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Abstract

This paper gives an introduction to elliptic curves and discrete dynamical sys-
tems. It lays out the foundations of the theory of elliptic curves, along with
important concepts like torsion points and isogenies, and makes heavy use of
the John Cremona Database of Elliptic Curves. For dynamical systems, this
paper gives an introduction to them, along with concepts like (in)stability, pe-
riodicity, and Lattès maps.
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Introduction

I wrote this paper as an introduction to the two topics in the title, namely
elliptic curves and discrete dynamical systems. It’s intended to be read in a
straight-forward way, and hints at potential uses in cryptography.

The reader should have some familiarity with abstract algebra (in particular
groups and fields) and a general notion of concepts and terminology in math-
ematics, but beyond that much of what is needed will be explained along the
way.

This paper first explores elliptic curves, and gives an overview of the develop-
ment from general cubic equations in two dimensions, to general elliptic curves,
through to elliptic curves in Weierstrass model, which is the type of elliptic
curve which is the main focus of this paper.

Secondly, this paper goes into some detail about dynamical systems, in partic-
ular the logistic map. It gives a few other examples of dynamical systems, but
mainly focuses on giving examples of different variations on the logistic map.

Thirdly, this paper briefly touches on Lattès maps, giving the formal definition
of a Lattès map, together with an example. This part also ties together the two
threads in the paper (broadly, elliptic curves and dynamical systems) by noting
that the definition of Lattès maps involves elliptic curves, and the dynamical
evolution over time of points on these curves.

The illustrations are generated with the free graphing tool Desmos for elliptic
curves, and WolframAlpha’s tool “CobwebPlot” by Paul Abbott for the cobweb
plots.

v

https://www.desmos.com/calculator
https://www.wolframalpha.com/
https://resources.wolframcloud.com/FunctionRepository/resources/CobwebPlot/


Chapter 1

Cubic Curves, Elliptic
Curves, and Weierstrass
Model

1.1 Generalizing from Cubics toWeierstrass Model

Note: In this document we will consistently refer to plane curves (i.e. curves
in two variables) as simply curves for the sake of brevity. We will not consider
curves in space or higher dimensions.

To begin with, we will investigate how to go from a general cubic curve, via
general elliptic curves, to the specifics of elliptic curves expressed in Weierstrass
form. A general cubic curve is defined as follows.

Definition 1.1.1 (Cubic curve). A cubic curve is a polynomial in x and y of
order (or degree) 3 with coefficients from a field K, usually expressed in the
form f(x, y) = 0. Expanding this, we get

Ax3 +Bx2y + Cxy2 +Dy3 + Ex2 + Fxy +Gy2 +Hx+ Iy + J = 0.

To illustrate how cubic curves look and behave, consider the few following ex-
amples.

Example 1.1.1 (Some cubic curves). See Figure 1.1 for some examples.
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(a) −x3+3x2y+y3−2x2+
5xy+5y2+x−2y−4 = 0

(b) −x3+3x2y+y3−2x2+
6xy = 0

(c) x3+2xy2+4x2+7xy−
3y2 + 4y + 3 = 0

(d) −x2y + x+ y = 0
(e) −xy2+y3+2x2+3xy−
2y2 + 3x+ 1 = 0

(f) −xy2−4x2−xy−2y2+
3x+ 1 = 0

Figure 1.1: Some examples of general cubic curves.
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(a) y2 − 4xy − y = x3 −
2x2 − 4x

(b) y2 + xy + a3y = x3 +
2x2 − 3x− 1 (c) y2+3xy+2y = x3−3x

Figure 1.2: Some examples of elliptic curves, varying a1, a2, a3, a4, and a6.

The curves are somewhat chaotic, and there are no “nice” symmetries, so we
will move on to elliptic curves, which, as we will see, are more specific in nature
than general cubics.

Definition 1.1.2 (Elliptic curve and Weierstrass model). An elliptic curve is an
algebraic curve defined over a field K with points in K2 (the Cartesian product
of K with itself). A general elliptic curve can be described by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

(There is no a5 purely for historical reasons.) If the characteristic of the field
K is different from 2 and 3, the curve can be described by the equation

y2 = x3 + ax+ b,

known as Weierstrass model, with the coefficients from the field K. Note that
in general, a ̸= a4 and b ̸= a6. In addition to the points in K2, an elliptic
curve also includes a special “point at infinity,” denoted by the infinity symbol

∞ def
== {∞}. It’s not a part of K2 itself, but it’s helpful to think of it as infinitely

far away from the y-axis.

Example 1.1.2 (Some elliptic curves). See Figure 1.2 for some examples. No-
tice that these particular curves are not symmetric about the horizontal axis.

Example 1.1.3 (Some elliptic curves in Weierstrass form). See Figure 1.3 for
some examples. Notice that (b) has a cusp and (f) has a crossing (called a
crunode or, in modern language, simply a node). These two are examples of
singular elliptic curves.
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(a) y2 = x3 − 1 (b) y2 = x3 (c) y2 = x3 + 1

(d) y2 = x3 − x (e) y2 = x3 − x+ 1 (f) y2 = x3 − 3x+ 2

Figure 1.3: Some examples of elliptic curves in Weierstrass form, varying a and
b.

Notice also that unlike general elliptic curves, curves in Weierstrass form are
symmetric about the horizontal axis.
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1.2 Addition of Points on Elliptic Curves

There are some operations we can perform on the points of an elliptic curve,
most notably addition of two points. Geometrically, adding two points of an
elliptic curve can be thought of as drawing a straight line between the two
points, and having the negation of the vertical component of the intersection
point with the curve itself be the result of this addition. It is a well-known fact
about elliptic curves that this line is guaranteed to intersect the curve at a third
point.

Note that some sources use the regular addition sign (+) whereas other sources
use the asterisk (∗) to denote this operation. We will use the regular addition
sign.

Addition of points on elliptic curves is defined in a way such that elliptic curves
form an abelian group, namely that addition should be commutative. This
paper doesn’t show the derivation of the addition algorithm, but merely states
it.

A note on notation: Points in the projective plane P2 are usually given as the
triplet

P = (a : b : c).

If c ̸= 0 we can homogenize point and get

P =

(
a

c
:
b

c
: 1

)
= (a′ : b′ : 1).

Thus, points not at infinity will be of the form (a′ : b′ : 1) and the point at
infinity can be described as ∞ = (0 : 1 : 0). We can therefore denote points not
at infinity as simply (x : y), and the point at infinity by the usual ∞ symbol.

Definition 1.2.1 (Addition of points on elliptic curves). Let E be an elliptic
curve in Weierstrass form,

E : y2 = x3 + ax+ b

and let P1 = (x1 : y1) and P2 = (x2 : y2) be points on E. First note that if
x1 = x2, then this implies that y1 = −y2, since elliptic curves in Weierstrass



6

form are always symmetric about the x-axis. Furthermore, addition of such
points always lead to the point at infinity, so P1 + P2 = ∞. Otherwise, we will
define the quantities

λ =
y2 − y1
x2 − x1

, ν =
y1x2 − y2x1
x2 − x1

, if x1 ̸= x2

λ =
3x21 + a

2y1
, ν =

−x31 + ax1 + 2b

2y1
, if x1 = x2.

By these quantities, y = λx+ ν is the line going through P1 and P2, or the line
tangential to both P1 and P2 if P1 = P2. The sum of these points can now be
given by

P1 + P2 = (λ2 − x1 − x2 : −λ3 + λx1 + λx2 − ν).

In the special case that P1 = P2 = P , we use the notation

P + P + . . .+ P = [N ]P,

where N is the number of times we add the point to itself.

Using this definition of addition of points, we can derive an explicit formula for
adding points to itself, the so-called duplication formula. Deriving it is outside
the scope of this paper, so here we merely state it.

Definition 1.2.2 (Duplication formula). Given an elliptic curve E in Weier-
strass form, E : y2 = x3 + ax+ b, and a point P = (x : y), adding this point to
itself is known as the duplication formula, and is given by

[2]P =

(
x4 − 2bx2 + b2

4y2
:
x6 + 2ax5 + 5bx4 − 5b2x2 − 2ab2x− b3

8y3

)
.

Next, we cover some special kinds of points, namely torsion points. These are
points which for some finite number of iterations eventually come to rest at the
point at infinity. A more precise definition follows.
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1.3 Torsion points and Isogenies

Note: All examples involving elliptic curves taken from Cremona’s database of
elliptic curves will be labeled by the identifier string of the corresponding elliptic
curve. In addition, when used in the examples themselves, the elliptic curve in
question will have its Cremona label as a subscript, e.g. E11a3. Its corresponding
Weierstrass form will similarly be denoted by W11a3. All calculations in the
examples are done using SageMath.

Definition 1.3.1 (Torsion points). A torsion point is a point on an elliptic
curve such that [N ]p = ∞ for some natural number N ≥ 2. The order of the
torsion point is N , and we call such points N -torsion points for a given N .

The set of all torsion points for a given elliptic curve E and a given N is denoted

E[N ]
def
== {P ∈ E | [N ]P = ∞}.

The set of all torsion points for a given elliptic curve E, regardless of N , is quite
naturally the union of all of the N -torsion points of the given elliptic curve E,
and is denoted

Etor =
⋃
N≥2

E[N ].

Example 1.3.1 (Trivial torsion point). The point at infinity, ∞, is always a
torsion point, since ∞+∞ = ∞, and is in fact called simply the trivial torsion
point. It is also an N -torsion point for all N ∈ N, since

∞+∞+ . . .+∞ = ∞

whenever you add ∞ to itself N times.

Example 1.3.2 (Cremona 80a1). Consider the elliptic curve

E80a1 : y
2 = x3 − 7x+ 6.

It has the torsion points

https://johncremona.github.io/ecdata/
https://johncremona.github.io/ecdata/
https://www.sagemath.org/
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E80a1[N ] = {(−3 : 0), (1 : 0), (2 : 0)} .

The first point is of order 2 because (−3 : 0) + (−3 : 0) = ∞. It turns out that
all the other torsion points on this particular elliptic curve are also of order 2,
and so in fact the above set should be written as

E80a1[2] = {(−3 : 0), (1 : 0), (2 : 0)}

and properly referred to as the curve’s 2-torsion points.

Example 1.3.3 (Cremona 20a1). Consider the elliptic curve

E20a1 : y
2 = x3 + x2 + 4x+ 4

and its corresponding Weierstrass model

W20a1 : y
2 = x3 + 4752x+ 127872.

It has the torsion points

E20a1[N ] = {(−1 : 0), (0 : ±2), (4 : ±10)} .

Of these, one is of order 2, two are of order 3, and two are of order 6, so we have

E20a1[2] = {(−1 : 0)}
E20a1[3] = {(0 : ±2)}
E20a1[6] = {(4 : ±10)} .

Looking at the torsion points of its Weierstrass model, we have

W20a1[2] = {(−24 : 0)}
W20a1[3] = {(12 : ±432)}
W20a1[6] = {(156 : ±2160 : 1)} .
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This example illustrates that even though the torsion points of an elliptic curve
and its corresponding Weierstrass model are different, they are still of corre-
sponding order. Note also that this implies that E20a1 ≃ Z/6.

We now come to an aspect of elliptic curves, in particular connections between
elliptic curves, that have important applications for cryptography, namely iso-
genies.

Definition 1.3.2 (Isogeny). An isogeny between two elliptic curves E and E′

is a morphism f : E → E′ such that

f(α+
E
β) = f(α) +

E′
f(β) and f(∞

E
) = ∞

E′
,

where +
E
and +

E′
are the usual addition of points for the elliptic curves E and E′,

respectively, and ∞
E

and ∞
E′

are the points at infinity for E and E′, respectively.

If an isogeny is also one-to-one, it’s called an isomorphism.

All calculations related to isogenies in the following examples are calculated
using SageMath. An easy way to generate an explicit isogeny is to consider

Example 1.3.4 (Cremona 80a1, revisited). Consider the elliptic curve

E80a1 : y
2 = x3 − 7x+ 6.

There exist isogenies between 80a1 and several other elliptic curves, enumerated
below with its Cremona label.

E20a1 : y
2 = x3 + x2 + 4x+ 4 (This is the curve from Example 1.3.3)

E20a2 : y
2 = x3 + x2 − x

E20a3 : y
2 = x3 + x2 − 36x− 140

E20a4 : y
2 = x3 + x2 − 41x− 116

The fact that the letter a appears in all of these curves is no coincidence, but
a deliberate choice on the part of the authors of the Cremona Database; it
describes the isogeny class.
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Although it is in general very hard to generate an explicit formula for an isogeny
between two elliptic curves, it is nonetheless possible. We can generate a cyclic
subgroup of E from one of its torsion points, and choose a point from that list as
a basis for an isogeny, and we use the following theorem to justify it. ([Lar24])

Theorem 1.3.1. Let f : E → E′ be an isogeny. Then f is surjective over the
algebraic closure of the ring we are working with, with finite kernel, i.e.,

#ker(f) <∞.

Given a finite subgroup g ⊂ E there exists a unique isogeny fg : E → Eg such
that g = ker(fg). Furthermore, since f is surjective, we have that Eg ≃ E/g.

The degree of f is the number of elements in its kernel, and f is an N -isogeny
where N = #ker(f).

SageMath can help us calculate many isogenies between these curves, but here
we present only one of them for illustration purposes.

ϕ1 =
x8 + 2x7 − 3x6 + 5x5 − 5x4 + 3x3 − 4x2 − 3x+ 3

x7 + 2x6 + 2x5 − 4x4 − 4x3 + 2x+ 3

Note that ϕ is a rational map, and that in general it can become very compli-
cated. This particular isogeny was generated with SageMath in Python in the
following way:

1 E = EllipticCurve(GF(11), '80a1'); # Instantiate an elliptic curve with

2 # Cremona label '80a1' over a finite field

3 # of size 11.

4

5 E.gens(); # Returns the generators for the curve.

6

7 P = E(10, 10); # Choose the first point from the list

8 # above.

9

10 phi = E.isogeny(P); # Define an isogeny based on the point P

11

12 phi.rational_maps(); # Outputs the rational maps. The first one

13 # is the one used in the example above.



Chapter 2

Iteration of functions

2.1 Dynamical Systems

We are now ready to look at dynamical systems, and we will begin with a
couple of definitions. Firstly, what a dynamical system is, mathematically, and
then define orbits, periodicity, and fixed points, and finally Lattès maps. The
definitions in this section are essentially verbatim from [Sil07].

Definition 2.1.1 (Dynamical system). A dynamical system is composed of a
set S and a function ϕ : S → S. In other words, it maps S to itself. A common
notation for composition of such functions is

ϕn = ϕ ◦ ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
n times

= nth iterate of ϕ

(By convention, ϕ0 is the identity map on S.)

Definition 2.1.2 (Orbits, periodicity, and fixed points). The (forward) orbit
of a point α ∈ S is defined as the set

Oϕ(α) = O(α) = {ϕn(α) | n ≥ 0}

A point α ∈ S is called periodic if ϕn(α) = α for some n ≥ 1. The smallest
such n is called the exact period of α. The point α is called preperiodic if some

11
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iterate ϕm is periodic. We denote the sets of periodic and preperiodic points
(respectively) by

Per(ϕ, S) = {α ∈ S | ϕn(α) = α for some n ≥ 1},
PrePer(ϕ, S) = {α ∈ S | ϕm+n(α) = ϕm(α) for some n ≥ 1,m ≥ 0}

= {α ∈ S | Oϕ(α) is finite}.

A fixed point is a point where the exact period is 1.

To see how these definitions fit in to the underlying mathematics, we’ll look at a
few examples. First, some “trivial” examples (in the sense that they are compact
and easy to follow, yet don’t produce much in the way of actual dynamics), and
then at the logistic map, which is very dynamic.

Example 2.1.1 (Two elements, surjective map). Let S = {a, b} and ϕ(a) =
ϕ(b) = a. Here a is periodic with an exact period of 1 (which means a is also a
fixed point), and b is preperiodic. The orbit of a is Oϕ(a) = {a, a, . . .} and the
orbit of b is Oϕ(b) = {b, a, a, . . .}

Example 2.1.2 (Three elements, injective map). Let S = {a, b, c} and ϕ(a) =
b, ϕ(b) = c, and ϕ(c) = a (each element gets mapped to the next one in the
set, and the last gets mapped to the first). Here, all points are periodic, and all
points have the same exact periodicity, namely 3.

The orbits of all the points are essentially the same, just shifted by one element.
We’ll take the orbit of a as an example: Oϕ(a) = {a, b, c, a, . . .}.

Example 2.1.3 (Attraction/expulsion from the origin). Let S = R and ϕ(α) =
cα where α is an arbitrary point in S and c is a positive real constant. For
c = 1 this of course reduces ϕ to the identity map, and the point α doesn’t go
anywhere. For c > 1, all points fly away from the origin, and for 0 < c < 1, all
points gradually get closer to (but will never reach) the origin.

The only case where the points in S can be periodic is when c = 1, with
|Per(ϕ, S)| = ∞. For c ̸= 1, |Per(ϕ, S)| = ∅.

For the following example (2.1.4) we need a definition of a cobweb diagram,
sometimes called simply a web diagram, for its resemblance to a spider’s web.

Definition 2.1.3 (Cobweb diagram). A cobweb diagram (sometimes also called
a Lémeray diagram or Verhulst diagram) is a way to visualize the evolution of a
single-variable, single-valued function. (For the sake of this definition, let that
function be ϕ : R → R.)



13

The nth value is plotted along the horizontal axis and the n+1st value along the
vertical axis. In addition, the function operating on the initial value is plotted
on the resulting plane, along with a diagonal line. The algorithm for producing
the diagram is as follows:

1. Draw a vertical line from x0 on the horizontal axis up to where the line
meets the graph of ϕ. This is the point (x0, ϕ(x0)).

2. Draw a horizontal line from the point (x0, ϕ(x0)) to the vertical line. This
is the point (ϕ(x0), ϕ(x0)).

3. Draw a vertical line from the point (x0, ϕ(x0)) up to where the line meets
the graph of ϕ. This is the point (ϕ(x0), ϕ(ϕ(x0))).

4. Repeat step 2 for as many steps as is needed.

With this definition in hand, we are ready for the logistic map example.

Example 2.1.4 (Logistic map). The logistic map is defined by

xn+1 = λxn(1− xn),

where λ and the initial condition x0 can be varied to get some interesting results.
(See Figure 2.1 for some examples.)

Interestingly, you can obtain closed-form solutions for some choices of λ and x0.
For instance, if you choose λ = 4 and x0 = 0.1 you get the closed-form solution

xn = sin2
(
2n−1 cos−1 (1− 2x0)

)
.

(As calculated by WolframAlpha.)
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(a) λ = 2.8, x0 = 0.1 (b) λ = 2.8, x0 = 0.5

(c) λ = 2.8, x0 = 0.9 (d) λ = 3.57, x0 = 0.1

(e) λ = 3.61, x0 = 0.1 (f) λ = 3.65, x0 = 0.1

Figure 2.1: Some cobweb diagrams of the evolution of the logistic map for
various values of λ and x0. In (a)-(c) the parameter λ is fixed, but the initial
condition varies, and the end points converge to around 0.64 despite the rather
large variations in x0 from 0.1 to 0.9. (d)-(f) shows some examples of chaotic
behavior, even for very small perturbations of the parameter λ. Inspiration
taken from [Cru11a] and [Cru11b].
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2.2 Diagrams

Next, in order to begin looking at Lattès maps, we first need to define diagrams,
and in particular, commutative diagrams.

Definition 2.2.1 ((Commutative) diagram). A diagram is a collection of sets
A,B,C, . . . together with maps f, g, h, . . . between the sets such that composi-
tion of the maps is well-defined.

A commutative diagram is a diagram where every path from a starting point to
an end point yields the same result, i.e. the composition is path-independent.
In practice it’s common to call these diagram “commutative diagrams,” whether
or not they actually commute.

Example 2.2.1. Let f : A → B, g : B → D, h : A → C, and i : C → D. If
g ◦ f = i ◦ h, then this diagram commutes. If not, then the diagram doesn’t
commute. We can visualize this as the following diagram:

A B

C D

//f

��

h

��

g

//i

As a further example, we can construct maps such that these compositions
commute. For this example we only consider maps from R to R. Let

f(x) = 2x,

g(x) = 3x,

h(x) =
1

2
x, and

i(x) = 12x.

This diagram now commutes, since g(f(x)) = 6x = i(h(x)). Changing just
one of the coefficients in any of these functions will make the diagram non-
commutative.
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2.3 Lattès maps

Definition 2.3.1 (Projective lines, rational maps, and Lattès maps). The pro-
jective line P = P1, looking at it geometrically, is the set of all lines in K2,
where K is a field, that go through the origin, but excluding the origin.

We can define this as the set

P1 =
{(a, b) ∈ K2 | (a, b) ̸= (0, 0)}

∼
,

where ∼ is the equivalence relation (a, b) ∼ (ka, kb) for all k ∈ K. Since all
we need to define a line are two points, we require that this set is modulo the
equivalence relation ∼. Thus all points on a given line that goes through the
origin (but importantly doesn’t include the origin) are considered the same point
by this equivalence relation.

By this construction we only need a single point to describe a given projective
line, and it is therefore customary to write [a, b] for a given projective line.

A rational map is a map of the form

ϕ(x) =
F (x)

G(x)
=
a0 + a1x+ · · ·+ adx

d

b0 + b1x+ · · ·+ bdxd
,

in other words a ratio of polynomials. The degree of ϕ is

deg ϕ = max {degF,degG} .

A map ϕ : P1 → P1 is of the form

[a, b] 7→ [F (a, b), G(a, b)],

and by dividing through by G(a, b) we get

[a, b] 7→
[
F (a, b)

G(a, b)
, 1

]
,
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thus we call it a rational map. If G(a, b) = 0, then by convention the point at
infinity is denoted [a, 0].

A rational map ϕ : P1 → P1 of degree d ≥ 2 is a Lattès map if there is an elliptic
curve E, a morphism ψ : E → E, and a finite separable covering π : E → P1

such that the following diagram is commutative:

E E

P1 P1

//ψ

��

π

��

π

//ϕ

Note that the definition of a Lattès map makes reference to elliptic curves.

Example 2.3.1 (Doubling map). (Note: This example is example #6.41 on
page 351 of [Sil07].)

Let E : y2 = x3 + ax + b be an elliptic curve, ψ(P ) = [2]P be the duplication
map (see 1.2.2) for points on the curve, and π(P ) = π(x, y) = x be a projection
map. We can let x : E/{±1} → P1 be an isomorphism , which yields the Lattès
map

ϕ(x) = x(2P ) =
x4 − 2ax2 − 8bx+ a2

4x3 + 4ax+ 4b
.
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