
Faculty of Technology, Natural Sciences, and Maritime Sciences

CS5000 - Master’s Thesis

Study programme: MACSI

Spring 2024

Kent S. ODDE/ Candidate number: 8504

Analysis and Optimization of
Real-Time Systems on Altera Cyclone V
with Linux

University of South-Eastern Norway
Faculty of Technology, Natural Sciences, and Maritime Sciences
Department of Science and Industry Systems
PO Box 235
NO-3603 Kongsberg, Norway

http://www.usn.no

© 2024 Kent S. ODDE

This thesis is worth 60 study points

Analysis and Optimization of
Real-Time Systems on Altera Cyclone

V with Linux

Master’s Thesis in Computer Science

Kent S. ODDE

Academic Supervisor
Prof. António L. L. RAMOS

Industry Supervisor
Eivind JACOBSEN

University of South-Eastern Norway

Faculty of Technology, Natural Sciences and Maritime Sciences

Department of Science and Industry Systems

Campus Kongsberg

May 2024

i

Abstract
This thesis aims to enable a planned effort to port a legacy system to a new hardware
and software platform. The target platform is an Altera Cyclone V running a custom
Linux distribution shared across several products within the company where the au-
thor is employed. Although not an inherent real-time system, the legacy system has
several real-time constraints that must be met on the new platform to function as in-
tended. Despite being a general-purpose operating system, many approaches exist to
improve the real-time capabilities of Linux, such as the PREEMPT_RT patchset. This
study’s primary focus is investigating the viability of porting the legacy system to the
new platform and determining the best approach for meeting the system’s temporal
requirements.

The first part of the thesis focuses on benchmarking a generic Linux system with dif-
ferent kernel settings to evaluate the impact of using different preemption models
and scheduling policies. The second part analyzes the legacy system’s requirements
and mechanics. Further, it evaluates, implements, and tests software mechanisms that
mimic the legacy system’s time-critical functionality on the new platform.

This study showed that the PREEMPT_RT patch can improve the real-time capabilities
of Linux but also introduces issues that can negatively impact the system. Additionally,
it shows that the mainline kernel performs reasonably well and can be satisfactory for
many systems.

The thesis concludes that the porting effort is feasible, potentially without requiring
particular measures. The results show that the real-time constraints of the legacy sys-
tem are not stringent enough to warrant the use of PREEMPT_RT. However, a pre-
emptible low-latency kernel and real-time scheduling policies are recommended to
improve the system’s reliability and stability. The thesis also presents several recom-
mendations regarding the target application’s design and mechanics. Future work in-
cludes porting and testing the legacy system on the new platform and implementing
the recommended modifications to the system.

ii

Acknowledgements

I would like to express my gratitude to my academic supervisor, Professor António
L. L. Ramos, at the University of South-Eastern Norway. He has been a tremendous
source of encouragement and has guided and supported me throughout the process of
writing this thesis.

Many thanks to my industry supervisor, Eivind Jacobsen, for suggesting the topic of
this thesis, as well as my line manager, Ricardo Marquez, for providing me with the
necessary resources to work on it. Further, I would like to thank Eldor Rødseth, Arne
Lie, and Helge Rustad for their help in shaping the problem statement and for sharing
their knowledge. Although challenging, delving into this particular topic has proven
to be an incredibly enriching and enlightening experience.

My sincere appreciation also goes to my classmates with whom I’ve shared the ups
and downs of the past year, especially Stian Onarheim, who has been a great source of
inspiration and motivation.

Thanks should also go to family and friends who have supported me throughout this
process. However, a special acknowledgment goes to my partner, Kristine, for her
endless patience, support, and encouragement. Not only throughout the thesis year
but for my entire venture into higher education.

Lastly, I would like to thank my mother. For everything.

Kent S. Odde
Kongsberg, Norway, May 24, 2024

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Objectives and Deliverables . 2
1.3 Intellectual Property Considerations . 2
1.4 Outline . 3

2 Background 4
2.1 Real-Time Systems . 4
2.2 Linux . 5

2.2.1 Embedded Linux . 5
2.2.2 Scheduling . 7

Deadline Scheduling . 9
Real-Time Scheduling . 9
Completely Fair Scheduler . 9
Earliest Eligable Virtual Deadline First 10
Kernel Threads & CPU Modes . 10

2.2.3 Real-Time Linux . 11
Co-Kernel . 12
Single-Kernel . 13

2.3 Target System . 14
2.3.1 Hardware . 17
2.3.2 Software . 18
2.3.3 Real-Time Constraints . 18

3 PREEMPT_RT 20
3.1 Literature Review Methodology . 20
3.2 High-Level Overview . 22
3.3 Main Features . 22

3.3.1 Fully Preemptible Kernel . 23
3.3.2 High-Resolution Timers . 25
3.3.3 Threaded IRQs . 25
3.3.4 Priority Inheritance . 28
3.3.5 Preemptible RCU . 28
3.3.6 Full Tickless Operation and CPU isolation 29

3.4 Current State and Mainlining . 30
3.5 Performance and Real-Time Capabilities 30

iv

3.5.1 Latency . 30
3.5.2 Determinism . 31
3.5.3 Throughput Degradation . 32

3.6 Tuning and Best Practices . 32
3.6.1 Workload Analysis . 33
3.6.2 Kernel Compile-Time Settings . 33
3.6.3 Policies, Priorities, and Throttling 33
3.6.4 Measuring Time and Sleeping . 34
3.6.5 Managing Memory . 35
3.6.6 Broken Modules and Subsystems 36
3.6.7 Loadable Kernel Modules . 36

3.7 Summary . 37

4 Methodology and Design 38
4.1 Platforms and Tools . 39

4.1.1 Hardware . 39
4.1.2 Board Support Package . 39

Toolchain . 39
U-Boot . 40
Linux Kernel . 40
Root Filesystem . 40
Running the BSP . 41

4.2 Test Setups . 41
4.2.1 Comparative Setup Configurations 41
4.2.2 Stressors . 42

4.3 Platform Baseline Tests . 43
4.3.1 High-Resolution Timers Verification 43
4.3.2 Cyclictest . 43
4.3.3 Throughput Test . 44
4.3.4 Preemption Test . 45
4.3.5 Memory Lock Test . 45

4.4 Target System Analysis . 46
4.4.1 Real Time vs. Real Fast . 46
4.4.2 Periodic vs Aperiodic . 46
4.4.3 Memory Management . 48
4.4.4 Single-Threaded vs Multi-Threaded 48
4.4.5 Requirements . 48

Aperiodic . 49
Periodic . 49
Transmitting . 50

4.4.6 Design of System Under Test . 50
Reception Pipeline . 50
Transmission Pipeline . 53

4.4.7 Output . 55
4.4.8 FPGA Design . 56

4.5 Target System Experiments . 57
4.5.1 Dynamic Memory Allocation . 57
4.5.2 Periodic Execution Test . 57

v

4.5.3 Shared Memory Interaction . 61
4.5.4 Generic Netlink Interface . 63
4.5.5 Kernel Thread Event Handling . 65
4.5.6 Full Test . 66

Special Considerations for Transmission Test 67
4.5.7 Production Environment Test . 67

4.6 Summary . 68

5 Test Results and Recommendations 69
5.1 Platform Baseline Tests . 69

5.1.1 High-Resolution Timers Verification 69
5.1.2 Cyclictest . 69
5.1.3 Throughput Test . 73
5.1.4 Preemption Test . 77

Interrupt Latency . 81
Kernel Preemption Test . 81

5.1.5 Memory Lock Test . 84
5.1.6 Discussion . 85

5.2 Target System Tests . 86
5.2.1 Dynamic Memory Allocation . 86
5.2.2 Periodic Execution Test . 88
5.2.3 Shared Memory Test . 92

512 Byte Packets . 95
5.2.4 Generic Netlink Test . 97
5.2.5 Kernel Thread Event Handling . 99
5.2.6 Full Test RX . 100
5.2.7 Full Test TX . 103

Setup 1 . 103
Setup 2 . 105
Setup 3 . 107
Comparison . 108

5.2.8 Production Environment Test . 109
5.3 Recommendations for the Target System 111

5.3.1 If it Ain’t Broke, Don’t Fix it? . 111
5.3.2 Real-Time Scheduling Policies . 111
5.3.3 Memory . 112
5.3.4 kmemleak . 112
5.3.5 Preemption Model . 112
5.3.6 Modifications to the Legacy Application 113

5.4 Summary . 114

6 Conclusion and Future Work 115
6.1 Conclusion . 115
6.2 Future Work . 116

A BSP Configuration 117
A.1 Crosstool-NG Configuration . 117
A.2 Linux Configuration . 117
A.3 Preemptible Mainline Kernel Configuration 120

vi

A.4 Linux-stable-rt Configuration . 121

B Stressor Configurations 122

C Additional Result Data 125
C.1 Baseline Tests . 125

C.1.1 High-Resolution Timers Verification 125
C.1.2 Cyclictest . 130
C.1.3 Throughput Test . 133
C.1.4 Preemption Test . 136
C.1.5 Memory Lock Test . 138

C.2 Target System Tests . 139
C.2.1 Dynamic Allocation . 139
C.2.2 Periodic Thread Mechanisms . 141
C.2.3 Shared Memory Test . 152
C.2.4 Event-Driven vs Polled Kthread 160
C.2.5 Generic Netlink Test . 161
C.2.6 Full Test RX . 163
C.2.7 Full Test TX . 168
C.2.8 Production Environment Test . 178

D Miscellaneous 180

Bibliography 181

vii

List of Figures

2.1 Embedded Linux boot sequence. 6
2.2 Illustration of kernel configuration through menuconfig. 7
2.3 Simplified state machine for tasks. 8
2.4 Preemption of user mode vs kernel mode task. 12
2.5 Co-kernel vs single-kernel approach. 13
2.6 Target system. 14
2.7 High-level architecture of the target system. 15
2.8 HPS-FPGA shared memory interface. 16
2.9 Simplified Altera Cyclone V block diagram [38] Copyright ©2017, IEEE. 17

3.1 Structured literature search. 21
3.2 Refining search results. 22
3.3 Preemptible kernel. 23
3.4 Preemption models. 24
3.5 Fully preemptible kernel. 24
3.6 Traditional interrupts. 26
3.7 Top- and bottom-half interrupt processing. 26
3.8 Threaded bottom-half. 27
3.9 Forced threading. 27

4.1 Design of reception pipeline. 51
4.2 Design of transmission pipeline. 53
4.3 Quartus high-level platform overview. 56
4.4 Main routine of shared memory test. 62
4.5 Generic Netlink throughput test. 64

5.1 Cyclictest results, no load. 70
5.2 Cyclictest results, Stress-NG 25%. 71
5.3 Cyclictest with SCHED_FIFO. 71
5.4 Cyclictest on the company’s production kernel. 73
5.5 Throughput comparison across different preemption models. 73
5.6 Hackbench throughput comparison across preemption models using Unix

sockets and pipes. 74
5.7 Hackbench throughput comparison across preemption models using Unix

sockets and pipes, scheduled under SCHED_FIFO. 75
5.8 Throughput comparison of Iperf across different preemption models. . . 76
5.9 Throughput comparison of 7z across different preemption models. . . . 76
5.10 Throughput comparison of 7z across different preemption models mea-

sured in MIPS. 77
5.11 Preemption count of CPU-intensive task under SCHED_OTHER. 77
5.12 Preemption count of CPU-intensive task under SCHED_FIFO. 78

viii

5.13 CPU migrations detected using eBPF. 80
5.14 CPU-intensive task preempting Iperf. 80
5.15 Premptions of kernel tasks by Cyclictest. 83
5.16 Premptions of kernel tasks by Cyclictest using PREEMPT_RT. 84
5.17 Latencies of soft page faults. 85
5.18 Dynamic memory allocation results. 87
5.19 Worst case latencies per dynamic memory operation. 88
5.20 Avg latency of periodic execution test, at 25% load. 89
5.21 Max latency of periodic execution test, at 25% load. 89
5.22 Latency distribution of setitimer with SCHED_OTHER and 25% load. . . 90
5.23 Latency distribution of periodic mechanisms with SCHED_FIFO and

25% load. 91
5.24 Average CPU load of periodic execution mechanisms. 92
5.25 Shared memory test, average CPU load. 93
5.26 Shared memory test, preemption count. 93
5.27 Shared memory test, max buffer size . 93
5.28 Correlation between latency and max buffer size for each shared mem-

ory test configuration. 94
5.29 Shared memory test, 512-byte packets, average CPU Load. 95
5.30 Shared memory test, 512-byte packets, preemption count. 95
5.31 Shared memory test, 512-byte packets, max buffer size. 96
5.32 Shared memory test, execution times compared under SCHED_FIFO

with Stress-NG 75%. 96
5.33 Shared memory test, latencies compared under SCHED_FIFO and Iperf

load. 97
5.34 Execution time of kernel thread communication over Generic Netlink. . 98
5.35 Polled vs. event-Driven kernel worker, at different input event frequen-

cies. 99
5.36 Average execution time of full RX pipeline. 100
5.37 Maximum execution time of full RX pipeline. 100
5.38 Maximum execution time of full RX pipeline under SCHED_FIFO. . . . 101
5.39 Maximum buffer size of full RX pipeline. 101
5.40 Maximum buffer size of full RX pipeline, increased overhead. 102
5.41 Temporal data for full RX pipeline with increased overhead. 102
5.42 CPU load of full TX pipeline, setup 1, under Stress-NG 25% 104
5.43 Minimum buffer size in TX pipeline, setup 1 104
5.44 Average CPU load of full TX pipeline, setup 2 under Stress-NG 75% . . 105
5.45 Minimum buffer size of full TX pipeline, setup 2 with kernel thread un-

der SCHED_OTHER. 106
5.46 Minimum buffer size of full TX pipeline, setup 2 with kernel thread un-

der SCHED_FIFO. 106
5.47 Averge CPU load of full TX pipeline, setup 3 107
5.48 Minimum buffer size of full TX pipeline, setup 3 with kernel thread un-

der SCHED_FIFO. 107
5.49 Minimum buffer size of Full TX pipeline compared across setups with

75% load. 108
5.50 Number of underruns on Full TX pipeline compared across setups with

75% load. 108

ix

5.51 Latency distribution of the company’s production Linux system with no
forced preemption. 109

5.52 Latency distribution of the company’s production Linux system with
preemptive kernels. 109

5.53 CPU load average of background workload on the company’s produc-
tion Linux distribution. 110

5.54 CPU utilization of background workload on the company’s production
Linux distribution. 111

C.1 Cyclictest results with Stress-NG 75% and Iperf. 132
C.2 Duration of writing to dynamically allocated memory 139
C.3 Duration of freeing dynamically allocated memory 140
C.4 Latency distribution of periodic mechanisms with SCHED_OTHER and

25% load. 145
C.5 Latency distribution of periodic mechanisms with SCHED_OTHER and

75% load. 146
C.6 Latency distribution of periodic mechanisms with SCHED_FIFO and

75% load. 147
C.7 Latency distribution of periodic mechanisms with SCHED_OTHER, 25%

load and PREEMPT_RT. 148
C.8 Latency distribution of periodic mechanisms with SCHED_FIFO, 25%

load and PREEMPT_RT. 149
C.9 Latency distribution of periodic mechanisms with SCHED_OTHER, 75%

load and PREEMPT_RT. 150
C.10 Latency distribution of periodic mechanisms with SCHED_FIFO, 75%

load and PREEMPT_RT. 151

x

List of Tables

4.1 Versions of relevant software provided by Buildroot. 41
4.2 Versions of tools for building BSP artifacts. 41

C.1 Cyclictest results, no load . 130
C.2 Cyclictest results, Stress-NG 25% . 130
C.3 Cyclictest results, Stress-NG 75% . 131
C.4 Cyclictest results with Iperf load . 131
C.5 Cyclictest results, 800 kernel . 132
C.6 Throughput test initial results. 133
C.7 Throughput results, Hackbench . 133
C.8 Throughput results, Hackbench SCHED_FIFO 134
C.9 Throughput test Iperf and p7zip. 135
C.10 Preemption test results. 136
C.11 Preemption test results, with load. 136
C.12 Migrations detected during throughput test 137
C.13 Page fault test results. 138
C.14 Periodic execution test results. 141
C.15 Shared memory test results, 4 KiB packets. 152
C.16 Shared memory test results, 4 KiB packets Stress-NG 25%. 153
C.17 Shared memory test results, 4 KiB packets Stress-NG 75%. 154
C.18 Shared memory test results, 4 KiB packets with Iperf. 155
C.19 Shared memory test results, 512 B packets. 156
C.20 Shared memory test results, 512 B packets with Stress-NG 25%. 157
C.21 Shared memory test results, 512 B packets with Stress-NG 75%. 158
C.22 Shared memory test results, 512 B packets with Iperf. 159
C.23 Event-driven vs polled kernel worker . 160
C.24 Event-driven vs polled kernel worker, with Stress-NG 25% 160
C.25 Generic Netlink test results with SCHED_FIFO on kernel thread, no load 161
C.26 Generic Netlink test results with SCHED_FIFO on kernel thread, with

Stress-NG 25% . 161
C.27 Generic Netlink test results with SCHED_FIFO on kernel thread, with

Stress-NG 75% . 161
C.28 Generic Netlink test results with SCHED_FIFO on kernel thread, with

Iperf . 162
C.29 Full test RX, no load . 163
C.30 Full test RX, with Stress-NG 25% . 163
C.31 Full test RX, with Stress-NG 75% . 164
C.32 Full test RX, with Iperf . 164
C.33 Full test RX, increased overhead, no load 165
C.34 Full test RX, increased overhead, with Stress-NG 25% 166

xi

C.35 Full test RX, increased overhead, with Iperf 167
C.36 Full test TX, Setup 1, no load . 168
C.37 Full test TX, Setup 1, with Stress-NG 25% 168
C.38 Full test TX, Setup 1, with Stress-NG 75% 169
C.39 Full test TX, Setup 1, with Iperf. 169
C.40 Full test TX, Setup 2, no load . 170
C.41 Full test TX, Setup 2, with Stress-NG 25% 171
C.42 Full test TX, Setup 2, with Stress-NG 75% 173
C.43 Full test TX, Setup 2, with Iperf . 174
C.44 Full test TX, Setup 3, no load . 175
C.45 Full test TX, Setup 3, with Stress-NG 25% 176
C.46 Full test TX, Setup 3, with Stress-NG 75% 176
C.47 Full test TX, Setup 3, with Iperf. 177
C.48 Production environment latency results. 178
C.49 Production environment load results. 179

xii

Listings

3.1 Struct timespec definition [92]. 34
3.2 Example of manually pre-faulting heap memory. 36
4.1 Cyclictest baseline test configurations. 43
4.2 Throughput test workload parameters. 44
4.3 CPU intensive task, excerpt from preemption test. 45
4.4 Update function of reception pipeline. 52
4.5 Update function of transmission pipeline. 54
4.6 Command line dashboard of SUT. 55
4.7 Main routine of dynamic memory test. 57
4.8 Periodic task implemented with setitimer. 58
4.9 Periodic task implemented with nanosleep. 59
4.10 Periodic task implemented with deadline scheduling. 60
4.11 Periodic task implemented using condition variable with timeout. 61
4.12 Shared memory test. 63
4.13 Main routine of Generic Netlink throughput test. 64
4.14 Polling kernel worker. 65
4.15 Event-driven kernel worker. 66
5.1 Cyclictest on the company’s production kernel. 72
5.2 Cyclictest on the company’s production kernel, without kmemleak . . . 72
5.3 Iperf configuration for throughput test. 75
5.4 7z benchmark. 76
5.5 eBPF program to detect preempting task. 78
5.6 eBPF program to detect task migration. 79
5.7 Interrupt latency caused by CPU-intensive SCHED_FIFO task. 81
5.8 eBPF program to detect when preempting task executing in kernel mode. 82
A.1 Crosstool-NG configuration. 117
A.2 Linux kernel configuration. 117
A.3 Preemptible mainline kernel configuration diff 120
A.4 PREEMPT_RT kernel configuration diff 121
B.1 Stressor: Stress-NG 25%. 122
B.2 Stressor: Stress-NG 75%. 123
B.3 Stressor: Iperf. 123
B.4 Stressor: Hackbench. 124
C.1 Output of /proc/timerlist on 6.6.14-rt21. 125
D.1 Linux kernel, number of commits in 2023. 180

xiii

List of Abbreviations

.dtb Device Tree Blob

.rbf Raw Binary File
ACP Accelerated Coherency Port
ADC Analog-to-Digital Converter
AXI Advanced eXtensible Interface
BIOS Basic Input/Output System
BSP Board Support Package
CBS Constant Bandwidth Server
CFS Completely Fair Scheduler
CMA Continuous Memory Allocator
CPU Central processing unit
DAC Digital-to-Analog Converter
DL Deadline
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
EDS Earliest Deadline First
EEVDF Earliest, Eligible Virtual Deadline First
FIFO First-In, First-Out
FPGA Field-Programmable Gate Array
FPSoC Fully-Programmable System on Chip
FSF Free Software Foundation
GCC GNU Compiler Collection
GNU GNU’s Not Unix
HPS Hard Processor System
HR High-Resolution
HW Hardware
IPC Inter-Process Communication Mechanism
IP Internet Protocol
IRQ Interrupt Request
LKM Loadable Kernel Module
NFS Network File System
OSADL Open Source Automation Development Lab
OS Operating System
POSIX Portable Operating System Interface
RAM Random Access Memory
RCU Read Copy Update
ROM Read-Only Memory
RR Round-Robin
RTOS Real-Time Operating System
RT Real-Time

xiv

RX Receive
SD Secure Digital
SDRAM Synchronous Dynamic Random Access Memory
SMM System Manager Mode
SMP Symmetric Multi-Processing
SUT System Under Test
SW Software
SoC System on Chip
TCP Transmission Control Protocol
TFTP Trivial File Transfer Protocol
TTY Teletypewriter
TX Transmit
VHDL Very High-Speed Integrated Circuit Hardware Description Language
WCET Worst-Case Execution Time

1

Chapter 1

Introduction

Linux is a general-purpose operating system, meaning its design maximizes through-
put [1]–[3]. Although this is desirable in most desktop and server systems, this is not
true for embedded devices running tasks with real-time constraints. Instead, it implies
that the operating system can have unbounded latency, resulting in a non-deterministic
system where the response time to an event or the wake-up time of a cyclic task cannot
be guaranteed [1], [2].

Several approaches and tools have evolved to enable the use of Linux in real-time
systems. The PREEMPT_RT patch is the most notable, which modifies the kernel to
increase its real-time capabilities [1], [3].

This thesis aims to enable a planned effort within the company at which the author
is employed1 to port a legacy real-time system to a new hardware (HW) and software
(SW) platform. The new platform is an Altera Cyclone V running a custom Linux
distribution shared across several of the company’s products.

The target system must meet several real-time requirements to function as intended
and achieve the desired performance. This thesis will consist of designing and imple-
menting a HW/SW system that mirrors the target system’s planned architecture and
data flow. Then, it will analyze whether its real-time requirements can be met under
different conditions with and without the PREEMPT_RT patch. Additional side-effects
of enabling kernel preemption will also be analyzed.

1.1 Motivation and Problem Statement

This project aims to implement software that mirrors the data flow of the target system
and then optimize it using available techniques. The focus will be on limiting the
kernel interference with the real-time tasks, analyzing and optimizing Inter-Process
Communication (IPC) mechanisms, and ensuring that any relevant Loadable Kernel
Modules (LKM) do not perform system calls with unbounded latencies. This outcome
will hopefully be a factor in the success of the target system.

A secondary aim of the project is to discover the potential implications of applying a
PREEMPT_RT patched kernel to the company’s other systems. A known side effect of
applying this patch is that the overall throughput decreases [1]. However, the desire to

1Henceforth referred to as the company

Chapter 1. Introduction 2

use a single OS constellation for all systems warrants investigating how the patch will
affect existing systems.

The academic motivation for the project is that much of the research done within this
field has focused on comparing PREEMPT_RT to different co-kernel approaches [4],
[5]. The research on PREEMPT_RT often uses generic test suites [6]–[8] or focuses on
particular uses or mechanisms [3], [4], [9]. Many researchers have also failed to explain
how they have configured their systems [1]. The main interest has been to see what
latencies it is theoretically possible to achieve using generic tools.

Rather than being a generic investigation into the capabilities of PREEMPT_RT, this
thesis will investigate how PREEMPT_RT affects a concrete HW/SW architecture, both
concerning the latencies of real-time tasks and the performance of other non-real-time
tasks. The results will help others consider the suitability of PREEMPT_RT for their
systems.

Although the System Under Test (SUT) mimics the data flow of the planned target
system, this architecture is typical for HW/SW co-designs in high data rate systems,
meaning that it can also benefit other applications in different fields.

1.2 Objectives and Deliverables

The objectives of this thesis work are:

1. A literature review on PREEMPT_RT

2. Implementation of a HW/SW co-design architecture, typical in high data rate
systems

3. Performance and real-time capability analysis of PREEMPT_RT

4. Propose kernel compile-time and run-time configurations for meeting real-time
and throughput requirements

5. Guidelines for real-time application development in the context of the SUT

The deliverables of this thesis are:

1. The final thesis report containing all the contributions mentioned above2.

2. The HW/SW co-design comprising the SUT will be made open-source3.

3. Any custom test suites developed will be made open-source3.

1.3 Intellectual Property Considerations

In order to keep the results of the study open and available to the research community,
this thesis does not utilize any intellectual property belonging to the company. The
hardware used is a commercially available development kit, and the software used

2Throughout the process of writing this thesis, Grammarly [10] was used to check the grammar and
spelling of the text. Grammarly’s suggestions to rephrase text were adhered to occasionally.

3Available in [11]

Chapter 1. Introduction 3

is either developed from scratch or open source. In some limited cases, the Linux
system used in company production environments is tested, but only to verify that the
findings in the thesis apply to their systems.

The existing legacy target system is the company’s proprietary intellectual property.
Therefore, its descriptions will be limited to what is necessary in order to understand
the thesis. However, the scope of this thesis is not to reverse-engineer the target sys-
tem for a new platform but to analyze the real-time capabilities of Linux on a similar
HW/SW architecture.

1.4 Outline

The rest of this thesis is outlined as described below:

• Chapter 2 introduces concepts and topics required to understand the main topics
of this thesis and its problem statement. It provides a high-level overview of real-
time systems and introduces Linux in the context of embedded systems. Further,
it discusses scheduling concepts in Linux and briefly introduces the mechanics
and requirements of the target system.

• Chapter 3 is a literature review with a focus on the PREEMPT_RT patchset. It
places PREEMPT_RT into a historical context and discusses the motivation be-
hind its development. Further, it examines the patchset’s main features and cur-
rent state before investigating its capabilities and limitations. Lastly, it identifies
best practices and recommendations found in the literature and relevant docu-
mentation.

• In chapter 4, the research methods of the thesis are discussed. The chapter ana-
lyzes the target system further and gives an overview of the system under test.
It also discusses the experiments designed for the thesis, including comparisons,
measures, and expectations.

• The results are presented and discussed in chapter 5, while chapter 6 offers rec-
ommendations about possible future work and concludes the thesis.

4

Chapter 2

Background

This chapter discusses topics and concepts critical for comprehending the thesis’ means,
goals, and outcomes.

2.1 Real-Time Systems

A real-time system is defined as a system that, to be considered correct, must not only
provide correct outputs but must do so at the correct time [12]. This means that a
deadline is imposed on the system to deliver an output, either cyclically or after an
event. The severity of breaking a deadline to produce an output is the usual way to
classify real-time systems. A system in which a single missed deadline can lead to loss
of human life or massive environmental damage is considered a hard real-time system.
Other classifications include firm and soft, but the literature differs slightly in how these
terms are defined and which of them they choose to include [1], [12]–[14].

This thesis will limit the classifications to hard and soft and use the following defini-
tions:

• Hard: A system in which a single missed deadline will lead to a complete system
failure [13], [14].

• Soft: A system in which one or more missed deadlines may only lead to degraded
performance or reduced general usefulness [13], [14].

No response can come instantaneously. All effects of a cause will have some delay,
termed latency in real-time literature. The variation in latency is called jitter [12]. Events
in computer systems can be periodic, aperiodic, or sporadic [12]. While the meaning of the
two former is obvious, sporadic events are aperiodic but with a lower or upper bound
on how often they may occur. In real-time systems, constraints limit the permitted
latency from an event occurring until its effects are observable. While one may be
concerned with the average latency, one often cares more about the worst case.

Real-time is an overloaded term and is often mistakingly confused with performance
[1], [15]. According to Stankovic - "..., the most important property of a real-time system
should be predictability; that is, its functional and timing behavior should be as deterministic
as necessary to satisfy system specifications." [15]. He goes on to clarify that while perfor-
mance can aid in meeting real-time constraints, it cannot guarantee it. On the contrary,
performance must often concede to meet the real-time constraints of the system [15],

Chapter 2. Background 5

[16]. Reghenzani et al. formulate the same in a more direct manner: [1] note: "Real time
does not mean computing as fast as possible, but as fast as required."

Real-time operating systems (RTOS) have evolved to make developing complex sys-
tems with real-time constraints easier than using a bare metal approach. [1]. An oper-
ating system’s job is to schedule how much time a task is given on the CPU, with the
lowest possible overhead, while providing fundamental mechanisms for task synchro-
nization and communication. An RTOS has the added requirement of being determin-
istic, guaranteeing the response times to an event. [1]

To achieve this, RTOSs are typically preemptive, provide mechanisms for prioritization
of tasks, and implement priority inheritance or other solutions to priority inversion for
synchronization primitives [17]

2.2 Linux

2.2.1 Embedded Linux

There is a general trend in the embedded computing domain toward placing more
functional requirements on products and an increased focus on energy consumption
[18]. At the same time, the complexity of hardware has increased, and the increasing
competition in many sectors has led to a desire for an ever shorter time to market.
This evolution has led to increased use of Commercial Off-The-Shelf (COTS) HW and
SW in the industry [1], [13]. Multicore CPUs and several caching layers also mean
that the requirements for simple RTOSs grow more extensive to enable systems to take
advantage of the increased HW capabilities [13].

Because of this, the use of Linux in embedded devices has increased dramatically over
the last two decades [1], [3], and it is today the most prevalent OS in the domain [19].
Linux is open source, has support for a wide range of architectures and hardware, as
well as large amounts of existing software, toolchains, and community support [13],
[14]. These advantages have led to reduced development costs and a shorter time to
market for businesses [1], [3]. The company’s efforts to align its products to the same
Linux-based SW platform highlight this fact.

Widely accepted knowledge forms the basis for the remainder of this subsection. There-
fore, citations are limited, but the information adheres to [14] and [13].

The sum of everything required to build and run a custom Linux distribution on a
hardware platform is called a Board Support Package (BSP) [13]. On ARM platforms,
this includes the following:

• Toolchain

• Bootloader

• Linux Kernel

• Rootfs

• Device Tree

Chapter 2. Background 6

The toolchain includes a cross-compiler and standard libraries. It allows the developer
to build the remainder of the BSP and any applications that should execute on the
system.

Most modern SoCs capable of running Linux will have a small bootloader provided
by the vendor placed in Read Only Memory (ROM). These bootloaders are limited
and can not boot Linux on their own. They will only bring up the most essential pieces
of hardware before handing over control to a more capable bootloader chosen by the
developer. This bootloader loads the other BSP artifacts into memory before starting
the Linux kernel.

Reset
Boot
ROM Preloader U-Boot Linux

rootfs -
init

FIGURE 2.1: Embedded Linux boot sequence.

The kernel runs on all sorts of hardware. Typically, in x86 systems and similar, the ker-
nel utilizes the basic input/output system (BIOS) to acquire information regarding the
hardware constellation. Other hardware extensions are typically attached using USB,
which offers run-time detection. In contrast, for embedded devices, the hardware plat-
form and peripherals were previously configured at compile-time through header files
included in the build, essentially making a compiled kernel only valid for a particular
target.

The device tree, a data structure describing all the hardware and peripherals on a par-
ticular target, solves this problem, at least for ARM platforms. It is loaded into memory
by the bootloader and parsed by the kernel during initialization. Based on the contents
of the device tree, the kernel will load relevant drivers, configure the hardware, create
virtual files for interaction with them, and set up SMP if running on a multicore sys-
tem.

Before building the kernel, many compile-time parameters are configurable. These
parameters include architecture-specific settings, the preemption model, debugging
and functionality, and more. The kernel build system also compiles Loadable Kernel
Modules (LKMs), either in-tree or out-of-tree. The concept of LKMs simplifies inject-
ing custom hardware drivers and other software components that should execute in
kernel space. In Linux, memory is divided into two parts, whereas one requires privi-
leged access. Processes executing in kernel mode can access both parts, but processes
executing in user mode do not have privileged access to ensure they will not interfere
with the system or each other. When a user space process needs to access hardware,
it makes a system call, which triggers a kernel module to perform the required work
before the user space process can continue.

Linux is not a complete operating system in the sense that many view operating sys-
tems. It only provides the kernel. This aspect means that for a system to be able to
do something, it needs something more. When the bootloader jumps to the kernel, it
passes several parameters, including a root file system and a path to a binary in user

Chapter 2. Background 7

space for the kernel to execute after initialization. In theory, this could be any appli-
cation; however, that would diminish most of the benefits of using Linux. Instead, it
commonly provides a path to an init daemon1 for starting and managing other applica-
tions throughout the system’s run time.

There are no requirements regarding the structure of the root filesystem, but it should
adhere to the Unix conventions concerning directory structure and location of standard
utilities and libraries. Bundled with a Linux distribution, there are many tools a user
might expect to find. Many originate from the GNU project, spearheaded by Richard
Stallman and maintained by the Free Software Foundation (FSF). Because of the limited
functionality of the kernel itself and its dependence on GNU utilities to be considered
a complete operating system, Stallman has argued that Linux distributions should in-
stead be referred to as GNU/Linux systems [20]. Pulling, building, and bundling up
all packages and shared libraries for a custom Linux distribution can be tedious if done
manually. Therefore, developers typically use automated build systems like Yocto and
Buildroot to create their custom Linux distributions, entirely or partially.

Configuring the artifacts for a BSP is done through similar mechanisms. These reposi-
tories typically contain predefined configuration files often provided by the hardware
vendor. Further refinement of the configuration files is possible through tools like
menuconfig, illustrated in Figure 2.2.

FIGURE 2.2: Illustration of kernel configuration through menuconfig.

2.2.2 Scheduling

This subsection discusses scheduling mechanisms in Linux, a key concept in this thesis.
Unless otherwise stated, the information is widely accepted and based on [21] and
[22].

1Background service process

Chapter 2. Background 8

A process is an executing instance of a program that contains one or more threads.
Threads within a process share a virtual memory space but have separate stacks, stack
counters, and program counters. Linux schedules threads, but in real-time literature
discussing scheduling, task is the common term. Therefore, a task and a thread can be
considered synonymous within this thesis.

A task can be in any number of states, as seen from the scheduler’s point of view.
This thesis will confine its descriptions of a task’s state to a simple and generic state
machine, as seen in Figure 2.3. The model does not consider initialization states and
cleanup states. A ready task is ready to execute on the CPU; a blocked task is either
sleeping or waiting for a resource to become available, while a running task is currently
executing.

Blocked

Running

Ready

Scheduled

Preempted

Wait

Wait Complete

FIGURE 2.3: Simplified state machine for tasks.

The Linux scheduler comprises several scheduling classes, each containing one or
more scheduling policies. Although special classes do exist, the following are the ones
under which a user can choose to have his task scheduled:

• Deadline (DL)

– SCHED_DEADLINE

• Real-Time (RT)

– SCHED_FIFO

– SCHED_RR

• Completely Fair Scheduler (CFS)

– SCHED_OTHER

– SCHED_BATCH

– SCHED_IDLE

Chapter 2. Background 9

Although Linux is not POSIX [23] compliant, instead based on the Linux Standard Base
[24], according to Locke, "from a practical standpoint, Linux exhibits a very high degree
of POSIX compliance" [25]. The scheduling policies SCHED_FIFO, SCHED_RR, and
SCHED_OTHER originate from POSIX [23], underlining Locke’s statement.

The selected scheduling policy for a task decides a high-level priority and its condi-
tions for preemption. When the scheduler cycles through the task run queue, it looks
through the classes in the order given above and stops when it finds a runnable task.
Consequentially, if a runnable task exists in the deadline class, it will have a higher
priority than a runnable task in the real-time class. If no runnable tasks exist in any
classes, the kernel will schedule the special idle task.

Deadline Scheduling

Deadline scheduling in Linux uses an implementation of the Earliest Deadline First
(EDS) algorithm paired with Constant Bandwidth Server (CBS). [26] A user wanting to
utilize this policy must specify the desired period, deadline, and Worst-Case Execution
Time (WCET) of his task. The request will fail if the provided timing constraints for
the task are not schedulable (i.e., achievable). Under this scheduling policy, tasks do
not have an explicit priority. Instead, the scheduler will pick the task with the current
shortest deadline.

A task that runs for longer than its registered WCET will get throttled. This trait means
that the developer must calculate the WCET in advance for all EDS tasks in order for
the system to function correctly. This process is both error-prone and tedious. When a
task finishes its execution of the current cycle, calling sched_yield() will voluntar-
ily give up the remaining CPU time.

Real-Time Scheduling

The real-time policies SCHED_FIFO and SCHED_RR have static priorities between 0-
99. The scheduler prioritizes the two policies equally and places the highest prioritized
runnable task on the CPU. If no higher-priority tasks are runnable, the current task will
execute until it gives up the CPU voluntarily. However, if two SCHED_RR tasks have
the same priority, they will be subject to round-robin time-slicing according to a preset
CPU time, which defaults to 100 ms.

Section 3.6.3 discusses these policies further.

Completely Fair Scheduler

The Completely Fair Scheduler (CFS) is a time-slicing scheduler that tries to give all
tasks a fair share of CPU time. The default scheduling policy for a task is SCHED_-
OTHER (as defined by POSIX [23]), also referred to in the context of Linux as SCHED_-
NORMAL [21]. These tasks default to a static priority of 120, which the developer can
adjust up or down 20 increments through its nice setting. A high nice value indicates
that the task is nice to other tasks, effectively lowering its priority.

According to [27, kernel/sched/core.c, Line 11534], nice levels are multiplicative, such
that stepping the niceness up or down will result in an approximate 10% decrease or
increase of time on the CPU.

Chapter 2. Background 10

The recommended use case of SCHED_BATCH is for CPU-intensive tasks, and the
scheduler gives it a higher CPU time penalty than SCHED_OTHER tasks. SCHED_-
IDLE is the policy with the lowest priority, and these tasks will only run when the CPU
is idle, meaning they might never run.

Earliest Eligable Virtual Deadline First

In Kernel version 6.6, an implementation of Earliest Eligable Deadline First (EEVDF)
replaced CFS as the core scheduler for user space tasks [27, kernel/sched/fair.c,
Line 857]. Although this change brings several benefits, overcoming latency issues
with CFS is the primary justification [28].

Tasks with low execution times and high-frequency periods are particularly disadvan-
taged by CFS. Patches implementing latency nice levels have been around since 2019
[29]; however, CFS is, at its core, unfit for such an add-on, making the solution less
than ideal [28].

EEVDF bases itself on the concepts of lag and virtual deadline [30]. Although the CPU
tries to schedule all tasks fairly on a CPU, after a run-through of the queue, some
tasks will have gotten more than their share, while others will have gotten less. The
scheduler calculates the lag for all tasks, which is the difference between the theoretical
fair CPU time and the actual CPU time received. The only tasks eligible to run next
are those with a positive lag, prioritized by the highest lag time to the lowest. EEVD
prioritizes uneligible tasks by their virtual deadline, which is the task’s normal time
slice (as given by nice values) plus the time until it becomes eligible (i.e., time until its
lag becomes zero or higher).

This scheme fits better with the concept of latency nice levels [28]. A task with a lower
latency nice value will have a smaller time slice. This results in the same amount of
CPU time but spreads across many shorter time slices on the CPU.

Kernel Threads & CPU Modes

The default policy of a kernel thread is SCHED_OTHER [27, kernel/kthread.c,
Line 369]. For the most part, this default setting applies to all tasks created by the ker-
nel on a typical Linux system. Exceptions to this include migration tasks that have a
priority 99 under SCHED_FIFO. They have one instance per CPU and move threads
to other CPUs if they detect imbalances across the run queues. In addition, the bot-
tom halves of threaded IRQs run at priority 50, also under SCHED_FIFO. This topic is
discussed further in sections 3.3.3 and 3.6.3.

The difference between a kernel thread and a user space thread is the CPU privilege
level under which it executes. Most CPU architectures enforce at least two privilege
levels: user and kernel mode. The former may restrict a task in many ways, such
as the address space it can access and the instructions it can execute. In Linux, the
mode of the thread determines when a thread is subject to preemption as well. System
calls will temporarily escalate privileges for a user space thread, which means that the
thread will execute in kernel mode for the duration of the system call.

Chapter 2. Background 11

It is important to note that while the priorities provided by the Linux documenta-
tion are used internally in the Kernel source code, they do not necessarily reflect how
various user space tools choose to present task priorities. An example is htop, which
presents real-time priorities between -2 and RT. The lowest priority, 2, is equivalent to
99 in the literature but is achieved by configuring a task with a priority of 1. Passing
the value 98 to a system call gives -99, and passing 99 gives RT. CFS tasks are typi-
cally in tools like htop in the range between 0 and 40, directly representing the nice
level.

2.2.3 Real-Time Linux

Parallel to the increased use of Linux in embedded systems, there has, since the mid-
90s, been a desire to use Linux in real-time systems [31]. Since Linux is a general-
purpose operating system, its primary goal is to ensure that all tasks collectively have
the highest throughput possible, maximizing CPU utilization. Although there are
mechanisms to prioritize specific tasks, the kernel is (or, more precisely, was) not pre-
emptible.

The developer can set a preemption model when configuring the kernel at compile
time. In most cases, this defaults to PREEMPT_NONE [27, kernel/Kconfig.preempt,
Line 18], which means that the following situations will invoke the scheduler [32]:

• When a task gives up the CPU voluntarily.

• When the CPU returns from hard interrupt context to a task executing in user
mode.

• When a system call returns to a task executing in user mode.

In other words, a user space task cannot preempt a task executing in kernel mode,
regardless of its scheduling policy and priority.

This characteristic means that scheduling latencies2 are unbounded and that the kernel
cannot guarantee that a particular task will execute within its given deadline.

Figure 2.4 illustrates this. In the first example, the low-priority task A runs when an
event tries to wake up the high-priority task B. The kernel supports preemption of
tasks executing in user mode, so the scheduler steps in and gives the CPU to task B.
However, in the second example, task A performs a system call and executes in kernel
mode when the event occurs. Because of this, task A can continue executing in kernel
mode for as long as it likes, hindering the potentially critical task B from doing its
job.

2Scheduling latency is the delay from when a task becomes runnable until it starts executing on the
CPU [33].

Chapter 2. Background 12

Task A
(User Mode)

Interrupt
Handler

(Wakes up B)

Interrupt

Sche-
duler

Task B
(User Mode)

Interrupt Exit

Latency Low Priority

High Priority

Time

(a) Task in user mode preempted.

Task A
(User Mode)

Interrupt
Handler

(Wakes up B)

Sche-
duler

Task B
(User Mode)

Task A
(Kernel Mode)

InterruptSystem Call

Task A
(Kernel Mode)

System Call Return
Unbounded

?

Time

Latency
?

Low Priority

High Priority

(b) Task in kernel mode not preempted.

FIGURE 2.4: Preemption of user mode vs kernel mode task.

In addition, the kernel is a highly non-deterministic beast [34]. The many non-predictable
execution paths a single system call can have may lead to high jitter. These issues and
others are discussed further in Chapter 3.

Many approaches and projects have evolved to overcome these issues, and they broadly
divide into two categories [1], [3]:

• Single-Kernel

• Co-kernel (microkernel)

Co-Kernel

In a co-kernel approach, a bare metal scheduler, or more commonly an RTOS, runs
underneath Linux and manages it as any other task. Figure 2.5 illustrates this. This
scheme allows critical tasks to run outside the context of Linux, and the Linux kernel is
naturally always preemptible. Although providing provable hard real-time capabilities

Chapter 2. Background 13

[35], this approach diminishes some of the significant benefits of using Linux in the
first place [1], [35]. The Linux kernel must be modified to run within the context of the
microkernel. This approach often involves forked or outdated kernels, which do not
benefit from regular mainline upstream updates and fixes. In addition, another layer
of hardware abstraction must exist beneath the Linux kernel, adding complexity and
required maintenance. Real-time tasks also lose the ability to utilize kernel drivers or
other utilities [1].

Hardware

Micro-Kernel

Non-RT
Tasks

LinuxRT Tasks

(a) Co-kernel.

Hardware

RT Tasks

Linux

Non-RT
Tasks

(b) Single-kernel.

FIGURE 2.5: Co-kernel vs single-kernel approach.

Single-Kernel

While more straightforward in concept, the single-kernel approach is more ambitious
and tries to transform the Linux kernel into an RTOS [2]. The PREEMPT_RT project is
the most successful effort in this domain [1], [33]. It is backed by the Linux Foundation
today, and most of the original contents of the patch have already merged into the
mainline kernel3.

The approach of making Linux itself real-time capable means that one gets to keep
all the initial benefits of using Linux. No special tools or libraries are required. It is
more a matter of tuning the system with different kernel compile-time and run-time
configurations [1]. However, it is not a "silver bullet" [36]. One still has to design a
real-time application to meet its requirements as one would expect when using bare
metal or RTOS approaches [2]. Also, some drivers and kernel mechanisms should be
avoided as they have not necessarily been made real-time friendly yet [9].

Despite this, bare metal, RTOS, or co-kernel approaches are the only way to achieve
provable hard real-time [1], [2]. Currently, the literature considers it impossible to

3Version 2.6.22.1-rt9 had 61595 lines of code, while 6.6.25-rt29 has 15494 lines of code

Chapter 2. Background 14

prove that a task will always meet its deadlines due to the complexity of the Linux
Kernel [1], [37]. The intricacy of the embedded HW devices that typically run Linux
makes this problem even more difficult. Modern computer architectures with several
caching layers and mechanisms like instruction reordering mean that a computer is
not as deterministic as it once was [2].

With PREEMPT_RT, estimating a system’s capability of meeting its real-time require-
ments is typically done by experiment, where long-term tests are executed over weeks
or months [1], [2].

2.3 Target System

This section attempts to describe the target system at a high level and discuss why it
might benefit from running with a fully preemptible kernel while trying to maintain
the integrity of the intellectual property belonging to the company.

The target system is a powerline modem and will run on a custom HW board with
an Altera Cyclone V. The Altera Cyclone V is a Fully Programmable System on Chip
(FPSoC), meaning that it has a Field Programmable Gate Array (FPGA) as well as a
Hard Processor System (HPS), consisting of a dual-core ARM Cortex-A9. Figure 2.6
displays a simplified system architecture.

Target System

ADC

DAC

Line Coupler PowerlineEthernet
Altera

Cyclone V

FIGURE 2.6: Target system.

The target system is not necessarily an inherent real-time system. Instead, specific
mechanisms have real-time constraints associated with them. These constraints must

Chapter 2. Background 15

be met for the system to achieve the desired performance. Missing a deadline will not
have fatal consequences but rather degrade the performance, meaning it fits within the
definition of a soft real-time system.

When transmitting, the modem will use modulation algorithms to transform Ethernet
frames into data that can be outputted to a powerline using a Digital-to-Analog Con-
verter (DAC). For receiving data, it will drive an Analog-to-Digital Converter (ADC)
to sample the powerline at a steady rate. The system decodes the samples to Ethernet
frames and outputs them to the local network.

This project’s scope does not include the modulation and demodulation algorithms
that make up the system. Instead, it involves analyzing and optimizing the system’s
ability to move data across the SW and HW modules at the required rate without in-
terference from the operating system.

Much work is offloaded to the FPGA, illustrated in Figure 2.7. The FPGA is respon-
sible for driving the analog converters and applying filtering on the data as they pass
through.

Target System

FPGAHPS Ext HW

ADCFilters

Decode
Logic

Decode
Logic

DAC

Encode Logic

Encode
Logic

Filters

Line Coupler PowerlineHigh-Level SWEthernet

Real-Time

FIGURE 2.7: High-level architecture of the target system.

During reception, the FPGA will write data into a shared buffer in the external memory,
and it is the job of a real-time task running on the HPS to keep up with the FPGA
and empty the buffer at a rate sufficient to avoid overruns. The same principle applies
when transmitting. The FPGA will read a shared buffer at a fixed rate, and the software
in the HPS has to ensure that underruns do not occur. This mechanism is highlighted
in Figure 2.8.

Chapter 2. Background 16

FPGAHPS

Decode
Logic

Decode
Logic

DataMoverWriteRxDriver Read

Encode Logic

Read

Encode
Logic

Write DataMoverTxDriver

FIGURE 2.8: HPS-FPGA shared memory interface.

The modem’s decoding and encoding logic also has a logic component placed in the
FPGA to accelerate the algorithms. This means that data will also need to be written to
and read from the FPGA during the signal processing, putting additional load on the
system and the communication channels between the HPS and FPGA.

Chapter 2. Background 17

2.3.1 Hardware

As discussed in Chapter 1, the target system runs on an Altera Cyclone V, for which a
simplified block diagram can be seen in Figure 2.9 [38, Copyright © 2017, IEEE].

FIGURE 2.9: Simplified Altera Cyclone V block diagram [38] Copyright © 2017,
IEEE.

The SoC has several mechanisms for communication between the CPU and the FPGA
[39]. The bridges are AXI-buses with an overbuild called Avalon, a concept specific to
Altera.

• FPGA-to-HPS bridge: Allows the FPGA to write up to 128-bit words directly to
a peripheral in the HPS, accessible through the L3 Main Switch [39], [40].

• HPS-to-FPGA bridge: Allows the CPU to access any memory-mapped peripher-
als in the FPGA with up to 64-bit words. Originating in the L3 Main Switch [39],
[40].

• Lightweight HPS-to-FPGA bridge: Same as the HPS-to-FPGA bridge, but strictly
for 32-bit words, and passes through the L3 Slave Peripheral Switch instead of
the L3 Main Switch. It is more lightweight, making it suitable for simple control
registers [39], [40].

Chapter 2. Background 18

• FPGA-to-SDRAM-Controller: Allows the FPGA to write to SDRAM through the
SDRAM-Controller Subsystem [39], [40].

The target system will use the HPS-to-FPGA bridge, configured for 32-bit words, to
write control registers and to read and write data to the decode/encode logic. The
FPGA will access the circular buffers in shared memory through the FPGA-to-HPS
bridge, configured to 64-bit words, the L3 Main Switch, and the Accelerated Coherency
Port (ACP). This design choice ensures that the L2 cache will be updated on writes from
the FPGA, keeping it coherent with the L3 cache. Although this slightly increases the
writing overhead from the FPGA’s point of view, it will reduce the read time for the
CPU.

2.3.2 Software

To keep the software as simple as possible and to avoid the context switch required
when switching to kernel space, it is desirable to have the circular buffers in mem-
ory accessible from user space. A Continuous Memory Allocator (CMA) driver by
Novickis et al. [40] will be used. This driver allows a user space task to allocate a
continuous memory area and access it using a virtual memory address. Its interface
allows cached or uncached memory access, and the software forwards the area’s phys-
ical address to the FPGA logic at initialization time.

Although the low-level software responsible for modulation and demodulation will
execute in user space, high-level Linux utilities running partially in kernel space will
handle IP traffic toward the ethernet interface. The channel to this layer will be through
a kernel driver, interfaced through Generic Netlink sockets, the modern communica-
tion mechanism between user space and kernel space [41]. These concepts will be
explored further in section 4.4.

2.3.3 Real-Time Constraints

The FPGA will drive the ADC and DAC at 2.5 Ms/s with 12-bit samples. The decima-
tion/interpolation in the filtering will vary by the product configuration and can be as
low as 2 in the worst case. This attribute means that the DMA handler in the FPGA
will read and write data to the circular buffer in shared memory at a rate of 1.25 Ms/s.
For all practical purposes, each sample will consist of 2 bytes, meaning that the speed
will be:

samplesPerSecond · bytesPerSample = bitrate

1.25 Ms/s · 2 B = 2.5 MB/s

≈ 2.4 MiB/s

(2.1)

Given that the circular buffers are 128 KiB large, this means that the filling/clearing
rate will be

Chapter 2. Background 19

bitrate

bufferSize
= bufferF illRate

2.4 MiB/s

128 KiB
= 19.2 Hz

≈ 20 Hz

(2.2)

This means the buffers will be filled or cleared once every 50 ms by logic on the FPGA.
The constraint on the software is to keep up with these rates and avoid underruns
when writing and overruns when reading. The fear is that the non-deterministic nature
of Linux will prohibit the system from reliably meeting these requirements and is the
primary motivation for the problem statements of this thesis.

20

Chapter 3

PREEMPT_RT

This chapter is a literature review focusing on the PREEMPT_RT patchset for the Linux
kernel. It provides an overview of PREEMPT_RT’s history and main features while
it examines relevant literature for key performance measures and documented real-
world applications of the patchset. In addition, it summarizes tuning parameters and
best practices extracted from the literature.

3.1 Literature Review Methodology

Kernel developers have traditionally not been the most prolific writers of academic pa-
pers. To cite Thomas Gleixner, co-developer and long-time maintainer of PREEMPT_-
RT: "We are solving problems, comparing and contrasting approaches and implementations,
but we are either too lazy or too busy to sit down and write a proper paper about it" [42].
Instead, they participate in mailing lists and write documentation. Some might also
write articles, blog posts, or give talks. Because of this, this thesis cites sources like
Linux Weekly News, slide decks from Linux conferences, the Real-Time Linux Wiki
page, and official Linux Kernel documentation. However, from non-peer-reviewed
sources, no performance claims are cited. Reghenzani et al. [1] use a similar approach
and justification.

For searching and gathering relevant literature, a structured approach [43] was used,
querying the following databases:

• IEEE Xplore

• Springer

• ScienceDirect

• Web Of Science

• Wiley

• Mendeley

The following terms made up the basis for the search:

(a) "PREEMPT_RT" || "PREEMPT RT"

(b) "Linux" && "real−time" && "ARM" && (year >= 2019)

(c) "Linux" && "real−time" && "Altera Cyclone V"

Chapter 3. PREEMPT_RT 21

Figure 3.1 illustrates the structured search results, showing the number of articles
found in each database for each search term. The findings provided by Google Scholar
were so numerous that handpicking relevant articles from the first few result pages
became the only viable approach. A citation manager pulled the results of the re-
maining databases in their entirety. The second search term gave too many results in
several databases, so the keyword ARM was refined to ARM Cortex-A9 to limit the
results.

(a) (b) (c)

FIGURE 3.1: Structured literature search.

After dumping the findings into a reference manager, duplicates were removed, result-
ing in 547 unique articles, as seen in Figure 3.2. From there, 304 articles were discarded
based on the title and abstract, and another 230 after skimming through the paper. This
approach resulted in a total of 40 articles being deemed relevant.

Chapter 3. PREEMPT_RT 22

FIGURE 3.2: Refining search results.

Additionally, snowballing1 was used to find more articles throughout the research pe-
riod, resulting in the final literature list included in the bibliography.

3.2 High-Level Overview

PREEMPT_RT is a patch set for the Linux kernel published by Ingo Molnar and Thomas
Gleixner in 2005 [44]. The patch rewrites the kernel in order to make it real-time capa-
ble. Major features introduced by the patch include:

• Fully Preemptible Kernel

• Threaded IRQs

• High-Resolution Timers

• Priority Inversion

• Full Tickless Operation

3.3 Main Features

This section explores the main features and modifications to the kernel introduced as
part of PREEMPT_RT. Although all these are merged into the mainline kernel today,
most are turned off or hidden on a mainline Linux system by default.

1The process of following citations in the current collection of literature to find additional relevant
studies.

Chapter 3. PREEMPT_RT 23

3.3.1 Fully Preemptible Kernel

Today, the mainline Linux kernel offers three compile-time options for preemption
[32]:

• No Forced Preemption (Server)

• Voluntary Kernel Preemption (Desktop)

• Preemptible Kernel (Low-Latency Desktop)

As discussed in section 2.2.3, the default compile-time configuration is No Forced Pre-
emption, meaning that user space cannot preempt the kernel. Voluntary Kernel Preemp-
tion adds preemption points to the codebase [1]. Although this can limit the latency
experienced by a high-priority task executing in user mode, this reduction in latency
is linear to the number of preemption points in the source code, as is the overhead of
the preemption points themselves. This characteristic could indicate that the solution
might not scale well.

The Preemptible Kernel mostly solves the issue illustrated in Figure 2.4 by running the
scheduler after all interrupts2, which means that the kernel is preemptible, except when
in critical sections [1]. Figure 3.3, illustrates this.

Task A
(User Mode)

Interrupt
Handler

(Wakes up B)

Sche-
duler

Task B
(User Mode)

Task A
(Kernel Mode)

InterruptSystem Call

Task A
(Kernel Mode)

cond_resched

Time

Critical Section Start Critical Section End

Latency

Unbounded

?

Low Priority

High Priority

?

FIGURE 3.3: Preemptible kernel.

In this case, the system call is in a critical section when the event that tries to wake up
task B occurs. In contrast to the previous scenario, the unbounded latency is limited
to the length of the critical section and no longer the complete duration of the system
call. The high-priority task will be scheduled with bounded latency if the system call
is not in a critical section when the event occurs.

PREEMPT_RT enables a fourth option, which in the mainline kernel is hidden by the
unset ARCH_SUPPORTS_RT flag [27, /kernel/Kconfig.preempt, Line 72]:

• Fully Preemptible Kernel (Real-Time)

2The implementation for ARM platforms is available in [27, arch/arm/kernel/entry-armv.S,
Line 223]

Chapter 3. PREEMPT_RT 24

This option makes the kernel preemptible in all critical sections, except for code run-
ning in hard interrupt context and sections protected by a raw spinlock [1].

FIGURE 3.4: Preemption models.

Kernel code waiting for mutually exclusive access to a resource typically uses a spin-
lock, where the CPU will busy-wait for the lock instead of blocking. Using a spinlock
reduces the overhead of waiting for the lock since the lock will typically be available
within a few cycles. However, as illustrated, a task holding a spinlock is not pre-
emptible. To also make these sections preemptible, all spinlocks in the kernel are re-
placed by RT-mutexes when full preemption is enabled [45]. Raw spinlocks are still not
preemptible, but they are only used in the most critical sections or when the duration
of the section is negligible.

Assuming a raw spinlock does not protect the critical section illustrated in the previous
example, Figure 3.5 illustrates how using PREEMPT_RT would reduce the scheduling
latency of the critical task from the previous example.

Time

Task A
(User Mode)

Interrupt
Handler

(Wakes up B)

Sche-
duler

Task B
(User Mode)

Task A
(Kernel Mode)

InterruptSystem Call

Critical Section Start

Latency

Interupt Exit

Low Priority

High Priority

FIGURE 3.5: Fully preemptible kernel.

Chapter 3. PREEMPT_RT 25

Traditionally, the preemption model was a compile-time parameter, but in 2021, a new
option CONFIG_PREEMPT_DYNAMIC was introduced [46], allowing for reconfiguring
the preemption model at run-time. This feature requires the architecture to support
static_call_inline, which is unavailable for ARM [27]. Due to this, it will not be
explored further in this thesis.

3.3.2 High-Resolution Timers

In Linux, the systick interval, known as a jiffy, is configurable at compile-time [47]. The
frequency of the systick is typically 100 Hz on embedded systems and gives a jiffy of 10
ms. Before high-resolution timers made it into the kernel, the most fine-grained time
resolution possible to measure was one jiffy, i.e., between 1 and 10 ms [1]. Naturally,
this was a significant limitation and inadequate for many systems.

As described by Gleixner & Niehaus [48], the new implementation required creating
a new timer subsystem. There was a great deal of architecture-dependent code with
heavy duplication. The previous implementation was tied heavily to the periodic sy-
stick and had no general abstraction for the timers.

High-resolution timers are configurable at compile-time after the merge to the mainline
kernel in version 2.6.16 [48]. The default settings for ARM platforms enable high-
resolution timers3.

However, the underlying hardware still needs to support the granularity required by
the system [1]. Tools like Cyclictest, part of rt-tests, an open-source suite of real-
time tests [49], can validate this [50].

3.3.3 Threaded IRQs

The simplest way of handling interrupts is in hard interrupt context. The CPU stores
its current state and jumps to a predefined address to handle the event, regardless of
what it previously did. After processing the event, the CPU will restore its state and
continue as if nothing happened. As illustrated in Figure 3.6, the potentially critical
task already running can experience large latencies [51]. Issues such as this have led
to the widely accepted notion that interrupt routines should be short, regardless of
the operating system. Linux also disables interrupts while in hard interrupt context,
meaning it cannot handle a new event for the duration of handling the first [51].

3All configuration files bundled with the Linux kernel for ARM enable high-resolution timers, as
seen in [27, arch/arm/configs/socfpga_defconfig, Line 2].

Chapter 3. PREEMPT_RT 26

Critical Task

Hard Interrupt Context

Critical Task

Interrupt Interrupt Exit

Priority

Time

FIGURE 3.6: Traditional interrupts.

To handle these issues and to provide more flexibility, Linux has introduced several
mechanisms for deferring work outside of hard interrupt context. These include softIRQs,
tasklets, and workqueues. Common for them all is that they divide the handling into a
top-half and a bottom-half. The softIRQs and tasklets typically execute immediately af-
ter the hard interrupt [51], run in atomic context, and are not allowed to sleep [52].
Concerning the critical task in the previous example, these mechanisms will not im-
prove its experienced latency, as seen in Figure 3.7. Work queues, on the other hand,
can defer the work to a later time, but they have significant overhead and may defer
the work for too long, making them unsuitable for many types of events [51]

Critical Task

Top Half
(Hard Interrupt

Context)

Bottom Half
(SoftIRQ,

WorkQueue)

Interrupt Interrupt Exit

Priority

Time

Critical Task

FIGURE 3.7: Top- and bottom-half interrupt processing.

Kernel version 2.6.30 introduced threaded interrupts as a new option for deferring
work to a later time [1]. Although similar to work queues, they reduce the overhead,
make debugging more manageable, and provide much more flexibility concerning pri-
oritization [51], [52]. During system initialization, the kernel spawns a thread to handle

Chapter 3. PREEMPT_RT 27

a particular interrupt’s bottom half. This is a regular thread with an assigned schedul-
ing policy and priority, meaning that if our critical task has a higher priority, it will only
be delayed for the execution time of the interrupt’s top half, as seen in Figure 3.8.

The division of work between the top and bottom half, as well as the mechanism used
for deferring work, is decided at the discretion of the developer of a particular driver
[51]. This leads different drivers and modules to have widely different impacts on the
latency of a critical task.

Critical Task

Top Half
(Hard Interrupt

Context)

Bottom Half
(Threaded)

Interrupt Interrupt Exit

Priority

Time

Critical Task

Schedules Bottom Half Thread

FIGURE 3.8: Threaded bottom-half.

To further improve the situation for the critical task in all conditions, PREEMPT_RT
enables forced threading of all interrupts [53]. This means that all top halves are exe-
cuted in a kernel thread, as seen in Figure 3.9, keeping the execution time of the hard
interrupt handler as short as possible. The mechanism executing deferred work is still
at the discretion of the developer.

Critical Task

Bottom Half
(Threaded)

Interrupt Interrupt Exit

Priority

Time

Critical Task

Schedules Top Half Thread

Top Half
(Threaded)

FIGURE 3.9: Forced threading.

Chapter 3. PREEMPT_RT 28

Because of this, the latency experienced by the critical task shrinks to an absolute min-
imum [51]. However, a CPU-hungry task with a higher priority than a threaded inter-
rupt handler can starve the interrupt, leading to an unstable system.

3.3.4 Priority Inheritance

Priority inheritance [54] solves the classical problem of priority inversion [55]. Priority
inversion is when a high-priority task A blocks because it waits for a resource held by
a low-priority task C. If B, a task prioritized higher than C but lower than A, becomes
runnable, it will block C and keep executing for as long as it likes. Effectively, the
priorities of A and B have become inverted. The most common solution is to boost the
priority of the lower priority task C to the priority of the task it blocks. When C inherits
the priority of task A, task B can no longer block C. Task C can quickly finish its work
with the resource before being preempted by task A [55].

Before the PREEMPT_RT patch, the only priority inheritance implemented in the ker-
nel was for fast user space mutexes [56], which can be configured during initialization
by the user if needed. However, as the kernel was not preemptible, priority inversion
was not an issue in kernel space before PREEMPT_RT [57].

According to [58], implementing support for priority inheritance in the kernel was not
uncontroversial as it is very complex and easy to get wrong. However, Rostedt et al.
maintain that it is well-tested and considers it proven in use.

3.3.5 Preemptible RCU

Read, Copy, Update (RCU) is a synchronization mechanism merged into the kernel
with version 2.5 [59]. It solves the problem of having multiple readers and a single
writer operating on a data structure in parallel on several CPUs. It has little overhead
and favors readers over writers [59].

When an object is subject to deletion in a data structure like a linked list, if the writer
removes the object and frees the memory immediately, there may be readers holding
references to the now deleted object. The reader enters a read-side critical section to
protect itself from accessing deleted memory, a state change that requires no overhead
for the task. For the writer, deleting the object is divided into two actions: removal and
reclamation. The removal phase involves removing all references to the object from the
data structure. A grace period follows the removal phase, during which the writer
waits until all CPUs have reported an RCU quiescent state, meaning that they are not
currently in a read-side critical state. When this happens, the writer can safely free the
memory, knowing that no readers hold any references to it. Registering a callback with
the kernel, invoked when all CPUs have reported a quiescent state, is also possible.
This feature ensures the writer does not have to block while waiting to delete the object.
For this mechanism to work, it is crucial for the readers not to block while in a read-
side critical state, as this can extend the grace period indefinitely. This also means that
a reader can not allow preemption, which requires a different implementation of this
mechanism under PREEMPT_RT [59].

The initial implementation of preemptible RCU, relying on priority inheritance, came
in 2005. However, it had limitations and a high overhead implementation on the read

Chapter 3. PREEMPT_RT 29

side. It was reworked in 2007 to use a multi-stage grace period detection algorithm
[60].

A challenge with preemptible RCU is that the grace period can extend indefinitely if
a high-priority task preempts a low-priority task while in a read-side critical section,
effectively leading to an out-of-memory situation [61]. By default, PREEMPT_RT ker-
nels enable RCU_BOOST [62, kernel/rcu/Kconfig, Line 197], which boosts the priority
of tasks in a read-side critical section if blocked for more than a configurable amount.
CONFIG_RCU_NOCB_CPU is an alternative approach that redirects RCU callbacks to a
specified CPU, which should be less susceptible to a high-priority task that does not
yield the CPU sufficiently. According to [63], this can significantly reduce the system’s
throughput due to the increased overhead but can make sense in certain situations, for
instance, when using CPU isolation.

3.3.6 Full Tickless Operation and CPU isolation

The official Linux kernel documentation regarding CPU isolation and tickless opera-
tion is limited [64]. The Linux Foundation’s documentation on real-time Linux pro-
vides some information [65] but redirects those interested to a blog post series on the
topic published by OpenSUSE [66]. This has formed the basis for the information pre-
sented here.

For critical real-time tasks that require low disturbance, it is possible to isolate a CPU
core for that particular task and have it run independently of the scheduler. However,
as mentioned, the systick is an interrupt that fires on all cores at a fixed rate. This in-
terrupt wakes the kernel to do maintenance tasks like handling timers, RCU callbacks,
and CPU-time accounting, potentially interfering with the critical task. To overcome
this, one can enable full tickless operation, which turns off this tick. Accommodating
this required reworking several of the mechanisms relying on the systick.

In standard systems, CPU-time accounting checks the CPU context on each systick
and infers how long the CPU has spent in each context. In tickless systems, the ker-
nel stores a timestamp on each context switch. The kernel will use this timestamp to
calculate how long the CPU ran in the previous context. Although this leads to more
exact numbers, it dramatically increases the overhead of transitioning between the idle
task, kernel space, and user space. A side effect is that the CPU can only report RCU
quiescent state when executing from a user space context. This ramification means
that each CPU spends less time in the quiescent state, increasing the length of the RCU
grace period. Both factors reduce the system’s overall throughput.

Because of this, CPU isolation with tickless operation is most efficient for tasks execut-
ing primarily in user space and requiring a limited number of system calls. At least
one CPU is required to maintain a systick. The load on this CPU will increase with
the added responsibilities from the other CPUs, like timer callbacks and work queues,
reducing the throughput of remaining tasks. To utilize this, one must enable NO_-
HZ_FULL at compile-time and pass a parameter to the kernel at boot-time, specifying
which CPUs are to run tickless. It is also possible to set the IRQ affinity, ensuring no
unwanted interrupts trigger on a particular CPU.

Chapter 3. PREEMPT_RT 30

Prohibiting the scheduler from putting tasks on the CPU was previously done with
the deprecated isolcpu boot-time parameter and by setting CPU affinity for tasks,
but should today be controlled through CPU-set.

It is only possible to run one task scheduled with CFS or SCHED_RR on an isolated
CPU at any time. Although running more tasks in parallel will work with other poli-
cies, running only one is recommended.

3.4 Current State and Mainlining

Linux has many stakeholders using the kernel for different things. It runs on devices
ranging from clusters of supercomputers to tiny embedded devices. The kernel is also
a moving target, with about 385 daily commits in 20234. Due to this, maintaining
the patch out-of-tree requires significant resources from the real-time team [44]. Con-
versely, a mainline kernel supporting real-time could imply more strain on other ker-
nel developers, as they cannot break the real-time capabilities. Naturally, the design
of these features, their maintainability, and how they affect or block other efforts are
crucial for the mainlining venture [44].

Different companies have supported the PREEMPT_RT work throughout the years,
depending on their respective need for real-time capabilities. At times, funding for
the project has been hard to maintain. In 2015, the Linux Foundation started the Real-
Time Linux Collaborative Project and secured funding for a limited team to dedicate
themselves fully to the project [44].

From the inception of PREEMPT_RT, the goal has always been to merge it with the
mainline kernel [44]. Many predictions have been made over the years, projecting this
to transpire imminently. However, almost 20 years later, this has yet to come about.
Still, most of the features have made it in, and today, the patch only contains about
fifteen thousand lines5, most related to latencies in printk [67], [68].

This fact means that one still needs the patch to enable PREEMPT_RT_FULL as the
preemption model at compile-time, but the day when PREEMPT_RT is no longer a
patchset but rather a compile-time setting is close.

Recently, the major distributions have started to ship versions of their images with
patched kernels [69], [70]. This development indicates a growing demand for PRE-
EMPT_RT and a high community anticipation of the delayed merge to mainline.

3.5 Performance and Real-Time Capabilities

3.5.1 Latency

Much of the existing literature on the capabilities of PREEMPT_RT concerns itself with
x86 platforms [5], [33], [36], [71]. The hardware plays a significant role in determining
the achievable latencies of the system [1], [2], so the results are not directly transfer-
able to embedded systems. Also, the underlying hardware on x86 systems is known

4Based on Listing D.1 in Appendix D.
5As of 6.6.25-rt29

Chapter 3. PREEMPT_RT 31

to trigger System Manager Mode (SMM) sporadically. SMM bypasses the operating
system to ensure proper CPU cooling and similar, effectively lowering the predictabil-
ity of the system [2]. Some research does exist on ARM platforms, most commonly
the Raspberry Pi [3], [72], [73], but also on the Beaglebone Black [3] and even soft-
core CPUs [74]. The Altera Cyclone V, as is under question in this thesis, was used by
Huang and Yang in 2020 with kernel version 4.4 [6]. They all report similar results,
with the worst-case latencies hovering around one hundred microseconds, varying
slightly with the techniques used. For mainline kernels, this is in the order of tens of
milliseconds [13].

Typically, researchers use Cyclictest [50] to measure the theoretical latencies achievable
on a platform while putting the system under some simulated load [3], [5]–[8], [72],
[75], [76]. Cyclictest is a program that implements one or more periodic tasks. When
a task wakes up, it compares the current time with the expected time and outputs
the difference as the scheduling latency. Although Cyclictest is a helpful tool, one
should not necessarily draw significant conclusions from its results. Its simplicity has
perhaps been a crutch for the scientific community, as Cerquira et al. remark regarding
Cyclictest: "it should not be mistaken to provide a general measure of a system’s ’real-time
capability’; it can only show the lack of such capability under certain circumstances" [33].

Many factors also contribute to differing latencies in a system. Adam et al. found that
while the average latency was roughly the same, the max latency differed significantly
using different distributions with different kernel versions [3]. They do not discuss
whether the user space environment supplied by the distribution or the kernel version
was the main contributor to these differences. However, based on the contents of the
Linux real-time mailing list, one might conclude that specific RT kernels differ in ca-
pabilities. Many report that particular, still maintained versions have high latencies in
particular subsystems [77]–[81].

Much of the research also fails to account for the configuration of their systems, reduc-
ing the relevance of their results [1].

The Open Source Automation Development Lab (OSADL) has hosted a QA farm for
PREEMPT_RT for several years. There, they perform long-term tests of the latency and
stability before releasing stable versions. They publish a list of hardware and setups
currently under test and their results. In contrast to much of the research community,
they have a more systematic approach and list all relevant configuration parameters
for the systems they test [82]. At the time of writing, they are executing a long-term
test of version 5.15.72-rt48 on an ARM Cortex-A9, which shows a max latency of 121
µs [83].

There also exist examples in the literature where the latency requirements for a project
were achievable without PREEMPT_RT, solely utilizing SCHED_DEADLINE on a main-
line kernel [84]. Although they experienced some latency issues they were not able to
resolve, PREEMPT_RT was not able to mitigate them. They suspected the issue was
caused by cache flushing, either by the kernel or hardware.

3.5.2 Determinism

Despite all efforts and advances to reduce latencies and increase the Linux kernel’s de-
terminism, the literature consistently agrees that PREEMPT_RT is unsuitable for hard

Chapter 3. PREEMPT_RT 32

real-time systems [2], [73]. However, others claim that a properly tuned system can
meet hard real-time constraints, but outside the context of functional safety-critical
systems [1]. One the other hand, Brown defines Linux with PREEMPT_RT to be "95%
hard real-time [35].

Concerning soft real-time systems, PREEMPT_RT makes Linux more than capable [2],
[3], [36]. Others claim this also applies to mainline Linux kernels, out-of-the-box [2].
These assessments warrant the question: If Linux cannot meet hard real-time require-
ments with the patch and is capable of soft real-time without the patch, what is the
purpose of PREEMPT_RT? Naturally, the claims regarding Linux being soft-real-time
capable out-of-the-box do not apply in every context. There are many valid use cases
for PREEMPRT_RT, and for the most part, it depends on the requirements of the sys-
tem. Real-time system classifications do not imply a specific range of latency require-
ments but rather the severity of missing one or more deadlines. But this leads to the
interesting question of when real-time is required or recommended, which the thesis
revisits in section 3.6.1

The reason for deeming Linux with PREEMPT_RT unsuitable for hard real-time sys-
tems is the impracticality/impossibility of verifying that it will meet all deadlines
due to the kernel’s complexity [1], [37] and inherent non-deterministic properties [34].
However, this has not kept researchers from trying, and efforts to verify the kernel’s
hard real-time capabilities are ongoing [85].

Currently, the method by which developers verify their system’s real-time capabilities
is through experiments [37]. These tests are often long-term and can, in certain circum-
stances, justify use in critical environments. Justifications for this include showing that
the probability of missing a critical deadline is lower than that of a random hardware
fault and adequately mitigating the consequences [1].

3.5.3 Throughput Degradation

A known and obvious side-effect of enabling full preemption is that the overall through-
put of the system decreases [1], [2], [16]. This degradation comes from several aspects
discussed in section 3.3, with the primary factor being the increased context switching
and scheduling overhead.

Literature that describes how severe degradation one can expect is limited, and the re-
sults vary significantly, indicating that it depends on the workload. In 2007, Jeong et al.
found that PREEMPT_RT reduced the throughput by a factor of five using Hackbench
[86]. The same year, McKenney found a time-consuming build workload to be 16.78%
faster on a mainline kernel than on a preemptible kernel [16]. Li et al. found a reduc-
tion of only 6% in 2023 [76] but saw that the degradation increased with the number of
CPU cores, leading to a 29% reduction in throughput on a quad-core system [76].

3.6 Tuning and Best Practices

As mentioned above, the theoretical latencies produced by Cyclictest and similar tools
can only tell us so much. Although PREEMPT_RT makes it easy to develop real-time
applications for Linux with the same tooling as any other application, it is not a "silver

Chapter 3. PREEMPT_RT 33

bullet" [36]. It is not just a matter of enabling PREEMPT_RT_FULL. Instead, a real-
time system requires careful design, as with any other operating system. However, the
literature contains several best practices and guidelines.

3.6.1 Workload Analysis

Paul McKenney distinguishes between real-time and real-fast systems. He describes
real-time as "getting started as quickly as possible" and real-fast as "getting done quickly once
started [16]. Although this distinction seems trivial, it makes sense in the context of a
patched Linux kernel with full preemption enabled. A preemptible kernel will lower
the system’s overall throughput. If the application does not have clear-cut critical real-
time constraints, a workload analysis is essential to determine whether real-time will
benefit a system.

According to [16], the duration of the work is the most critical factor when determin-
ing this. The positive effects of the real-time system’s ability to start the work sooner
diminish when the duration of the work extends past 10-20 milliseconds. Tasks with
many system calls require more context switching, dramatically increasing the "real-
time average-overhead penalty." In these cases, the workload duration limit before the
positive effects of real-time diminish might be as low as a few milliseconds [16].

3.6.2 Kernel Compile-Time Settings

Full preemption should be enabled at compile time if the workload analysis deems
real-time to benefit the system. Suppose the analysis shows that a real-fast approach is
more suitable than a real-time approach; experimenting with other preemption models
like Low-Latency Desktop or Voluntary Preemption might provide a good compromise.
HR timers should be enabled and verified [1]; however, many platforms enable this
by default. Full tickless operation can be enabled at compile-time if CPU isolation is
relevant [65], and RCU settings should be tweaked if the system becomes unstable or
if the latencies are still too high [63].

3.6.3 Policies, Priorities, and Throttling

Using real-time scheduling policies means that the scheduler respects the assigned pri-
ority of tasks. This submission by the scheduler to the user’s choices means application
developers should carefully consider the time they leave for non-critical tasks when
designing systems. If a high-priority real-time task fails to forfeit the CPU for suffi-
cient time, other tasks might never get to run. The system will, by default, impose
real-time throttling, meaning that real-time scheduled tasks will not take up more than
X amount of time per period P [87]. Throttling is a backup mechanism to ensure the
system does not freeze entirely if a real-time task goes rogue. A real-time system de-
sign should not depend on this feature. The default setting for real-time throttling
leaves five milliseconds out of every second for non-real-time tasks. This means that
this mechanism can, at any time, give a latency of up to five milliseconds for all real-
time scheduled tasks. The developer can modify the period and throttling limit or
deactivate it. This is a kernel setting configurable at run-time through sched_rt_-
period_us and sched_rt_runtime_us, located in /proc/sys/kernel. Turning
off real-time throttling requires extra care from developers to ensure that tasks with

Chapter 3. PREEMPT_RT 34

real-time policies have a bounded and short duration. For CPU-intensive real-time
scheduled tasks, the run-time option RT_RUNTIME_GREED can be enabled [88]. This
means that throttling will not occur unless there are non-real-time tasks experiencing
starvation.

For real-time scheduling policies, the static priorities range from 1 to 99. However,
some critical kernel tasks have a priority of 99, and these should ideally still be allowed
to preempt our real-time tasks. This means one should only use priority 99 except in
exceptional circumstances after careful consideration [2], [89]. The kernel’s default
priority for threaded interrupts is 50 [2], [89]. Developers should consider this when
setting task priorities and change them if required.

The Linux real-time community favors SCHED_FIFO over SCHED_RR. When two
tasks with the same priority, scheduled with SCHED_RR, are runnable, the scheduler
imposes time-slicing between them, leading to a less deterministic system. Although
this might be fine (or even desired) for some use cases, one should be wary about the
implications.

Neither the C++ standard library nor Boost supports setting scheduling policies and
priorities through their thread APIs. However, they offer an API to retrieve the thread’s
native handle, making it possible to modify the POSIX thread attributes directly through
the POSIX API after initialization. It is also possible to set the scheduling policy and
priority of a process (and all threads it might spawn) during invocation through the
chrt utility found in the util-linux package.

Depending on the system configuration, changing scheduling policies might require
root access. One way to work around this is to use the kernel’s capabilities interface to
allow this for specific executables without requiring them to run as root [90].

3.6.4 Measuring Time and Sleeping

Measuring time with fine-grained granularity is critical for all real-time systems. After
ensuring that the hrtimers subsystem is enabled and working, all system calls to get the
current time should be to clock_gettime(), with the flag CLOCK_MONOTONIC [2],
[91]. This flag ensures that the time read back is from a strictly increasing monotonic
counter instead of the system clock. This function returns a struct timespec, as
seen in Listing 3.1.

1 s t r u c t timespec
2 {
3 t ime_t tv_sec ;
4 long i n t tv_nsec ;
5 } ;
6

LISTING 3.1: Struct timespec definition [92].

Despite the limits of its datatype, the valid range for tv_nsec is [0, 109) [92]. All
system calls returning a struct timespec will abide by this and expect the same

Chapter 3. PREEMPT_RT 35

when passing them a timespec parameter. Therefore, the user must normalize these
values after arithmetic operations.

Tasks should use clock_nanosleep() to achieve the lowest possible scheduling la-
tencies when voluntarily giving up the CPU [2]. The PREEMPT_RT developers recom-
mend passing the absolute time as a wake-up parameter specified by the flag TIMER_-
ABSTIME [91]. This ensures that no overhead affects the wake-up time but requires the
user to calculate this in advance.

Common C++ libraries, like the standard library and Boost, provide sleep mechanisms
taking absolute or relative values. GCC’s standard library implementation supports
using nanosleep for this under the hood [93, libstdc++-v3/include/bits/this_thread_-
sleep.h, Line 80], as does Boost [94, libs/thread/scr/pthread/thread.cpp, Line 457] if
configured correctly. However, one should verify that this is the case if in doubt.

Regarding kernel space, the most beneficial way to sleep depends on the situation.
According to [95], when wanting to sleep for less than 20 ms in non-atomic situations,
one should use usleep_range. It is based on high-resolution timers and provides a low-
latency wake-up time. However, the wider the range provided, the more the kernel
can optimize the wake-up time and the less of a performance hit the system will likely
take.

3.6.5 Managing Memory

Swapping, a technique that writes the memory area of a process to disk to allow for
more processes to execute concurrently, can negatively impact latencies [2]. Mitigating
this can be done by locking the memory of a process or thread and prohibiting the
operating system from swapping it. One way to do this is by calling mlockall during
the initialization of the entire process or a real-time critical thread with the flags MCL_-
CURRENT and MCL_FUTURE. Even if swap memory is disabled, this call has the positive
side-effect of pre-faulting current and subsequently initialized thread stacks [96].

When an application requests the kernel to create a thread, it is assigned a stack. A
continuous virtual address space represents a thread’s stack, but the kernel does not
allocate the entire area to physical memory upon its creation. Instead, Linux will allo-
cate a new page, typically 4 KiB, when needed. This occurrence is called a page fault
and is a significant source of non-determinism for a task. Locking the memory of a
process ensures that all of its threads’ respective stacks will be deliberately pre-faulted
immediately.

The literature conflicts on whether manual pre-faulting is required when locking mem-
ory. According to the official Linux Real-Time documentation, a call to mlockall will
automatically pre-fault all memory [96]; however, according to Duval (2009), it is still
recommended to pre-fault the stack memory [97]. [98] recommends manually pre-
faulting heap memory as well.

The heap of a process is also subject to the same run-time page faulting latencies, mean-
ing it should also be locked and potentially pre-faulted deliberately [96]. Pre-faulting
can be done by dynamically allocating an area of memory and writing to at least one
element per page, as seen in Listing 3.2. The process’ expected dynamic memory usage
determines the size of the area to touch during initialization.

Chapter 3. PREEMPT_RT 36

1 u i n t 8 _ t * b u f f e r = malloc (EXP_HEAP_USAGE) ;
2

3 f o r (s i z e _ t i = 0 ; i < EXP_HEAP_USAGE; i += sysconf (_SC_PAGESIZE))
4 {
5 b u f f e r [i] = i ;
6 }
7

8 f r e e (b u f f e r) ;
9

LISTING 3.2: Example of manually pre-faulting heap memory.

Madden [2] underlines the risks involved when running with overcommit_memory en-
abled, which defaults to 150%. This means that the kernel assumes that all applications
will not use all the memory requested simultaneously and that it is safe to allocate more
memory than is available. This can lead to a scenario where the kernel kills a process
to free up memory. In some systems, this might be acceptable; however, in others, it
could be detrimental. It is important to note that by default, the kernel will not neces-
sarily kill the process that caused the situation and could potentially kill a critical task
[2].

According to sysctl documentation [99], it is possible to set oom_kill_allocating_task to
ensure that the kernel will always kill the process that triggered the situation when run-
ning out of memory. Most configurations disable this feature by default, but enabling
it can be good practice in certain situations. It is also possible to set panic_on_oom if it
is desirable to crash the system when running out of memory [45].

3.6.6 Broken Modules and Subsystems

The Linux kernel consists of several subsystems and many drivers, and not all are well-
behaved from a real-time perspective [2]. A general rule in real-time computing is to
avoid dynamic memory allocation at run-time [96], [100]. This is also true when using
Linux, as memory allocation operations might have unbounded latencies [2]. Some
system calls might allocate memory dynamically, meaning they should be avoided if
possible or reworked if required. The network stack is one such example. Because it
dynamically resizes its buffers, the network stack can potentially reduce the system’s
determinism [9]. Operations like writing to disk or using the TTY subsystem layer are
best avoided [67]. Developers should also inspect and verify that device drivers do not
perform dynamic memory allocation before using them [2], [9].

3.6.7 Loadable Kernel Modules

For the same reason that specific existing kernel modules might lead to unacceptable
levels of non-determinism in a system, so can any custom LKMs designed as part of
that system. Therefore, it is vital also to consider the guidelines and best practices for
these components [2]. As mentioned, dynamic memory allocation should be avoided
at run-time. Disabling preemption is a big red flag and should only happen if the
scheduler interacts with the module [101]. Normal spinlocks are preemptible under

Chapter 3. PREEMPT_RT 37

PREEMPT_RT, meaning they are safe to use, but raw spinlocks are discouraged unless
the module interacts with the scheduler or does interrupt-dispatching [101]. Although
these mechanisms have valid use cases, they are exceptions and should rarely apply to
a kernel module that supports an embedded real-time application.

3.7 Summary

Although it has been the facto standard for Real-Time Linux for several years and has
many real-world use cases by prominent actors, PREEMPT_RT remains a niche. With
the upcoming expected merge to mainline, new companies are curious to see what po-
tential benefits they can reap from the capabilities it brings. Substantial research exists
on the theoretical latencies achievable with Linux, but different hardware, kernel ver-
sions, and system requirements mean that existing results are not directly applicable.
Cyclictest can only tell us so much, and benchmarks should preferably measure an
actual system or something very similar to it, which is the goal of this thesis. The liter-
ature cannot predict how the target system might perform with PREEMPT_RT. It must
be tested through experiments and evaluated carefully. The research on PREEMPT_RT
capabilities on this project’s hardware platform is also limited. Although some litera-
ture provides benchmark results on the reduced throughput caused by PREEMPT_RT,
these measurements are pretty old, and in the end, the nature of the system determines
the results.

This chapter has identified several techniques and best practices from the literature,
but it is unknowable which, if any, will benefit the target system without putting them
to use. Whether a real-time or real-fast system best serves the target application is a
crucial question in this thesis.

As for the relevance of further research, Reghenzani et al., which performed a com-
prehensive survey on PREEMPT_RT in 2019, stated that: "For academic and research
purposes, PREEMPT_RT is a potential candidate for the development of both applications and
test benches. In the first case, any type of application can be implemented and tested in a real-
time environment with less effort rather than using complex RTOSs. In testbench cases, the
experimenters can use Linux to test the performance of scheduling algorithms, IPC calls, and
any other operating system mechanisms. It is important that researchers correctly configure the
Linux system in order to have realistic latencies. This activity has been sometimes neglected
and may lead to erroneous or unreliable conclusions." [1].

38

Chapter 4

Methodology and Design

This chapter gives an overview of the research methods applied to the project. It goes
into the concrete work required to build a platform to perform measurements on and
the system under test’s architecture. Finally, it describes the experiments designed for
the thesis and explains how it evaluates the results.

This thesis is in the applied research domain and uses a combination of quantitative
and design research methodologies. It does not utilize the company’s intellectual prop-
erty, ensuring all results are open and reproducible. All required SW and HW compo-
nents are either based on open-source solutions or developed from scratch.

The project’s first phase will be designing and implementing the SUT. This includes:

• FPGA Hardware design for simulating RX and TX and simulated application
logic.

• Build and configure bootloader for the target platform.

• Build and configure mainline Linux kernel for the target platform.

• Build and configure Preempt RT patched Linux kernel for the target platform.

• Create a root file system with required libraries and utilities.

• Set up an environment where it is possible to modify HW, kernel version, and
SW components and quickly deploy to the target, resulting in a short feedback
loop and maximized efficiency.

• Design and implement platform baseline tests to understand the system’s capa-
bilities and limitations. This will, in some cases, allow us to verify the findings in
the literature and, in other cases, clarify contradictory reports.

• Design and implement applications needed for achieving the desired data flow.
This includes the interface between the HPS and the FPGA and between user and
kernel space.

• Design and implement tests to perform on the mock implementation of the target
system.

The second part will analyze and optimize the system’s real-time capabilities and
throughput. Relevant comparisons and activities include, but are not necessarily lim-
ited to:

• Preemption Models

Chapter 4. Methodology and Design 39

• Different kernel configurations according to best practices found in the literature

• Scheduling policies and priorities

• Optimizing RT tasks

• Optimizing IPC mechanisms

• Applying CPU load with various stress tools

• Developing custom test suites where applicable

Using CPU isolation was considered but abandoned due to the limited number of cores
on the target platform.

4.1 Platforms and Tools

The target system will run on custom hardware, integrating an Intel Altera Cyclone
V. This thesis performs all tests on a commercially available development kit to avoid
tying academic efforts to the company’s intellectual property. The vendor’s official kit,
DK-DEV-5CSCX6N was chosen [102], with the SoC variant 5CSXFC6D6F31C6.

The project will only depend on hardware contained internally in the SoC, but the SoC
requires external RAM to function, so this will affect the results. The development kit
includes a 1 GB DDR3 SDRAM with a 32-bit bus clocked at 400 MHz. This results in
a theoretically achievable bandwidth of 25.6 Gbps, according to the reference manual
[102].

4.1.1 Hardware

The vendor’s standard tool for FPGA development, Qartus Lite 22.1, is used to develop
the necessary hardware logic for the project. The lite version of Quartus requires no
license. It facilitates the configuration of both the HPS and FPGA and includes various
scripts for generating artifacts required by the BSP. Specifically, this includes a raw
binary file (.rbf) to configure the FPGA, a compiled device tree blob (.dtb) describing
the hardware to the Linux kernel, and header files required by the bootloader.

4.1.2 Board Support Package

This section briefly describes and justifies the tools and versions used to build the min-
imal Linux system used in this thesis.

Toolchain

Crosstool-NG, a tool for generating toolchains for various platforms, generates the
project’s toolchain. Concretely, it is version 1.26.0 [103], which supports GCC 13.2.
The content of the build configuration is available in Appendix A, Listing A.1.

Chapter 4. Methodology and Design 40

U-Boot

Das U-Boot version 2023.07 [104] makes up the preloader and bootloader of the BSP.
The build uses the default configuration for the Cyclone V, socfpga_cyclone5_de_
fconfig, which comes bundled with U-Boot. Through Qartus, the Cyclone V is con-
figurable in numerous ways. For U-Boot to configure the Cyclone V correctly during
initialization, it depends on the contents of several board-specific header files. These
are generated by Quartus Lite. The command line arguments passed to the kernel
at boot-time contain no significant parameters concerning the outcomes of this the-
sis.

Linux Kernel

For the mainline Linux kernel, version 6.6.14 from the master tree is used [27], and
the PREEMPT_RT patched version uses version 6.6.14-rt21 from the Linux stable RT
tree [62]. The reason behind selecting these versions is that they are the current LTS
releases. Although the kernel used in production environments at the company derives
from version 5.19, a newer kernel makes the results more relevant for others. The fact
that these versions differ in their major number should not be significant. Torvalds
himself has stated that he increments the major version "when the minor version gets to
around 20" [105], not because anything fundamental has changed. Still, the company’s
kernel and Linux distribution are, in specific cases, used to verify that no significant
discrepancies exist between the versions and their configurations.

All build configurations stem from the vendor-provided socfpga_defconfig, bun-
dled with Linux. They are, however, slightly modified. CONFIG_CMA and CONFIG_-
DMA_CMA are enabled to provide the functionality required by the CMA driver dis-
cussed in section 2.3.2. The preemptible version of the mainline kernel enables CON_
FIG_PREEMPT, and the PREEMPT_RT patched tree enables CONFIG_PREEMPT_RT.
CONFIG_HIGH_RES_TIMERS are enabled on all ARM platforms by default. The con-
figuration file for the non-preemptible kernel is available in Listing A.2 in Appendix
A. Differences between this config file and the ones used for the preemptible and fully
preemptible kernels can be seen in Listing A.3 and A.4 in Appendix A.

The kernels in this thesis build the upstream drivers in-tree while building other kernel
modules out-of-tree, leading to a tainted kernel at run-time.

Root Filesystem

Buildroot was chosen over Yocto to build the root filesystem. This is due to Buildroot’s
simplicity, as this thesis only requires a minimal setup. Although Buildroot can com-
pile the toolchain, bootloader, and kernel, they were built separately for this project to
maintain control and have a more flexible setup.

Version 2023.08.1 [106] was selected, from which the included socrates_cyclone5_
defconfig made up the basis for the configuration. The final build configuration
contains nothing relevant to this thesis’s main topics and results and has been omitted
from this document.

The versions of the tools provided by this particular version of Buildroot are summa-
rized in Table 4.1.

Chapter 4. Methodology and Design 41

TABLE 4.1: Versions of relevant software provided by Buildroot.

Version
rt-tests 2.5
Stress-NG 0.15.07
Iperf3 3.14
htop 3.2.2
GNU Coreutils 9.3
p7zip 17.04
sysstat 12.6.1
libnl 3.7.0

Running the BSP

Normally, the Cyclone V boots from either flash memory or a micro SD card. To avoid
flashing an SD card on each modification to the kernel or FPGA image during devel-
opment, TFTP was used to have U-Boot download these artifacts from a TFTP server
running on the host machine at boot time. The root filesystem was also placed on the
host machine and loaded into RAM on the Cyclone V as a Network File System (NFS).
This setup dramatically shortened the feedback loop during development but could
lead to higher latencies. Therefore, a complete BSP stored on an SD card made up the
platform upon which all benchmarks were executed.

The versions of the tools used to build the BSP artifacts are summarized in Table
4.2.

TABLE 4.2: Versions of tools for building BSP artifacts.

Version
Quartus Lite 22.1
U-boot 2023.07
Buildroot 2023.08.1
Crosstool-ng 1.26.0
Linux 6.6.14
Linux-stable-rt 6.6.14-rt21

4.2 Test Setups

The following sections describe the experiments designed to evaluate the impact of
kernel configurations, scheduling policies, and system architecture decisions on the
target system’s real-time capabilities and throughput. This section describes and justi-
fies the overall setups and system configurations used in the experiments. If a particu-
lar experiment deviates from the configurations described here, the respective experi-
ment’s description explicitly states it.

4.2.1 Comparative Setup Configurations

Based on the findings in the literature, the target system might not require PREEMPT_-
RT to meet its requirements. Instead, it might even be considered harmful due to the

Chapter 4. Methodology and Design 42

reduced throughput one should expect. Because of this, all tests were executed on the
following preemption models:

Kernel Preemption Model

• Linux

– No Forced Preemption (Server)

– Preemptible Kernel (Low Latency Desktop)

• Linux Stable RT

– Fully Preemptible Kernel (Real-Time)

The literature review did not uncover any comparisons between a preemptible and a
fully preemptible kernel. This makes the comparison all the more interesting and the
results more novel.

The following variations in scheduling policies and priorities are deemed attractive,
but they are not necessarily all used in every experiment.

Scheduling Policies

• SCHED_OTHER - NICE level: 0

• SCHED_OTHER - NICE level: -20

• SCHED_FIFO - Priority: 40

• SCHED_FIFO - Priority: 60

• SCHED_FIFO - Priority: 99

SCHED_OTHER is used to determine a baseline, and using SCHED_FIFO with differ-
ent priorities uncovers to what degree threaded interrupts influence latencies.

4.2.2 Stressors

The literature repeatedly finds that the impact of the preemption model becomes more
pronounced when the system is under load. Because of this, the experiments are per-
formed using different stressors to induce load on the system. This also makes for
more realistic measurements.

The following stress scenarios are used in the experiments:

• Stress-NG - CPU load of 25% and 75%

• Iperf3 - Network load

• Hackbench - IPC load

The Stress-NG configurations induce 25% and 75% CPU load, respectively. Further-
more, they execute almost exclusively in user space. The loads induced by Iperf and
Hackbench consist of many system calls, meaning that they primarily execute in kernel
mode.

The exact configurations of the stressors and their resulting CPU load are available
in Listings B.1, B.2, B.3, and B.4 in Appendix B. The stressors are scheduled under

Chapter 4. Methodology and Design 43

SCHED_OTHER, meaning that they are subject to time-slicing. As the Iperf3 stressor
executes a TCP benchmark that tries to run as fast as possible, the CPU load caused
by Iperf will drop when executing alongside the respective benchmarking software of
each test.

4.3 Platform Baseline Tests

This section describes and justifies several experiments and their design. They aim to
evaluate the platform’s real-time capabilities and the implications of applying different
preemption models and scheduling policies.

4.3.1 High-Resolution Timers Verification

As the literature shows, high-resolution timers should be verified to be enabled. More-
over, the hardware should be verified to support their resolution. As recommended,
this is done by inspecting the outputs of /proc/timerlist. In addition to this veri-
fication by analysis, they are also verified in practice using Cyclictest in the succeeding
experiment.

4.3.2 Cyclictest

Cyclictest supports a wide range of options, and the configuration used for this ex-
periment can be seen in Listing 4.1. The test uses the same periods as [3] to achieve
comparable results.

1 #SCHED_FIFO − P r i o r i t y 60
2 c y c l i c t e s t −−loops 1000000 \ # Number of i t e r a t i o n s
3 −−threads 1 \ # Number of threads
4 −− i n t e r v a l 400 \ # Period of thread in us
5 −−mlockal l \ # Lock memory
6 −−smp \ # Use a l l CPUs
7 −−pol i cy f i f o \ # Use SCHED_FIFO
8 −− p r i o r i t y 60 \ # P r i o r i t y of 60
9 −−defaul t −system \ # Don’ t tune system

10 −−quie t # Don’ t p r i n t to stdout
11

LISTING 4.1: Cyclictest baseline test configurations.

Three different tests are performed. The first test will run with SCHED_OTHER, the
second with SCHED_FIFO and a priority of 40, and the third with SCHED_FIFO and
a priority of 60. The reason for executing at 40 and 60 is that the default priority of
threaded interrupts is 50, as described in earlier chapters. This facilitates a view of
threaded interrupts’ effects on the system’s latency. In contrast to [3], the tests are not
performed with a priority of 99, as the literature does not recommend using such a
high priority. Additionally, the tests execute for twice the number of iterations to get
more robust results. However, the number of iterations tested is still low compared

Chapter 4. Methodology and Design 44

to what the literature recommends, but a compromise was necessary due to time con-
straints.

Further, this configuration means that Cyclictest will create one thread per CPU. The
first thread will run with a periodic interval of 400 µs, and since the default interval
between threads is 500 µs, the second thread will have a period of 900 µs. The test
will run until the most frequent task has reached 1 000 000 iterations, approximately
6.5 minutes. The memory is locked to avoid page faulting latencies, and Cyclictest is
configured not to tune the system internally, ensuring that the test will most accurately
reflect the system’s capabilities.

4.3.3 Throughput Test

The literature shows that one must expect the system’s throughput to degrade when
using PREEMPT_RT. However, reports on the extent of this degradation are rare in
the literature, and the literature review did not uncover any reports on the throughput
reduction of a low-latency preemptible kernel. Due to these findings, this test measures
and compares the system’s throughput under different preemption models.

The test consists of running two different stressors, which will perform a finite set of
operations as fast as possible. The total run time of the test will determine the extent
of throughput degradation.

The tests utilize Stress-NG and Hackbench, and Listing 4.2 shows their respective con-
figurations.

1 # S t r e s s −NG workload
2 S t r e s s −NG −−vm 1 \
3 −−vm−locked \
4 −−vm−populate \
5 −−vm−madvise nohugepage \
6 −−vm−method gray \
7 −−vm−bytes 128M \
8 −− v e r i f y \
9 −−metrics − b r i e f \

10 −−vm−ops 5000000
11

12 # Hackbench workload
13 hackbench −−loops =50000

LISTING 4.2: Throughput test workload parameters.

The README of Stress-NG states that although it is possible to use it as a throughput
benchmark, this is inadvisable as it was not designed for this purpose [107]. However,
in an issue on the Stress-NG GitHub page [108], the author states that as long as the
version of Stress-NG is the same across the benchmarks and that the several test execu-
tions give corroborative results, it should be considered sound. As explained in section
4.2.2, Stress-NG executes almost entirely in user mode, while Hackbench executes al-
most entirely in kernel mode, giving us coverage of both cases.

Chapter 4. Methodology and Design 45

4.3.4 Preemption Test

The preemption test aims to determine the impact scheduling policies and preemption
models have on the preemption count of a task. The test consists of a task that mimics
a CPU-intensive task by busy waiting for 500 ms and then sleeping for 500 µs, as seen
in Listing 4.3.

1 while (t rue)
2 {
3 //Busy wait f o r 500 ms
4 s t r u c t timespec s t a r t = getTimespecNow () ;
5 while (t imespecDiffUs (getTimespecNow () , s t a r t) < 500 * MICROS_PER_MILLI) ;
6

7 //Sleep f o r 500 us
8 usleep (500 * MICROS_PER_MILLI) ;
9 }

LISTING 4.3: CPU intensive task, excerpt from preemption test.

Each configuration of the test executes for 600 cycles, approximately 10 minutes. The
system call getrusage allows a separate thread to query how many times the task has
voluntarily given up the CPU and how many times another task has preempted it.

The expected outcome is that the scheduling policies will have similar preemption
counts in idle CPU conditions but differ more when the system is under load. The pre-
emption model should not impact the results regardless of the load, as it only dictates
whether or not a task executing in kernel space is preemptible.

An additional test is also conducted to determine how often a user space task gains an
advantage due to the kernel being preemptible. Cyclictest will be executed with the
same parameters as in section 4.3.2, using Iperf as a stressor. During this test, external
software will record the number of times Cyclictest preempts a task executing in kernel
mode. Further details on this test are presented along with the results.

4.3.5 Memory Lock Test

The significance and implications of memory locking and prefaulting are somewhat
contradictory reported in the literature. This test will investigate what operations are
required to avoid page faults during run-time and measure their impact when memory
is not locked and pre-faulted. The test will consist of SW that will allocate 64 KiB of
memory, equivalent to 16 pages, and then touch it in a loop, measuring the worst-case
latency experienced during a page fault. The test will be invoked 5000 times, resulting
in a total sample size of 80 000 page faults.

The test is performed with static memory, memory allocated on the stack, and memory
allocated on the heap to see if there are any differences among these.

Chapter 4. Methodology and Design 46

4.4 Target System Analysis

The platform baseline tests provide an understanding of the system’s capabilities. How-
ever, as the literature suggests, this is most likely insufficient to determine whether the
target system’s requirements are feasible on a Linux platform.

This section analyzes the target system based on findings in the literature and further
refines its real-time constraints.

4.4.1 Real Time vs. Real Fast

The target system has, up till this thesis, been treated and designed as a real-fast system
(in the context of McKenney’s philosophy [16] described in section 3.6.1).

Parts of the application rarely perform system calls. As the IO interface towards the
FPGA logic is strictly in user space, the only system call regularly used is the Generic
Netlink interface towards the high-level side of the system. This might make the sys-
tem suitable for a real-time approach [16].

According to [2], the workload of the target system can be considered asynchronous, as
its start and completion time does not have hard constraints but rather a soft deadline
spanning several cycles of execution. The target system might perform satisfactorily
without real-time scheduling. However, Madden states several potential advantages it
might gain from PREEMPT_RT and SCHED_FIFO [2]. Among these is the consistency
of the task execution time and the fact that the time complexity of real-time scheduling
policies is lower than that of CFS. In addition, real-time policies favor CPU-intensive
tasks as found in the target system.

4.4.2 Periodic vs Aperiodic

As discussed, the existing target system is not periodic. Its main loop has a flag Run-
More, which, if set, makes the loop execute again. Depending on the system’s current
state, various components throughout the application can set this flag. For instance,
when reading incoming data from the circular buffer, if a chunk of 4 KiB was avail-
able, RunMore is set to one. This design choice leads to an inherent non-deterministic
system. Depending on the execution time of the decoding logic, this can lead to at least
two different scenarios:

Chapter 4. Methodology and Design 47

• Scenario 1:

– Mainloop executes:

* 4 KiB is read from the buffer.

* RunMore is set to at least one.

* Packet is decoded.

– Mainloop executes again because of RunMore

* The buffer is found to have more than 4 KiB of data

* 4 KiB is read from the buffer.

* RunMore is set to at least one.

* Packet is decoded.

– Mainloop executes again because of RunMore

* The buffer is found to have more than 4 KiB of data

* ...

* ...

• Scenario 2:

– Mainloop executes:

* 4 KiB is read from the buffer.

* RunMore is set to at least one.

* Packet is decoded.

– Mainloop executes again because of RunMore

* The buffer is found to have less than 4 KiB of data

* The thread goes to sleep for a millisecond

– Mainloop wakes up after a millisecond

* The buffer is found to have more than 4 KiB of data

* ...

* ...

In scenario 1, the execution time of the main loop is longer than the time it takes the
FPGA to write 4KiB to the shared buffer, i.e., 1.62ms. This means the main thread
might never voluntarily yield the CPU while reading data. This is fine when Using a
time-shared scheduling policy like SCHED_OTHER, but when using one of the real-
time policies, all other tasks might be subject to starvation.

In the second scenario, the execution time of the main loop is shorter than 1.62ms,
for instance, 500µs. Again, under SCHED_OTHER, it might make sense not to actively
sleep since the task might have already been swapped in and out on the CPU, meaning
the buffer contains data again. With SCHED_FIFO, however, one can be sure the main

Chapter 4. Methodology and Design 48

loop has not been preempted (at least not for long) and that running again is simply a
waste of precious CPU time.

Although the extra overhead in scenario two is very slight, both scenarios imply that
a periodic approach could benefit the system. Naturally, if the execution time were
consistently above 1.62 milliseconds, the system would not function. However, it can
still occur intermittently, for example, if the task is subject to heavy time-slicing under
CFS or experiences throttling under a real-time policy.

4.4.3 Memory Management

For the most part, the target system uses statically allocated memory pools to avoid
dynamic memory allocation, where the largest is about 9MiB. However, lazy alloca-
tion might still lead to page faulting during run-time, introducing latencies into the
system. The platform baseline test described in section 4.3.5 covers the implications of
this.

However, the target application does perform some dynamic memory allocation when
interfacing a kernel module through Generic Netlink. The memory lock test does not
cover the impact of this, so a separate experiment is performed to investigate this.

4.4.4 Single-Threaded vs Multi-Threaded

The existing design of the target system is single-threaded for all practical purposes.
Partitioning parts of the logic into separate threads could help appropriately separate
real-time and real-fast workloads. However, this increases the complexity of the sys-
tem. Since this is a porting effort, not a new venture, it might introduce significant
risks.

The two outer points of the application, the FPGA interface and the part communicat-
ing with kernel modules using Generic Netlink, are the best candidates for extracting
to separate threads. However, this might create bottlenecks in the system, where pack-
ets would pile up in queues, not solving anything.

The target system-specific experiments will investigate how the interface towards the
kernel modules impacts the latencies and how the preemption model impacts the
throughput of these mechanisms.

4.4.5 Requirements

As discussed in Chapter 2, the major real-time constraint placed on the target system
is to keep up with the data rate required by the FPGA logic. As found in section 2.3.3,
the target system must be able to read the entire buffer within 50 ms to avoid buffer
overflow.

Due to DMA synchronization, the target system should always leave a safety margin
in the buffer when the FPGA logic is actively writing. Taking this into account, as well
as other uncertainties, one can assume that the target system should be able to read an
entire buffer within 40 ms to be sure to avoid overflows.

Chapter 4. Methodology and Design 49

Aperiodic

As discussed earlier, the design choices of the existing system resemble a real-fast ap-
proach. It is not periodic; instead, it continues to execute as long as there is work to do.
This includes whether or not data is available from the circular buffer. When there is
nothing to do, the application sleeps for one millisecond.

Assuming that the task is not preempted significantly during execution, one can as-
sume that the thread can withstand up to 40 ms wake-up latency when going to sleep.
However, this assumes that the thread gets sufficient CPU time in the short term after
waking up to clear the buffer. If the task’s scheduling policy is SCHED_OTHER and is
subject to time-slicing, this is not guaranteed and depends on the system’s background
load. If the task uses a real-time scheduling policy, the task will only be preempted by
more critical tasks. Still, if the execution time to clear the buffer grows too large, the
task might be subject to real-time throttling.

This shows that determining the temporal constraints of the target system is not trivial
and that the system might benefit from a real-time approach to increase the predictabil-
ity of the system.

Periodic

If one instead assumes a periodic task, reading packets of 4 KiB from the circular buffer
every millisecond, it might be possible to formulate more precise temporal constraints
for the system.

Given these parameters, as well as a safety margin of 4 KiB, the software can read an
entire buffer in

bufferSize− safetyMargin

readChunkSize

128 KiB− 4 KiB

4 KiB
= 31 cycles

(4.1)

In other words, a period of 1 ms can be sufficient to keep up with the FPGA.

Assuming a perfect average scheduling latency of 0, one can perhaps accept a latency
spike of up to 40-50 ms per 31 cycles.

Assuming no large spikes, one can calculate the maximum average latency required to
avoid overruns. This is given by the fact that there is a 50 ms − 31 ms = 19 ms margin
for latencies. This leads to a maximum average latency of

19 ms

31 cycles
= 613 µs (4.2)

A more realistic average scheduling latency of 50 µs would allow for an additional
latency spike of up to

Chapter 4. Methodology and Design 50

19 ms− ((31− 1) · 50 µs) = 17.5 ms (4.3)

Transmitting

The constraints for writing data to the circular buffer can be assumed to be the same
if the buffer is always full when the DMA transaction starts. However, this might not
always be a valid assumption. Suppose the DMA controller starts reading with only
8KiB in the buffer. Assuming everything else is the same, the following two cycles will
have an accumulated max latency of 8 ms. This gives a max latency of 7.95 ms, when
accounting for an average latency of 50 µs

The target application will also apply modulation and demodulation algorithms on
the data that passes through it. Determining the execution time of these algorithms in
advance is not trivial and will include many assumptions.

4.4.6 Design of System Under Test

As mentioned, porting the target system to the new platform is a planned effort, and
it is impossible to benchmark the actual system at this point. Due to this, critical com-
ponents required to mimic the data flow of the target system will be implemented and
benchmarked in isolation.

The actual system has an algorithm for swapping between transmission and reception
and transmitting dummy packets if there is nothing to transmit. To avoid this logic, the
SUT will consist of two modes: receiving or transmitting packets continuously.

The primary output of this thesis is the results of the experiments performed on the
SUT, not the SUT itself. Therefore, the descriptions of its implementation are kept at a
high level.

Reception Pipeline

The high-level design of the reception pipeline can be seen in Figure 4.1.

This pipeline represents the path the data will take through the SUT. Each component
has an input and an output queue, making it easy to separate components into separate
threads if desired. Although this might introduce overhead that is not present in the
actual system, the target system has significant overhead through its business logic,
such as the signal processing algorithms, which are not present in the SUT.

The RX Driver initializes and is responsible for enabling and disabling the DataMover
component on the FPGA. Communication is done through the HPS-to-FPGA bridge,
while the DataMover writes to the shared buffer through the FPGA-to-HPS bridge.

Chapter 4. Methodology and Design 51

Pattern
Verifier

Pattern
Verifier

Kernel
Space

User
Space

nl_send_auto HW
Decoder

MainThread

Ringbuffer
Shared
Memory

DataMover

FPGA

Write

RX Driver
Read

Control

HW
Decoder

PutGet

Pattern
Generator

Get

Out
Que

SW
Decoder

In
Que

Out
Que

Out
Que

In
Que

In
Que

Update Update Update

Receive (From powerline)

Update

FIGURE 4.1: Design of reception pipeline.

Depending on its configuration, the main thread will implement a periodic or aperi-
odic routine and drive data through the pipeline. The main thread does this through
update calls to the pipeline’s respective components and by reading and writing to the
packet queues on the input and output of each component.

The SW Decoder component will decimate the data by a factor of two, and the HW
Decoder will decimate the data by a factor of four by passing it through a component
in the FPGA.

This means that the pipeline has a total decimation of eight and that for every eight
bytes read from the shared buffer, only one is written to the Pattern Verifier. The pattern
verifier component takes the packages received in its input queue and writes them
to a kernel module over Generic Netlink sockets. This kernel module is responsible
for verifying that the data has not been corrupted or overflowed during transmission
through the pipeline.

A slightly simplified implementation of the RX pipelines’s main routine is available
in Listing 4.4. This includes an example of the data passing between the components,
showing the step-by-step decimation of the pattern generated by the FPGA.

Chapter 4. Methodology and Design 52

1 void RxPipel ine : : update ()
2 {
3 rxDriver . update () ;
4

5 // RX Driver Output :
6 // 0x01 , 0x01 , 0x01 , 0x01 , 0x01 , 0x01 , 0x01 , 0x01 ,
7 // 0x02 , 0x02 , 0x02 , 0x02 , 0x02 , 0x02 , 0x02 , 0x02 ,
8 // 0x03 , . . .
9 while (rxDriver . packetAvai lable ())

10 {
11 const auto packet = rxDriver . get () ;
12 swDecoder . put (packet) ;
13 }
14

15 swDecoder . update () ;
16

17 // SW Decoder Output :
18 // 0x01 , 0x01 , 0x01 , 0x01 , 0x02 , 0x02 , 0x02 , 0x02
19 // 0x03 , . . .
20 while (swDecoder . packetAvai lable ())
21 {
22 const auto packet = swDecoder . get () ;
23 hwDecoder . put (packet) ;
24 }
25

26 hwDecoder . update () ;
27

28 // HW Decoder Output :
29 // 0x01 , 0x02 , 0x03 , . . .
30 while (hwDecoder . packetAvai lable ())
31 {
32 const auto packet = hwDecoder . get () ;
33 p a t t e r n V e r i f i e r . put (packet) ;
34 }
35

36 p a t t e r n V e r i f i e r . update () ;
37 }

LISTING 4.4: Update function of reception pipeline.

Chapter 4. Methodology and Design 53

Transmission Pipeline

The transmission pipeline is similar to the reception pipeline and can be seen in Figure
4.2.

Pattern
Generator
(May be
separate
thread)

Pattern
Generator

Kernel
Space

Netlink Send

User
Space

Netlink Receive HW
Encoder

User
Space

/dev/
generate

tx.sh
'period'
'size'

write

MainThread

Ringbuffer
Shared
Memory

DataMover

FPGA
Read

TX Driver
Write

Control

HW
Encoder

GetPut

Pattern
Verifier

Put

In
Que

SW
Encoder

Out
Que

In
Que

In
Que

Out
Que

Out
Que

Update Update Update

Request Data

Transmit (To powerline)

Update
(If not thread)

FIGURE 4.2: Design of transmission pipeline.

The kernel module Pattern Generator will have two interfaces. One is through a file de-
scriptor, and the other is through Generic Netlink sockets. The file descriptor interface
offers a mechanism for writing data into an internal queue, representing the ethernet
frames transmitted from high-level Linux network services on the target system. When
ready to transmit, the target application requests a package from the kernel module.
The kernel module has a kernel thread that, upon receiving this request, transmits the
newly generated package to the target system application through Generic Netlink.
The justification for this design is to ensure that the kernel module handles congestion
control and does not swarm the target system with packages.

Similarly to the reception pipeline, this pipeline comprises standalone components
with input and output queues. However, in contrast to the reception pipeline, it will
instead interpolate the data by a total factor of 8. The HW Encoder will interpolate by
4, using the FPGA similarly to the HW Decoder. The SW Encoder will interpolate by 2,
and the DataMover will write the data to the shared buffer. This is illustrated in Listing
4.5, which shows a simplified version of the TxDriver’s update function.

In the reception pipeline, the shared buffer starts empty, and the software should try
to keep its size as low as possible to avoid an overflow. In contrast, the transmission
pipeline will start with the shared buffer at a size above a certain threshold and ensure
that it will never underrun. Different thresholds can give different behaviors, and
depending on the rate at which data will come through the Generic Netlink interface,
it might be necessary to briefly disable the DataMover intermittently.

Chapter 4. Methodology and Design 54

1 void TxPipel ine : : update ()
2 {
3 i f (shouldRequestMore ())
4 {
5 patternGenerator . request_message () ;
6 }
7

8 // PatternGenerator Output :
9 // 0x01 , 0x02 , 0x03 , . . .

10 while (pat ternGenerator . packetAvai lable ())
11 {
12 const auto packet = pat ternGenerator . get () ;
13 hwEncoder . put (packet) ;
14 }
15

16 hwEncoder . update () ;
17

18 // HW Encoder Output :
19 // 0x01 , 0x01 , 0x01 , 0x01 , 0x02 , 0x02 , 0x02 , 0x02
20 // 0x03 , . . .
21 while (hwEncoder . packetAvai lable ())
22 {
23 const auto packet = hwEncoder . get () ;
24 swEncoder . put (packet) ;
25 }
26

27 swEncoder . update () ;
28

29 // SW Encoder Output :
30 // 0x01 , 0x01 , 0x01 , 0x01 , 0x01 , 0x01 , 0x01 , 0x01 ,
31 // 0x02 , 0x02 , 0x02 , 0x02 , 0x02 , 0x02 , 0x02 , 0x02 ,
32 // 0x03 , . . .
33 while (swEncoder . packetAvai lable ())
34 {
35 const auto packet = swEncoder . get () ;
36 txDriver . put (packet) ;
37 }
38

39 txDriver . update () ;
40 }

LISTING 4.5: Update function of transmission pipeline.

The actual application will transmit up to 1500-byte packages, quickly swapping be-
tween transmitting and receiving. However, the SUT will transmit or receive contin-
uously, meaning it is not a perfect representation of the system but exhibits extreme
behavior.

Chapter 4. Methodology and Design 55

4.4.7 Output

A command-line dashboard was implemented to simplify debugging and develop-
ment, where a separate thread gathers statistics from the other components and prints
them to the console, as seen in Listing 4.6. This is silenced through command line
arguments when running tests and replaced by writing a summarized version of the
output to a log file.

1 ##
2 Begin
3 ##
4 0 0 : 0 0 : 1 6
5 Load Avg : 0 . 0 0 0 . 0 0 0 . 0 0 1/68 247
6 AppThread − Lat − Curr : 71 us Min : 65 us Max : 106 us Avg : 68 us
7 AppThread − Exe − Curr : 98 us Min : 6 us Max : 466 us Avg : 123 us
8 Missed S ing le Per 0 , Missed Tota l Per 0
9 CPU − 246 − AppThread :

10 Curr − Usr 1 1 . 8 8 , Sys 0 . 0 0 , Tot 11 .88
11 Avg . − Usr 7 . 0 7 , Sys 0 . 0 0 , Tot 7 . 0 7
12 F l t s − Maj 0 , Min 0
13 CtxS − Vol 16058 , Non 0
14 CPU − 232 − GeneratorThread :
15 Curr − Usr 0 . 0 0 , Sys 0 . 0 0 , Tot 0 . 0 0
16 Avg . − Usr 0 . 0 0 , Sys 0 . 0 0 , Tot 0 . 0 0
17 F l t s − Maj 0 , Min 0
18 CtxS − Vol 3 , Non 0
19

20

21 RX P i p e l i n e − 1 . 2 5 Mibps
22 RxDr On − Sent : 11 .30 MiB Rcv : 11 .29 MiB Buf : 6 . 0 8 KiB Err : 0
23 SW Dec − Sent : 11 .29 MiB Rcv : 5 . 6 4 MiB Err : 0
24 HW Dec − Sent : 5 . 6 4 MiB Rcv : 1 . 4 1 MiB F i f : Empty Err : 0
25 V e r i f i e r − Cur : 1 . 4 1 MiB Tot : 1 . 4 1 MiB Err : 0
26

27 QueSize − RxDr : 0 SwDIn : 0 SwDOut : 0 HwDIn: 0 HwDOut: 0 Veri : 0
28 QueMaxS − RxDr : 1 SwDIn : 1 SwDOut : 1 HwDIn: 1 HwDOut: 1 Veri : 1
29

30

31 TX P i p e l i n e − 0 . 0 0 bps
32 Generate − Gen : 0 . 0 0 B Tot : 0 . 0 0 B Pac : 0 Msg : 0
33 HW Enc − Sent : 0 . 0 0 B Rcv : 0 . 0 0 B F i f : Empty Err : 0
34 TxDr I d l − Sent : 0 . 0 0 B Rcv : 0 . 0 0 B Buf : 0 . 0 0 B Err : 0
35 Underrun Flag : False , Underruns : 0
36

37 QueSize − Gen : 0 HwEIn : 0 HwEOut : 0 SwEIn : 0 SwEOut : 0 TxDr : 0
38 QueMaxS − Gen : 0 HeEIn : 0 HwEOut : 0 SwEIn : 0 SwEOut : 0 TxDr : 0

LISTING 4.6: Command line dashboard of SUT.

The components in the SUT design form a base for building smaller applications dur-
ing the target-specific tests to evaluate the impact of different mechanisms in isola-
tion.

Chapter 4. Methodology and Design 56

4.4.8 FPGA Design

Figure 4.3 shows a high-level representation of the system configuration in Quartus’
platform designer. The DataMover, Encoder, and Decoder are components implemented
in VHDL to mock the actual FPGA logic. They connect to the HPS through various
bridges as described in section 2.3.1.

FIGURE 4.3: Quartus high-level platform overview.

Chapter 4. Methodology and Design 57

4.5 Target System Experiments

As discussed in the previous section, the target system uses several concrete mecha-
nisms that may introduce latencies into the system.

These will be implemented in isolation and benchmarked against other solutions the
literature recommends. Essential factors for evaluating them include CPU load, la-
tency, and determinism.

4.5.1 Dynamic Memory Allocation

One of the few places the target system will perform dynamic memory allocation at
run-time is when interacting with the Generic Netlink interface. It will utilize libnl
[109] for this, which requires dynamic memory allocation of packets. This allocation
is explicit when transmitting and implicit when receiving. Because of this, this test
aims to see how long it takes to allocate, touch, and free memory across the different
preemption models.

The implementation of this can be seen in Listing 4.7.

1 void DynamicMemoryTest : : update ()
2 {
3 al locTimer . s t a r t () ;
4 auto * msg = nlmsg_al loc () ;
5 al locTimer . stop () ;
6

7 putTimer . s t a r t () ;
8 genlmsg_put (msg , NL_AUTO_PORT, NL_AUTO_SEQ, . . .) ;
9 nla_put_u32 (msg , SAI_LENGTH, 150) ;

10 putTimer . stop () ;
11

12 freeTimer . s t a r t () ;
13 nlmsg_free (msg) ;
14 freeTimer . stop () ;
15 }

LISTING 4.7: Main routine of dynamic memory test.

Separate timer class instances measure each operation and internally record the mini-
mum, maximum, and average values. The routine has a period of 1ms and executes for
a total of 20 minutes, giving approximately 1 200 000 samples of allocations, touches,
and frees. The test is invoked both with and without memory locking and heap pre-
faulting.

4.5.2 Periodic Execution Test

The target system does not use sleep functions directly but blocks on a condition vari-
able. This allows the main thread to wake up on an event; however, the likely path
is for a timer to trigger the condition variable after a millisecond. This timer is imple-
mented as a service that provides a callback after a given duration. On the previous

Chapter 4. Methodology and Design 58

platform, which did not run Linux, this was internally based on a hardware timer, ef-
fectively providing the component with a millisecond tick. For debugging purposes,
the legacy system could also partially run on a Linux platform, where this tick was
implemented using a POSIX interval timer and SIGALRM. A simplified version of this
can be seen in Listing 4.8.

1 s t a t i c sem_t tick_sem ;
2

3 s t a t i c const s t r u c t i t i m e r v a l i n t e r v a l
4 {
5 . i t _ v a l u e . tv_usec = 1000U,
6 . i t _ i n t e r v a l . tv_usec = 1000U
7 } ;
8

9 void * t i c k_ thre ad_fu nc (void * arg)
10 {
11 while (t rue)
12 {
13 sem_wait(& tick_sem) ;
14 . . .
15 . . .
16 }
17

18 re turn NULL;
19 }
20

21 void s i g _ c a l l b a c k (i n t s i g n a l)
22 {
23 i f (s i g n a l == SIGALRM)
24 {
25 sem_post(& tick_sem) ;
26 }
27 }
28

29 i n t main ()
30 {
31 . . .
32 s i g n a l (SIGALRM, &s i g _ c a l l b a c k) ;
33 s e t i t i m e r (ITIMER_REAL , &i n t e r v a l , NULL) ;
34 . . .
35 }

LISTING 4.8: Periodic task implemented with setitimer.

This code sets up a POSIX interval timer to trigger a signal every millisecond. This sig-
nal will call the registered callback function. However, since the documentation does
not recommend executing significant amounts of code in the context of a signal han-
dler, this callback only triggers a semaphore that will trigger the execution of another
thread, which is waiting for the semaphore.

This implementation looks suspicious compared to the recommendations in the liter-
ature, but it is in motion to be used in the new system. Therefore, comparing this
mechanism against the recommended nanosleep and other options is valuable.

Chapter 4. Methodology and Design 59

When comparing the interval timer to an implementation using nanosleep, available in
Listing 4.9, the former comes across as having much more overhead.

1 s t a t i c const s t r u c t timespec period
2 {
3 . tv_nsec = 1U * NANOS_PER_MILLI
4 } ;
5

6 void * t i c k_ thre ad_fu nc (void * arg)
7 {
8 . . .
9

10 s t r u c t timespec wakeupTime = { 0 } ;
11 c lock_get t ime (CLOCK_MONOTONIC, &now) ;
12

13 . . .
14

15 while (t rue)
16 {
17 . . .
18

19 t imespecIncrement (&wakeupTime , period) ;
20 clock_nanosleep (CLOCK_MONOTONIC, TIMER_ABSTIME , &wakeupTime , n u l l p t r) ;
21 }
22

23 re turn NULL;
24 }

LISTING 4.9: Periodic task implemented with nanosleep.

This example shows a single thread with an eternal loop that uses clock_nanosleep to
execute periodically, every millisecond. The thread never asks for the time after ini-
tialization but instead increments the absolute wake-up time with the period. This
ensures the period does not drift over time due to scheduling latency.

Another way to implement periodic execution is to use deadline scheduling, described
in section 2.2.2, and seen in Listing 4.10. In this example, the thread is registered to be
scheduled under SCHED_DEADLINE and must only call sched_yield() to forfeit the CPU
until the next period.

Chapter 4. Methodology and Design 60

1 void * t i c k_ thre ad_fu nc (void * arg)
2 {
3 s c h e d _ a t t r . s i z e = s i z e o f (s t r u c t s c h e d _ a t t r) ;
4 s c h e d _ a t t r . sched_f lags = 0U;
5 s c h e d _ a t t r . s c h e d _ p r i o r i t y = 0U;
6 s c h e d _ a t t r . sched_period = 1 * 1000 * 1000 ;
7 s c h e d _ a t t r . sched_deadline = 200 * 1000 ;
8 s c h e d _ a t t r . sched_runtime = 200 * 1000 ;
9 s c h e d _ a t t r . sched_pol icy = SCHED_DEADLINE;

10

11 s c h e d _ s e t a t t r (g e t t i d () , &sched_at t r , 0) ;
12

13 while (t rue)
14 {
15 . . .
16

17 sched_yie ld () ;
18 }
19

20 re turn NULL;
21 }

LISTING 4.10: Periodic task implemented with deadline scheduling.

A final implementation of periodic execution tested in this experiment is a condition
variable with a timeout, as seen in Listing 4.11. It is possible to configure a POSIX
condition variable to use a monotonic clock, similar to what the literature recommends
to use with clock_nanosleep. Although this might indicate that the results will
be similar to that of clock_nanosleep it is interesting to see how they measure up
against one another.

Chapter 4. Methodology and Design 61

1 s t a t i c const s t r u c t timespec timeout
2 {
3 . tv_nsec = 1U * NANOS_PER_MILLI
4 } ;
5

6 void * t i c k_ thre ad_fu nc (void * arg)
7 {
8 . . .
9

10 p th re a d_ c on da t t r _ se tc l oc k (& cond_attr , CLOCK_MONOTONIC) ;
11 pthread_cond_ini t (&cond , &cond_at t r) ;
12

13 . . .
14

15 while (t rue)
16 {
17 . . .
18

19 s t r u c t timespec wakeupTime = getTimespecNow () ;
20 t imespecIncrement (&wakeupTime , timeout) ;
21

22 pthread_mutex_lock(&mutex) ;
23 pthread_cond_timedwait (&cond , &mutex , &wakeupTime) ;
24 pthread_mutex_unlock(&mutex) ;
25 }
26

27 re turn NULL;
28 }

LISTING 4.11: Periodic task implemented using condition variable with timeout.

The benefit of this mechanism is that it is a drop-in replacement for the existing solu-
tion. According to the literature, it should result in lower latencies, and since it makes
the infrastructure required for the interval timer redundant, it should also use signifi-
cantly less CPU time.

4.5.3 Shared Memory Interaction

The primary real-time constraint on the software system is that the FPGA will read and
write to the shared memory area at a fixed rate. This test consists of a thread that reads
from the shared memory while the system’s key performance indicators are monitored
and compared across different scheduling policies, preemption models, and execution
schemes. The execution schemes refer to whether the task reads a fixed amount of data
each period or uses the aperiodic concept described in section 2.3.3, where it will only
sleep when the shared memory buffer is empty or below a certain threshold.

The software used in this test will be a subset of the SUT described in section 4.4.6, and
can be seen in Figure 4.4

Chapter 4. Methodology and Design 62

PatternVerifier

MainThread

RingBuffer
Shared
Memory

DataMover

FPGA

Write

RX Driver
Read

Control

Pattern
Generator

Get

Update

Write

HPS

FIGURE 4.4: Main routine of shared memory test.

In this case, the pattern verifier is placed in user space and will execute in the same
thread as the rest of the software. This added overhead will mimic the time required
to search through each package for a start pattern in combination with an added 50 µs
busy wait for each package read from the shared buffer.

The scheme is tested using packet sizes of 4 KiB and 512 B, respectively. The only sys-
tem calls used in this test are those required to sleep and busy wait, so the only factors
expected to affect the achievable performance are the system’s scheduling latency and
the main loop’s execution time. A simplified excerpt of the test can be seen in Listing
4.12.

Chapter 4. Methodology and Design 63

1 bool RxDriver : : update ()
2 {
3 i f (! r i n g B u f f e r . isEmpty ())
4 {
5 const auto packet = r i n g B u f f e r . readPacket () ;
6 p a t t e r n V e r i f i e r . put (packet) ;
7 busyWaitUs (50U) ;
8

9 re turn true ;
10 }
11

12 re turn f a l s e ;
13 }
14

15 void SharedMemoryTest : : thread_fn ()
16 {
17 while (t rue)
18 {
19 const bool packetRead = rxDriver . update () ;
20

21 i f (p e r i o d i c)
22 {
23 t imespecIncrement (& nextPeriod , period) ;
24 clock_nanosleep (CLOCK_MONOTONIC, TIMER_ABSTIME , &nextPeriod , . .) ;
25 }
26 e l s e
27 {
28 i f (! packetRead)
29 {
30 auto wakeupTime = getTimespecNow () ;
31 t imespecIncrement (&wakeupTime , period) ;
32 clock_nanosleep (CLOCK_MONOTONIC, TIMER_ABSTIME , &wakeupTime , . .) ;
33 }
34 }
35 }
36 }

LISTING 4.12: Shared memory test.

4.5.4 Generic Netlink Interface

As mentioned, the target system’s user space application will communicate with an
LKM using Generic Netlink sockets. This test will, in isolation, ask a kernel module
for data and, upon receiving it, directly write it to another kernel module. Through
this test, it is possible to measure the potential reduced throughput of these particular
system calls in kernels with a higher degree of preemptibility.

The subset of the SUT used in this test can be seen in Figure 4.5.

Chapter 4. Methodology and Design 64

Pattern
Generator

Pattern
Generator

KernelSpace

Netlink Send

UserSpace

Netlink Receive

Request Data

PatternVerifier
Pattern
Verifier

Netlink Send

NetlinkTester

Request

Receive

Send

FIGURE 4.5: Generic Netlink throughput test.

In this case, the kernel module is modified not to require an external component to
write data to its queue but to immediately send newly generated data to the client on
each request.

A simplified version of the test can be seen in Listing 4.13.

1 void Gener icNet l inkTester : : update ()
2 {
3 requestTimer . s t a r t () ;
4 generator . request_message () ;
5 requestTimer . stop () ;
6

7 readTimer . s t a r t () ;
8 const auto packet = generator . read () ;
9 readTimer . stop () ;

10

11 writeTimer . s t a r t () ;
12 v e r i f i e r . v e r i f y (newPacket) ;
13 writeTimer . stop () ;
14 }

LISTING 4.13: Main routine of Generic Netlink throughput test.

Requesting data from the driver is achieved by sending an empty netlink message,
in this case, abstracted by a Generator. After sending a request, the client will block
on a call to nl_recvmsgs_default until a response is received. A thread in the driver (as
described in section 4.4.6) will detect this event and continue to write a package of 1500
bytes to the client application. After receiving the message, the client will write it to

Chapter 4. Methodology and Design 65

another kernel module, abstracted by a Verifier class. The duration of these operations
is measured, and the software stores average and maximum values.

As discussed, libnl requires dynamic allocation of messages through nlmsg_alloc. The
memory is locked in RAM, and the heap is manually pre-faulted before execution to
limit the effect of page-faulting on the results.

4.5.5 Kernel Thread Event Handling

The planned implementation of the kernel thread that provides data to the pipeline for
transmission may not be optimal. The existing driver does not block between requests
for data from the application but polls for new events. This means that it can poten-
tially burn considerable CPU time. For sleeping, the target system utilizes usleep_range
between polls, as illustrated in Listing 4.14.

1 void kthread_worker ()
2 {
3 while (! e x i t)
4 {
5 while (t rue)
6 {
7 i f (new_event () || e x i t)
8 {
9 break ;

10 }
11

12 usleep_range (1 0 , 100) ;
13 }
14

15 //Handle event or e x i t
16 . . .
17 }
18 }

LISTING 4.14: Polling kernel worker.

Although this is the recommended mechanism for sleeping for the given timeframe
(as discussed in section 3.6.4), it might be more efficient in this case to make the kernel
module event-driven by utilizing a wait_queue as illustrated in Listing 4.15.

Chapter 4. Methodology and Design 66

1 void kthread_worker ()
2 {
3 while (! e x i t)
4 {
5 i f (! new_event ())
6 {
7 w a i t _ e v e n t _ i n t e r r u p t i b l e (wait_queue_etx , new_event () || e x i t) ;
8 }
9

10 //Handle event or e x i t
11 . . .
12 }
13 }

LISTING 4.15: Event-driven kernel worker.

These two mechanisms are tested with events occurring at different frequencies. De-
pending on the frequency of the events, the polling mechanism might be more efficient
than the event-driven mechanism, and given a high enough rate of events, the CPU
load between the two mechanisms could even out.

The following event frequencies are considered:

• No events

• 1 Hz

• 10 Hz

• 1 kHz

• 10 kHz

4.5.6 Full Test

The full test involves running the full pipelines described in section 4.4.6. In the re-
ception pipeline, the FPGA sets the bitrate externally, and the software is required to
keep up. This means that all issues will manifest as errors. The transmission pipeline
is different, as it must request data from the kernel module at a sufficient rate to keep
the buffer from underrunning. In other words, the software is responsible for keeping
the bitrate up.

The full tests either transmit or receive data indefinitely. The reception pipeline mimics
a real scenario where the system continuously searches for a preamble in the incom-
ing data. The transmission pipeline, however, has no real-world counterpart to this
scenario as the system will write in bursts before switching back to a reception mode.
Because of this, the test is not as realistic as one would desire and will most likely
demand more of the OS than the actual application.

The package size for the full test will be 1504 bytes. This is because it is approximately
the size of an ethernet frame, which is the actual payload the system will handle to-
wards the Netlink interface. This packet size is used across the pipeline for simplicity,

Chapter 4. Methodology and Design 67

meaning the shared memory interaction will also use a packet size of 1504 bytes. The
reason for choosing 1504 over 1500 is because the implementation of the packet gener-
ator demands that the packet size be a multiple of 8.

Special Considerations for Transmission Test

This test involves an almost limitless amount of parameter combinations. As in the
other tests, the main parameters are the scheduling policy, preemption model, and
execution scheme, but for the transmission test, the performance and stability depend
on several additional factors:

• Condition for sleeping: The aperiodic scheme will only sleep when there is noth-
ing to do, and the definition of nothing decides how often the task will sleep. If
it sleeps too often, the buffer will underflow, but if it sleeps too seldom, the ex-
ecution time will grow, leading to real-time throttling if the task has a real-time
scheduling policy. This condition is straightforward for the reception pipeline,
as it will sleep when the buffer is empty. Concerning the transmission pipeline,
many more viable definitions exist for this condition, which can significantly im-
pact the performance differently.

• Condition for requesting data: The transmission pipeline will request data from
the kernel module when it has the capacity to do so. How this is defined will de-
termine how often it will request more data and how busy the task will be. Since
the eternal transmission loop performed in this test does not represent the actual
system, requesting data too frequently and keeping the pipeline overly busy will
mean that the aperiodic task might get too long execution times. The same sce-
nario for a periodic task can make it unable to maintain its period, essentially
turning it into an aperiodic task.

• Scheduling policy and priority of kernel thread: Upon receiving a request from
the application, a task in the kernel module will provide it with a package. If this
kernel schedules this task under CFS, it might not be responsive enough to han-
dle the request in time. Although this can cause this test to fail, the actual system
will not necessarily be affected by this, as it would instead just stop transmitting.

• Separate thread for Generic Netlink Interface: The reception pipeline will per-
form a synchronous write to the kernel module through Generic Netlink, mean-
ing that doing so from the main thread will most likely cause limited latencies.
In contrast, the transmission pipeline will need to request a package and then
block until receiving it, which can cause massive latencies. This can be solved by
having a separate thread for receiving data from the kernel module. However,
this also brings forth new potential issues and design choices to make.

Naturally, only a subset of the possible combinations can be tested, and the results
are not trivial to analyze in the context of determining what can benefit the actual
system.

4.5.7 Production Environment Test

Whether or not PREEMPT_RT is required or optimal for the target system also de-
pends on the background workload of the target system. The existing SW platform

Chapter 4. Methodology and Design 68

has several deamons and periodic background tasks for housekeeping and IO across
the system. The nature of these tasks can significantly affect the responsiveness of the
system if they are heavy in long-duration system calls. Therefore, it is natural to per-
form some of the tests on the existing platform to see if any potential issues arise.

As the scope of this test is to uncover any mechanisms that impact the real-time capa-
bilities or are significantly affected by changing the preemption model, the tests will
be limited to the Cyclictest configuration described in section 4.3.2 and an analysis of
the load and CPU utilization on an otherwise idle system.

4.6 Summary

This chapter has described and justified the methods used in this thesis. It has out-
lined the platform built for this project and described several generic tests to evaluate
its real-time capabilities and performance in several configurations. Further, the target
system was analyzed in the context of findings in the literature, and its real-time con-
straints were derived from the functional requirements described in Chapter 2. From
this analysis, a SUT to mimic the functionality of the target system was presented,
and various tests were designed to evaluate the impact of different mechanisms on the
system’s ability to meet its requirements.

69

Chapter 5

Test Results and Recommendations

This chapter presents the results of the tests executed on the platform and target sys-
tem. Throughout this chapter, figures provide the foundation for presenting the re-
sults. However, tables providing the raw data can be found in Appendix C, along with
any additional figures deemed redundant for the main text.

Unsurprisingly, compiler optimization settings had a significant impact on the results.
When running custom test software compiled with -00, the results were considerably
worse than with -O3. Therefore, all results reported in the thesis are produced with
software compiled with -O3.

Another notable finding during these tests is that the distinction regarding CPU load
bound in user space vs. kernel space can not necessarily be trusted. Different exe-
cutions of the same SW and configuration gave different results and were seemingly
more off on periodic tasks. This was determined to be due to the nature of tick-based
CPU time accounting, which is the default setting on ticked kernels. The results were
more consistent and aligned with expectations when this was deactivated. However,
it also introduced a small overhead and was not used while conducting the experi-
ments.

5.1 Platform Baseline Tests

This section presents the results of the tests described in section 4.3. In cases where
the results were unexpected or unclear, additional tests were designed and executed.
These are described in the respective sections when applicable.

5.1.1 High-Resolution Timers Verification

The output of /proc/timerlist can be seen in Listing C.1 in C.

It shows that all timers have a 1 ns resolution. The event_handler parameter of the
respective CPUs local timer is set to hrtimer_interrupt, which is correct according
to [110]. Additionally, hres_active is set to 1, indicating the feature is enabled.

5.1.2 Cyclictest

The results of executing the Cyclictest configurations described in section 4.3.2 on an
otherwise idle system are available in Figure 5.1.

Chapter 5. Test Results and Recommendations 70

0

50

100

150

200

250

300

350
La

te
nc

y
(μ

s)
No Preemption Preemptible Preempt RT

OTHER

FIFO-40

FIFO-60

OTHER

FIFO-40

FIFO-60

OTHER

FIFO-40

FIFO-60

Max
Avg
Min

Latency

FIGURE 5.1: Cyclictest results, no load.

Using SCHED_FIFO with a priority of 60 on a non-preemptible kernel outperforms the
other parameters in this setup, with a max latency of about 50 µs. Unexpectedly, the
fully preemptible kernel performs worse than the non-preemptible kernel, with a max
latency of about 100 µs using SCHED_FIFO. The results of the fully preemptible kernel
are comparable to what was found by [3] and OSADL results at the time of writing
[83], as discussed in section 3.5.1.

Figure 5.2 shows the results of the same tests executed under a 25% load induced by
Stress-NG. This figure highlights the immense significance the scheduling policy of a
task has on its latency compared to the preemption model of the kernel. Puzzlingly,
the fully preemptible kernel performs slightly better under SCHED_OTHER than the
non-preemptible kernel, starkly contrasting the results found on the idle system. It
also directly contradicts the expectations that the fully preemptible kernel would per-
form worse when scheduled under CFS, as the overhead in kernel space should be
higher.

As expected, on the fully-preemptible kernel, the task has a slightly lower latency when
prioritized above 50. However, this is not the case for the preemptible kernel. Part
of the explanation for this can be that the preemptible kernel does not have forced
threading of its interrupts, but that should leave the tests executing with 40 and 60
with similar results. The remaining difference can be explained as an outlier, as the
test only ran once.

Chapter 5. Test Results and Recommendations 71

0

2,000

4,000

6,000

8,000

10,000

12,000
La

te
nc

y
(μ

s)
No Preemption Preemptible Preempt RT

OTHER

FIFO-40

FIFO-60

OTHER

FIFO-40

FIFO-60

OTHER

FIFO-40

FIFO-60

Max
Avg
Min

Latency

FIGURE 5.2: Cyclictest results, Stress-NG 25%.

Because the CFS scheduled tasks muddle the graphic representation of the results of
the tests executed with load, they are not that useful for comparison. Nevertheless, the
remainder of these results can be seen in Figure C.1, in Appendix C.

All tests running under SCHED_FIFO with a priority of 60 are illustrated in Figure 5.3,
grouped by external stressors on the system.

0

100

200

300

400

500

600

700

800

900

1,000

La
te

nc
y

(μ
s)

No Load Stress-NG 25% Stress-NG 75% Iperf

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg
Min

Latency

FIGURE 5.3: Cyclictest with SCHED_FIFO.

Chapter 5. Test Results and Recommendations 72

When stressing the system with Stress-NG, the fully preemptible kernel performs slightly
better than the non-preemptible kernel. This finding is unsurprising because this con-
figuration of Stress-NG operates primarily in user space. When stressing the system
using Iperf, which operates mainly in kernel space, the fully preemptible kernel per-
forms significantly better than the non-preemptible kernel, both on average and in
terms of max latency. Although the preemptible kernel performs on average equally
well as the fully preemptible kernel, its max latency is significantly higher.

Even though the difference between the preemption models might look high in some of
these cases, they all performed with less than a millisecond of latency in all scenarios. It
is also worth noting that while indicating the system’s capabilities, the tests are limited
in duration. Nevertheless, the results are very similar to those found by Adam et al.
[3] and OSADL [83], as discussed in section 3.5.1.

This test was also performed on the kernel used in company production environments.
The reason for this was to uncover any significant discrepancies compared to the kernel
version built for the thesis, both concerning the version of the kernel and its configu-
ration. This kernel is based on version 5.19 and, on the initial run, showed spikes of
latency of up to 40 milliseconds, as seen in Listing 5.1.

1 # ./ c y c l i c . sh f i f o 9 9 S t r e s s −NG 25
2 T : 0 (171) P : 9 9 I : 4 0 0 C:5000000 Min : 10 Act : 12 Avg : 13 Max : 39771
3 T : 1 (172) P : 9 9 I : 9 0 0 C:2222542 Min : 11 Act : 12 Avg : 14 Max : 93

LISTING 5.1: Cyclictest on the company’s production kernel.

After carefully examining the kernel configuration, it became clear that kmemleak was
enabled, which can cause notable latencies and overhead according to [111]. Listing 5.2
shows the results of Cyclictest on version 5.19 with kmemleak disabled. It shows that the
latencies were slightly higher than with version 6.6 of the kernel but still significantly
lower than with kmemleak enabled.

1 # ./ c y c l i c . sh f i f o 9 9 S t r e s s −NG 25
2 T : 0 (145) P : 9 9 I : 4 0 0 C:5000000 Min : 11 Act : 17 Avg : 14 Max : 158
3 T : 1 (146) P : 9 9 I : 9 0 0 C:2222217 Min : 11 Act : 13 Avg : 14 Max : 73

LISTING 5.2: Cyclictest on the company’s production kernel, without kmemleak

Kernel 5.19 was also tested under different preemption models with kmemleak enabled,
as seen in Figure 5.4. As expected, PREEMPT_RT was able to mitigate the latency
brought on by kmemleak; however, somewhat surprisingly, so was the preemptible ker-
nel, as seen in Figure 5.4. This indicates that while kmemleak spends significant time
in kernel space, the critical sections are not long enough to cause significant latencies
on the preemptible kernel.

Chapter 5. Test Results and Recommendations 73

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000
La

te
nc

y
(μ

s)
Kmemleak Enabled Kmemleak Disabled

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

FIGURE 5.4: Cyclictest on the company’s production kernel.

Still, the results show that, while producing significant improvements to the latency,
using a preemptible or fully-preemptible kernel is not as effective as disabling kmemleak
on a non-preemptible kernel.

Overall, these results are comparable to those found on the 6.6 kernel, meaning that
the Cyclictest results and subsequent latency results should be relevant for the kernel
version used in production environments at TechipFMC.

5.1.3 Throughput Test

The throughput test results can be seen in Figure 5.5, which shows the total run time
of both tests across the different preemption models.

No Preemption
Preemptible
Preempt RTS

tre
ss

-N
G

No Preemption
Preemptible
Preempt RT

H
ac

kb
en

ch

0 1,000 2,000 3,000
Runtime (seconds)

sys
usr

Mode

FIGURE 5.5: Throughput comparison across different preemption models.

Chapter 5. Test Results and Recommendations 74

Using Stress-NG, the difference in overall throughput is miniscule. The preemptible
kernel spends the same amount of time in user space as the non-preemptible kernel
but spends slightly longer in kernel space, as was expected based on the literature
review. The fully preemptible kernel spends slightly longer in kernel space than the
preemptible kernel but less than the other preemption models in user space. Although
surprising, as these tests schedule their tasks under CFS, this could be explained by a
slightly different system base load.

The Hackbench invoked throughput test shows a dramatic throughput reduction on
the fully preemptible kernel compared to the others. In contrast to the Stress-NG test,
Hackbench spends most of its time in kernel space, which could explain the difference
in throughput. The preemptible and non-preemptible kernels spend about the same
duration in user space. Still, the preemptible kernel spends slightly longer in kernel
space, slightly reducing its throughput.

These results highlight the importance of analyzing the nature of the workload before
selecting a preemption model. As Madden points out in [2], the fully preemptible ker-
nel best suits CPU-intensive workloads with few system calls. The lack of throughput
degradation in the CPU-intensive Stress-NG test and the vast reduction in throughput
in the system-call-heavy Hackbench test confirm this claim.

One explanation for the throughput reduction found using Hackbench could be the
overhead of the fully preemptible kernel. Since there was close to no degradation in
throughput found using the preemptible kernel, this indicates that the overhead of the
preemptible RT-mutexes is vastly more significant than the overhead of simply being
preemptible. PREEMPT_RT, in addition to being fully preemptible, also enables forced
threading of all interrupts, as discussed in section 3.3.3. This could be another element
that led to these results.

To further investigate the high discrepancies in throughput found using PREEMPT_-
RT, the test was executed again using pipes as the IPC mechanism. Figure 5.5 illustrates
how they compared against the default Unix sockets.

No Preemption
Preemptible
Preempt RT

U
ni

x
S

oc
ke

ts

No Preemption
Preemptible
Preempt RTP

ip
es

0 4,000 8,000
Runtime (seconds)

sys
usr

Mode

FIGURE 5.6: Hackbench throughput comparison across preemption models us-
ing Unix sockets and pipes.

Surprisingly, the difference in throughput was even more pronounced when using
pipes as the IPC mechanism. This was true for the preemptible kernel but especially

Chapter 5. Test Results and Recommendations 75

the fully preemptible kernel. The reasons for this are probably the same as those found
in the Unix socket test. However, it highlights that different system calls may give
drastically different results concerning throughput degradation and that the applica-
ble system calls for a system should be considered during system design.

When rerunning the test with real-time scheduling policies, the stressors were subject
to real-time throttling, but this should not have a significant impact on the results,
as it is only throttled for 5ms every 1 s (and should be the same for all preemption
models). Using a high priority for the Hackbench test led to a kernel panic on the fully
preemptible kernel, as the rcu_preempt thread experienced starvation. Reducing the
priority to 1 and the number of messages from 50 000 to 5000 led to a system stable
enough for the test to complete. The results can be seen in Figure 5.7.

No Preemption
Preemptible
Preempt RT

U
ni

x
S

oc
ke

ts

No Preemption
Preemptible
Preempt RTP

ip
es

0 500 1,000 1,500 2,000 2,500
Runtime (seconds)

sys
usr

Mode

FIGURE 5.7: Hackbench throughput comparison across preemption models us-
ing Unix sockets and pipes, scheduled under SCHED_FIFO.

Pipes show an even more pronounced throughput degradation when scheduled un-
der SCHED_FIFO on the fully preemptible kernel. In contrast, real-time scheduling
policies positively impacted the Unix sockets. Although the reason for this remains
unclear, it eliminated the difference across the preemption models found in the previ-
ous experiment.

Due to the surprising nature of these results, devising additional tests to gain more
insight into the throughput degradation of PREEMPT_RT became desirable.

Firstly, Iperf was used to set up a TCP connection on localhost. As seen in Listing 5.3,
the configuration was set to transmit a fixed amount of data, where the total duration
would provide a measure of throughput.

1 i p e r f 3 −−server > /dev/n u l l 2>&1 &
2 time i p e r f 3 −− c l i e n t l o c a l h o s t \
3 −− i n t e r v a l 0 \
4 −−blockcount 500000 \
5 −−omit 10

LISTING 5.3: Iperf configuration for throughput test.

Chapter 5. Test Results and Recommendations 76

As Iperf primarily executes in kernel mode, the results were similar to those of the
Hackbench test but with less pronounced differences, as seen in Figure 5.8. Again, this
shows that the actual throughput reduction depends on the system calls used by the
workload.

0 40 80 120 160 200 240
Runtime (seconds)

No Preemption
Preemptible
Preempt RT

sys
usr

Mode

FIGURE 5.8: Throughput comparison of Iperf across different preemption mod-
els.

p7zip (a 7-zip fork) is a popular file-archiving utility that additionally provides a sys-
tem benchmarking tool, which can be invoked as seen in Listing 5.4.

1 time 7 zr b −mm=*

LISTING 5.4: 7z benchmark.

With this configuration, p7zip performs a so-called complex benchmark, which involves
many different operations. The throughput measure is the benchmark duration and
the reported millions of instructions per second (MIPS). The results can be seen in
Figure 5.9 and Figure 5.10.

0 100 200 300 400 500
Runtime (seconds)

No Preemption
Preemptible
Preempt RT

sys
usr

Mode

FIGURE 5.9: Throughput comparison of 7z across different preemption models.

As the operations performed by p7Zip are executed almost exclusively in user space,
the different preemption models again perform about the same. The throughput de-
creases as the kernel becomes increasingly preemptible, but the difference is insignifi-
cant.

Chapter 5. Test Results and Recommendations 77

0 200 400 600 800 1,000
Millions of Instructions Per Second (MIPS)

No Preemption
Preemptible
Preempt RT

FIGURE 5.10: Throughput comparison of 7z across different preemp-
tion models measured in MIPS.

5.1.4 Preemption Test

Figure 5.11 shows the results of the preemption test executed under CFS.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

N
um

be
r o

f T
im

es
 P

re
em

pt
ed

No Load With Load

No Preemption
Preemptible
Preempt RT

Preemption Model

FIGURE 5.11: Preemption count of CPU-intensive task under SCHED_OTHER.

These results were as expected. With only the minimal background load on the system,
the fully preemptible kernel had a much higher preemption count than the other pre-
emption models, most likely due to threaded interrupts. The non-preemptible kernel
and preemptible kernel have interrupts executing in hard interrupt context, meaning
that although interrupted, it is not counted as a preemption. In contrast, the fully
preemptible kernel has all interrupts threaded, meaning that they are counted as pre-
emptions by rusage and somewhat muddle up our results.

When applying load to the system, the number of preemptions increases significantly,
as is to be expected. With the introduction of more load, the timeslice of the CPU-
intensive task reduces, and when exhausted, the load-inducing task preempts it. There
is a somewhat higher preemption count on the fully preemptible kernel, which again
can be explained by the threaded interrupts.

The results of the same test repeated with SCHED_FIFO can be seen in Figure 5.12.

Chapter 5. Test Results and Recommendations 78

0

5

10

15

20

25
N

um
be

r o
f T

im
es

 P
re

em
pt

ed

No Load With Load

No Preemption
Preemptible
Preempt RT

Preemption Model

FIGURE 5.12: Preemption count of CPU-intensive task under SCHED_FIFO.

In this scenario, one would expect close to no preemptions, as the task is running at
a higher priority than the load-inducing task and any threaded interrupts. However,
there is still a higher preemption count when the system with the fully preemptible
kernel is under load.

To investigate this, an eBPF1 program was used to trace the beneficiary of these pre-
emptions, as seen in Listing 5.5.

1 SEC(" t p _ b t f /sched_switch ")
2 i n t BPF_PROG(sched_switch , bool preempt , s t r u c t t a s k _ s t r u c t * prev , s t r u c t

t a s k _ s t r u c t * next)
3 {
4 i f (bpf_strncmp (prev−>comm, 16 , " Preemption_Test ") == 0)
5 {
6 i f (preempt)
7 {
8 bpf_pr intk (" Preempted by : %d − %s\n" , next −>pid , next −>comm) ;
9 }

10 }
11

12 re turn 0 ;
13 }

LISTING 5.5: eBPF program to detect preempting task.

This program was injected and hooked to the sched_switch trace point. This trace point
is found in the kernels __schedule function, meaning that it is called every time the
scheduler is about to perform a context switch [27, kernel/sched/core.c, Line 6695].

1Extented Berkeley Packet Filter (eBPF) is a mechanism that enables the injection of code into the
kernel at run-time. It has many use cases, one of them being tracing and debugging [112].

Chapter 5. Test Results and Recommendations 79

The eBPF injected code checks if the task preempted is our CPU-intensive task, and if
so, it prints the PID and name of the task preempting it.

After running this program, it became apparent that the migration task was responsible
for the preemptions in every case. This makes sense as it is the only task capable of
doing so with its priority of 99. This was not the case when running the test on the
other preemption models, so the natural assumption is that since all interrupts are
threaded, the migration task is triggered to ensure that they get run time on the other
CPU.

To better understand this, another eBPF program was devised, available in Listing 5.6,
which is injected to the sched_migrate_task tracepoint, invoked on every task migration
[27, kernel/sched/core.c, Line 3386]. Paired with the injected code in Listing 5.5, this
facilitated seeing which task was subject to migration when the migration task would
preempt the CPU-intensive task.

1 SEC(" t p _ b t f /sched_migrate_task ")
2 i n t BPF_PROG(sched_migrate_task , s t r u c t t a s k _ s t r u c t * p , i n t new_cpu)
3 {
4 char curr_comm [1 6] ;
5 bpf_get_current_comm (curr_comm , 16) ;
6

7 i f ((bpf_strncmp (curr_comm , 16 , " migration /0 ") == 0) ||
8 (bpf_strncmp (curr_comm , 16 , " migration /1 ") == 0))
9 {

10 bpf_pr intk ("%s , migrating %s to CPU %d\n" , curr_comm , p−>comm,
new_cpu) ;

11 }
12

13 re turn 0 ;
14 }

LISTING 5.6: eBPF program to detect task migration.

The results of this test can be seen in Figure 5.13, which shows all migrations detected
throughout the run time of the CPU-intensive task. The CPU-intensive task only expe-
rienced preemptions on the fully preemptible kernel, and in all cases, it was preempted
by the migration task. This happened a total of 20 times. In all of these cases, the mi-
gration task proceeded to move the CPU-intensive task to the other CPU. Iperf was
migrated many times on all kernels but significantly more on the non-preemptible ker-
nel.

Chapter 5. Test Results and Recommendations 80

0

50

100

150

200

250

300

350

N
um

be
r o

f M
ig

ra
tio

ns

No Preemption Preemptible Preempt RT

PreemptionTest
Iperf3

Migrated

FIGURE 5.13: CPU migrations detected using eBPF.

The reasons for this are unclear. One theory could be that migrations to the other
CPU are more prevalent since Iperf heavily uses system calls and cannot be preempted
on the non-preemptible kernel. Another test was created to see the number of times
the CPU-intensive task would preempt Iperf on all three kernels. These results are
illustrated in Figure 5.14.

0

50

100

150

200

250

300

350

N
um

be
r o

f P
re

em
pt

io
ns

No Preemption Preemptible Preempt RT

Server
Client

Iperf

FIGURE 5.14: CPU-intensive task preempting Iperf.

Chapter 5. Test Results and Recommendations 81

There does seem to be a correlation between the number of migrations and the number
of times the CPU-intensive task preempts Iperf. The number of preemptions does not
account for the entire discrepancy but appears to have had a significant impact.

Interrupt Latency

Another fact worth noting is that while running under real-time scheduling policies on
a fully preemptible kernel, the warning seen in Listing 5.7 was encountered at regular
intervals.

1 [3023 .647003] dw_mmc f f 7 0 4 0 0 0 . f l a s h : Unexpected i n t e r r u p t l a t e n c y

LISTING 5.7: Interrupt latency caused by CPU-intensive SCHED_FIFO task.

Our CPU-intensive task is running at a higher priority than the threaded interrupts,
causing a high latency in interrupt handling. Neither the task nor the interrupt was
tied to any particular CPU, meaning that ideally, the kernel should have moved the
task or handled the interrupt on another CPU to avoid this. For unknown reasons,
this did not occur. However, the warning did not reappear after setting the task’s CPU
affinity or moving the interrupt to another CPU.

On subsequent test executions, this problem was not always present, meaning devel-
opers should be mindful of situations like this in production environments.

Kernel Preemption Test

A test was also conducted out of purely academic interest to verify that the preemptible
kernels are, in fact, preemptible. This also provides insight into how often a high-
priority task directly benefits from the preemption model.

Cyclictest was again chosen for this, and it ran with Iperf as a stressor. As the fully pre-
emptible kernel has threaded IRQs, Cyclictest ran at a priority of 40 so that it would
not preempt the interrupts, making the test as similar as possible across the different
preemption models. Iperf was scheduled under SCHED_OTHER, and the test ran for
500 000 loops, or just over 3 minutes, long enough for any differences to become appar-
ent.

As seen in Listing 5.8, the eBPF program was modified to detect when Cyclictest pre-
empted a task executing in kernel mode. The eBPF-injected code checks if the next
task is Cyclictest and whether it is about to preempt the previous task. If it is, and the
previous task was also executing in kernel mode, it logs it.

Chapter 5. Test Results and Recommendations 82

1 # def ine ARM_cpsr (uregs [1 6])
2 # def ine user_mode (regs) (((regs) −>ARM_cpsr & 0 xf) == 0)
3

4 SEC(" t p _ b t f /sched_switch ")
5 i n t BPF_PROG(sched_switch , bool preempt , s t r u c t t a s k _ s t r u c t * prev , s t r u c t

t a s k _ s t r u c t * next)
6 {
7 i f (bpf_strncmp (next −>comm, 16 , " c y c l i c t e s t ") == 0)
8 {
9 i f (preempt)

10 {
11 s t r u c t pt_regs * prev_regs = (s t r u c t pt_regs *) bpf_ task_pt_regs (prev)

;
12

13 i f (! user_mode (prev_regs))
14 {
15 bpf_pr intk (" Preempting : %d − %s\n" , prev−>pid , prev−>comm) ;
16 }
17 }
18 }
19

20 re turn 0 ;
21 }

LISTING 5.8: eBPF program to detect when preempting task executing in kernel mode.

The results in latency reported by Cyclictest in this test were similar to those in section
5.1.2. Regarding kernel preemptions, the hypothesis for this test was that the non-
preemptible kernel would not detect any such preemptions. However, this was not the
case, as seen in Figure 5.15, which shows the number of preemptions of tasks common
to all test runs.

The non-preemptible kernel detected 37 preemptions of tasks in kernel mode. Al-
though the preemptible kernel experienced a higher number of preemptions, a total
of 50, the fact that the non-preemptible had any was unexpected. Any driver can push
work to global work queues, meaning the nature of the preempted work is unknown.
Further, this means that the preempted work could contain a cond_resched() call, mak-
ing it preemptible, regardless of the preemption model. Another explanation could
be that the recorded kernel preemptions on the non-preemptible kernel are false pos-
itives, either because of a misunderstanding of the ARM CPU mode macros or the
implications of the trace point itself.

Chapter 5. Test Results and Recommendations 83

0

10

20

30

40

50

60

70

80

90
N

um
be

r o
f P

re
em

pt
io

ns
No Preemption Preemptible Preempt RT

kworker/0:1
kworker/0:2
kworker/1:0
kworker/1:1
kworker/1:2
kworker/u5:4
kworker/u6:10
kworker/u6:3
ksoftirqd/0
ksoftirqd/1
kcompactd0
khungtaskd

Thread

FIGURE 5.15: Premptions of kernel tasks by Cyclictest.

Based on the results, one can conclude that the significant difference between the la-
tency of the non-preemptible kernel and the preemptible kernel is most likely due to
its ability to preempt the work done by either the kworker/1:2 or the kcompact daemon,
as those make up the majority of the discrepancies.

The fully preemptible kernel had 134 preemptions, significantly higher than the other
preemption models. The ksoftirq daemon was responsible for most of this discrep-
ancy, which makes sense as PREEMPT_RT pushes all soft interrupts to the daemon
[2]. Given that soft interrupts on the other preemption models are only pushed to
the daemon when they occur too frequently, the likelihood of preempting the soft in-
terrupt daemon is much higher on the fully preemptible kernel due to its increased
workload.

The fully preemptible kernel has several kernel threads that do not exist in the other
configurations. Figure 5.16 shows the total kernel preemption detected on the fully
preemptible kernel. The staggering difference from the other preemption models illus-
trates how much extra overhead the fully preemptible kernel has and how throughput
can degrade to the degree seen in the throughput test.

Chapter 5. Test Results and Recommendations 84

0

200

400

600

800

1,000

1,200

1,400

N
um

be
r o

f P
re

em
pt

io
ns

Preempt RT

irq_work/0
irq_work/1
kcompactd0
ksoftirqd/0
ksoftirqd/1
ktimers/0
ktimers/1
kworker/0:2
kworker/1:1
kworker/u6:10
rcu_preempt
rcuc/1

Thread

FIGURE 5.16: Premptions of kernel tasks by Cyclictest using PREEMPT_RT.

The test on the fully preemptible kernel also ran with the task at a priority of 60 to see
how often it would preempt threaded interrupts. The task preempted the serial line,
ethernet, and MMC interrupt threads 105 times in total.

5.1.5 Memory Lock Test

The first goal of the memory lock test is to determine what steps are required to avoid
page faults at run-time. The result was that locking memory during initialization was
sufficient to avoid page faults. Manual pre-faulting was not necessary for any of the
types of memory. In addition, whether the memory was locked by the thread using
the memory or if the memory was locked before thread initialization did not make a
difference.

A second goal of this test was to see the impact of run-time page faults on latency,
which is available in Figure 5.17.

Chapter 5. Test Results and Recommendations 85

0

50

100

150

200

250

300

350

400

La
te

nc
y

(n
s)

Stack Static Heap

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Latency

FIGURE 5.17: Latencies of soft page faults.

The results show that the latencies a soft page fault produces, on average, are minus-
cule. The max latencies are also relatively low. Although the preemptible kernel had
a latency spike above the others when faulting on heap memory, all results are in the
order of nanoseconds.

This indicates that avoiding soft page faults is not critical unless an application has ex-
treme latency constraints or is accessing large amounts of memory consecutively.

5.1.6 Discussion

The platform baseline tests show that the mainline Linux kernel can provide low-
latency performance in many cases simply by applying real-time scheduling policies.
The results show that the nature of the system’s real-time and background workload
determines the need for and consequences of using a fully preemptible kernel.

An example of this was seen in the Cyclictest results, where the latency impact of Iperf
was much less significant on the non-preemptible kernel than the impact of kmemleak.
However, while the preemptible kernel could mitigate most of the effects of kmemleak,
almost to the extent of the fully preemptible kernel, it could not reduce the latencies
brought on by Iperf to the same degree.

The throughput tests also showed that the fully preemptible kernel is not always the
best choice, as it can lead to significant throughput degradation in system-call-heavy
workloads. It is unclear which system calls are most affected by this, and further ex-
periments should be conducted if applicable.

The preemption test showed that tasks on a fully preemptible kernel are preempted
more often than on other preemption models, which was expected due to threaded

Chapter 5. Test Results and Recommendations 86

interrupts. The difference becomes more pronounced when using real-time scheduling
policies.

Although not surprising, utilizing eBPF to verify that the fully preemptible kernel is
preemptible in kernel mode was also an intriguing activity. This test also showed ex-
amples of a non-preemptible kernel preempted by tasks executing in user mode, which
was unexpected.

Lastly, the results showed that soft page faults are not a significant source of latency,
but avoiding them through locking memory can be beneficial in some cases.

5.2 Target System Tests

This section presents and discusses the results found when executing the tests designed
to evaluate the need and benefits of using mechanisms to increase the real-time capa-
bilities of the target system.

5.2.1 Dynamic Memory Allocation

The execution time of dynamic memory allocation through calls to nlmsg_alloc() can
be seen in Figure 5.18. The subfigures show the results of the tests executed under
different loads. Within each load scenario, the average execution times are identical.
The maximum execution times are more challenging to interpret. Locking and pre-
faulting the heap memory does not significantly impact the execution times. There
are massive spikes in some test scenarios, which are inconsistent across the different
load scenarios. One would assume the sample size is sufficient to produce consistent
results, but this may not be true.

The kernel’s preemption model also exhibits no pattern in the results, making it diffi-
cult to conclude how the preemption model impacts the execution times.

Chapter 5. Test Results and Recommendations 87

0

5

10

15

20

25

Ti
m

e
(μ

s)
Unlocked Locked

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(a) No load.

0

10

20

30

Ti
m

e
(μ

s)

Unlocked Locked

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(b) Stress-NG 25%.

0

20

40

60

80

Ti
m

e
(μ

s)

Unlocked Locked

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(c) Stress-NG 75%.

0

50

100

150

200

Ti
m

e
(μ

s)

Unlocked Locked

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(d) Iperf.

FIGURE 5.18: Dynamic memory allocation results.

The execution time results for when touching and freeing the dynamically allocated
memory (using nlmsg_free) are available in Appendix C, Figures C.2, and C.3. These
results were similarly inconclusive, with no easily identifiable pattern. The only dis-
tinctive result across all three operations is that the fully preemptible kernel experi-
enced a latency spike when under 75% load. The reasons for this remain unclear.

To gain a different perspective, Figure 5.19 looks past the respective test configurations
and only shows the worst measured case for each operation.

Chapter 5. Test Results and Recommendations 88

all
oc

wr
ite fre

e
0

50

100

150

200

Ti
m

e
(μ

s)

Max
Avg

Time

FIGURE 5.19: Worst case latencies per dynamic memory
operation.

Here, it becomes clear that the average execution times of these operations are minor
and should not negatively impact the target system. Spikes of up to 200 µs were seen
during allocation when stressed under Iperf, which could be a concern. During touch-
ing and freeing memory, spikes of around 100 µs were also observed.

Although unlikely, if a task with a period of 1 ms were to experience these spikes simul-
taneously, that would eat up almost 50% of the time budget. This aligns with accepted
knowledge and recommendations from the literature that dynamic memory allocation
should be avoided in real-time systems, regardless of locking and pre-faulting.

5.2.2 Periodic Execution Test

The results of the periodic execution test are illustrated in Figure 5.20, which illus-
trates the average latency experienced across all mechanisms, with a 25% load in-
duced by Stress-NG. Two schemes stand out negatively: the setitimer tests, executed
with SCHED_OTHER on either the main thread or the signal. Still, the average latency
is very low for all mechanisms. The highest being around 12 µs.

Chapter 5. Test Results and Recommendations 89

0

2

4

6

8

10

12

A
vg

 L
at

en
cy

 (μ
s)

No Preemption Preemptible Preempt RT

Timer - SCHED_OTHER
NanoSleep - SCHED_OTHER
Timer - SCHED_FIFO¹
Timer - SCHED_FIFO²
Nanosleep - SCHED_FIFO
EDF - SCHED_DEADLINE
Timed Wait - SCHED_OTHER
Timed Wait - SCHED_FIFO

Setup

¹ SCHED_FIFO on thread, ² SCHED_FIFO on thread and signal

FIGURE 5.20: Avg latency of periodic execution test, at 25% load.

Similarly to the findings when using Cyclictest, setitimer scheduled with SCHED_-
OTHER perform better under PREEMPT_RT. This result is somewhat puzzling be-
cause a SCHED_OTHER scheduled task benefits nothing from running with PRE-
EMPT_RT. Instead, it should perform worse due to the reduced throughput. This
observation is more a curiosity than a helpful finding.

The maximum latencies of the tests, illustrated in Figure 5.21, tell a different story. All
mechanisms using SCHED_OTHER perform significantly worse, as is to be expected.
It is somewhat interesting that for setitimer, it is not sufficient to set a real-time schedul-
ing policy on the thread. According to [113], signals route to a random thread within
the process that registered it unless configured otherwise. This explains why it is also
necessary to schedule the main thread, which initially registered the signal handler,
under a real-time policy to achieve low latencies.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

M
ax

 L
at

en
cy

 (μ
s)

No Preemption Preemptible Preempt RT

Timer - SCHED_OTHER
NanoSleep - SCHED_OTHER
Timer - SCHED_FIFO¹
Timer - SCHED_FIFO²
Nanosleep - SCHED_FIFO
EDF - SCHED_DEADLINE
Timed Wait - SCHED_OTHER
Timed Wait - SCHED_FIFO

Setup

¹ SCHED_FIFO on thread, ² SCHED_FIFO on thread and signal

FIGURE 5.21: Max latency of periodic execution test, at 25% load.

Chapter 5. Test Results and Recommendations 90

The reason for the low average latencies, compared to the sometimes very high maxi-
mum latencies, is the implementation of the latency calculations. If only testing nanosleep,
it would be natural to calculate the latency as the time between when the task explicitly
asks to be awoken and when it awakes. If the task misses entire periods, it is natural to
skip them so that the latencies will not propagate to the measurement in the next pe-
riod. However, when using a mechanism like setitimer, the thread has no control over
when the signal will trigger. Additionally, there can be a high latency between the
signal handler triggering the semaphore and the main thread waking up. This means
that inside the main thread, it is possible to experience negative latencies even though
the signal will never trigger early [114]. To ensure consistent results across all mecha-
nisms, the latency is calculated as the time between each entry to the periodic thread.
This means all mechanisms can experience negative latencies, leading to low average
latencies.

This is illustrated in Figure 5.22, which shows the latency distribution for setitimer with
SCHED_OTHER between [−2500µs, 2500µs].

FIGURE 5.22: Latency distribution of setitimer with SCHED_OTHER and 25%
load.

The distribution is similar for all mechanisms when scheduled under SCHED_OTHER.
This can be seen in Figure C.4, in Appendix C. Figure 5.23 shows the latency distribu-
tion of mechanisms under SCHED_FIFO.

Chapter 5. Test Results and Recommendations 91

(a) Setitimer. (b) Nanosleep.

(c) SCHED_DEADLINE. (d) CV with timeout.

FIGURE 5.23: Latency distribution of periodic mechanisms with SCHED_FIFO and 25% load.

These results show that based on latency alone, the nanosleep mechanism scheduled
under SCHED_FIFO is the best choice, in accordance with the literature’s recommen-
dations. They also show that the existing setitimer solution can be improved dramati-
cally by using real-time scheduling policies.

Figure 5.24 shows the average CPU load of the different mechanisms.

Chapter 5. Test Results and Recommendations 92

0

1

2

3

4

5

6

C
PU

 L
oa

d
(%

)
No Preemption Preemptible Preempt RT

Timer - SCHED_OTHER
NanoSleep - SCHED_OTHER
Timer - SCHED_FIFO¹
Timer - SCHED_FIFO²
Nanosleep - SCHED_FIFO
EDF - SCHED_DEADLINE
Timed Wait - SCHED_OTHER
Timed Wait - SCHED_FIFO

Setup

¹ SCHED_FIFO on thread, ² SCHED_FIFO on thread and signal

FIGURE 5.24: Average CPU load of periodic execution mechanisms.

Unsurprisingly, the extra overhead of setitimer leads to a higher CPU load. The condi-
tion variables with a timeout improve the CPU load by about 50%, while the nanosleep
improves it further. SCHED_DEADLINE required the lowest overhead, which aligns
with the fact that the kernel contains all the logic required to drive it periodically, not
the application.

Based on this, one can conclude that condition variables with a timeout, nanosleep,
and deadline scheduling are the best mechanisms for periodic execution. If the applica-
tion must support waking on events while blocking, a condition variable with timeout
should be selected. If not, nanosleep should be preferred over SCHED_DEADLINE, as
it is easier to set up, provides more flexibility, and has a slightly lower latency.

The test was also executed with 75% load, and they were also done on a fully pre-
emptible kernel. This gave similar results, and is illustrated in Appendix C, Figures
C.5, C.6, C.7 C.8, C.9 and C.10.

5.2.3 Shared Memory Test

The initial shared memory test read 4KiB chunks from the circular buffer on every up-
date. The periodic scheme executes once every millisecond, meaning that the thread
sleeps for a millisecond minus the execution time every period. In contrast, the aperi-
odic scheme keeps executing while there is still data to read before sleeping for a whole
millisecond.

Based on the average CPU load measured during the test in Figure 5.25, it is clear that
the scheme did not significantly impact the CPU load. This indicates that the aperiodic
task also yields the CPU sufficiently.

Chapter 5. Test Results and Recommendations 93

0
1
2
3
4
5
6
7
8
9

10
C

PU
 L

oa
d

(%
)

None Stress-NG 25% Stress-NG 75% Iperf

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.25: Shared memory test, average CPU load.

A concern with using SCHED_OTHER with the aperiodic scheme was that the task
would be heavily preempted involuntarily after continuously exhausting its timeslice.
Figure 5.26 shows this concern was unwarranted.

0

20,000

40,000

60,000

80,000

100,000

120,000

N
um

be
r o

f t
im

es
 P

re
em

pt
ed

None Stress-NG 25% Stress-NG 75% Iperf

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.26: Shared memory test, preemption count.

The only scenario that showed a significant number of preemptions was when Iperf in-
duced stress on a fully preemptible kernel. This pattern was observed during the pre-
emption test with the CPU-intensive task, indicating that the high number of preemp-
tions on SCHED_OTHER is due to threaded interrupts and that preemptions occur-
ring when using real-time policies are due to the migration task. Additionally, under
SCHED_OTHER, the aperiodic scheme was preempted more than twice the amount of
the periodic scheme.

The primary measure of success for this test is whether or not the reader can keep
up with the rate of the producer. Throughout the test, the software kept track of the
maximum reached buffer size, and the results can be seen in Figure 5.27.

0

10

20

30

40

50

60

M
ax

 B
uf

fe
r S

iz
e

(K
iB

)

None Stress-NG 25% Stress-NG 75% Iperf

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.27: Shared memory test, max buffer size

Chapter 5. Test Results and Recommendations 94

A buffer overflow occurs if the size reaches 128 KiB, but all setups could keep up
with the producer by a wide margin. The worst measured size was just below 60
KiB. Still, the benefit of using a real-time scheduling policy is clear, as the buffer size
is consistent across all stressors and preemption models. As expected, the aperiodic
scheme performed better than the periodic scheme under SCHED_OTHER.

The data recorded during the tests indicate that while everything measured is con-
nected somehow, the latency is the most significant factor in determining how high the
buffer size will get. Figure 5.28 shows the correlation between the maximum buffer
size and the wake-up latency of the reader thread for all test configurations.

0

200

400

600

800

1,000

1,200

La
te

nc
y

(μ
s)

0

2

4

6

8

10

12

14

16

18

20

M
ax B

uffer Size (K
iB

)

Latency Max Buffer Size

(a) No Load.

0

2,000

4,000

6,000

8,000

10,000

12,000

La
te

nc
y

(μ
s)

0

10

20

30

40

50

60

M
ax B

uffer Size (K
iB

)

Latency Max Buffer Size

(b) Stress-NG 25%.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

La
te

nc
y

(μ
s)

0

5

10

15

20

25

30

35

40

45

50

55

M
ax B

uffer Size (K
iB

)

Latency Max Buffer Size

(c) Stress-NG 25%.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

La
te

nc
y

(μ
s)

0

5

10

15

20

25

30

35

40

45

50

M
ax B

uffer Size (K
iB

)

Latency Max Buffer Size

(d) Iperf.

FIGURE 5.28: Correlation between latency and max buffer size for each shared memory test
configuration.

Chapter 5. Test Results and Recommendations 95

512 Byte Packets

To increase the burden of the application, the simulated overhead per packet remained
the same while testing with 512-byte packages. This led to an 8x increase in overhead
compared to the previous setup. The periodic task would not be able to keep up with
the producer using this package size if it were only to read one package per period, as
it would take

128 KiB− 4 KiB

512 B
= 248 cycles (5.1)

to clear a buffer.

As discussed in section 4.4.5, the buffer fill rate is every 50 µs. Instead of increasing the
rate of the periodic task, the task was modified to clear the buffer on each period.

Figure 5.29 shows that the CPU load was, also in this configuration, stable across all
scenarios but had increased to around 20% on average. This means the decreased
package size requires twice the CPU time to handle.

0
2
4
6
8

10
12
14
16
18
20
22

C
PU

 L
oa

d
(%

)

None Stress-NG 25% Stress-NG 75% Iperf

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.29: Shared memory test, 512-byte packets, average CPU Load.

The number of involuntary preemptions remained low for most tests but increased
dramatically for the non-preemptible kernel when stressed with Iperf. Interestingly,
this did not affect the execution time of the task, which in the worst case was lower
than when stressed with Stress-NG at 75% load.

0

50,000

100,000

150,000

200,000

250,000

N
um

be
r o

f t
im

es
 P

re
em

pt
ed

None Stress-NG 25% Stress-NG 75% Iperf

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.30: Shared memory test, 512-byte packets, preemption count.

Also, when looking at the maximum buffer size recorded during the tests in Fig-
ure 5.31, high preemption counts did not impact the results significantly. Other than

Chapter 5. Test Results and Recommendations 96

that, the max buffer sizes were consistent with the 4KiB tests. However, the well-
performing configurations were able to keep the buffer size lower, at around 6KiB to
7KiB. This makes sense for the periodic task, as it now clears the buffer on each period,
but the aperiodic scheme also performed better. Of course, they both use more CPU
time, and the smaller packages mean that the producer reads the buffer more often,
and the reader is more likely to keep up with the producer.

0
5

10
15
20
25
30
35
40
45
50
55

M
ax

 B
uf

fe
r S

iz
e

(K
iB

)

None Stress-NG 25% Stress-NG 75% Iperf

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.31: Shared memory test, 512-byte packets, max buffer size.

The execution times of the tasks under SCHED_OTHER went entirely off the charts
in some setups, as expected. However, if focusing only on the results of the SCHED_-
FIFO tasks, the execution times are all lower than 1ms. This is illustrated in Figure 5.32,
which shows the execution times when stressed with Stress-NG at 75% load.

0

100

200

300

400

500

600

700

800

900

Ex
ec

ut
io

n
Ti

m
e

(μ
s)

4 KiB 512 B

No P
ree

mpti
on

 - P
eri

od
ic

No P
ree

mpti
on

 - A
pe

rio
dic

Pree
mpti

ble
 - P

eri
od

ic

Pree
mpti

ble
 - A

pe
rio

dic

Pree
mpt

RT - P
eri

od
ic

Pree
mpt

RT - A
pe

rio
dic

No P
ree

mpti
on

 - P
eri

od
ic

No P
ree

mpti
on

 - A
pe

rio
dic

Pree
mpti

ble
 - P

eri
od

ic

Pree
mpti

ble
 - A

pe
rio

dic

Pree
mpt

RT - P
eri

od
ic

Pree
mpt

RT - A
pe

rio
dic

Max
Avg

Latency

FIGURE 5.32: Shared memory test, execution times compared
under SCHED_FIFO with Stress-NG 75%.

In every comparison between the periodic and aperiodic schemes except one, the peak
execution time of the aperiodic scheme was higher, as expected. However, on average,
they behaved similarly.

Chapter 5. Test Results and Recommendations 97

The latencies recorded during the SCHED_FIFO-based tests with Iperf as a stressor can
be seen in Figure 5.33.

0

20

40

60

80

100

120

140

160

180

200

Ex
ec

ut
io

n
Ti

m
e

(μ
s)

4 KiB 512 B

No P
ree

mpti
on

 - P
eri

od
ic

No P
ree

mpti
on

 - A
pe

rio
dic

Pree
mpti

ble
 - P

eri
od

ic

Pree
mpti

ble
 - A

pe
rio

dic

Pree
mpt

RT - P
eri

od
ic

Pree
mpt

RT - A
pe

rio
dic

No P
ree

mpti
on

 - P
eri

od
ic

No P
ree

mpti
on

 - A
pe

rio
dic

Pree
mpti

ble
 - P

eri
od

ic

Pree
mpti

ble
 - A

pe
rio

dic

Pree
mpt

RT - P
eri

od
ic

Pree
mpt

RT - A
pe

rio
dic

Max
Avg

Latency

FIGURE 5.33: Shared memory test, latencies compared under
SCHED_FIFO and Iperf load.

As all SCHED_FIFO-based tests could keep up with the producer, it is unsurprising
that all the latencies are low. What is more surprising is that even though the ex-
ecution time is longer, the latency spikes experienced when running Cyclictest on a
non-preemptible kernel with Iperf did not manifest in this test. The explanation is
most likely that Cyclictest had a period of 400 µs, while the shared memory test had
a period of 1 ms. Still, the other latencies found in this test are comparable with the
Cyclictest results.

This test only covered reading from the shared memory area. Brief tests of writing to
the buffer were also conducted, but the results were similar to the read tests and are
not included in this thesis. The Full Test covers Transmission mechanisms well, as
discussed in section 5.2.7.

5.2.4 Generic Netlink Test

This test was performed with the client application scheduled under SCHED_OTHER
and SCHED_FIFO. However, since the task was heavily preempted under SCHED_-
OTHER, it only makes sense to compare the results found under SCHED_FIFO poli-
cies.

The test results can be seen in Figure 5.34, which illustrates the execution time of re-
questing, reading, and writing data separately. Figure 5.34(d) shows accumulated exe-
cution time for all operations.

Chapter 5. Test Results and Recommendations 98

0

20

40

60

80

100

120

140

160

180
Ti

m
e

(μ
s)

No Load Stress-NG 25% Stress-NG 75% Iperf

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(a) Request duration.

0
20
40
60
80

100
120
140
160
180
200
220
240

Ti
m

e
(μ

s)

No Load Stress-NG 25% Stress-NG 75% Iperf

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(b) Packet read duration.

0

20

40

60

80

100

120

Ti
m

e
(μ

s)

No Load Stress-NG 25% Stress-NG 75% Iperf

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(c) Packet write duration.

0

50

100

150

200

250

300

350

400

450

500

Ti
m

e
(μ

s)

No Load Stress-NG 25% Stress-NG 75% Iperf

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(d) Total.

FIGURE 5.34: Execution time of kernel thread communication over Generic Netlink.

Under no load and load induced by Stress-NG (i.e., in user space), the average execu-
tion time increases slightly as the kernel becomes more preemptible. Simultaneously,
the maximum execution time decreases. However, the differences are in the order of
10s of microseconds, meaning that the choice of preemption model is not critical.

The results of the tests with Iperf as a stressor stand out. Here, the fully preemptible
kernel performs worse during a transmission but better during a reception. This leads
to the total average execution time being lower on the preemptible kernels than on the
non-preemptible kernel when stressed by Iperf. Since Iperf executes in kernel space
for the most part, this aligns with earlier findings in this section.

These results show that the choice of the preemption model is not critical for the perfor-
mance of the Generic Netlink communication and should not introduce any significant
issues for the target system.

When comparing these numbers with the dynamic memory allocation test results, one
can assume that a big part of the execution times is due to the dynamic memory allo-
cation that occurs as part of these operations. Some efforts were made to avoid or limit
dynamic memory allocation when using Libnl, but no workable solution was discov-
ered.

Chapter 5. Test Results and Recommendations 99

Although the baseline throughput test showed that the preemption model could dras-
tically reduce throughput in system-call-heavy scenarios, this test did not exhibit this
behavior. Based on this, one can conclude that the mechanisms used in Generic Netlink
communication towards the kernel modules are not susceptible to the potential degra-
dations introduced by a more preemptible kernel.

5.2.5 Kernel Thread Event Handling

Figure 5.35 compares the CPU load of an event-driven kernel worker and a polling
worker. As expected, they show that the event-driven kernel worker has a lower im-
pact on the CPU load. The improvement was predictable in an idle system, as the
kworker will indefinitely go to a blocking state when using an event-driven scheme.
However, the degree of the improvement seen at event rates up to 1 kHz was higher
than expected, but it makes sense given the rapid poll rate of [10, 100] ms.

0

2

4

6

8

10

12

14

16

C
PU

 L
oa

d
(p

er
ce

nt
)

None 1 Hz 10 Hz 1 kHz

Poll
ed

Eve
nt-

Driv
en

Poll
ed

Eve
nt-

Driv
en

Poll
ed

Eve
nt-

Driv
en

Poll
ed

Eve
nt-

Driv
en

Client
kworker

Thread

FIGURE 5.35: Polled vs. event-Driven kernel worker, at different input event frequencies.

An event rate of 10 kHz was also tested and showed the polling scheme to perform
better. This can be seen in Appendix C, Tables C.23 and C.24 This shows that as the
event rate increases to a point close enough to the polling rate, the thread no longer
performs redundant work, as it will always find a new event to handle on each poll.
At 10 kHz, the reduced overhead of the polling scheme increases the efficiency.

However, this rate of events is unrealistic for the target system. It is expected to
receive events at a rate significantly lower than 1 kHz, which means that the event-
driven scheme is the best choice for the target system. One could argue that reducing
the polling rate could have the same effect, but that would result in a less responsive
worker and increase the latency between asking for data and receiving it.

Chapter 5. Test Results and Recommendations 100

5.2.6 Full Test RX

The first thing to note about the full reception pipeline test results is that the CPU
load was virtually the same for all permutations, hovering just around 23%. However,
the periodic scheme consistently used about 0.5% to 1% less CPU than the aperiodic
scheme.

As the selected package size for these tests was 1504 B, the periodic scheme was modi-
fied to read three packages on each update to allow it to keep up with the producer
without modifying the period. The average execution time of the thread between
blocking is illustrated in Figure 5.36.

0

100

200

300

400

500

600

700

800

900

Ex
ec

ut
io

n
Ti

m
e

(μ
s)

None Stress-NG 25% Stress-NG 75% Iperf

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.36: Average execution time of full RX pipeline.

The stressors and preemption model hardly affected the average execution time, but
the periodic scheme had a significantly lower execution time than the aperiodic scheme.
However, their average CPU time is almost identical since the aperiodic scheme blocks
for a whole millisecond.

The maximum execution time measured during the tests can be seen in Figure 5.37.
When inducing load on the system and the kernel schedules the application under
SCHED_OTHER, the maximum execution time of the aperiodic scheme increases dra-
matically. The rate at which the task experiences involuntary preemptions grows ac-
cordingly, further underlining the non-deterministic nature of this approach.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

Ex
ec

ut
io

n
Ti

m
e

(μ
s)

None Stress-NG 25% Stress-NG 75% Iperf

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.37: Maximum execution time of full RX pipeline.

To more clearly examine the difference in maximum execution times between the tests
using real-time scheduling priorities, Figure 5.38 shows these results in isolation.

Chapter 5. Test Results and Recommendations 101

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200
Ex

ec
ut

io
n

Ti
m

e
(μ

s)
None Stress-NG 25% Stress-NG 75% Iperf

No Preempt - Periodic
No Preempt - Aperiodic
Preemptible - Periodic
Preemptible - Aperiodic
Preempt RT - Periodic
Preempt RT - Aperiodic

Setup

FIGURE 5.38: Maximum execution time of full RX pipeline under SCHED_FIFO.

These results show that while the aperiodic scheme does not have extreme spikes in
execution times when scheduled under SCHED_FIFO, the periodic scheme is much
more stable. The periodic scheme is not as susceptible to an external load and, in all
cases, manages to keep the maximum execution time below the period of 1 ms.

As for the shared memory test, the most crucial measure is again the maximum buffer
size reached during the test. This is illustrated in Figure 5.39.

Again, all setups could keep up with the producer, and none of them was close to
the 128 KiB limit, even under load. However, the positive impact of using a real-time
scheduling policy remains clear.

0

20

40

60

80

100

120

M
ax

 B
uf

fe
r S

iz
e

(K
iB

)

None Stress-NG 25% Stress-NG 75% Iperf

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.39: Maximum buffer size of full RX pipeline.

In order to make the differences between the system configurations more apparent,
an additional test was conducted, which pushed the system further. An additional
200-microsecond busy wait was added after each read to simulate more work the ap-
plication does during decoding. The periodic scheme was modified to read only two
packages on each update to allow it to maintain its period.

This modification naturally impacted the CPU load, now around 40% on average for
all configurations. This means that the main thread is using 80% of a single core. As
this is just below the threshold for real-time throttling, this is at the limit of what should
be considered acceptable for a thread scheduled under real-time policies.

Chapter 5. Test Results and Recommendations 102

The maximum buffer size reached during this test can be seen in Figure 5.40, with no
load, Stress-NG at 25% load, and Iperf, respectively.

0

20

40

60

80

100

120

M
ax

 B
uf

fe
r S

iz
e

(K
iB

)

None Stress-NG 25% Iperf

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.40: Maximum buffer size of full RX pipeline, increased overhead.

As with the other configurations, when no load is applied, all tests perform equally
well. However, Stress-NG induced load causes the tests scheduled under CFS to fail.
The aperiodic scheme performs slightly better than the periodic scheme under SCHED_-
FIFO, potentially explained by the fact that the periodic scheme now reads only two
packages on each update. When Iperf induced the load, the non-preemptible kernel
could keep up with the FPGA producer even under SCHED_OTHER. This was not the
case for the other preemption models, which could be due to their increased overhead.
The fact that this setup experienced the highest recorded latency of all tests, as seen in
Figure 5.41, could indicate that the increased overhead of system calls used by Iperf is
significant on preemptible kernels.

0

50

100

150

200

250

La
te

nc
y

(μ
s)

Stress-NG 25% Iperf

No P
ree

mpti
on

 - P
eri

od
ic

No P
ree

mpti
on

 - A
pe

rio
dic

Pree
mpti

ble
 - P

eri
od

ic

Pree
mpti

ble
 - A

pe
rio

dic

Pree
mpt

RT - P
eri

od
ic

Pree
mpt

RT - A
pe

rio
dic

No P
ree

mpti
on

 - P
eri

od
ic

No P
ree

mpti
on

 - A
pe

rio
dic

Pree
mpti

ble
 - P

eri
od

ic

Pree
mpti

ble
 - A

pe
rio

dic

Pree
mpt

RT - P
eri

od
ic

Pree
mpt

RT - A
pe

rio
dic

Max
Avg

Latency

(a) Latency.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

Ex
ec

ut
io

n
Ti

m
e

(μ
s)

Stress-NG 25% Iperf

No P
ree

mpti
on

 - P
eri

od
ic

No P
ree

mpti
on

 - A
pe

rio
dic

Pree
mpti

ble
 - P

eri
od

ic

Pree
mpti

ble
 - A

pe
rio

dic

Pree
mpt

RT - P
eri

od
ic

Pree
mpt

RT - A
pe

rio
dic

No P
ree

mpti
on

 - P
eri

od
ic

No P
ree

mpti
on

 - A
pe

rio
dic

Pree
mpti

ble
 - P

eri
od

ic

Pree
mpti

ble
 - A

pe
rio

dic

Pree
mpt

RT - P
eri

od
ic

Pree
mpt

RT - A
pe

rio
dic

Max
Avg

Time

(b) Execution time.

FIGURE 5.41: Temporal data for full RX pipeline with increased overhead.

Interestingly, the periodic scheme on a fully preemptible kernel was the only setup
under SCHED_FIFO that could not keep up with the producer. This temporal data
shows that the periodic scheme under SCHED_FIFO on a fully preemptible kernel is

Chapter 5. Test Results and Recommendations 103

among the setups with the lowest latencies and execution times. Although the fully
preemptible kernel has more overhead, according to the temporal data, the task never
missed its period to the degree that can explain a buffer overrun as experienced in the
test.

However, the periodic scheme now strictly reads up to two packages of 1504 B on each
update. This means that it will clear the buffer in

128 KiB− 4 KiB

1504 B× 2
= 41.3 cycles (5.2)

.

As the period is 1ms, and the buffer fills every 50 milliseconds, the margins are slimmer
than in previous setups. This means that consecutive high latencies could cause the
overruns recorded during the test.

Again, this test shows that the real-time scheduling policies have more impact than
the preemption model. It is also clear that when pushing the system to its limits, the
periodic scheme requires more tuning to keep up with the producer.

5.2.7 Full Test TX

As described in section 4.5.6, testing all possible variations on the transmission pipeline
is impossible. Based on the results of the preceding tests, a subset was selected for
testing.

Setup 1

The first test setup was done without a separate thread for the generic netlink commu-
nication, and the main thread blocked while waiting for the response from the kernel
thread. Initial tests showed that the kernel thread scheduled under CFS was not re-
sponsive enough. All tests were, therefore, done with the kernel thread scheduled
under SCHED_FIFO. The application would ask the kernel module for more data if
the TX driver queue contained less than ten packets, and the aperiodic scheme would
sleep when all queues were empty.

The CPU load measured during the tests showed a massive discrepancy between the
periodic and aperiodic schemes, as seen in Figure 5.42.

Chapter 5. Test Results and Recommendations 104

0

5

10

15

20

25

30

35

40

45

50

C
PU

 L
oa

d
(%

)

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.42: CPU load of full TX pipeline, setup 1, under Stress-NG 25%

For the transmission tests, the lowest recorded buffer sizes towards the FPGA are the
most crucial measure of success. Figure 5.43 shows the results when running with and
without load.

Without load, the periodic scheme performed well across both scheduling policies.
Interestingly, the aperiodic scheme performed well under SCHED_OTHER but could
not keep up with the consumer under SCHED_FIFO. As predicted in section 4.5.6,
the aperiodic scheme in this system configuration is CPU-hungry and causes the ker-
nel to throttle the task when scheduled under SCHED_FIFO. Under SCHED_OTHER,
the task does not need to sleep purposefully, as the kernel schedules it out when its
timeslice is exhausted. This also explains the high CPU load of the aperiodic scheme
compared with the periodic scheme.

0

20

40

60

80

100

120

M
in

 B
uf

fe
r S

iz
e

(K
iB

)

None Stress-NG 25%

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.43: Minimum buffer size in TX pipeline, setup 1

When running with 25% load, the periodic scheme could keep up under both schedul-
ing policies but performed significantly better under SCHED_FIFO. The aperiodic scheme
seems to have performed equally poorly under both scheduling policies, but the num-
ber of overruns shows a more nuanced picture. Under SCHED_OTHER, the buffer

Chapter 5. Test Results and Recommendations 105

underran 25 times, while under SCHED_FIFO, it underran 1190 times due to real-
time throttling. Interestingly, the aperiodic task did not experience underruns when
stressed under SCHED_OTHER on the fully preemptible kernel.

The periodic task performed well in the remaining stress scenarios when scheduled
under SCHED_FIFO.

Setup 2

The second test setup ran with a separate thread for the Generic Netlink communi-
cation. The main thread transmits requests directly to the kernel thread, and another
listens for responses. The condition requesting new packages was modified only to
be done when all queues were empty2, while the condition for sleeping remained the
same.

The test was executed with the kernel thread scheduled under SCHED_OTHER and
SCHED_FIFO.

The average CPU load measured when running the full transmission pipeline across
the different configurations can be seen in Figure 5.44.

0

5

10

15

20

25

30

C
PU

 L
oa

d
(%

)

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.44: Average CPU load of full TX pipeline, setup 2 under Stress-NG
75%

The difference in CPU load between the periodic and aperiodic approaches is notice-
able, with the aperiodic scheme using about 11% more CPU on average. However, the

2A brief test was executed with a separate thread for the generic netlink communication while keep-
ing the other parameters the same as in the first setup. This setup was abandoned as the throttling issues
grew even worse when the aperiodic task did not have to block on the receive call in the main thread
anymore.

Chapter 5. Test Results and Recommendations 106

difference is much smaller than in the first setup, indicating that the change in condi-
tion for requesting new data impacted the CPU load positively, as the task will yield
more frequently.

The minimum buffer size for this setup when scheduling the kernel thread under
SCHED_OTHER can be seen in Figure 5.45. All tests performed equally well with-
out load, but with 25% background load, the SCHED_OTHER tests fail. The peri-
odic scheme seems to outperform the aperiodic scheme, which is somewhat surpris-
ing given that the aperiodic scheme spends more time on the CPU. The issues with
throttling seen in the first setup have altogether disappeared.

0

20

40

60

80

100

120

M
in

 B
uf

fe
r S

iz
e

(K
iB

)

None Stress-NG 25%

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.45: Minimum buffer size of full TX pipeline, setup 2 with kernel thread under
SCHED_OTHER.

When scheduling the kernel thread under SCHED_FIFO, the results improved as the
kernel module became more responsive to the main thread. SCHED_OTHER was still
inferior to SCHED_FIFO, but all configurations could keep the buffer filled except for
the aperiodic scheme on the non-preemptible kernel.

0

20

40

60

80

100

120

M
in

 B
uf

fe
r S

iz
e

(K
iB

)

None Stress-NG 25%

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.46: Minimum buffer size of full TX pipeline, setup 2 with kernel thread under
SCHED_FIFO.

Chapter 5. Test Results and Recommendations 107

Setup 3

The third and final setup kept a separate thread for the Generic Netlink communica-
tion. The condition for requesting new packages was modified back to the condition in
the first setup, but with an additional guard to ensure the application only sends one
request at a time. Additionally, the kernel exclusively scheduled the kernel worker
under SCHED_FIFO.

Figure 5.47 shows that the average CPU load measured during the tests was almost
identical to the second setup.

0

5

10

15

20

25

30

C
PU

 L
oa

d
(%

)

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.47: Averge CPU load of full TX pipeline, setup 3

Figure 5.48 shows the minimum buffer sizes recorded during the tests. This shows
that the SCHED_FIFO-based tests performed better, while the SCHED_OTHER tests
performed worse when compared to the previous setups.

0

20

40

60

80

100

120

M
in

 B
uf

fe
r S

iz
e

(K
iB

)

None Stress-NG 25%

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.48: Minimum buffer size of full TX pipeline, setup 3 with kernel thread under
SCHED_FIFO.

Chapter 5. Test Results and Recommendations 108

Comparison

Figure 5.49 compares the minimum buffer sizes recorded during the tests of the three
setups.

0

20

40

60

80

100

120

M
in

 B
uf

fe
r S

iz
e

(K
iB

)

Setup 1 Setup 2 Setup 3

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.49: Minimum buffer size of Full TX pipeline compared across setups with 75% load.

Here, it is more apparent that the first setup lends itself to an aperiodic scheme without
real-time scheduling policies. This shows that the current platform and target system
might be able to meet the requirements without using any of the techniques discussed
in this thesis. The downside is that it uses a lot of CPU time and might not be as reliable
as the other setups.

The second and third setups are suitable for both a periodic and an aperiodic scheme,
with Setup 3 performing slightly better than Setup 2. In these setups, the periodic
scheme performs slightly worse than the aperiodic scheme, but the difference is mi-
nuscule compared to the significant difference in CPU efficiency.

These conclusions are also supported by the number of recorded buffer underruns
as seen in Figure 5.50. The aperiodic scheme in the first setup is victim to throttling
under SCHED_FIFO, while in the second and third setups, the aperiodic scheme can
no longer keep up when using SCHED_OTHER.

0

2,000

4,000

6,000

8,000

10,000

12,000

N
um

be
r o

f U
nd

er
ru

ns

Setup 1 Setup 2 Setup 3

No Preempt - SCHED_OTHER - Periodic
No Preempt - SCHED_OTHER - Aperiodic
No Preempt - SCHED_FIFO - Periodic
No Preempt - SCHED_FIFO - Aperiodic
Preemptible - SCHED_OTHER - Periodic
Preemptible - SCHED_OTHER - Aperiodic
Preemptible - SCHED_FIFO - Periodic
Preemptible - SCHED_FIFO - Aperiodic
Preempt RT - SCHED_OTHER - Periodic
Preempt RT - SCHED_OTHER - Aperiodic
Preempt RT - SCHED_FIFO - Periodic
Preempt RT - SCHED_FIFO - Aperiodic

Setup

FIGURE 5.50: Number of underruns on Full TX pipeline compared across setups with 75%
load.

Interestingly, a periodic task firing at the rate required to keep up with the consumer
is more CPU-effective than an aperiodic best-effort task, even when they perform the
same amount of work.

Chapter 5. Test Results and Recommendations 109

5.2.8 Production Environment Test

The production environment test was conducted to evaluate the performance of the
company’s production Linux distribution. As found in section 5.1.2, kmemleak signif-
icantly impacted the system’s latency and was disabled for this test. No artificial load
was applied, meaning that the only load on the system was the typical background
workload running on the system.

The latency recorded on the standard non-preemptible kernel can be seen in Figure
5.51, where CPU 0 had a task with a period of 400 µs and CPU 1 had a task with a
period of 900 µs. Although the average latency was low, there were frequent spikes of
about 500 microseconds. Additionally, isolated spikes of up to 2775 µs were recorded.
As the results show no spikes between 750 µs and 2400 µs, it is likely that a single
source of latency causes the highest spikes.

1

10

100

1000

10000

100000

1x106

1x107

0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 la

te
nc

y
sa

m
pl

es

Latency (us), max 2775 us

CPU0
CPU1

FIGURE 5.51: Latency distribution of the company’s production Linux system
with no forced preemption.

The preemptible kernels significantly improved the system’s latency, as seen in Figure
5.52. A maximum latency of 352 µs was recorded on the preemptible kernel, and the
fully preemptible kernel had a maximum latency of 93 µs.

 1

 10

 100

 1000

 10000

 100000

 1x106

 0 50 100 150 200 250 300 350 400

N
um

be
r o

f l
at

en
cy

 s
am

pl
es

Latency (us), max 352 us

 CPU0
 CPU1

(a) Preemptible kernel.

 1

 10

 100

 1000

 10000

 100000

 1x106

 0 50 100 150 200 250 300 350 400

N
um

be
r o

f l
at

en
cy

 s
am

pl
es

Latency (us), max 93 us

 CPU0
 CPU1

(b) Fully preemptible kernel.

FIGURE 5.52: Latency distribution of the company’s production Linux system with preemptive
kernels.

Chapter 5. Test Results and Recommendations 110

The effects of the preemption model on the system’s average load can be seen in Figure
5.53 and were extracted by reading /proc/loadavg. The difference between the non-
preemptible and preemptible kernels is slight and can be deemed a normal variation.
However, the load average of the fully preemptible kernel is significantly higher than
the other two.

0.0 0.4 0.8 1.2 1.6 2.0 2.4
/proc/loadavg

No Preemption
Preemptible
Preempt RT

FIGURE 5.53: CPU load average of background workload on the company’s pro-
duction Linux distribution.

Since the load average on the fully preemptible kernel is greater than the number of
CPU cores, one could argue that the system is overloaded. However, the load average
in Linux is not only based on the number of runnable tasks but includes tasks in un-
interruptible sleep, waiting for IO [27, kernel/sched/loadavg.c, Line 16]. In order to
gain more insight, the CPU utilization of the system was measured with mpstat and is
illustrated in Figure 5.54. This shows that the CPU is idle for about 90% of the time for
all three preemption models. Based on this, one can guess that the high load average
on the fully preemptible kernel is due to tasks in uninterruptible sleep, waiting for IO,
and not due to a large number of runnable tasks. Mpstat reported that over the course
of an hour, the fully preemptible kernel spent less time waiting for IO than the non-
preemptible kernel. No documentation could be found to explain this. However, these
findings could indicate that the fully preemptible kernel will immediately swap out a
task waiting for IO. In contrast, the non-preemptible kernel may allow the task to spin
on the CPU until the IO is complete. This would explain the fully preemptible ker-
nel’s higher load, as numerous tasks in uninterruptible sleep would always be present,
waiting for IO. It is hard to say whether the high load average recorded is a risk for
the target system. Still, it should be evaluated further if a fully preemptible kernel is
considered.

The difference in time spent servicing soft interrupts between the preemption models
could be explained by the fact that the fully preemptible kernel will handle all soft
interrupts in the ksoftirq daemon. In contrast, the other kernels will handle many
of them in hard interrupt context. The mpstat documentation does not state how it
calculates the soft interrupt column, making it difficult to confirm this.

Still, based strictly on the CPU’s idle time, the fully preemptible kernel significantly
impacts the system’s CPU load negatively.

Chapter 5. Test Results and Recommendations 111

0 2 4 6 8 10 12
CPU Utilization (%)

No Preemption
Preemptible
Preempt RT

iowait
soft
usr
sys

Mode

FIGURE 5.54: CPU utilization of background workload on the company’s pro-
duction Linux distribution.

Based on these results, it is clear that the background workload on the company’s
Linux distribution used in production environments does not cause critical latencies as
long as kmemleak is disabled. A preemptible or fully preemptible kernel significantly
reduces the latencies, but the fully preemptible kernel also significantly increases CPU
load. Regarding the load average, the source code itself states that "Its a silly number but
people think its important" [27, kernel/sched/loadavg.c, Line 6], meaning that it should
not necessarily be taken as a critical measure of system performance.

5.3 Recommendations for the Target System

As stated, the main goal of this thesis is to contribute to the success of porting the
legacy target system to a new hardware and software platform. This section discusses
recommendations and measures that can be taken to ensure that the system will per-
form as desired on the new platform based on the findings of this thesis.

5.3.1 If it Ain’t Broke, Don’t Fix it?

Firstly, the results have shown that it is plausible for the system to work well on the
new platform without any modifications to the application or the configuration of the
software platform. Unfortunately, it is impossible to predict this with certainty, as the
time complexity of the modulation algorithms and the background load of the target
platform are both unknown.

However, the results show that while the system might work well, it can still be vul-
nerable to latencies induced by an external load. Edge cases in background tasks can
cause the system to degrade in performance intermittently, or changes in a later release
of the BSP can cause the system to fail. This means that taking measures to ensure the
system’s reliability could be a good idea, even if the system works as intended.

5.3.2 Real-Time Scheduling Policies

The results have shown that the single most substantial factor in improving a system’s
real-time performance is the application of real-time scheduling policies. This should
be the first step in any scenario.

Upon enabling this, the system should be monitored to verify that real-time throttling
does not occur. If it does, the application software should be tuned to yield the CPU to

Chapter 5. Test Results and Recommendations 112

a sufficient degree. A periodic scheme can be considered, which is discussed further
in section 5.3.6.

A priority level below 50 should be tested first and potentially increased above 50 if
required. This might cause latency or even starvation of critical interrupts. If kernel
logs reveal this to be the case, one should consider increasing the priorities of relevant
threads accordingly.

5.3.3 Memory

The dynamic memory allocation within the target application cannot be limited further
due to its dependency on libnl. The results show that locking memory to RAM to avoid
page faults can be beneficial, but the improvements are minor.

Still, the system should be monitored, and memory locking should be considered if
page faults occur frequently.

In any regard, over-allocation of memory should be disabled to avoid out-of-memory
situations.

5.3.4 kmemleak

Kmemleak was found to be enabled on the kernel used in production environments in
the company’s systems. The results found that this can periodically cause latencies of
up to 40 ms.

This is at the threshold of what the target system can potentially withstand and could
lead to intermittent needs for retransmissions. If the current preemption model is kept,
kmemleak should be disabled. If other preemption models are chosen, the results
show that kmemleak does not significantly impact the system’s scheduling latency.
However, as the official documentation does not recommend using it in production
systems, disabling it should still be considered.

5.3.5 Preemption Model

A definite recommendation regarding the preemption model of the platform is chal-
lenging to make, as the results show that the nature of the background load is the
determining factor.

If background tasks frequently perform system calls, a kernel without forced preemp-
tion might still allow the target application to meet its requirements. It will only be-
come an issue if the background tasks perform system calls with long durations, lead-
ing to large spikes in latency for the target application.

If this is found to be the case, the preemption model should be changed to Preemptible
Kernel (Low-Latency Desktop). This allows a real-time scheduled task to preempt tasks
in kernel mode as long as they are not in a critical section. The results found that
the throughput reductions induced by this modification are negligible in the scenarios
tested.

Chapter 5. Test Results and Recommendations 113

Concerning PREEMPT_RT, the analysis of the target system shows that its real-time
constraints are not stringent enough to warrant the need for a fully preemptible ker-
nel. On the contrary, the results show that the throughput reduction brought on by
PREEMPT_RT can sometimes be extreme and could negatively impact the target sys-
tem, which is also dependent on performance.

Based on the results of the production environment test, the non-preemptible kernel or
preemptible kernel should have sufficient real-time capabilities for the target system if
the actual workload of the final system is similar to the background workload of the
test.

5.3.6 Modifications to the Legacy Application

The previous sections have identified several recommended modifications to the ap-
plication software. Firstly, the mechanism for sleeping should be changed. The ex-
isting infrastructure using an interval timer should be removed entirely and replaced
with nanosleep or a condition variable with a timeout if waking up on an event is
still required. If the application is not scheduled under a real-time scheduling policy,
this will not improve the scheduling latency of the thread. However, the results have
shown that this will reduce the CPU load on the system, making it beneficial in any
case. This is especially true when scheduled under CFS, as it will increase the timeslice
of remaining tasks.

The kernel thread responsible for handling data requests from the application should
be modified to use an event-driven scheme instead of polling for events. This will
reduce the CPU load of the system, and the results show that this will not negatively
impact the system’s latency. Further, if the blocking read call to the kernel module
is not separated into a separate thread, the kernel thread should be modified to use a
real-time scheduling policy. The results show that this will improve the responsiveness
of the kernel module.

Whether handling packages to and from the kernel module should be moved to sepa-
rate threads is an open question. It can improve the determinism of the main thread but
will also make for a slightly more complicated system. Additionally, it might reduce
the system’s throughput, depending on the priority of the threads. In some setups, the
aperiodic thread had a very high CPU load, in some cases over 50%. This means the
thread spent one hundred percent of a single core’s capacity, which does not produce
a reliable system. Separating the handling of the Generic Netlink interface towards the
kernel module from the main thread will reduce the CPU load of the main thread. If
the time complexity of the modulation algorithms proves to be too demanding, this
could be a potential solution.

The same goes for whether a periodic scheme should be preferred. As shown through-
out this thesis, reasoning about the reliability of a system based on an aperiodic, best-
effort task is difficult. It can occasionally improve the throughput but also makes it
more challenging to analyze the temporal characteristics of the system. In some se-
tups, the aperiodic scheme resulted in real-time throttling when paired with a real-
time scheduling policy, which led to it performing worse than when scheduled under
CFS. In the full tests, the aperiodic scheme had a higher CPU load than the periodic
scheme, even when they performed practically the same in keeping up with the rate of

Chapter 5. Test Results and Recommendations 114

the FPGA. Although this can be tuned by tweaking the conditions for when the main
thread should sleep, it still highlights the unpredictability of this approach.

The fact is that the full transmission test, unfortunately, was not able to mimic the ac-
tual system appropriately, meaning that the results are not directly applicable to the
target system. Although these results provide an indication of what to expect, per-
forming benchmarks and experiments with the actual system is required to uncover
the optimal solution.

5.4 Summary

This chapter has described and discussed the results of the tests conducted in this the-
sis. Further, it has given several recommendations for the target system based on these
results, both concerning the software platform and the application software. The main
finding is that the porting effort of the target system is feasible. It was found that uti-
lizing real-time scheduling policies has a much greater impact on the system’s latency
than the preemption model. The best course of action for the target system is to apply
real-time scheduling policies to the application software and monitor the system for
real-time throttling. If high latencies are still experienced, modifying the preemption
model to Preemptible Kernel (Low-Latency Desktop) should be sufficient.

115

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The goal of this thesis is to enable the porting of a legacy system with real-time con-
straints to a Linux platform on an Altera Cyclone V. To achieve this, the thesis has
investigated, analyzed, and tested state-of-the-art techniques for improving the real-
time capabilities of Linux. A review of the literature was conducted with a focus on
the PREEMPT_RT patch, which is the most widely used technique for reducing the
scheduling latency of Linux and increasing its determinism. Various best practices
and recommendations were identified, which made up the foundation for the method-
ology of the thesis.

Several generic tests were developed and conducted to evaluate the impact of using
different preemption models and scheduling policies. These experiments showed that
while the PREEMPT_RT patch can improve the real-time capabilities of Linux, it brings
with it a reduction in throughput that can be significant, depending on the workload. It
also introduces risk factors that can negatively impact the system, such as the possibil-
ity of system crashes due to starving interrupts on a poorly configured system. These
findings align with the current assertions in the literature. Additionally, the results
show that using the preemptible low-latency kernel, available in the mainline tree, sig-
nificantly improves the scheduling latencies of the system without showing the same
reduction in throughput.

The legacy system was analyzed, and parts of the time-critical functionality were im-
plemented and tested in isolation. The results show that the system’s temporal require-
ments are well within what is possible to meet with Linux and that the porting effort
is feasible. The target system might function well on a mainline non-preemptible ker-
nel without taking any additional measures. However, applying real-time scheduling
policies and a preemptible low-latency kernel will improve the system’s reliability and
stability. The results showed that the most significant variable impacting the schedul-
ing latency of a task is the choice of scheduling policy. Whether a preemptible kernel is
required depends more on the background workload of the system than the nature of
the target application itself. However, based on the results and the assumptions made,
the requirements of the system are not strict enough to justify using the PREEMPT_RT
patchset.

Based on the results, the thesis has also proposed several modifications to the target
application to reduce the CPU load and increase the system’s predictability.

Chapter 6. Conclusion and Future Work 116

6.2 Future Work

With regard to optimizing both Linux as a platform and the target system specifically,
numerous configurations and mechanisms could be further investigated.

The thesis only had the temporal scope to evaluate a subset of these, barely scratching
the surface of what is possible.

Below are some suggestions for future work:

• Using Real Target System: As this thesis was conducted as a pre-study of a
planned porting effort, the actual system was not available for experimentation.
Therefore, the results were produced with software mimicking the target sys-
tem, which was based on several assumptions. Most notable is the fact that the
modulation algorithms’ time complexity and the main thread’s average execu-
tion time are unknown. Additionally, the background load of the actual system
is unknown, which significantly impacts the system’s real-time capabilities. The
assumptions were sometimes sufficient, but some questions cannot be answered
without testing the actual system. This includes whether an aperiodic or periodic
execution scheme should be preferred and whether the application should be fur-
ther partitioned into multiple tasks. Testing the recommended modifications to
the actual target platform and application will provide more information and be
a natural next step after this thesis.

• Stressors: Several stressors were used to evaluate the latency and throughput of
the system under various conditions. The results varied greatly across some of
these mechanisms, for instance, between using pipes and sockets in the Hack-
bench throughput test. Delving into the reasons for this and investigating which
operations are more prone to throughput reductions and a cause of high latencies
could be an interesting area for future work.

• Priority Boosting: To increase the round trip time of packets passing through the
target system, different schemes of priority boosting through the use of priority
inheritance could be investigated. This could potentially be used to temporarily
boost specific threads depending on the current state of the system or if data is
piling up in specific queues.

• Latency NICE: Latency NICE is a recent interesting concept that allows a task
scheduled under CFS to split its timeslice into smaller slices and lower its re-
sponse time. For the target system, this could potentially be a good alternative to
using real-time scheduling policies. This is especially true if the target applica-
tion is found not to yield the CPU sufficiently under SCHED_FIFO and is subject
to real-time throttling.

• CPU Isolation: Because of the limited number of CPU cores on the Altera Cy-
clone V, CPU isolation was not investigated in this thesis. Additionally, the re-
quirements for the target system did not warrant using this. However, are the
requirements for the target system to change, or should the background work-
load create latencies the system cannot handle, this could be an interesting area
to investigate.

117

Appendix A

BSP Configuration

A.1 Crosstool-NG Configuration

1 CT_CONFIG_VERSION=" 4 "
2 CT_EXPERIMENTAL=y
3 CT_LOCAL_TARBALLS_DIR=" ./ l o c a l − t a r b a l l s "
4 CT_PREFIX_DIR=" . . / x− t o o l s /$ {CT_TARGET} "
5 CT_ARCH_ARM=y
6 CT_ARCH_CPU=" cortex −a9 "
7 CT_ARCH_FPU=" neon "
8 CT_ARCH_FLOAT_HW=y
9 CT_TARGET_VENDOR=" cortexa9_neon "

10 CT_TARGET_ALIAS="arm−cyclone5 −l inux "
11 CT_TOOLCHAIN_ENABLE_NLS=y
12 CT_KERNEL_LINUX=y
13 CT_LINUX_V_6_1=y
14 CT_BINUTILS_LINKER_LD_GOLD=y
15 CT_BINUTILS_GOLD_THREADS=y
16 CT_BINUTILS_LD_WRAPPER=y
17 CT_BINUTILS_PLUGINS=y
18 CT_GLIBC_USE_LIBIDN_ADDON=y
19 CT_GLIBC_LOCALES=y
20 CT_GLIBC_KERNEL_VERSION_NONE=y
21 # CT_CC_GCC_ENABLE_TARGET_OPTSPACE i s not s e t
22 CT_CC_LANG_CXX=y
23 CT_DEBUG_GDB=y
24 # CT_GDB_CROSS_PYTHON i s not s e t
25 CT_GDB_NATIVE=y
26 CT_GDB_NATIVE_STATIC=y

LISTING A.1: Crosstool-NG configuration.

A.2 Linux Configuration

1 CONFIG_SYSVIPC=y
2 CONFIG_HIGH_RES_TIMERS=y
3 CONFIG_BPF_SYSCALL=y
4 CONFIG_IKCONFIG=y

Appendix A. BSP Configuration 118

5 CONFIG_IKCONFIG_PROC=y
6 CONFIG_LOG_BUF_SHIFT=14
7 CONFIG_CGROUPS=y
8 CONFIG_CPUSETS=y
9 CONFIG_NAMESPACES=y

10 CONFIG_BLK_DEV_INITRD=y
11 CONFIG_EXPERT=y
12 CONFIG_PROFILING=y
13 CONFIG_ARCH_INTEL_SOCFPGA=y
14 CONFIG_ARM_THUMBEE=y
15 CONFIG_SMP=y
16 CONFIG_NR_CPUS=2
17 CONFIG_HIGHMEM=y
18 CONFIG_VFP=y
19 CONFIG_NEON=y
20 CONFIG_MODULES=y
21 CONFIG_MODULE_UNLOAD=y
22 CONFIG_CMA=y
23 CONFIG_NET=y
24 CONFIG_PACKET=y
25 CONFIG_UNIX=y
26 CONFIG_NET_KEY=y
27 CONFIG_NET_KEY_MIGRATE=y
28 CONFIG_INET=y
29 CONFIG_IP_MULTICAST=y
30 CONFIG_IP_PNP=y
31 CONFIG_IP_PNP_DHCP=y
32 CONFIG_IP_PNP_BOOTP=y
33 CONFIG_IP_PNP_RARP=y
34 CONFIG_NETWORK_PHY_TIMESTAMPING=y
35 CONFIG_VLAN_8021Q=y
36 CONFIG_VLAN_8021Q_GVRP=y
37 CONFIG_CAN=y
38 CONFIG_PCI=y
39 CONFIG_PCI_MSI=y
40 CONFIG_PCIE_ALTERA=y
41 CONFIG_PCIE_ALTERA_MSI=y
42 CONFIG_DEVTMPFS=y
43 CONFIG_DEVTMPFS_MOUNT=y
44 CONFIG_MTD=y
45 CONFIG_MTD_BLOCK=y
46 CONFIG_MTD_RAW_NAND=y
47 CONFIG_MTD_NAND_DENALI_DT=y
48 CONFIG_MTD_SPI_NOR=y
49 # CONFIG_MTD_SPI_NOR_USE_4K_SECTORS i s not s e t
50 CONFIG_OF_OVERLAY=y
51 CONFIG_BLK_DEV_LOOP=y
52 CONFIG_BLK_DEV_RAM=y
53 CONFIG_BLK_DEV_RAM_COUNT=2
54 CONFIG_BLK_DEV_RAM_SIZE=8192
55 CONFIG_BLK_DEV_NVME=m
56 CONFIG_SRAM=y
57 CONFIG_EEPROM_AT24=y
58 CONFIG_SCSI=y
59 # CONFIG_SCSI_PROC_FS i s not s e t
60 CONFIG_BLK_DEV_SD=y
61 # CONFIG_BLK_DEV_BSG i s not s e t
62 # CONFIG_SCSI_LOWLEVEL i s not s e t

Appendix A. BSP Configuration 119

63 CONFIG_NETDEVICES=y
64 CONFIG_ALTERA_TSE=m
65 CONFIG_E1000E=m
66 CONFIG_IGB=m
67 CONFIG_IXGBE=m
68 CONFIG_STMMAC_ETH=y
69 CONFIG_MARVELL_PHY=y
70 CONFIG_MICREL_PHY=y
71 CONFIG_CAN_C_CAN=y
72 CONFIG_CAN_C_CAN_PLATFORM=y
73 CONFIG_CAN_DEBUG_DEVICES=y
74 CONFIG_INPUT_EVDEV=y
75 CONFIG_INPUT_TOUCHSCREEN=y
76 CONFIG_TOUCHSCREEN_STMPE=y
77 # CONFIG_SERIO_SERPORT i s not s e t
78 CONFIG_SERIO_AMBAKMI=y
79 CONFIG_LEGACY_PTY_COUNT=16
80 CONFIG_SERIAL_8250=y
81 CONFIG_SERIAL_8250_CONSOLE=y
82 CONFIG_SERIAL_8250_NR_UARTS=2
83 CONFIG_SERIAL_8250_RUNTIME_UARTS=2
84 CONFIG_SERIAL_8250_DW=y
85 CONFIG_I2C=y
86 CONFIG_I2C_CHARDEV=y
87 CONFIG_I2C_DESIGNWARE_PLATFORM=y
88 CONFIG_SPI=y
89 CONFIG_SPI_CADENCE_QUADSPI=y
90 CONFIG_SPI_DESIGNWARE=y
91 CONFIG_SPI_DW_MMIO=y
92 CONFIG_SPI_SPIDEV=y
93 CONFIG_GPIOLIB=y
94 CONFIG_GPIO_SYSFS=y
95 CONFIG_GPIO_ALTERA=y
96 CONFIG_GPIO_DWAPB=y
97 CONFIG_GPIO_ALTERA_A10SR=y
98 CONFIG_SENSORS_MAX1619=y
99 CONFIG_PMBUS=y

100 CONFIG_SENSORS_LTC2978=y
101 CONFIG_SENSORS_LTC2978_REGULATOR=y
102 CONFIG_WATCHDOG=y
103 CONFIG_DW_WATCHDOG=y
104 CONFIG_MFD_ALTERA_A10SR=y
105 CONFIG_MFD_ALTERA_SYSMGR=y
106 CONFIG_MFD_STMPE=y
107 CONFIG_REGULATOR=y
108 CONFIG_REGULATOR_FIXED_VOLTAGE=y
109 CONFIG_USB=y
110 CONFIG_USB_STORAGE=y
111 CONFIG_USB_DWC2=y
112 CONFIG_NOP_USB_XCEIV=y
113 CONFIG_USB_GADGET=y
114 CONFIG_MMC=y
115 CONFIG_MMC_DW=y
116 CONFIG_NEW_LEDS=y
117 CONFIG_LEDS_CLASS=y
118 CONFIG_LEDS_GPIO=y
119 CONFIG_LEDS_TRIGGERS=y
120 CONFIG_LEDS_TRIGGER_TIMER=y

Appendix A. BSP Configuration 120

121 CONFIG_LEDS_TRIGGER_CPU=y
122 CONFIG_RTC_CLASS=y
123 CONFIG_RTC_DRV_DS1307=y
124 CONFIG_DMADEVICES=y
125 CONFIG_PL330_DMA=y
126 CONFIG_DMATEST=m
127 CONFIG_IIO=y
128 CONFIG_LTC2497=y
129 CONFIG_FPGA=y
130 CONFIG_FPGA_MGR_SOCFPGA=y
131 CONFIG_FPGA_MGR_SOCFPGA_A10=y
132 CONFIG_FPGA_BRIDGE=y
133 CONFIG_SOCFPGA_FPGA_BRIDGE=y
134 CONFIG_ALTERA_FREEZE_BRIDGE=y
135 CONFIG_FPGA_REGION=y
136 CONFIG_EXT2_FS=y
137 CONFIG_EXT2_FS_XATTR=y
138 CONFIG_EXT2_FS_POSIX_ACL=y
139 CONFIG_EXT3_FS=y
140 CONFIG_AUTOFS_FS=y
141 CONFIG_VFAT_FS=y
142 CONFIG_NTFS_FS=y
143 CONFIG_NTFS_RW=y
144 CONFIG_TMPFS=y
145 CONFIG_JFFS2_FS=y
146 CONFIG_NFS_FS=y
147 CONFIG_NFS_V3_ACL=y
148 CONFIG_NFS_V4=y
149 CONFIG_ROOT_NFS=y
150 CONFIG_NFSD=y
151 CONFIG_NFSD_V3_ACL=y
152 CONFIG_NFSD_V4=y
153 CONFIG_NLS_CODEPAGE_437=y
154 CONFIG_NLS_ISO8859_1=y
155 CONFIG_DMA_CMA=y
156 CONFIG_PRINTK_TIME=y
157 CONFIG_DEBUG_INFO_DWARF_TOOLCHAIN_DEFAULT=y
158 CONFIG_DEBUG_INFO_BTF=y
159 CONFIG_MAGIC_SYSRQ=y
160 CONFIG_DEBUG_FS=y
161 CONFIG_DETECT_HUNG_TASK=y
162 CONFIG_SCHEDSTATS=y
163 CONFIG_FUNCTION_TRACER=y
164 CONFIG_DEBUG_USER=y

LISTING A.2: Linux kernel configuration.

A.3 Preemptible Mainline Kernel Configuration

1 diff --git a/linux_defconfig b/linux-preempt-dynamic_defconfig
2 index 823ca49..d30fec3 100644
3 --- a/linux_defconfig
4 +++ b/linux-preempt-dynamic_defconfig

Appendix A. BSP Configuration 121

5 @@ -1,6 +1,8 @@
6 +CONFIG_LOCALVERSION="-preempt-dynamic"
7 CONFIG_SYSVIPC=y
8 CONFIG_HIGH_RES_TIMERS=y
9 CONFIG_BPF_SYSCALL=y

10 +CONFIG_PREEMPT=y
11 CONFIG_IKCONFIG=y
12 CONFIG_IKCONFIG_PROC=y
13 CONFIG_LOG_BUF_SHIFT=14

LISTING A.3: Preemptible mainline kernel configuration diff

A.4 Linux-stable-rt Configuration

1 diff --git a/linux_defconfig b/linuxrt_defconfig
2 index 823ca49..eb0c6c2 100644
3 --- a/linux_defconfig
4 +++ b/linuxrt_defconfig
5 @@ -1,6 +1,7 @@
6 CONFIG_SYSVIPC=y
7 CONFIG_HIGH_RES_TIMERS=y
8 CONFIG_BPF_SYSCALL=y
9 +CONFIG_PREEMPT_RT=y

10 CONFIG_IKCONFIG=y
11 CONFIG_IKCONFIG_PROC=y
12 CONFIG_LOG_BUF_SHIFT=14
13 @@ -117,7 +118,6 @@ CONFIG_LEDS_CLASS=y
14 CONFIG_LEDS_GPIO=y
15 CONFIG_LEDS_TRIGGERS=y
16 CONFIG_LEDS_TRIGGER_TIMER=y
17 -CONFIG_LEDS_TRIGGER_CPU=y
18 CONFIG_RTC_CLASS=y
19 CONFIG_RTC_DRV_DS1307=y
20 CONFIG_DMADEVICES=y

LISTING A.4: PREEMPT_RT kernel configuration diff

122

Appendix B

Stressor Configurations

1 # S t r e s s −NG −−cpu $ (nproc) \
2 −−cpu−load 25 &
3

4 # htop
5 0[######### 25.7%] Tasks : 10 , 0 thr , 62 kthr ; 1 run . .
6 1[######## 25.0%] Load average : 1 . 4 3 1 . 5 0 1 . 2 1
7 Mem[|*@ 1 9 . 5M/998M] Uptime : 1 day , 0 0 : 2 5 : 2 2
8 Swp[0K/0K]
9

10 [Main] [I /O]
11 PID USER PRI NI VIRT RES SHR S CPU% MEM% TIME+ Command
12 598 root 20 0 12864 2824 1408 S 2 5 . 7 0 . 3 0 : 0 5 . 2 6 s t r e s s − . .
13 599 root 20 0 12864 3080 1536 S 2 5 . 0 0 . 3 0 : 0 5 . 2 6 s t r e s s − . .
14 600 root 20 0 2816 2176 2048 R 0 . 7 0 . 2 0 : 0 0 . 1 6 htop
15 1 root 20 0 2900 1536 1536 S 0 . 0 0 . 2 0 : 0 0 . 3 1 i n i t
16 110 root 20 0 2900 1664 1664 S 0 . 0 0 . 2 0 : 0 0 . 0 1 /sbin/s . .
17 119 root 20 0 2900 1664 1664 S 0 . 0 0 . 2 0 : 0 0 . 0 1 /sbin/k . .
18 130 root 20 0 16024 1884 1280 S 0 . 0 0 . 2 0 : 0 0 . 2 0 /sbin/u . .
19 164 root 20 0 6904 3316 2816 S 0 . 0 0 . 3 0 : 0 0 . 0 0 sshd : / . .
20 168 root 20 0 2900 1920 1792 S 0 . 0 0 . 2 0 : 0 0 . 2 3 −sh
21 596 root 20 0 12864 2944 2688 S 0 . 0 0 . 3 0 : 0 0 . 0 0 s t r e s s − . .

LISTING B.1: Stressor: Stress-NG 25%.

Appendix B. Stressor Configurations 123

1 # S t r e s s −NG −−cpu $ (nproc) \
2 −−cpu−load 75 &
3

4 # htop
5 0[#########################* 77.6%] Tasks : 10 , 0 thr , 63 kthr ; 2 run . .
6 1[####################### 71.7%] Load average : 1 . 6 1 1 . 4 6 1 . 2 2
7 Mem[|*@ 1 9 . 7M/998M] Uptime : 1 day , 0 0 : 2 7 : 2 6
8 Swp[0K/0K]
9

10 [Main] [I /O]
11 PID USER PRI NI VIRT RES SHR S CPU% MEM% TIME+ Command
12 604 root 20 0 12864 2952 1536 R 7 7 . 0 0 . 3 0 : 4 0 . 4 5 s t r e s s − . .
13 605 root 20 0 12864 3080 1536 R 7 2 . 4 0 . 3 0 : 4 0 . 5 2 s t r e s s − . .
14 606 root 20 0 2816 2304 2048 R 0 . 7 0 . 2 0 : 0 0 . 3 9 htop
15 1 root 20 0 2900 1536 1536 S 0 . 0 0 . 2 0 : 0 0 . 3 1 i n i t
16 110 root 20 0 2900 1664 1664 S 0 . 0 0 . 2 0 : 0 0 . 0 1 /sbin/s . .
17 119 root 20 0 2900 1664 1664 S 0 . 0 0 . 2 0 : 0 0 . 0 1 /sbin/k . .
18 130 root 20 0 16024 1884 1280 S 0 . 0 0 . 2 0 : 0 0 . 2 0 /sbin/u . .
19 164 root 20 0 6904 3316 2816 S 0 . 0 0 . 3 0 : 0 0 . 0 0 sshd : / . .
20 168 root 20 0 2900 1920 1792 S 0 . 0 0 . 2 0 : 0 0 . 2 4 −sh
21 602 root 20 0 12864 2944 2688 S 0 . 0 0 . 3 0 : 0 0 . 0 1 s t r e s s − . .

LISTING B.2: Stressor: Stress-NG 75%.

1 # i p e r f 3 −−server &
2

3 # i p e r f 3 −− c l i e n t l o c a l h o s t \
4 −−time 0 &
5

6 # htop
7 0 [# * 8 5 . 5 %] Tasks : 9 , 0 thr , 64 kthr ; 2 runn . .
8 1 [# * 9 0 . 1 %] Load average : 1 . 6 7 0 . 9 0 0 . 9 6
9 Mem[|*@ 1 9 . 5M/998M] Uptime : 1 day , 0 0 : 2 2 : 2 0

10 Swp[0K/0K]
11

12 [Main] [I /O]
13 PID USER PRI NI VIRT RES SHR S CPU% MEM% TIME+ Command
14 590 root 20 0 6020 2816 2432 R 9 2 . 1 0 . 3 0 : 4 5 . 3 4 i p e r f 3 . .
15 589 root 20 0 6020 2560 2176 R 8 5 . 5 0 . 3 0 : 4 1 . 5 4 i p e r f 3 . .
16 591 root 20 0 2816 2304 2048 R 1 . 3 0 . 2 0 : 0 0 . 4 3 htop
17 1 root 20 0 2900 1536 1536 S 0 . 0 0 . 2 0 : 0 0 . 3 1 i n i t
18 110 root 20 0 2900 1664 1664 S 0 . 0 0 . 2 0 : 0 0 . 0 1 /sbin/s . .
19 119 root 20 0 2900 1664 1664 S 0 . 0 0 . 2 0 : 0 0 . 0 1 /sbin/k . .
20 130 root 20 0 16024 1884 1280 S 0 . 0 0 . 2 0 : 0 0 . 2 0 /sbin/u . .
21 164 root 20 0 6904 3316 2816 S 0 . 0 0 . 3 0 : 0 0 . 0 0 sshd : / . .
22 168 root 20 0 2900 1920 1792 S 0 . 0 0 . 2 0 : 0 0 . 2 1 −sh

LISTING B.3: Stressor: Iperf.

Appendix B. Stressor Configurations 124

1 # hackbench −−loops 10000000000 \
2 −−groups 1 \
3 −−fds 1 \
4 −− d a t a s i z e 1 &
5

6 # htop
7 0 [# * 8 7 . 5 %] Tasks : 10 , 0 thr , 64 kthr ; 2 run . .
8 1 [# * 9 0 . 1 %] Load average : 2 . 3 1 1 . 9 3 1 . 2 2
9 Mem[|*@ 1 7 . 4M/998M] Uptime : 1 day , 0 0 : 1 2 : 2 4

10 Swp[0K/0K]
11

12 [Main] [I /O]
13 PID USER PRI NI VIRT RES SHR S CPU% MEM% TIME+ Command
14 578 root 20 0 2000 256 256 R 8 8 . 8 0 . 0 0 : 2 0 . 9 8 hackben . .
15 579 root 20 0 2000 256 256 S 8 8 . 8 0 . 0 0 : 2 0 . 7 5 hackben . .
16 580 root 20 0 2816 2176 2048 R 0 . 7 0 . 2 0 : 0 0 . 2 0 htop
17 1 root 20 0 2900 1536 1536 S 0 . 0 0 . 2 0 : 0 0 . 3 1 i n i t
18 110 root 20 0 2900 1664 1664 S 0 . 0 0 . 2 0 : 0 0 . 0 1 /sbin/s . .
19 119 root 20 0 2900 1664 1664 S 0 . 0 0 . 2 0 : 0 0 . 0 1 /sbin/k . .
20 130 root 20 0 16024 1884 1280 S 0 . 0 0 . 2 0 : 0 0 . 2 0 /sbin/u . .
21 164 root 20 0 6904 3316 2816 S 0 . 0 0 . 3 0 : 0 0 . 0 0 sshd : / . .
22 168 root 20 0 2900 1920 1792 S 0 . 0 0 . 2 0 : 0 0 . 1 7 −sh
23 577 root 20 0 2000 1408 1408 S 0 . 0 0 . 1 0 : 0 0 . 0 0 hackben . .

LISTING B.4: Stressor: Hackbench.

125

Appendix C

Additional Result Data

C.1 Baseline Tests

C.1.1 High-Resolution Timers Verification

1 # c a t /proc/ t i m e r _ l i s t
2 Timer L i s t Version : v0 . 9
3 HRTIMER_MAX_CLOCK_BASES: 8
4 now at 1422130411630 nsecs
5

6 cpu : 0
7 c lock 0 :
8 . base : ac6c6ed5
9 . index : 0

10 . r e s o l u t i o n : 1 nsecs
11 . get_t ime : ktime_get
12 . o f f s e t : 0 nsecs
13 a c t i v e t imers :
14 # 0 : <4206475a > , t ick_sched_t imer , S : 0 1
15 # e x p i r e s a t 1422140000000 −1422140000000 nsecs [in 9588370 to 9588370

nsecs]
16 # 1 : <a6e5a016 > , watchdog_timer_fn , S : 0 1
17 # e x p i r e s a t 1424000000000 −1424000000000 nsecs [in 1869588370 to

1869588370 nsecs]
18 # 2 : <d621cea0 > , sched_clock_pol l , S : 0 1
19 # e x p i r e s a t 1438814043825 −1438814043825 nsecs [in 16683632195 to

16683632195 nsecs]
20 c lock 1 :
21 . base : bc28a660
22 . index : 1
23 . r e s o l u t i o n : 1 nsecs
24 . get_t ime : k t ime_get_rea l
25 . o f f s e t : 0 nsecs
26 a c t i v e t imers :
27 c lock 2 :
28 . base : 6 afd47a5
29 . index : 2
30 . r e s o l u t i o n : 1 nsecs
31 . get_t ime : ktime_get_boott ime
32 . o f f s e t : 0 nsecs
33 a c t i v e t imers :
34 c lock 3 :
35 . base : e3c3f0ba

Appendix C. Additional Result Data 126

36 . index : 3
37 . r e s o l u t i o n : 1 nsecs
38 . get_t ime : k t i m e _ g e t _ c l o c k t a i
39 . o f f s e t : 0 nsecs
40 a c t i v e t imers :
41 c lock 4 :
42 . base : 8 dd9f45c
43 . index : 4
44 . r e s o l u t i o n : 1 nsecs
45 . get_t ime : ktime_get
46 . o f f s e t : 0 nsecs
47 a c t i v e t imers :
48 # 0 : <9c71ed39 > , pm_suspend_timer_fn , S : 0 1
49 # e x p i r e s a t 1423400099080 −1424150099080 nsecs [in 1269687450 to

2019687450 nsecs]
50 c lock 5 :
51 . base : 39 e636eb
52 . index : 5
53 . r e s o l u t i o n : 1 nsecs
54 . get_t ime : k t ime_get_rea l
55 . o f f s e t : 0 nsecs
56 a c t i v e t imers :
57 c lock 6 :
58 . base : 477 a811a
59 . index : 6
60 . r e s o l u t i o n : 1 nsecs
61 . get_t ime : ktime_get_boott ime
62 . o f f s e t : 0 nsecs
63 a c t i v e t imers :
64 c lock 7 :
65 . base : 0 c7038cd
66 . index : 7
67 . r e s o l u t i o n : 1 nsecs
68 . get_t ime : k t i m e _ g e t _ c l o c k t a i
69 . o f f s e t : 0 nsecs
70 a c t i v e t imers :
71 . exp i res_next : 1422140000000 nsecs
72 . h r e s _ a c t i v e : 1
73 . nr_events : 143639
74 . n r _ r e t r i e s : 2
75 . nr_hangs : 0
76 . max_hang_time : 0
77 . nohz_mode : 0
78 . l a s t _ t i c k : 0 nsecs
79 . t i ck_stopped : 0
80 . i d l e _ j i f f i e s : 0
81 . i d l e _ c a l l s : 0
82 . i d l e _ s l e e p s : 0
83 . i d l e _ e n t r y t i m e : 0 nsecs
84 . idle_waketime : 0 nsecs
85 . i d l e _ e x i t t i m e : 0 nsecs
86 . i d l e _ s l e e p t i m e : 0 nsecs
87 . iowai t_s leept ime : 0 nsecs
88 . l a s t _ j i f f i e s : 0
89 . next_t imer : 0
90 . i d l e _ e x p i r e s : 0 nsecs
91 j i f f i e s : 112213
92

Appendix C. Additional Result Data 127

93 cpu : 1
94 c lock 0 :
95 . base : 5aade46d
96 . index : 0
97 . r e s o l u t i o n : 1 nsecs
98 . get_t ime : ktime_get
99 . o f f s e t : 0 nsecs

100 a c t i v e t imers :
101 # 0 : <79b94588 > , t ick_sched_t imer , S : 0 1
102 # e x p i r e s a t 1422140000000 −1422140000000 nsecs [in 9588370 to 9588370

nsecs]
103 # 1 : <8ccb83ac > , sched_rt_period_t imer , S : 0 1
104 # e x p i r e s a t 1423010000000 −1423010000000 nsecs [in 879588370 to 879588370

nsecs]
105 # 2 : <83aeee14 > , watchdog_timer_fn , S : 0 1
106 # e x p i r e s a t 1424010000000 −1424010000000 nsecs [in 1879588370 to

1879588370 nsecs]
107 c lock 1 :
108 . base : b35e28b8
109 . index : 1
110 . r e s o l u t i o n : 1 nsecs
111 . get_t ime : k t ime_get_rea l
112 . o f f s e t : 0 nsecs
113 a c t i v e t imers :
114 c lock 2 :
115 . base : b62ad788
116 . index : 2
117 . r e s o l u t i o n : 1 nsecs
118 . get_t ime : ktime_get_boott ime
119 . o f f s e t : 0 nsecs
120 a c t i v e t imers :
121 c lock 3 :
122 . base : 18 ab1cb4
123 . index : 3
124 . r e s o l u t i o n : 1 nsecs
125 . get_t ime : k t i m e _ g e t _ c l o c k t a i
126 . o f f s e t : 0 nsecs
127 a c t i v e t imers :
128 c lock 4 :
129 . base : b0b0d2f7
130 . index : 4
131 . r e s o l u t i o n : 1 nsecs
132 . get_t ime : ktime_get
133 . o f f s e t : 0 nsecs
134 a c t i v e t imers :
135 c lock 5 :
136 . base : 05308 a4e
137 . index : 5
138 . r e s o l u t i o n : 1 nsecs
139 . get_t ime : k t ime_get_rea l
140 . o f f s e t : 0 nsecs
141 a c t i v e t imers :
142 c lock 6 :
143 . base : 742 ba17c
144 . index : 6
145 . r e s o l u t i o n : 1 nsecs
146 . get_t ime : ktime_get_boott ime
147 . o f f s e t : 0 nsecs

Appendix C. Additional Result Data 128

148 a c t i v e t imers :
149 c lock 7 :
150 . base : f4009b5a
151 . index : 7
152 . r e s o l u t i o n : 1 nsecs
153 . get_t ime : k t i m e _ g e t _ c l o c k t a i
154 . o f f s e t : 0 nsecs
155 a c t i v e t imers :
156 . exp i res_next : 1422140000000 nsecs
157 . h r e s _ a c t i v e : 1
158 . nr_events : 145643
159 . n r _ r e t r i e s : 1
160 . nr_hangs : 0
161 . max_hang_time : 0
162 . nohz_mode : 0
163 . l a s t _ t i c k : 0 nsecs
164 . t i ck_stopped : 0
165 . i d l e _ j i f f i e s : 0
166 . i d l e _ c a l l s : 0
167 . i d l e _ s l e e p s : 0
168 . i d l e _ e n t r y t i m e : 0 nsecs
169 . idle_waketime : 0 nsecs
170 . i d l e _ e x i t t i m e : 0 nsecs
171 . i d l e _ s l e e p t i m e : 0 nsecs
172 . iowai t_s leept ime : 0 nsecs
173 . l a s t _ j i f f i e s : 0
174 . next_t imer : 0
175 . i d l e _ e x p i r e s : 0 nsecs
176 j i f f i e s : 112213
177

178 Tick Device : mode : 1
179 Broadcast device
180 Clock Event Device : t imer
181 max_delta_ns : 21474836451
182 min_delta_ns : 50000
183 mult : 429496730
184 s h i f t : 32
185 mode : 1
186 next_event : 9223372036854775807 nsecs
187 se t_next_event : apbt_next_event
188 shutdown : apbt_shutdown
189 p e r i o d i c : a p b t _ s e t _ p e r i o d i c
190 oneshot : apbt_set_oneshot
191 oneshot stopped : apbt_shutdown
192 resume : apbt_resume
193 event_handler : t i ck_handle_oneshot_broadcast
194

195 r e t r i e s : 0
196

197 t ick_broadcast_mask : 0
198 t ick_broadcast_oneshot_mask : 0
199

200 Tick Device : mode : 1
201 Per CPU device : 0
202 Clock Event Device : l o c a l _ t i m e r
203 max_delta_ns : 18572831531
204 min_delta_ns : 1000
205 mult : 496605594

Appendix C. Additional Result Data 129

206 s h i f t : 31
207 mode : 3
208 next_event : 1422132143100 nsecs
209 se t_next_event : twd_set_next_event
210 shutdown : twd_shutdown
211 p e r i o d i c : twd_set_per iodic
212 oneshot : twd_set_oneshot
213 resume : twd_shutdown
214 event_handler : h r t i m e r _ i n t e r r u p t
215

216 r e t r i e s : 1
217 Wakeup Device : <NULL>
218

219 Tick Device : mode : 1
220 Per CPU device : 1
221 Clock Event Device : l o c a l _ t i m e r
222 max_delta_ns : 18572831531
223 min_delta_ns : 1000
224 mult : 496605594
225 s h i f t : 31
226 mode : 3
227 next_event : 1422140000000 nsecs
228 se t_next_event : twd_set_next_event
229 shutdown : twd_shutdown
230 p e r i o d i c : twd_set_per iodic
231 oneshot : twd_set_oneshot
232 resume : twd_shutdown
233 event_handler : h r t i m e r _ i n t e r r u p t
234

235 r e t r i e s : 1
236 Wakeup Device : <NULL>

LISTING C.1: Output of /proc/timerlist on 6.6.14-rt21.

Appendix C. Additional Result Data 130

C.1.2 Cyclictest

Table C.1: Cyclictest results, no load.

Preemption
Model Kernel Policy Nice/

Prio
Latency (µs)

Min Avg Max

No Preemption

6.6.14

OTHER 0 30 60 142

OTHER -20 15 60 145

FIFO 40 8 9 97

FIFO 60 8 9 40

Preemptible
Kernel (Low

Latency Desktop)

OTHER 0 39 61 118

OTHER -20 19 62 134

FIFO 40 9 10 46

FIFO 60 9 10 138

Fully Preemptible
Kernel

(Real-Time)
6.6.14-rt21

OTHER 0 32 70 305

OTHER -20 36 71 323

FIFO 40 8 9 115

FIFO 60 8 9 92

Table C.2: Cyclictest results, Stress-NG 25%.

Preemption
Model Kernel Policy Nice/

Prio
Latency (µs)

Min Avg Max

No Preemption

6.6.14

OTHER 0 18 67 11 442

OTHER -20 16 63 11 021

FIFO 40 8 11 123

FIFO 60 8 11 100

Preemptible
Kernel (Low

Latency Desktop)

OTHER 0 18 68 11 381

OTHER -20 18 63 11 023

FIFO 40 9 12 105

FIFO 60 9 11 200

Fully Preemptible
Kernel

(Real-Time)
6.6.14-rt21

OTHER 0 17 77 10 600

OTHER -20 18 73 11 358

FIFO 40 8 11 128

FIFO 60 8 11 51

Appendix C. Additional Result Data 131

Table C.3: Cyclictest results, Stress-NG 75%.

Preemption
Model Kernel Policy Nice/

Prio
Latency (µs)

Min Avg Max

No Preemption

6.6.14

OTHER 0 18 81 11 217

OTHER -20 15 69 10 945

FIFO 40 9 14 120

FIFO 60 8 14 208

Preemptible
Kernel (Low

Latency Desktop)

OTHER 0 18 68 11 381

OTHER -20 18 63 11 023

FIFO 40 9 12 105

FIFO 60 9 11 200

Fully Preemptible
Kernel

(Real-Time)
6.6.14-rt21

OTHER 0 17 90 11 073

OTHER -20 18 80 10 997

FIFO 40 8 14 142

FIFO 60 8 14 114

Table C.4: Cyclictest results with Iperf load.

Preemption
Model Kernel Policy Nice/

Prio
Latency (µs)

Min Avg Max

No Preemption

6.6.14

OTHER 0 23 531 11 966

OTHER -20 26 376 11 546

FIFO 40 7 213 922

FIFO 60 5 230 902

Preemptible
Kernel (Low

Latency Desktop)

OTHER 0 35 168 12 613

OTHER -20 31 106 12 264

FIFO 40 19 54 277

FIFO 60 20 52 345

Fully Preemptible
Kernel

(Real-Time)
6.6.14-rt21

OTHER 0 27 180 15 017

OTHER -20 23 139 12 718

FIFO 40 16 54 351

FIFO 60 13 54 116

Appendix C. Additional Result Data 132

Table C.5: Cyclictest results, 800 kernel.

Preemption Model KMemleak
Latency (µs)

Min Avg Max

No Preemption
Disabled 11 14 158

Enabled 10 13 39 771

Preemptible Kernel (Low
Latency Desktop) Enabled 10 14 354

Fully Preemptible Kernel
(Real-Time) Enabled 11 14 352

0

2,000

4,000

6,000

8,000

10,000

12,000

La
te

nc
y

(μ
s)

No Preemption Preemptible Preempt RT

OTHER

FIF
O-40

FIF
O-60

OTHER

FIF
O-40

FIF
O-60

OTHER

FIF
O-40

FIF
O-60

Max
Avg
Min

Latency

(a) Stress-NG 75%.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

La
te

nc
y

(μ
s)

No Preemption Preemptible Preempt RT

OTHER

FIF
O-40

FIF
O-60

OTHER

FIF
O-40

FIF
O-60

OTHER

FIF
O-40

FIF
O-60

Max
Avg
Min

Latency

(b) Iperf.

FIGURE C.1: Cyclictest results with Stress-NG 75% and Iperf.

Appendix C. Additional Result Data 133

C.1.3 Throughput Test

Table C.6: Throughput test initial results.

Workload Kernel Preemption Mode
Run time (s)

usr sys total

Stress-NG

6.6.14

No Preemption 664.88 62.79 727.78

Preemptible Kernel (Low
Latency Desktop) 664.53 68.62 733.24

6.6.14-rt21 Fully Preemptible Kernel
(Real-Time) 644.75 77.53 743.11

Hackbench

6.6.14

No Preemption 74.77 1515.95 1590.72

Preemptible Kernel (Low
Latency Desktop) 79.07 1553.90 1632.97

6.6.14-rt21 Fully Preemptible Kernel
(Real-Time) 110.90 3146.64 3257.54

Table C.7: Throughput results, Hackbench

Workload Kernel Preemption Mode
Run time (s)

usr sys total

Unix
Sockets

6.6.14

No Preemption 74.77 1515.95 1590.72

Preemptible Kernel (Low
Latency Desktop) 79.07 1553.90 1632.97

6.6.14-rt21 Fully Preemptible Kernel
(Real-Time) 110.9 3146.64 3257.54

Continued on next page

Appendix C. Additional Result Data 134

Table C.7: Throughput results, Hackbench (Continued)

Pipes

6.6.14

No Preemption 64.09 1007.35 1071.44

Preemptible Kernel (Low
Latency Desktop) 75.91 1263.89 1339.80

6.6.14-rt21 Fully Preemptible Kernel
(Real-Time) 238.88 3146.64 3385.52

Table C.8: Throughput results, Hackbench SCHED_FIFO

Workload Kernel Preemption Mode
Run time (s)

usr sys total

Unix
Sockets

6.6.14

No Preemption 7.52 145.09 152.61

Preemptible Kernel (Low
Latency Desktop) 7.33 149.01 156.34

6.6.14-rt21 Fully Preemptible Kernel
(Real-Time) 7.41 170.92 178.33

Pipes

6.6.14

No Preemption 3.37 99.28 102.65

Preemptible Kernel (Low
Latency Desktop) 8.29 99.32 107.61

6.6.14-rt21 Fully Preemptible Kernel
(Real-Time) 55.13 2623.17 2678.30

Appendix C. Additional Result Data 135

Table C.9: Throughput test Iperf and p7zip.

Workload Kernel Preemption Mode
Run time (s)

usr sys total

Iperf

6.6.14

No Preemption 2.57 181.13 183.70

Preemptible Kernel (Low
Latency Desktop) 2.50 186.01 188.51

6.6.14-rt21 Fully Preemptible Kernel
(Real-Time) 3.67 224.52 228.19

p7zip

6.6.14

No Preemption 543.99 3.41 547.40

Preemptible Kernel (Low
Latency Desktop) 544.61 3.79 548.40

6.6.14-rt21 Fully Preemptible Kernel
(Real-Time) 545.10 3.76 548.86

Appendix C. Additional Result Data 136

C.1.4 Preemption Test

Table C.10: Preemption test results.

Preemption Model Kernel Policy Nice/
Prio

Context Switches Run-
Time
(ms)Vol Invol

No Preemption

6.6.14

OTHER 0 600 1467 600 542

OTHER -20 600 1017 600 543

FIFO 40 600 0 600 513

FIFO 60 600 0 600 513

Preemptible
Kernel (Low

Latency Desktop)

OTHER 0 600 582 600 543

OTHER -20 600 574 600 543

FIFO 40 600 0 600 513

FIFO 60 600 0 600 513

Fully Preemptible
Kernel (Real-Time)

6.6.14-
rt21

OTHER 0 600 7669 600 552

OTHER -20 600 8300 600 513

FIFO 40 600 2 60 013

FIFO 60 600 0 600 513

Table C.11: Preemption test results, with load.

Preemption Model Kernel Policy Nice/
Prio

Context Switches Run-
Time
(ms)Vol Invol

No Preemption

6.6.14

OTHER 0 600 13 449 604 359

OTHER -20 600 1678 600 923

FIFO 40 600 4 600 656

FIFO 60 600 1 600 654

Preemptible
Kernel (Low

Latency Desktop)

OTHER 0 600 13 775 602 260

OTHER -20 600 1480 600 963

FIFO 40 600 2 600 567

FIFO 60 600 1 600 570

Fully Preemptible
Kernel (Real-Time)

6.6.14-
rt21

OTHER 0 600 15 038 602 863

OTHER -20 600 7637 600 769

FIFO 40 600 27 600 571

FIFO 60 600 24 600 571

Appendix C. Additional Result Data 137

Table C.12: Migrations detected during throughput test

Preemption Model Kernel
Migrations

PreemptionTest Iperf

No Preemption
6.6.14

0 320

Preemptible Kernel
(Low Latency Desktop) 0 114

Fully Preemptible
Kernel (Real-Time) 6.6.14-rt21 20 101

Appendix C. Additional Result Data 138

C.1.5 Memory Lock Test

Table C.13: Page fault test results.

Memory
Type Kernel Preemption Model

Latency ns

Avg Max

Stack
6.6.14

No Preemption 6.53 203

Preemptible Kernel (Low
Latency Desktop) 7.40 154

6.6.14-rt21 Fully Preemptible Kernel
(Real-Time) 5.56 167

Static
6.6.14

No Preemption 6.48 154

Preemptible Kernel (Low
Latency Desktop) 7.30 172

6.6.14-rt21 Fully Preemptible Kernel
(Real-Time) 5.50 172

Heap
6.6.14

No Preemption 6.49 185

Preemptible Kernel (Low
Latency Desktop) 7.40 367

6.6.14-rt21 Fully Preemptible Kernel
(Real-Time) 5.50 156

Appendix C. Additional Result Data 139

C.2 Target System Tests

C.2.1 Dynamic Allocation

0

5

10

Ti
m

e
(μ

s)

Unlocked Locked

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(a) No load.

0

10

20

30

40

50

Ti
m

e
(μ

s)

Unlocked Locked

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(b) Stress-NG 25%.

0

20

40

60

80

Ti
m

e
(μ

s)

Unlocked Locked

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(c) Stress-NG 75%.

0

20

40

60

80

100

Ti
m

e
(μ

s)

Unlocked Locked

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(d) Iperf.

FIGURE C.2: Duration of writing to dynamically allocated memory

Appendix C. Additional Result Data 140

0

2

4

6

Ti
m

e
(μ

s)
Unlocked Locked

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(a) No load.

0

2

4

6

8

Ti
m

e
(μ

s)

Unlocked Locked

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(b) Stress-NG 25%.

0

20

40

60

80

Ti
m

e
(μ

s)

Unlocked Locked

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(c) Stress-NG 75%.

0

20

40

60

80

100

Ti
m

e
(μ

s)

Unlocked Locked

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

No P
ree

mpti
on

Pree
mpti

ble

Pree
mpt

RT

Max
Avg

Time

(d) Iperf.

FIGURE C.3: Duration of freeing dynamically allocated memory

Appendix C. Additional Result Data 141

C.2.2 Periodic Thread Mechanisms

Table C.14: Periodic execution test results.

Kernel Ext.
Load Mechanism

CPU
Load
(%)

Hist.
Over
flows

Latency (µs)

Min Avg Max

6.6.14 25%

Setitimer 4.20 116 −998 10.52 11 577

Nanosleep 1.37 83 −984 0.04 9875

Setitimer
SCHED_FIFO on

Thread
4.39 85 −998 8.88 11 308

CV with timeout 2.43 82 −972 0.03 10 071

Setitimer
SCHED_FIFO on
Thread & Signal

3.92 0 −139 0.11 164

Nanosleep
SCHED_FIFO 1.39 0 −37 0.06 67

SCHED_DEADLINE 1.00 0 −146 0.06 139

CV with timeout
SCHED_FIFO 2.47 0 −165 0.05 178

Continued on next page

Appendix C. Additional Result Data 142

Table C.14: Periodic execution test results. (Continued)

6.6.14 75%

Setitimer 5.00 485 −998 53.85 13 335

Nanosleep 1.91 207 −984 0.056 13 861

Setitimer
SCHED_FIFO on

Thread
4.91 319 −994 30.81 10 713

CV with timeout 3.14 275 −972 0.06 11 673

Setitimer
SCHED_FIFO on
Thread & Signal

4.96 0 −157 0.08 168

Nanosleep
SCHED_FIFO 1.91 0 −142 0.05 130

SCHED_DEADLINE 2.00 0 −71 0.05 67

CV with timeout
SCHED_FIFO 2.47 0 −165 0.05 178

Continued on next page

Appendix C. Additional Result Data 143

Table C.14: Periodic execution test results. (Continued)

6.6.14-rt21 25%

Setitimer 5.86 82 −998 6.73 17 716

Nanosleep 2.25 85 −978 0.04 9800

Setitimer
SCHED_FIFO on

Thread
6.38 69 −992 7.01 10 247

CV with timeout 2.81 93 −973 0.47 9900

Setitimer
SCHED_FIFO on
Thread & Signal

6.02 0 −123 0.08 150

Nanosleep
SCHED_FIFO 2.11 0 −179 0.05 175

SCHED_DEADLINE 1.02 0 −123 0.05 138

CV with timeout
SCHED_FIFO 2.69 0 −171 0.05 202

Continued on next page

Appendix C. Additional Result Data 144

Table C.14: Periodic execution test results. (Continued)

6.6.14-rt21 75%

Setitimer 6.73 604 −998 58.04 20 529

Nanosleep 2.79 260 −978 0.04 12 377

Setitimer
SCHED_FIFO on

Thread
6.67 345 −901 38.16 11 200

CV with timeout 3.24 285 −972 0.05 10 861

Setitimer
SCHED_FIFO on
Thread & Signal

6.79 0 −172 0.06 174

Nanosleep
SCHED_FIFO 2.58 0 −159 0.04 154

SCHED_DEADLINE 1.41 0 −88 0.048 99

CV with timeout
SCHED_FIFO 3.18 0 −96 0.46 109

Appendix C. Additional Result Data 145

(a) Setitimer. (b) Nanosleep.

(c) Setitimer SCHED_FIFO on thread. (d) CV with timeout.

FIGURE C.4: Latency distribution of periodic mechanisms with SCHED_OTHER and 25%
load.

Appendix C. Additional Result Data 146

(a) Setitimer. (b) Nanosleep.

(c) Setitimer SCHED_FIFO on thread. (d) CV with timeout.

FIGURE C.5: Latency distribution of periodic mechanisms with SCHED_OTHER and 75%
load.

Appendix C. Additional Result Data 147

(a) Setitimer. (b) Nanosleep.

(c) SCHED_DEADLINE. (d) CV with timeout.

FIGURE C.6: Latency distribution of periodic mechanisms with SCHED_FIFO and 75% load.

Appendix C. Additional Result Data 148

(a) Setitimer. (b) Nanosleep.

(c) Setitimer SCHED_FIFO on thread. (d) CV with timeout.

FIGURE C.7: Latency distribution of periodic mechanisms with SCHED_OTHER, 25% load
and PREEMPT_RT.

Appendix C. Additional Result Data 149

(a) Setitimer. (b) Nanosleep.

(c) SCHED_DEADLINE. (d) CV with timeout.

FIGURE C.8: Latency distribution of periodic mechanisms with SCHED_FIFO, 25% load and
PREEMPT_RT.

Appendix C. Additional Result Data 150

(a) Setitimer. (b) Nanosleep.

(c) Setitimer SCHED_FIFO on thread. (d) CV with timeout.

FIGURE C.9: Latency distribution of periodic mechanisms with SCHED_OTHER, 75% load
and PREEMPT_RT.

Appendix C. Additional Result Data 151

(a) Setitimer SCHED_FIFO on thread and signal. (b) Nanosleep.

(c) SCHED_DEADLINE. (d) CV with timeout

FIGURE C.10: Latency distribution of periodic mechanisms with SCHED_FIFO, 75% load and
PREEMPT_RT.

Appendix C. Additional Result Data 152

C.2.3 Shared Memory Test

Table C.15: Shared memory test results, 4 KiB packets.

Preemption
Model

Policy Schedule

Latency (µs) Exec. Time (µs) Invol.
Pre

empt

Max
Buf.
Size
(KiB)

CPU
Load
(%)Avg Max Avg Max

No
Preemption

OTHER

Periodic 66 589 134 532 1 12.32 7.59

Aperiodic 66 91 184 257 0 10.70 7.54

FIFO

Periodic 16 50 135 240 0 10.54 7.69

Aperiodic 15 41 179 239 0 10.58 7.54

Preemptible
Kernel
(Low

Latency
Desktop)

OTHER

Periodic 67 985 135 348 6 18.95 7.74

Aperiodic 67 95 184 267 0 10.71 7.58

FIFO

Periodic 15 153 135 334 0 10.55 7.67

Aperiodic 16 50 179 242 0 10.57 7.59

Fully Pre-
emptible
Kernel

(Real-Time)

OTHER

Periodic 81 1296 135 389 123 15.82 7.61

Aperiodic 82 830 187 990 1756 12.40 7.50

FIFO

Periodic 15 35 134 225 0 10.49 7.59

Aperiodic 15 56 179 259 1 10.61 7.53

Appendix C. Additional Result Data 153

Table C.16: Shared memory test results, 4 KiB packets Stress-NG 25%.

Preemption
Model

Policy Schedule

Latency (µs) Exec. Time (µs) Invol.
Pre

empt

Max
Buf.
Size
(KiB)

CPU
Load
(%)Avg Max Avg Max

No Pre-
emption

OTHER

Periodic 71 10 951 135 1038 10 35.84 7.63

Aperiodic 73 11 533 185 1837 114 38.50 7.52

FIFO

Periodic 16 137 136 350 1 10.71 8.04

Aperiodic 16 162 180 374 3 10.75 7.67

Preemptible
Kernel
(Low

Latency
Desktop)

OTHER

Periodic 74 10 643 167 1039 27 36.83 7.74

Aperiodic 76 11 217 187 1812 119 37.93 7.61

FIFO

Periodic 17 76 136 259 0 10.55 7.83

Aperiodic 17 160 181 362 1 10.72 7.71

Fully Pre-
emptible
Kernel
(Real-
Time)

OTHER

Periodic 86 11 188 138 10 309 10 014 56.43 7.73

Aperiodic 89 11 462 189 11 905 2063 37.50 7.52

FIFO

Periodic 16 78 135 245 0 10.56 7.74

Aperiodic 17 100 180 293 4 10.68 7.67

Appendix C. Additional Result Data 154

Table C.17: Shared memory test results, 4 KiB packets Stress-NG 75%.

Preemption
Model

Policy Schedule

Latency (µs) Exec. Time (µs) Invol.
Pre

empt

Max
Buf.
Size
(KiB)

CPU
Load
(%)Avg Max Avg Max

No Pre-
emption

OTHER

Periodic 199 10 776 154 1048 79 51.88 7.92

Aperiodic 231 11 637 240 11 921 621 40.07 7.74

FIFO

Periodic 18 142 136 255 4 10.71 7.95

Aperiodic 18 174 182 334 6 10.80 7.84

Preemptible
Kernel
(Low

Latency
Desktop)

OTHER

Periodic 208 11 144 156 9926 224 46.85 7.97

Aperiodic 232 14 588 240 11 672 651 47.20 7.77

FIFO

Periodic 19 200 138 439 5 10.56 8.12

Aperiodic 19 137 182 329 5 10.66 7.91

Fully Pre-
emptible
Kernel
(Real-
Time)

OTHER

Periodic 211 11 852 153 9437 413 39.78 7.77

Aperiodic 235 13 630 238 12 332 2681 42.04 7.57

FIFO

Periodic 18 82 138 258 4 10.62 7.97

Aperiodic 20 102 182 306 7 10.70 7.88

Appendix C. Additional Result Data 155

Table C.18: Shared memory test results, 4 KiB packets with Iperf.

Preemption
Model

Policy Schedule

Latency (µs) Exec. Time (µs) Invol.
Pre

empt

Max
Buf.
Size
(KiB)

CPU
Load
(%)Avg Max Avg Max

No Pre-
emption

OTHER

Periodic 309 2235 150 1267 4368 28.26 9.09

Aperiodic 177 2045 219 1748 23 407 14.62 8.89

FIFO

Periodic 20 151 137 286 373 10.66 8.09

Aperiodic 22 160 159 353 381 11.58 7.55

Preemptible
Kernel
(Low

Latency
Desktop)

OTHER

Periodic 244 2329 150 2359 6328 38.78 9.07

Aperiodic 171 1927 219 2796 22 348 13.99 8.50

FIFO

Periodic 20 116 140 294 226 10.54 8.30

Aperiodic 23 169 189 408 6002 10.79 8.41

Fully Pre-
emptible
Kernel
(Real-
Time)

OTHER

Periodic 253 4614 172 3322 49 716 48.34 8.48

Aperiodic 368 3808 293 3667 112 715 18.83 8.18

FIFO

Periodic 28 125 142 295 10 958 10.64 8.79

Aperiodic 30 126 194 342 7058 10.78 8.76

Appendix C. Additional Result Data 156

Table C.19: Shared memory test results, 512 B packets.

Preemption
Model

Policy Schedule

Latency (µs) Exec. Time (µs) Invol.
Pre

empt

Max
Buf.
Size
(KiB)

CPU
Load
(%)Avg Max Avg Max

No
Preemption

OTHER

Periodic 65 971 370 1674 1 10.96 19.39

Aperiodic 66 88 390 757 1 7.29 19.37

FIFO

Periodic 14 103 372 657 0 6.66 19.43

Aperiodic 14 39 375 694 0 7.16 19.38

Preemptible
Kernel
(Low

Latency
Desktop)

OTHER

Periodic 66 1106 373 2263 65 13.98 19.57

Aperiodic 67 201 390 872 4 7.55 19.42

FIFO

Periodic 15 127 371 640 0 6.39 19.43

Aperiodic 15 140 375 867 0 7.34 19.40

Fully Pre-
emptible
Kernel

(Real-Time)

OTHER

Periodic 80 725 371 2579 163 15.21 19.36

Aperiodic 81 811 395 1875 4840 9.03 19.33

FIFO

Periodic 14 33 372 480 0 6.34 19.44

Aperiodic 15 57 373 707 6 7.20 19.37

Appendix C. Additional Result Data 157

Table C.20: Shared memory test results, 512 B packets with Stress-NG 25%.

Preemption
Model

Policy Schedule

Latency (µs) Exec. Time (µs) Invol.
Pre

empt

Max
Buf.
Size
(KiB)

CPU
Load
(%)Avg Max Avg Max

No Pre-
emption

OTHER

Periodic 74 11 014 375 6737 34 34.19 19.40

Aperiodic 70 12 656 397 8184 37 39.38 19.40

FIFO

Periodic 15 137 372 623 68 6.75 19.47

Aperiodic 16 131 375 842 13 7.38 19.45

Preemptible
Kernel
(Low

Latency
Desktop)

OTHER

Periodic 69 10 576 372 6582 2 33.61 19.50

Aperiodic 72 11 143 400 7248 31 35.46 19.44

FIFO

Periodic 16 124 373 675 34 6.51 19.63

Aperiodic 16 96 375 888 11 7.30 19.47

Fully Pre-
emptible
Kernel
(Real-
Time)

OTHER

Periodic 102 13 922 383 16 328 532 41.29 19.36

Aperiodic 102 12 169 437 16 788 6544 37.97 19.34

FIFO

Periodic 15 70 371 567 5 6.45 19.52

Aperiodic 16 96 375 811 16 7.27 19.44

Appendix C. Additional Result Data 158

Table C.21: Shared memory test results, 512 B packets with Stress-NG 75%.

Preemption
Model

Policy Schedule

Latency (µs) Exec. Time (µs) Invol.
Pre

empt

Max
Buf.
Size
(KiB)

CPU
Load
(%)Avg Max Avg Max

No Pre-
emption

OTHER

Periodic 183 13 799 437 10 471 255 41.19 19.36

Aperiodic 278 14 850 767 18 158 754 44.91 19.34

FIFO

Periodic 17 179 373 618 15 6.76 19.73

Aperiodic 18 167 377 837 7 7.45 19.56

Preemptible
Kernel
(Low

Latency
Desktop)

OTHER

Periodic 154 14 483 421 16 434 466 41.68 19.47

Aperiodic 268 18 366 754 27 612 700 54.05 19.40

FIFO

Periodic 18 95 371 511 9 6.43 19.70

Aperiodic 19 115 377 816 12 7.36 19.61

Fully Pre-
emptible
Kernel
(Real-
Time)

OTHER

Periodic 135 14 458 406 16 488 15 571 42.62 19.34

Aperiodic 203 14 166 644 18 051 6391 43.26 19.34

FIFO

Periodic 17 82 371 517 6 6.47 19.64

Aperiodic 18 96 377 822 32 7.33 19.58

Appendix C. Additional Result Data 159

Table C.22: Shared memory test results, 512 B packets with Iperf.

Preemption
Model

Policy Schedule

Latency (µs) Exec. Time (µs) Invol.
Pre

empt

Max
Buf.
Size
(KiB)

CPU
Load
(%)Avg Max Avg Max

No Pre-
emption

OTHER

Periodic 108 3634 450 4226 263 461 15.25 20.43

Aperiodic 66 670 389 961 0 8.53 19.35

FIFO

Periodic 20 199 375 784 801 6.73 19.95

Aperiodic 22 139 382 828 524 7.42 19.89

Preemptible
Kernel
(Low

Latency
Desktop)

OTHER

Periodic 85 3520 408 4549 101 567 15.04 20.50

Aperiodic 121 3564 520 4971 151 719 16.04 19.92

FIFO

Periodic 19 119 375 675 234 6.59 20.00

Aperiodic 22 119 384 869 6158 7.38 19.94

Fully Pre-
emptible
Kernel
(Real-
Time)

OTHER

Periodic 136 7156 417 12 826 53 636 22.90 19.75

Aperiodic 252 5987 734 13 306 131 000 23.51 19.66

FIFO

Periodic 21 123 374 567 77 6.60 20.07

Aperiodic 25 133 385 818 63 7.37 19.98

Appendix C. Additional Result Data 160

C.2.4 Event-Driven vs Polled Kthread

Table C.23: Event-Driven vs polled kernel worker.

Event Frequency Scheme
CPU Load (%)

US
Worker

KS
Worker Total

0
Polled — 3.63 3.63

Event-Driven — 0.00 0.00

1 Hz
Polled 0.02 3.72 3.74

Event-Driven 0.02 0.00 0.02

10 Hz
Polled 1.04 3.79 4.83

Event-Driven 0.88 0.21 1.09

1 kHz
Polled 8.71 6.13 14.84

Event-Driven 8.70 1.78 10.48

10 kHz
Polled 28.89 11.56 40.45

Event-Driven 43.35 6.86 50.21

Table C.24: Event-driven vs polled kernel worker, with Stress-NG 25%.

Event Frequency Scheme
CPU Load (%)

US
Worker

KS
Worker Total

0
Polled — 3.72 3.72

Event-Driven — 0.00 0.00

1 Hz
Polled 0.03 3.81 3.84

Event-Driven 0.03 0.00 0.03

10 Hz
Polled 1.12 3.79 4.91

Event-Driven 0.97 0.21 1.18

1 kHz
Polled 8.76 6.35 15.11

Event-Driven 8.69 1.91 10.60

10 kHz
Polled 28.48 12.11 40.59

Event-Driven 37.92 8.67 46.59

Appendix C. Additional Result Data 161

C.2.5 Generic Netlink Test

Table C.25: Generic Netlink test results with SCHED_FIFO on kernel thread, no load.

Preemption Model
Ask Time (µs) Read Time (µs) Write Time (µs)
Avg Max Avg Max Avg Max

No Preemption 29 80 68 219 59 74

Preemptible Kernel
(Low Latency

Desktop)
31 76 72 170 60 74

Fully Preemptible
Kernel (Real-Time) 36 86 67 173 63 77

Table C.26: Generic Netlink test results with SCHED_FIFO on kernel thread, with
Stress-NG 25%.

Preemption Model
Ask Time (µs) Read Time (µs) Write Time (µs)
Avg Max Avg Max Avg Max

No Preemption 36 157 76 221 60 104

Preemptible Kernel
(Low Latency

Desktop)
38 152 79 216 62 92

Fully Preemptible
Kernel (Real-Time) 43 150 76 187 65 95

Table C.27: Generic Netlink test results with SCHED_FIFO on kernel thread, with
Stress-NG 75%.

Preemption Model
Ask Time (µs) Read Time (µs) Write Time (µs)
Avg Max Avg Max Avg Max

No Preemption 49 169 92 213 64 90

Preemptible Kernel
(Low Latency

Desktop)
50 162 94 196 66 97

Continued on next page

Appendix C. Additional Result Data 162

Table C.27: Generic Netlink test results with SCHED_FIFO on kernel thread, with
Stress-NG 75%. (Continued)

Fully Preemptible
Kernel (Real-Time) 57 171 89 177 68 97

Table C.28: Generic Netlink test results with SCHED_FIFO on kernel thread, with
Iperf.

Preemption Model
Ask Time (µs) Read Time (µs) Write Time (µs)
Avg Max Avg Max Avg Max

No Preemption 74 118 140 220 72 92

Preemptible Kernel
(Low Latency

Desktop)
66 106 108 228 73 91

Fully Preemptible
Kernel (Real-Time) 81 142 114 181 75 130

Appendix C. Additional Result Data 163

C.2.6 Full Test RX

Table C.29: Full test RX, no load.

Preemption
Model

Policy Schedule

Exec. Time (µs) CPU
Load
(%)

Over-
runs

Max
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER
Periodic 427 551 22.50 0 7.88

Aperiodic 678 1148 23.43 0 8.36

FIFO
Periodic 427 546 22.47 0 7.98

Aperiodic 653 1142 23.38 0 8.27

Preemptible
Kernel (Low

Latency
Desktop)

OTHER
Periodic 428 581 22.58 0 7.94

Aperiodic 684 1183 23.56 0 8.39

FIFO
Periodic 427 669 22.49 0 7.91

Aperiodic 656 1149 23.47 0 8.23

Fully
Preemptible

Kernel
(Real-Time)

OTHER
Periodic 434 1597 22.70 0 10.41

Aperiodic 708 4048 23.78 0 11.71

FIFO
Periodic 434 591 22.82 0 7.92

Aperiodic 674 1195 23.86 0 8.27

Table C.30: Full test RX, with Stress-NG 25%.

Preemption
Model

Policy Schedule

Exec. Time (µs) CPU
Load
(%)

Over-
runs

Max
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER
Periodic 434 1996 22.71 0 34.94

Aperiodic 703 29 882 23.50 0 42.91

FIFO
Periodic 431 707 22.79 0 8.06

Aperiodic 658 1411 23.52 0 8.44

Preemptible
Kernel (Low

Latency
Desktop)

OTHER
Periodic 436 912 22.81 0 35.21

Aperiodic 707 48 607 23.68 0 42.05

FIFO
Periodic 658 432 22.82 0 8.00

Aperiodic 676 1319 23.95 0 8.50

Continued on next page

Appendix C. Additional Result Data 164

Table C.30: Full test RX, with Stress-NG 25%. (Continued)

Fully
Preemptible

Kernel
(Real-Time)

OTHER
Periodic 446 10 791 23.10 0 53.52

Aperiodic 821 68 779 24.00 0 45.48

FIFO
Periodic 438 658 23.16 0 8.03

Aperiodic 686 1709 24.14 0 8.50

Table C.31: Full test RX, with Stress-NG 75%.

Preemption
Model

Policy Schedule

Exec. Time (µs) CPU
Load
(%)

Over-
runs

Max
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER
Periodic 452 10 526 22.97 0 55.79

Aperiodic 831 48 836 23.67 0 46.20

FIFO
Periodic 434 699 23.05 0 8.12

Aperiodic 672 1639 23.88 0 8.52

Preemptible
Kernel (Low

Latency
Desktop)

OTHER
Periodic 459 13 184 23.24 0 56.18

Aperiodic 810 49 334 23.78 0 45.72

FIFO
Periodic 438 666 23.30 0 8.00

Aperiodic 679 1682 24.05 0 8.52

Fully
Preemptible

Kernel
(Real-Time)

OTHER
Periodic 455 20 883 23.32 0 55.32

Aperiodic 870 69 061 24.24 0 57.74

FIFO
Periodic 444 786 23.56 0 8.10

Aperiodic 698 1711 24.44 0 8.50

Table C.32: Full test RX, with Iperf.

Preemption
Model

Policy Schedule

Exec. Time (µs) CPU
Load
(%)

Over-
runs

Max
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER
Periodic 586 2807 25.54 0 19.45

Aperiodic 826 11 102 25.92 0 24.46

FIFO
Periodic 482 737 26.16 0 8.10

Aperiodic 798 2018 26.55 0 8.60

Continued on next page

Appendix C. Additional Result Data 165

Table C.32: Full test RX, with Iperf. (Continued)

Preemptible
Kernel (Low

Latency
Desktop)

OTHER
Periodic 558 3031 26.10 0 18.48

Aperiodic 684 1238 23.57 0 8.40

FIFO
Periodic 486 801 26.49 0 7.95

Aperiodic 786 1792 26.27 0 8.46

Fully
Preemptible

Kernel
(Real-Time)

OTHER
Periodic 498 3165 26.25 0 26.54

Aperiodic 884 7114 26.80 0 20.66

FIFO
Periodic 496 835 26.93 0 8.20

Aperiodic 839 1760 27.26 0 8.59

Table C.33: Full test RX, increased overhead, no load.

Preemption
Model

Policy Schedule

Exec. Time (µs) CPU
Load
(%)

Over-
runs

Max
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER
Periodic 762 1513 39.17 0 10.97

Aperiodic 2139 4458 38.18 0 8.35

FIFO
Periodic 759 982 38.99 0 9.34

Aperiodic 2070 3560 38.20 0 8.19

Preemptible
Kernel (Low

Latency
Desktop)

OTHER
Periodic 760 955 39.15 0 11.95

Aperiodic 2145 4567 38.21 0 8.41

FIFO
Periodic 759 1033 39.04 0 9.16

Aperiodic 2073 3610 38.21 0 8.24

Fully
Preemptible

Kernel
(Real-Time)

OTHER
Periodic 767 2546 39.22 0 13.07

Aperiodic 2210 8009 38.32 0 10.55

FIFO
Periodic 762 923 39.17 0 7.84

Aperiodic 2111 4463 38.40 0 8.27

Appendix C. Additional Result Data 166

Table C.34: Full test RX, increased overhead, with Stress-NG 25%.

Preemption
Model

Policy Schedule

Exec. Time (µs) CPU
Load
(%)

Over-
runs

Max
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER

Periodic 758 10 848 38.60 100 128.00

Aperiodic 2994 424 286 37.89 40 128.00

FIFO

Periodic 767 1149 39.49 0 13.89

Aperiodic 2097 4797 38.35 0 8.54

Preemptible
Kernel (Low

Latency
Desktop)

OTHER

Periodic 764 2346 38.84 144 128.00

Aperiodic 3245 335 640 37.89 120 128.00

FIFO

Periodic 764 1031 39.44 0 16.09

Aperiodic 2141 5709 38.59 0 8.58

Fully
Preemptible

Kernel
(Real-Time)

OTHER

Periodic 791 11 002 38.81 232 128.00

Aperiodic 6840 599 907 37.80 288 128.00

FIFO

Periodic 770 1003 39.68 0 15.98

Aperiodic 2144 5640 38.57 0 8.50

Appendix C. Additional Result Data 167

Table C.35: Full test RX, increased overhead, with Iperf.

Preemption
Model

Policy Schedule

Exec. Time (µs) CPU
Load
(%)

Over-
runs

Max
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER

Periodic 795 2822 40.90 0 25.99

Aperiodic 2498 23 321 39.61 0 22.17

FIFO

Periodic 792 1094 41.28 0 17.14

Aperiodic 2430 5588 39.88 0 8.54

Preemptible
Kernel (Low

Latency
Desktop)

OTHER

Periodic 809 2932 41.06 8 126.33

Aperiodic 2493 23 353 39.61 0 22.05

FIFO

Periodic 798 2154 41.62 0 13.84

Aperiodic 2432 9342 39.89 0 9.82

Fully
Preemptible

Kernel
(Real-Time)

OTHER

Periodic 969 4703 21.81 23 424 128.00

Aperiodic 3631 428 014 40.08 72 128.00

FIFO

Periodic 841 1113 41.71 8 128.00

Aperiodic 2700 5798 40.80 0 8.73

Appendix C. Additional Result Data 168

C.2.7 Full Test TX

Table C.36: Full test TX, Setup 1, no load.

Preemption
Model

App
Policy Schedule

Exec. Time CPU
Load
(%)

Under-

runs

Min
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER
Periodic 442 µs 3.01 ms 17.87 0 55.12

Aperiodic 300 s 600 s 49.39 0 60.55

FIFO
Periodic 434 µs 2.97 ms 17.74 0 54.85

Aperiodic 474 ms 1.29 s 47.50 1198 0.00

Preemptible
Kernel (Low

Latency
Desktop)

OTHER
Periodic 442 µs 3.02 ms 17.95 0 54.75

Aperiodic 300 s 600 s 49.41 0 60.55

FIFO
Periodic 435 µs 2.88 ms 17.86 0 55.41

Aperiodic 474 ms 1.36 s 47.50 1200 0.00

Fully
Preemptible

Kernel
(Real-Time)

OTHER
Periodic 465 µs 3.91 ms 18.14 0 53.32

Aperiodic 300 s 600 s 48.90 0 57.21

FIFO
Periodic 439 µs 3.55 ms 18.06 0 55.79

Aperiodic 1.20 s 5.98 s 29.22 641 0.00

Table C.37: Full test TX, Setup 1, with Stress-NG 25%.

Preemption
Model

App
Policy Schedule

Exec. Time CPU
Load
(%)

Under-

runs

Min
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER
Periodic 458 µs 14.46 ms 18.10 0 21.73

Aperiodic 841 ms 2.27 s 43.81 21 0.00

FIFO
Periodic 441 µs 2.50 ms 18.21 0 57.28

Aperiodic 472 ms 986 ms 47.50 1190 0.00

Preemptible
Kernel (Low

Latency
Desktop)

OTHER
Periodic 458 µs 13.7 ms 18.23 0 21.60

Aperiodic 848 ms 2.29 s 43.85 28 0.00

FIFO
Periodic 443 µs 1.99 ms 18.28 0 57.19

Aperiodic 473 ms 986 ms 47.50 1191 0.00

Continued on next page

Appendix C. Additional Result Data 169

Table C.37: Full test TX, Setup 1, with Stress-NG 25%. (Continued)

Fully
Preemptible

Kernel
(Real-Time)

OTHER
Periodic 492 µs 12.9 ms 18.47 0 22.40

Aperiodic 1.69 s 22.9 s 44.97 0 10.75

FIFO
Periodic 445 µs 5.36 ms 18.46 0 57.29

Aperiodic 1.17 s 7.98 s 48.26 640 0.00

Table C.38: Full test TX, Setup 1, with Stress-NG 75%.

Preemption
Model

App
Policy Schedule

Exec. Time CPU
Load
(%)

Under-

runs

Min
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER
Periodic 492 µs 15.82 ms 18.48 0 14.48

Aperiodic 126 ms 823 ms 33.85 42 0.00

FIFO
Periodic 452 µs 2.14 ms 18.85 0 57.09

Aperiodic 476 ms 1.99 s 47.48 1198 0.00

Preemptible
Kernel (Low

Latency
Desktop)

OTHER
Periodic 483 µs 14.5 ms 18.55 0 23.61

Aperiodic 132 ms 956 ms 34.08 62 0.00

FIFO
Periodic 453 µs 6.29 ms 18.88 0 57.23

Aperiodic 474 ms 1.96 s 47.08 1151 0.00

Fully
Preemptible

Kernel
(Real-Time)

OTHER
Periodic 535 µs 13.6 ms 18.65 0 27.60

Aperiodic 131 ms 853 ms 34.03 0 61.13

FIFO
Periodic 451 µs 11.7 ms 18.88 0 35.84

Aperiodic 1.46 s 7.98 s 48.43 546 0.00

Table C.39: Full test TX, Setup 1, with Iperf.

Preemption
Model

App
Policy Schedule

Exec. Time CPU
Load
(%)

Under-

runs

Min
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER
Periodic 851 µs 5.69 ms 19.86 0 48.30

Aperiodic 292 s 600 s 26.13 0 46.17

FIFO
Periodic 435 µs 2.48 ms 17.78 0 57.60

Aperiodic 474 ms 2.98 s 47.49 0 49.21

Continued on next page

Appendix C. Additional Result Data 170

Table C.39: Full test TX, Setup 1, with Iperf. (Continued)

Preemptible
Kernel (Low

Latency
Desktop)

OTHER
Periodic 789 µs 7.23 ms 20.22 0 49.21

Aperiodic 273 s 573 s 25.77 0 40.00

FIFO
Periodic 498 µs 3.81 ms 21.07 0 56.66

Aperiodic 582 ms 3.97 s 47.32 1040 0.00

Fully
Preemptible

Kernel
(Real-Time)

OTHER
Periodic 677 µs 4.72 ms 20.36 0 50.97

Aperiodic 32.4 s 105 s 39.74 0 27.09

FIFO
Periodic 491 µs 5.33 ms 20.99 0 56.91

Aperiodic 2.24 s 13 s 48.70 339 0.00

Table C.40: Full test TX, Setup 2, no load.

Preemption
Model

kthread
Policy

App
Policy Schedule

Exec. Time (µs) CPU
Load
(%)

Under-

runs

Min
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER

OTHER
Periodic 413 2998 17.18 0 49.28

Aperiodic 2031 3731 28.14 0 53.48

FIFO
Periodic 410 2998 17.11 0 50.93

Aperiodic 2081 3636 29.20 0 56.17

FIFO

OTHER
Periodic 427 2602 17.29 0 52.68

Aperiodic 2018 6260 27.90 0 49.99

FIFO
Periodic 408 2987 17.02 0 48.75

Aperiodic 2083 7487 29.20 0 50.52

Preemptible
Kernel
(Low

Latency
Desktop)

OTHER

OTHER
Periodic 412 3048 17.21 0 48.87

Aperiodic 2032 3770 28.14 0 53.26

FIFO
Periodic 410 2950 17.14 0 49.30

Aperiodic 2080 6382 29.20 0 50.58

FIFO

OTHER
Periodic 428 2508 17.37 0 52.99

Aperiodic 2017 7383 27.88 0 50.17

FIFO
Periodic 410 2982 17.11 0 49.09

Aperiodic 2082 6455 29.20 0 50.53

Continued on next page

Appendix C. Additional Result Data 171

Table C.40: Full test TX, Setup 2, no load. (Continued)

Fully Pre-
emptible
Kernel

(Real-Time)

OTHER

OTHER
Periodic 421 2998 17.30 0 49.38

Aperiodic 2022 3975 27.42 0 52.73

FIFO
Periodic 414 1823 17.27 0 54.50

Aperiodic 2076 6388 29.22 0 50.60

FIFO

OTHER
Periodic 437 3166 17.41 0 52.12

Aperiodic 2033 3970 27.51 0 52.55

FIFO
Periodic 412 3127 17.21 0 49.16

Aperiodic 2078 7492 29.20 0 50.62

Table C.41: Full test TX, Setup 2, with Stress-NG 25%.

Preemption
Model

kthread
Policy

App
Policy Schedule

Exec. Time (µs) CPU
Load
(%)

Under-

runs

Min
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER

OTHER

Periodic 437 27 900 17.47 110 0.00

Aperiodic 2120 14 635 28.48 205 0.00

FIFO

Periodic 417 3015 17.48 0 29.01

Aperiodic 2096 41 807 29.10 43 0.00

FIFO

OTHER

Periodic 443 33 606 17.52 21 0.00

Aperiodic 2065 16 218 27.50 361 0.00

FIFO

Periodic 415 4331 17.40 0 45.18

Aperiodic 2123 10 095 29.27 0 44.41

Continued on next page

Appendix C. Additional Result Data 172

Table C.41: Full test TX, Setup 2, with Stress-NG 25%. (Continued)

Preemptible
Kernel
(Low

Latency
Desktop)

OTHER

OTHER

Periodic 440 15 863 17.47 283 0.00

Aperiodic 2228 13 178 29.37 312 0.00

FIFO

Periodic 417 3009 17.53 0 37.09

Aperiodic 2086 21 202 29.18 0 26.16

FIFO

OTHER

Periodic 446 14 206 17.58 36 0.00

Aperiodic 2067 15 093 27.70 282 0.00

FIFO

Periodic 417 3112 17.51 0 48.52

Aperiodic 4114 7466 29.25 0 50.03

Fully Pre-
emptible
Kernel

(Real-Time)

OTHER

OTHER

Periodic 462 17 123 17.57 65 0.00

Aperiodic 2277 13 617 28.03 507 0.00

FIFO

Periodic 419 4393 17.60 0 30.11

Aperiodic 2077 7483 29.19 0 21.94

FIFO

OTHER

Periodic 468 13 199 17.67 22 0.00

Aperiodic 2172 14 411 27.48 36 0.00

FIFO

Periodic 419 3108 17.58 0 48.32

Aperiodic 2079 7452 29.23 0 50.01

Appendix C. Additional Result Data 173

Table C.42: Full test TX, Setup 2, with Stress-NG 75%.

Preemption
Model

kthread
Policy

App
Policy Schedule

Exec. Time (µs) CPU
Load
(%)

Under-

runs

Min
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER

OTHER

Periodic 469 14 523 17.81 1079 0.00

Aperiodic 2160 37 160 20.23 22 759 0.00

FIFO

Periodic 423 3035 17.87 97 0.00

Aperiodic 2141 41 873 28.86 257 0.00

FIFO

OTHER

Periodic 477 22 027 17.85 23 0.00

Aperiodic 2217 49 381 22.89 7062 0.00

FIFO

Periodic 421 10 203 17.81 0 35.79

Aperiodic 2247 10 075 29.45 0 44.30

Preemptible
Kernel
(Low

Latency
Desktop)

OTHER

OTHER

Periodic 471 35 384 17.76 882 0.00

Aperiodic 2394 23 371 21.28 19 067 0.00

FIFO

Periodic 424 13 066 17.96 0 5.32

Aperiodic 2106 10 107 29.09 0 31.68

FIFO

OTHER

Periodic 474 28 015 17.94 6 0.00

Aperiodic 2298 60 779 23.05 7554 0.00

FIFO

Periodic 423 4533 17.91 0 43.40

Aperiodic 2251 10 097 29.45 0 44.25

Continued on next page

Appendix C. Additional Result Data 174

Table C.42: Full test TX, Setup 2, with Stress-NG 75%. (Continued)

Fully Pre-
emptible
Kernel

(Real-Time)

OTHER

OTHER

Periodic 504 17 791 17.82 756 0.00

Aperiodic 2502 49 793 19.96 20 686 0.00

FIFO

Periodic 424 14 909 17.97 2 0.00

Aperiodic 2076 13 868 29.12 0 29.39

FIFO

OTHER

Periodic 501 12 915 17.94 37 0.00

Aperiodic 2210 17 832 23.59 5007 0.00

FIFO

Periodic 422 4456 17.88 0 43.16

Aperiodic 2038 13 385 29.27 0 37.09

Table C.43: Full test TX, Setup 2, with Iperf.

Preemption
Model

kthread
Policy

App
Policy Schedule

Exec. Time (µs) CPU
Load
(%)

Under-

runs

Min
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER

OTHER
Periodic 701 7025 18.91 0 36.01

Aperiodic 2264 7265 25.84 0 39.75

FIFO
Periodic 456 5535 19.72 0 49.39

Aperiodic 2079 6304 29.15 0 49.73

FIFO

OTHER
Periodic 526 6572 19.40 0 40.84

Aperiodic 2072 7259 23.94 0 37.45

FIFO
Periodic 456 3645 19.69 0 48.45

Aperiodic 2105 7434 29.29 0 49.52

Continued on next page

Appendix C. Additional Result Data 175

Table C.43: Full test TX, Setup 2, with Iperf. (Continued)

Preemptible
Kernel
(Low

Latency
Desktop)

OTHER

OTHER
Periodic 507 6087 19.48 0 44.50

Aperiodic 2452 7744 30.24 0 10.14

FIFO
Periodic 456 3848 19.71 0 48.76

Aperiodic 2078 6320 29.15 0 49.91

FIFO

OTHER
Periodic 502 5768 19.42 0 43.45

Aperiodic 2025 9408 25.83 2 0.00

FIFO
Periodic 461 3240 19.90 0 48.56

Aperiodic 2103 7435 29.28 0 49.78

Fully Pre-
emptible
Kernel

(Real-Time)

OTHER

OTHER
Periodic 671 7247 19.49 0 26.04

Aperiodic 2465 7040 27.64 961 0.00

FIFO
Periodic 459 14 840 19.92 2 0.00

Aperiodic 2074 19 466 29.07 0 21.81

FIFO

OTHER
Periodic 620 7777 19.64 21 0.00

Aperiodic 2421 7220 26.44 594 0.00

FIFO
Periodic 458 4552 19.90 0 42.86

Aperiodic 2079 9863 29.31 0 43.73

Table C.44: Full test TX, Setup 3, no load.

Preemption
Model

App
Policy Schedule

Exec. Time (µs) CPU
Load
(%)

Under-

runs

Min
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER
Periodic 426 1877 17.23 0 52.34

Aperiodic 2022 3727 27.98 0 54.45

FIFO
Periodic 410 4028 17.08 0 54.50

Aperiodic 2082 3621 29.20 0 56.14

Preemptible
Kernel (Low

Latency
Desktop)

OTHER
Periodic 427 2129 17.39 0 52.50

Aperiodic 2021 3730 28.00 0 54.43

FIFO
Periodic 411 1806 17.14 0 54.41

Aperiodic 2081 3688 29.20 0 56.05

Continued on next page

Appendix C. Additional Result Data 176

Table C.44: Full test TX, Setup 3, no load. (Continued)

Fully
Preemptible

Kernel
(Real-Time)

OTHER
Periodic 428 3152 17.34 0 51.20

Aperiodic 2008 3873 27.29 0 52.76

FIFO
Periodic 414 3138 17.30 0 54.50

Aperiodic 2079 3566 29.21 0 56.41

Table C.45: Full test TX, Setup 3, with Stress-NG 25%.

Preemption
Model

App
Policy Schedule

Exec. Time (µs) CPU
Load
(%)

Under-

runs

Min
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER
Periodic 433 13 008 17.61 13 0.00

Aperiodic 2015 13 282 27.48 267 0.00

FIFO
Periodic 417 1739 17.51 0 54.29

Aperiodic 2082 3510 29.21 0 55.88

Preemptible
Kernel (Low

Latency
Desktop)

OTHER
Periodic 433 14 361 17.60 13 0.00

Aperiodic 2014 13 460 27.37 639 0.00

FIFO
Periodic 419 1685 17.63 0 54.30

Aperiodic 2080 3517 29.20 0 55.98

Fully
Preemptible

Kernel
(Real-Time)

OTHER
Periodic 454 12 793 17.70 6 0.00

Aperiodic 2094 13 737 27.14 502 0.00

FIFO
Periodic 419 3307 17.61 0 54.41

Aperiodic 2078 3690 29.23 0 56.04

Table C.46: Full test TX, Setup 3, with Stress-NG 75%.

Preemption
Model

App
Policy Schedule

Exec. Time CPU
Load
(%)

Under-

runs

Min
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER
Periodic 469 14675 17.84 147 0.00

Aperiodic 2002 15029 21.88 11 043 0.00

FIFO
Periodic 424 1698 17.93 0 54.31

Aperiodic 2076 3614 29.21 0 55.72

Continued on next page

Appendix C. Additional Result Data 177

Table C.46: Full test TX, Setup 3, with Stress-NG 75%. (Continued)

Preemptible
Kernel (Low

Latency
Desktop)

OTHER
Periodic 476 15867 17.94 52 0.00

Aperiodic 2000 15006 21.88 11 163 0.00

FIFO
Periodic 424 1738 17.96 0 54.11

Aperiodic 2074 10402 29.20 0 31.47

Fully
Preemptible

Kernel
(Real-Time)

OTHER
Periodic 501 12926 17.97 70 0.00

Aperiodic 2076 13986 23.40 7128 0.00

FIFO
Periodic 428 1764 18.18 0 54.31

Aperiodic 2074 3557 29.29 0 55.99

Table C.47: Full test TX, Setup 3, with Iperf.

Preemption
Model

App
Policy Schedule

Exec. Time CPU
Load
(%)

Under-

runs

Min
Buffer
Size

(KiB)
Avg Max

No
Preemption

OTHER
Periodic 862 5168 18.97 0 44.38

Aperiodic 2026 6485 25.26 0 43.97

FIFO
Periodic 458 3359 19.76 0 53.99

Aperiodic 2077 3586 29.25 0 55.92

Preemptible
Kernel (Low

Latency
Desktop)

OTHER
Periodic 479 5020 19.58 0 45.88

Aperiodic 2019 7130 24.30 44 0.00

FIFO
Periodic 457 1741 19.79 0 54.30

Aperiodic 2074 3552 29.25 0 55.83

Fully
Preemptible

Kernel
(Real-Time)

OTHER
Periodic 567 5120 19.77 23 0.00

Aperiodic 2046 6093 25.50 0 41.81

FIFO
Periodic 457 1736 19.88 0 54.34

Aperiodic 2066 3585 29.26 0 55.66

Appendix C. Additional Result Data 178

C.2.8 Production Environment Test

Table C.48: Production environment latency results.

Preemption Model Policy Nice/
Prio

Latency (µs)

Min Avg Max

No Preemption

OTHER 0 14 82 15 702

OTHER -20 13 67 7886

FIFO 40 7 16 3112

FIFO 60 11 16 2775

Preemptible Kernel
(Low Latency

Desktop)

OTHER 0 17 89 11 636

OTHER -20 17 72 7152

FIFO 40 13 19 243

FIFO 60 13 20 352

Fully Preemptible
Kernel (Real-Time)

OTHER 0 20 110 12 777

OTHER -20 19 90 11 115

FIFO 40 11 17 296

FIFO 60 11 16 93

Appendix C. Additional Result Data 179

Table C.49: Production environment load results.

Preemption Model
CPU (%)

loadavg
usr sys softirq iowait idle

No Preemption 4.25 4.19 0.26 0.40 90.90 1.09

Preemptible Kernel
(Low Latency

Desktop)
4.47 5.07 0.57 0.01 89.89 0.94

Fully Preemptible
Kernel (Real-Time) 4.41 7.34 0.98 0.01 87.31 2.24

180

Appendix D

Miscellaneous

1 /l inux # g i t rev − l i s t −−count −− s i n c e =" Jan 1 2023 " −−before=" Jan 1 2024 " −−
a l l −−no−merges

2 134098

LISTING D.1: Linux kernel, number of commits in 2023.

181

Bibliography

[1] F. Reghenzani, G. Massari, and W. Fornaciari, “The real-time Linux kernel: A
survey on PREEMPT_RT,” ACM Computing Surveys, vol. 52, no. 1, 18:1–18:36,
Feb. 2019, ISSN: 0360-0300. DOI: 10.1145/3297714.

[2] M. M. Madden, “Challenges using Linux as a real-time operating system,” in
2019 AIAA SciTech Forum and Exposition, San Diego, CA, Jan. 2019. DOI: 10.
2514/6.2019-0502.

[3] G. K. Adam, N. Petrellis, and L. T. Doulos, “Performance assessment of
Linux kernels with PREEMPT_RT on ARM-based embedded devices,” Elec-
tronics, vol. 10, no. 11, p. 1331, Jan. 2021, ISSN: 2079-9292. DOI: 10 . 3390 /
electronics10111331.

[4] L.-C. Duca, A. Duca, and A.-S. Lup, “Real-time Linux drivers and latency eval-
uation system for TI OMAP4 mcSPI peripheral,” in 2020 International Confer-
ence on Electrical, Communication, and Computer Engineering (ICECCE), Jun. 2020,
pp. 1–4. DOI: 10.1109/ICECCE49384.2020.9179286.

[5] R. Delgado and B. W. Choi, “New insights into the real-time performance of a
multicore processor,” IEEE Access, vol. 8, pp. 186 199–186 211, 2020, ISSN: 2169-
3536. DOI: 10.1109/ACCESS.2020.3029858.

[6] C.-C. J. Huang and C.-F. Yang, “An empirical approach to minimize latency of
real-time multiprocessor Linux kernel,” in 2020 International Computer Sympo-
sium (ICS), Dec. 2020, pp. 214–218. DOI: 10.1109/ICS51289.2020.00051.

[7] Y. Wei, “Research on real-time improvement technology of Linux based on
multi-core ARM,” in 2021 IEEE International Conference on Artificial Intelligence
and Computer Applications (ICAICA), Jun. 2021, pp. 1061–1066. DOI: 10.1109/
ICAICA52286.2021.9498165.

[8] X. Fan, T. Zheng, S. Sun, M. Gidlund, and J. Åkerberg, “Can embedded real-
time Linux system effectively support multipath transmission? An experimen-
tal study,” in 2023 IEEE 19th International Conference on Factory Communica-
tion Systems (WFCS), Apr. 2023, pp. 1–8. DOI: 10.1109/WFCS57264.2023.
10144118.

[9] L.-C. Duca and A. Duca, “Achieving hard real-time networking on PREEMPT_-
RT Linux with RTnet,” in 2020 International Symposium on Fundamentals of Elec-
trical Engineering (ISFEE), Nov. 2020, pp. 1–4. DOI: 10 . 1109 / ISFEE51261 .
2020.9756165.

[10] Grammarly, Inc. "Grammarly [Typing Assistant]." grammarly.com. Accessed:
May 17, 2024. [Online]. Available: https://www.grammarly.com/

[11] CS-5000 (1.0) [All relevant source code for this thesis]. (2024). K. Odde. Ac-
cessed: May 23, 2024. [Online]. Available: https://github.com/oddek/CS-
5000

[12] A. Burns and A. Wellings, Analysable Real-Time Systems: Programmed in Ada. Cre-
ateSpace Independent Publishing Platform, Oct. 2016, ISBN: 978-1-5302-6550-3.

https://doi.org/10.1145/3297714
https://doi.org/10.2514/6.2019-0502
https://doi.org/10.2514/6.2019-0502
https://doi.org/10.3390/electronics10111331
https://doi.org/10.3390/electronics10111331
https://doi.org/10.1109/ICECCE49384.2020.9179286
https://doi.org/10.1109/ACCESS.2020.3029858
https://doi.org/10.1109/ICS51289.2020.00051
https://doi.org/10.1109/ICAICA52286.2021.9498165
https://doi.org/10.1109/ICAICA52286.2021.9498165
https://doi.org/10.1109/WFCS57264.2023.10144118
https://doi.org/10.1109/WFCS57264.2023.10144118
https://doi.org/10.1109/ISFEE51261.2020.9756165
https://doi.org/10.1109/ISFEE51261.2020.9756165
https://www.grammarly.com/
https://github.com/oddek/CS-5000
https://github.com/oddek/CS-5000

Bibliography 182

[13] D. Abbott, “Chapter 17 - Linux and real-time,” in Linux for Embedded and Real-
Time Applications (Fourth Edition), D. Abbott, Ed., Newnes, Jan. 2018, pp. 257–
270, ISBN: 978-0-12-811277-9. DOI: 10.1016/B978-0-12-811277-9.00017-1.

[14] F. Vasquez and C. Simmonds, Mastering Embedded Linux Programming: Create fast
and reliable embedded solutions with Linux 5.4 and the Yocto Project 3.1 (Dunfell).
Packt Publishing Ltd, May 2021, ISBN: 978-1-78953-511-2.

[15] J. Stankovic, “Misconceptions about real-time computing: A serious problem
for next-generation systems,” Computer, vol. 21, no. 10, pp. 10–19, Oct. 1988,
ISSN: 1558-0814. DOI: 10.1109/2.7053.

[16] P. E. McKenney, “‘Real time’ vs. ‘real fast’: How to choose?” In Ottawa Linux
Symposium, Ottawa, Canada, Jul. 2008. [Online]. Available: https : / / www .
kernel.org/doc/ols/2008/ols2008v2-pages-57-66.pdf.

[17] C. Ngolah, Y. Wang, and X. Tan, “Implementing task scheduling and event han-
dling in RTOS+,” in Canadian Conference on Electrical and Computer Engineering
2004 (IEEE Cat. No.04CH37513), vol. 3, May 2004, 1523–1526 Vol.3. DOI: 10.
1109/CCECE.2004.1349696.

[18] X. Wang, X. Chen, X. Yang, and B. Yang, “Requirements patterns for complex
embedded systems,” in 2022 IEEE 30th International Requirements Engineering
Conference Workshops (REW), Aug. 2022, pp. 14–17. DOI: 10.1109/REW56159.
2022.00011.

[19] AspenCore Media. Embedded Market Survey 2023. (2023). Accessed: Nov. 27,
2023. [Online]. Available: https://www.embedded.com/embedded-survey/

[20] R. Stallman. "Linux and the GNU System." gnu.org. Accessed: Apr. 14, 2024.
[Online]. Available: https://www.gnu.org/gnu/linux-and-gnu.en.html

[21] The Linux Foundation. Sched(7) - Linux Man Page. (2014). Accessed: Dec. 20,
2023. [Online]. Available: https://man7.org/linux/man- pages/man7/
sched.7.html

[22] C. Rodriguez, G. Fischer, and S. Smolski, “Chapter 7 - Scheduling and kernel
synchronization,” in The Linux Kernel Primer, Philadelphia, PA: Prentice Hall,
2005, ISBN: 978-0-13-118163-2.

[23] “IEEE Standard for Information Technology–Portable Operating System Inter-
face (POSIX(TM)) Base Specifications, Issue 7,” IEEE Std 1003.1-2017 (Revision
of IEEE Std 1003.1-2008), pp. 1–3951, Jan. 2018. DOI: 10.1109/IEEESTD.2018.
8277153.

[24] The Linux Foundation. "Linux Standard Base Core Specification, Generic Part
LSB Core - Generic 5.0." Accessed: Apr. 15, 2024. [Online]. Available: https:
//refspecs.linuxfoundation.org/LSB_3.1.0/LSB-Core-generic/LSB-

Core-generic.pdf

[25] D. Locke, "POSIX and Linux application compatibility design rules," Locke
Consulting LLC, Denver, NC, USA, Apr. 2005. Accessed: Apr. 15, 2024. [Online].
Available: https://www.researchgate.net/publication/248644573_
POSIX_and_Linux_Application_Compatibility_Design_Rules.

[26] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline scheduling in the
Linux kernel,” Software: Practice and Experience, vol. 46, no. 6, pp. 821–839, 2016,
ISSN: 1097-024X. DOI: 10.1002/spe.2335.

[27] Linux (6.6.14) [Operating System]. (2024). The Linux Foundation. Accessed:
Apr. 18, 2024. [Online]. Available: https://git.kernel.org/pub/scm/
linux/kernel/git/stable/linux.git/tag/?h=v6.6.14

https://doi.org/10.1016/B978-0-12-811277-9.00017-1
https://doi.org/10.1109/2.7053
https://www.kernel.org/doc/ols/2008/ols2008v2-pages-57-66.pdf
https://www.kernel.org/doc/ols/2008/ols2008v2-pages-57-66.pdf
https://doi.org/10.1109/CCECE.2004.1349696
https://doi.org/10.1109/CCECE.2004.1349696
https://doi.org/10.1109/REW56159.2022.00011
https://doi.org/10.1109/REW56159.2022.00011
https://www.embedded.com/embedded-survey/
https://www.gnu.org/gnu/linux-and-gnu.en.html
https://man7.org/linux/man-pages/man7/sched.7.html
https://man7.org/linux/man-pages/man7/sched.7.html
https://doi.org/10.1109/IEEESTD.2018.8277153
https://doi.org/10.1109/IEEESTD.2018.8277153
https://refspecs.linuxfoundation.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic.pdf
https://refspecs.linuxfoundation.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic.pdf
https://refspecs.linuxfoundation.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic.pdf
https://www.researchgate.net/publication/248644573_POSIX_and_Linux_Application_Compatibility_Design_Rules
https://www.researchgate.net/publication/248644573_POSIX_and_Linux_Application_Compatibility_Design_Rules
https://doi.org/10.1002/spe.2335
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tag/?h=v6.6.14
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tag/?h=v6.6.14

Bibliography 183

[28] J. Corbet. "An EEVDF CPU scheduler for Linux." lwn.net. Accessed: Apr. 19,
2024. [Online]. Available: https://lwn.net/Articles/925371/

[29] P. Shah. "[PATCH] Introduce per-task latency_tolerance for scheduler hints."
lkml.org. Accessed: Apr. 19, 2024. [Online]. Available: https://lkml.org/
lkml/2019/11/25/151

[30] I. Stoica and H. Abdel-Wahab, “Earliest eligible virtual deadline first : A flexi-
ble and accurate mechanism for proportional share resource allocation,” Nov.
1995. [Online]. Available: https://api.semanticscholar.org/CorpusID:
59824119.

[31] M. Barabanov, “A Linux-based real-time operating system,” M.S. thesis, New
Mexico Institute of Mining and Technology, Socorro, NM, USA, 1997. [Online].
Available: https://api.semanticscholar.org/CorpusID:18146086.

[32] The Linux Foundation. Preemption Models - The Real Time Linux Collabora-
tive Project Documentation. (2023). Accessed: Apr. 19, 2024. [Online]. Avail-
able: https://wiki.linuxfoundation.org/realtime/documentation/
technical_basics/preemption_models

[33] F. Cerqueira and B. B. Brandenburg, “A comparison of scheduling latency in
Linux, PREEMPT-RT, and LITMUS RT,” 2013. [Online]. Available: https://
api.semanticscholar.org/CorpusID:14096981.

[34] Y. Chen, X. Tang, S. Xu, F. Zhu, Q. Zhou, and T.-H. Weng, “Analyzing execution
path non-determinism of the Linux kernel in different scenarios,” Connection
Science, vol. 35, no. 1, p. 2 192 442, Dec. 2023, ISSN: 0954-0091. DOI: 10.1080/
09540091.2023.2192442.

[35] J. Brown, "How fast is fast enough ? Choosing between Xenomai and Linux
for real-time applications," Rep Invariant Systems, Inc., Cambridge, MA,
USA, 2010. Accessed: Nov. 27, 2023. [Online]. Available: https : / / api .

semanticscholar.org/CorpusID:15722073.
[36] H. Fayyad, M. Timmerman, L. Perneel, F. Guan, and L. Peng, “Real-time ca-

pabilities in the standard Linux Kernel: How to enable and use them?” Inter-
national Journal on Recent and Innovation Trends in Computing and Communication,
vol. 3, no. 1, pp. 131–135, Mar. 2015, ISSN: 2321-8169. [Online]. Available: https:
//www.researchgate.net/publication/275018855.

[37] C. Emde, "Long-term monitoring of apparent latency in PREEMPT RT Linux
real-time systems," OSADL, Schramberg, Germany, 2010. Accessed: Apr. 18,
2024. [Online]. Available: https://api.semanticscholar.org/CorpusID:
36412799.

[38] R. F. Molanes, J. J. Rodríguez-Andina, and J. Fariña, “Performance characteri-
zation and design guidelines for efficient processor–FPGA communication in
Cyclone V FPSoCs,” IEEE Transactions on Industrial Electronics, vol. 65, no. 5,
pp. 4368–4377, May 2018, ISSN: 1557-9948. DOI: 10.1109/TIE.2017.2766581.

[39] Intel Altera. Cyclone V Device Datasheet CV-51002. (2023). Accessed: Oct. 6, 2005.
[Online]. Available: https : / / cdrdv2 . intel . com / v1 / dl / getContent /
666692?fileName=cv_51002-683801-666692.pdf

[40] R. Novickis and M. Greitans, FPGA master based on chip communications architec-
ture for Cyclone V SoC running Linux. Apr. 2018, p. 408. DOI: 10.1109/CoDIT.
2018.8394842.

https://lwn.net/Articles/925371/
https://lkml.org/lkml/2019/11/25/151
https://lkml.org/lkml/2019/11/25/151
https://api.semanticscholar.org/CorpusID:59824119
https://api.semanticscholar.org/CorpusID:59824119
https://api.semanticscholar.org/CorpusID:18146086
https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/preemption_models
https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/preemption_models
https://api.semanticscholar.org/CorpusID:14096981
https://api.semanticscholar.org/CorpusID:14096981
https://doi.org/10.1080/09540091.2023.2192442
https://doi.org/10.1080/09540091.2023.2192442
https://api.semanticscholar.org/CorpusID:15722073
https://api.semanticscholar.org/CorpusID:15722073
https://www.researchgate.net/publication/275018855
https://www.researchgate.net/publication/275018855
https://api.semanticscholar.org/CorpusID:36412799
https://api.semanticscholar.org/CorpusID:36412799
https://doi.org/10.1109/TIE.2017.2766581
https://cdrdv2.intel.com/v1/dl/getContent/666692?fileName=cv_51002-683801-666692.pdf
https://cdrdv2.intel.com/v1/dl/getContent/666692?fileName=cv_51002-683801-666692.pdf
https://doi.org/10.1109/CoDIT.2018.8394842
https://doi.org/10.1109/CoDIT.2018.8394842

Bibliography 184

[41] The Linux Foundation. Netlink - The Linux Kernel Documentation (v6.6). (2023).
Accessed: Apr. 21, 2024. [Online]. Available: https://kernel.org/doc/html/
v6.6/userspace-api/netlink/intro.html

[42] T. Gleixner. "Realtime Linux: academia v. reality." lwn.net. Accessed: Dec. 11,
2023. [Online]. Available: https://lwn.net/Articles/397422/

[43] A. Kofod-Petersen. How to Do a Structured Literature Review in Computer Science.
(2015). Accessed: Sep. 30, 2023. [Online]. Available: https://research.idi.
ntnu.no/aimasters/files/SLR_HowTo2018.pdf

[44] The Linux Foundation. "Preempt-RT History." wiki.linuxfoundation.org. Ac-
cessed: Dec. 16, 2023. [Online]. Available: https://wiki.linuxfoundation.
org/realtime/rtl/blog#preempt-rt_history

[45] The Linux Foundation. Lock types and their rules - The Linux Kernel Documentation
(v6.6). (2023). Accessed: Apr. 22, 2024. [Online]. Available: https://kernel.
org/doc/html/v6.6/locking/locktypes.html

[46] P. Zilstra. "[PATCH] Introduce CONFIG_PREEMPT_DYNAMIC."
lore.kernel.org. Accessed: Apr. 21, 2024. [Online]. Available: https://lore.
kernel.org/lkml/161278563996.23325.11147110316009301248.tip-

bot2@tip-bot2/

[47] The Linux Foundation. Time(7) - Linux Man Page. (2006). Accessed: Apr. 15, 2024.
[Online]. Available: https://man7.org/linux/man-pages/man7/time.7.
html

[48] T. Gleixner and D. Niehaus, “Hrtimers and beyond: Transforming the Linux
time subsystems,” in Ottawa Linux Symposium (OLS), Ottawa, Canada, Jul. 2006.
[Online]. Available: https://www.kernel.org/doc/ols/2006/ols2006v1-
pages-333-346.pdf.

[49] rt-tests (2.5) [Test Suite]. C. Williams and J. Kacur. Accessed: May 19, 2024. [On-
line]. Available: https://git.kernel.org/pub/scm/utils/rt-tests/rt-
tests.git/tag/?h=v2.5

[50] The Linux Foundation. CyclicTest - The Real Time Linux Collaborative Project
Documentation. (2023). Accessed: Dec. 13, 2023. [Online]. Available: https://
wiki.linuxfoundation.org/realtime/documentation/howto/tools/

cyclictest/start

[51] J. Edge. "Moving interrupts to threads." lwn.net. Accessed: Apr. 22, 2024. [On-
line]. Available: https://lwn.net/Articles/302043/

[52] T. Gleixner. "[PATCH] Add Infrastructure for Threaded Interrupt Handlers."
lore.kernel.org. Accessed: Apr. 22, 2024. [Online]. Available: https://lore.
kernel.org/all/20081001223213.078984344@linutronix.de/

[53] The Linux Foundation. Threaded Interrupt Handler - The Real Time Linux Collab-
orative Project Documentation. (2023). Accessed: Apr. 22, 2024. [Online]. Avail-
able: https://wiki.linuxfoundation.org/realtime/documentation/
technical_details/threadirq

[54] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols: An ap-
proach to real-time synchronization,” IEEE Transactions on Computers, vol. 39,
no. 9, pp. 1175–1185, Sep. 1990, ISSN: 1557-9956. DOI: 10.1109/12.57058. (ac-
cessed Dec. 7, 2023).

[55] B. W. Lampson and D. D. Redell, “Experience with processes and monitors in
Mesa,” Communications of the ACM, vol. 23, no. 2, pp. 105–117, Feb. 1980, ISSN:
0001-0782. DOI: 10.1145/358818.358824.

https://kernel.org/doc/html/v6.6/userspace-api/netlink/intro.html
https://kernel.org/doc/html/v6.6/userspace-api/netlink/intro.html
https://lwn.net/Articles/397422/
https://research.idi.ntnu.no/aimasters/files/SLR_HowTo2018.pdf
https://research.idi.ntnu.no/aimasters/files/SLR_HowTo2018.pdf
https://wiki.linuxfoundation.org/realtime/rtl/blog#preempt-rt_history
https://wiki.linuxfoundation.org/realtime/rtl/blog#preempt-rt_history
https://kernel.org/doc/html/v6.6/locking/locktypes.html
https://kernel.org/doc/html/v6.6/locking/locktypes.html
https://lore.kernel.org/lkml/161278563996.23325.11147110316009301248.tip-bot2@tip-bot2/
https://lore.kernel.org/lkml/161278563996.23325.11147110316009301248.tip-bot2@tip-bot2/
https://lore.kernel.org/lkml/161278563996.23325.11147110316009301248.tip-bot2@tip-bot2/
https://man7.org/linux/man-pages/man7/time.7.html
https://man7.org/linux/man-pages/man7/time.7.html
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf
https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git/tag/?h=v2.5
https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git/tag/?h=v2.5
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://lwn.net/Articles/302043/
https://lore.kernel.org/all/20081001223213.078984344@linutronix.de/
https://lore.kernel.org/all/20081001223213.078984344@linutronix.de/
https://wiki.linuxfoundation.org/realtime/documentation/technical_details/threadirq
https://wiki.linuxfoundation.org/realtime/documentation/technical_details/threadirq
https://doi.org/10.1109/12.57058
https://doi.org/10.1145/358818.358824

Bibliography 185

[56] The Linux Foundation. PI-futex - The Linux Kernel Documentation (v6.6). (2023).
Accessed: Apr. 21, 2024. [Online]. Available: https://kernel.org/doc/html/
v6.6/locking/pi-futex.html

[57] The Linux Foundation. Preempt Locking - The Linux Kernel Documentation (v6.6).
(2023). Accessed: Apr. 21, 2024. [Online]. Available: https://kernel.org/
doc/html/v6.6/locking/preempt-locking.html

[58] S. Rostedt and D. V. Hart, “Internals of the RT patch,” in Ottawa Linux Sympo-
sium, Ottawa, Canada, 2007. [Online]. Available: https://www.kernel.org/
doc/ols/2007/ols2007v2-pages-161-172.pdf.

[59] The Linux Foundation. RCU: What is RCU? - The Linux Kernel Documentation
(v6.6). (2023). Accessed: Dec. 18, 2023. [Online]. Available: https://kernel.
org/doc/html/v6.6/RCU/whatisRCU.html

[60] P. McKenney. "The Design of Preemptible Read-Copy-Update." lwn.net. Ac-
cessed: Dec. 18, 2023. [Online]. Available: https : / / lwn . net / Articles /
253651/

[61] The Linux Foundation. RCU - The Real Time Linux Collaborative Project Docu-
mentation. (2023). Accessed: May 20, 2024. [Online]. Available: https://wiki.
linuxfoundation.org/realtime/documentation/technical_details/

rcu

[62] Linux (6.6.14-rt21) [Operating System]. (2024). The Linux Foundation. Ac-
cessed: Apr. 18, 2024. [Online]. Available: https://git.kernel.org/pub/
scm/linux/kernel/git/rt/linux-stable-rt.git/tag/?h=v6.6.14-rt21

[63] The Linux Foundation. Reducing OS jitter due to per-cpu kthreads - The Linux
Kernel documentation (v6.6). (2023). Accessed: May 20, 2024. [Online]. Available:
https://kernel.org/doc/html/v6.6/admin-guide/kernel-per-CPU-

kthreads.html

[64] The Linux Foundation. NO_HZ: Reducing Scheduling-Clock Ticks - The Linux Ker-
nel Documentation (v6.6). (2023). Accessed: Apr. 18, 2024. [Online]. Available:
https://www.kernel.org/doc/html/v6.6/timers/no_hz.html

[65] The Linux Foundation. Dynticks or Tickless kernel or nohz - The Real Time
Linux Collaborative Project Documentation. (2023). Accessed: Apr. 30, 2024. [On-
line]. Available: https : / / wiki . linuxfoundation . org / realtime /

documentation/howto/tools/ticklesskernel

[66] F. Weisbecker. "CPU Isolation." suse.com. Accessed: Apr. 30, 2024. [Online].
Available: https://www.suse.com/c/cpu- isolation- introduction-
part-1/

[67] Linux Plumbers Conference. "QA about PREEMP_RT - Thomas Gleixner." Ac-
cessed: Dec. 16, 2023. [Online]. Available: https://www.youtube.com/watch?
v=O1dzeGJUvvU

[68] J. Corbet. "The real realtime preemption end game." lwn.net. Accessed: Dec. 16,
2023. [Online]. Available: https://lwn.net/Articles/951337/

[69] Red Hat Enterprise Linux. "Getting Started with Red Hat Enterprise Linux for
Real Time." redhat.com. Accessed: Dec. 20, 2023. [Online]. Available: https:
//access.redhat.com/rhel-real-time-getting-started

[70] Canonical. "Real-time Ubuntu." ubuntu.com. Accessed: Dec. 20, 2023. [Online].
Available: https://ubuntu.com/real-time

https://kernel.org/doc/html/v6.6/locking/pi-futex.html
https://kernel.org/doc/html/v6.6/locking/pi-futex.html
https://kernel.org/doc/html/v6.6/locking/preempt-locking.html
https://kernel.org/doc/html/v6.6/locking/preempt-locking.html
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-161-172.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-161-172.pdf
https://kernel.org/doc/html/v6.6/RCU/whatisRCU.html
https://kernel.org/doc/html/v6.6/RCU/whatisRCU.html
https://lwn.net/Articles/253651/
https://lwn.net/Articles/253651/
https://wiki.linuxfoundation.org/realtime/documentation/technical_details/rcu
https://wiki.linuxfoundation.org/realtime/documentation/technical_details/rcu
https://wiki.linuxfoundation.org/realtime/documentation/technical_details/rcu
https://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-stable-rt.git/tag/?h=v6.6.14-rt21
https://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-stable-rt.git/tag/?h=v6.6.14-rt21
https://kernel.org/doc/html/v6.6/admin-guide/kernel-per-CPU-kthreads.html
https://kernel.org/doc/html/v6.6/admin-guide/kernel-per-CPU-kthreads.html
https://www.kernel.org/doc/html/v6.6/timers/no_hz.html
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/ticklesskernel
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/ticklesskernel
https://www.suse.com/c/cpu-isolation-introduction-part-1/
https://www.suse.com/c/cpu-isolation-introduction-part-1/
https://www.youtube.com/watch?v=O1dzeGJUvvU
https://www.youtube.com/watch?v=O1dzeGJUvvU
https://lwn.net/Articles/951337/
https://access.redhat.com/rhel-real-time-getting-started
https://access.redhat.com/rhel-real-time-getting-started
https://ubuntu.com/real-time

Bibliography 186

[71] P. Regnier, G. Lima, and L. Barreto, “Evaluation of interrupt handling timeliness
in real-time Linux operating systems,” Operating Systems Review, vol. 42, pp. 52–
63, Oct. 2008. DOI: 10.1145/1453775.1453787.

[72] L. Vignati, S. Zambon, and L. Turchet, “A comparison of real-time Linux-based
architectures for embedded musical applications,” Journal of the Audio Engineer-
ing Society, vol. 70, pp. 83–93, Jan. 2021. DOI: 10.17743/jaes.2021.0052.

[73] A. Carvalho, C. Machado, and F. Moraes, “Raspberry Pi performance analysis
in real-time applications with the RT-Preempt patch,” in 2019 Latin American
Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019
Workshop on Robotics in Education (WRE), Oct. 2019, pp. 162–167. DOI: 10.1109/
LARS-SBR-WRE48964.2019.00036.

[74] G. K. Adam, “Co-design of multicore hardware and multithreaded software for
thread performance assessment on an FPGA,” Computers, vol. 11, no. 5, p. 76,
May 2022, ISSN: 2073-431X. DOI: 10.3390/computers11050076.

[75] J. Altenberg. (2016). Introduction to realtime Linux - Presented at Embedded
Linux Conference Europe, Berlin, Germany. Accessed: Oct. 9, 2023. [Online].
Available: https : / / elinux . org / images / 8 / 8e / Introduction _ to _
Realtime_Linux.pdf

[76] Y. Li, Y. Matsubara, H. Takada, K. Suzuki, and H. Murata, “A performance eval-
uation of embedded multi-core mixed-criticality system based on PREEMPT_-
RT Linux,” Journal of Information Processing, vol. 31, no. 0, pp. 78–87, 2023, ISSN:
1882-6652. DOI: 10.2197/ipsjjip.31.78. (accessed Sep. 29, 2023).

[77] R. Webster. "Excessive network latency when using Realtek R8168/R8111
et al NIC." lore.kernel.org. Accessed: Dec. 19, 2023. [Online]. Avail-
able: https : / / lore . kernel . org / linux - rt - users /

CANV1gkc9KvkGNPkEsjXCiV4mUcdrrPcaQ1ueRri9ypjvJbU94g@mail.gmail.

com/

[78] J. Salisbury. "System Hang With 5.15.79-rt54 Patch Set." lore.kernel.org. Ac-
cessed: Dec. 19, 2023. [Online]. Available: https://lore.kernel.org/linux-
rt-users/fe5974c9-3ed0-938a-f43c-4d301f603e92@canonical.com/

[79] P. Pisa. "Outstanding latency increase in kernel CAN gateway caught by CAN-
latester." lore.kernel.org. Accessed: Dec. 19, 2023. [Online]. Available: https:
//lore.kernel.org/linux-rt-users/202310021040.49367.pisa@fel.

cvut.cz/

[80] G. Medini. "High latency of a system based on 5.19 rt." lore.kernel.org. Ac-
cessed: Dec. 19, 2023. [Online]. Available: https://lore.kernel.org/linux-
rt-users/S1JV78$805284328FE38E68AC9E7D23F35846D8@eurosoft.it/

[81] M. Franklin. "i2c jitter is worse in PREEMPT_RT kernel than stock Raspberry Pi
kernel." lore.kernel.org. Accessed: Dec. 19, 2023. [Online]. Available: https:
//lore.kernel.org/linux- rt- users/44fb3d4d- 6303- 4287- b2ac-

7898cc237c47@comfiletech.com/#r

[82] Open Source Automation Development Lab. "Hardware - OSADL QA Farm."
osadl.org. Accessed: Apr. 18, 2024. [Online]. Available: https://www.osadl.
org/Hardware-overview.qa-farm-hardware.0.html

[83] Open Source Automation Development Lab. "ARM Cortex A9 Latency Plot
- OSADL QA Farm." osadl.org. Accessed: Apr. 18, 2024. [Online]. Available:
https://www.osadl.org/Long-term-latency-plot-of-system-in-

rack.qa-3d-latencyplot-r2s3.0.html?shadow=1

https://doi.org/10.1145/1453775.1453787
https://doi.org/10.17743/jaes.2021.0052
https://doi.org/10.1109/LARS-SBR-WRE48964.2019.00036
https://doi.org/10.1109/LARS-SBR-WRE48964.2019.00036
https://doi.org/10.3390/computers11050076
https://elinux.org/images/8/8e/Introduction_to_Realtime_Linux.pdf
https://elinux.org/images/8/8e/Introduction_to_Realtime_Linux.pdf
https://doi.org/10.2197/ipsjjip.31.78
https://lore.kernel.org/linux-rt-users/CANV1gkc9KvkGNPkEsjXCiV4mUcdrrPcaQ1ueRri9ypjvJbU94g@mail.gmail.com/
https://lore.kernel.org/linux-rt-users/CANV1gkc9KvkGNPkEsjXCiV4mUcdrrPcaQ1ueRri9ypjvJbU94g@mail.gmail.com/
https://lore.kernel.org/linux-rt-users/CANV1gkc9KvkGNPkEsjXCiV4mUcdrrPcaQ1ueRri9ypjvJbU94g@mail.gmail.com/
https://lore.kernel.org/linux-rt-users/fe5974c9-3ed0-938a-f43c-4d301f603e92@canonical.com/
https://lore.kernel.org/linux-rt-users/fe5974c9-3ed0-938a-f43c-4d301f603e92@canonical.com/
https://lore.kernel.org/linux-rt-users/202310021040.49367.pisa@fel.cvut.cz/
https://lore.kernel.org/linux-rt-users/202310021040.49367.pisa@fel.cvut.cz/
https://lore.kernel.org/linux-rt-users/202310021040.49367.pisa@fel.cvut.cz/
https://lore.kernel.org/linux-rt-users/S1JV78$805284328FE38E68AC9E7D23F35846D8@eurosoft.it/
https://lore.kernel.org/linux-rt-users/S1JV78$805284328FE38E68AC9E7D23F35846D8@eurosoft.it/
https://lore.kernel.org/linux-rt-users/44fb3d4d-6303-4287-b2ac-7898cc237c47@comfiletech.com/#r
https://lore.kernel.org/linux-rt-users/44fb3d4d-6303-4287-b2ac-7898cc237c47@comfiletech.com/#r
https://lore.kernel.org/linux-rt-users/44fb3d4d-6303-4287-b2ac-7898cc237c47@comfiletech.com/#r
https://www.osadl.org/Hardware-overview.qa-farm-hardware.0.html
https://www.osadl.org/Hardware-overview.qa-farm-hardware.0.html
https://www.osadl.org/Long-term-latency-plot-of-system-in-rack.qa-3d-latencyplot-r2s3.0.html?shadow=1
https://www.osadl.org/Long-term-latency-plot-of-system-in-rack.qa-3d-latencyplot-r2s3.0.html?shadow=1

Bibliography 187

[84] T. Beck, F. Boniol, J. Ermont, and L. Maillet, “Impact of environment on the
execution of a real-time Linux process on a multicore platform,” in 11th euro-
pean congress on embedded real-time systems (ERTS 2022), 2022. [Online]. Avail-
able: https://hal.science/hal-03857305.

[85] OSADL. "SIL2LinuxMP." osadl.org. Accessed: Dec. 20, 2023. [Online]. Avail-
able: https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html

[86] J. Jeong, E. Seo, D. Kim, et al., “Transparent and selective real-time interrupt
services for performance improvement,” in Software Technologies for Embedded
and Ubiquitous Systems, R. Obermaisser, Y. Nah, P. Puschner, and F. J. Rammig,
Eds., vol. 4761, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 283–
292, ISBN: 978-3-540-75663-7. DOI: 10.1007/978-3-540-75664-4_28.

[87] The Linux Foundation. RT throttling - The Real Time Linux Collaborative Project
Documentation. (2023). Accessed: May 1, 2024. [Online]. Available: https :

//wiki.linuxfoundation.org/realtime/documentation/technical_

basics/sched_rt_throttling

[88] Daniel Bristot de Oliveira. "[PATCH] sched/rt: RT_RUNTIME_GREED sched
feature." lore.kernel.org. Accessed: May 1, 2024. [Online]. Available: https://
lore.kernel.org/lkml/fa5b1b55d8934c6a0e02e04a7ad6afdf4012c2e0.

1478506194.git.bristot@redhat.com/

[89] Red Hat Enterprise Linux. "Tuning Scheduling Policy - Red Hat Documen-
tation." redhat.com. Accessed: Apr. 18, 2024. [Online]. Available: https : / /
access.redhat.com/documentation/en-us/red_hat_enterprise_linux/

8/html/monitoring_and_managing_system_status_and_performance/

tuning-scheduling-policy_monitoring-and-managing-system-status-

and-performance

[90] The Linux Foundation. Capabilities(7) - Linux Man Page. (2002). Accessed:
Apr. 21, 2024. [Online]. Available: https://man7.org/linux/man-pages/
man7/capabilities.7.html

[91] The Linux Foundation. HOWTO build a basic cyclic application - The Real
Time Linux Collaborative Project Documentation. (2017). Accessed: May 1, 2024.
[Online]. Available: https : / / wiki . linuxfoundation . org / realtime /
documentation/howto/applications/cyclic

[92] The Free Software Foundation. "Time Types - GNU Libc Documentation
(v2.38)." The GNU C Library. Accessed: Dec. 19, 2023. [Online]. Available:
https://sourceware.org/glibc/manual/2.38/html_node/Time-Types.

html

[93] GCC (13.2.0) [Compiler]. (2023). The Free Software Foundation. Accessed:
Apr. 18, 2024. [Online]. Available: https://gcc.gnu.org/git/?p=gcc.
git;a=commit;h=c891d8dc23e1a46ad9f3e757d09e57b500d40044

[94] Boost (1.84.0) [C++ Library]. (2023). The Boost Organization. Accessed: Apr. 18,
2024. [Online]. Available: https://github.com/boostorg/boost/releases/
tag/boost-1.84.0

[95] The Linux Foundation. Timers Howto - The Linux Kernel Documentation (v6.6).
(2023). Accessed: Apr. 18, 2024. [Online]. Available: https://kernel.org/
doc/html/v6.6/timers/timers-howto.html

https://hal.science/hal-03857305
https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html
https://doi.org/10.1007/978-3-540-75664-4_28
https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/sched_rt_throttling
https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/sched_rt_throttling
https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/sched_rt_throttling
https://lore.kernel.org/lkml/fa5b1b55d8934c6a0e02e04a7ad6afdf4012c2e0.1478506194.git.bristot@redhat.com/
https://lore.kernel.org/lkml/fa5b1b55d8934c6a0e02e04a7ad6afdf4012c2e0.1478506194.git.bristot@redhat.com/
https://lore.kernel.org/lkml/fa5b1b55d8934c6a0e02e04a7ad6afdf4012c2e0.1478506194.git.bristot@redhat.com/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/tuning-scheduling-policy_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/tuning-scheduling-policy_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/tuning-scheduling-policy_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/tuning-scheduling-policy_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/tuning-scheduling-policy_monitoring-and-managing-system-status-and-performance
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/cyclic
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/cyclic
https://sourceware.org/glibc/manual/2.38/html_node/Time-Types.html
https://sourceware.org/glibc/manual/2.38/html_node/Time-Types.html
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c891d8dc23e1a46ad9f3e757d09e57b500d40044
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c891d8dc23e1a46ad9f3e757d09e57b500d40044
https://github.com/boostorg/boost/releases/tag/boost-1.84.0
https://github.com/boostorg/boost/releases/tag/boost-1.84.0
https://kernel.org/doc/html/v6.6/timers/timers-howto.html
https://kernel.org/doc/html/v6.6/timers/timers-howto.html

Bibliography 188

[96] The Linux Foundation. Memory for Real-time Applications - The Real Time
Linux Collaborative Project Documentation. (2017). Accessed: Apr. 18, 2024. [On-
line]. Available: https : / / wiki . linuxfoundation . org / realtime /

documentation/howto/applications/memory#memory_locking

[97] D. Duval, “From fast to predictably fast,” in Ottawa Linux Symposium, Ottawa,
Canada, 2009. [Online]. Available: https://www.kernel.org/doc/ols/2009/
ols2009-pages-79-86.pdf.

[98] J. Ogness. "A Checklist for Real-Time Applications in Linux." linutronix.de. Ac-
cessed: May 1, 2024. [Online]. Available: https://www.linutronix.de/blog.
php

[99] The Linux Foundation. Sysctl VM - The Linux Kernel Documentation (v6.6). (2023).
Accessed: Apr. 18, 2024. [Online]. Available: https://kernel.org/doc/html/
v6.6/admin-guide/sysctl/vm.html

[100] I. Puaut, “Real-time performance of dynamic memory allocation algorithms,”
in Proceedings 14th Euromicro Conference on Real-Time Systems. Euromicro RTS
2002, Jun. 2002, pp. 41–49. DOI: 10.1109/EMRTS.2002.1019184.

[101] J. Cartwright. (2018). What every driver developer should know about RT.
Presented at The Embedded Linux Conference North America, Portland, OR.
Accessed: Apr. 3, 2024. [Online]. Available: https://static.sched.com/
hosted _ files / elciotna18 / 27 / What % 20every % 20device % 20driver %

20developer%20should%20know%20about%20rt.pdf

[102] Intel Altera. Cyclone® V SoC FPGA Development Board Reference Manual 654687.
(2015). Accessed: Dec. 12, 2023. [Online]. Available: https://www.intel.com/
content/www/us/en/content-details/654687/cyclone-v-soc-fpga-

development-board-reference-manual.html

[103] Crosstool-NG (1.26.0) [Toolchain Generator]. Crosstool-NG Community. Ac-
cessed: Apr. 20, 2024. [Online]. Available: https://github.com/crosstool-
ng/crosstool-ng/releases/tag/crosstool-ng-1.26.0

[104] Das U-Boot (2023.07) [Bootloader]. DENX Software Engineering. Accessed:
Apr. 20, 2024. [Online]. Available: https://github.com/u-boot/u-boot/
releases/tag/v2023.07

[105] L. Torvalds. "Linux 6.0-rc1." lore.kernel.org. Accessed: May 19, 2024. [Online].
Available: https : / / lore . kernel . org / lkml / CAHk - =wgRFjPHV - Y _

eKP9wQMLFDgG+dEUHiv5wC17OQHsG5z7BA@mail.gmail.com/T/

[106] Buildroot (2023.08.01) [Linux System Generator]. (2023). Peter Korsgaard. Ac-
cessed: Apr. 20, 2024. [Online]. Available: https://gitlab.com/buildroot.
org/buildroot/-/tags/2023.08.1

[107] stress-ng (0.15.07) [Load Simulator]. (2023). C. I. King. Accessed: May 4, 2024.
[Online]. Available: https://github.com/ColinIanKing/stress-ng

[108] C. I. King. "Issue #363 - Comment." github.com. Accessed: Apr. 19, 2024. [On-
line]. Available: https://github.com/ColinIanKing/stress-ng/issues/
363

[109] libnl (3.7.0) [Netlink Library Suite]. (2022). T. Haller. Accessed: May 20, 2024.
[Online]. Available: https://github.com/thom311/libnl

[110] Embedded Linux Wiki. "High Resolution Timers." elinux.org. Accessed:
Apr. 21, 2024. [Online]. Available: https://elinux.org/High_Resolution_
Timers#How_to_validate

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/memory#memory_locking
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/memory#memory_locking
https://www.kernel.org/doc/ols/2009/ols2009-pages-79-86.pdf
https://www.kernel.org/doc/ols/2009/ols2009-pages-79-86.pdf
https://www.linutronix.de/blog.php
https://www.linutronix.de/blog.php
https://kernel.org/doc/html/v6.6/admin-guide/sysctl/vm.html
https://kernel.org/doc/html/v6.6/admin-guide/sysctl/vm.html
https://doi.org/10.1109/EMRTS.2002.1019184
https://static.sched.com/hosted_files/elciotna18/27/What%20every%20device%20driver%20developer%20should%20know%20about%20rt.pdf
https://static.sched.com/hosted_files/elciotna18/27/What%20every%20device%20driver%20developer%20should%20know%20about%20rt.pdf
https://static.sched.com/hosted_files/elciotna18/27/What%20every%20device%20driver%20developer%20should%20know%20about%20rt.pdf
https://www.intel.com/content/www/us/en/content-details/654687/cyclone-v-soc-fpga-development-board-reference-manual.html
https://www.intel.com/content/www/us/en/content-details/654687/cyclone-v-soc-fpga-development-board-reference-manual.html
https://www.intel.com/content/www/us/en/content-details/654687/cyclone-v-soc-fpga-development-board-reference-manual.html
https://github.com/crosstool-ng/crosstool-ng/releases/tag/crosstool-ng-1.26.0
https://github.com/crosstool-ng/crosstool-ng/releases/tag/crosstool-ng-1.26.0
https://github.com/u-boot/u-boot/releases/tag/v2023.07
https://github.com/u-boot/u-boot/releases/tag/v2023.07
https://lore.kernel.org/lkml/CAHk-=wgRFjPHV-Y_eKP9wQMLFDgG+dEUHiv5wC17OQHsG5z7BA@mail.gmail.com/T/
https://lore.kernel.org/lkml/CAHk-=wgRFjPHV-Y_eKP9wQMLFDgG+dEUHiv5wC17OQHsG5z7BA@mail.gmail.com/T/
https://gitlab.com/buildroot.org/buildroot/-/tags/2023.08.1
https://gitlab.com/buildroot.org/buildroot/-/tags/2023.08.1
https://github.com/ColinIanKing/stress-ng
https://github.com/ColinIanKing/stress-ng/issues/363
https://github.com/ColinIanKing/stress-ng/issues/363
https://github.com/thom311/libnl
https://elinux.org/High_Resolution_Timers#How_to_validate
https://elinux.org/High_Resolution_Timers#How_to_validate

Bibliography 189

[111] The Linux Foundation. Kmemleak - The Linux Kernel Documentation (v.6.6). (2023).
Accessed: Apr. 19, 2024. [Online]. Available: https://kernel.org/doc/html/
v6.6/dev-tools/kmemleak.html

[112] The eBPF Foundation. "What is eBPF? An Introduction and Deep Dive into the
eBPF Technology." ebpf.io. Accessed: Apr. 24, 2024. [Online]. Available: https:
//ebpf.io/what-is-ebpf/

[113] The Linux Foundation. Signal(7) - Linux Man Page. (1993). Accessed: May 5,
2024. [Online]. Available: https://man7.org/linux/man- pages/man7/
signal.7.html

[114] The Linux Foundation. Getitimer(2) - Linux Man Page. (1993). Accessed: Apr. 26,
2024. [Online]. Available: https://man7.org/linux/man- pages/man2/
setitimer.2.html

https://kernel.org/doc/html/v6.6/dev-tools/kmemleak.html
https://kernel.org/doc/html/v6.6/dev-tools/kmemleak.html
https://ebpf.io/what-is-ebpf/
https://ebpf.io/what-is-ebpf/
https://man7.org/linux/man-pages/man7/signal.7.html
https://man7.org/linux/man-pages/man7/signal.7.html
https://man7.org/linux/man-pages/man2/setitimer.2.html
https://man7.org/linux/man-pages/man2/setitimer.2.html

	Abstract
	Acknowledgements
	Introduction
	Motivation and Problem Statement
	Objectives and Deliverables
	Intellectual Property Considerations
	Outline

	Background
	Real-Time Systems
	Linux
	Embedded Linux
	Scheduling
	Deadline Scheduling
	Real-Time Scheduling
	Completely Fair Scheduler
	Earliest Eligable Virtual Deadline First
	Kernel Threads & CPU Modes

	Real-Time Linux
	Co-Kernel
	Single-Kernel

	Target System
	Hardware
	Software
	Real-Time Constraints

	PREEMPT_RT
	Literature Review Methodology
	High-Level Overview
	Main Features
	Fully Preemptible Kernel
	High-Resolution Timers
	Threaded IRQs
	Priority Inheritance
	Preemptible RCU
	Full Tickless Operation and CPU isolation

	Current State and Mainlining
	Performance and Real-Time Capabilities
	Latency
	Determinism
	Throughput Degradation

	Tuning and Best Practices
	Workload Analysis
	Kernel Compile-Time Settings
	Policies, Priorities, and Throttling
	Measuring Time and Sleeping
	Managing Memory
	Broken Modules and Subsystems
	Loadable Kernel Modules

	Summary

	Methodology and Design
	Platforms and Tools
	Hardware
	Board Support Package
	Toolchain
	U-Boot
	Linux Kernel
	Root Filesystem
	Running the BSP

	Test Setups
	Comparative Setup Configurations
	Stressors

	Platform Baseline Tests
	High-Resolution Timers Verification
	Cyclictest
	Throughput Test
	Preemption Test
	Memory Lock Test

	Target System Analysis
	Real Time vs. Real Fast
	Periodic vs Aperiodic
	Memory Management
	Single-Threaded vs Multi-Threaded
	Requirements
	Aperiodic
	Periodic
	Transmitting

	Design of System Under Test
	Reception Pipeline
	Transmission Pipeline

	Output
	FPGA Design

	Target System Experiments
	Dynamic Memory Allocation
	Periodic Execution Test
	Shared Memory Interaction
	Generic Netlink Interface
	Kernel Thread Event Handling
	Full Test
	Special Considerations for Transmission Test

	Production Environment Test

	Summary

	Test Results and Recommendations
	Platform Baseline Tests
	High-Resolution Timers Verification
	Cyclictest
	Throughput Test
	Preemption Test
	Interrupt Latency
	Kernel Preemption Test

	Memory Lock Test
	Discussion

	Target System Tests
	Dynamic Memory Allocation
	Periodic Execution Test
	Shared Memory Test
	512 Byte Packets

	Generic Netlink Test
	Kernel Thread Event Handling
	Full Test RX
	Full Test TX
	Setup 1
	Setup 2
	Setup 3
	Comparison

	Production Environment Test

	Recommendations for the Target System
	If it Ain't Broke, Don't Fix it?
	Real-Time Scheduling Policies
	Memory
	kmemleak
	Preemption Model
	Modifications to the Legacy Application

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	BSP Configuration
	Crosstool-NG Configuration
	Linux Configuration
	Preemptible Mainline Kernel Configuration
	Linux-stable-rt Configuration

	Stressor Configurations
	Additional Result Data
	Baseline Tests
	High-Resolution Timers Verification
	Cyclictest
	Throughput Test
	Preemption Test
	Memory Lock Test

	Target System Tests
	Dynamic Allocation
	Periodic Thread Mechanisms
	Shared Memory Test
	Event-Driven vs Polled Kthread
	Generic Netlink Test
	Full Test RX
	Full Test TX
	Production Environment Test

	Miscellaneous
	Bibliography

