used the reports provided by the 

Norwegian Water Resources and Energy Directorate (NVE). Reports published by the (NVE 

2007), the document No.2, 2007 has provided information on the largest flood hit in the 

Seljord region. There were several flood events that occurred between 1892 and 1967 (NVE 
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2007). For this specific thesis research, a total of 64 flood points were taken for the analysis 

from the defined study area.  

 

Figure 2: Study area with flood location within Bø and Seljord municipalities in Telemark County, 
Norway 

 

3.1.2 Flood Indicators 

Fluvial floods are the result of a multitude of geographically unique factors that contribute to 

their occurrence. Precise data regarding these conditioning factors are crucial for the 

precision and dependability of flood susceptibility mapping(Sahana & Patel, 2019). As of 

now, there is no universally accepted guideline for choosing flood-conditioning components 

for susceptible mapping (Dodangeh et al., 2019). The factors that contribute to the 
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occurrence of floods differ significantly between locations, depending on the physical 

characteristics and socio-economic conditions of each area. Hence, the flood indicator are 

usually chosen for the literature review, the specific site conditions, field investigation, and 

the expertise of experts(Chen et al., 2019; Sahana & Patel, 2019; Zeng et al., 2021). For this 

study, a comprehensive analysis was conducted on a total of ten factors that contribute to 

flood conditions. The factors considered in this study are: elevation, slope, distance from 

river, drainage density, Topographic Wetness Index, Normalized Difference Vegetation 

Index, Stream Power Index, Normalized Difference Snow Index, lithology, and Land Use 

Land Cover. Table 1 shows the data used in the thesis work. 

The study utilized a substantial amount of raster and vector data, obtained in the form of 

shapefiles and TIFF files from various sources. Data were sourced from several freely 

available official sites, including NVE, Høydata.no, DIVA GIS, and ESRI, to support this 

thesis. Data processing and analysis were conducted using ArcGIS Pro 3.2 software. The 

data collected for this thesis are documented in Table 1. 

Table 2: Data used in the thesis research  

Data Format Source 

Bø-Seljord 

watershed 

boundary 

Shapefile DIVA GIS (www.diva-gis.org) 

Land use  Raster ESRI (https://livingatlas.arcgis.com/landcover/) 

Digital Terrain 

Model (DTM) 

Raster https://kartkatalog.geonorge.no/metadata/dtm-10-

terrengmodell-utm33 

Waterways Shapefile NVE (https://nedlasting.nve.no/gis/) 

Geology Shapefile https://kartkatalog.geonorge.no/metadata/berggrunn-

n1350 

Sentinel-2 Raster https://kartkatalog.geonorge.no/metadata/satellittdata-

sentinel-2 
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a. Elevation 

Elevation is a critical factor in flood susceptibility analysis because it determines the 

gravitational flow of water, affecting how water accumulates or drains in an area. Lower 

elevations are generally more prone to flooding as water naturally flows downhill and 

accumulates in these areas. Conversely, higher elevations are less likely to experience 

flooding (Dahri & Abida, 2017).The elevation map used in this study was generated from 

DEM data provided by GeoNorge, available at 

(https://kartkatalog.geonorge.no/metadata/dtm-10-terrengmodell-utm33) . The classification 

of elevations was performed using the manual -interval scale with surface analysis tool within 

the ArcGIS Pro. The data was classified into five distinct classes, each representing a 

specific range of values (Figure 3). These classes are as follows: 16 - 124m, 124 - 288m, 

288 - 476m, 476 - 699m, 699  -1536m (Kazakis et al., 2015). They are labelled as classes 1 

to 5, respectively. 

 

Figure 3: Elevation map for the study area 

https://kartkatalog.geonorge.no/metadata/dtm-10-terrengmodell-utm33
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b. Slope 

The slope of an area is significant factor in the regulation of surface runoff, infiltrations, and 

water retention. As a result, it has a direct impact on the susceptibility of an area to flooding. 

Previous research has indicated a noteworthy correlation bet ween the slope of the given 

area and runoff within the area (Fernandez et al., 2010). The surface runoff and infiltration 

processes that occur during flooding events or in hydrological studies are controlled by 

factors such as slope, duration of rainfall, and the geological characteristics of the area. The 

acceleration of the surface runoff caused by precipitation is attributed to steep slopes, 

resulting in a decrease in the absorption rate of the soil (Çelik et al., 2012; Das & Pardeshi, 

2018). Consequently, regions characterized by low slope, such as lowlands, are prone to 

experiencing significant flooding. This is primarily attributed to the accumulation of 

substantial amounts of water, resulting in severe floods(Li et al., 2012; Pradhan, 2009). The 

slope of an area is a significant factor in the regulation of surface runoff, infiltrations, and 

water retention. As a result, it has a direct impact on the susceptibility of an area to flooding. 

Previous research has indicated a noteworthy correlation between the slope of the given 

area and runoff within the area(Fernandez et al., 2010). The slope map depicted in the figure 

was generated using the DEM within the ArcGIS Pro. The DEM layer is used as the input 

layer in the Slope tool under the Spatial Analyst tool. The layer is classified into five distinct 

classes (Figure 4) as follows:0⁰ - 2⁰, 2⁰ - 5⁰, 5⁰ - 15⁰, 15⁰ - 35⁰, 35⁰ - 80⁰ (Kazakis et al., 2015). 

Figure 5 shows the method to generate the slope map. 
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Figure 4: Slope map for the study area 
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Figure 5: Slope tool for generating the slope map 
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c. Distance from the river:  

Distance from the river is a crucial factor in flood susceptibility analysis because it directly 

influences how likely an area is to experience flooding (Kazakis et al., 2015). Proximity to 

rivers often correlates with increased risk, as areas closer to rivers are more susceptible to 

overflow and rapid water level rises during heavy rain or snowmelt. The distance from the 

river map was prepared with five classes (Figure 6): 0 - 200m, 200 - 500m, 500 - 1000m, 

1000 - 1500m, 1500 - 2000m. In this research, the distance from the river layer is extracted 

using ArcGIS Pro 3.2. Meanwhile, the Norwegian Water Resources and Energy Directorate 

(NVE) provides the water network data in shapefile format, available at 

(https://nedlasting.nve.no/gis/). The water network shapefile and study area boundary were 

imported into ArcGIS Pro 3.2 software for analysis. The distance from the river map (Figure 

6)is calculated using the Euclidean distance tool within the Spatial Analyst tool under the 

Geoprocessing tab. 

 

Figure 6: Distance from river map of the study area 

https://nedlasting.nve.no/gis/
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d. Drainage density:  

The drainage density is defined as the ratio of the sum of the lengths of all drainage channels 

within a cell to the area of that cell(Muchingami et al., 2019). Drainage density is a crucial 

factor to consider when conducting flood susceptibility analysis, as it serves as a reliable 

indicator of the area’s ability to effectively remove excess amount of water. A high drainage 

density signifies an elevated probability of runoff concentration and accelerated water flow, 

resulting in an increased risk of flooding (Onuşluel Gül, 2013).The drainage density map is 

created in ArcGIS Pro 3.2 with DEM mentioned above. First, the watershed boundary is 

established through a series of steps (refer Figure 19). After delineating the watershed 

boundaries and stream order, both layers are imported into ArcGIS Pro. The drainage 

density is then calculated using the line density tool under the spatial analyst tool. The map 

(Figure 7) was classified into five distinct categories using a manual classification scheme as: 

0.21 – 0.68, 0.69 – 1.72, 1.73 – 2.87, 2.88 – 3.21, 3.22 – 4.76 km/km². 

 

Figure 7: Drainage density map of the study area 
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e. Topographic Wetness Index:  

Topographic Wetness Index (TWI) is the ideal choice for flood susceptibility analysis due to 

its ability to quantitatively assess how topography influences the accumulation and 

movement of surface water. TWI evaluates the likelihood of water accumulation in a specific 

location by considering the local drainage patterns and slope. Regions characterized by 

higher TWI values generally exhibit levels of moisture and are more prone to experiencing 

flooding events (Sahana & Patel, 2019). The index was computed by considering the 

upslope and slope of the cells  using Equation (Moore et al., 1991), where α and β represent 

the cumulative upslope area and hydraulic gradient, respectively. 

𝑇𝑊𝐼 = ln (
𝛼

tan(𝛽)
)                                                                                                                                             (1) 

 

In this research, the TWI map (Figure 8) was prepared using the DEM data. Figure 9 shows 

the various steps used in the preparation of TWI map used in this thesis research. 
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Figure 8: Topographic wetness index map of the study area 

 

Figure 9: Procedure to generate TWI map 
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f. Normalized Difference Vegetation Index:  

Normalized Difference Vegetation Index (NDVI) is the optimal choice for flood susceptibility 

analysis due to its ability to accurately quantify vegetation cover, which is vital for water 

absorption and soil stabilization. Regions characterised by abundant vegetation generally 

exhibit decreased vulnerability to flooding due to the capacity of plants and their root systems 

to absorb water and mitigate surface runoff. In contrast, regions with limited vegetation are 

more susceptible to flooding as they have less capacity to intercept and absorb rainfall. It 

plays a significant role in flood events(Khosravi et al., 2019). Its values range from -1 to +1. 

The NDVI values for the study area were calculated using the given equation, which is based 

on the sentinel-2 image. 

NDVI=
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                                                                                                                      (2) 

The NIR and Red refer to the spectral reflectance observations in the near-infrared and red 

bands of the electromagnetic spectrum, respectively. In the Sentinel-2 images, the near-

infrared band corresponds to band 8, while the red bands correspond to band 4. 

In this analysis, the NDVI map (Fig. 21) was generated using Sentinel-2 image, available at 

(https://kartkatalog.geonorge.no/metadata/satellittdata-sentinel-2. First, import the Sentinel-2 

image into ArcGIS Pro 3.2, ensuring that the image is georeferenced with precision. 

Afterward, we navigate the Image Analysis window and select the band combination tool. To 

compute NDVI, it is typically recommended to choose the appropriate bands, such as the 

near-infrared (NIR) and red bands, which are band 8 and band 4 respectively. Once the 

composite image is created, we employ the Raster Calculator tool (Figure 11) to calculate 

the NDVI using the formula (Equation 2). 

 

https://kartkatalog.geonorge.no/metadata/satellittdata-sentinel-2
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Figure 10: Normalized Difference Vegetation Index map of the study area 
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Figure 11: Raster Calculator Tool Generating NDVI map 
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g. Stream Power Index:  

The Stream power index (SPI) is the recommended choice for flood susceptibility analysis 

due to its ability to quantify the erosive power of flowing water metric (Bui et al., 2019). This 

index considers the slope of the area and the upstream drainage area. A higher SPI 

indicates a stronger water flow and a greater potential for erosion. This, in turn, contributes to 

higher flood risks due to the increased likelihood of stream channel changes and greater 

sediment transport. It can be determined by applying Equation (3), which involves the 

specific catchment areas and the slope angle (β) measured in metre per square metre (m/m) 

𝑆𝑃𝐼 = ln (𝐴𝑠 × tan(𝛽))                                                                                                                                        (3) 

In this analysis, the SPI map (Figure 12) was completed using the DEM) data with series of 

steps followed using ArcGIS Pr0 3.2. Figure 13 illustrates the various steps involved in the 

preparation of the SPI map used in this thesis research.  

 

Figure 12: Stream Power Index map of the study area 



 

Mahesh Bhandari 48 2024 

 

Figure 13: Procedure to generate SPI map 

 

h. Normalised Difference Snow Index: 

 Normalized Difference Snow Index (NDSI) is a remote sensing spectral index used to detect 

snow cover. It works because snow has a distinct visible and near-infrared spectral signature 

compared to other earth features. It detects snow by comparing VIS and NIR reflectance. Its 

value ranges from -1 to +1. The selection of the Normalized Difference Snow Index (NDSI) is 

recommended for flood susceptibility analysis due to its capability to detect and monitor snow 

cover, which plays a critical role in flood risk assessment (Nguyen et al., 2023). The process 

of snow melting can lead to an increase in surface runoff, which in turn can raise the risk of 

flooding, particularly when snow melts rapidly 

𝑁𝐷𝑆𝐼 =
𝐵3 − 𝐵11

𝐵3 + 𝐵11
                                                                                                                                             (4) 

 

In this analysis, the NDSI map (Fig. 23) was generated using the Sentinel-2 images 

mentioned above. First, import the Sentinel-2 image into ArcGIS Pro 3.2, ensuring that the 

image is georeferenced with precision. Afterward, we navigate to the Image Analysis window 
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and select the band combination tool. To compute NDSI, it is typically recommended to 

choose the appropriate bands, such as the Shortwave-infrared (SWIR) and green bands, 

which are band 11 and band 3 respectively. Once the composite image is created, we 

employ the Raster Calculator tool (Figure 15) to calculate the NDSI using (Eq. 4) above. 

 

Figure 14: Normalized Difference Snow Index map of the study area 
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Figure 15: Raster Calculator tool for Generating NDSI map 
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i. Geology:  

The selection of geology for flood susceptibility analysis is justified due to its influence on the 

permeability of the terrain and the behaviour of water flow. The comprehension of the 

geological composition of a specific area is essential for identifying regions that are 

susceptible to surface runoff, groundwater infiltration, or channelization. These factors play a 

crucial role in the flood risk assessment (Kazakis et al., 2015). The local geology contains 

valuable data on paleo-flood events, which can provide insight into the historical occurrence 

of flash floods(He et al., 2007). The infiltration process is accelerated by lithological units that 

have higher permeability. Conversely, an impermeable layer will amplify surface runoff, 

potentially leading to floods. The geological map (Figure 16) utilized for the Bø-Seljord region 

was prepared with five distinct geological features. 

In this work, the geology map (Figure 16) created by using the geological data obtained from 

GeoNorge, available at https://kartkatalog.geonorge.no/metadata/berggrunn-n1350. After 

importing the shapefile into ArcGIS Pro 3.2, it is clipped according to the study boundary 

area and classified based on attributes called rock types. 

 

Figure 16: Geology map of the study area 

https://kartkatalog.geonorge.no/metadata/berggrunn-n1350
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j. Land-use and Landcover:  

The selection of Land Use Land Cover (LULC) for flood susceptibility analysis is crucial due 

to its direct influence on the interaction between land and rainfall. Urban areas characterised 

by impervious surfaces, such as concrete, are associated with elevated runoff levels and 

heightened susceptibility to flooding (Norman et al., 2010). Conversely, regions featuring 

natural vegetation facilitate water absorption and mitigate runoff. The occurrence of floods in 

a particular area can be significantly affected by the surface cover or land-use patterns, as 

well as changes that occur in the area over time(Beckers et al., 2012). The LULC map (Fig. 

25) with eight categories used in this study was prepared using a dataset extracted from 

ESRI, available at https://livingatlas.arcgis.com/landcover/. The data was then clipped 

according to the study boundary area in ArcGIS Pro.   

 

Figure 17: Land use and land cover map of the study area 

https://livingatlas.arcgis.com/landcover/
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3.3 Method Used 

3.3.1 Analytic Hierarchy Process 

In the late 1970s, Saaty introduced the Analytical Hierarchy Process (AHP) method, and 

now, it is the most widely used MCDA model for ranking decision alternatives on a global 

scale(Saaty, 1994). The term is commonly employed to assess and evaluate the 

components and their categories(Kumar & Anbalagan, 2016), making it a powerful method 

for resolving intricate problems(Souissi et al., 2019).The significance and applicability of this 

MCDA technique in relation to current issues have led to its widespread use in flood 

susceptibility mapping. Consequently, the current study used the AHP method to integrate 

the chosen thematic layers of flood susceptibility.  

When preparing the susceptibility mapping, the relative importance of the flood indicators 

determines their respective weights. Furthermore, the pair-wise comparison matrices are 

utilized in AHP to compare the relative weight of each class that is contained within the same 

thematic layer. Additionally, thematic layers are compared to one another(Fenta et al., 2014). 

As a result, the relative weight of each layer has been determined employing Saaty’s 

preference scale, which ranges from 1 to 9 (Table 3), as well as by utilizing literature review, 

field knowledge, and studies conducted in similar geographical regions that are comparable. 

Table 3: Saaty’s scale of relative importance                                                                                                                                                                               

Saaty's scale of relative importance 
Intensity value Description 
1 Equally important 
2 Equally important to moderately important 
3 Moderately important 
4 moderately to strongly important 
5 strongly important 
6 strongly to very strongly important 
7 very strongly important 
8 very strongly important to extremely strong important 
9 extremely important 
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Figure 18: Multi-Criteria Decision Analysis procedure 

 

When n number of criteria (flood indicators) for flood susceptibility mapping are to be 

compared, the AHP technique constructs a square matrix B=(b) to facilitate the comparison 

process. The following Equation 5 is represented below, and it is a condition that is satisfied 

regarding each bij of the matrix component. 

𝑏𝑖𝑗 =
1

𝑏𝑗𝑖
                                                                                                                                                 (5) 

 

when considering the reciprocal matrix, it is important to note that bij adheres to the equality, 

which is simply expressed as bij = 
𝑀𝑖

𝑀𝑗
. Here, Mi represents the preference of the alternative i, 

as explained in the following Equation 6. 
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                                                                                   (6) 

 

The thesis research involved the construction of ten matrices for flood susceptibility thematic 

layers for the study area. The matrices have been computed for each class of the thematic 

layer to determine the AHP rating. The assignment of the weights or ratings involves the 

calculation of the relative ratio scale. This scale is derived from the pair-wise comparison 

reciprocal matrix of judgements, using the following method: 

i)The sum of all the components that make up the j column in matrix b is shown in Equation 7 

as follows: 

𝑀1
𝑀𝑗
+⋯+

𝑀𝑖
𝑀𝑗
+⋯+

𝑀𝑛
𝑀𝑛

=
∑  𝑛
𝑖=1 𝑀𝑖
𝑀𝑗

                                                                                                        (7) 

 
ii) The calculation of the normalized value involves dividing the comparison, which is denoted 
as bij=Mi/Mj by following Equation 8: 
 

𝑀𝑖
𝑀𝑗

∑  𝑛
𝑖=1 𝑀𝑖
𝑀𝑗

=
𝑀𝑖
𝑀𝑗
×

𝑀𝑗
∑  𝑛
𝑖=1 𝑀𝑖

=
𝑀𝑖

∑  𝑛
𝑖=1 𝑀𝑖

                                                                                                      (8) 

 
iii) The weight or rating that is assigned to ith row is referred, and it is determined by 
computing the average of the components within the Equation 9. 
 
 

𝑊𝑖 = (
𝑀𝑖

∑  𝑛
𝑖=1 𝑀𝑖

+⋯+
𝑀𝑖

∑  𝑛
𝑖=1 𝑀𝑖

) ×
1

𝑛
                                                                                                      (9) 

 

3.3.2 Verification of consistency 

The consistency ratio, also known as CR, is utilized with the goal of evaluating the pair wise 

comparison of each parameter and the subcategories that they fall under. The following 

Equation 10 has been designated for use in the computation of the CR. 
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𝐶𝑅 =
𝐶𝐼

𝑅𝐶𝐼
                                                                                                                                                           (10) 

 

Where CR stands for the consistency index, CI, or the consistency index, and RCI or the 

random consistency index. For each of the different values of n, the RCI values remain the 

same(Saaty & Vargas, 1991), as described in Table 5, and the CI is computed using the 

Equation 11: 

𝐶𝐼 =
(𝜆𝑚𝑎𝑥 − 𝑛)

𝑛 − 1
                                                                                                                                               (11) 

 

Where the principal or largest eigenvalue of the pair-wise comparison matrix is denoted by 

the symbol 𝜆𝑚𝑎𝑥. Equation 12 is used to determine the maximum value of k. 

𝜆𝑚𝑎𝑥 =∑ 

𝑛

𝑖=1

(𝑊𝑖 ×
𝑀𝑖

∑  𝑛
𝑖=1 𝑀𝑖

)                                                                                                                        (12) 

 

 

The AHP result is acceptable when the calculated consistency ratio value is less than or 

equal to 0.1. Nevertheless, if it is greater than 0.1, the result does not align with the 

continuation for further evaluation, and the method needs to be revised unless the threshold 

is met Table 4. A visual representation of the computed consistency ratio (CR) for flood 

susceptibility can be found in Table 4. 

Table 4: Random Index to determine the consistency ratio for various matrices 

Random Index to determine the consistency ratio for various matrices (Saaty and Vargas, 
1991). 

1 2 3 4 5 6 7 8 9 10 11 12 
0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 
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4. Research Methodology 

The objective of this thesis is to create a flood susceptibility map and provide flood prediction 

for the study area using Geographic Information Systems (GIS) and associated techniques 

and technologies. The project aims to achieve several objectives, including identifying areas 

prone to flooding and conducting a study on flood prediction. These objectives were 

successfully accomplished using GIS, Multi-Criteria Decision Analysis (MCDA), and various 

sensitivity analysis techniques. This chapter provides a comprehensive explanation of the 

methodology employed in this study. It is structured into the following sections: 

➢ Determination of the catchment area 

➢ Flood database 

➢ Multicollinearity Test 

➢ Multi-Criteria Decision Analysis (MCDA) 

➢ Assessment of AHP technique using sensitivity analysis 

➢ Software Used 

GIS technology, along with the necessary data, will be employed to identify flood-prone 

areas within the study area. The collected data will be used for flood forecasting through the 

Analytical Hierarchy Process (AHP) method. The study and its accompanying maps can 

provide valuable assistance to the Bø and Seljord municipalities, which are responsible for 

planning and development in their respective areas.  

4.1 Determination of the catchment area 

The delineation of the catchment boundary was obtained from the Digital Terrain Model 

(DTM) with a resolution of 10 metres, extracted from 

https://kartkatalog.geonorge.no/metadata/dtm-10-terrengmodell-utm33. To delineate the 

catchment boundary, it is necessary to have a digital elevation model (DEM) without 

depressions. To achieve this, the sink tool in ArcGIS Pro hydrology is utilized to identify 

depression in the DEM, and the fill tool is then employed to fill these depressions. The flow 

direction tool is used to determine the direction in which water would flow for each cell. The 

flow accumulation tool calculates the number of cells that contribute to the flow of water into 

each cell of the filled digital elevation model (DEM). The areas exhibiting extremely high 

values may potentially correspond to perennial streams or major rivers, whereas areas 

displaying lower values may indicate sporadic streams. The flow accumulation grid enables 

https://kartkatalog.geonorge.no/metadata/dtm-10-terrengmodell-utm33
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the calculation of the areas that contribute to the drainage of specific points on the DEM. 

Next, the Basin tool is employed to generate catchments. The Basin tool automatically 

identifies pour points and generates the catchment for the entire area. Figure 19 depicts the 

conceptual overview of catchment boundary delineation. 

 

Figure 19: Process of delineating the catchment boundary 

4.2 Flood database 

The initial phase involves the creation of a flood database for the Bø-Seljord catchment area 

using ArcGIS Pro 3.2. The thesis study specified the use of the WGS 84 UTM Zone 32 N 

reference system for the database. This reference system uses the Transverse Mercator 

Projection. Subsequently, the ten flood indicators (elevation, slope, distance from river, 

drainage density, TWI, SPI, NDVI, NDSI, geology, and LULC) along with 64 flood locations 

derived from the (NVE Atlas) were imported into the database. The conversion of all ten flood 

parameters were performed, resulting in raster format with a resolution of 10 meters. It is 

important to mention that out of ten flood parameters, lithology, and land use land cover 

(LULC) fall into categorical parameters. Hence, a conversion process (Trọng et al., 2023)was 

employed to transform these parameters into continuous variables. 

After delineation of the catchment boundary, the DEM boundary and other flood indicators 

used in the thesis research are clipped using ArcGIS Pro 3.2. To clip a raster layer in ArcGIS 

Pro, we need to define the extent or boundary within which we want to extract from the raster 

dataset. The clip raster tool in the Geoprocessing toolbox can be used for this purpose. 

Figure 10 shows the conceptual process of clipping the data per the boundary layer. 
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Figure 20: Clipping the DEM layer as per the extent of catchment boundary layer 



 

Mahesh Bhandari 60 2024 

Moreover, after clipping all the flood factors using ArcGIS Pro 3.2, all ten factors were 

reclassified using the reclassify tool under the Spatial Analyst Tool. Figure 21 shows the 

reclassification of DEM. Likewise, the other remaining flood factors were also reclassified. 

 

Figure 21: Reclassification process  
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After reclassifying all ten indicators, all the raster layers are converted into polygon using the 

raster to polygons tool under the conversion tool in the Geoprocessing tab in ArcGIS Pro 3.2. 

Figure 22 shows the process of converting a reclassified raster layer into polygon. 

 

Figure 22: Raster to polygon tool for converting the raster layer to polygon. 
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After converting all the raster layers into polygons, each polygon layer is dissolved using the 

dissolve tool under Data management tool in geoprocessing tab using ArcGIS Pro 3.2. 

During the process of dissolving the polygon, under the dissolve field, a grid code must be 

selected.  Figure 23 shows the process of dissolving the polygon. 

 

Figure 23: The Dissolving tool for processing the elevation polygon 
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Once all ten flood factors are dissolved, a field, named rating must be added to the attribute 

table of each dissolved layer, where the rating can be added to the reclass value obtained 

from the AHP sub-criteria analysis. Figure 24 shows the process of adding new fields and 

adding value to the field. Likewise, the same process is carried out for all the remaining nine 

indicators used in this thesis research. 

 

Figure 24: Adding the new field rating in the Elevation layer. 

 

After adding the new field rating to each indicator used in flood analysis, all ten indicators 

were converted into a raster layers. A crucial step in this process was ensuring that the 

resolution of all raster layers was consistent. For this thesis research, we aimed to maintain a 

resolution of 10 meters for all indicators, saving them in a single geodatabase for further 

analysis. Consequently, all the new raster layers after conversion have a 10-meter 

resolution. Figure 25 illustrates the process of converting polygons to raster layers.  
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Figure 25: Polygon to raster tool 
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After creating a geodatabase with all required raster layers, the weighted sum overlay 

analysis is carried out using the weighted sum tool under the Spatial Analyst Tool in ArcGIS 

Pro. In the weighted sum tool, each indicator is selected simultaneously, and weights 

obtained from the AHP table for each indicator are employed in the weight field. Figure 26 

shows the process of carrying out the overlay analysis. 

 

Figure 26: Process of weighted sum overlay analysis 
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4.3 Multicollinearity diagnosis 

The multicollinearity diagnosis was determined to be a valuable tool as it did not adversely 

affect the predictability and reliability of the model. The flood susceptibility modelling involves 

conducting a multicollinearity test to identify any linear relationships between the 

variables(Al-Juaidi et al., 2018). Statistically, a strong correlation is observed between two or 

more independent variables(Mukherjee & Singh, 2020). As a result, correlation analysis is 

employed to identify specific independent variables that are strongly correlated. To analyse 

the multicollinearity among different independent variables, various methods were employed. 

For this research, the Variance Inflation Factor (VIF) method was utilized. The VIF (Myers 

et., 2010) was computed using the following formula: 

The tolerance of the ith predictor variable: 

(Ti) = 1 − Ri
2                                                                                                                                                 (13)                                                                                                                          

Variance Inflation Factor of ith predictor variable 

(VIFi) =
1

Ti
                                                                                                                                                      (14)      

A Tolerance (TOL) value below 0.2 suggests potential multicollinearity, with severe 

multicollinearity occurring when TOL value drop below 0.1. The variance inflation factor 

(VIF), calculated as the reciprocal of tolerance (1/TOL), is used to assess multicollinearity. A 

VIF value exceeding 10 typically indicates significant multicollinearity (Bui et al., 2011). 

4.4 Grading and weighting of flood indicators 

The flood parameters selected for the study area are deployed to perform a pairwise 

comparison of criteria using the scale of 1 to 9 proposed by (Saaty, 1994). A square matrix is 

formed by performing the pairwise comparison of different criteria used in the thesis study. 

The flood analysis process involves decomposing the decision problem into a hierarchical 

structure consisting of goals and criteria. The objective of this thesis is to create a flood 

susceptible map by utilizing various indicators, including elevation, slope, distance from river, 

drainage density, TWI, NDVI, SPI, NDSI, lithology, and LULC. The estimation of the priorities 

of the decision criteria is then conducted. The individual priorities, based on the decision 

maker’s choices, are converted into calculable values using a pairwise comparison matrix. 

This matrix plays a crucial role in the grading and weighting of flood parameters. 
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4.5 Verification of consistency 

The consistency ratio (CR) is used to evaluate the pairwise comparisons of each parameter 

and their respective subcategories. The result obtained from verifying consistency 

determines whether the AHP results are acceptable.  If the consistency ratio exceeds 0.1, 

the results are rejected, and the method is revised until the criterion is met. Table 5 shows 

the that the consistency ratio for the AHP results is below the threshold, making it acceptable 

for further analysis. 

Table 5: Consistency assessment of aggregated for flood susceptibility in the study area 

Lambda max  N CI CR 
11.12 10 0.124 0.084 
 

4.6 Flood susceptibility mapping 

The preparation of the flood susceptibility zone is the most important task that the study 

ought to accomplish. The flood susceptibility parameters used for thesis research in the Bø-

Seljord watershed area were assigned AHP weights (Table 11), and these weights were 

determined based on the priority among all the ten parameters employed in the study. Each 

of the mappings has been carried out with utilization of these weights. Through the utilization 

of the Spatial Analyst tool, the weighted sum method has been implemented within the 

ArcGIS Pro platform. For computing the FSM, the following Equation 15 is employed: 

𝐹𝑆𝑀 =∑  

𝑛

𝑖=1

𝑊𝑖
𝑆 × 𝑆𝑖

𝑆                                                                                                                         (15) 

 

Here, FSM refers to flood susceptibility mapping. 𝑊𝑖
𝑆represents the weights assigned to 

susceptibility factors, while 𝑆𝑖
𝑆denotes the weightage given to susceptibility sub-

factors. 
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4.7 Sensitivity analysis 

In the Analytic Hierarchy Process (AHP) assessment, the major drawback lies in the 

calculation of the weight of the input factors. Therefore, it is necessary to perform other 

analyses to verify the dependability and reliability of this method. Hence, sensitivity analysis 

is used to verify the assigned weights given to all the ten parameters obtained from the 

assessment through the Analytic Hierarchy Process (AHP). There are various sensitivity 

analyses to choose from, meanwhile the sensitivity analysis techniques used in this thesis 

work include Stillwell ranking methods, single parameter sensitivity analysis, and map 

removal sensitivity analysis. 

4.7.1 Methods for ranking 

The Stillwell ranking methods, also referred to as the Stillwell Technique, is a decision-

making tool employed in the field of environmental impact assessment and land-use 

planning. The Stillwell ranking method is a systematic approach to decision making that 

assists stakeholders in evaluating and comparing the potential impacts of various 

alternatives in a structured manner. This method enables informed decision-making by 

considering multiple criteria and their respective importance. Hence, the method namely rank 

sum weight and reciprocal rank have been employed to compare with the AHP method. The 

rank sum weight  𝑊𝑖(𝑅𝑆) and reciprocal rank weight 𝑊𝑖(𝑅𝑅) can be calculated using 

following equations 16 and 17 (Stillwell & Seaver, 1981) 

𝑊𝑖(𝑅𝑆) =
(𝑛 − 𝑅𝑗 + 1)

∑  𝑛
𝑘=1 (𝑛 − 𝑅𝑘 + 1)

                                                                                                      (16) 

 

𝑊𝑖(𝑅𝑅) =

1
𝑅𝑗

∑  𝑛
𝑘=1 (

1
𝑅𝑘
)
                                                                                                                     (17) 

The normalized weight of each attribute, Wi, is determined based on the number of attributes, 

n. The attributes are ranked in ascending order, and Rj represents the direct rank of each 

attribute. Finally, each weight is normalized by ∑  𝑛
𝑘=1 (𝑛 − 𝑅𝑘 + 1). 
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4.7.2 Single factor sensitivity analysis 

Each flood indicator is tested using this sensitivity analysis. This method is employed to 

differentiate between the empirical weights assigned to each thematic layer in FSM maps  

obtained from the AHP and the actual of effective weights(Fenta et al., 2014; Mukherjee & 

Singh, 2020). The appropriate Equation to determine the effective weighting factor for FSM 

maps is: 

𝑊 =
𝑃𝑟𝑃𝑤
FSM

× 100                                                                                                                                                (18) 

 

In the context where W denotes effective weight, 𝑃𝑟  and 𝑃𝑤 signify the rate and weight values 

of each layer, FSM signifies the mapping of flood susceptibility. 

4.7.3 Map Removal Sensitivity analysis 

An additional significant sensitivity analysis that can be essential to validate the weightage 

for parameters obtained from AHP is the map removal sensitivity analysis. This analysis 

seeks to examine the outcomes of removing any thematic layers utilized in the generation of 

the FSM maps. According to (Mukherjee & Singh, 2020), this method involves removing all 

thematic layers and then creating new FSM maps using the overlay analysis technique on 

top of the remaining layers. In this case, the sensitivity index is always calculated using 

following Equation: 

SI =
|(
FSM
N ) − (

FSM′
n )|

FSM
× 100                                                                                                                      (19) 

 

 

The sensitivity index associated with an excluded thematic layer is denoted as SI. FSM 

represents the flood susceptibility mapping of all the thematic layers. FSM’ represents the 

flood susceptibility mapping of one excluded thematic layer. N represents the number of 

thematic layers in FSM maps, while n represents the number of thematic layers in FSM’ 

maps. 
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4.8 Performance assessment 

The resultant map obtained after the modelling must be verified to assess the reliability and 

accuracy. Validation of the data is one of the most important steps in ensuring the accuracy 

of any model post-development. Various methods have been utilized to validate MCDA 

models. In this thesis, verification of  the Flood Susceptibility Map (FSM) was accomplished 

through the utilization of ROC-AUC (Mitra & Roy, 2022; Yaseen et al., 2022).  

The ROC-AUC represents the trade-off between specificity and sensitivity in the field s of 

geomatics, natural hazards, and risk assessment. In the two-dimensional ROC graph, the x-

axis represents the false positive rate, while the y-axis represents sensitivity, or the true 

positive rate. (Arabameri et al., 2019). The characteristics of the x-axis and the y-axis are 

expressed by Equations 20 and 21, where TN stands for true negative, FP stands for false 

positive, TP stands for true positive, and FN stands for false negative. 

𝑥 = 1 −  specificity = 1 − [
TN

(TN + FP)
]                                                                                      (20) 

 

𝑦 =  sensitivity = [
TN

(TP + FN)
]                                                                                                     (21) 

The performance of the Analytic Hierarchy Process (AHP) technique in the study region was 

quantitatively evaluated using the area under the receiver operating characteristics (ROC) 

curve(Nguyen et al., 2021). The FSM model that was prepared underwent verification using 

both flood and non-flood point data from the study area.  

4.9 Software used 

The Geographic Information System (GIS) software used for this study was ArcGIS Pro 3.2 

ArcGIS, is developed by the Environmental Systems Research Institute (ESRI), is a 

geospatial information system designed for managing and analysing maps and geographic 

data. Microsoft Excel, part of the Microsoft Office suite, was utilized for conducting Analytic 

Hierarchy Process (AHP) calculations in the form of spreadsheets. SPSS software was 

employed to calculate the multicollinearity among the flood indicators used in the research. 

Endnote software was used to for referencing sources in the thesis report. 
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5. Results and analysis 

5.1 Multicollinearity assessment 

The current study involved the consideration of 1000 random points for flood susceptibility 

parameters during the assessment of multicollinearity. The collinearity statistics of the 

selected 10 flood parameters indicate that there is no evidence of a multicollinearity problem. 

The Variance Inflation Factor (VIF) and tolerance value for all susceptibility factors are less 

than 10 and greater than 0.1 respectively (refer Table 7). Hence, all the selected parameters 

can be used for further analyses in the thesis research to achieve the desired goal. The 

eigenvalue and condition index of all dimensions related to susceptibility indicate the 

absence of multicollinearity. 

Table 6: Analysis of the relationship between flood susceptibility and collinearity 

Flood susceptibility mapping 
Model Eigenvalue Condition Index 
1 7.52 1.00 
2 0.84 3.00 
3 0.47 3.98 
4 0.43 4.18 
5 0.40 4.35 
6 0.20 6.14 
7 0.06 11.58 
8 0.05 11.96 
9 0.02 17.83 
10 0.01 29.85 
 

 

Table 7: Flood susceptibility statistics based on collinearity 

Indicators Tolerance VIF 
Elevation 0.72 1.37 
Lithology 0.98 1.02 
Distance 0.95 1.05 
Drainage 0.92 1.08 
LULC 0.88 1.14 
NDSI 0.30 3.37 
NDVI 0.27 3.74 
Slope 0.47 2.14 
SPI 0.51 1.97 
TWI 0.34 2.92 
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5.2 Flood indicator analysis 

The elevation in the area under research varies from 16m to 1536m at various points. Based 

on the elevation sub/classes, the highest percentage of the catchment area is covered by the 

high flood level category (9.71%), followed by the medium category (16.58%), the very high 

category (6.48%), the very low category (26.75%), and the low category (42.29%), as 

summarized in Table 11. As shown in Figure 3, the lower elevated lands are in the Midt-

telemark, which is in the most southern part of the study area. A total of 29% of the total AHP 

weight was assigned to elevation, and higher ratings were given to the elevation classes that 

had lower ranges.  

The slope of the catchment area varies from 0⁰ to 80⁰ (Figure 4), and it is weighted 21% in 

the AHP model. The lower slope values were given higher ratings and vice-versa. To prepare 

the flood susceptibility mapping flat (0⁰ - 2⁰), gentle (2⁰ - 5⁰), moderate (5⁰ - 15⁰), moderately 

steep (15⁰ - 35⁰), and steep (35⁰ - 80⁰) terrains are classified as very high, high, moderate, 

low, and very low respectively. 

In accordance with the representation shown in Figure 6, the parameter distance to the river 

is divided into five distinct sub-classes. The regions that are in the closest proximity to the 

river are the ones that are most likely to experience flooding problems. As a result, lower 

sub-classes were given greater weights within the overall ranking of subclasses in this 

parameter.  

The region has a drainage density that ranges from 0.21 to 4.76 kilometres per square 

kilometre (Figure 7). The research found that areas with higher drainage density had higher 

weight, and vice-versa. This is because higher drainage density has been shown to indicate 

higher runoff. 

The TWI values of the Bø-Seljord watershed region range from 3.62 to 25.13, and they are 

divided into five categories, as shown in Figure 8. The TWI exhibits a direct correlation with 

flooding. Consequently, when assigning ratings, higher TWI values are assigned higher 

values, while lower TWI values are assigned lower ratings for the sub-class rating of this 

parameter. 

As shown in Figure 10, the different values of the study area region NDVI ranged from -

0.0997 to 0.996. The probability of flooding was reflected by the fact that the NDVI value was 

negative. Since the NDVI value is moderate in the study area, the likelihood of flooding is 

moderate in the area. On the other hand, areas with a lower NDVI subclass were given 

higher ratings, and vice-versa. 
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The Stream Power Index (SPI) values for the study area are from -13 to 14 in Figure 12. The 

allocation of higher weights was based on the lower SPI values, and vice-versa. The lower 

SPI regions, as shown in Figure 12 are typically correlated with flooding events caused by 

water flow being either slow-moving or stagnant. 

The Normalized Difference Snow Index (NDSI) is not a direct indicator of flooding. However, 

it is observed that higher values of NDSI are corelated with greater snow cover, which can 

potentially lead to increased flood risk due to the runoff from the snowmelt. The allocation of 

higher weights to the classes is based on higher NDSI values and vice-versa. 

The lithological map of the catchment region is depicted in Figure 16. The classification is 

based on the Norwegian Water Resources and Energy Directorate (NVE) and consists of five 

distinct classes. The classification of flood susceptibility levels is based on the geological 

composition of the area. The highest flood susceptibility class, denoted as very high, is 

associated with amphibolite and calcareous rock types. The high flood hazard class is linked 

to basalt, while the medium flood hazard is linked to granite. Conglomerate is classified as a 

low flood susceptibility class. And dolerite is categorized as a very low class. 

The land use and land cover (LULC) map of the study area is depicted in Figure 17. The 

classification consists of eight distinct classes. The association between flood hazard classes 

and the land cover types: the very high flood hazard class is associated with the built area, 

the high flood zone is linked to water and crops, the medium flood hazard class is associated 

with bare ground and snow, low flood class is with flooded vegetation and rangeland, and 

very low flood hazard class is associated with trees. 
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5.3 Flood susceptibility mapping result 

Prior to executing the flood susceptibility model, the consistency ratio (CR) of each thematic 

layer and their respective sub-classes were calculated. The judgement matrices achieved a 

satisfactory level of consistency, with a CR value of less than 0.10. Subsequently, all ten 

reclassified layers of flood susceptibility indicators were processed in the ArcGIS Pro 

platform, utilising the respective weights assigned from the AHP model. The final flood 

susceptibility map (FSM) for the study area was generated using the weighted overlay 

method. The Bø-Seljord catchment area has been categorised into five flood susceptibility 

classes based on pixel values: very low, low, moderate, high, and very high (refer to Figure 

28).   

The distribution of susceptibility classes is represented as percentages using various 

methods, including natural break, geometrical mean method, quantile method, and equal 

interval method (Figure 27). The quantile deviation technique was used to generate the 

maximum areal coverage of very high and high flood susceptibility classes. On the other 

hand, an equal interval method was employed to generate maximum, medium and low 

classes. Lastly the geometrical interval method was utilized to generate the very low class. 

 

Figure 27: Classification of flood susceptibility mapping based on various classification methods 
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The generation of the FSM map of the Bø-Seljord watershed region involved assigning 

weights to various factors. The highest weight of 29% is allocated to elevation, followed by 

slope with 21%, drainage density with 12%, distance from river with 12%, TWI with 9%, NDVI 

with 6%, SPI with 4%, NDSI and lithology with 3%, and LULC with 2%. Floods in this study 

region typically occur in the riverside and water bodies and their adjacent areas. The flood 

susceptibility zones were determined based on several indicators including distance from the 

river, lower elevation, gentle slope, higher drainage density, TWI, and NDVI. These 

indicators collectively contribute to the identification of high to very high flood susceptibility 

zones in the defined study area. 

Table 8: Pair-wise comparison matrix for the flood indicators. E: Elevation, S: Slope, DD: Drainage 
Density, DFR: Distance from River, TWI: Topographic Wetness Index, NDVI: Normalized Difference 
Vegetation Index, SPI: Stream Power Index, NDSI: Normalized Difference Snow Index, G: Geology, 
LULC: Land use and Land cover. 

Preferred Over Other 
  E S DD DFR TWI NDVI SPI NDSI L LULC 
E 1 3 4 4 5 6 7 7 8 8 
S 0.333 1 3 4 4 5 6 7 7 8 
DD 0.250 0.333 1 1 3 4 5 6 7 7 
DFR 0.250 0.250 1 1 3 4 5 6 6 7 
TWI 0.200 0.250 0.333 0.333 1 3 4 5 5 6 
NDVI 0.167 0.200 0.250 0.250 0.333 1 3 4 4 5 
SPI 0.143 0.167 0.200 0.200 0.250 0.333 1 3 3 4 
NDSI 0.143 0.143 0.167 0.167 0.200 0.250 0.333 1 1 3 
G 0.125 0.143 0.143 0.167 0.200 0.250 0.333 1 1 3 
LULC 0.125 0.125 0.143 0.143 0.167 0.200 0.250 0.333 0.333 1 
Sum 2.736 5.611 10.236 11.260 17.150 24.033 31.917 40.33 42.330 52 
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Table 9: Normalized data for the flood indicators. E: Elevation, S: Slope, DD: Drainage Density, DFR: 
Distance from River, TWI: Topographic Wetness Index, NDVI: Normalized Difference Vegetation 
Index, SPI: Stream Power Index, NDSI: Normalized Difference Snow Index, G: Geology, LULC: Land 
use and Land cover. 

Normalized Data 
  E S DD DFR TWI NDVI SPI NDSI L LULC Average 
E 0.366 0.535 0.391 0.355 0.292 0.250 0.219 0.174 0.189 0.154 0.292 
S 0.122 0.178 0.293 0.355 0.233 0.208 0.188 0.174 0.165 0.154 0.207 
DD 0.091 0.059 0.098 0.089 0.175 0.166 0.157 0.149 0.165 0.135 0.128 
DFR 0.091 0.045 0.098 0.089 0.175 0.166 0.157 0.149 0.142 0.135 0.125 
TWI 0.073 0.045 0.033 0.030 0.058 0.125 0.125 0.124 0.118 0.115 0.085 
NDVI 0.061 0.036 0.024 0.022 0.019 0.042 0.094 0.099 0.094 0.096 0.059 
SPI 0.052 0.030 0.019 0.018 0.015 0.014 0.031 0.074 0.071 0.077 0.040 
NDSI 0.052 0.026 0.016 0.015 0.012 0.010 0.010 0.025 0.024 0.058 0.025 
G 0.046 0.026 0.014 0.015 0.012 0.010 0.010 0.025 0.024 0.058 0.024 
LULC 0.046 0.022 0.014 0.013 0.009 0.008 0.008 0.008 0.008 0.019 0.016 
Sum 1 1 1 1 1 1 1 1 1 1 1 
 
 
 
 
 
Table 10: Consistency vector for the flood indicators. LM: Lambda max, CV: Consistency Vector. E: 
Elevation, S: Slope, DD: Drainage Density, DFR: Distance from River, TWI: Topographic Wetness 
Index, NDVI: Normalized Difference Vegetation Index, SPI: Stream Power Index, NDSI: Normalized 
Difference Snow Index, G: Geology, LULC: Land use and Land cover. 

Lambda Calculation SUM Consistency 
Vector 

  E S DD DFR TWI NDVI SPI NDSI L LULC     
E 0.292 0.62 0.514 0.498 0.423 0.353 0.281 0.173 0.191 0.12 3.471 11.872 
S 0.097 0.21 0.385 0.498 0.338 0.294 0.241 0.173 0.167 0.12 2.526 12.199 
DD 0.073 0.07 0.128 0.125 0.254 0.235 0.201 0.148 0.167 0.11 1.509 11.753 
DFR 0.073 0.05 0.128 0.125 0.254 0.235 0.201 0.148 0.143 0.11 1.468 11.786 
TWI 0.058 0.05 0.043 0.042 0.085 0.176 0.16 0.124 0.119 0.09 0.952 11.262 
NDVI 0.049 0.04 0.032 0.031 0.028 0.059 0.12 0.099 0.095 0.08 0.633 10.765 
SPI 0.042 0.03 0.026 0.025 0.021 0.02 0.04 0.074 0.072 0.06 0.416 10.366 
NDSI 0.042 0.03 0.021 0.021 0.017 0.015 0.013 0.025 0.024 0.05 0.254 10.261 
L 0.037 0.03 0.018 0.021 0.017 0.015 0.013 0.025 0.024 0.05 0.246 10.295 
LULC 0.037 0.03 0.018 0.018 0.014 0.012 0.01 0.008 0.008 0.02 0.166 10.665 
Lambda 
max 

                      11.122 
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Table 11: Selected factors for flood susceptibility of Bø-Seljord watershed area in Telemark County. 
CBD: Conglomerate/Basalt/Dolerite; CMA: Granitic gneiss/meta akrose; ACQ: 
Amphibolite/Calcareous/Quartz slate; LGQ: Lampro/Granite/Quartzite 

Selected flood susceptibility parameters for the study area 
Parameters Weight Class range Reclass Value Flood Level Rating 

Elevation 0.29 16-124 1 Very high 0.503 
124-288 2 High 0.260 
288-476 3 Moderate 0.134 
476-699 4 Low 0.068 

699-1536 5 Very low 0.035 
Slope 0.21 0-2 1 Very high 0.457 

2-5 2 High 0.257 
5-15 3 Moderate 0.150 

15-35 4 Low 0.087 
35-80 5 Very low 0.049 

DFR 0.13 0-200 1 Very high 0.524 
200-500 2 High 0.222 

500-1000 3 Moderate 0.132 
1000-1500 4 Low 0.076 
1500-2000 5 Very Low 0.046 

DD 0.12 0.205-1.491 1 Very Low 0.035 
1.492-2.098 2 Low 0.068 
2.099-2.599 3 Moderate 0.134 

2.6-3.207 4 High 0.260 
3.208-4.762 5 Very High 0.502 

TWI 0.08 -13.81--6.32 1 Very low 0.044 
-6.31--1.91 2 Low 0.076 

-1.9-0.19 3 Moderate 0.144 
0.2-2.83 4 High 0.268 

2.84-14.3 5 Very high 0.468 
NDVI 0.06 -0.996--0.622 1 Very high 0.416 

-0.621--0.066 2 High 0.262 
-0.065-0.443 3 Moderate 0.161 
0.444-0.725 4 Low 0.099 
0.726-0.999 5 Very Low 0.062 

SPI 0.04 -13--6 1 Very high 0.503 
-5--2 2 High 0.260 
-1-0 3 Moderate 0.134 
1-3 4 Low 0.068 

3-14 5 Very low 0.035 
NDSI 0.03 -0.0997--0.568 1 Very high 0.467 

-0.567--0.435 2 High 0.256 
-0.0434--0.083 3 Moderate 0.148 

-0.082-0.519 4 Low 0.083 
0.52-0.996 5 Very Low 0.044 

Lithology 0.02 CBD 1 Very high 0.498 
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GMA 2 High 0.263 
ACQ 3 Moderate 0.136 

Rhyolite 4 Low 0.067 
LGQ 5 Very low 0.037 

LULC 0.02 Water 1 Very high 0.155 
Trees 2 Very low 0.043 

Flooded vegetation 3 Low to medium 0.087 
Crops 4 High 0.154 

Built Area 5 Extreme high 0.241 
Bare ground 6 Medium to high 0.136 

Snow 7 Medium 0.111 
Rangeland 8 Low 0.073 

 

 

Figure 28: Flood susceptibility mapping of study area 
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Table 12: Area of flood susceptibility of the study area 

Area of flood susceptibility 
Level Area in Sq.km Area in percent (%) 

Very Low 283.614 26.740 
Low 448.547 42.290 

Moderate 175.890 16.584 
High 102.943 9.706 

Very High 49.6403 4.680 
 

5.4 Sensitivity analysis  

In this study, a sensitivity analysis was conducted to gain a better understanding of the 

important thematic layers of the acquired FSMs (Flood Susceptibility Map), as well as the 

impact of the assigned rank and weights on each and thematic layer(Mukherjee & Singh, 

2020). The study provided by (Fenta et al., 2014) insights into the relative importance of 

different maps determining the values of the output map. Specifically, it identifies the most 

and least significant maps in this regard. To better understand the importance of the flood 

indicators and the impact of the ranking and weighting, a sensitivity analysis was conducted. 

5.4.1 Stilwell ranking result 

The weightage comparison between the Saaty (1980) and Stillwell (1981) for Flood 

Susceptibility Mapping (FSM) is illustrated in Table 13. The output obtained after the 

calculation of the AHP model by Saaty (1980) and Stillwell’s ranking method (1981) 

demonstrates minimal changes in the ranking of the criteria. This clearly shows that the 

weights assigned to the parameters used in this study through the AHP model are reliable 

and accurate to some extent. 

Table 13: Weightage comparison using AHP method and Stilwell ranking method. E: Elevation, S: 
Slope, DD: Drainage Density, DFR: Distance from River, TWI: Topographic Wetness Index, NDVI: 
Normalized Difference Vegetation Index, SPI: Stream Power Index, NDSI: Normalized Difference 
Snow Index, G: Geology, LULC: Land use and Land cover. 

 

Parameters Direct 
rank 

Saaty 
(1988) 

Stillwell ranking method (1981) 

Pair-wise Ranking Sum Reciprocal Rank 

AHP weight (𝑛 − 𝑟𝑗 + 1) (𝑛 − 𝑟𝑗 − 1)/∑𝑛
− 𝑟𝑘 + 1) 

(1
/𝑟𝑗) 

(1/𝑟𝑗)

/∑(
1

𝑟𝑘
) 

E 1 0.29 10 0.159 1.000 0.313 
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S 2 0.21 9 0.143 0.500 0.157 

DD 3 0.13 8 0.127 0.330 0.103 

DFR 3 0.12 8 0.127 0.330 0.103 

TWI 4 0.08 7 0.111 0.250 0.078 

NDVI 5 0.06 6 0.095 0.200 0.063 

SPI 6 0.04 5 0.079 0.170 0.053 

NDSI 7 0.02 4 0.063 0.140 0.044 

L 7 0.02 4 0.063 0.140 0.044 

LULC 8 0.02 2 0.032 0.130 0.041 

 

5.4.2 Sensitivity analysis for flood indicator 

Regarding susceptibility analysis in the selected study area, the parameter elevation is 

assigned the highest empirical weight of 29%, obtained from the AHP model. However, 

based on the statistical output obtained through sensitivity analyses for each parameter, it 

has a mean effective weight of 15.59% (Table 14).  

Table 14: Descriptive statistics for single parameter sensitivity analysis. SD: Standard Deviation, E: 
Elevation, S: Slope, DD: Drainage Density, DFR: Distance from River, TWI: Topographic Wetness 
Index, NDVI: Normalized Difference Vegetation Index, SPI: Stream Power Index, NDSI: Normalized 
Difference Snow Index, G: Geology, LULC: Land use and Land cover. 

Flood 

Indicators 

Empirical weight in % Effective weight in % 

Min Max Mean SD 

E 29 2.88 68.06 15.59 11.72 

S 21 3.10 66.37 18.89 8.03 

DFR 13 1.78 63.06 31.92 12.73 

DD 12 1.03 53.28 11.26 6.93 

TWI 8 0.83 36.77 6.14 4.02 

NDVI 6 0.83 17.23 3.17 1.54 

SPI 4 0.31 26.79 5.60 4.54 

NDSI 3 0.19 16.14 4.08 1.92 

G 2 0.16 13.90 1.47 1.73 

LULC 2 0.19 6.19 0.74 0.36 

 

The distance from the river corresponds to the highest mean effective weight at 31.95%. In 

contrast, the empirical weight for this parameter, obtained from the AHP model, is only 13%, 

resulting in maximum observed deviation. Geology and land-use and land cover categories 

have the lowest mean effective weights, specifically 1.5% and 0.7%, respectively. The mean 

effective weights calculated from single parameter sensitivity analysis and the empirical 
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weights calculated from the AHP model exhibits a high degree of similarity for the slope, SPI, 

NDSI, DD, geology, and TWI variables. Figure 28 depicts all the effective weights assigned 

to ten flood susceptibility indicators used in this thesis research.  
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Figure 29: Effective weight for Flood susceptibility factor: a) Elevation, b) DFR, c) Slope, d) DD, e) 
NDSI, f) NDVI, g) TWI, h) SPI, i) Lithology, and j) LULC 
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5.4.3 Map Removal Sensitivity Analysis 

The result of the map removal sensitivity analysis is shown in Table 15. It could be seen that. 

the output shows a certain variation when removing a single parameter sensitivity while 

considering the susceptibility indicators (Table 15). The highest Sensitivity Index (SI) value, 

with a mean variation of 3.48%, was observed when removing the elevation layer. 

Conversely, the lowest SI value, with a mean variation of 0.88% (Table 15). The difference 

between the highest and lowest SI values is 2.6%. The sensitivity parameter index (SI) of all 

the flood parameters used in the study area is illustrated in Figure 30. 

Table 15: Descriptive statistics of map removal sensitivity analysis of flood susceptibility mapping. E: 
Elevation, S: Slope, DD: Drainage Density, DFR: Distance from River, TWI: Topographic Wetness 
Index, NDVI: Normalized Difference Vegetation Index, SPI: Stream Power Index, NDSI: Normalized 
Difference Snow Index, G: Geology, LULC: Land use and Land cover. 

 

Flood 
indicators 
  

% Variation in SI 

Min Max Mean SD 

E 0.000 5.878 3.480 1.557 

S 0.000 5.087 1.924 0.904 

DFR 0.000 5.042 1.523 1.094 

DD 0.000 13.930 1.693 1.072 

TWI 0.000 2.873 1.629 0.520 

NDVI 0.026 2.684 1.641 0.243 

SPI 0.000 2.564 1.151 0.496 

NDSI 0.000 1.620 0.886 0.268 

G 0.253 2.162 1.507 0.217 

LULC 0.689 1.760 1.362 0.118 
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Figure 30: Sensitivity Index parameters for the Flood Susceptibility Map of the study area: a) 
Elevation, b) Slope, c) DFR, d) DD, e) TWI, f) NDVI, g) SPI, h) NDSI, i) Lithology, and j) LULC 
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In addition, an analysis was further conducted to determine the percentage of changes in 

Flood Susceptibility Mapping (FSM) when each flood indicator was removed. The results of 

this analysis are shown in Table 16 and Figure 30. The removal of each flood indicator layer 

has resulted in significant variation in the percentage of produced FSM maps. 

Table 16: Percentage of changes in flood susceptibility mapping related to the removal of each flood 
indicator. E: Elevation, S: Slope, DD: Drainage Density, DFR: Distance from River, TWI: Topographic 
Wetness Index, NDVI: Normalized Difference Vegetation Index, SPI: Stream Power Index, NDSI: 
Normalized Difference Snow Index, G: Geology, LULC: Land use and Land cover. 

Flood 
Indicators 

% Change in FSM with map the removal 
Very Low Low Moderate High Very high 

E -15.31 -17.40 58.18 -7.76 55.73 
S -20.47 -7.27 41.08 -0.95 41.08 
DFR 61.66 -27.90 -14.44 -18.18 -10.69 
DD -13.20 4.13 2.37 10.72 11.19 
TWI 1.58 2.40 0.06 -20.53 13.29 
NDVI -3.93 -3.45 7.34 5.90 16.06 
SPI 1.57 4.80 -6.97 -8.87 -8.39 
NDSI 3.26 1.08 -4.20 -4.60 -3.29 
G 7.31 -2.12 -4.64 -2.31 -0.74 
LULC 5.83 1.65 -3.52 -5.81 -2.88 

 

The exclusion of distance from the river resulted in the highest increase in areas classified as 

very low, low, moderate, high, and very high flood susceptibility, with a percentage increase 

of 61.66%. The exclusion of the Stream Power Index (SPI) resulted in 4.80% increase, the 

removal of elevation layer resulted in a 51.18% increase, and the exclusion of Drainage 

Density (DD) resulted in a 10.72% increase. Conversely, the flood susceptibility of area 

classified as very low, low, moderate, high, and very high decreased the most when 

elevation layer was removed, by 15.31%, followed by the distance from river layer, by 27.9%, 

the Stream Power Index (SPI) layer, by 20.53%, and the drainage density layer, by 10.69%. 

this analysis shows that “distance from the river” is the most sensitive layer in the Flood 

Susceptibility Mapping (FSM) compared to the other layers.  
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Figure 31: Flood susceptibility map after the removal of each indicator, a) elevation, b) distance from 
river, c) slope, d) drainage density, e) lithology, f) SPI, g) TWI, h) NDVI, i) LULC, and j) NDSI 
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6 Model validation 

The resultant map of the study area, obtained through the application of Analytic Hierarchy 
Process (AHP) must be validated to determine its accuracy. Consequently, this thesis 
research conducted quantitative assessments to verify the accuracy of the AHP model output 
by comparing it to the flood inventory map, which is derived from historical flood records in 
the study area. The Receiver Operating Characteristics Area Under the Curve (ROC-AUC) 
was calculated by comparing the Flood Susceptibility Mapping (FSM) map of the study area 
with flood and non-flood points within the study area using ‘ArcSDM’ tool in ArcGIS software. 
 
Figure 31 shows the Receiver Operating Characteristics (ROC) curves and the Area Under 
the Curve (AUC) for the AHP model. The AUC represents the accuracy rate of the Flood 
Susceptibility Mapping model and can be classified into four categories: excellent (>0.9), 
acceptable (0.8-0.9), good (0.7-0.8), and considerable (0.5-0.7). The study found that the 
AHP technique achieved an observed accuracy of 0.957 (95.70%). Based on this scale, the 
model demonstrates efficient performance in producing the FSM map, resulting in an 
excellent outcome. 
 

 

Figure 32: ROC-AUC assessment 
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7. Discussion 

The current study comprehensively assesses the effectiveness and practicality of multi-

Criteria Decision Making (MCDM) and Geographic Information Systems (GIS) techniques for 

fluvial flood susceptibility mapping in Bø-Seljord catchment region of Telemark County, 

Norway. Flood susceptibility mapping is a widely technique for flood prediction and serves as 

an essential tool for flood control, research, and the implementation plans globally. The AHP 

is frequently used due to its effectiveness and reliability in delineating FSM, providing 

alternative solutions for natural hazard assessment and flood management.  

The study identified the key indices that significantly influence the mapping of flood 

susceptibility in the specified zone. These indices include elevation, slope, distance from 

river, drainage density, and topographic wetness index (TWI). The analysis incorporates 

geomorphological and hydraulic characteristics in relation to flood intensity. Indicators such 

as elevation, slope, distance from rivers, TWI, Normalized Difference Vegetation Index 

(NDVI), Stream Power Index (SPI), Normalized Difference Snow Index (NDSI), geology, and 

land use and land were analysed. The study assigned the weightages of over 70% to four 

parameters: Elevation, slope, distance from rivers, and drainage density. Previous studies 

have examined flood susceptibility using various indices and models, such as frequency 

ratio, support vector machine, and fuzzy logic models, to achieve better predictive results.    

(Rahman et al., 2019) has provided a concise overview of the models employed in flood 

susceptibility assessment and delineated a framework for future research. Recently, GIS-

based Multi-Criteria Decision Analysis (MCDA) methods have played a vital role in 

understanding the behaviour and limitations of flood susceptibility models. However, rankings 

in MCDA often involve a high degree of uncertainty due to factors such as raw data, data 

processing, criterion selection, and thresholds. The weights assigned to criteria can be 

subject to significant debate and uncertainty, often due to lack of awareness of decision 

makers’ preferences or the unknown nature and scope of the criteria (Chen et al., 2019). 

A significant flaw in the AHP technique lies in the computation of weights. Therefore, it is 

necessary to perform sensitivity analyses to validate the assigned weights for the AHP 

(Mukherjee & Singh, 2020). Sensitivity analysis focuses on the relationship between the 

inputs and outputs of the modelling application, evaluating the resilience of end results to 

minor variations in the raw data. This research utilised three types of sensitivity analysis to 

cross-validate the weights assigned in the AHP method. The AHP weights assigned to flood 

susceptibility indicators were validated using Stillwell ranking methods. Discrepancies 

between empirical and effective weights were observed during the sensitivity analysis of 

each indicator. The statistical results of the map removal sensitivity analysis demonstrated 

variability in the Sensitivity Index (SI) across indicators. The SI was calculated by considering 
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the rate, weight, and impact of other thematic layers (Fenta et al., 2014). The AHP method 

effectively met the research objectives, as shown by the cross-verification results using 

ROC-AUC.  

The devastating effects of flooding on people’s homes, businesses, and way of life are a 

global issue demanding attention. Numerous methods for assessing flood susceptibility have 

been developed, all aiming to improve predictions and inform decision-making. 

8. Conclusion and Limitations 

8.1 Conclusion 

Multi-Criteria Decision Making (MCDM) and Geographic Information Systems (GIS) 

techniques for fluvial flood susceptibility mapping was employed. Assessing the sensitivity of 

a solution is crucial to determine its reliability utilizing the AHP methodology. It provides 

evaluators or modelers with more accessible feedback, making it easier for non-experts to 

understand. This approach allows for a thorough exploration of the decision-making problem 

while also offering insights into how changes in criteria weights impact evaluation outcomes 

both spatially and quantitatively. Ongoing advancements in this field, such as conducting 

thorough analyses of criteria threshold adjustments, modifying the relative importance of 

criteria, and consequently adjusting the preference matrix, will enhance the successful 

application of GIS and MCDA to real-world land management challenges.  

The research is distinguished by its sensitivity analyses of the AHP method, which have the 

potential to be applied to other geographical areas. A precise susceptibility model provides 

land-use planners and government authorities with an invaluable tool for implementing 

effective risk-reduction strategies. In this region, the results of this thesis research may be 

applied to land-use determination prior to flood control. Therefore, this research introduces a 

novel aspect to studies that utilizing multiple MCDA techniques for modelling purposes. 

Another significant aspect of this research is the identification of high flood-risk areas, which 

can assist the local government in determining the necessity for additional monitoring within 

the defined study area. 

Thus, it is imperative to implement a comprehensive flood risk strategy to effectively enhance 

the region resilience. Additionally, it is recommended to employ both structural and non-

structural flood defence techniques in high-risk areas. Mitigation measures for reducing 

flood-prone areas include prohibiting settlement expansion, implementing sustainable 

floodplain management practices, and prioritising public awareness. The flood susceptibility 

map generated form this analysis will provide valuable assistance to local governments and 
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public protection agencies in evaluating areas that could potentially be impacted by future 

flood events. 

8.2 Limitations of the study 

The study’s limitations pertain to the subjective nature of the MCDA technique, which can 

introduce uncertainty and bias while employing the AHP model. To address these limitations, 

it is highly recommended to incorporate high resolution data and explore alternative 

techniques more suitable for this specific area. The research could enhance model 

evaluation by incorporating additional sensitivity analyses. Additionally, decision-making can 

be improved by utilising various machine learning techniques, such as frequency ratio, 

weight of evidence, and logistic regression, to gain a deeper understanding of flood 

susceptibility. Despite its imperfections, the MCDA approach can serve as a valuable tool for 

examining practical issues in regions with limited data availability, especially with respect to 

flood records. However, the current thesis study has limited information on past flood events 

in the defined study area, and the accuracy could be improved with more flood points. The 

present research holds potential value for policymakers, local administrative authorities, 

environmentalists, and engineers, and can be applied to numerous flood-prone locations 

worldwide.   
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