

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2024

Industrial IT and Automation - Industry Master

Development of configuration software for
a test rig of electrical systems

Krister Pedersen

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis, 2024

Title: Development of configuration software for a test rig of electrical systems

Number of pages: 104

Keywords: Software development, XML, Unified process

Student: Krister Pedersen

Supervisor: Nils-Olav Skeie, Co-supervisor: Leila Ben Saad

External partner: Ove Lehto Pedersen, Kongsberg Defence and Aerospace

Summary:

DSS Horten has an extensive test system designed to test and validate the products they

design and manufacture for use in space. This test procedure is largely managed by an

inhouse software called KNS-TS. KNS-TS relies on accurate XML files describing the

configuration of hardware in any active test setup. These XML files are currently created

and managed by hand. This thesis describes the work done in designing and

implementing a software that can create these XML files. The focus of the thesis is on

the complex relay matrices in use by anyone of these setups. The XML configuration

files should be creatable from a clean sheet, or from import. The import can be from

existing XML files or from design files with extension DXF. The software is developed

using the unified process, an iterative, risk driven and use case based methodology. The

software uses QT as a user interface library and is written in C++. The product must be

developed with focus on future expansion of additional modules. The future goal of the

software is to be able to create XML configuration files for several different modules.

To achieve this the software must be well structured and ensure low coupling.

The software created during the thesis is shown to implement all the functional

requirements given. The software has a structure that enables the development of future

extensions.

 Preface

3

Preface
I would like to thank Ove Letho Pedersen for the opportunity to work for you the last 3 years,

and the continued support during my master’s degree. I’ve gained valuable work experience

while being allowed to primarily focus on studies.

I would also like to thank my supervisors, Nils-Olav Skeie and Leila Ben Saad, for their interest in

my thesis. I appreciate the valuable contributions you’ve brought me weekly during this project, and

for the helpful feedback on my thesis.

Porsgrunn, 14.05.2024

Krister Pedersen

 Contents

4

Contents

1 Introduction ... 6

1.1 Background ... 6
1.2 Objective .. 6
1.3 Contribution .. 7
1.4 Report structure .. 7

2 System description ... 8

2.1 System environment... 8
2.2 System input ... 10
2.3 System output ... 10
2.4 System development .. 10

3 Literature review ... 12

3.1 XML history ... 12
3.2 XML format .. 12
3.3 XML usage ... 14
3.4 XML in DSS .. 14

4 Analysis, design, and implementation .. 15

4.1 System requirements ... 15
4.2 Use case analysis ... 16
4.3 Iterations .. 19

4.3.1 Iteration 1 ... 19
4.3.2 Iteration 2 ... 22
4.3.3 Iteration 3 ... 23
4.3.4 Iteration 4 ... 24

4.4 System architecture.. 26
4.5 Implementation ... 31

5 Results ... 36

5.1 Main window .. 36
5.2 Manual input .. 37
5.3 Export XML .. 39
5.4 Import XML files .. 43
5.5 Import dxf files .. 45
5.6 Testing ... 48

6 Future development .. 50

6.1 Implementing epc configuration ... 50

7 Discussion ... 52

8 Conclusion .. 53

8.1 Possible improvements ... 53

 Nomenclature

5

Nomenclature
DSS - Division for space and Surveillance. The customer of the project.

DUT - Device under testing. Common word used for describing the product being tested.

EPC - Electronic power control. A special type of jig used in the test system at DSS.

Grasp - General Responsibility Assignment Software Patterns.

(G)UI - (Graphical) user interface

HTML - HyperText Markup Language. Format used for visual presentation.

KDA - Kongsberg Defence and Aerospace. The customer company.

KNS-TS - Kongsberg NorSpace Test System. The automation software used for testing at

DSS.

QT - Graphical user interface library used in the project.

SSD - System sequence diagram. A diagram showing the sequence of interactions between

users and the system.

XML - Extensible markup Language. A file format used for representation of objects.

 1 Introduction

6

1 Introduction
This chapter will give an introduction to the work done in the master thesis. It will give

background for the work and describe the objective of the thesis. It will also briefly discuss the

contribution of this work compared to previous work. Lastly it will give an overview of the

entire report structure. Working methods and scope will be further explained in later chapters.

1.1 Background

Kongsberg Defence and Aerospace (KDA) is a Norwegian tech company, focused on the

defense and space industry. This thesis describes work done at KDAs Division for Space and

Surveillance (DSS), located in Horten, Norway. DSS produces electrical equipment, like

filters, receivers, and transmitters for use in space.

Space equipment has high requirements regarding quality assurance. The inability to repair or

replace broken equipment after launch makes any error extremely expensive. To make sure

the equipment made at DSS Horten does not fail in space, every product is rigorously tested

before being shipped to its customers. These testes are done in different environments.

Temperature changes, vacuum chambers and electromagnetic compatibility are some of the

main environmental changes every product goes through.

To make the testing procedure as reliable and effective as possible, DSS Horten has

developed its own testing software. This software is named KNS-TS. KNS-TS automates

major parts of the testing process. To be able to do this automation KNS-TS uses several

XML files. Configuration files with information about testing procedure, instruments and

wiring are all required for KNS-TS to perform tests.

Currently, the creation of these XML files is done by hand. These configuration files are

unique for every setup, usually multiple setups for each product. Manual edits are required

for any customization. This is a difficult and time-consuming process. Manual work also

means human error, which leads to additional time consumption identifying and correcting

these errors.

1.2 Objective

DSS Horten would like to simplify the creation and maintenance of these configuration files.

This project will be working on one of these XML files, the one describing jigs. This file

contains information of different premade jigs at DSS Horten. They all have different tasks in

the system. The main work in this thesis is focused on the relay matrix jigs. The jigs consist

of a set of different relays of varying types and the wiring in between these. Exactly how this

wiring is setup, which relays are included and how they are connected to the testing computer

need to be described in the configuration file.

The objective of the project is to develop a software to automatically create XML files for

configuration of jig in KNS-TS. The requirements given by the company will be described in

chapter 4.1.

The task description can be found in Appendix A.

 1 Introduction

7

1.3 Contribution

The software developed for this project fills a unique gap in the current environment at DSS

Horten. The company is missing a solution for creating and maintaining the configuration

XML files needed to configure the inhouse software currently in use. The current manual

solution is ineffective and error prone. Creating a software to cover this task would be very

beneficial as a long-term solution. The software is considered a starting block for further

development, and with further development it should become the long-term solution for

configuring this part of the XML configuration for KNS-TS.

1.4 Report structure

Chapter 2 contains system description. The environment the new software is created for, the

input and output of the system, and the development process is described in this chapter.

Chapter 3 contains a literature review of XML. It briefly touches on the history of the file

format and the uses it has today. It then describes which role XML plays at DSS today, and

why it is important for the software being created.

Chapter 4 contains analysis, design, and implementation of the current system. It describes

the system requirements analysis and its results. It goes through the different use cases and

the iterations of development the system went through. Lastly it describes the architecture of

the software, and some implementation details.

Chapter 5 contains results of the development. It goes through the different functionalities of

the software, and the testing performed on the system.

Chapter 6 contains futured development, both planned now and possible further extensions.

Chapter 7 contains discussion of the thesis.

Chapter 8 contains the conclusion of the report.

 2 System description

8

2 System description
This chapter contains a description of the software being created. It describes the system, its

surrounding environment, the different files it reads and writes, and the development process.

2.1 System environment

The products manufactured at DSS Horten are meant for use in space. These products can be

transmitters, receivers, or filters, amongst others. Any malfunction in space products is very

expensive. Both in cost for the customer and for the reputation of DSS. To avoid any

malfunction, testing is of the utmost importance. This is why DSS Horten have made its own

test software.

The test system in use at DSS Horten is called KNS-TS. This software automates a large part

of the rigorous testing process at the company. Depending on the device being tested, this

could require a large set of instruments, wiring and relays. KNS-TS must have full control of

all these parts, in addition to other information like test procedures and test environments. To

feed all this configuration data to KNS-TS, a set of XML files are used. These XML files

have been manually updated for every device, to reflect the environment it is being tested in.

This is where the configuration software fits in. To lighten the load on manual edits of XML

files and enable imports from files made in design. This would lighten the load on certain

resources at the company and allow for more effective and user-friendly upkeep of these

configurations.

The configuration software, with initial focus on relay matrix configuration in this project

scope, should create valid XML files on the format currently in use by KNS-TS. The

software should be able to read and create XML files. Additionally, it should be able to read

DXF files created from design tools currently in use at the company. It has to convert relay

information in these files to XML format, while allowing user edit.

 2 System description

9

Figure 2-1 shows the existing test system, with the new software marked in green. In today’s

system the user is manually editing the XML file.

Figure 2-1 The full test system.

A life cycle of a specific configuration can vary widely. If the test results are as expected, the

configuration can be active for only minutes. Other configurations can last for weeks during

debug. In any case the new software should be helpful for early error detection and quick

alteration of configurations.

The relay matrices being configured can be relatively complex. They can contain 30+ relays,

with wiring to instruments, devices being tested and in between each other. This creates a

vast matrix with a lot of possible routings. The system should have information of both the

relays in the matrix and be able to save different routings. These routings will consist of a set

of relays, and a position for each of these. Allowing for easy switching on multiple relays

with only one action.

The physical relays are of different types. Each type has different qualities, like number of

positions or operating voltages. This information is also needed for KNS-TS to have full

control over testing. This data must be included in the configuration XML sheet.

The current test software, KNS-TS, is a massive ongoing software project. The main coding

language is C++, and the company wishes to keep any new software in the same language.

The software department in the company is rather small, and keeping code in the same

language ensures that the company have resources available with experience in the language

of every software.

With the same reasoning, QT was chosen as a user interface library. QT allows for a

interactive user interface across multiple languages, with good support for C++.

 2 System description

10

2.2 System input

The test system uses XML files as both input and output. XML files are used to tell the test

software, KNS-TS, how the hardware is connected. Instruments, wiring, devices to be tested,

and test procedure must all be configured correctly for KNS-TS to be able to start the test

procedure.

The input files being worked on in this new software are XML files and DXF files. Both

these files should be read, parsed and visualized in the new software. The XML files are

manually made and edited today.

The DXF files are automatically generated from sketches of the entire test system. These

sketches are done by the design team at the company. They are made using a tool called

Altium Designer. Extracting data from these DXF files can be challenging, as they can grow

very big. The example file provided for development purposes consists of 170 000 lines. To

be able to extract data the company has decided on a new naming convention. This

convention makes sure the name of the relay is connected to the type of relay, and the

hardware connection to the test pc.

The new configuration software will also use an XML file containing information about

available relay types as input. This XML files will have data on type name and relay

attributes.

2.3 System output

To store system output, a PostgreSQL database structure is used. Every test performed is

pushed onto a common database. From this database the results can be checked against the

customer specifications, and large test reports can be generated. These reports are sometimes

exported as XML, by customer wishes.

The new configuration software will also have XML output. It will not use a database, but

store XML files at the path specified by the user. The format of these files will be described

in the results chapter, 5.3.

The XML file format created by the software will be based on working versions of the

configuration files. The XML files are of version 1.0 using utf-8 encoding.

2.4 System development

The development process is based on the unified process [1, p22]. It is an iterative

development process. The development will use iteration cycles of 2 weeks. The process uses

use cases as the primary modeling tool. Every iteration cycle is based around 1 use case.

After the development of the use case is completed, the software goes through a set of tests,

customer feedback, and a new use case is selected for the next iteration.

To reduce the risk in the development process, the use cases are sorted from most important

to least important. The most important use case is selected for the first iteration. This helps

ensure that the most important functionality of the software is optimized.

 2 System description

11

The start of the process consists of system analysis. The main focus is on collecting

requirements and converting the requirements to use cases. The requirement analysis is done

using FURPS+. The concept and the results of it is described in chapter 4.1. From the

analysis a use case diagram will be developed. This diagram will be used to discuss the

process with the customer. The use case diagram and the iterations will be described in

chapter 4.2 and 4.3.

The unified process has 4 main phases [1, p23]. The inception phase is the start of the project.

Cost estimations, decide if the project is worth running and time management are important

choices made in this phase.

The next phase is the elaboration phase. This phase is where the requirement specification

and the identification of use cases are done. Choices regarding design and architecture are

made in this phase. Startup of development is also included.

The main phase is called the construction phase. The first use case is selected and work on

development is intensified. More iterations of analysis, design and implementation of use

cases are included. Most of the iterations of development should be in this phase.

The last phase is called the Transition phase. This is where the software is transitioned into a

mature version of the software. Ready for deployment.

Version control is used to ensure the work is not lost by technical failure. DSS Horten uses

SVN for version control. The company has reserved a space for the software to be committed

to. The full source code is not made open for everyone. The report will show the

functionalities of the system and show small examples of implementation details.

 3 Literature review

12

3 Literature review
The software being developed relies heavily on the use of the XML format, both reading and

writing XML files. With this reasoning a literature review of the XML was performed. This

chapter will give a short introduction to the XML format. It will mention the most important

historical events that made XML what it is today. It will also describe how it is used, across

the world and in DSS Horten specifically.

3.1 XML history

Extensible markup Language (XML) is derived from Standard Generalized Mark-up

Language (SGML) [2]. SGML was invented in 1986, and is still used as a standard today [3].

The most popular SGML standard today is the HyperText Markup Language, known as

HTML. HTML is used in every web browser today. Its syntax is layout oriented, making it

ideal for visual presentation. HTML however does have some limitations.

The limitations of HTML lead the World Wide Web Consortium (W3C) to start the work on

an alternative. This work was led Jon Bosak. He was an engineer with extensive SGML

experience from managing technical documents from big companies like Sun Microsystems

in the 1990s and 2000s. This alternative was published under the name XML in 1998.

HTML was meant for transmitting visual data, while XML would focus on transmitting

generic data structures. A big limitation of HTML was that it had a smaller standard set of

tags available. These tags were used to style the contents and make it into a graphic web site.

XML would let the user specify their own tags. This meant that every user could adapt it to

their dataset, making it suitable for generic information exchange.

XML version 1.0 was originally defined in 1998 but has since then been updated. The last

update to version 1.0 was done in 2008, this was the 5th edition. This is the most commonly

used version of XML and is still recommended for general use [4].

XML version 1.1 was published 2004, with its latest edition, the 2nd edition, being published

in 2006. This version enables the use of scripts and characters not available in Unicode 3.2,

as well as some line-ending characters in use by IBM technology. It has very little use today

[5].

3.2 XML format

XML is a markup language with defined rules for data presentation. These rules make the

files easy to read and interpret for the receiver. Making the data transfer effective. This does

however mean that any errors from the rules will invalidate the XML file.

XML files are called documents. The tag <xml> marks the start of every XML document.

This is what the software will look for before it starts reading the file. The end tag </xml>

marks the end of the file.

The XML file begins with a declaration. This contains some standard information needed to

read the file. This is usually XML version and encoding format. An example of a declaration

is: <?xml version="1.0" encoding="UTF-8"?>.

 3 Literature review

13

The main content of the file is called elements. Every element can contain text, attributes or

child elements. Consider this example XML file:

<Relay matrix>

<Relay Positions = “4”>

 <Name>K01</Name>

 <Type> 87104b </Type>

</Relay>

</Relay matrix>

The start element of every file is known as the root element. In this small example that would

be Relay matrix. A child element to the root element is Relay. Relay has an attribute called

position specified in the start tag. In this example the value of positions for this relay is 4. The

child elements of relay are name and type.

These elements have text in between the start and end tag. This text is called XML content, or

data. Information in between tags is known as data, while the tags and attributes are metadata.

An XML document that follows all the rules is known as a well-formed document.

Additionally, schemas can be used to make sure the document is valid. The schema makes

specific rules and has a list of valid attributes and tag names in the document.

 3 Literature review

14

3.3 XML usage

XML is used for serialization of data, meaning the conversion to and from binary data. The

strict rules of the format allow for effective serialization. The format makes for effective

reading for both humans and machines.

It is used for data transfer in millions of applications today. Everything from small private

application to massive applications like Microsoft Office, used worldwide. It has a massive

usage in web applications. It is used among other for representing[6]:

- Technical documentation

- Configuration data for software

- Book data

- Transaction data

- Invoice data

It allows for structured information to be passed from computer to computer, or from

computer to people.

XML is extensively used in data transfer applications. Data is often transferred over the

internet, intended for many different types of receivers. It could be web applications, desktop

applications, mobile applications, or databases[7]. By using an effective standard format like

XML, the data can be interpreted by all the different receivers. The receiver only has to know

the format of the data to be able to use it as it should.

Configuration data for software will be the main XML usage in the software created in this

project. The XML format allows for the customization of objects necessary to describe the

hardware configuration for the active test setup.

3.4 XML in DSS

XML is widely used in DSS Horten. The KNS-TS software both reads and writes XML

documents. The test software generates reports for customers in XML. Several XML files are

used as input to describe the hardware and the test procedure of each individual device being

tested. The current process for XML configuration can be seen in Figure 3-1. The project will

eliminate the need of an expert and make the upkeep more accessible to other resources at

DSS.

Figure 3-1 XML configuration in current system.

 4 Analysis, design, and implementation

15

4 Analysis, design, and implementation
This chapter describes the analysis, design, and implementation of the software.

Communication with the customer, DSS Horten, gave an overview of the requirements of the

software that were to be developed. These requirements were analyzed using FURPS+, as

seen in. From this document a use case analysis was completed. Each use case was given 1

iteration of development. These are described in 4.3.

The system architecture is described in 4.4. Lastly some implementation details are described

in chapter 4.5.

4.1 System requirements

System requirements were given by the customer at project startup. These were discussed in a

formal meeting shortly after. Based on these requirements a FURPS+ analysis was

completed. The full analysis can be found in Appendix B.

A FURPS+ analysis is a method for collecting requirements. Each letter stands for a different

type of requirement [1, p66].

Functional requirements show the main functions of the system. These are described as use

cases later in the analysis.

Usability describes user and software interaction. This software uses QT as a GUI tool.

Additionally, XML and DXF is used as input files, and XML is produced as output from the

system.

Reliability requirements for the system. In this software this describes error handling and

validation of output XML.

Performance requirements. There are no hard performance requirements on this system. A

performance requirement was still made to avoid excessive time spent on import

functionality.

Supportability requirements for further development and long-time usage. The software

describes in this thesis should be a starting point for further development. More modules

should be added later, and the created software should support easy development of these

extensions.

+ Design challenges and limitations of the system. These describe technology choices made

by the customer in this software.

 4 Analysis, design, and implementation

16

4.2 Use case analysis

The functional requirements found in 4.1 was used as a basis for a use case analysis. The 5

functional requirements were found to be suitable for 4 use cases. The external systems for

the software were identified as the user, XML file, and DXF file. The full diagram can be

found in Figure 4-1. The use cases are sorted top to bottom from most important to least

important functionality. This was discussed with the customer, DSS Horten. Each one of

these use cases would be covered by a separate iteration in the development cycle.

Figure 4-1 Use case diagram.

The first and most important use case is the manual input of configuration into the system.

This use case would let the user create a configuration. This would be done by using GUI

elements like buttons, combo boxes, and text fields. This would encompass adding new

relays, updating a relay with changed data, and deleting a relay from the configuration. The

same functionality should be possible for routings.

 4 Analysis, design, and implementation

17

The second use case is the output of valid XML data in a configuration file. This would

require a conversion of the data stored in the system, created by the first use case, into XML

data. This XML data would have to be on the format currently used by the other software at

DSS Horten, KNS-TS. Error handling would also be required to ensure that the successful or

unsuccessful writing to XML was reported back to the user.

The third use case is the import of XML configuration files. The customer wanted the

possibility of re-using existing XML files. By allowing the software to import these and

converting them to the data format used in the software, the user would be able to edit the

configuration using the new software. This would allow for error-correction and the reuse of

configurations for almost identical setups.

The last use case is the import of design files, DXF files, into the software. This would allow

the user to take files created in the design process of the test system and convert them into the

data format used in the software. These files contain the information needed to identify the

relays needed in the configuration output. It does however not contain any information about

routings. These would have to be added manually by the user, as covered in use case 1.

In addition to the use case analysis, a couple of user interface sketches was created. These

were shown to the customer to confirm a common understanding of the software that was to

be developed. These sketches can be seen in Figure 4-2 and Figure 4-3.

Figure 4-2 Sketch main menu.

 4 Analysis, design, and implementation

18

Figure 4-3 Sketch Relay matrix window.

The main menu is a simple window with buttons linked to new windows. In this development

cycle, the window will only consist of a relay matrix and an EPC button. The EPC button will

not be linked to anything but is meant as an entry point for the EPC window in later

development. Closing this window should close the system.

The relay matrix window has more complex design. The data currently stored in the software

is displayed by 2 tables on the right side of the window. Each of these tables have a set of text

fields, combo boxes and buttons connected to them. These elements should be used to

manipulate the data contained in the tables.

The import functionality is placed at the top of the sketch. It consists of a simple path field

and a button to start the action. Export has the same functionality at the bottom of the sketch.

 4 Analysis, design, and implementation

19

4.3 Iterations

The iterations will be described in this chapter. Each iteration describes the work done for 1

separate use case.

4.3.1 Iteration 1

The first iteration of development was used to create a system for manual input of data. The

goal was to create an application with a graphical user interface that could collect, manipulate,

and show the necessary data to create a configuration file.

The iteration started with an analysis of the use case. This analysis resulted 3 documents.

Firstly, a Fully Dressed Use Case Diagram, a FDUCD, describing the use case and showing

the different possible scenarios in the use case. Section 8 and 9 of the FDUCD can be seen

below. The full FDUCD for every use case can be found in Appendix C. These sections

describe the main success scenario and extensions. The main success scenario is the optimal

order of operations in the use case. For this use case this is the add button. Any alternative

action should be covered by the extensions. In this case that consists of the 2 other buttons,

update and delete, as well as error when checking input values.

Main success scenario:

1. Get combo box data from XML file.

2. Add data using text fields and combo boxes.

3. Press “add” button.

4. Confirm valid data.

5. Add data to table.

6. Update GUI with new data.

Extensions:

Update button:

2a Select data from table.

2b Data for selected data shown in GUI.

2c Change 1 or more fields in GUI.

2d Press “update” button.

2e Confirm valid data.

2f Go to step 6.

Delete button:

2a Select data from table.

2b Data for selected data shown in GUI.

2c Press “delete” button.

2d Remove data from table.

2e Go to step 6.

 4 Analysis, design, and implementation

20

Data checks:

4a, 11a Invalid data. (Missing data, invalid values, duplicate data)

4b, 11b Show error message.

4c Go to step 2.

A system sequence diagram, SSD, was then created using the scenarios from the FDUCD. This

diagram shows the interaction between the users and the system. The SSD for iteration 1 can

be seen in Appendix D. The diagram shows the flow of the program in different loops. It’s

separated into loops for every extension in the FDUCD.

The first iteration also required the implementation of the user interface. An implementation

of the sketches discussed in 4.2 was done. The interface can be seen in Figure 4-4. The

stylesheet of the user interface is taken from existing software, KNS-TS. A few alterations

was made to the stylesheet to improve the visual presentation of the new software.

Figure 4-4 Gui implementation.

The 3rd document created was a sequence diagram. This diagram shows the interactions

between different parts of the system. To do this, classes had to be identified, and their

responsibilities had to be decided. The sequence diagram for iteration 1 can be seen in Figure

4-5.

 4 Analysis, design, and implementation

21

Figure 4-5 Sequence diagram for iteration 1.

To identify classes and responsibilities, several design patters were considered [1, p192]. It

was decided to implement a solution based on the façade pattern. This pattern describes a

single point of contact for a subsystem. In the sequence diagram these contact points are

called handlers. The UI layer is considered a subsystem, and it has the GUIHandler as the

only point of contact. This means that any communication with other layers is done through

this class. This is done to create a good structure for the software and make the software

easier to refactor later. By using the façade pattern, it should be possible to swap out the

 4 Analysis, design, and implementation

22

entire UI layer without making any changes to the logic layer or the data layer. The same

should be the case for any layer.

These handlers will also follow the singleton pattern. This pattern tells us how to implement a

static function in the class that ensures that only a single object of the class will be allowed to

be created.

Further use of design patters will be described in chapter 4.5.

4.3.2 Iteration 2

Iteration 2 started as iteration 1 by defining a FDUCD. Section 8 and 9 can be seen below, and

the full document can be found in appendix C. The SSD created from these sections can be

found in appendix D.

Main success scenario:

1. Data imported/input into system.

2. Add valid path into the output path field.

3. Press the Export button.

4. Convert relay and routing data to XML data.

5. Create the XML file at chosen path.

6. Confirm if export was successful.

7. Tell user of successful/unsuccessful export.

Extensions:

3a Invalid path.

3b Tell user of invalid path.

3c Go to step 2.

4a Invalid data.

4b Tell user of invalid data.

4c Go to step 1.

The main success scenario describes the user filling the system with data, and starting the

export action in the system. The system then converts and formats the data to XML and writes

the XML data to file. The status of the write operation is reported back to the user.

The extensions describe the scenarios of invalid path and invalid export data.

Sequence diagram for iteration 2 can be seen in Figure 4-6. The figure shows the different

classes involved in the export operation. The button press is handled in RelayMatriceUI and

sent to the GUIHandler. This class is responsible for communication with the logic layer, via

class LogicHandler. LogicHandler gets data from the Relay and Routing classes and sends

this data to the dataHandler. This class activates XMLWriter. The result from XMLWriter is

then processed back to RelayMatricUI. This process ensure that all interlayer communication

 4 Analysis, design, and implementation

23

is handled by handlers. This allows the software to manage dependencies efficiently. An

example of the XML file generated by the software can be found in the result part of the

report, chapter 5.3.

Figure 4-6 Sequence diagram iteration 2.

This sequence diagram introduces DataHandler class, which implements both the singleton

pattern and the façade pattern. This is the single point of contact for the data layer.

4.3.3 Iteration 3

Section 8 and 9 of the FDUCD can be seen below. The full document can be seen in

Appendix C.

Use case name: Import XML configuration file into the software.

Scope: Configuration Tool

Level: User goal

Primary actor: User

Stakeholders: Owner

Preconditions: Software started. Relay matrix window opened. XML configuration file exists.

Success guarantee: Import data from a valid XML configuration file.

Main success scenario:

1. Add valid path into the import path field.

2. Press the import button.

3. Read XML file.

4. Convert XML data to software format.

5. Show imported data to the user.

Extensions:

2a Invalid path.

 4 Analysis, design, and implementation

24

2b Tell user of invalid path.

2c Go to step 1.

3a Invalid file type

3b Tell user of error.

3c Go to step 1.

5a Wrong data format/missing data

5b Tell user of invalid data.

5c Go to step 1.

Import action is started by the user. Once the import path is entered, and the import button is

pressed. The software finds the XML file and reads all the data contained in the XML file.

This data is then converted into the format of the software and presented back to the user.

SSD for iteration 3 can be seen in appendix D.

Sequence diagram for iteration 3 can be seen in Figure 4-7. This process uses several of the

classes identified and developed in iteration 2. Some additional classes are used to read the

XML file, and to parse the XML data into the format needed by the software. Once this

process is complete, the data is sent back up to the GUI, for the user to see the updated status

of the software. The XML files are on the same format as the files generated by the software.

An example of these files can be found in the result part of the report, chapter 5.3.

Figure 4-7 Sequence diagram iteration 3.

4.3.4 Iteration 4

The FDUCD for iteration 4 can be seen below.

Main success scenario:

1. Add valid path into the import path field.

 4 Analysis, design, and implementation

25

2. Press the import button.

3. Read DXF file.

4. Convert DXF data to software format.

5. Show imported data to the user.

Extensions:

2a Invalid path.

2b Tell user of invalid path.

2c Go to step 1.

3a Invalid file type.

3b Tell user of error.

3c Go to step 1.

5a Wrong data format/missing data

5b Tell user of invalid data.

5c Go to step 1.

The process is very similar to iteration 3, which handled import of XML files. The DXF file

are however very different in design, so reading them requires different operations seen in the

sequence diagram.

Sequence diagram for iteration 4 can be seen in Figure 4-8. The diagram uses an DXFReader

to read the file and a DXFParser to convert the data into Relays. The converted data is sent

back to the GUI, for the user to see updated data.

Figure 4-8 Sequence diagram iteration 4.

 4 Analysis, design, and implementation

26

4.4 System architecture

The software is separated into projects. The software is configured for the addition of projects

for additional modules. Currently the solution has a project for the MainWindow, another one

for RelayMatrices and a last one for SharedLibraries. The projects can be seen in Figure 4-9.

Figure 4-9 Project architecture.

The system architecture is constructed as a 3-layer architecture. It consists of a UI layer, a

business logic layer, and a data access layer. This design helps create a good code structure

and can allow for changes later in the software lifecycle. Be separating the layers, any layer

can be changed independently of the others. This would allow the software to change user

interface tools without touching any of the other layers.

The UI layer and the logic layer is contained in the separate projects. Data access is handled

in SharedLibraries.

The most important classes can be seen in the class diagram, Figure 4-10. Zoomed in figures

for easier reading can be found below, Figure 4-11, Figure 4-12, and Figure 4-13.

 4 Analysis, design, and implementation

27

Figure 4-10 Class diagram.

 4 Analysis, design, and implementation

28

Figure 4-11 UI layer class diagram.

In the UI layer each project has a .form file. This file has all information about the visual

presentation of the software. All elements are placed in these files. More information about

these files can be found in chapter 4.5.

Every form file is implemented with a class. This class implements all the user interface logic

and QT event handlers. These classes are also responsible for using the QT libraries.

Every project has its own GuiHandler class. This class communicates with the logic layer, via

the LogicHandler class.

 4 Analysis, design, and implementation

29

Figure 4-12 Relay matrix logic layer class diagram.

The business logic layer entry point is the LogicHandler class. Every project will have one of

these classes. The logic layer contains the main data and logic of the system. Relays, routings

and relay type data is stored in separate classes. All these classes have logic for validating

data. Any error in the validation will invalidate the object, and an error message will be sent

to the user interface layer, to be shown to the user.

Data processing is also done in this layer. Both parsing of input data and formatting of XML

data. When writing to XML data, the format is done in the XMLFormat class and sent via the

logicHandler to the data layer. In the data layer the actual writing is done, and the result is

sent back up to the ui layer.

 4 Analysis, design, and implementation

30

Figure 4-13 Data layer class diagram.

The Data layer has an entry point named DataHandler. This class is the only communication

with the other layers. The data communication in the software consists of XML writing and

reading, and DXF reading. All these have different classes to handle the functionality.

The software uses 3rd party libraries for both XML and DXF file handling. These are

implemented in the XML and DXF classes respectively.

All of these classes are located in the shared libraries. This means that all of these classes are

meant to be used by every module added to the software in later versions. This is done by

making sure that every class returns all relevant data, and by parsing that data in the relevant

project. In the existing code the RelayMatrixParser is responsible for parsing the XML data

and extracting relevant data.

 4 Analysis, design, and implementation

31

4.5 Implementation

Figure 4-14 shows a flow chart of typical usage of the system. It goes from starting the

software, choosing the relay matrix window, adding a configuration, printing the

configuration to XML and closing the window to return to the main menu.

Figure 4-14 Flow chart of typical use.

 4 Analysis, design, and implementation

32

The QT implementation is done by using a visual studio extension called QT VS tools [8].

This tool gives the user a graphical design tool for QT in Visual Studio, allow drag and drop

of elements. A screenshot of the plugin can be seen in Figure 4-15.

Figure 4-15 QT VS tool.

This graphical design is stored in .form files. These files use the same syntax as XML, to

create objects. These objects have extensive information, like position and stylesheet stored

in these files. When building the source code, these files are read and converted into header

files, and compiled using a c++ compiler. An example of the syntax in one of these .form

files can be seen in Appendix F. These files grow very large, so a full file example does not

fit in this report. This tool allowed for effective and precise design of the user interface.

QT eventhandlers are called signals and slots. These are created in pairs to allow for the

events specified by the developer to be handled. A set of default signals are made by QT to

handle the standard actions. The event handler for RelayMatrixWindow class can be seen in

Figure 4-16. An example of a slot, the function called when the signal is sent, can be seen in

Figure 4-17. When a row in the table is selected, an itemSelectionChanged signal is sent by

QT. This is connected to the slot called SelectedRelaySlot. This means that this function will

be called whenever the signal is emitted. In this example, the function gets the data from the

row, and fills it into the appropriate text field next to the table.

 4 Analysis, design, and implementation

33

Figure 4-16 Event handlers in RelayMAtrixWindow

Figure 4-17 Slot for selecting a table entry.

 4 Analysis, design, and implementation

34

3rd part libraries are used for both XML and DXF files. The XML library is called Libxml2

[9]. The library is written in C, and it has multilanguage support. It’s a free software available

under the MIT license.

To interface this library, a set of classes was made in the configuration tool software. These

are a XMLReader, a XMLWriter, and a XMLNode, as seen in Figure 4-18.

Figure 4-18 XML interface.

The reader and writer calls functions needed for their respective functions, while the node is

used to package data into objects after it’s been read.

A code example for the writer can be seen Figure 4-19. The printXML function goes through

the XMLTagData vector created by the formater. Depending on the tag type, different

functions are called. Each one of these functions writes an element to the XML file. For

example, the WriteSingleTag function shown in the example. It will create a start element of

type tag, and the end element for the same tag. If the value of tag is “test” the XML file will

look like this; <test> </test>.

Figure 4-19 Algorithm for writing XML output.

 4 Analysis, design, and implementation

35

The DXF library used is called Dxflib [10]. It’s an open-source software available under the

General Public license. The library classifies the data from the DXF file, allowing the

configuration tool software to filter out most of the data in the large DXF file. This is done in

a class called DXFReader. The filtered data is sent to the DXFParser located in the logic

layer. This parser checks the data and tries to use it to create valid relays.

Some Grasp [1, p105], General Responsibility Assignment Software Patterns, are used to

create a better object-oriented design.

The controller pattern describes which classes are responsible for each use case. In this

software, the UI layer starts every use case. This makes the relay matrix window the start and

end point of every use case. It does however not do much more than start and end the use

case. The main functionality is placed in the logic or data layer.

The information expert pattern tells us to ad responsibilities where the information needed

already exists. This is for example used by error checking of relays is done in the relay class,

seen in Figure 4-20.

Figure 4-20 Set functions with validation checks

High cohesion patter tells us how to keep objects from growing too big and confusing. By

creating more classes with smaller responsibilities, high cohesion is secured.

Low coupling pattern describes dependencies in between objects. Low coupling means that a

change in one object does not require a lot of changes in other objects. In this software, this is

secured by having one way communication in every object interaction.

 5 Results

36

5 Results
This chapter describes the results of the work. The focus is put on showing the system as it is

at the end of the development process. The first subchapter describes the main window. The

next 4 subchapters will describe the implementation of the use cases. The last subchapter

describe testing. The style of the user interface is made using the stylesheet of already

existing software at DSS Horten, with a few alterations.

5.1 Main window

The main window has a simple user interface, shown in Figure 5-1. This is the first window

the user sees when starting the software. The design of the window is meant to allow for

additional configuration systems to be added, in the form of buttons. Currently only the relay

matrix configuration is implemented. Clicking the Relay matrices button opens the window

described in 5.2.

Figure 5-1 Main window.

 5 Results

37

5.2 Manual input

The first use case describes manual input of data into the system, and the showing of this data

in a GUI. A screenshot of the implementation can be seen in Figure 5-2. The user interface

consists of 2 tables showing the saved data of relays and routings, as well as several fields

and buttons to manipulate the data in these tables. When the user exports the configuration,

the data currently shown in the tables is converted to an XML file.

Figure 5-2 The relay matrix config user interface.

The fields used to describe the relays and routings are taken from the requirements of the

system. Both sets of data have 3 of the same buttons connected to it; add, delete, and confirm

changes.

The add button is used to create new elements from the values available in the text fields.

That means that when the user clicks “Add Relay” button, the system takes the values from

relay type, name, dut position, module, bank, and relay(SW) and tries to create a relay. The

relay type combobox is populated when opening the relay matrix window by reading an

XML file. How the system reads XML files will be described in chapter 5.4.

In Figure 5-3 the code for adding a relay can be seen. In each set function the values are

validated. If any value is invalid the relay is rejected and an error message is shown, as

shown in Figure 5-4.

 5 Results

38

Figure 5-3 Code for creating a new relay.

Figure 5-4 Error message example.

The delete button removes a row from the table in the user interface. The button also calls a

function to delete the corresponding entry from the vector in the logic layer. When a row is

deleted, the row below becomes selected. If the delete button is pressed without any row

being selected an error message, as seen in Figure 5-5, is shown.

 5 Results

39

Figure 5-5 No row selected when deleting.

The confirm changes button is used to update a row with new data. When the user selects a

row, the data from this row is shown in the text fields next to the table. The button is inactive

until a row is selected and any of the values are altered. Once a text field value is altered, or a

combobox index is changed, the button becomes active. The new data is validated by using

the same functions as the add functionality.

In the relay section there is an extra button called “Add to Relay(s)”, seen in Figure 5-6. This

button is used to add values to the field Relay(s). The available options in the relay

combobox are the relays currently stored in the system. Based on the type of the relay, the

valid positions are added to the relay position combobox. When the button is clicked, a string

on the format, name_position, is added to relay(s). This describes which position each relay

should be set to in the specific routing. It’s also possible to directly edit the Relay(s) field if

the user is experienced and prefer this option.

Figure 5-6 Add to relay button.

5.3 Export XML

To export the configuration made using the software to an XML file, the user has to specify a

path with filename and press the create XML button. A screenshot of this is shown in Figure

5-8. Exporting overwrites any existing file with the same path and name. This is shown to the

user in a message box, as seen in Figure 5-7.

 5 Results

40

Figure 5-7 message box export warning.

Figure 5-8 Export user interface.

When exporting, the software checks if the operation was successful or not. Depending on the

result, the software will either show a success label, as in Figure 5-9, or show an error

message, as in Figure 5-10.

Figure 5-9 Successful export

Figure 5-10 Failed export.

 5 Results

41

The export is formatted in a separate class, called RelayXMLFormat. In this class the XML

format is created based on the current standard for relay matrix configuration. This also

means that if the standard changes in the future, the format can be altered by only making

changes in this class. A part of the format can be seen in Figure 5-11. This is the code for

adding every relay to the XML sheet.

Figure 5-11 Code for relay XML format.

This code creates a vector of XML nodes that are sent to the XML writer, and then written to

a XML file.

 5 Results

42

An example of a created XML files can be found in Appendix J. The start of the file, with

data for 1 relay can be seen in Figure 5-12. Everything between the relay tags is data

configurable by the software.

Figure 5-12 Start of XML configuration file.

 5 Results

43

5.4 Import XML files

Importing existing configurations are handled at the very top of the user interface, see Figure

5-13. The path in the picture must consist of the entire path with file extension. The software

automatically detects if the file is a XML file or a DXF file. Any other file format will

produce an error message, as seen in Figure 5-14.

Figure 5-13 Import button and path

Figure 5-14 Import error

The XML file is read by the XMLReader class. This class uses a 3rd party library to read

nodes, the nodes identified are sent to the parser in the logic layer. This parser is called

RelayXMLParser. This parser looks for the data needed to create valid relays and routings in

the software. After going through the entire XML file, the created relays are stored, any

errors found are shown to the user, see Figure 5-16, and the tables in the user interface are

updated with the new data. Any previously stored data is replaced when an import is done.

This is presented to the user in a message box, as seen in Figure 5-17. An example of a

successful import from the test.xml file can be seen in Figure 5-15.

 5 Results

44

Figure 5-15 Import from test.xml.

 5 Results

45

Figure 5-16 Example of errors during import.

Figure 5-17 Confirmation window import.

5.5 Import DXF files

Importing DXF files are very similar to importing XML file. The user simply adds the path

and extension to a DXF file before pressing import. In the software, the extension is

recognized, and the software creates a DXFReader object. This reader uses a 3rd party library

called Dxflib to search through the file and find all the relevant strings from the DXF file and

sends them to the parser. The parser then goes through all the filtered data and tries to create

valid relays. This can be done because DSS has a naming convention on both relay name and

relay type in the DXF files. The naming convention has relay names containing needed

information on modules, banks, and switches. An example would be “K01_M1_B1_S1”.

This means that relay “K01” is connected in module 1, bank 1 and switch 1. The relay types

are written using a unique substring of the full relay name. To connect the type to a specific

relay, the name is also included. An example would be “K01_87104b”. From these 2 string a

valid relay can be created.

 5 Results

46

No routing data can be found from the DXF files. The valid relays created are stored in the

system and the user interface tables are updated. Any data discarded in the parser is shown in

an error message to the user. This data could be names not following the naming conventions,

or other string be very similar to the data the system looks for. Either way this is considered

useful information for the user of the system.

Figure 5-18 shows an example of the DXF file. These files become very big. The lines

containing the relevant data for this software can be seen on line 140920 and 140936.

Figure 5-18 DXF file example.

 5 Results

47

Figure 5-19 shows a successful import from the test DXF file.

Figure 5-19 Import from DXF file.

 5 Results

48

Figure 5-20 shows an import of DXF file with some errors. These errors can be duplicate

names, missing identifiers, or invalid data values.

Figure 5-20 Import DXF file with error.

5.6 Testing

The system has gone through different forms of testing during the development process.

As this has been a single developer project, most of the testing has been by the developer of

the actual code. Every implementation is naturally followed by testing to confirm that the

wanted functionality is present. This mostly includes manual unit testing, often done by

stepping through the code in debug mode. This allowed the tester to confirm the values of

different variables while the software is running, in addition to confirming the functionality

of each function. It was decided not to spend resources on integrating a unit test library for

this project, but this would be considered a good investment if the system is to go through

further development.

After every iteration the use case went through integration testing. The entire use case was

tested, and it was determined if the use case was successfully implemented. This also

 5 Results

49

included a more determined error testing, where the tester was actively trying to produce

errors or bugs. If the tests were considered successful, the development could move on to the

next use case.

After the final use case was implemented, the software went through a system test. In this

test, a test plan was created. This test plan contains a system description, and a description of

the external files needed to test import functionality is described. Lastly a set of tasks,

spanning the current functionality of the system, was created. The full test plan can be found

in appendix E. An example of a performed test plan can be found in Figure 5-21.

Figure 5-21 Test table.

The test result shows all functionalities to be working.

 6 Future development

50

6 Future development
This chapter describes future development of the software. It will describe how additional

modules can be implemented. This will be done by using the planned electrical power

consumption module as an example.

6.1 Implementing epc configuration

The company, DSS, has pointed to EPC jigs, electronic power controllers, as the most likely

first addition to the system after this project. This chapter will give a description of how the

current system could be expanded to include this.

The entry point to this would be the button already made in the main window. If the software

is expanded to include every part of the test configuration at DSS Horten, then a redesign of

the main window should be considered.

Figure 6-1 shows an overview of the current projects in the software, with an example of file

structure in the relay matrix project. To start the development of epc configuration, a new

project should be made and added to the solution. This project should be loadable from the

MainWindow, and it should be able to include functionality from SharedLibraries.

Figure 6-1 Projects in the software.

 6 Future development

51

The development should start by designing a QT user interface. This can be done using the

VS Tools plugin, or without any design tools. After the design is done, the functionality

needed should be added into the epc project.

The epc project should contain both the user interface layer and the logic layer. This

separation should be clear to avoid confusing dependencies.

The user interface layer should contain the code for user interface elements and the

manipulation of these. To make this for the epc configuration that is currently in used by the

other software in DSS Horten, an analysis of the current XML files needs to be done. This

should identify the necessary elements for a user interface. The epc window should have a

import and export functionality separately from the relay matrix window.

Validation of data, and the storage of current data should be done in the logic layer. Any

manipulation of data should be done in this layer, and the user interface should show the

current data in the logic layer. This layer should also include any formatting and parsing of

XML or DXF data.

The data layer is in the SharedLibraries. This project should already have the needed

functionality to both write and read XML and DXF data. If any additional files type support

is needed, this should be added into this project.

 7 Discussion

52

7 Discussion
The software created is a good addition to the test system in use at DSS Horten. Discussions

with member of the potential future user group at the company showed a promising work

procedure from design sketch to DXF file, via the software, to a valid XML configuration

file. This would save time and money, for the company in the daily operations.

The software ended up with a well-received UI. Some small changes to the UI were made

late in the development to include extra text fields. These fields contain names for the entire

matrix. This was not discovered in the original analysis but found later when XML files were

compared to test files. The implementation of these changes showed a software that could be

modified easily without requiring large changes in other places of the code. This is a good

sign for further development and maintenance of the system.

The customer was satisfied with an adaption made to separate the solution into project

packages. This would allow additional functionality to be naturally added as new projects for

future work.

The code could be better documented, and a tool for documentation, like DOxygen used in

other software at the company, could be used. This would make it easier, especially for

people without knowledge of the system, to maintain and expand the software.

During testing of the system, concerns were raised by a colleague experienced in the manual

configuration of XML files. They were questioning if the new software solution would be

quicker than the manual approach. No specific part of the software was considered slow, or

ineffective, but it’s hard to compete on speed with copy and paste from previous

configurations. Even though the import of XML can be done by the software as well, it

requires a few extra steps.

It was considered a legitimate concern, and certainly something to keep in mind while further

developing the system. The automatic generation of relays from design files were considered

a good improvement to the previous solution.

A more thorough test of the system could have been completed. The system is mainly tested

by the developer. It’s easy to be blind of your own mistakes, and a new user can discover

error the developer did not consider.

The overall impression of the system is that it is well functioning. There are no obvious errors

found so far, but it is never possible to exclude the possibility of bugs or errors.

 8 Conclusion

53

8 Conclusion
The final software matches well up to the requirements. The 4 use cases identified from the

requirements are all fully implemented with no lacking features. The overall design of the

system is well structured with clear separation between the UI layer, the logic layer, and the

data layer. All communication in between the layers is handled by the entry points named

handlers. The elements needed to create and manipulate a configuration file is implemented,

and the resulting export of XML file is on the format currently in use by the test system, KNS-

TS.

The software is ready for future expansions. The relay matrix configuration is fully

implemented and ready to be taken into use.

8.1 Possible improvements

Some code currently located in the relay matrix project could be moved to the

SharedLibraries. Exactly which code to place here is difficult to know until further

development has started. Any duplicate code needed for new modules, should optimally be

refactored, and moved to SharedLibraries. An example of likely code to move would be the

popupWindow, showing a message to the user and closing upon a button press. This is

currently in the RelayMatrices project but could be useful in additional modules.

I would also suggest splitting every current project into a separate UI layer project and a logic

layer project. This would improve the structure of the code and help enforce the design

principles the software was created on.

The development process could have been more effective in the elaboration phase. Setting up

the development environment was shown to be more time consuming than anticipated,

delaying the first iteration by a week. The time was made up by iteration 2 and 3 having quite

a lot of overlapping functionality. Allowing for more effective development of these

iterations.

 References

54

References
[1] N.O Skeie, «Lecture notes for object-oriented analysis, design, and programming using

UML and C#»

[2] «Extensible Markup Language (XML)». Opened: 3. March 2024. [Online]. Available on:

https://www.w3.org/XML/

[3] Q. Liu, «A study of extensible Markup Language (XML)».

[4] «Extensible Markup Language (XML) 1.0 (Fifth Edition)». Opened: 4. March 2024.

[Online]. Available on: https://www.w3.org/TR/xml/

[5] «Extensible Markup Language (XML) 1.1 (Second Edition)». Opened: 4. March 2024.

[Online]. Available on: https://www.w3.org/TR/xml11/#sec-xml11

[6] «What is XML (Extensible Markup Language)?», WhatIs. Opened: 3. March 2024.

[Online]. Available on: https://www.techtarget.com/whatis/definition/XML-Extensible-

Markup-Language

[7] S. Miller, «What Is XML Used For?», Codecademy Blog. Opened: 3. May 2024.

[Online]. Available on: https://www.codecademy.com/resources/blog/what-is-xml-used-

for/

[8] «Qt VS Tools». Opened: 10. May 2024. [Online]. Available on:

https://doc.qt.io/qtvstools/index.html

[9] «Home · Wiki · GNOME / libxml2 · GitLab», GitLab. Opened: 13. May 2024. [Online].

Available on: https://gitlab.gnome.org/GNOME/libxml2/-/wikis/home

[10] kwikius, «kwikius/dxflib». 10. mars 2024. Opened: 14. May 2024. [Online].

Available on: https://github.com/kwikius/dxflib

 Appendices

55

Appendices
Appendix A Task description

Appendix B FURPS+ Analysis

Appendix C FDUCDs

Appendix D SSDs

Appendix E Test plan

Appendix F Example UI form file

Appendix G Example header file

Appendix H Example cpp file

Appendix I Example XML configuration file

 Appendices

56

Appendix A Task description

 Appendices

57

 Appendices

58

APPENDIX B
Furps+ Analysis

Functional:

- Add, edit and delete RF relay matrix relays from the configuration.

- Add, edit and delete RF relay matrix routings from the configuration.

- Create a valid XML configuration file.

- Import configuration from XML file.

- Import configuration from DXF file.

Usability:

- GUI should provide available relay matrix relay options.

- Navigation using standard QT elements.

- System should be documented on internal systems using Confluence.

- XML files should be used for output and input.

- DXF files should be used as input.

- Configuration should be stored in a xml file.

Reliability:

- The system should create valid xml files on the format other DSS software requires.

- Files with invalid input should return a message clearly stating where and what is

wrong.

Performance:

- System should be able to read and load an XML file under 1000 lines within 10

seconds.

Supportability:

- The software should support the development of additional functionalities.

- System should run as its own .exe file.

+challenges/limitations:

- The system should be developed in C++ 2020.

- The system should be object oriented.

- The system should be using the latest Long-Term-Support version of QT as GUI

library.

- The XML output should be version 1.0 using UTF-8 encoding.

 Appendices

59

Appendix C FDUCDs
Iteration 1

Use case name: Manual input of configuration into the system.

Scope: Configuration Tool

Level: User goal

Primary actor: User

Stakeholders: Owner

Preconditions: Software started. Relay matrix window opened.

Success guarantee: Add data, update data and delete data from user interface.

Main success scenario:

1. Get combo box data from XML file.

2. Add data using text fields and combo boxes.

3. Press “add” button.

4. Confirm valid data.

5. Add data to table.

6. Update GUI with new data.

Extensions:

Update button:

2a Select data from table.

2b Data for selected data shown in GUI.

2c Change 1 or more fields in GUI.

2d Press “update” button.

2e Confirm valid data.

2f Go to step 6.

Delete button:

2a Select data from table.

2b Data for selected data shown in GUI.

2c Press “delete” button.

2d Remove data from table.

2e Go to step 6

Data checks:

4a, 11a Invalid data. (Missing data, invalid values, duplicate data)

 Appendices

60

4b, 11b Show error message.

4c Go to step 2

Special requirements: none

Technology list: QT GUI

Frequency of occurrence:

Miscellaneous: Data validation done on button press.

 Appendices

61

Iteration 2

Use case name: Export valid XML configuration file.

Scope: Configuration Tool

Level: User goal

Primary actor: User

Stakeholders: Owner

Preconditions: Software started. Relay matrix window opened.

Success guarantee: Create a valid XML configuration file with data from the system.

Main success scenario:

8. Data imported/input into system.

9. Add valid path into the output path field.

10. Press the Export button.

11. Convert relay and routing data to XML data.

12. Create the XML file at chosen path.

13. Confirm if export was successful.

14. Tell user of successful/unsuccessful export.

Extensions:

3a Invalid path.

3b Tell user of invalid path.

3c Go to step 2.

4a Invalid data.

4b Tell user of invalid data.

4c Go to step 1

Special requirements: none

Technology list: QT GUI, XML library

Frequency of occurrence:

Miscellaneous

 Appendices

62

Iteration 3

Use case name: Import XML configuration file into the software.

Scope: Configuration Tool

Level: User goal

Primary actor: User

Stakeholders: Owner

Preconditions: Software started. Relay matrix window opened. XML configuration file exists.

Success guarantee: Import data from a valid XML configuration file.

Main success scenario:

6. Add valid path into the import path field.

7. Press the import button.

8. Read XML file.

9. Convert XML data to software format.

10. Show imported data to the user.

Extensions:

2a Invalid path.

2b Tell user of invalid path.

2c Go to step 1.

3a Invalid file type

3b Tell user of error.

3c Go to step 1.

5a Wrong data format/missing data

5b Tell user of invalid data.

5c Go to step 1.

Special requirements: none

Technology list: QT GUI, XML library

Frequency of occurrence:

Miscellaneous

 Appendices

63

Iteration 4

Use case name: Import DXF file into the software.

Scope: Configuration Tool

Level: User goal

Primary actor: User

Stakeholders: Owner

Preconditions: Software started. Relay matrix window opened. DXF file exists.

Success guarantee: Import data from a valid DXF file.

Main success scenario:

6. Add valid path into the import path field.

7. Press the import button.

8. Read DXF file.

9. Convert DXF data to software format.

10. Show imported data to the user.

Extensions:

2a Invalid path.

2b Tell user of invalid path.

2c Go to step 1.

3a Invalid file type.

3b Tell user of error.

3c Go to step 1.

5a Wrong data format/missing data

5b Tell user of invalid data.

5c Go to step 1.

Special requirements: none

Technology list: QT GUI, XML library

Frequency of occurrence:

Miscellaneous

 Appendices

64

Appendix D SSDs
Iteration 1

 Appendices

65

Iteration 2

 Appendices

66

Iteration 3

 Appendices

67

Iteration 4

 Appendices

68

Appendix E Test plan
Introduction

This test plan describes the testing done after developing the relay matrix module of the

KNS-TS configuration tool. It includes a short system description with a user interface

screenshot and a short explanation of the different functionality in the user interface.

System description

The software being tested is the KNS-TS configuration tool. The software is used to import,

change, and export configuration data. This data is used by the KNS-TS software to setup for

hardware testing. This test plan describes the testing of the relay matrix functionality of the

system.

The configuration tool can be used to import design files, DXF files, or configuration files,

XML files, or a new configuration can be created. Data can be added, edited, or removed

using the graphical user interface. The completed configuration data can be exported as an

XML file, ready for use in KNS-TS. A screenshot of the user interface can be seen below.

To import data, find the correct path, with correct file extension, and input it into the path

field. When you click import file, the file in the path field will be read and parsed into system

data. The data read will be shown in the tables. When importing data, all current data will be

replaced. A confirmation window will appear to alert the user of this.

The software is separated into Relays and Routings. Relay data describes the physical relays

and their connections in the test system. Routing data describes saved routings in the matrix.

Both of these have add, delete and change functionality in the user interface. The currently

saved data is visible in the table fields on the right side.

 Appendices

69

The “Create XML” button creates a new XML file at the chosen path. This will overwrite any

existing file with the same path. This file is ready for use in the KNS-TS software.

Test setup

To test the import functionality of the system, a DXF file and an XML file are required. In

the test matrix the dxf file is used for setting up the test environment, giving the tester a set of

starting relays. The XML file is only used to generate an alternative configuration. Either one

of these files could have been used as a starting point.

The dxf file requires the KNS-TS naming convention to be followed accurately. This naming

convention requires 2 important text strings for each relay. Firstly, the name of the Relay is

used to add information of the relay position in the system. The name should be on the form

“Relayname_M(Module)_B(Bank)_S(Switch)”. An example would be: “K01_M1_B1_S1”.

In addition to the name, the type of the Relay must be available in the dxf file. The type is on

the form of “Relayname_type”. An example of this would be: “K01_87206B”. If Altium

Designer is used to make the dxf files, these strings must be visible on the graphical design

file. An example of the correct dxf output can be seen in Figure 8-1. The dxf file will only

import relay information, as no routing information is available in the design file.

Figure 8-1 A few lines of the dxf file. It contains the needed information for relay K01

The XML file requires specific tags used by the KNs-TS system, to be able to read and

convert the XML file into data for the configuration tool. The tags can be seen in Figure 8-2.

The figure has the needed data for 1 relay and 1 routing.

 Appendices

70

Figure 8-2 Example xml file

 Appendices

71

Test tasks

The set of tasks and expected results are presented in Figure 8-3. The red tasks are expected

errors.

Figure 8-3 Set of tasks and expected results

 Appendices

72

Appendix F Example UI form file
snippet

 Appendices

73

Appendix G Example header file
RelayMatrixWindow.h

#pragma once

#include <QtWidgets/QDialog>
#include "ui_RelayMatrixWindow.h"
#include "PopupWindow.h"
#include "GUIHandler.h"
#include "Structs.h"

class RelayMatrixWindow : public QDialog
{
 Q_OBJECT
public:
 __declspec(dllexport) RelayMatrixWindow(QWidget *parent = nullptr);
 ~RelayMatrixWindow() {};

protected:

private:
 Ui::relayMatrixWindowClass ui;
 //Ui::PopupWindow popupWindowUi;
 void ConnectSlots();
 void UpdateTables();
 void GetRelayTypes();

 GUIHandler* uiHandler;
 PopupWindow* popupWindow;/*
 ConfirmWindow* confirmWindow;*/

public slots:
 void RelayDataChangedSlot(const QString&);
 void TypeComboboxChangedSlot(int i);
 void relayComboboxChangedSlot(int i);

 void RoutingDataChangedSlot(const QString&);
 void SelectedRelaySlot();
 void SelectedRoutingSlot();

 void ImportConfigSlot();
 void ExportConfigSlot();

 void AddRelaySlot();
 void DeleteRelaySlot();
 void UpdateRelaySlot();

 void AddRoutingSlot();
 void DeleteRoutingSlot();
 void UpdateRoutingSlot();
 void AddRelayRoutingSlot();

signals:

};

 Appendices

74

Appendix H Example cpp file
RelayMatrixWindow.cpp

#include "RelayMatrixWindow.h"

#include "qmessagebox.h"

RelayMatrixWindow::RelayMatrixWindow(QWidget *parent)

 : QDialog(parent)

{

 ui.setupUi(this);

 uiHandler = GUIHandler::GetInstance();

 // Connect Buttons

 ConnectSlots();

 ui.exportLabel->setVisible(false);

 //Table customisation

 ui.relayTable->setColumnWidth(1, 230);

 ui.routingTable->setColumnWidth(0, 120);

 ui.routingTable->setColumnWidth(2, 120);

 ui.relayTable->setEditTriggers(QAbstractItemView::NoEditTriggers);

 ui.routingTable->setEditTriggers(QAbstractItemView::NoEditTriggers);

 GetRelayTypes();

}

//Setup event handlers

void

RelayMatrixWindow::ConnectSlots()

{

 connect(ui.relayTable, SIGNAL(itemSelectionChanged()), this,
SLOT(SelectedRelaySlot()));

 connect(ui.routingTable, SIGNAL(itemSelectionChanged()), this,
SLOT(SelectedRoutingSlot()));

 Appendices

75

 connect(ui.importButton, SIGNAL(clicked()), this, SLOT(ImportConfigSlot()));

 connect(ui.exportButton, SIGNAL(clicked()), this, SLOT(ExportConfigSlot()));

 connect(ui.addRelayButton, SIGNAL(clicked()), this, SLOT(AddRelaySlot()));

 connect(ui.deleteRelayButton, SIGNAL(clicked()), this,
SLOT(DeleteRelaySlot()));

 connect(ui.changeRelayButton, SIGNAL(clicked()), this,
SLOT(UpdateRelaySlot()));

 connect(ui.addRoutingButton, SIGNAL(clicked()), this,
SLOT(AddRoutingSlot()));

 connect(ui.deleteRoutingButton, SIGNAL(clicked()), this,
SLOT(DeleteRoutingSlot()));

 connect(ui.addRelaytoRoutingButton, SIGNAL(clicked()), this,
SLOT(AddRelayRoutingSlot()));

 connect(ui.changeRoutingButton, SIGNAL(clicked()), this,
SLOT(UpdateRoutingSlot()));

 connect(ui.relayNameEdit, SIGNAL(textEdited(const QString&)), this,
SLOT(RelayDataChangedSlot(const QString&)));

 connect(ui.relayDutPosEdit, SIGNAL(textEdited(const QString&)), this,
SLOT(RelayDataChangedSlot(const QString&)));

 connect(ui.relayBankEdit, SIGNAL(textEdited(const QString&)), this,
SLOT(RelayDataChangedSlot(const QString&)));

 connect(ui.relayModuleEdit, SIGNAL(textEdited(const QString&)), this,
SLOT(RelayDataChangedSlot(const QString&)));

 connect(ui.relaySWEdit, SIGNAL(textEdited(const QString&)), this,
SLOT(RelayDataChangedSlot(const QString&)));

 connect(ui.relayTypeComboBox, SIGNAL(currentIndexChanged(int)), this,
SLOT(TypeComboboxChangedSlot(int)));

 connect(ui.relayComboBox, SIGNAL(currentIndexChanged(int)), this,
SLOT(relayComboboxChangedSlot(int)));

 connect(ui.routingNameEdit, SIGNAL(textEdited(const QString&)), this,
SLOT(RoutingDataChangedSlot(const QString&)));

 connect(ui.routingDutPosEdit, SIGNAL(textEdited(const QString&)), this,
SLOT(RoutingDataChangedSlot(const QString&)));

 connect(ui.nameEdit, SIGNAL(textEdited(const QString&)), this,
SLOT(RoutingDataChangedSlot(const QString&)));

 connect(ui.relayRoutingEdit, SIGNAL(textEdited(const QString&)), this,
SLOT(RoutingDataChangedSlot(const QString&)));

}

//Get relay type data from logic layer

 Appendices

76

void

RelayMatrixWindow::GetRelayTypes()

{

 std::vector<std::string> typeVector = uiHandler->GetRelayTypes();

 for (std::string type : typeVector)

 {

 ui.relayTypeComboBox->addItem(QString::fromStdString(type));

 }

}

//Get table data from logic layer

void

RelayMatrixWindow::UpdateTables()

{

 std::pair < std::vector<std::vector<std::string>>,
std::vector<std::vector<std::string>>> data = uiHandler->GetData();

 //clear old data

 while (ui.relayTable->rowCount() > 0)

 {

 ui.relayTable->removeRow(ui.relayTable->rowCount() - 1);

 }

 while (ui.routingTable->rowCount() > 0)

 {

 ui.routingTable->removeRow(ui.routingTable->rowCount() - 1);

 }

 ui.relayComboBox->clear();

 for (std::vector<std::string> rowData : data.first)

 {

 int rowCount = ui.relayTable->rowCount();

 int columnCount = ui.relayTable->columnCount();

 ui.relayTable->insertRow(rowCount);

 QTableWidgetItem* name = new QTableWidgetItem();

 QTableWidgetItem* type = new QTableWidgetItem();

 QTableWidgetItem* dutPos = new QTableWidgetItem();

 QTableWidgetItem* module = new QTableWidgetItem();

 Appendices

77

 QTableWidgetItem* bank = new QTableWidgetItem();

 QTableWidgetItem* relaySW = new QTableWidgetItem();

 name->setText(QString::fromStdString(rowData.at(0)));

 type->setText(QString::fromStdString(rowData.at(1)));

 dutPos->setText(QString::fromStdString(rowData.at(2)));

 module->setText(QString::fromStdString(rowData.at(3)));

 bank->setText(QString::fromStdString(rowData.at(4)));

 relaySW->setText(QString::fromStdString(rowData.at(5)));

 std::vector<QTableWidgetItem*> fields = { name, type, dutPos, module,
bank, relaySW };

 for (size_t i = 0; i < columnCount; i++)

 {

 ui.relayTable->setItem(rowCount, i, fields.at(i));

 }

 ui.relayComboBox->addItem(name->text());

 }

 //ui.routingTable->clear();

 for (std::vector<std::string> rowData : data.second)

 {

 int rowCount = ui.routingTable->rowCount();

 int columnCount = ui.routingTable->columnCount();

 ui.routingTable->insertRow(rowCount);

 QTableWidgetItem* name = new QTableWidgetItem();

 QTableWidgetItem* dutPos = new QTableWidgetItem();

 QTableWidgetItem* channelName = new QTableWidgetItem();

 QTableWidgetItem* relayRouting = new QTableWidgetItem();

 name->setText(QString::fromStdString(rowData.at(0)));

 dutPos->setText(QString::fromStdString(rowData.at(1)));

 channelName->setText(QString::fromStdString(rowData.at(2)));

 relayRouting->setText(QString::fromStdString(rowData.at(3)));

 Appendices

78

 std::vector<QTableWidgetItem*> fields = { name, dutPos, channelName,
relayRouting };

 for (size_t i = 0; i < columnCount; i++)

 {

 ui.routingTable->setItem(rowCount, i, fields.at(i));

 }

 }

 std::vector<std::string> names = uiHandler->GetMatrixNames();

 if (!names.at(0).empty())

 {

 ui.functionalNameEdit->setText(QString::fromStdString(names.at(0)));

 }

 if (!names.at(1).empty())

 {

 ui.logicalNameEdit->setText(QString::fromStdString(names.at(1)));

 }

}

//Handle select row in relay table

void

RelayMatrixWindow::SelectedRelaySlot()

{

 QList<QTableWidgetItem*> items = ui.relayTable->selectedItems();

 if (items.count() == 0)

 {

 return;

 }

 QString name = items.at(0)->text();

 ui.relayNameEdit->setText(name);

 //Find combobox index from string

 for (auto i = 0; i < ui.relayTypeComboBox->count(); i++)

 {

 QString comboBoxText = ui.relayTypeComboBox->itemText(i);

 QString type = items.at(1)->text();

 if (comboBoxText == type)

 {

 Appendices

79

 ui.relayTypeComboBox->setCurrentIndex(i);

 break;

 }

 }

 QString dutPos = items.at(2)->text();

 ui.relayDutPosEdit->setText(dutPos);

 QString module = items.at(3)->text();

 ui.relayModuleEdit->setText(module);

 QString bank = items.at(4)->text();

 ui.relayBankEdit->setText(bank);

 QString relaySW = items.at(5)->text();

 ui.relaySWEdit->setText(relaySW);

 ui.changeRelayButton->setDisabled(true);

}

//Handle select row in routing table

void

RelayMatrixWindow::SelectedRoutingSlot()

{

 QList<QTableWidgetItem*> items = ui.routingTable->selectedItems();

 if (items.count() == 0)

 {

 return;

 }

 QString name = items.at(0)->text();

 ui.routingNameEdit->setText(name);

 QString dutPos = items.at(1)->text();

 ui.routingDutPosEdit->setText(dutPos);

 QString channelName = items.at(2)->text();

 ui.nameEdit->setText(channelName);

 Appendices

80

 QString relayRouting = items.at(3)->text();

 ui.relayRoutingEdit->setText(relayRouting);

 ui.changeRoutingButton->setDisabled(true);

}

//Handle changed relay data editfield action

void

RelayMatrixWindow::RelayDataChangedSlot(const QString&)

{

 if (ui.relayTable->selectedItems().count() > 0)

 {

 ui.changeRelayButton->setEnabled(true);

 }

}

//Handle change routing data action

void

RelayMatrixWindow::RoutingDataChangedSlot(const QString& text)

{

 if (ui.routingTable->selectedItems().count() > 0)

 {

 ui.changeRoutingButton->setEnabled(true);

 }

}

//Handle change type combobox value

void

RelayMatrixWindow::TypeComboboxChangedSlot(int i)

{

 if (ui.relayTable->selectedItems().count() > 0)

 {

 ui.changeRelayButton->setEnabled(true);

 }

}

void RelayMatrixWindow::relayComboboxChangedSlot(int i)

{

 int rowCount = ui.relayTable->rowCount();

 Appendices

81

 std::string name = ui.relayComboBox->currentText().toStdString();

 std::string type;

 for (size_t i = 0; i < rowCount; i++)

 {

 if (name == ui.relayTable->item(i,0)->text().toStdString())

 {

 type = ui.relayTable->item(i, 1)->text().toStdString();

 break;

 }

 }

 ui.relayPosComboBox->clear();

 for (int i : uiHandler->GetPositions(type))

 {

 ui.relayPosComboBox->addItem(QString::fromStdString(std::to_string(i)));

 }

}

//Handle import data action

void

RelayMatrixWindow::ImportConfigSlot()

{

 std::string path = ui.importEdit->text().toStdString();

 int import = 0;

 QMessageBox msg;

 msg.setText("Importing data replaces all previous data in the software. \nAre
you sure you want to continue?");

 msg.setStandardButtons(QMessageBox::Ok | QMessageBox::Cancel);

 msg.setWindowTitle("Confirm action");

 msg.setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding);

 //msg.setStyleSheet("QPushButton{color: E3E3E3; background-color:
qlineargradient(x1 : 0, y1 : 0, x2 : 0, y2 : 1, stop : 0 #ffff44, stop:1
#545444);} QLabel{color: #E3E3E3; font: bold 12px;} QMessageBox{background-color:
#242424; }");

 ValidationCheck check;

 int ret = msg.exec();

 switch (ret) {

 case QMessageBox::Ok:

 check = uiHandler->ImportData(path);

 Appendices

82

 if (check.isValid == true)

 {

 UpdateTables();

 if (!check.errorMessage.empty())

 {

 popupWindow = new PopupWindow(this);

 popupWindow->SetMessage("Import complete. \nThe following
relay(s) and Routing(s) had errors and were discarded:\n" + check.errorMessage);

 popupWindow->ShowPopup();

 }

 }

 else

 {

 popupWindow = new PopupWindow(this);

 popupWindow->SetMessage("Import failed. Make sure filepath is correct
and includes extension (.xml or .dxf)");

 popupWindow->ShowPopup();

 }

 break;

 case QMessageBox::Cancel:

 return;

 break;

 }

}

//Handle export data action

void

RelayMatrixWindow::ExportConfigSlot()

{

 ui.exportLabel->setVisible(false);

 QMessageBox msg;

 msg.setText("Exporting XML file. This will replace any existing file with the
same name at target location. \nAre you sure you want to continue?");

 msg.setStandardButtons(QMessageBox::Ok | QMessageBox::Cancel);

 msg.setWindowTitle("Confirm export");

 msg.setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding);

 std::string path = ui.exportPathEdit->text().toStdString();

 std::string logicalName = ui.logicalNameEdit->text().toStdString();

 Appendices

83

 std::string functionalName = ui.functionalNameEdit->text().toStdString();

 int signs = 0;

 int ret = msg.exec();

 switch (ret) {

 case QMessageBox::Ok:

 signs = uiHandler->ExportData(path, logicalName, functionalName);

 if (signs < 100)

 {

 popupWindow = new PopupWindow(this);

 popupWindow->SetMessage("XML export error. Not enough data to
print.");

 popupWindow->ShowPopup();

 }

 else

 {

 ui.exportLabel->setVisible(true);

 ui.exportLabel->setText(QString::fromStdString("XML export printed "
+ std::to_string(signs) + " signs"));

 }

 break;

 case QMessageBox::Cancel:

 return;

 break;

 }

}

//Handle add relay data action

void

RelayMatrixWindow::AddRelaySlot()

{

 int rowCount = ui.relayTable->rowCount();

 int columnCount = ui.relayTable->columnCount();

 std::string nameString = ui.relayNameEdit->text().simplified().toStdString();

 std::string typeString = ui.relayTypeComboBox->currentText().toStdString();

 std::string dutPosString = ui.relayDutPosEdit-
>text().simplified().toStdString();

 Appendices

84

 std::string moduleString = ui.relayModuleEdit-
>text().simplified().toStdString();

 std::string bankString = ui.relayBankEdit->text().simplified().toStdString();

 std::string relaySWString = ui.relaySWEdit-
>text().simplified().toStdString();

 std::vector<std::string> stringValues = { nameString, typeString,
dutPosString, moduleString, bankString, relaySWString };

 ValidationCheck check = uiHandler->AddRelay(stringValues);

 if (check.isValid)

 {

 //update gui

 UpdateTables();

 }

 else

 {

 //error message

 popupWindow = new PopupWindow(this);

 popupWindow->SetMessage(check.errorMessage);

 popupWindow->ShowPopup();

 }

 ui.changeRelayButton->setDisabled(true);

}

//Handle delete relay data action

void

RelayMatrixWindow::DeleteRelaySlot()

{

 QList<QTableWidgetItem*> items = ui.relayTable->selectedItems();

 if (items.isEmpty())

 {

 popupWindow = new PopupWindow(this);

 popupWindow->SetMessage("No Relay selected");

 popupWindow->ShowPopup();

 return;

 }

 std::string name = items.at(0)->text().toStdString();

 Appendices

85

 if (uiHandler->DeleteRelay(name))

 {

 int row = items.at(0)->row();

 ui.relayTable->removeRow(row);

 ui.relayComboBox->removeItem(row);

 }

 ui.changeRelayButton->setDisabled(true);

}

//Handle change relay data action

void

RelayMatrixWindow::UpdateRelaySlot()

{

 QList<QTableWidgetItem*> items = ui.relayTable->selectedItems();

 int row = items.at(0)->row();

 if (items.isEmpty())

 {

 popupWindow = new PopupWindow(this);

 popupWindow->SetMessage("No Relay selected");

 popupWindow->ShowPopup();

 return;

 }

 std::string nameString = ui.relayNameEdit->text().simplified().toStdString();

 std::string typeString = ui.relayTypeComboBox->currentText().toStdString();

 std::string dutPosString = ui.relayDutPosEdit-
>text().simplified().toStdString();

 std::string moduleString = ui.relayModuleEdit-
>text().simplified().toStdString();

 std::string bankString = ui.relayBankEdit->text().simplified().toStdString();

 std::string relaySWString = ui.relaySWEdit-
>text().simplified().toStdString();

 std::vector<std::string> oldData;

 for(QTableWidgetItem* item : items)

 {

 std::string text = item->text().toStdString();

 oldData.emplace_back(text);

 }

 Appendices

86

 std::vector<std::string> newData = { nameString, typeString, dutPosString,
moduleString, bankString, relaySWString };

 ValidationCheck check = uiHandler->UpdateRelay(newData, oldData);

 if (!check.isValid)

 {

 popupWindow = new PopupWindow(this);

 popupWindow->SetMessage(check.errorMessage);

 popupWindow->ShowPopup();

 return;

 }

 else

 {

 int columnCount = ui.relayTable->columnCount();

 for (size_t i = 0; i < items.count(); i++)

 {

 items.at(i)->setText(QString::fromStdString(newData.at(i)));

 }

 if (newData.at(0) != oldData.at(0))

 {

 ui.relayComboBox->setItemText(row,
QString::fromStdString(newData.at(0)));

 }

 }

 ui.changeRelayButton->setDisabled(true);

}

//Handle add routing data action

void

RelayMatrixWindow::AddRoutingSlot()

{

 int rowCount = ui.routingTable->rowCount();

 int columnCount = ui.routingTable->columnCount();

 std::string nameString = ui.routingNameEdit-
>text().simplified().toStdString();

 std::string dutPosString = ui.routingDutPosEdit-
>text().simplified().toStdString();

 std::string channelNameString = ui.nameEdit-
>text().simplified().toStdString();

 Appendices

87

 std::string relayRoutingString = ui.relayRoutingEdit-
>text().simplified().toStdString();

 std::vector<std::string> stringValues = { nameString, dutPosString,
channelNameString, relayRoutingString };

 ValidationCheck check = uiHandler->AddRouting(stringValues);

 if (check.isValid)

 {

 ui.routingTable->insertRow(rowCount);

 QTableWidgetItem* name = new QTableWidgetItem();

 QTableWidgetItem* dutPos = new QTableWidgetItem();

 QTableWidgetItem* channelName = new QTableWidgetItem();

 QTableWidgetItem* relayRouting = new QTableWidgetItem();

 name->setText(ui.routingNameEdit->text().simplified());

 dutPos->setText(ui.routingDutPosEdit->text().simplified());

 channelName->setText(ui.nameEdit->text().simplified());

 relayRouting->setText(ui.relayRoutingEdit->text().simplified());

 std::vector<QTableWidgetItem*> fields = { name, dutPos, channelName,
relayRouting };

 for (size_t i = 0; i < columnCount; i++)

 {

 ui.routingTable->setItem(rowCount, i, fields.at(i));

 }

 }

 else

 {

 popupWindow = new PopupWindow(this);

 popupWindow->SetMessage(check.errorMessage);

 popupWindow->ShowPopup();

 }

}

//Handle delete routing data action

void

RelayMatrixWindow::DeleteRoutingSlot()

 Appendices

88

{

 QList<QTableWidgetItem*> items = ui.routingTable->selectedItems();

 if (items.isEmpty())

 {

 popupWindow = new PopupWindow(this);

 popupWindow->SetMessage("No Routing selected");

 popupWindow->ShowPopup();

 return;

 }

 int row = items.at(0)->row();

 if (uiHandler->DeleteRouting(row))

 {

 ui.routingTable->removeRow(row);

 }

 ui.changeRoutingButton->setDisabled(true);

}

//Handle change routing data action

void

RelayMatrixWindow::UpdateRoutingSlot()

{

 QList<QTableWidgetItem*> items = ui.routingTable->selectedItems();

 if (items.isEmpty())

 {

 popupWindow = new PopupWindow(this);

 popupWindow->SetMessage("No Relay selected");

 popupWindow->ShowPopup();

 return;

 }

 std::string nameString = ui.routingNameEdit-
>text().simplified().toStdString();

 std::string dutPosString = ui.routingDutPosEdit-
>text().simplified().toStdString();

 std::string channelNameString = ui.nameEdit-
>text().simplified().toStdString();

 std::string relayRoutingString = ui.relayRoutingEdit-
>text().simplified().toStdString();

 std::vector<std::string> oldData;

 Appendices

89

 for (QTableWidgetItem* item : items)

 {

 std::string text = item->text().simplified().toStdString();

 oldData.emplace_back(text);

 }

 std::vector<std::string> newData = { nameString, dutPosString,
channelNameString, relayRoutingString };

 int row = items.at(0)->row();

 ValidationCheck check = uiHandler->UpdateRouting(newData, oldData, row);

 if (!check.isValid)

 {

 popupWindow = new PopupWindow(this);

 popupWindow->SetMessage(check.errorMessage);

 popupWindow->ShowPopup();

 return;

 }

 else

 {

 int columnCount = ui.routingTable->columnCount();

 for (size_t i = 0; i < items.count(); i++)

 {

 items.at(i)->setText(QString::fromStdString(newData.at(i)));

 }

 }

 ui.changeRoutingButton->setDisabled(true);

}

//Handle add relayrouting data action

void

RelayMatrixWindow::AddRelayRoutingSlot()

{

 QString relayRouting;

 QString newString;

 relayRouting = ui.relayRoutingEdit->text();

 relayRouting = relayRouting.trimmed();

 Appendices

90

 if (relayRouting.isEmpty())

 {

 relayRouting = ui.relayComboBox->currentText() + "_" +
ui.relayPosComboBox->currentText();

 }

 else if(relayRouting.endsWith(","))

 {

 newString = " " + ui.relayComboBox->currentText() + "_" +
ui.relayPosComboBox->currentText();

 relayRouting += newString;

 }

 else

 {

 newString = ", " + ui.relayComboBox->currentText() + "_" +
ui.relayPosComboBox->currentText();

 relayRouting += newString;

 }

 ui.relayRoutingEdit->setText(relayRouting);

 ui.changeRoutingButton->setEnabled(true);

}

 Appendices

91

Appendix J Example XML configuration
file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<test_setup>

 <jigs>

 <!---->

 <Relay_matrix>

 <matrix>

 <logical_name>RF_RELAY_MATRIX_1</logical_name>

 <port>

 <functional_name>FJ_RF_RELAY_MATRIX_1</functional_name>

 <dut_pos>1</dut_pos>

 </port>

 </matrix>

 <relay>

 <name>K01</name>

 <type>AG_87206C_26_5GHZ_6W</type>

 <controller>

 <functional_name>F_Relay_Controller</functional_name>

 <dut_pos>1</dut_pos>

 <module>1</module>

 <bank>1</bank>

 <relaysw>1</relaysw>

 </controller>

 <relay_pos>

 <name>K01_0</name>

 <relay_position>0</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K01_1</name>

 <relay_position>1</relay_position>

 Appendices

92

 </relay_pos>

 <relay_pos>

 <name>K01_2</name>

 <relay_position>2</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K01_3</name>

 <relay_position>3</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K01_4</name>

 <relay_position>4</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K01_5</name>

 <relay_position>5</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K01_6</name>

 <relay_position>6</relay_position>

 </relay_pos>

 </relay>

 <relay>

 <name>K02</name>

 <type>AG_87206B_20GHZ_6W</type>

 <controller>

 <functional_name>F_Relay_Controller</functional_name>

 <dut_pos>2</dut_pos>

 <module>2</module>

 <bank>2</bank>

 <relaysw>2</relaysw>

 </controller>

 <relay_pos>

 Appendices

93

 <name>K02_0</name>

 <relay_position>0</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K02_1</name>

 <relay_position>1</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K02_2</name>

 <relay_position>2</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K02_3</name>

 <relay_position>3</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K02_4</name>

 <relay_position>4</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K02_5</name>

 <relay_position>5</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K02_6</name>

 <relay_position>6</relay_position>

 </relay_pos>

 </relay>

 <relay>

 <name>K03</name>

 <type>AG_87204B_20GHZ_4W</type>

 <controller>

 <functional_name>F_Relay_Controller</functional_name>

 Appendices

94

 <dut_pos>3</dut_pos>

 <module>3</module>

 <bank>3</bank>

 <relaysw>3</relaysw>

 </controller>

 <relay_pos>

 <name>K03_0</name>

 <relay_position>0</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K03_1</name>

 <relay_position>1</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K03_2</name>

 <relay_position>2</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K03_3</name>

 <relay_position>3</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K03_4</name>

 <relay_position>4</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K03_5</name>

 <relay_position>5</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K03_6</name>

 <relay_position>6</relay_position>

 </relay_pos>

 </relay>

 Appendices

95

 <relay>

 <name>K04</name>

 <type>AG_87204C_26_5GHZ_4W</type>

 <controller>

 <functional_name>F_Relay_Controller</functional_name>

 <dut_pos>4</dut_pos>

 <module>4</module>

 <bank>4</bank>

 <relaysw>4</relaysw>

 </controller>

 <relay_pos>

 <name>K04_0</name>

 <relay_position>0</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K04_1</name>

 <relay_position>1</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K04_2</name>

 <relay_position>2</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K04_3</name>

 <relay_position>3</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K04_4</name>

 <relay_position>4</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K04_5</name>

 <relay_position>5</relay_position>

 Appendices

96

 </relay_pos>

 <relay_pos>

 <name>K04_6</name>

 <relay_position>6</relay_position>

 </relay_pos>

 </relay>

 <relay>

 <name>K05</name>

 <type>AG_87104B_20_GHZ_4W</type>

 <controller>

 <functional_name>F_Relay_Controller</functional_name>

 <dut_pos>5</dut_pos>

 <module>5</module>

 <bank>5</bank>

 <relaysw>5</relaysw>

 </controller>

 <relay_pos>

 <name>K05_0</name>

 <relay_position>0</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K05_1</name>

 <relay_position>1</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K05_2</name>

 <relay_position>2</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K05_3</name>

 <relay_position>3</relay_position>

 </relay_pos>

 <relay_pos>

 Appendices

97

 <name>K05_4</name>

 <relay_position>4</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K05_5</name>

 <relay_position>5</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K05_6</name>

 <relay_position>6</relay_position>

 </relay_pos>

 </relay>

 <relay>

 <name>K06</name>

 <type>HP_8765D_40_GHZ_2W</type>

 <controller>

 <functional_name>F_Relay_Controller</functional_name>

 <dut_pos>6</dut_pos>

 <module>6</module>

 <bank>6</bank>

 <relaysw>6</relaysw>

 </controller>

 <relay_pos>

 <name>K06_0</name>

 <relay_position>0</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K06_1</name>

 <relay_position>1</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K06_2</name>

 <relay_position>2</relay_position>

 Appendices

98

 </relay_pos>

 <relay_pos>

 <name>K06_3</name>

 <relay_position>3</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K06_4</name>

 <relay_position>4</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K06_5</name>

 <relay_position>5</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K06_6</name>

 <relay_position>6</relay_position>

 </relay_pos>

 </relay>

 <relay>

 <name>K07</name>

 <type>AG_87106D_40_GHZ_6W</type>

 <controller>

 <functional_name>F_Relay_Controller</functional_name>

 <dut_pos>7</dut_pos>

 <module>7</module>

 <bank>7</bank>

 <relaysw>7</relaysw>

 </controller>

 <relay_pos>

 <name>K07_0</name>

 <relay_position>0</relay_position>

 </relay_pos>

 <relay_pos>

 Appendices

99

 <name>K07_1</name>

 <relay_position>1</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K07_2</name>

 <relay_position>2</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K07_3</name>

 <relay_position>3</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K07_4</name>

 <relay_position>4</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K07_5</name>

 <relay_position>5</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K07_6</name>

 <relay_position>6</relay_position>

 </relay_pos>

 </relay>

 <relay>

 <name>K08</name>

 <type>AG_87104B_20_GHZ_4W</type>

 <controller>

 <functional_name>F_Relay_Controller</functional_name>

 <dut_pos>8</dut_pos>

 <module>8</module>

 <bank>8</bank>

 <relaysw>8</relaysw>

 Appendices

100

 </controller>

 <relay_pos>

 <name>K08_0</name>

 <relay_position>0</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K08_1</name>

 <relay_position>1</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K08_2</name>

 <relay_position>2</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K08_3</name>

 <relay_position>3</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K08_4</name>

 <relay_position>4</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K08_5</name>

 <relay_position>5</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K08_6</name>

 <relay_position>6</relay_position>

 </relay_pos>

 </relay>

 <relay>

 <name>K09</name>

 <type>AG_87204C_26_5GHZ_4W</type>

 <controller>

 Appendices

101

 <functional_name>F_Relay_Controller</functional_name>

 <dut_pos>9</dut_pos>

 <module>9</module>

 <bank>9</bank>

 <relaysw>9</relaysw>

 </controller>

 <relay_pos>

 <name>K09_0</name>

 <relay_position>0</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K09_1</name>

 <relay_position>1</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K09_2</name>

 <relay_position>2</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K09_3</name>

 <relay_position>3</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K09_4</name>

 <relay_position>4</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K09_5</name>

 <relay_position>5</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K09_6</name>

 <relay_position>6</relay_position>

 Appendices

102

 </relay_pos>

 </relay>

 <relay>

 <name>K10</name>

 <type>HP_8765D_40_GHZ_2W</type>

 <controller>

 <functional_name>F_Relay_Controller</functional_name>

 <dut_pos>10</dut_pos>

 <module>10</module>

 <bank>10</bank>

 <relaysw>10</relaysw>

 </controller>

 <relay_pos>

 <name>K10_1</name>

 <relay_position>1</relay_position>

 </relay_pos>

 <relay_pos>

 <name>K10_2</name>

 <relay_position>2</relay_position>

 </relay_pos>

 </relay>

 <routing>

 <functional_name>CH 1</functional_name>

 <config>

 <name>Dut Input</name>

 <relay_pos>K01_1, K02_1</relay_pos>

 </config>

 </routing>

 <routing>

 <functional_name>CH 2</functional_name>

 <config>

 <name>Dut Input</name>

 <relay_pos>K01_2, K03_1</relay_pos>

 Appendices

103

 </config>

 </routing>

 <routing>

 <functional_name>CH 3</functional_name>

 <config>

 <name>Dut Input</name>

 <relay_pos>K01_2, K03_2</relay_pos>

 </config>

 </routing>

 <routing>

 <functional_name>CH 4</functional_name>

 <config>

 <name>Dut Input</name>

 <relay_pos>K01_2, K04_3</relay_pos>

 </config>

 </routing>

 <routing>

 <functional_name>CH 5</functional_name>

 <config>

 <name>Dut Input</name>

 <relay_pos>K01_2, K05_2</relay_pos>

 </config>

 </routing>

 <routing>

 <functional_name>CH 6</functional_name>

 <config>

 <name>Dut Output</name>

 <relay_pos>K01_3, K06_2</relay_pos>

 </config>

 </routing>

 <routing>

 <functional_name>CH 7</functional_name>

 <config>

 <name>Dut Output</name>

 Appendices

104

 <relay_pos>K01_3, K07_2</relay_pos>

 </config>

 </routing>

 <routing>

 <functional_name>CH 8</functional_name>

 <config>

 <name>Dut Output</name>

 <relay_pos>K01_3, K08_2</relay_pos>

 </config>

 </routing>

 <routing>

 <functional_name>CH 9</functional_name>

 <config>

 <name>Dut Output</name>

 <relay_pos>K01_3, K09_2</relay_pos>

 </config>

 </routing>

 <routing>

 <functional_name>CH 10</functional_name>

 <config>

 <name>Dut Output</name>

 <relay_pos>K01_3, K10_2</relay_pos>

 </config>

 </routing>

 </Relay_matrix>

 </jigs>

</test_setup>

