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Abstract 

 
Understanding the genetic variability and population dynamics of fungal species is essential for unraveling their 

evolutionary history and adaptive potential. This study investigates the genomic structure of Fomitopsis pinicola 

populations across western and eastern Norway to determine the extent of reproductive isolation and gene flow, 

identify genomic regions potentially important for adaptation, as well as explore potential introduction pathways 

after the last glaciation period. Double Digest Restriction-Site Associated DNA sequencing (ddRADseq) and 

bioinformatics were used to identify genomic variability among the samples, including single nucleotide 

polymorphisms (SNPs), followed by comparative genomic analyses including fixation index matrix (FST) and 

principal component analysis (PCA). The results revealed an overall shallow population structure indicating 

high levels of gene flow consistent with previous studies of saprophytic fungi in Fennoscandia. However, subtle 

genetic differences among certain populations suggest areas of reduced gene flow and potential reproductive 

isolation. Ancestry analyses aligned with the post-glacial history of the main host species, Picea abies, 

highlighting its importance and influence on F. pinicola population structure. Redundancy analysis (RDA) 

revealed possible adaptations to local climates, especially temperature and precipitation. These findings 

corroborate the role of environmental factors in shaping fungal population genetics. Additionally, Gene 

Ontology (GO) analysis identified alleles potentially important for local adaptation. Further research utilizing 

whole-genome sequencing could potentially identify additional genes under selection, while investigations into 

specific environmental stressors may reveal targeted adaptations to extreme climatic variables. Overall, this 

study advances our understanding of fungal population genetics, especially in relation to climatic variables, and 

underscores the importance of considering genomic variation in conservation and population management 

strategies. 

 

Key Words: Fomitopsis pinicola, local adaptation, population genomics, ddRADseq, adaptive divergence, gene 

flow, genotype-environment association, evolutionary history 
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1 Introduction 

In the realm of genomics, investigating the genetic basis of adaptation by studying population genomics 

and genotype-environment associations can provide indispensable insights into how organisms navigate the 

challenges posed by rapidly changing environmental landscapes and climate. Adaptive evolution, or adaptive 

divergence, refers to the development of new life forms from a common ancestor as a result of adaptations to 

environmental factors (Tusso et al., 2021). Adaptive divergence is a fundamental concept in evolutionary 

biology as it helps us understand how species evolve and adapt to different environments over time, contributing 

to biodiversity by generating new species and ecological niches. Deciphering how and why species evolve and 

diverge can inform conservation efforts and help protect and manage biodiversity more effectively. Including 

an evolutionary perspective in species distribution models can enhance projections by accounting for factors 

like dispersal, genetic adaptation, and population dynamics (Waldvogel et al., 2020). Fungi are optimal for 

studying adaptive evolution as they inhabit diverse habitats, have short generation times, and relatively small 

genomes. While many studies have been done on population genomics and allopatric isolation, more research 

focused on demographic history, responses to environmental factors, and adaptive evolution is needed (Zhang 

et al., 2022).  

Local adaptation is the result of different environments exerting divergent selective pressures, resulting in 

variation in allele frequencies at genetic loci important for adaptation (Tigano & Friesen, 2016). Local 

adaptation is dependent on gene flow and local selection. Low gene flow can bolster local adaptation by 

allowing certain genotypes to be maintained, resulting in variation of allele frequencies. However, if there is 

high gene flow between populations, gene swamping can occur, which is when the increased number of 

introduced alleles dilute the adaptive genotypes. Genetic drift, a stochastic process wherein allele frequencies 

fluctuate randomly over generations, can diminish local adaptation by reducing genetic variation. Genetic drift, 

which is particularly strong in small populations, may inadvertently increase maladapted genetic variants due 

to its random nature (Blanquart et al., 2013). Understanding the interplay between selection, gene flow and 

genetic drift in influencing genetic diversity is crucial in population and conservation genetics with the 

assumption that this variation indicates adaptive potential (Cortázar-Chinarro et al., 2017; Waldvogel et al., 

2020).  
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Large-scale genomic studies can enhance our comprehension of how species adapt and diversify. 

Comparing the genomes of populations within a species can identify any variation, broadening awareness of 

gene-specific and genome-wide effects of selection and shedding light on processes behind local adaptation 

(Gladieux et al., 2014). This process of isolating and identifying relevant genes related to selection or divergent 

adaptation between populations from next-generation sequencing has been termed “reverse-ecology” (Ellison 

et al., 2011) and has been used to improve predictions of how species will respond to global climate change and 

habitat fragmentation (Branco et al., 2017; Tusso et al., 2021). Understanding the basis of local adaptation is 

particularly important when planning restoration and reintroduction efforts because environmental stressors will 

affect individuals differently (Flanagan et al., 2018). 

Fungi found across wide geographic regions often display significant genetic diversity. This diversity arises 

from factors such as geographic isolation, limited migration, and genetic drift among populations. This genetic 

variation may not always manifest visibly in observable phenotypic traits (Haight et al., 2016). Fomitopsis 

pinicola is a saprotrophic polypore found throughout the northern hemisphere. It obtains its nutrients by 

breaking down dead or decaying wood thereby aiding in the decomposition of fallen trees and woody debris in 

forest ecosystems. This decomposition process helps recycle nutrients back into the soil, making them available 

for other organisms and contributing to overall forest health (Abrego, 2022).  F. pinicola has perennial fruiting 

bodies and a heterothallic sexual system, requiring different alleles for mating. Högberg et al.(1999) found F. 

pinicola to be highly diverse and adaptable, with little differentiation among populations. This genetic diversity 

results from the combination of genetic material from unrelated individuals, enhancing the adaptability and 

resilience of the population at both local and regional scales (Högberg et al., 1999).  

Polypores, such as F. pinicola, propagate by releasing millions of airborne basidiospores, or unicellular 

haploid spores (Kauserud et al., 2008). The spores are often released at once and travel predominantly via the 

wind, but also by animals, water and even insects (Lunde et al., 2023). While it has been shown that some fungi 

are capable of long-distance spore dispersal, many are limited by barriers such as oceans and mountains (Peay 

et al., 2010). A study done by Peay et al. (2012), measuring ectomycorrhizal dispersal found that dispersal 

limitation reduces immigration rates. Norway is intersected by the Scandinavian Mountain range (Ehlers et al., 

2011). Populations that are geographically isolated are often also reproductively isolated, encouraging divergent 

selection and specialization. Understanding how populations adapt to different ecological niches is important, 
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despite difficulties in determining the amount of gene flow and strength of selection (Tusso et al., 2021). 

Fragmentation can restrict gene flow and promote genetic drift, which can be observed in populations via 

changes in allele frequency. This could lead to lower genetic diversity and increased genetic differentiation 

between populations, as has been observed in certain fungi (Sønstebø et al., 2022).  

Genotype-environment association studies are used to identify genetic variants that are associated with 

specific environmental factors or conditions. These studies analyze the relationship between genetic variations 

and environmental variables, uncovering how genetic factors contribute to an organism's ability to adapt to 

different environments (Branco et al., 2017). A study conducted by Branco et al. (2017), revealed two delineated 

populations of the species Suillus brevipes, one from a coastal environment and one an inland, mountainous 

environment. The populations had very low divergence and showed positive selection. The analysis revealed an 

adaptive gene to salt tolerance as a result from different abiotic environmental conditions. Another study 

conducted by Zhang et al. (2022), looked at single nucleotide polymorphisms (SNPs) of the species Lentinula 

edodes and found three distinct subgroups. Each subgroup had a different phenotypic and temperature response 

correlating to the geographical distribution. The question arises whether there is also genetic differentiation 

between populations of F. pinicola in other regions of the genome previously unstudied. If so, what are the 

genetic advantages resulting from the different environments? 

Host species of F. pinicola include both hardwood and softwood species such as the genus Pinus, Picea, 

Betula, Alnus, Populus, Pseudotsuga, Larix, Acer, and Tsuga, with Picea abies being the most common host 

species in Norway (Haight et al., 2016; Ryvarden & Melo, 2017). Understanding species delimitation in the 

context of ecological and evolutionary processes emphasizes the role of shared evolutionary history and 

environmental factors in shaping species boundaries (Stengel et al., 2022). In general, to understand the 

evolutionary history and reconstruct possible introduction pathways after the last glaciation, this wide range of 

host species must be accounted for (Westergaard et al., 2019). To further complicate matters, the postglacial 

history of species migration in Norway is a debated topic that includes several different theories and timelines. 

The complete disappearance of the Fenno-Scandinavian ice sheet occurred approximately 10.3 to 9.9 

calibrated thousand years before the present (cal ka BP) (Alsos et al., 2022). The maximum extent of the Fenno-

Scandinavian ice sheet was not reached simultaneously in Norway, and it is believed there have been several 

fluctuations of the glacier’s extent during that time (Ehlers et al., 2011; Hewitt, 2004). Pollen analyses and 
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sedimentary ancient DNA show sparse tundra vegetation around 14,600 years ago, with Betula emerging 12 to 

10 cal ka BP. A significant botanical transition unfolded around 7.8 cal ka BP with the emergence of Alnus 

incana, marking the final arboreal species to establish in the region. Concurrently, pollen analyses indicate the 

expansion of Pinus and Betula forests during this period (Alsos et al., 2022).   

Recurrent climatic cycles drove significant population movements in plant species, influencing genetic 

structures (Li et al., 2022). Picia abies has pronounced latitudinal patterns in both genetic and phenotypic 

variation which indicates a strong association between population structure and local adaptation. Adaptation 

aligns with environmental factors and historical recolonization routes along these environmental gradients (Tiret 

et al., 2022). It should be recognized that the present genetic diversity distribution in P. abies is the outcome of 

intricate interplay between historical and recent demographic events. This historical narrative encompasses 

ancient divergences, recurrent hybridization incidents, significant bottlenecks, and population migrations (Chen 

et al., 2019). 

Theories include P. abies migrations from eastern (Sweden), northern (Russia) or southern (Baltics) 

populations (Li et al., 2022; Nota et al., 2022). Historical fossil pollen records indicate P. abies populations in 

northern Norway have a shallow population structure, possibly due to colonization from a glacial refugium. The 

colonization path appears to expand to the west and northwest, as the Fenno-Scandinavian ice sheet retreated 

(Tollefsrud et al., 2008, 2009, 2015). The existence of glacial refugia, small, ice-free areas, has been a much-

debated topic in Norway for over 100 years (Ehlers et al., 2011). Westergaard postulated postglacial 

immigration of an alpine sedge species from North America (Westergaard et al., 2019). Parducci et al. (2012), 

theorized that there were ice corridors along the west coast of Norway during the Late Weichselian1. Haight et 

al. (2016) also hypothesized that the North American population of F. pinicola was older, as it had the greatest 

genetic diversity and largest divergence. A population genomic analysis will help understand the dispersal 

history of F. pinicola within Norway. Knowledge of historic isolation and migration is important for the 

prediction of future events and understanding biodiversity dynamics (Gillespie & Roderick, 2014). 

The populations structure of F. pinicola has been studied for decades. A study done by Högberg et al. 

(1999), concluded that the gene pool of F. pinicola showed little or no differentiation, even over large 

 
1 Weichselian glaciation refers specifically to the area over Europe and involves the Fenno-Scandinavian ice sheet which 

once covered Norway (Ehlers et al., 2011). 
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geographical distances. The study sampled populations from Sweden, Russia, and Lithuania. The study 

postulated that it was unlikely that spore dispersal could reach hundreds of kilometers, therefore, the low genetic 

differentiation was due to a continuous linking of populations at both local and regional scales. It is currently 

believed that F. pinicola populations in Europe all belong to one intersterility group (Haight et al., 2016). Using 

a reduced-representation sequencing method to provide a more in-depth comparison of the genome could reveal 

any differences that were missed when only comparing a small selection of the genome. Double Digest 

Restriction-Site Associated DNA sequencing (ddRADseq), a cost-effective genomic analysis method, employs 

two restriction enzymes to target specific DNA regions by size. This technique generates sequence-specific 

libraries with barcoded adaptors for sample multiplexing, enabling uniform read coverage across genetic regions 

(Peterson et al., 2012). By reducing sequencing costs and improving efficiency, ddRADseq facilitates a more 

comprehensive exploration of the F. pinicola genome than the previous studies mentioned. 

This study will explore differences in the genomic structure of F. pinicola, revealing if and to what extent 

the populations from western and eastern Norway are reproductively isolated. An understanding of genomic 

variability between populations will reveal more about the population structure and if there is gene flow between 

populations. Environmental association studies will allow genomic regions potentially important for adaptation 

to be identified. Lastly, the results of the analysis will shed light on introduction pathways after the last 

glaciation period and how this has influenced adaptation and demographic history. This research is important 

for conservation management efforts, as adaptive genetic variation can inform models of species’ genetic 

evolutionary potential as it relates to climate change and other selective pressures (Rochat et al., 2021; 

Waldvogel et al., 2020). 
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2 Materials and Methods 

2.1 Study area and Sampling Design 

The samples used in this study were collected as part of a study done by Kauserud et al. (2024), in which 

F. pinicola samples were collected from nine geographic populations across Norway that represent different 

climatic conditions and substrates (Figure 1). At each 200 m2 location, four sporocarps were collected from 

dead spruce (Picea abies) logs and four from dead alder (Alnus incana) logs. Samples were cultured by the 

University of Oslo and provided on petri dishes and stored at 20° C. Mycelium from each sample was extracted 

from the agar using a disposable scraping tool, placed in a 1.5ml Eppendorf tube and then stored at -20° C. 

 

Figure 1 Sampling locations of the studied Fomitopsis pinicola populations collected in Norway. Eight samples 

were taken from each location, four from Picia abies logs and four from Alnus incana logs. Map created in 

QGIS v. 3.26.3 (QGIS Development Team, 2022. Geographic Information System. Open Source Geospatial 

Foundation Project. http://qgis.osgeo.org) 
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2.2 DNA Extraction 

Genomic DNA was extracted using the DNeasy Plant Pro Kit (Qiagen) as per the manufacturer’s 

instructions with the following modifications: To better lyse the cells of the mycelium, the weighed samples 

were first manually cut using small laboratory scissors inside of the test tube. Small glass beads were used to 

mechanically disrupt the mycelium, as they are better suited to lyse the mycelium than the single large bead 

provided with the DNeasy Plant Pro Kit (Qiagen). After the CD1 lysing solution was added, the samples were 

heated at 65° C for 10 minutes at 500 RPM. Samples were then vortexed at the maximum speed of 2700 RPM 

for 10 minutes. Also, 100μl of Buffer EB was added in step 16. Samples were stored at -20° C. 

2.3 Double Digest Restriction Associated DNA (ddRAD) Sequencing 

Samples were sequenced using the ddRAD protocol developed by Vivian-Smith & Sønstebø (2017). 

Single stranded oligos were annealed into adaptors according to the protocol and working stocks were prepared. 

A NanoDrop One (Thermo Fisher Scientific, Waltham MA, USA) spectrophotometer was used to quantify 

genomic DNA and determine 260/280 nm ratios. Samples were prepared and diluted with quantities of 200 ng 

in 40 μl of nuclease free H2O. Unidirectional digestion-ligation of the samples was performed according to the 

protocol with the following exceptions: The master mix used in the digestion-ligation was created using 0.5 μl 

of 100 U T4 DNA ligase (NEB) instead of 1 μl. The PstI endonuclease was used with the A-adaptor and the 

MspI endonuclease was used with the P1-adaptor. The P1-adaptor also contains a divergent Y-adaptor with 

short tags that allows for increased multiplexing. To create a unique barcode for each of the 72 samples, 24 of 

the forward PstI adapters were used along with three of the reverse MspI adapters. The unidirectional digestion-

ligation step was performed with a digestion time of 2 hours.  

Barcoded samples were pooled into three portions based on the three reverse adapters. Size selection was 

performed using the DNA electrophoresis protocol by Thermo Fisher Scientific and the E-Gel™ Power Snap 

electrophoresis device (Thermo Fisher Scientific). Three sequencing experiments were conducted, and the 

results of each run combined. For two of the sequence runs, a 400-base-read library size was selected with the 

target library peak of 480bp. The third sequencing run selected for a 200-base-read library size with the target 

library peak of 270bp. The size selected library was cleaned using the AMPure XP bead-based reagent 
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(Beckman Coulter, Inc). The library was amplified to produce enough genetic material and increase the number 

of fragments with adaptors. The amplification reactions were prepared for PCR using 25 μl DNA from the 

purified, size selected sample, 100 μl Platinum™ PCR SuperMix High Fidelity (Thermo Fisher Scientific), and 

5 μl primer mix. The sample was then distributed between two 1.5ml Eppendorf tubes, each containing 65 μl. 

Amplification was done using 14-18 cycles, depending on the sequencing experiment. 

The amplified ddRAD library was quantified using The Ion Library TaqMan™ Quantitation Kit (Thermo 

Fisher Scientific). Serial dilutions of the library were prepared according to the protocol using the recommended 

concentration of 50 pM. The ddRAD libraries were prepared for sequencing using the Ion Chef™ System 

(Thermo Fisher Scientific). Immediately following the run, the chip was placed in the Ion GeneStudio™ S5 

Semiconductor Sequencer (Thermo Fisher Scientific) for sequencing. 

2.4 Read Filtering and Variant Calling 

The raw reads were demultiplexed using Cutadapt v.4.6 (Martin, 2011) with a maximum error rate of 1 

error for every adapter. This process creates a separate file for each individual sample. The reads were then 

mapped to the NCBI reference genome (https://www.ncbi.nlm.nih.gov/nuccore/MPVS00000000.1) for F. 

pinicola using Bowtie2 v.2.5.3 (Langmead & Salzberg, 2012). An index file was created from the reference 

genome which allows Bowtie2 to efficiently and quickly search for matches between reads from the sequencing 

data and the reference genome (Langmead & Salzberg, 2012). Mapped reads were saved in sequence alignment 

map (SAM) format with corresponding log files. SAMtools v.1.20 (Danecek et al., 2021) was used to sort the 

files and save them as compressed binary alignment map (BAM) files. Variants were called using the genomic 

variant call format (GVCF) workflow in the Genome Analysis Tool Kit, GATK v.4.5.0.0 (Poplin et al., 2018). 

The GVCF records information for all sites, even if there is not a variant call located there. This allows for an 

accurate estimation of the confidence in whether the sites are homozygous, and this estimate is generated by the 

HaplotypeCaller's built-in reference model. Low quality variants were removed with GATK using the following 

command: QD<2.0||FS>60.0||MQ<40.0||MQRankSum< -12.5||ReadPosRankSum<-8.0" --filter-name 

"expression_fail”. Further filtering of variants and individuals was performed with VCFtools v0.1.16 (Danecek 

et al., 2011) to remove individual samples with high level of missing data (>70%) and SNPs with a minimum 

https://www.ncbi.nlm.nih.gov/nuccore/MPVS00000000.1
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allele count greater than 2 using the “–mac” function. During this process, any genetic variation such as SNPs 

or insertions or deletions are identified in each individual sample.  

2.5 Genetic Diversity and Divergence 

Summary statistics, such as the expected and observed heterozygosity and fixation index matrix (FST), 

were calculated for each location using the R (R Core Team, 2022) package PopGenReport v.3.1 (Adamack & 

Gruber, 2014). Nucleotide diversity (π) is used to measure the degree of polymorphism within a population, 

with higher values suggesting greater genetic variability. The method introduced by Nei and Li was used (Nei 

& Li, 1979). Tajima's D compares the number of nucleotide differences between pairs of sequences and the 

number of segregating sites. The results indicate if the observed genetic variation in a population is more or less 

than what would be expected under a neutral model of evolution. A value of 0 indicates the observed variation 

the same as expected, with no evidence of selection. Positive values suggest a lack of rare genetic variants 

compared to what would be expected, possibly indicating balancing selection or a genetically stable population. 

Negative values suggest an excess of rare alleles and can indicate a recent selective sweep, population expansion 

after a recent bottleneck, or balancing selection in which one allele is favored thus reducing the genetic diversity 

(Tajima, 1989). Nucleotide diversity and Tajima’s D were calculated using the R package PopGenome v.2.7.7 

(Pfeifer et al., 2014). PopGenome was also used to plot the nucleotide diversity values for each population using 

a locally weighted scatterplot smoothing (LOESS) function to better show the relationship between populations. 

Tajima’s D and nucleotide diversity were calculated within 10kb windows, with a step size of 7kb.  

To assess population structure between the nine study locations, a principal component analysis (PCA) 

of nuclear genome variation was performed, as well as pairwise FST and an analysis of genetic admixture. The 

PCA was conducted using the R package SNPRelate v.1.36.1 (Zheng et al., 2012). The pairwise FST estimates 

the genetic differentiation between each location and was calculated using a custom script in R (Supplementary 

Figure S2) using the packages vcfR v.1.15.0 (Knaus & Grünwald, 2017), stringr v.1.5.1 (Wickham, 2023), and 

KRIS v.1.1.6 (Chaichoompu, 2018). 

The FST was converted into a genetic distance matrix using (FST/(1-FST)), and a heat map was visualized 

using the R package lattice v.0.22-5 (Sarkar, 2008). The ancestry for each sample was estimated using 

Admixture v.1.3.0 (Alexander & Lange, 2011). Cross validation error tests were calculated for the number of 
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ancestral populations (K) ranging from 1-10 (Supplementary Figure S4). Results from this analysis were 

visualized using R and QGIS v. 3.26.3 (QGIS Development Team, 2022. Geographic Information System. Open 

Source Geospatial Foundation Project. http://qgis.osgeo.org). 

2.6 Genotype-Environment Associations 

A Redundancy Analysis (RDA) was performed to correlate the SNP dataset to environmental variables. 

The environmental metadata was downloaded from Worldclim v.2.1 (http://www.worldclim.org) (Fick & 

Hijmans, 2017) and includes 19 standard bioclimatic variables downloaded at a resolution of 30 seconds. The 

Point Sampling Tool in QGIS (QGIS Development Team, 2022) was used to extract the Worldclim data from 

each of the nine sampling locations. To investigate and reduce correlation among the climatic variables, the R 

package psych v.2.4.1 (Revelle, 2024) was used. All variables with a Spearman's correlation coefficient (|ρ|) 

>0.7 were excluded (Supplementary Figure S5), resulting in a selection of four climatic variables in the RDA 

analysis: annual mean temperature (BIO1), isothermality (BIO3), mean temperature of wettest quarter (BIO8), 

and annual precipitation (BIO12) (Supplementary Table S3). This method allows any outlier loci that exhibit a 

strong association to environmental conditions to be easily identified.  

By constraining the analysis to environmental factors, RDA facilitates the detection of genetic outliers. 

These outliers are more likely to have undergone selection pressure, distinguishing them from loci primarily 

affected by other evolutionary mechanisms, like genetic drift and gene flow. This method has demonstrated a 

low incidence of false-positive signals of selection in populations with a shallow structure (Forester et al., 2018). 

The RDA was preformed using the R package Vegan R v.2.6-4 (Oksanen et al., 2022). An analysis of variance 

(ANOVA) on the fitted RDA model was done to test the significance of each environmental variable. 

Multicollinearity was also tested using the square root of the variance inflation factors (VIF). The resulting data 

frame of 126 candidate SNPs and their correlation with our four environmental predictors was downloaded to 

be used for further analysis. A correlation matrix was conducted using the R package Hmisc v.5.1-2 (Harrell 

Jr., 2023) to investigate the dependence between all 19 bioclimatic environmental variables. The result is a table 

containing the spearman correlation coefficients between each variable. The R package corrplot v.0.92 (Wei et 

al., 2021) was used to visualize the matrix (Supplementary Figure S8). 
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2.7 Annotation of Loci Under Selection 

The SNPs of interest from the RDA analysis used the NCBI GenBank assembly, these contigs were 

matched to the JGI genome (https://mycocosm.jgi.doe.gov/Fompi3/Fompi3.home.html) using a custom BLAST 

program. The JGI scaffolds were then mapped to a list of known protein ID’s and gene ontology (GO) terms 

downloaded from the JGI gene catalog using the Intersect tool from Bedtools v.2.31.0 (Quinlan & Hall, 2010). 

The R package topGO v.2.50.0 (Alexa & Rahnenführer, 2023) was used to perform a Gene Ontology (GO) 

analysis, a method used to interpret large sets of genes or proteins in terms of their associated biological 

processes, molecular functions, and cellular components (Alexa & Rahnenführer, 2023). A Fisher’s exact test 

as well as a weighted algorithm was used to determine the significance of each GO term. The analysis reveals 

which biological processes or molecular functions are overrepresented or enriched compared to what would be 

expected by chance. The R package Rgraphviz v.4.3 (Hansen et al., 2023) was used to plot a subgraph of the 

most significant GO terms. 
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3 Results 

3.1 Genetic Diversity 

After read filtering and variant calling, 10,964 sites were identified as SNPs or as having genetic variation. 

The nucleotide diversity of each population ranged from 0.829 (Loen) to 1.219 (Orkanger). Mean expected 

heterozygosity (He) was 0.114 and ranged from 0.088 (Loen) to 0.132 (Voss). It should be noted that the 

sequencing reads from Loen were of low quality and could be the cause for low nucleotide diversity and He. 

The mean Tajima’s D was 0.308 and ranged from -0.241(Vinterbro) to 0.597 (Valdres) (Supplementary Table 

S2). The nucleotide diversity values for each population, plotted using a locally weighted scatterplot smoothing 

(LOESS) function, reveal that the populations are relatively similar, although slight differences in nucleotide 

diversity indicate there may be factors contributing to genetic differentiation (Figure 2). Expected 

heterozygosity was lower than observed for all populations (Supplementary Figure S1).  

 

Figure 2 Nucleotide diversity of each of the populations using locally weighted scatterplot smoothing (LOESS) 

function across 10kb windows, with a step size of 7kb. 

3.2 Genetic Divergence 

The SNP-based PCA analysis calculated 32 principal components from the original 10,964 genetic 

variants. The first three axes explain 7.1%, 4.9% and 4.1% of the variance, respectively. The analysis clustered 

most samples together, while a few samples from Brekke, Voss, Haltdalen and Valdres populations are more 

distant (Figure 3). The PCA results were supported by the pairwise FST estimates with Brekke, Voss, Haltdalen 
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and Valdres populations showing moderately high values (Figure 4). Additionally, Loen had relatively high FST 

values which could be due to poor quality of the DNA, consequently resulting in a low number of reads.  

Figure 3 Principal component analysis (PCA) of the genomic variation of sampled Fomitopsis pinicola 

populations. The first two principal components (Axis 1 and 2) with percentage of variance explained (a),  Axis 

1 and 3 are shown along with percentage of variation explained (b). 

 

Figure 4 Heat map of pairwise FST/(1-FST) values between populations of Fomitopsis pinicola. Dark color with 

high FST values indicates a higher level of genetic differentiation. 
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An analysis of the population structure of F. pinicola using Admixture revealed the lowest cross-

validation error was obtained for K = 1 (CV =0.447), suggesting a very shallow population structure. The cross-

validation error rates for the other ancestry coefficients are as follows; K=2 (CV=0.462), K=3 (CV=0.4798), 

and K=4 (CV= 0.4872). For K=2, Voss and Valdres appear to be genetically similar with admixture of the 

Beverfjorden, Orkanger and Haltdalen populations. (Figure 5a). For K=3, Haltdalen and Valdres are modeled 

to show ancestral similarities. At K=4, Brekke, Voss and Valdres appear to have unique ancestries (Figure 5b).  

 

Figure 5 Admixture analysis of Fomitopsis pinicola. The mean individual membership ancestry coefficient per 

population is plotted on the map for K = 2 (a), K = 3 (b) and, K = 4 (c). Individual membership is plotted for 

K = 2–4 with populations also defined (d). 
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3.3 Genotype-Environment Associations 

A redundancy analysis (RDA), constricting the SNP dataset to environmental variables revealed possible 

adaptations to local climates. The redundancy analysis revealed a significant relationship between the genetic 

variation captured by the SNP dataset and the environmental variables (F=1.9021, p<0.001). 10.2% of the total 

variance in the genetic data is explained by the environmental predictors included in the analysis (R2=0.102). 

126 candidate SNPs were identified as having a significant association with one of the four environmental 

predictors. Genetic variation from Brekke, Voss, Haltdalen and Valdres appear to have more variation explained 

from the environmental variables than the other populations, visualized in Figure 6. The redundancy analysis 

of axis 1 and axis 3 also reveals the Orkanger population as having a stronger relationship with the 

environmental variables. The ANOVA results indicate all four environmental variables are significant 

(Supplementary Table S5) and the results of the multicollinearity test, as indicated by the square root of the 

variance inflation factors (VIF), were consistently below the threshold value of 2, suggesting low levels of 

collinearity among the predictor variables (Supplementary Table S6). Figure 7 visually shows there are more 

SNPs associated with annual precipitation (47 SNPs) and the mean annual temperature (58 SNPs) then with 

isotherm (12 SNPs) or the mean temperature during the wettest quarter (9 SNPs).  

Figure 6 Redundancy analyses of the SNP variation explained by environmental variables. The points 

indicate the 22,191 alleles of F. Pinicola (colored by geographic region) inferred in the RDA analyses and 

projected along the first two axes RDA1 and RDA2, which explain 34.26% and 29.22% of the variation 

respectively (a). Redundancy analysis of the second two axes RDA1 and RDA 3, which explain 34.26% and 

25.36% of the variation respectively (b). 
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Figure 7 Redundancy analysis visualizing the association between candidate SNPs and environmental 

predictors. The color of each point corresponds to the predictor that the SNP is most strongly correlated with. 

The relationship between axis 1 and 2 (a), axis 1 and 3 (b), and axis 3 and 4 (c) are shown. 

3.4 Annotation of Loci Under Selection 

The results of the gene ontology (GO) analysis are summarized in Tables 1 and 2, and Figure 8. Tables 

1 and 2 list the most significant GO terms based on the classic and weighted tests, respectively. The most 

significant terms are related to regulation of biological processes, nutrient uptake or cell signaling. Both the 

classic and weighted tests reveal the regulation of nitrogen utilization as the most significant term. Figure 8 is a 

visual representation of the classic GO results. The boxes indicate the 15 most significant terms with the box 

color representing the relative significance, ranging from dark red (most significant) to light yellow (least 

significant). The plot helps to better understand which of the significant GO terms are of interest, especially as 

they relate to the less significant terms.   
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Table 1 Significance of GO terms ranked from lowest P value from the classic Fisher's exact test. Included are 

the GO ID, the term (a brief annotation of the process or function), the number of genes annotated to each GO 

term, the number of significant genes for each term and the expected number of genes. 

GO.ID Term Annotated Significant Expected P value 

(classic) 

0006808 regulation of nitrogen utilization 14 5 0.91 0.0013 

0019740 nitrogen utilization 14 5 0.91 0.0013 

0032101 regulation of response to external stimulus 14 5 0.91 0.0013 

0032104 regulation of response to extracellular 

stimulus  

14 5 0.91 0.0013 

0032107 regulation of response to nutrient levels 14 5 0.91 0.0013 

0009605 response to external stimulus 17 5 1.11 0.0035 

0009991 response to extracellular stimulus 17 5 1.11 0.0035 

0031667 response to nutrient levels 17 5 1.11 0.0035 

0045454 cell redox homeostasis 12 4 0.78 0.0056 

0048583 regulation of response to stimulus 29 6 1.89 0.0092 

0019725 cellular homeostasis 14 4 0.91 0.0102 

0042592 homeostatic process 18 4 1.17 0.0255 

0065008 regulation of biological quality 20 4 1.3 0.0366 

 

 

Table 2 Significance of GO terms ranked from lowest P value from the weighted algorithm. Included are the 

GO ID, the term (a brief annotation of the process or function), the number of genes annotated to each GO 

term, the number of significant genes for each term and the expected number of genes. 

GO.ID Term Annotated Significant Expected P value 

(weighted) 

0006808 regulation of nitrogen utilization 14 5 0.91 0.0013 

0045454 cell redox homeostasis 12 4 0.78 0.0056 

0006289 nucleotide-excision repair 6 2 0.39 0.053 

0009401 phosphoenolpyruvate-dependent sugar 

phosphotransferase system 

1 1 0.07 0.0651 

0042318 penicillin biosynthetic process 1 1 0.07 0.0651 
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Figure 8 The subgraph induced by the top 15 GO terms identified by the classic algorithm for scoring GO terms 

for enrichment. Boxes indicate the 15 most significant terms. Box color represents the relative significance, 

ranging from dark red (most significant) to light yellow (least significant). The 13 most significant GO terms 

are enlarged for readability.  
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4 Discussion 

4.1 Genetic Diversity  

The presence of SNPs suggests the existence of genetic diversity, however the observed range of 

nucleotide diversity and expected heterozygosity across populations suggests variability in the extent of this 

diversity. This variability could be influenced by factors such as population size, historical demographic events, 

or selection pressures acting on different populations (Cortázar-Chinarro et al., 2017; Olson-Manning et al., 

2012). The higher nucleotide diversity values suggest greater genetic variability, especially in the Orkanger, 

Voss, Valdres, Haltdalen and Vinterbro populations. Expected heterozygosity (He) was low for all populations 

which would suggest lower genetic diversity. In ddRAD sequencing, the genome is digested with restriction 

enzymes at specific recognition sites to generate fragments. If there are mutations present at these cutting sites, 

it can interfere with the efficiency of the digestion process, leading to incomplete digestion or altered fragment 

sizes. As a result, alleles present at mutated cutting sites may be underrepresented or missed entirely in the 

sequencing data, leading to an underestimation of heterozygosity (Magbanua et al., 2023). 

Additionally, the Tajima’s D results were slightly positive for six of the populations, which indicates a 

lack of rare genetic variants, possibly due to balancing selection or a stable population. The Vinterbro, 

Beverfjorden, and Orkanger populations had negative values of Tajima’s D, indicating an excess of rare alleles 

or low frequency of polymorphism, which could be an indication of a recent expansion or bottleneck (Tajima, 

1989). Tajima’s D is sensitive to sample size (Larsson et al., 2013) and this should be considered when 

interpreting the results.  

4.2 Genetic Divergence 

The population genetic structure of F. pinicola was analyzed using methods such as principal component 

analysis, FST, and by using a model-based clustering algorithm in the program Admixture. In general, the results 

agree with earlier studies (Högberg et al., 1999; Kauserud & Schumacher, 2002; Sønstebø et al., 2022) in that 

the population genetic structure is generally shallow in wood decay fungi. Conversely, this study found that 

there is some polymorphism between certain populations, which could indicate limited gene flow and 

reproductive isolation. This aligns with the concept that genetic drift can drive genetic differentiation in fungal 
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populations, especially if the populations are small and isolated (Kauserud & Schumacher, 2002). These results 

diverge from the findings of previous studies that found F. pinicola to display a high amount of genetic diversity 

both within and between populations, which would indicate that populations are not reproductively isolated 

(Högberg et al., 1999). The results of the RDA suggest that genetic variation has a stronger association when 

constrained to climatic variables and that selection for these environmental factors is driving divergence. 

While the results do not indicate two distinct populations of Fomitopsis pinicola, one in eastern Norway 

and one in western Norway, as hypothesized, they do indicate that some populations show genetic divergence. 

For example, the population in Brekke was divergent in the PCA and the FST analysis. The PCA also clearly 

separated the Voss and the Haltdalen and to some extent the Valdres populations. It should also be noted that 

Loen also exhibited higher FST values along with reduced genetic variation. This population is isolated along 

Lake Loenvatnet and encircled by very high mountains, suggesting that gene flow may be restricted (Sønstebø, 

personal communication, May 5, 2024). However, the DNA quality of the samples from this population was 

reduced, resulting in lower number of reads and reduced mapping which may have influenced the results. 

Investigating the geography of the other locations could reveal geographic or human induced factors that could 

cause restricted gene flow.  

The results of the admixture analysis also suggest that there was no population structure, implying high 

levels of gene flow and genetic homogeneity. This could be an indication of ongoing connectivity between 

previously isolated populations although this cannot be determined by these results alone. It is worth noting that 

the results of K2-K4 do correspond to the results of the PCA and FST analysis in that the Brekke, Voss, Valdres 

and Haltdalen populations are genetically unique for each of these three ancestral coefficients. Also, the results 

of the K2-K4 analysis reveal that there is greater admixture in the northern populations, which aligns with the 

colonization path of P. abies after the Fenno-Scandinavian ice sheet retreated (Parducci et al., 2012; Tollefsrud 

et al., 2015). This could indicate that F. pinicola expanded to the north along with P. abies. It suggests that even 

though F. pinicola can grow on wood from many different trees it may be dependent on populations of P. abies 

for building enough inoculum to form a population (Sønstebø, personal communication, May 5, 2024). This 

may be the reason why the species is less abundant on the western part of Norway, where P. abies is also less 

prevalent than in eastern Norway, as observed in sightings reported by Artskart (Figure 9) (Artsdatabanken, 

2022). 
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Figure 9 Maps showing where Fomitopsis pinicola (a) and Picia abies (b) have been observed and registered 

(blue points). Visually, there are less sightings on the west coast of Norway when compared to eastern Norway. 

Images from Artskart (Artsdatabanken, 2022). 

4.3 Genotype-Environment Associations  

This study also identified genomic regions significantly associated with four climatic variables. The 

results of the RDA indicate more structure than the PCA, suggesting genetic variation has a stronger association 

or response to these environmental factors. This echoes previous findings that environmental factors play a role 

in shaping fungal population genetic structure (Branco et al., 2017; Sønstebø et al., 2022). This type of 

ecological association helps to reveal environmental adaptation by detecting the alleles that hold statistical 

associations with these variables and can potentially indicate mechanisms for natural selection (Branco et al., 

2017). The populations that had the most variation explained by the environmental variables were once again 

Brekke, Voss, Haltdalen, Valdres and Orkanger. 

Both abiotic and biotic factors can eventually lead to adaptation and divergence in local populations, 

which influences genetic diversity, as fungi utilize complex signaling to sense and respond to external stressors 

(Bahn et al., 2007). The results of the RDA found SNPs associated with annual mean temperature, isothermality, 

mean temperature of wettest quarter, and annual precipitation. Adaptations to temperature are well documented 

in fungi (Branco et al., 2017; Mboup et al., 2012). Studies on Neurospora crassa have also highlighted the 

importance of temperature and latitude in driving local adaptation (Ellison et al., 2011; Gladieux et al., 2014), 

further underscoring the role of environmental variables in shaping fungal genetic diversity and distribution 
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patterns. It has also been found that temperature and moisture are important for fungal growth (Maurice et al., 

2011) and moisture stress, such as drought or freezing, is a dominant regulator of competitive interactions 

among fungal species (Crowther et al., 2014).  

Kauserud et al. (2024), which utilized the same samples of F. pinicola used in this study, conducted in 

vitro growth experiments to assess temperature and moisture dependent growth and decay rates. The results 

found a significant response to temperature dependent growth between populations grown at the highest (34°C) 

in vitro temperature, however they did not detect distinct variations between populations. Valdres and Haltdalen 

specifically showed large variation in growth as a response to temperature. These populations also exhibited 

genomic variation in this study. Also, the association between water potential and growth rate is not consistent 

across all populations and the significant results are dependent on which population is being considered. This 

study suggests that different populations may have adapted differently to water availability, leading to varying 

responses in growth rate under drought stress conditions or certain temperatures. Kauserud et al. (2024) also 

suggest that the variation could be due to random genetic changes over time. Overall, understanding the intricate 

interplay between temperature, precipitation, and other environmental factors is crucial for interpreting the 

mechanisms driving fungal adaptations and possibly explaining genetic divergence.  

4.4 Loci Under Selection 

Research has shown that genes responsible for regulating growth and fundamental metabolic processes 

exhibit consistent expression patterns across species, whereas genes involved in responding to stimuli, such as 

stress and effectors, are more likely to change (Gladieux et al., 2014). In line with these findings, the results of 

the gene ontology analysis revealed that the genes having to do with the regulation of response to nutrient levels, 

external stimulus, extracellular stimulus, and response to nutrient levels were significantly enriched among the 

genes in regions where signs of selection were identified. The GO analysis also revealed five significant genes 

that were associated with the regulation of nitrogen utilization for both the Fisher’s exact test and the weighted 

analysis. Saprophytic fungi obtain nutrients from dead or decaying plant biomass, which is primarily rich in 

carbon, but often deficient in nitrogen. To overcome nitrogen limitations, fungi scavenge nitrogen from diverse 

sources, both inorganic and organic. This process involves activating various transporters and metabolic 

enzymes, which are regulated by the fungal cell to ensure their production matches nitrogen utilization needs 
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(Huberman et al., 2021). There could be other abiotic or biotic factors that explain the variation. Further research 

could be done on the association of other variables, such as nutrient availability or pH, on adaptive genes.  

Some organisms have been shown to exhibit a broad, unspecific transcriptional response to environmental 

stress. This response involves the regulation of numerous genes, many of which may not have direct functional 

relevance to the specific stressor. In yeasts, specifically, this is known as a core stress response and can provide 

protection against various environmental challenges (López-Maury et al., 2008). Consequently, in the context 

of the gene ontology analysis, the significant enrichment of terms related to nutrient uptake and signaling 

pathways could reflect this general stress response strategy. These pathways may hold significance in 

coordinating cellular responses to environmental fluctuations, helping the organism adapt to and survive under 

challenging conditions. This study examined environmental factors such as mean temperature and annual 

precipitation. Future investigations into specific environmental stressors may reveal targeted adaptations to 

extreme climatic variables. Using ddRADseq allows for genome wide coverage, an improvement from past 

studies that compared only a few genes in comparative genomic studies, though it is still a reduced 

representation. Utilizing whole-genome sequencing would allow for comprehensive population genomic studies 

and identify more genes under selection (Yan et al., 2023). 
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5 Conclusion 

This study investigated the genetic diversity, divergence, genotype-environment associations, and loci 

under selection in populations of Fomitopsis pinicola across eastern and western Norway. The application of 

ddRADseq has enabled a more extensive comparison of the F. pinicola genome than previous studies. 

Variability was observed in genetic diversity across populations, with certain regions displaying higher 

nucleotide diversity and expected heterozygosity, potentially influenced by factors such as population size, 

demographic history, and selection pressures. Additionally, Tajima’s D analysis indicated potential signatures 

of balancing selection or recent population expansions, highlighting the dynamic nature of population genetics 

in F. pinicola. 

The results reveal an overall shallow population structure and high levels of gene flow, yet genetic 

differences were found between some populations suggesting limited gene flow and localized reproductive 

isolation. Environmental association analyses identified genomic regions significantly associated with climatic 

variables, indicating the role of environmental factors in driving genetic divergence and adaptation. A gene 

ontology analysis revealed enrichment of genes related to nutrient uptake and signaling pathways, suggesting 

adaptive responses to environmental stressors. Further research utilizing whole-genome sequencing could 

identify additional genes under selection. Investigations into the effect of more specific environmental stressors, 

both using bioinformatics or in vitro, could reveal targeted adaptations to extreme climatic variables. Overall, 

the findings contribute to a deeper understanding of fungal population genetics and highlight the importance of 

considering both genetic and environmental factors in conservation and management strategies.  
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7  List of Figures and Tables 

Figures 

Number Page Description 

1 11 Sampling locations of the studied Fomitopsis pinicola populations collected in 

Norway. Eight samples were taken from each location, four from Picia abies logs 

and four from Alnus incana logs. 

2 17 Nucleotide diversity of each of the populations using locally weighted scatterplot 

smoothing (LOESS) function across 10kb windows, with a step size of 7kb. 

3 18 Principal component analysis (PCA) of the genomic variation of sampled 

Fomitopsis pinicola populations. The first two principal components (Axis 1 and 

2) with percentage of variance explained (a),  Axis 1 and 3 are shown along with 

percentage of variation explained (b). 

4 18 Heat map of pairwise FST/(1-FST) values between populations of Fomitopsis 

pinicola. Dark color with high FST values indicates a higher level of genetic 

differentiation. 

5 19 Admixture analysis of Fomitopsis pinicola. The mean individual membership 

ancestry coefficient per population is plotted on the map for K = 2 (a), K = 3 (b) 

and, K = 4 (c). Individual membership is plotted for K = 2–4 with populations 

also defined (d). 

6 20 Redundancy analyses of the SNP variation explained by environmental variables. 

The points indicate the 22,191 alleles of F. Pinicola (colored by geographic 

region) inferred in the RDA analyses and projected along the first two axes 

RDA1 and RDA2, which explain 34.26% and 29.22% of the variation 

respectively (a). Redundancy analysis of the second two axes RDA1 and RDA 

3, which explain 34.26% and 25.36% of the variation respectively (b). 

7 21 Redundancy analysis visualizing the association between candidate SNPs and 

environmental predictors. The color of each point corresponds to the predictor 

that the SNP is most strongly correlated with. The relationship between axis 1 

and 2 (a), axis 1 and 3 (b), and axis 3 and 4 (c) are shown. 

8 23 The subgraph induced by the top 15 GO terms identified by the classic algorithm 

for scoring GO terms for enrichment. Boxes indicate the 15 most significant 

terms. Box color represents the relative significance, ranging from dark red (most 

significant) to light yellow (least significant). The 13 most significant GO terms 

are enlarged for readability. 

9 26 

 

 

Map showing where Fomitopsis pinicola has been observed and recorded (blue 

points). Visually, there are less sightings on the west coast of Norway when 

compared to eastern Norway. Image from (Artsdatabanken, 2022) 
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Tables 

Number Page Description 

1 22 Significance of GO terms ranked from lowest P value from the classic Fisher's 

exact test. Included are the GO ID, the term (a brief annotation of the process or 

function), the number of genes annotated to each GO term, the number of 

significant genes for each term and the expected number of genes. 

2 22 Significance of GO terms ranked from lowest P value from the weighted 

algorithm. Included are the GO ID, the term (a brief annotation of the process 

or function), the number of genes annotated to each GO term, the number of 

significant genes for each term and the expected number of genes. 
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8 Supplementary Information 

Table S1 Summary of DNA purity and concentration of each of the 72 samples. A indicates samples taken from 

Alnus logs and P indicates samples taken from Pinus logs. 

Sample a260/a280 ng/μL 

GAR_A1 1.79 6.1 

GAR_A2 1.18 7.7 

GAR_A3 1.82 31.9 

GAR_A4 1.78 6.9 

GAR_P1 2.01 5 

GAR_P2 1.66 4.8 

GAR_P3 2.05 7.9 

GAR_P4 1.93 11.7 

LOE_A1 1.66 4.8 

LOE_A2 1.62 6.3 

LOE_A3 1.67 5.6 

LOE_A4 1.79 6 

LOE_P1 1.78 16.6 

LOE_P2 1.95 10.5 

LOE_P3 1.74 7.7 

LOE_P4 1.49 1.8 

VIN_A1 1.77 12.1 

VIN_A2 1.8 25.4 

VIN_A3 1.88 8.3 

VIN_A4 1.86 25 

VIN_P1 1.64 3.6 

VIN_P2 1.92 12.2 

VIN_P3 1.82 23.6 

VIN_P4 1.78 58.1 

BRE_A1 1.53 4.8 

BRE_A2 1.75 15.5 

BRE_A3 1.82 30.3 

BRE_A4 1.8 20.5 

BRE_P1 1.68 9.4 

BRE_P2 1.74 7.6 

BRE_P3 1.73 11.6 

BRE_P4 1.81 45.9 

ORK_A1 1.88 6.3 

ORK_A2 1.8 11.2 

ORK_A3 1.83 22.1 

ORK_A4 1.99 6.4 

Sample a260/a280 ng/μL 

ORK_P1 2.15 1.1 

ORK_P2 1.84 21.9 

ORK_P3 1.96 12 

ORK_P4 1.89 23.5 

VOS_A1 1.79 8.3 

VOS_A2 1.99 14.6 

VOS_A3 1.78 20.6 

VOS_A4 1.73 4.7 

VOS_P1 1.68 6.4 

VOS_P2 2.2 7.2 

VOS_P3 1.79 22.4 

VOS_P4 1.81 33.7 

BEV_A1 1.73 15.6 

BEV_A2 1.77 13.6 

BEV_A3 1.81 17.1 

BEV_A4 1.82 17.4 

BEV_P1 2.32 7.7 

BEV_P2 1.82 33.2 

BEV_P3 1.79 20.5 

BEV_P4 1.81 33.3 

VAL_A1 1.82 43.2 

VAL_A2 1.91 7.7 

VAL_A3 1.81 24.5 

VAL_A4 1.8 12.7 

VAL_P1 1.82 21.6 

VAL_P2 1.93 16.8 

VAL_P3 1.84 35.8 

VAL_P4 1.79 20.1 

HAL_A1 1.77 6 

HAL_A2 1.81 25 

HAL_A3 1.77 19.4 

HAL_A4 1.81 22.6 

HAL_P1 1.69 3.2 

HAL_P2 1.78 8.7 

HAL_P3 1.9 9.1 

HAL_P4 1.7 7.2 
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Table S2 Summary of mean nucleotide diversity, Tajima's D, and the observed and expected heterozygosity 

results for each population. 

 

 

 

 

Figure S1 Observed and expected heterozygosity for each population. Observed heterozygosity is lower than 

expected for each population, especially for Loen. 
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Figure S2 Custom code used in R to estimate the pairwise FST by estimating the genetic differentiation between 

each location as well as convert FST into a genetic distance matrix. Code provided by (Sønstebø, personal 

communication, February 7, 2024). 

#library(vcfR) 
#library(stringr) 
#library(KRIS) 
 
obj.vcfR <- read.vcfR("filename.vcf") 
 
# Character matrix containing the genotypes 
geno <- extract.gt(obj.vcfR)  
# Positions in bp 
position <- getPOS(obj.vcfR)  
# Chromosome information 
chromosome <- getCHROM(obj.vcfR) 
 
G <- matrix(NA, nrow = nrow(geno), ncol = ncol(geno)) 
G[geno %in% c("0/0", "0|0")] <- 0 
G[geno  %in% c("0/1", "1/0", "1|0", "0|1")] <- 1 
G[geno %in% c("1/1", "1|1")] <- 2 
 
ind <- colnames(obj.vcfR@gt)[-1] 
 
pop <- as.data.frame(str_split_fixed(ind, "_", 2)) 
colnames(pop)<- c("pop", "ind") 
 
pop_order <- c("VOS", "BRE", "LOE", "BEV", "VAL", "VIN", "GAR", "HAL", "ORK"  
) 
 
#fst.hudson: Calculate the average fixation index (Fst) between two groups of 
individuals from Single-nucleotide polymorphism (SNP) 
fst<- matrix(0, nrow = length(pop_order), ncol = length(pop_order)) 
for(j in 1:(length(pop_order))){ 
  for(i in 1:(length(pop_order))){ 
     
    if(j>i){fst[i,j]<-fst.hudson(t(G), idx.p1 = which(pop$pop==pop_order[j]), 
idx.p2 = which(pop$pop==pop_order[i]))}else{fst[i,j]<-0} 
  } 
} 
 
colnames(fst)<- pop_order 
rownames(fst)<- pop_order 
 
dgen <- as.dist(t(fst/(1-fst))) 
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Figure S3 Plot used to determine the number of axes that captures the most meaningful variation in PCA 

analysis. The nmber of axes chosen for the PCA was three. 

 

 

Figure S4 Cross validation error tests were calculated for the number of ancestral populations (K) ranging 

from 1-10. 
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Table S3 Overview of the bioclimatic variables used in the RDA analysis (http://www.worldclim.org). 

Code Variable Description Unit 

BIO1 mean annual air temperature Mean annual daily mean air temperatures averaged 

over 1 year 

 °C 

BIO3 isothermality Ratio of diurnal variation to annual variation in 

temperatures 

 °C 

BIO8 mean daily mean air temperatures of the 

wettest quarter 

The wettest quarter of the year is determined (to 

the nearest month) 

 °C 

BIO12 annual precipitation amount Accumulated precipitation amount over 1 year mm 

 

Table S4 Summary of the bioclimatic variables taken from each of the nine locations that were used in the RDA 

analysis. 

Location Annual mean 

temperature (°C)  

(BIO1) 

Isothermality 

(°C)  

(BIO3) 

Mean temperature of  

wettest quarter (°C)  

(BIO8) 

Annual precipitation 

(mm)  

(BIO12) 
BEV 5.04 28.76 1.68 1197 

BRE 7.25 29.51 4.90 2813 

GAR 4.18 26.30 4.48 1286 

HAL 2.51 29.03 10.75 743 

LOE 5.95 28.51 2.82 1392 

ORK 4.42 29.24 0.93 1180 

VAL 2.08 29.23 12.22 569 

VIN 5.93 26.61 6.00 734 

VOS 3.18 23.37 0.12 2270 
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Figure S5  Visualization of pairwise relationships between the four bioclimatic variables (1,3,8, and 12) chosen 

for the RDA analysis.The desired correlation coefficient was less then 0.7. 

 

Figure S6 Plot used to determine the number of axes that captures the most meaningful variation in RDA 

analysis. The nmber of axes chosen for the RDA was four. Three is ideal. 
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Figure S7 Manhattan plot showing the SNPs from the RDA analysis. Grey are neutral, orange are all outliers 

and purple are the top outliers. Outliers are SNPs that had a significant association with one of the four 

bioclimatic environmental variables.. 

Table S5 The ANOVA results of the RDA indicate all four environmental variable are significant.  

 Df Variance F Pr(>F) 

Mean temp (annual) 1 460.1 1.5470 0.004 

Isotherm 1 703.3 2.3646 0.001 

Mean temp (wet) 1 524.0 1.7619 0.001 

Annual precip 1 575.5 1.9350 0.001 

Residual 67 19928.0   

 

 

Table S6 The results of the multicollinearity test for the RDA, as indicated by the square root of the Variance 

Inflation Factors (VIF), were consistently below the threshold value of 2. 

 VIF 

Mean temp (annual) 1.68 

Isotherm 1.88 

Mean temp (wet) 1.39 

Annual precip 1.54 
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Figure S8 Correlation matrix between environmental variables assessed by calculating Spearman ś ⍴. There is 

a high correlation between the precipitation variables and temperature.  

 

Figure S9 The subgraph induced by the top 5 GO terms identified by the weighted algorithm for scoring GO 

terms for enrichment. Boxes indicate the 15 most significant terms. Box color represents the relative 

significance, ranging from dark red (most significant). 

 


