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Summary:  

The continuous increase in energy demand requires alternative solutions and sustainable 

energy production from the existing sources. Thus, the existing mature oil fields require 

optimization and gas injection is one option for enhancing the reservoir's productivity. 

A steady-state model within a Model Predictive Control structure for daily production 

optimization in gas-lifted oil fields has been developed to optimize the production from 

mature oil fields. The model is integrated with a dynamic reservoir. The reservoir model is 

based on the multiphase flow and dynamic pressure within the reservoir. Simulations were 

performed to study the uncertainty parameters such as reservoir pressure, productivity 

index (PI), and water cut (WC).  

Two different reservoir models were considered for the DPO from the gas-lifted oil 

reservoir. A modified "Egg Model" and the SPE9 benchmark model were used to study the 

performance of well in terms of well. These two models were simulated with and without 

optimization. A constant gas lift rate is supplied for the non-optimized case. The simulation 

showed a dynamic gas injection rate is required to optimize the production process for both 

reservoir models. 

The study further reveals that the effectiveness of the optimization strategy is influenced 

by the reservoir's geological characteristics and heterogeneity. The Egg model showed a 

more pronounced response to optimization compared to the SPE9 model due to its relatively 

homogeneous channelized structure. The developed model was able to optimize the 

production outcomes in the gas-lifted reservoirs. 
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1 Introduction 

1.1 Background 

In today's ever-evolving energy landscape, efficient oil extraction remains paramount for 

ensuring global energy security. As a primary energy source, oil plays a fundamental role in 

fueling economies worldwide. Its extraction and refining processes are intricate and 

multifaceted, demanding meticulous planning and management to optimize the resource 

utilization [1].  

According to the International Energy Agency (IEA) [2], the Total Energy Supply (TES) 

worldwide from 1990 to 2021 has been primarily based on oil, as illustrated in Figure 1-1. The 

figure shows approximately one-third of the total energy supply is attributed to oil. This statistic 

underscores the enduring significance of oil in meeting global energy demands. Considering 

this substantial contribution to the energy supply, it is evident that oil will continue to wield 

considerable influence in the world's energy landscape in the foreseeable future.  

 

Figure 1-1: Total energy supply by source of the world from 1990 – 2021 [2] 

As the energy demand continues to surge, oil production processes will require continuous 

optimization. Further, growing environmental concerns and finite resources make the oil and 

gas extraction process an overwhelmingly challenging task. Oil production rates gradually 

decline with an increase in production timeline. These fields are often called mature oil fields. 

Artificial gas is injected to improve the production from these mature or depleting oil fields. 

The injected gas reduces the density of the produced fluid which lowers the bottom hole 

pressure and increases the production flow rates.  

Optimization of any process involves the most effective utilization of a resource. Optimization 

enhances productivity, minimizes operational costs, and contributes to minimizing 
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environmental impacts. This ensures a long-term viability of oil production operations [3]. The 

optimization of oil and gas production involves different mathematical models and data-driven 

algorithms. The optimization of oil and gas production process involves reservoir management 

and well drilling to surface facility operations. These challenges associated in these different 

aspects of oil production can be studied and overcome with an optimized simulation model. 

These models can be fine-tuned to achieve optimal performance while adhering to safety and 

environmental standards [4]. 

The current study focuses on optimization of the gas lifted reservoir. The optimization of gas 

lifted systems presents some challenges. For example, excessive gas injection can lead to 

increased friction and reduced oil production. Therefore, an optimal gas injection rate for each 

well is crucial to maximizing production efficiency while minimizing operational costs. 

Additionally, real-world gas-lifted oil fields often operate under uncertainties such as reservoir 

variability and measurement errors. These uncertainties can significantly impact the optimal 

operating point, making it challenging to achieve maximum production solely based on 

deterministic optimization model. There are different optimization techniques available in the 

literature and they have resulted in better technology. These advancements have created 

different state-of-the-art techniques such as machine learning [5], model predictive control and 

real-time optimization (RTO) to address the complex challenges associated in oil and gas 

production [6, 7]. These technologies are being used for optimization, reservoir management, 

and process control [8]. 

Oil and gas production processes are complex that require decision-making within a certain 

time scale. A multi-level control hierarchy is used to make this decision-making simpler as 

shown in the Figure 1-2 [9]. This is like a team of experts that work together focusing on a 

specific task. This includes: 

• Asset management: This team makes long-term decisions for investment and running 

of an entire oil field. 

• Reservoir management: This team focuses on a particular oil field and its optimization 

to get the most oil out over a longer period of time. 

• Production optimization: This is also known as real time optimization. RTO uses real-

time data and models to assist in daily or hourly decision-making. For example, RTO 

can be used to evaluate the gas injection rates into wells [10, 11]. 

• Control and automation: This team deals with the equipment and systems that directly 

control the wells and facilities. These are automatic decisions based on a control 

algorithm and require only a few minutes to seconds to make the decisions. 
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Figure 1-2. Typical multilevel control hierarchy in oil and gas operations [12] 

This study focuses on RTO as this is crucial for decision making to get the most out of the gas 

lift production process. The gas lift rate can be adjusted based on current conditions to 

maximize oil production and minimize costs with RTO algorithm. 

1.2 Previous works 

The gas lifted oil field have been studied extensively by developing a mathematical model  

[13]. These models are based on the mass conservation principles within the well tubing and 

annulus region. However, these models often simplify complex real-world scenarios which 

may lead to potential inaccuracies and suboptimal solutions. Most of the models are often based 

only on steady-state (static models) optimization with simplified linear models, neglecting the 

dynamic behaviors which is highly critical to gas-lift systems [14, 15]. These models are based 

on limited set of parameters such as gas-to-oil ratio without considering the most important 

factors such as water cut and dynamic reservoir pressure [16]. This exclusion can lead to 

unrealistic results that are not applicable to the dynamic and uncertain nature of real-world gas-

lift operations. 

Recent research studies have developed mathematical model that are based on dynamic 

programming [16], piecewise linear formulation, and computational analysis [17]. However, a 

notable gap remains in robust procedures for addressing constrained optimization problems 

such as uncertainty, system dynamics, etc. Thus, daily production optimization have been 

implemented to incorporate uncertainty into the model [18, 19]. These models explicitly 

address short-term uncertainties while ensuring the efficient use of computational resources. 
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The optimization of offshore oil and gas production networks poses significant challenges [20]. 

Recent research and developments have developed various mathematical tools for easy 

decision-making in gas lifted reservoirs. However, these models are based on steady state 

models without taking consideration of uncertainties such as water cut, reservoir pressure and 

PI. These literature models do not have incorporates a reservoir model. Therefore, this study is 

based on the DPO with an incorporation of water cut, dynamic reservoir pressure and 

productivity index. This study also incorporates reservoir models for gas lifted production 

process. The research objective is presented in chapter 1.3. 

 

1.3 Objective 

This master thesis aims to fill a remaining gap by developing a steady-state optimization 

framework for gas-lifted systems that explicitly incorporates uncertainty. This approach helps 

to achieve computational efficiency while maintaining the realism afforded by direct reservoir 

coupling. The selected approach provides a balance between computational efficiency and 

model accuracy, leading to more effective and robust decision-making in the operation of gas-

lifted oil fields. The lists of objectives are presented as follows: 

1. Literature review on daily production optimization for gas lifted oil field. 

2. Daily production optimization using MPC for gas lifted oil field. 

3. Coupled the gas lifted oil field model against a more sophisticated reservoir model that 

represents the real process. 

4. Perform a comprehensive review of the two different reservoir models namely ‘Egg 

model’ and ‘SPE9 model’ in steady state. 

5. Analyze the comparison between with and without standard DPO for all the models. 

Study the key uncertainties parameters such as productivity index, water cut, and 

reservoir pressure for the two models. 

 

1.4 Outline of thesis 

The flow chart below gives an overview of the different chapters and how that information is 

used in subsequent sections to perform the tasks to fulfill the objectives. 

 

Literature review: This section provides a comprehensive overview of existing research 

on gas-lift optimization, highlighting the challenges and opportunities in the field. 
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Model description and development: This section gives detailed development of a 

coupled well-reservoir model for gas-lifted systems, incorporating dynamic reservoir 

pressure and multiphase flow dynamics. This chapter also introduces the optimization 

framework and algorithm used in this study. 

Case study: This section presents the two reservoir models ("Egg" and SPE9) that are 

used in simulations. Also, it provides the details of the simulation setup in the study. 

Results and discussion: This section presents the results from the simulations. The two 

models were simulated to analyze the impact of varying simulation step sizes, prediction 

horizons, and optimization strategies on production outcomes. 

Conclusion and future work: This section summarizes the key findings of this research, 

discusses their implications, and outlines potential directions for future research in gas-lift 

optimization scope. 
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2 Literature review 
This chapter gives an overview of gas lift in an oil and gas production process, uncertainties 

associated with gas lifted process, different modelling approaches, and the optimization under 

these uncertainties for a gas lift technology.  

2.1 Gas lift in oil and gas production 

Gas lift is a commonly used method in many oil wells when the natural pressure in the reservoir 

is not enough to drive the reservoir fluids up to the production manifold. This artificial lift 

technique involves injecting compressed gas into the well to reduce the density of the fluid 

mixture. A typical gas-lifted oil field comprises numerous oil wells drawing lift gas from a 

common compressor. A gas lift choke valve and the gas metering in each gas injection well 

regulate the gas flow rate into the reservoir. Figure 2-1 shows a typical gas lift arrangement in 

an offshore oil production process. The lift gas enters the annulus of the well, which is the 

space between tubing and casing. Further, the lift gas enters the reservoir via the tubing section 

of the injection well. 

The injection of gas into the reservoir has the following effects on the well [21]: 

• Aeration: The injected gas is mixed with the produced fluids such as oil, water, and 

naturally occurring gas) which lowers their overall density. This reduces the hydrostatic 

pressure within the tubing which enhances production. 

• Gas expansion: The lift gas tends to rise and expand inside the reservoir. This will 

further push the fluid above it which decreases the bottom-hole pressure. 

• Slug formation: The lift gas is injected at a slower rate. Thus, the injected gas 

accumulates until pressure is sufficient to suddenly open the injection valve. This 

creates large gas bubbles that push a "slug" of liquid towards the production manifold. 

Therefore, the gas injection makes a favorable process condition to increase oil production. 

The gas injection decreases the bottom-hole pressure which creates a higher-pressure 

difference between the reservoir and the production manifold. This differential pressure drives 

the reservoir fluid to the surface. However, excessive gas injection can cause more friction and 

slow down the production rate. Therefore, finding the right amount of gas to inject into each 

well is very important to optimize oil production while making sure too much gas is not used 

or exceeds production limits [22].  

Orifice venturi valves are the common types of valves used for gas injection. These valves 

maintain a consistent gas injection rate regardless of tubing pressure fluctuations. The constant 

gas injection is crucial for preventing instability in the production process.  



Literature review 

15 

 

Figure 2-1: Schematic diagram of a single gas-lifted oil field 

2.2 Uncertainty in gas-lifted oil fields 

Uncertainty is an inherent characteristic of oil and gas production systems, that impacts optimal 

decision-making. Various uncertainties in a gas-lifted oil field are summarized below [23]: 

o Reservoir dynamics:  Reservoir pressure plays a vital role in the production 

process. Reservoir pressure depletion or fluctuations occur due to geological 

factors, production lifetime, etc. 

o Multiphase flow:  The simultaneous flow of oil, gas, and water within the wellbore 

introduces uncertainties related to phase behavior and flow patterns. The gas-to-oil 

ratio and water cut can vary over time.  

o Production parameters: The productivity index is the measure of the well's ability 

to produce fluids. The PI can change due to factors like reservoir depletion or 

wellbore deposits. Uncertainty in productivity index estimation will give incorrect 

results. 

o Operational factors: Different uncertainties related to operation include 

measurement noise, equipment inaccuracies, and unforeseen process disturbances. 
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Recognition of these uncertainties on gas-lift optimization process is crucial.  The model 

developed for this study acknowledges these uncertainties such as dynamic reservoir pressure, 

water cut, and PI. This enhances the reliability and applicability of these mathematical models 

in solving real-world cases. 

2.3 Modelling approaches 

Uncertainties are inherent to gas-lifted oil fields is a challenge while developing a model to 

simulate the oil and gas production processes. These uncertainties include variations in 

reservoir pressure, multiphase flow behavior (GOR, WC), productivity index, and operational 

factors. Steady-state models offer efficiency; however, these simplified models may not fully 

capture reservoir complexities. Dynamic models offer high accuracy; however, these models 

often suffer from computational burdens particularly when uncertainties are involved. Self-

optimizing control (SOC) and extremum-seeking control (ESC) have emerged as promising 

adaptive approaches, yet challenges remain in identifying suitable controlled variables and 

guaranteeing stability. 

The different modelling optimization techniques available in the literature are summarized 

below: 

2.3.1 Steady-state optimization 

Steady state optimization technique optimizes the system's steady state operating point. This 

offers higher computational efficiency and makes it easy for real-time decision making. Steady 

state model relies on simplified models that can incorporate multiple phases (gas, oil, water, 

and solid particulates) encountered in oil production wells. This model can be combined with 

dynamic modeling in a hierarchical strategy [24]. Steady-state models, together with parameter 

estimation techniques, can further enhance the accuracy of real-time optimization [25]. 

In practical oilfield operations, it's essential to incorporate constraints beyond traditional 

process variables. Short-term production optimization should consider flow assurance 

constraints to prevent issues detrimental to operations. Additionally, the ability to 

accommodate different artificial lift methods, such as gas-lift systems with multiple valves, 

electric submersible pumps, or even dual completion, is crucial for maximizing production 

gains [26]. 

To address the challenges of real-time optimization, various strategies have been explored. One 

approach, "Hybrid RTO," combines dynamic models for parameter adaptation and steady-state 

models for computationally efficient optimization [27]. This allows the system to respond 

quickly to changing conditions while maintaining a focus on optimizing the steady-state 

operating point. 

2.3.2 Dynamic optimization 

Dynamic state optimization refers to the calculation based on the dynamic reservoir and well- 

state variables [28]. The optimized dynamic models give a detailed behavior of the real-world 

production process. Different advanced techniques directly couple reservoir simulators 

improve the accuracy of the dynamic simulators. Furthermore, mesh refining sequential 

methods accelerate convergence and improve the results quality within the dynamic 
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optimization framework. These dynamic models together with multi-objective optimization 

results in oil production maximization against minimizing gas injection [29]. 

2.3.3 Self-optimizing control 

Self-Optimizing Control automatically adapts to changing conditions, potentially offering 

robustness against uncertainty. The key idea is to identify a set of controlled variables (e.g., 

gas lift injection rates) and measured variables (e.g., production rates) that correlate with an 

economic objective function. The SOC algorithm iteratively adjusts the controlled variables to 

maintain the system near its optimal operating point, even under changing conditions [30]. This 

approach has a wide range of applications, demonstrated in areas as diverse as marathon 

running and economic optimization [31]. 

A significant challenge in designing SOC structures lies in identifying suitable controlled 

variables. Different methods such as brute-force approaches, local methods based on 

linearization, data-driven techniques, and strategies  are available for finding optimal nonlinear 

controlled variables [30].  The SOC has been applied to optimizing the gas injection rate with 

a recycled gas-lift model in the oil and gas production industry [32]. Further, dynamic SOC 

models are being used to model the reservoir dynamic behavior. For example, a regression-

based approach can be used to derive suitable controlled variables as combinations of 

measurements and manipulated inputs. A feedback control law can then be designed as a linear 

function of these controlled variables. This will give a near-optimal operational profit even in 

the presence of uncertainties [33]. 

2.3.4 Extremum-Seeking Control 

Extremum-seeking control is an adaptive optimization technique that excels when an explicit 

system model is unavailable.  The ESC model experimentally searches for the optimal 

operating point, making it suitable for systems where the dynamics or disturbances are poorly 

understood. This method is particularly valuable in scenarios where traditional model-based 

optimization methods become impractical.  

ESC relies on introducing perturbations into the system to optimize steady-state performance. 

These perturbations help to estimate the gradient of the objective function, which represents 

the relationship between plant parameters and performance [34].  The estimated gradient is 

then used to adjust the plant parameters, which guide the system toward its optimal operating 

point.  ESC methods fall into two broad categories [35]: 

o perturbation-based - relies primarily on added perturbations 

o model-based - Incorporates some degree of knowledge about the plant model 

structure 

Several key considerations influence the successful implementation of ESC. Researchers have 

developed various strategies to enhance convergence rates and ensure asymptotic stability for 

plants that exhibits nonlinear dynamics [36].  In some cases, "self-driving" ESC allows the 

system to converge to the true optimum under specific conditions without the need for 

continuous perturbations [34]. Additionally, the coordination of perturbations can play a 

significant role in mitigating performance fluctuations and ensuring smoother operation [37]. 
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However, ESC might face some challenges in highly nonlinear systems or the systems that are 

subjected to frequent disturbances [36, 38]. 

2.4 Optimization under uncertainty 

Optimization in the real world almost invariably confronts uncertainty. Different sources of 

uncertainty in production systems include inaccurate measurements, manufacturing variations, 

environmental changes, modeling errors, and future demand fluctuations. Traditional 

optimization solutions primarily rely on nominal (expected or average) values. These setpoint 

can become severely infeasible or suboptimal even with a small perturbations [39].  Therefore, 

a robust model is required to incorporate uncertainties that may arise during the production 

process. The different approaches to address uncertainty in optimization are presented below: 

2.4.1 Robust optimization 

The robust optimization technique includes uncertain parameters to a bounded set without any 

specific probability distribution. The main focus is to find solutions that remain feasible for 

any realization of uncertainty within the specified boundary. The worst-case perspective 

prioritizes feasibility over potential performance gains.  Robust optimization often leverages 

techniques from convex optimization [40]. 

2.4.2 Stochastic optimization: 

The stochastic optimization technique defines uncertain parameters as random variables with 

known or estimated probability distributions. The goal is to optimize a performance metric 

over the distribution of uncertainty, such as expected value or risk measures. Stochastic 

programming and chance-constrained programming fall into this category [41]. 

2.4.3 Adaptive optimization 

The adaptive optimization employs real-time measurements to continuously update model 

parameters and uncertainty estimations. This approach offers adaptability and computational 

efficiency but can face challenges for closed-loop stability. 

2.5 Research focus at the University of South-Eastern Norway 

The University of South-Eastern Norway has a focused research program on the optimization 

of oil fields for different artificial lift systems. Rohan Sharma have established foundational 

modeling and optimization techniques for gas-lifted oil fields [22]. The model employs 

nonlinear optimization within a dynamic model. This model have been extended to explore 

optimal control of electric submersible pump (ESP) systems [42].  

The recent Ph.D. thesis by Nima Janatian has further contributed to this research scope. The 

thesis provides the importance of considering uncertainty in gas-lift systems, dynamic 

optimization techniques, etc. Further, the sensitivity analysis to classify uncertain parameters 

has been performed by Nima Janatian. The PhD thesis highlighted the challenges of 

computational cost and uncertainty within dynamic optimization for gas-lift systems [43]. 

Overall, the key research that have been performed at USN are summarized below:  
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• Uncertainty handling: USN research has prioritized addressing uncertainty in gas-lifted 

oil fields. This involves: 

o Variance-based sensitivity is being used to pinpoint critical uncertain parameters 

within the gas-lift model. This identification is essential for effective uncertainty 

handling in these models. 

o Robust optimization approach compares open-loop and closed-loop min-max MPC 

methods. This gives insights into tackling uncertainty in gas-lift systems. 

o Adaptive optimization approach offers potential computational advantages in 

handling uncertainty while maintaining performance. 

o Developing a novel constraint modification strategy to address limitations inherent 

in robust approaches. This minimizes excessive conservativeness while ensuring 

robust constraint satisfaction. 

• Computational efficiency: Research at USN has also focused on enhancing computational 

efficiency for optimization techniques. For example, research by Nima Janatian has 

addressed the high computational demands of dynamic optimization for gas-lift systems. A 

study has been performed for ESP optimization in a steady-state model to reduce 

computational demands and facilitate easier real-time decision-making [43, 44]. 

Further, an optimization model based on uncertainty in an ESP-lifted oil field has been 

developed by Nima Janatian. This gives a scenario-based robust optimization framework for 

daily production optimization in ESP systems and explores the impact of uncertainty on ESP-

specific optimizations. The model has been coupled together with a reservoir model [43] (Paper 

F). 

Building upon this foundation, this master thesis aims to respect and acknowledge these 

achievements and addresses further challenges by introducing a steady-state optimization 

model coupled with a reservoir model for gas-lift systems. 
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3 Model description and development 

3.1 Model background 

This thesis builds upon and extends existing research on the performance of robust daily 

production optimization at the University of South-Eastern Norway. The developed model by 

Nima Janatian was a dynamic model for the gas-lifted system without coupling a reservoir 

model [45, 46, 47, 48]. Therefore, a dynamic reservoir model was developed and incorporated 

into the gas lift model. The gas lift model with reservoir coupling was simulated in this master 

study in steady state to study the well performances such as oil/water production rates, BHP, 

PI, water cut and cumulative profit for the production process. The developed model was used 

to optimize the oil and gas production from a gas injected reservoir. The fundamental principles 

used in this work are similar as those used in the other gas-lift modeling studies, however some 

modifications have been done to enhance modeling accuracy and investigate specific research 

questions. The major modifications in the developed model are: 

• Dynamic reservoir pressure: A significant departure from Nima et al. models is the 

incorporation of dynamic reservoir pressure. This model reflects the real-world 

behavior of reservoirs, where pressure changes during the production process. 

• Multiphase reservoir: The reservoir model realistically incorporates a multiphase 

mixture of crude oil, water, and gas, reflecting the complexity of production wells. 

• Simplified gas distribution: The model represents the lift gas supply system with a 

focus on the mass flow rate of injected lift gas into the annulus as the primary control 

input. This streamlines the simulation compared to comprehensive gas distribution 

network modeling. 

Assumptions: The following simplifying assumptions have been made for this study. These 

assumptions are consistent with the established practices in the gas-lift optimization researches 

[22, 43]: 

• Constant liquid density 

• Negligible frictional pressure losses within pipes 

• Constant fluid temperatures 

• Homogeneous multiphase fluid distribution within the tubing 

• Absence of flashing phenomena 

A significant contribution of this work is the development of a tailored well-reservoir model to 

simulate the gas lift injection into the oil and gas reservoir. The model incorporates dynamic 

reservoir pressure, providing a more rigorous and realistic representation of the oil production 

process compared steady-state models available in literature.  
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3.2 Governing equations 

The gas-lifted oil field comprises of three oil wells interconnected by a shared gas distribution 

pipeline and a common gathering manifold. Each well, denoted by the superscript "i," is 

characterized by three primary states: the mass of lift gas in the annulus 𝑚𝑔𝑎
𝑖 , the mass of the 

gas phase in the tubing above the injection point 𝑚𝑔𝑡
𝑖 , and the mass of the liquid phase (a 

mixture of oil and water) in the tubing above the injection point 𝑚𝑙𝑡
𝑖 . These states are governed 

by differential equations derived from the law of mass balance: 

�̇�𝑔𝑎
𝑖 = 𝑤𝑔𝑎

𝑖 − 𝑤𝑔𝑖𝑛𝑗
𝑖  (1) 

�̇�𝑔𝑡
𝑖 = 𝑤𝑔𝑖𝑛𝑗

𝑖 + 𝑤𝑔𝑟
𝑖 − 𝑤𝑔𝑝

𝑖  (2) 

�̇�𝑙𝑡
𝑖 = 𝑤𝑙𝑟

𝑖 − 𝑤𝑙𝑝
𝑖  (3) 

Where, 𝑤𝑔𝑎
𝑖  is the mass flow rate of injected lift gas into each well from the gas lift choke valve 

(the system input), 𝑤𝑔𝑖𝑛𝑗
𝑖  is the mass flow rate of gas injection from the annulus into the tubing, 

𝑤𝑔𝑝
𝑖  and 𝑤𝑙𝑝

𝑖  is the mass flow rates of produced gas and liquid phase fluid from the production 

choke valve respectively. Further, 𝑤𝑔𝑟
𝑖  is the gas mass flow rate from the reservoir into the well, 

𝑤𝑙𝑟
𝑖  is the liquid flow rate from the reservoir into the well, 𝑤𝑜𝑟

𝑖  is the oil flow rate from the 

reservoir into the well,  𝑤𝑔𝑙𝑝
𝑖  represents the total mass flow rate of all phases from the 

production choke valve, and 𝑤𝑜𝑝
𝑖  is the oil compartment of 𝑤𝑙𝑝

𝑖 . 

The flow equations are defined as: 

𝑤𝑔𝑖𝑛𝑗
𝑖 = 𝑘𝑖𝑦2

𝑖 √𝜌𝑔𝑎
𝑖 max (𝑝𝑎𝑖𝑛𝑗

𝑖 − 𝑝𝑡𝑖𝑛𝑗
𝑖 , 0)  (4) 

𝑤𝑔𝑝
𝑖 =

𝑚𝑔𝑡
𝑖

𝑚𝑔𝑡
𝑖 + 𝑚𝑙𝑡

𝑖
𝑤𝑔𝑙𝑝

𝑖  (5) 

𝑤𝑙𝑝
𝑖 =

𝑚𝑙𝑡
𝑖

𝑚𝑔𝑡
𝑖 + 𝑚𝑙𝑡

𝑖
𝑤𝑔𝑙𝑝

𝑖  (6) 

𝑤𝑙𝑟
𝑖 = 𝑃𝐼𝑖max (𝑝𝑟 − 𝑝𝑤𝑓

𝑖 ) (7) 

𝑤𝑜𝑟
𝑖 =

𝜌0

𝜌𝑤
(1 −  𝑊𝐶𝑖)𝑤𝑙𝑟

𝑖  (8) 
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𝑤𝑔𝑟
𝑖 = 𝐺𝑂𝑅𝑖𝑤𝑜𝑟

𝑖  (9) 

𝑤𝑔𝑙𝑝
𝑖 = 𝑐𝑣𝑦3

𝑖 √𝜌𝑚
𝑖 max (𝑝𝑤ℎ

𝑖 − 𝑝𝑠, 0)  (10) 

𝑤𝑜𝑝
𝑖 =

𝜌0

𝜌𝑤
(1 −  𝑊𝐶𝑖)𝑤𝑙𝑝

𝑖  (11) 

The different pressures are calculated as: 

𝑃𝑎
𝑖 =  

𝑧𝑚𝑔𝑎
𝑖 𝑅𝑇𝑎

𝑖

𝑀𝐴𝑎
𝑖 𝐿𝑎_𝑡𝑙

 (12) 

𝑃𝑎𝑖𝑛𝑗
𝑖 = 𝑃𝑎

𝑖 +  
𝑚𝑔𝑎

𝑖

𝐴𝑎
𝑖 𝐿𝑎_𝑡𝑙

𝑖
 𝑔𝐿𝑎_𝑣𝑙

𝑖  (13) 

𝑃𝑡𝑖𝑛𝑗
𝑖 =

𝑧𝑚𝑔𝑡
𝑖 𝑅𝑇𝑡

𝑖

𝑀𝑉𝐺
𝑖

+  
𝜌𝑚

𝑖 𝑔𝐿𝑡_𝑣𝑙
𝑖

2
 (14) 

𝑃𝑤ℎ
𝑖 =

𝑧𝑚𝑔𝑡
𝑖 𝑅𝑇𝑡

𝑖

𝑀𝑉𝐺
𝑖

−  
𝜌𝑚

𝑖 𝑔𝐿𝑡_𝑣𝑙
𝑖

2
 (15) 

𝑃𝑏ℎ
𝑖 = 𝑃𝑡𝑖𝑛𝑗

𝑖 + 𝜌𝑙
𝑖𝑔𝐿𝑟_𝑣𝑙

𝑖  (16) 

Where, 𝑃𝑎
𝑖 is the pressure of lift gas in the annulus downstream the gas lift choke valve, 𝑃𝑎𝑖𝑛𝑗

𝑖  

is the pressure upstream of the gas injection valve in the annulus, 𝑃𝑡𝑖𝑛𝑗
𝑖  denotes the pressure 

downstream of the gas injection valve in the tubing, 𝑃𝑤ℎ
𝑖  and 𝑃𝑏ℎ

𝑖  represent the wellhead and 

bottom hole pressure respectively. 

The expression for densities and the algebraic variables are given by: 

𝜌𝑔𝑎
𝑖 =

𝑀(𝑃𝑎
𝑖 + 𝑃𝑎𝑖𝑛𝑗

𝑖 )

2𝑧𝑅𝑇𝑎
𝑖

 (17) 

𝜌𝑙
𝑖 = 𝜌𝑤𝑊𝐶𝑖 + 𝜌0(1 − 𝑊𝐶𝑖) (18) 
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𝜌𝑚
𝑖 =

𝑚𝑔𝑡
𝑖 + 𝑚𝑙𝑡

𝑖

𝐴𝑡
𝑖 𝐿𝑡_𝑡𝑙

𝑖
 (19) 

𝑌2
𝑖 = 1 − 𝛼𝑦

𝑃𝑎𝑖𝑛𝑗
𝑖 − 𝑃𝑡𝑖𝑛𝑗

𝑖

max (𝑃𝑎𝑖𝑛𝑗
𝑖 , 𝑃𝑎𝑖𝑛𝑗

𝑚𝑖𝑛) 
 (20) 

𝑌3
𝑖 = 1 − 𝛼𝑦

𝑃𝑤ℎ
𝑖 − 𝑃𝑠

max (𝑃𝑤ℎ
𝑖 , 𝑃𝑤ℎ

𝑚𝑖𝑛) 
 (21) 

𝑉𝐺
𝑖 = 𝐴𝑡

𝑖 𝐿𝑡_𝑡𝑙 
𝑖 −

𝑚𝑙𝑡
𝑖

𝜌𝑙
𝑖

 (22) 

Where 𝜌𝑔𝑎
𝑖  is the average gas density in the annulus, 𝜌𝑙

𝑖 is the liquid phase density (oil and 

water), 𝜌𝑚
𝑖  is the average density of the multi-phase mixture in the tubing above the injection 

point, 𝑌2
𝑖 and 𝑌3

𝑖 are gas expandability factors for the gas passing through the gas injection valve 

and production choke valve, respectively. 𝑉𝐺
𝑖  symbolizes the gas volume in the tubing above 

the gas injection point, while 𝑐𝑣 denotes the production choke valve characteristics. 

The steady-state behavior of the developed model is achieved by equating the right-hand side 

of differential equations 1, 2, and 3 to zero. 

𝑤𝑔𝑎
𝑖 − 𝑤𝑔𝑖𝑛𝑗

𝑖 = 0 (23) 

𝑤𝑔𝑖𝑛𝑗
𝑖 + 𝑤𝑔

𝑖 − 𝑤𝑔𝑝
𝑖 = 0 (24) 

𝑤𝑙𝑟
𝑖 − 𝑤𝑙𝑝

𝑖 = 0 (25) 

The model can be represented by a system of algebraic equations, which can be expressed as: 

𝐅(𝑥, 𝑢, 𝜃) = 0 (26) 

In this representation, 𝑥 ∈  ℝ3𝑛𝑤 represents the algebraic variables, 𝑢 ∈  ℝ1𝑛𝑤 represents the 

system inputs, and 𝜃 ∈  ℝ3𝑛𝑤  represents the uncertain parameters of the process. The variable 

𝑛𝑤 denotes the number of wells, and bold typeface indicates that the variable encompasses all 

wells. 

𝑥 = [𝑚𝑔𝑎   𝑚𝑔𝑡   𝑚𝑙𝑡]
𝑇
 (27) 
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𝑢 = [𝑤𝑔𝑎]
𝑇
 (28) 

𝜃 = [𝑃𝑟     𝑃𝐼    𝑊𝐶]𝑇 (29) 

3.3 Non-Linear Model Predictive Control 

Nonlinear Model Predictive Control (NMPC) is a powerful optimization technique well-suited 

for controlling complex, dynamic systems with nonlinearities, such as gas-lifted oil reservoirs 

[49]. NMPC key features include: 

• Model-based predictions: NMPC utilizes a mathematical model of the reservoir to 

predict its future behavior over a finite time horizon. This model captures the nonlinear 

dynamics characteristics in the gas-lifted production process. 

• Receding horizon: At each time step, NMPC solves an optimization problem over a 

prediction horizon which is a several time steps into the future. NMPC determines the 

optimal sequence of control actions (e.g., gas injection rates) that maximize a desired 

objective (e.g., oil production) while respecting system constraints (e.g., maximum gas 

availability). However, only the first control action in this calculated sequence is 

implemented. The process repeats at the next time step. 

• Feedback mechanism: The receding horizon and the use of current reservoir state 

information introduce a feedback mechanism. This allows NMPC to adapt the changes 

in the system or disturbances and correct for deviations from the predicted trajectories 

[50]. 

3.3.1 NMPC implementation in gas-lifted optimization 

This study is based on the NMPC for a gas lifted oil production process. This includes: 

1. Problem formulation: At each time step, the NMPC optimization problem is defined 

as the following three steps: 

o Objective function: This quantifies the desired goal by maximizing oil 

production or economic profit, considering gas costs and separation costs. 

o Constraints: This reflects operational limits like maximum gas injection rate, 

wellbore pressure limits, and total gas availability. 

o Decision variables: The gas lift injection rates for each well. 

2. Model-based optimization: The NMPC solver uses the reservoir model and current 

state information to calculate the optimal control actions over the prediction horizon 

that maximize the objective function while adhering to the constraints. 

3. Implementation and recalculation: Only the first control action from the calculated 

optimal sequence is applied to the real reservoir. The reservoir's new state is then 

measured or updated in the model. Subsequently, at the next time step, the whole 

NMPC process is repeated with this updated information. 
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3.3.2 Advantages of NMPC for gas-lift optimization 

• Handles complex dynamics: NMPC effectively manages the nonlinear relationship 

between gas lift injection, reservoir pressure, and production rates. 

• Explicit constraint handling: NMPC ensures that operational limits and safety 

constraints are respected, which are crucial for the safe and practical operation of a gas-

lifted oil field. 

• Adaptability: The feedback mechanism within NMPC makes it responsive to changing 

reservoir conditions and potential disturbances. 

3.4 Standard DPO setup 

This section presents standard optimization for a gas-lift system using a steady-state model 

over a finite prediction horizon. The plant is assumed to operate in a piecewise steady-state 

manner throughout the prediction horizon. The primary objective is to adjust the gas injection 

rates into the wells to optimize fluid production while considering operational constraints. The 

standard DPO approach is illustrated in Figure 3-1. The dynamic variables such as reservoir 

pressure, water cut, and productivity index are calculated at each sampling time. The true value 

of these variables is unknown to the controller however, these true values are calculated by 

adding a certain deviation to their actual values.  

 

Figure 3-1: Block diagram of the coupled reservoir model with the DPO 
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The economic objective function includes the total income from selling the produced oil, while 

minimizing the costs associated with acquiring and injecting gas, and the operating costs 

associated with the separator. 

Hence, the objective function over the prediction horizon 𝒦 = {1, ..., Np} with the length Np 

is given by: 

𝐽𝑒𝑐𝑜 = ∑(−𝑐𝑜 ∑ 𝑞𝑜
𝑖,𝑘

𝑛𝑤

𝑖=1

+ 𝑐𝑠𝑒𝑝 ∑ 𝑞𝑤
𝑖,𝑘

𝑛𝑤

𝑖=1

+ 𝑐𝑔𝑎𝑠 ∑ 𝑤𝑔
𝑖,𝑘

𝑛𝑤

𝑖=1

)

𝑁𝑝

𝑘=1

 
(30) 

Where 𝑐𝑜, 𝑐𝑠𝑒𝑝, and 𝑐𝑔𝑎𝑠 represents the cost of oil, the cost of the separator, and the cost of gas 

injection respectively. Also, 𝑞𝑜
𝑖,𝑘

, 𝑞𝑤
𝑖,𝑘 𝑎𝑛𝑑 𝑤𝑔

𝑖,𝑘
 represent the oil, water flow rates, and gas 

injection, from the well 𝑖 at time step 𝑘. 

The most important operational constraints are the separator capacity, gas-lift system limits, 

and well pressures. In particular, the total produced fluid should not exceed the separator 

capacity. Additionally, the gas injection rates must be maintained within a feasible range, and 

the bottom hole and wellhead pressures must stay within safe operational limits. 

The optimal control problem formulation over the prediction horizon of the system is given by: 

𝑚𝑖𝑛  
𝑥,𝑢

𝐽𝑒co(𝑥, 𝑢, 𝜃) (31) 

𝑠. 𝑡 𝐹(𝑥𝑘 , 𝑢𝑘 , 𝜃𝑘)  =  0                                         ∀k ∈  𝒦 (32) 

∑ 𝑞𝑡
𝑖,𝑘

𝑛𝑤

𝑖=1

 ≤ 𝑄𝑠𝑒𝑝,                                                     ∀k ∈  𝒦 (33) 

𝑤𝑔𝑎𝑚𝑖𝑛

𝑖,𝑘  ≤ 𝑤𝑔𝑎
𝑖,𝑘 ≤ 𝑤𝑔𝑎𝑚𝑎𝑥

𝑖,𝑘                                     ∀k ∈  𝒦 (34) 

𝑃𝑏ℎ
𝑚𝑖𝑛  ≤ 𝑃𝑏ℎ

𝑖,𝑘  ≤ 𝑃𝑏ℎ
𝑚𝑎𝑥                                            ∀k ∈  𝒦 (35) 

𝑃𝑤ℎ
𝑚𝑖𝑛  ≤ 𝑃𝑤ℎ

𝑖,𝑘  ≤ 𝑃𝑤ℎ
𝑚𝑎𝑥                                            ∀k ∈  𝒦 (36) 

In the context of steady-state DPO for gas-lifted wells, the equality constraint in Equation 32 

represents the requirement for the system to maintain a balanced state at each segment of the 

prediction horizon. This ensures that the production rates, pressures, and other relevant 

variables are consistent with the steady-state model. The constraint on the total produced fluid 
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(oil and water) is enforced in Equation 33, where 𝑄𝑠𝑒𝑝 represents the maximum handling 

capacity of the separator. This ensures the physical limitations of the surface facilities are 

satisfied. 

The safe operation of the gas-lift system is maintained within the allowable operating range 

( 𝑤𝑔𝑎𝑚𝑖𝑛

𝑖,𝑘
 to 𝑤𝑔𝑎𝑚𝑎𝑥

𝑖,𝑘
) of the gas lift rate. This range is determined by operational considerations 

and limitations of the gas-lift system. This limit is crucial to avoid excessive gas injection, 

which could lead to increased friction and reduced oil production. The lower and upper bounds 

on bottom hole pressure and wellhead pressure are implemented in Equation 35 and 36 

respectively. These constraints ensure that the pressures within the well remain within safe 

operating limits, safeguarding the well's integrity and operation. 

The optimization problem is solved in a receding horizon strategy. This means that at each time 

step, the optimization algorithm determines the optimal gas injection rates over the entire 

prediction horizon, but only the first control action is implemented. At the next time step, the 

model is updated with new information, and the optimization problem is solved again. This 

iterative process allows the system to adapt to changing reservoir conditions and uncertainties. 

Productivity index, reservoir pressure and water cut are treated as uncertain parameters for this 

study. This reflects the inherent uncertainties present in real-world oil fields. The optimization 

algorithm must take these uncertainties into account to ensure that the calculated gas lift rates 

remain robust and effective even under varying conditions. 

3.5 Reservoir models 

Two different reservoir models were used in this study. A brief description of these models is 

presented here. 

3.5.1 Egg case model 

This model presents a customized synthetic reservoir model drawing similar concept as that of 

"Egg model" [51]. The Egg case model simulates a channelized oil reservoir undergoing 

waterflooding. The model emphasizes the dynamic pressure evolution, multi-phase fluid 

behavior, and a realistic well configuration designed for optimization studies. The key feature 

of this model includes: 

• Channelized structure: The reservoir model exhibits distinct high-permeability 

channels within a lower-permeability background, resembling fluvial depositional 

environments. 

• Dynamic pressure: Reservoir pressure changes throughout the simulation, due to 

continuous fluid production and injection operations. 

• Multi-Phase flow: The model simulates the flow of multiple fluid phases (oil, water, 

and potentially gas). The basic mass and energy balances govern the fluid properties 

and their interactions. 

• Well configuration: The reservoir incorporates a network of four production and eight 

injection wells. This study focuses on three production wells as shown in the Figure 

3-2. 
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• Geological uncertainty: This model includes subsurface geological parameters such 

as reservoir pressure, productivity index, and water cut. 

 

Figure 3-2: The egg case reservoir model modified with eight injectors and three producer wells 

The existing Egg case model is modified for this study, and the modification are presented 

below:  

• Production optimization focus: Well controls have been modified to prioritize total 

fluid production rates, which are directly determined by the optimization algorithm. 

• Realistic compressibility: The model employs a slightly compressible oil phase 

(compressibility of 0.001) to better represent real-world reservoir behavior. 

• Injection strategy: Waterflooding is the primary production mechanism. Injection 

rates are scaled to 505 m3/d aligning with operational considerations and optimization 

goals. 

• Operational constraints: The model operates within the potential constraints such as 

limits on injection pressure, maximum water cut, etc.  

3.5.2 SPE9 model 

This model is based on the SPE9 benchmark model available on MRST in MATLAB. The key 

characteristic of this model is presented here: 

• Heterogeneous reservoir: A highly heterogeneous reservoir with anisotropic 

permeability (10x lower vertical permeability) is considered for this model. 

Waterflooding is the production mechanism in this model. 

• Well configuration: The model incorporates three production wells for this study as 

shown in Figure 3-3. 

• Three-phase flow: The black-oil model simulates the flow of oil, water, and gas 

phases. 



Model description and development 

29 

• Dynamic behavior: The model captures the evolution of free gas as reservoir pressure 

falls below the bubble point, influencing relative permeabilities and fluid behavior. 

• Operational schedule: Production wells undergo distinct control changes, 

transitioning from constant oil rate to pressure-limited modes during the simulation. 

 

Figure 3-3: The SPE9 reservoir model with 3 producer wells 

3.5.3 Simulation setup 

The optimization for the simulation models was performed in CasADi v.3.6.4 in MATLAB 

R2023a. For reservoir simulation, MATLAB Reservoir Simulation Toolbox (MRST) was used. 

The IPOPT v3.14.1 solver has been used to solve the optimization problem on a 2.0 GHz 

processor laptop with 8 GB memory.  

Table 1 provides detailed parameter values for the simulated wells.  Table 2  provides the oil 

price and the costs related to separator and costs of gas. These cost parameters were used as a 

basis for the calculation in Equation 30. 

Table 1: List of the parameters and their corresponding values 

Parameters Values  units 

𝐿𝑎_𝑡𝑙  , 𝐿𝑡_𝑡𝑙  2758 [m] 

𝐿𝑎_𝑣𝑙   , 𝐿𝑡_𝑣𝑙 2271 [m] 

𝐿𝑟_𝑣𝑙 114 [m] 

𝐴𝑡 0.0194 [m2] 

𝐴𝑎 0.0174 [m2] 

K 68.43 
[ 

√𝑘𝑔∗𝑚3

𝑏𝑎𝑟

ℎ𝑟
 ]   
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𝑇𝑎  , 𝑇𝑡 280 [K] 

Z 1.3 [-] 

𝜌𝑤 1000 [kg/m3] 

𝜌𝑜 800 [kg/m3] 

M 0.020 [kg/mol] 

𝛼𝑌 0.66 [-] 

𝑝𝑠 30 [bar] 

R 8.32 [J/K/mol] 

GOR 0.08 [kg/kg] 

 

Table 2: Price of oil, separator, and gas 

Price Value unit 

𝑐𝑜 126 [$/m3] 

𝑐𝑠𝑒𝑝 20 [$/m3] 

𝑐𝑔𝑎𝑠 2 [$/kg] 

 

3.5.4 Simulated cases 

The following six models were created to simulate the oil production rates, water production 

rates, bottom hole pressure, productivity index, water cut and cumulative profit. The list of 

different cases is presented below: 
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4 Results and discussion 
This chapter presents a comprehensive analysis of the simulation results obtained from two 

distinct gas-lifted reservoir models, i.e., Egg Case and SPE9 model. Daily production 

optimization was performed to investigate the impact of varying simulation steps, prediction 

horizons, and optimization strategies on model behavior. The models were used to investigate 

the well performances such as oil/water production rates, BHP, PI, water cut and cumulative 

profit for the production process. 

4.1 Egg case model results 

This section focuses on the results obtained from applying the gas-lift optimization model to a 

modified version of the egg reservoir as described in the sub-chapter 3.5.1. The results 

presented here are from three production wells as shown in the Figure 3-2. 

4.1.1 Case I: Short simulation timestep with a 180 steps per year 

The original Egg model consists of four production wells; however, this study focused on three 

producer wells. These producer wells are named as PROD1, PROD2 and PROD3 as shown in 

the Figure 3-2. Simulations were performed for 365 days of production with a timestep of 

approx. two days (180 steps per year). This simulation setup aimed to assess the model's 

sensitivity with respect to total liquid (oil and water) production rate from the reservoir. 

Figure 4-1 shows the oil production rate for each well. As depicted in the figure, pronounced 

oscillations are observed in the oil production rate during the initial 50 days. The observed 

fluctuations could be due to the relatively coarse simulation time step taken for this model. 

Higher timesteps struggle to capture the rapid pressure-driven changes occurring in the 

reservoir's high-permeability areas. The magnitude of oscillations varied between the different 

producers, with PROD3 exhibiting the most pronounced fluctuations. The higher oscillations 

in PROD3 are likely due to its specific well location and surrounding reservoir properties.  
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Figure 4-1: Oil production rate for each well in Egg model with 180 simulation steps per year 

As the simulation progressed beyond 200 days, the oil production rate gradually stabilized. 

This suggests that the reservoir pressure dynamics become less volatile over time as the system 

approaches a near steady state condition. However, the initial highly transient behavior 

highlights the importance of choosing an appropriate time step to accurately capture the full 

range of the reservoir dynamics. 

Figure 4-2 shows water production rates for PROD1, PROD2 and PROD3 producer wells. The 

water production rates exhibited an inverse relationship with the oil production rates. This 

result is consistent with the expected behavior in a waterflooding production scenario.  

 

Figure 4-2: Water production rate for each well in Egg model with 180 simulation steps per year 

Figure 4-3 shows a total liquid production rate from the separator. The total liquid production 

is dominated by oil production rate as compared to water production rate. Further, there is a 

gradual decline in oil production rate, however, water production rate is dynamic with 

production horizon. There is an increase in water production rate after the water breakthrough 
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and the total water production rate gets decreased after around 50 days of production. Further, 

the water production rate increased after around 250 days of production. This result emphasizes 

the ongoing challenge of balancing oil recovery with water breakthrough in waterflooding 

operations. The oil production rate is 70.84% as that of total liquid production after 100 days 

of production. This ratio of oil production rate decreases with predicted horizon and reaches 

46.78% as that of total liquid production after 365 days of production. 

 

Figure 4-3: Total oil, water, and liquid production rates from the separator with 180 simulation steps per year 

4.1.2 Case II: Refined simulation time step with no control 

Simulations time step was reduced to 12 hours for further simulations to improve the resolution 

of transient behavior and mitigate the oscillations as observed in the sub-chapter 4.1.1. The 

refined model was used to investigate the well performances such as oil/water production rates, 

BHP, PI, water cut and cumulative profit for different optimization scenarios and prediction 

horizons. Simulations have been performed for 365 days of production. A constant gas lift rate 

of 4 kg/day is supplied into the reservoir. Figure 4-4 shows the oil production rates for the 

PROD1, PROD2 and PROD3 producer wells. As expected, this reduced time step successfully 

mitigated the initial oscillations as seen previously in Case I. Oil production rate gradually 

reaches a steady state approximately after 200 days of production, similar to that of Case I. 
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Figure 4-4: Oil production rate for each well in Egg model with no control with a 12-hour time step 

Figure 4-5 provides insights into individual well performance metrics such as oil rates, water 

rates, BHP, productivity index, water cut and cumulative profit. As depicted in the figure, 

PROD3 has the highest oil production rates whereas PROD2 has the lowest oil production rate. 

Further, water production from PROD1 is highest and that of PROD3 is lowest. This suggests 

that the reservoir is heterogeneous and the surrounding reservoir properties affected the oil and 

water production rates. Bottom hole pressure for PROD2 is observed close to the set pressure 

of 60 bar whereas for PROD1 the bottom hole pressure is slightly higher than the set pressure. 

PROD3 shows a slight deviation in BHP initially and comes back to around set pressure after 

around 200 days of production. 

 

Figure 4-5: Individual well performance (oil/water rates, BHP, PI, water cut) and cumulative profit for Egg 

model with no control with a 12-hour time step 
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The higher the productivity index, the higher will be the oil production rate. This can be 

observed in the Figure 4-5. The lower oil production rate form PROD2 is due to the lowest PI 

for PROD2 as shown on this figure. Similarly, the higher the water cut, the higher would be 

the water production rate from the reservoir. For example, PROD1 has the highest water 

production rate due to its higher water cut. The cumulative profit for this model increases with 

an increase in production days. Initially the cumulative profit increased exponentially and 

increased gradually after around 200 days of production. 

Figure 4-6 presents the total fluid production rates from the separator. The oil production rate 

reaches 1680.79 m3/day by day 365. The oil production rate decreases with increasing 

production days; however, the total water production rate increases initially and then decreases 

significantly. The water production increases again after around 250 days of production. The 

total liquid production rate decreases with increase in the production days. The ratio of oil and 

water production rate is similar to that of Case I. 

 

Figure 4-6: Total oil, water, and liquid production rates from the separator for Egg model with no control with a 

12-hour time step 

4.1.3 Case III: Refined simulation time step with an optimized DPO 

A standard DPO algorithm is implemented in this case. The DPO algorithm dynamically 

adjusts gas lift rates for each well which leads to a significant increase in oil production. The 

results from the simulation for case III are presented in this sub-chapter. Simulations were 

performed for 365-day prediction horizon. Figure 4-7 shows the oil production rate from 

PROD1, PROD2 and PROD3 wells with a simulation time steps of 12 hours. 
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Figure 4-7: Oil production rate for each well in Egg model with optimized DPO with a 12-hour time step 

As observed in previous simulations, the oil production from PROD3 has the higher oil 

production rate whereas PROD2 has the lower oil production rate. The oil production rate gets 

decreased gradually up to around 200 days of production and reaches a near steady state after 

200 days of production. 

Figure 4-8 shows the individual well performance metrics such as oil rates, water rates, BHP, 

productivity index, water cut and cumulative profit. The oil and water production rates as well 

as PI and water show a similar behavior as that of Case II. As the gas lift rate is dynamically 

adjusted by the model, the bottom hole pressure is comparatively closer to the set pressure. 

 

Figure 4-8: Individual well performance (oil/water rates, BHP, PI, water cut) and cumulative profit for Egg 

model with optimized DPO with a 12-hour time step 



Results and discussion 

37 

The cumulative profit increased by around 4% as compared to that of Case II. These findings 

highlight the effectiveness of DPO in enhancing both production and profitability in the gas-

lift scenario. 

Figure 4-9 shows the total liquid production rate from all the producers, i.e., PROD1, PROD2 

and PROD3. The oil production rate reached 1782.08 m3/day on day 365, marking a substantial 

improvement in oil production rate as compared to Case II with no control.  

 

Figure 4-9: Total oil, water, and liquid production rates from the separator for Egg model with optimized DPO 

with a 12-hour time step 

 

4.2 The SPE9 model results 

This sub-chapter presents results obtained for the SPE9 reservoir model with a gas lifted 

production process. The results presented here are from three production wells, namely 

PROD1, PROD2 and PROD3.  

4.2.1 Case IV: Refined simulation time step with no control 

The performance of the gas-lifted systems was evaluated over a 365-day period with time step 

of 12 hours for this case. Figure 4-10 shows the oil production rate for each well in SPE9 model 

with no control. A gas constant lift rate of 1 kg/day for each well was used for this study. The 

oil production rate is highest from PROD2 and lowest from PROD3. The oil production rate 

reaches a steady state after around 150 days of production. This suggests that this model reaches 

a steady state earlier as compared to Egg case models. 
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Figure 4-10: Oil production rate for each well in the SPE9 model with no control 

Figure 4-11 provides a detailed performance characteristics for the individual well such as oil 

production rate, water production rate, bottom hole pressure, productivity index, water cut and 

cumulative profit. Oil production rate is higher for PROD2 due to its higher PI. Similarly, the 

oil production rate for PROD3 is lower due to its lower productivity index. The higher the 

water cut, the higher would be the water production rate which can be observed for PROD26. 

The water cut for PROD1 is near to zero which led to nearly zero water production rate from 

this producer. 

 

Figure 4-11: Individual well performance (oil/water rates, BHP, PI, water cut) and cumulative profit in the SPE9 

model with no control 

Bottom hole pressure for PROD1 is observed close to the set pressure of 30 bar whereas for 

PROD2 and PROD3 the bottom hole pressure is slightly higher than the set pressure. The initial 
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fluctuations in bottom-hole pressure gets stabilized after around 10 days prediction horizon. 

The cumulative profit increased linearly as compared to exponential growth for Egg case 

models. This suggests that the constant gas lift rate might not be optimal for maintaining the 

reservoir pressure and maximizing production for this reservoir model. 

Figure 4-12 shows the total oil production rate of 489.824 m3/day from the separator after 365 

days of production. Oil production decreased with the start of production. Water production 

decreased initially and then increased continuously. However, water production is 

comparatively lower than oil production. Water production accounts for 14.34% after 365 days 

of production. 

 

Figure 4-12: Total oil, water, and liquid production rates from the separator for the SPE9 model with no control 

4.2.2 Case V: Refined simulation time step with an optimized DPO 

Further, a DPO algorithm was implemented in the SPE9 model to study the well performance. 

The DPO algorithm dynamically adjusts the gas lift rate for each well. Simulations were 

performed for 365 days prediction horizons with 12 hours time step. Figure 4-13 shows the oil 

production rate for PROD1, PROD2 and PROD3 wells. Production form the PROD2 is 

comparatively higher than that of PROD1 and PROD3 wells. The oil production gets decreased 

initially and reaches saturation after around 150 days of production. The higher production rate 

from PROD2 is likely due to its specific well location and surrounding reservoir properties. 
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Figure 4-13: Oil production rate for each well in the SPE9 model with optimized DPO 

Figure 4-14 illustrates the individual well performance metrics such as oil rates, water rates, 

bottom hole pressure, productivity index, water cut and cumulative profit. The results show 

similar characteristics as that of non-optimized model for the oil and water production profiles. 

However, due to the dynamic adjustment of gas lift rate for the individual well led to an increase 

in cumulative profit of 3% as that of Case IV. The dynamic adjustment of gas lift rates was 

able to better manage the reservoir pressure as illustrated by the bottom hole pressure plot. The 

dynamic gas lift into the reservoir exploited the reservoir heterogeneity leading to improved 

overall production and profitability for this model. 

 

Figure 4-14: Individual well performance (oil/water rates, BHP, PI, water cut) and cumulative profit in the SPE9 

model with optimized DPO 
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Figure 4-15 shows the total liquid production rates from the separator. This graph shows a 

notable increase in oil production, reaching 495.46 m3/day on day 365. This oil production rate 

is approximately 1.1% higher than that of Case IV with no control highlighting the potential 

benefits of optimization in the SPE9 reservoir model. The ratio of oil to water production rate 

for this model is 5.85 as there is no water flooding into the reservoir. 

 

Figure 4-15: Total oil, water, and liquid production rates from the separator for the SPE9 model with optimized 

DPO 

4.2.3 Case VI: Refined simulation time step with an optimized DPO (1000 Days) 

A simulation with a longer prediction horizon was performed to investigate the long-term 

effects of the DPO strategy for the SPE9 reservoir model. This gives an overview of production 

performances for each well for a period of 1000 days. Simulation time step was taken as 12 

hours for this simulation case. This model was chosen for the 1000-day prediction horizon due 

to its lower water cut in the reservoir as compared to the Egg case model. 

Figure 4-16 shows the oil production rate for all three wells for the SPE9 reservoir model. The 

oil production decreased initially and stabilized after around 300 days for all the wells. This 

stabilization suggests that the DPO algorithm successfully maintained the reservoir pressure 

and fluid flow within a favorable regime for production.  
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Figure 4-16: Oil production rate for each well in the SPE9 model with optimized DPO 

Figure 4-17 shows the individual well performance metrics such as oil production rate, water 

production rate, BHP, productivity index, water cut and cumulative profit for optimized gas lift 

rate. The gas lift rate gets stabilized after around 200 days of production. The cumulative profit 

increased linearly for this model as the oil production rate is relatively constant throughout the 

prediction horizon. The bottom hole pressure remained steady throughout the prediction 

horizon except in the beginning for this case. 

 

Figure 4-17: Individual well performance (oil/water rates, BHP, PI, water cut) and cumulative profit in the SPE9 

model with optimized DPO 

Figure 4-18 depicts the total liquid production rates from the separator.  The oil production rate 

reaches 422.52 m3/day by day 1000. The oil production rate decreases with increasing 

production days; however, the total water production rate increases significantly after around 

25 days of production. The water production rate as compared to oil production rate is around 
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26% after 1000 days of production. The total liquid production rate decreases with increase in 

the production days and gets almost stabilized after around 800 days of production. 

 

Figure 4-18: Total oil, water, and liquid production rates from the separator for the SPE9 model with optimized 

DPO 
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5 Conclusion and future work 

5.1 Conclusion 

This study investigated the application of gas-lift optimization strategies in two distinct 

reservoir models, i.e., "Egg model" and SPE9 model. A coupled well-reservoir model was 

developed, incorporating dynamic reservoir pressure and multi-phase flow dynamics to 

simulate realistic oil production scenarios. The study evaluated the impact of simulation steps, 

prediction horizons, and the use of a standard DPO algorithm on production outcomes. 

Individual well performance was calculated for three different wells for each of the reservoir 

models. The individual well performance included in this study were oil/water production rates, 

BHP, PI, water cut and cumulative profit. 

The analysis showed several key findings which are summarized below: 

1. Importance of simulation time step: Simulations with a coarse time step (180 steps 

per year) highlighted the importance of temporal resolution in accurately capturing 

transient reservoir dynamics. However, a refined time step of 12 hours mitigated 

oscillations in oil production, particularly in the early stages, and enabled a more precise 

representation of the reservoir model behavior. 

2. Effectiveness of DPO: The standard DPO algorithm demonstrated its effectiveness in 

both the Egg and SPE9 models by significantly increasing oil production and 

cumulative profit compared to the "no control" scenarios. This gave a significant 

potential of gas-lift optimization to enhance the economic viability of oil production 

operations. 

3. Reservoir model sensitivity: The gas-lift optimization strategies exhibited varying 

degrees of success in the two different reservoir models. The Egg model showed a more 

pronounced response to optimization, leading to a larger profit increase (4%) compared 

to the SPE9 model (3%). The egg model had relatively homogeneous channelized 

structure as compared to SPE9 model. This suggests that the effectiveness of gas-lift 

optimization may be influenced by the specific geological characteristics and 

heterogeneity of the reservoir. 

4. Profitability: The SPE9 model’s profitability is linear whereas for the Egg case model, 

the initial profitability is exponential and gets linearized after a certain day of 

production. This gave a clear overview of profitability based on the reservoir properties. 

5.2 Future work 

The insights gained from this study open other different scopes for future research which are 

listed below: 
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1. Advanced optimization algorithms: Further simulations can be performed with more 

advanced optimization algorithms, such as machine learning or reinforcement learning 

to further enhance production and profitability. 

2. Uncertainty quantification: These models can be further improved by quantifying the 

uncertainties associated with the reservoir parameters. This would improve the 

robustness and reliability of the optimization strategies. 

3. Field data validation: The developed models can be validated against the real field 

data. Then the validated models can be used to optimize their applicability and 

effectiveness in real-world oil and gas productions. 

4. Economic evaluation: A detailed comprehensive economic evaluation is needed to 

address the additional costs and factors, such as maintenance and operational expenses, 

to provide a more realistic assessment of the gas-lift optimization strategies. 

The findings of this study together with these future works would develop a more advanced, 

robust, and efficient gas-lift optimization models that can be applied in a wider range of oil 

production processes. 
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Appendices 

Appendix A: Thesis task description 
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Appendix B: Lists of symbols used in the model 

Table 3 and Table 4 give an overview of all the variable, parameters constants that are used in 

the model. 

Table 3: All the variables and parameters of the model are listed below. 

Symbol Type Description 

𝑚𝑔𝑎 State Mass of lift gas in the annulus 

𝑚𝑔𝑡 State Mass of gas in the tubing above the injection point 

𝑚𝑙𝑡 State Mass of liquid in the tubing above the injection point 

𝑤𝑔𝑎 Input Mass flow rate of gas injected into the annulus 

𝑤𝑔𝑖𝑛𝑗 Variable Mass flow rate of gas injected from the annulus into the tubing 

𝑤𝑔𝑟 Variable Mass flow rate of gas from the reservoir into the well 

𝑤𝑔𝑝 Variable Mass flow rate of gas phase through the production choke valve 

𝑤𝑙𝑟 Variable Mass flow rate of liquid from reservoir into the well 

𝑤𝑙𝑝 Variable Mass flow rate of liquid phase through the production choke valve 

𝑤𝑔𝑙𝑝 Variable Total mass flow rate through the production choke valve 

𝑃𝑎 Variable Pressure of gas in annulus downstream the gas lift choke valve 

𝑃𝑎𝑖𝑛𝑗 Variable Pressure upstream of the gas injection valve in the annulus 

𝑃𝑡𝑖𝑛𝑗 variable Pressure downstream of the gas injection valve in the tubing 

𝑃𝑏ℎ Variable Bottom hole pressure 

𝑃𝑤ℎ Variable Wellhead pressure 

𝜌𝑔𝑎 Variable Average density of gas in the annulus 

𝜌𝑚 Variable Density of multiphase mixture in the tubing above the injection point 

𝜌𝑙 Variable Average density of the liquid phase 

𝑉𝐺 Variable Volume of the gas in the tubing above the gas injection point 

𝑌2 Variable Gas expandability factor through the gas injection valve 



 

53 

𝑌3 Variable Gas expandability factor through the production choke valve 

 

Table 4: List of the parameters and constants 

Symbol Type Description 

PI Parameter Productivity index 

WC Parameter Water cut 

GOR Parameter Gas to oil ratio 

𝑝𝑟 Parameter Reservoir pressure 

𝑝𝑠 Parameter  Separator pressure 

𝑝𝑚 Parameter Gathering manifold pressure 

𝑇𝑎 Parameter Temperature in annulus 

𝑇𝑡 Parameter Temperature in tubing 

𝐴𝑎 Parameter Cross-section area of the annulus 

𝐴𝑡 Parameter Cross-section area of the tubing 

𝐿𝑎_𝑡𝑙 Parameter Total length of the annulus 

𝐿𝑎_𝑣𝑙 Parameter Vertical length of the annulus 

𝐿𝑡_𝑡𝑙 Parameter Total length of tubing above injection point 

𝐿𝑡_𝑣𝑙 parameter Vertical length of tubing above injection point 

𝐿𝑟_𝑣𝑙 Parameter Vertical length of tubing below injection point 

𝐶𝑣 Constant Valve opening characteristic 

K Constant Gas injection valve constant 

𝛼𝑌 Constant Constant 

M Constant Molar mass 

Z Constant Gas compressibility factor 

R Constant Universal gas constant 
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g Constant Gravity 

𝜌𝑤 Constant Density of water 

𝜌𝑜 Constant Density of oil 

 


