

www.usn.no

Faculty of Technology, Natural sciences and Maritime sciences
Campus Porsgrunn

FMH606 Master's Thesis 2024

Industrial IT and Automation

Graph Neural Networks for outlier
detection

Sarthak Lamsal

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis, 2024

Title: Graph Neural Networks for outlier detection

Number of pages: 113

Keywords: Graph neural network, deep learning, machine learning, outlier detection, anomaly

detection, graph representation, graph embedding, message passing, graph attention, graph

convolution

Student: Sarthak Lamsal

Supervisor: Leila Ben Saad

Summary:

The thesis extensively explored state-of-the-art Graph Neural Networks (GNNs) for node-

level outlier detection within graph data. A comprehensive review of various GNN

architectures and outlier detection algorithms was conducted. Using PyTorch and the

PyGOD library, the performance of four node-level outlier detection algorithms,

DOMINANT, AnomalyDAE, CoLA, and GAAN was evaluated on the Cora and CiteSeer

datasets, which were manually injected with 50 node-level outliers.

The models were assessed based on their AUC scores derived from ROC curves.

AnomalyDAE and DOMINANT exhibited the highest performance, achieving AUC

scores of ~0.81 and ~0.83 for the Cora dataset, and ~0.80 and ~0.83 for the CiteSeer

dataset, respectively. CoLA followed closely with AUC scores of ~0.78 for Cora and

~0.80 for CiteSeer while GAAN demonstrated comparatively lower performance, with

AUC scores of ~0.74 for Cora and ~0.78 for CiteSeer. Detection in node-level outliers

where only 100 features were altered presented challenges across models, with variations

observed in AUC scores. However, all models identified every node-level outliers where

every features were altered.

 Preface

iii

Preface
This work was written as a part of the FMH606 2024 Master’s thesis course at the University

of South-Eastern Norway (USN), campus Porsgrunn, Norway from 15th of January to 15th of

May 2024. It is the final assessment of the Industrial IT and Automation (IIA), Master of

Science program at USN under the department of Electrical Engineering, Information

Technology and Cybernetics at campus Porsgrunn. The work was done on the study of Graph

Neural Network and its application on Outlier Detection under the supervision of Associate

Professor Leila Ben Saad. The task description provided is included in Appendix A.

I would like to express my sincere gratitude to my supervisor Associate Professor Leila Ben

Saad for her continuous support, feedback, and positive encouragement. Her guidance has

played a pivotal role in shaping this work. Also, I am equally thankful to the university for

giving me the topic of my interest to work and do the research. Lastly, this work would not

have been possible without the blessings of my parents, sister, and wife. I am also indebted and

grateful to all the great souls that have contributed directly and indirectly to writing this thesis.

Porsgrunn, May 15, 2024

Sarthak Lamsal

 Contents

iv

Contents

Nomenclature ... vi

List of Symbols .. viii

List of Figures ... x

List of Tables .. xiii

1 Introduction ... 1

1.1 Background ... 1
1.2 Research gap and motivation .. 2
1.3 Objectives .. 2
1.4 Report Structure and Outline .. 3

2 An Overview of Graph Theory and GNNs ... 4

2.1 Graph Basics ... 4
2.1.1 Graph Connectivity and Representation .. 7

2.2 Graph Neural Networks .. 9
2.2.1 Learning Process .. 10
2.2.2 Applications of GNN ... 12
2.2.3 Challenges in GNN .. 13

2.3 Review of GNN Architectures .. 13
2.3.1 Graph Convolutional Network (GCN) .. 14
2.3.2 Graph Attention Network (GAT) ... 16
2.3.3 Graph Sample and Aggregation (GraphSAGE) .. 20
2.3.4 Graph Autoencoder (GAE) ... 21
2.3.5 Other GNNs .. 23

3 Review of GNN Algorithms for Outlier Detection ... 24

3.1 Outliers in GNNs ... 24
3.2 Outlier Detection ... 25

3.2.1 Review of Outlier Detection Algorithms in GNNs .. 26
3.3 GNN-based Node-level Outlier Detection in Static Graph .. 27

3.3.1 GCN-based method ... 27
3.3.2 GCN-based GAE method .. 29
3.3.3 GAT-based GAE method .. 31
3.3.4 Other GNN-based algorithms for outlier detection.. 32

3.4 Summary of GNN-based outlier detection methods ... 34

4 Implementation of GNN Algorithms for Outlier Detection 35

4.1 Introduction to PyTorch ... 35
4.1.1 Introduction to PyTorch Geometric .. 35

4.2 Introduction to PyGOD ... 36
4.3 Datasets ... 37

4.3.1 Cora Dataset .. 37
4.3.2 CiteSeer Dataset .. 38
4.3.3 Injection of outliers in the datasets .. 39

4.4 Model Implementation .. 42
4.4.1 Outlier Detection with DOMINANT... 43
4.4.2 Outlier Detection with AnomalyDAE ... 44
4.4.3 Outlier Detection with GAAN ... 44

 Contents

v

4.4.4 Outlier Detection with COLA .. 45

5 Evaluation and Comparison of GNN-based algorithms 46

5.1 Results of DOMINANT .. 46
5.2 Results of AnomalyDAE ... 50
5.3 Results of GAAN ... 53
5.4 Results of CoLA .. 56
5.5 Comparison of results .. 60
5.6 Discussion ... 61

6 Conclusion and Future work .. 63

References ... 65

Appendices .. 69

 Contents

vi

Nomenclature
ALARM Deep multi-view framework for anomaly detection

AnomalyDAE Dual Autoencoder for Anomaly Detection on Attributed Networks

ARGA Adversarially Regularized Graph Autoencoder for graph embedding

AUC Area Under ROC Curve

BCE Binary Cross-Entropy

CoLA Contrastive self-supervised Learning

CNN Convolutional Neural Network

DOMINANT Deep Anomaly Detection on Attributed Network

FPR False Positive Rate

GAE Graph Auto Encoder

GAN Generative Adversarial Network

GAAN Generative Adversarial Attributed Network Anomaly Detection

GAT Graph Attention Network

GCN Graph Convolution Network

GIN Graph Isomorphism Network

GNN Graph Neural Network

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

LINE Large-scale Information Network Embedding

LOF Local Outlier Factor

ML Machine Learning

MLP Multi-Layer Perceptron

MPNN Message Passing Neural Network

MSE Mean Squared Error

ResGCN Residual GCN

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

ResNet Residual Network

PyG PyTorch Geometric

PyGOD Python Graph Outlier Detection

STrGNN Structural-Temporal Graph Neural Network

 Contents

vii

TCN Temporal Convolutional Network

TGN Temporal Graph Network

TPR True Positive Rate

USN University of South-Eastern Norway

VAE Variational Auto Encoder

VGAE Variational Graph Auto Encoder

 List of Symbols

viii

List of Symbols
 Plain graph

G Attributed graph

G(t) Dynamic graph

V Set of vertices or nodes of plain or attributed graph

E Set of edges of plain or attributed graph

V(t) Set of vertices or nodes of dynamic graph at time t

E(t) Set of edges of dynamic graph at time t

X Feature matrix of attributed graph

x Transformed feature vector of attributed graph

X(t) Feature matrix of dynamic graph at time t

𝑢, 𝑣 Nodes

𝓝 Neighborhood

A Adjacency matrix of attributed graph

�̂� Normalized adjacency matrix

D Degree matrix of attributed graph

�̂� Modified degree matrix of attribute graph

I Identity matrix

d Number of features of node

𝐖 Learnable weight matrix

 List of Symbols

ix

𝐇(𝑘) Feature Matrix at layer k

∣∣ Concatenation

𝑒𝑢𝑣 Attention score between node 𝑢 and 𝑣

α𝑢𝑣 Normalized attention score between node 𝑢 and 𝑣

a Learnable attention vector

𝜎 Non-linear activation function

α𝑢𝑣 Normalized attention score between node 𝑢 and 𝑣

Z Latent space representation

ℎ𝑣
𝑘 Feature vector of node 𝑣 at layer k

 List of Figures

x

List of Figures
Figure 1: A toy example of plain graph consisting of four nodes (1,2,3 and 4). Here, node 1

and 2 are connected by edge e1, node 2 and 3 by edge e2, node 3 and 4 by edge e3 and node 4

and 1 by edge e4. V = {1,2,3,4} is the set of nodes and E = {e1,e2,e3,e4} is the set of edges

for a plain graph ... 5

Figure 2: A toy example of undirected and directed edge. Edge e1 connecting node 1 and 2 is

an undirected edge, edge e2 connecting node is an undirected edge. In e2, node 4 is a source

node and node 3 is the destination node. ... 6

Figure 3: A toy example of unweighted and weighted edge. Edge e3 connecting nodes 5 and 6

is an unweighted edge, edge e4 connecting nodes 7 and 8 with weight 1 is a weighted edge. . 6

Figure 4: A toy example of attributed graph G consisting of four nodes 1,2,3,and 4. Here, x1,

x2, x3, and x4 are the transformed node feature vectors for nodes 1,2,3, and 4 respectively. ... 7

Figure 5: Adjacency matrix A for attributed graph G. For existence of edge between two nodes,

the corresponding element in the matrix A is populated with 1 or else 0. The diagonal elements

would be 1 if self-loops in all the nodes are present. ... 8

Figure 6: Feature matrix X for an attributed graph G with nodes 1,2,3,4, and their respective

transformed node feature vectors x1, x2, x3 and x4. .. 9

Figure 7: Pictorial representation of GNN in [1] consisting of 3 layers building GNN blocks

where graph is fed as input to produce transformed graph as an output.................................. 10

Figure 8: GCN represented as image in [20]. Input is a graph with nine nodes and thirteen

edges. Two hidden layer followed by activation function ReLU are GCN layers where graph

convolution happens in the input graph. .. 14

Figure 9: GAT architecture with attention mechanism in [24]. Attention coefficients ij for all

the neighboring nodes of node xi are calculated. Self-attention coefficient of node xi and

neighborhood attention coefficient for all the neighboring edges, yij are calculated and

combined where softmax activation function is applied to obtain all the attention coefficients

ij of all nodes xij. .. 18

Figure 10: Pictorial representation of how attention coefficients are utilized in GAT taking

node 1 of the graph as an example in [25] ... 19

Figure 11: A general GAE architecture, comprising of an encoder and decoder with X as the

input to the encoder and X’ the output generated by the decoder. Z is the latent space

representation of the input X. Typically input is adjacency matrix, feature matrix or both. ... 22

Figure 12: Examples of outliers in a graph in [37]. Nodes A and C are node-level outliers,

nodes A and B are edge-level outliers. Node A is both node-level and edge-level outlier. 25

Figure 13: CoLA framework presented in [46] ... 29

Figure 14: Architecture of DOMINANT shown in [58]. DOMINANT has one attributed

network encoder made of GCN where adjacency matrix A and feature matrix X of input graph

is fed which produces latent space representation matrix Z as the output. Through structure

 List of Figures

xi

reconstruction decoder and attribute reconstruction decoder, DOMINANT produces estimated

adjacency matrix 𝐀 and estimated feature matrix 𝐗. ... 30

Figure 15: AnomalyDAE architecture presented in [49]. The framework is made up of two

autoencoders, structure autoencoder and attribute autoencoder. Reconstructed adjacency

matrix 𝐀 and feature matrix 𝐗 are calculated respectively from structure decoder and attribute

decoder which are combinedly used to calculate the anomaly score and predict the outlier. . 32

Figure 16: GAAN framework in [50]. GAAN consists of three parts, generator, encoder and

discriminator. Generator uses noise level to produce approximated node feature matrix X′,

encoder transforms both original feature matrix X and generated feature matrix X′ into latent

space Z and Z′. Discriminator calculates loss from two latent space inputs and assigns the loss

scores to all the nodes. ... 34

Figure 17: Graphical representation of Cora dataset with 2708 nodes and 10556 edges.

Different colors indicate the nodes belonging to 7 different class of the dataset. Labels of

classes are indicated in numbers from 0 to 6. .. 38

Figure 18: Graphical representation of CiteSeer dataset with 3327 nodes and 9104 edges.

Different colors indicate the nodes belonging to 6 different class of the dataset. Labels of

classes are indicated in numbers from 0 to 6. .. 39

Figure 19: A graphical representation of Cora dataset after injecting 128 outliers (50 contextual,

78 structural and 2 both). Different colors denote different types of nodes, inliers and types of

outlier nodes. .. 41

Figure 20: A graphical representation of Cora dataset after injecting 128 outliers (50 contextual,

80 structural and 2 both). Different colors denote different types of nodes, inlier and types of

outlier nodes. .. 41

Figure 21: ROC Curve for model_Dominant for contextual outlier predictions in Cora dataset

containing injected outliers. TPR and FPR of the model are plotted against each other at various

threshold of outlier scores assigned by the model. The diagonal dotted line represents the line

of no discrimination. .. 48

Figure 22: ROC Curve for model_Dominant for contextual outlier predictions in CiteSeer

dataset containing injected outliers. TPR and FPR of the model are plotted against each other

at various threshold of outlier scores assigned by the model. The diagonal dotted line represents

the line of no discrimination. ... 49

Figure 23: ROC Curve for model_AnomalyDAE for contextual outlier predictions in Cora

dataset containing injected outliers. True Positive Rate and False Positive Rate of the model

are plotted against each other at various threshold of outlier scores assigned by the model. The

diagonal dotted line represents the line of no discrimination. ... 51

Figure 24: ROC Curve for model_AnomalyDAE for contextual outlier predictions in CiteSeer

dataset containing injected outliers. True Positive Rate and False Positive Rate of the model

are plotted against each other at various threshold of outlier scores assigned by the model. The

diagonal dotted line represents the line of no discrimination. ... 53

Figure 25: ROC Curve for model_GAAN for contextual outlier predictions in Cora dataset

containing injected outliers. True Positive Rate and False Positive Rate of the model are plotted

 List of Figures

xii

against each other at various threshold of outlier scores assigned by the model. The diagonal

dotted line represents the line of no discrimination. .. 54

Figure 26: ROC Curve for model_GAAN for contextual outlier predictions in CiteSeer dataset

containing injected outliers. True Positive Rate and False Positive Rate of the model are plotted

against each other at various threshold of outlier scores assigned by the model. The diagonal

dotted line represents the line of no discrimination. .. 55

Figure 27: ROC Curve for model_CoLA for contextual outlier predictions in Cora dataset

containing injected outliers. True Positive Rate and False Positive Rate of the model are plotted

against each other at various threshold of outlier scores assigned by the model. The diagonal

dotted line represents the line of no discrimination. .. 57

Figure 28: ROC Curve for model_CoLA for contextual outlier predictions in CiteSeer dataset

containing injected outliers. True Positive Rate and False Positive Rate of the model are plotted

against each other at various threshold of outlier scores assigned by the model. The diagonal

dotted line represents the line of no discrimination. .. 59

Figure 29: Line plots for true predictions of models, Dominant, AnomalyDAE, GAAN, and

CoLA for contextual outlier detections in Cora and CiteSeer dataset carried out for 10

experiments keeping threshold value top 50 outliers ... 60

 List of Tables

xiii

List of Tables

Table 1 Summary of GNN based node-level outlier detection methods 34

Table 2 Summary of datasets used ... 42

Table 3 Status of outliers predicted by DOMINANT model in Cora dataset with outliers

injected. The model is run for 10 instances in the dataset. Average is the average value of each

column for 10 experiments. ... 47

Table 4 Status of outliers predicted by DOMINANT model in CiteSeer dataset with outliers

injected. The model is run for 10 times in the dataset. Average is the average value of each

column for 10 experiments. ... 49

Table 5 Status of outliers predicted by AnomalyDAE model in Cora dataset with outliers

injected. The model is run for 10 instances in the dataset. Average is the average value of each

column for 10 experiments. ... 50

Table 6 Status of outliers predicted by AnomalyDAE model in CiteSeer dataset with outliers

injected. The model is run for 10 instances in the dataset. Average is the average value of each

column for 10 experiments. ... 52

Table 7 Status of outliers predicted by GAAN model in Cora dataset with outliers injected. The

model is run for 10 instances in the dataset. Average is the average value of each column for

10 experiments. .. 54

Table 8 Status of outliers predicted by GAAN based model in CiteSeer dataset with outliers

injected. The model is run for 10 instances in the dataset. Average is the average value of each

column for 10 experiments. ... 56

Table 9 Status of outliers predicted by CoLA model in Cora dataset with outliers injected. The

model is run for 10 instances in the dataset. Average is the average value of each column for

10 experiments. .. 58

Table 10 Status of outliers predicted by CoLA model in CiteSeer dataset with outliers injected.

The model is run for 10 instances in the dataset. Average is the average value of each column

for 10 experiments. .. 59

Table 11 True Positive and False Positive of models for contextual outlier detection in Cora

and CiteSeer dataset with outliers injected for threshold value of top 50 outliers 60

Table 12 AUC score of all the models in Cora and CiteSeer dataset for contextual outlier

predictions .. 61

 Introduction

1

1 Introduction
This chapter presents the background information of graph theory, GNN and outlier detection.

It includes the objectives of this work, research gap, motivation, and the structure of the report.

It sets the stage for the exploration and analysis of GNNs for outlier detection in the subsequent

chapters.

1.1 Background

As the digital connectivity of the world is rapidly growing, so does the complexity of data

generated across various domains, prompting the need for sophisticated analytical tools and

mechanisms. In the era of interconnected data, networks have been ubiquitous across various

aspects, influencing everything from social interactions to financial transactions and beyond.

The surge in network-based data has naturally led to increased academic and practical interest

in novel analytical methods that cater to the unique attributes of such data. The prevalence of

graph-structured data in several essential applications, such as social networks, financial

systems, molecular science, and sensor arrays, lays the foundation for significant research and

development efforts in this area. Among the emerging frontiers in this space is GNN, a

significant extension of deep learning approaches, shaped specifically to navigate and interpret

the wealth of data inherent in graph structures. The complex network pattern of data can be

modeled effectively using GNNs, which extend deep learning techniques to graph-based data,

allowing for the extraction of intricate patterns and features not readily apparent through

traditional data analysis methods [1], [2].

GNNs have proven particularly adept at discovering hidden patterns within network data,

pertinent not only in understanding complex systems but also in identifying abnormalities that

deviate from expected behavior—outliers that could signify critical security concerns. GNNs

are capable of learning rich and transferable representations by aggregating information within

the graph, thus offering unparalleled insights into the data's underlying structure. Traditional

methods often treat data points as isolated instances, which limits their effectiveness when the

data's structure and relationships are essential for analysis. These methods are typically

designed for scenarios where data points are assumed to be independent and identically

distributed. GNNs, on the other hand, represent a paradigm shift from these traditional methods

in several keyways, data structure, aggregation scheme and message passing, relational

inductive bias, learning from topology to name a few.

Simultaneously, outlier detection in graph data has emerged as a critical challenge, particularly

in security-sensitive fields. The ability to identify anomalies in a wide range of disciplines can

help uncover not limiting to fraudulent transactions, detect network intrusions, reveal social

network manipulations, toxicity predictions, disease pathway analyses. It is in this context that

GNNs are being explored as a viable solution for efficient outlier detection, distinguishing

themselves from other analytical approaches in handling relational data and their adaptability

to the unique properties of each application domain. The utilization of GNNs for outlier

detection embraces the essence of both disciplines – the structural intuition provided by graph

theory and the predictive power of neural networks. This integration is pivotal for enhancing

 Introduction

2

security measures and for fostering trust in the digital infrastructures that increasingly underpin

our society [3].

Therefore, this master thesis seeks to tap into the synergy between GNNs and the pressing

requirement for robust outlier detection mechanisms within graph-structured data. By

implementing and examining the latest GNN algorithms, specifically tailored for anomaly

detection, this research aims to offer a comprehensive overview of the current landscape

through a methodical evaluation of these algorithms using state-of-the-art libraries such as

PyTorch [4] and PyGOD [5], and by closely scrutinizing their performance within specific

application-related datasets.

1.2 Research gap and motivation

The rapid evolution of digital connectivity has ushered in an era where vast amounts of

interconnected data are generated across diverse domains, necessitating sophisticated

analytical tools to break down its complexities. Within this landscape, GNNs have emerged as

a promising avenue for analyzing graph-structured data, offering unparalleled capabilities in

extracting elaborate patterns and features. However, while GNNs have demonstrated

remarkable prowess in various applications, a critical research gap exists in their application to

outlier detection within graph data.

The motivation to bridge this gap reduces from the clustering need for robust anomaly detection

mechanisms in security-sensitive fields and beyond. Traditional outlier detection methods

often falter in adequately capturing the relational intricacies inherent in graph data, thereby

underscoring the relevance of GNNs in this domain. Moreover, as the prevalence of anomalies,

ranging from fraudulent transactions to network intrusions, continues to pose significant

threats, harnessing the potential of GNNs for outlier detection becomes imperative. By delving

into this intersection between GNNs and outlier detection, this research endeavors to not only

advance the theoretical understanding of GNNs but also to offer practical solutions that bolster

the security and integrity of digital infrastructures. Through a systematic exploration of state-

of-the-art algorithms, meticulous evaluation using real-world datasets, and the proposal of

potential enhancements, this thesis aims to contribute to the enhancement of anomaly detection

capabilities, thereby fostering trust in the digital ecosystem.

1.3 Objectives

The objectives of this master thesis are as follows:

1. Inspect the state-of-the-art of GNNs and understand the different GNN architectures.

2. Review the state-of-the-art of GNN algorithms for outlier detection.

3. Implement and study GNN algorithms for outlier detection using PyTorch and the Python

library for graph outlier detection PyGOD

4. Evaluate the performance of GNN based algorithms for outlier detection in datasets related

to a specific application.

5. Propose improvements of GNN based algorithms for outlier detection.

6. Prepare a detailed report of the research process, findings, and conclusions, including code

and data used in the thesis work.

 Introduction

3

The task description of this master thesis is included in Appendix A.

1.4 Report Structure and Outline

The report is structured in the following way.

Chapter 2 presents an overview of graph theory and graph-based data. Here, the state-of-the-

art inspection of GNNs is performed. The architecture of GNN is thoroughly studied along

with its nuances and variations. This includes a detailed review of the foundational elements

that constitute GNNs and outlines how various architectures have evolved to address the

challenges specific to learning from graphs, highlighting key advancements, and identifying

the architectural traits that have contributed to their successes in outlier detection and other

graph-based tasks.

Chapter 3 delves into a systematic review of the state-of-the-art GNN algorithms specifically

tailored for outlier detection encompassing a thorough analysis of the methodologies and

frameworks that have been developed and employed in recent studies.

Chapter 4 focuses on the hands-on implementation and in-depth study of GNN algorithms for

outlier detection using PyTorch, along with PyGOD.

Chapter 5 is dedicated to the evaluation of GNN-based algorithms' performance in detecting

outliers within datasets relevant to a targeted application area. It also synthesizes and reflects

on the findings gained from implementing and evaluating GNN-based outlier detection

methods. Key points of discussion include the practicality of GNN models and their

performances.

Chapter 6 delves into identifying and addressing potential shortcomings of current GNN-based

algorithms in outlier detection. The aim is to propose methodological and technical

improvements to GNN algorithms. The concluding chapter encapsulates the main contributions

of the thesis, summarizing the key findings and reinforcing the significance of the research in

advancing the understanding and application of GNNs for outlier detection.

 An Overview of Graph Theory and GNNs

4

2 An Overview of Graph Theory and GNNs
This chapter provides a comprehensive overview that is necessary to understand GNNs and

their application to outlier detection. It begins by introducing graph theory and the elements of

graph-based data, laying down the definitions, types of graphs, and properties that are

foundational to subsequent discussions on GNNs. The chapter is divided into three sections. It

starts with an introduction to graph theory and its associated aspects, and then the introduction

to GNNs. Finally, the chapter discusses the state-of-the-art GNN architectures including an

exploration of the most recent and impactful research in the area along with the applications

and challenges associated with GNNs.

2.1 Graph Basics

Perhaps, graphs are everywhere, almost in every fabric of the cosmos. Graphs can be seen as a

reflection of the intricate tapestry of interconnections that weave together the elements of

universe. From the neurons in human brain to the social ties that bind us, the stars in the cosmos,

and the cities on maps, everything is interconnected in a complex network of relations and

dependencies. These connections pattern the raw fabric of chaos into ordered structures that

can be analyzed, understood, and optimized. Translating this philosophical contemplation into

the realm of mathematics, graph theory emerges as the study of these patterns. A graph in this

context is a collection of points, called vertices or nodes, connected by lines, known as edges.

This simple construct is deceptively powerful, capable of representing virtually any system

where a set of discrete entities maintains some form of relationship with one another [2], [6].

In the language of graph theory, relationships become tangible, quantifiable, and open to

inspection. Each node can represent an individual entity, and each edge can embody the

relationship between entities, varying in nature – social, biological, computational, or

conceptual. By mapping out the connections, graph theory enables to see a clearer picture of

the underlying structures governing complex systems. In essence, graph theory gives form to

the abstract concept of interconnectedness, allowing to navigate and make sense of the complex

networks that define the world. It is a bridge between the philosophical idea of unity and the

practical need to comprehend and manage the interconnected systems that underlie the essence

of life and technology.

A plain graph can be simply represented mathematically as = (V, E), where V represents

the set of vertices or nodes, and E represents the set of edges. Figure 1 shows an overview of a

typical plain graph.

 An Overview of Graph Theory and GNNs

5

Figure 1: A toy example of plain graph consisting of four nodes

(1,2,3 and 4). Here, node 1 and 2 are connected by edge e1, node 2

and 3 by edge e2, node 3 and 4 by edge e3 and node 4 and 1 by edge

e4. V = {1,2,3,4} is the set of nodes and E = {e1,e2,e3,e4} is the set

of edges for a plain graph

Nodes, also called vertices, represent entitles in the graph, such as people in a social network,

paper or article in a citation network, cities in a transportation network, etc. Each node can have

an identifier, and they can also carry attributes such as features or labels, commonly known as

node features. Nodes are called plain nodes if they do not carry any additional information or

attributed nodes if they carry additional information or attributes. In figure 1, the nodes, 1,2,3

and 4 indicate four nodes of a plain graph .

Edges, on the other hand, represent relationships or connections between nodes. Edges can

have various properties and types, depending on how they connect the nodes and whether they

carry additional information. Edges can be undirected or directed based on the direction. An

undirected edge simply represents a bidirectional relationship between two nodes without any

inherent direction whereas a directed edge has a specific direction from one node to another

representing a one-way relationship or flow from a source node to a target node.

Similarly, edges can also be weighted or unweighted based on the additional information

carried. A weighted edge carries a numerical weight or value which can represent various

properties such as distance or cost. Unweighted edge, on the other hand, does not contain any

such numerical weight or value. Additionally, there are other instances of edges, such as

multiple edges and self-loops. Two or more edges connecting the same pair of nodes are

multiple edges and an edge that connects a node to itself is known as self-loops. Figure 2

illustrates undirected and directed edge and figure 3 illustrates unweighted and weighted edge.

 An Overview of Graph Theory and GNNs

6

Figure 2: A toy example of undirected and directed edge.

Edge e1 connecting node 1 and 2 is an undirected edge, edge

e2 connecting node is an undirected edge. In e2, node 4 is a

source node and node 3 is the destination node.

Figure 3: A toy example of unweighted and weighted edge.

Edge e3 connecting nodes 5 and 6 is an unweighted edge,

edge e4 connecting nodes 7 and 8 with weight 1 is a weighted

edge.

An attributed graph, consequently, is another form of graph where nodes, edges or both are

associated with additional features or attributes. Attributed graphs can represent enriched

networks such as knowledge graphs, road networks, etc. These graphs are generally represented

as G = (V, E, X), where V represents the set of nodes, E represents the set of edges and X

represents the feature matrix. Figure 4 is the illustration of attributed graph. In figure 4, the

transformed node feature vectors x1, x2, x3, and x4 are stacked row wise in the feature matrix

X of the attributed graph G.

 An Overview of Graph Theory and GNNs

7

Figure 4: A toy example of attributed graph G consisting of

four nodes 1,2,3,and 4. Here, x1, x2, x3, and x4 are the

transformed node feature vectors for nodes 1,2,3, and 4

respectively.

Based on the dynamism, a graph can be represented as static or dynamic graph. In static graph,

nodes, edges, and attributes do not change or evolve and remains unchanged over time.

Dynamic graph, also called spatial-temporal graph, however, is a graph where graph’s structure

including nodes, edges, or attributes evolve or change over time. A dynamic graph G(t) can be

represented mathematically as G(t) = (V(t), E(t), X(t)), where V(t) is the set of nodes at time t, E(t)

is the set of edges at time t and X(t) is feature matrix at time t.

2.1.1 Graph Connectivity and Representation

There are several important parameters used for graph connectivity and representation. Some

of them are discussed below [1].

Adjacency Matrix (A): An adjacency matrix A is a common mathematical representation of

a graph's structure, describing which nodes are connected to each other. It is basically a matrix

representation of the graph and is a square matrix of size |𝑉| x |𝑉|, where |𝑉| is the number

of nodes in the graph. Each element A𝑢𝑣 in the matrix represents the connection between nodes

𝑢 and 𝑣. In weighted graphs, the matrix includes the weight of the connections; in unweighted

graphs, it is a binary matrix meaning if there is an edge from node 𝑢 to 𝑣 then A𝑢𝑣 = 1;

otherwise, A𝑢𝑣 = 0. For undirected graphs, A is symmetric, meaning A𝑢𝑣 =A𝑣𝑢. Figure 5 shows

the adjacency matrix A for a graph G. Figure 5 has an attributed graph G with four nodes. A is

the corresponding adjacency matrix of graph G, a symmetric matrix, where each element

corresponds to the edge information. Graph G being an unweighted graph, the element in

matrix A is filled with binary values 0 and 1 corresponding to the absence and presence of

edges between two nodes respectively. For weighted graph, binary values are replaced by the

corresponding weights of the edges.

 An Overview of Graph Theory and GNNs

8

Figure 5: Adjacency matrix A for attributed graph G. For existence of edge between two nodes, the

corresponding element in the matrix A is populated with 1 or else 0. The diagonal elements would

be 1 if self-loops in all the nodes are present.

Likewise, the degree matrix D is a diagonal matrix, where the diagonal entry 𝐃𝑢𝑢 represents

the degree (number of edges) of node u and is essential for normalization process. 𝐃𝑢𝑢 is

calculated as 𝐃𝑢𝑢 = ∑ 𝐀𝑢𝑣
|𝑉|
𝑣=1 , where 𝐀𝑢𝑣 is an adjacency matrix with nodes 𝑢 and 𝑣.

The normalized adjacency matrix �̂� is computed by first augmenting the adjacency matrix A

with an identity matrix I to account for self-loops, resulting in the matrix 𝐀′ = A + I. Self-loops

are edges in a graph that connect nodes to themselves.

Next, the degree matrix D is modified by adding an identity matrix I to each diagonal element,

which increase each degree by one. This modified degree matrix is denoted as �̂� and is

calculated as �̂� = D + I .

To normalize the adjacency matrix, �̂� is computed as �̂� = �̂�−1/2 𝐀′ �̂�−1/2, where �̂�−1/2 is the

inverse of square root of the modified degree matrix �̂�. By normalizing the adjacency matrix

in this manner, the resulting matrix �̂� ensures that the learned graph representations are more

stable and less influenced by nodes with different connectivity levels.

Feature Matrix (X): A feature matrix X is a matrix, where each row corresponds to a node

and each column corresponds to a feature. Each row of the feature matrix represents the feature

vector for a node, containing the node's attributes such as labels, properties, or other data

relevant to the graph. Thus, X is a matrix of size |V| x d, where |V| is the number of nodes,

and d is the number of features. This matrix provides input data to GNN, representing each

node’s characteristics. It is the feature matrix in GNNs that undergoes transformations and

aggregations to learn new representations of nodes, incorporating graph structure and feature

information.

Feature Vector (x): A transformed feature vector x for node u is represented by the uth row of

the feature matrix X. A feature vector captures the attributes of the node, which may include

numerical, categorical, or binary values. Each row of the feature matrix X is a transformed

 An Overview of Graph Theory and GNNs

9

feature vector representing a single node's features. Feature vectors provide a representation of

each node based on its characteristics or attributes. These features might include node attributes

such as color, type, label, or any other information relevant to the specific graph and

application. Figure 6 shows the concept of feature vector and feature matrix for an attributed

graph G = (V,E,X). The transform of feature vector x of all nodes stacked row wise produces

the feature matrix X of graph G.

Figure 6: Feature matrix X for an attributed graph G with nodes 1,2,3,4, and their respective transformed node

feature vectors x1, x2, x3 and x4.

These mathematical representations and concepts form the basis of graph data structures and

their analysis in the context of GNNs and other graph-based algorithms are covered in the

subsequent chapters.

2.2 Graph Neural Networks

Building on the philosophical understanding of interconnectedness, graph theory finds its tech-

savvy incarnation in GNNs [6]. Just as graphs illustrate the complex web of relationships in

nature and society, GNNs capture and harness these relationships within the realm of data.

GNNs are an innovative blend of graph theory and machine learning. While traditional neural

network architectures excel at tasks with structured, grid-like data (such as images for

Convolutional Neural Network (CNN) [7] or sequential text for Recurrent Neural network

(RNN) [8]), GNNs are designed for the irregular, complex structures that graph data represents.

They learn from the topological structure of graphs, accounting for the heterogeneous and rich

relationships between nodes – a reflection of the real-world's complexity.

In the GNN paradigm, nodes aggregate information from their neighbors through neural

network layers, effectively allowing for the direct application of machine learning to graphs.

 An Overview of Graph Theory and GNNs

10

This aggregation captures not only the individual node features but also the global structure of

the data, enabling the model to infer deep insights about the nature of each node within the

context of its surrounding network. Just as individual beings find identity in their social and

environmental contexts, GNNs understand each node by its relational position and interactions

within the network.

Furthermore, in applying GNNs to outlier detection, for instance, this powerful concept of

GNNs is harnessed to identify the nodes or patterns that stand out as atypical or unexpected.

GNNs, therefore, represent a synergy between age-old wisdom and cutting-edge technology,

enabling a deeper understanding and interaction with the myriad networks that underpin the

fabric of existence.

Now shifting the focus from philosophical point of view to scientifically and mathematically,

GNNs are sophisticated computational models that operate on data represented as graphs.

While traditional neural networks process fixed-size inputs and generate fixed-size outputs,

which are not naturally adaptable to the variable-sized graphs characterized by an arbitrary

number of nodes and connections, GNNs, however, are specifically engineered to handle this

variability, capable of learning from data that is inherently relational and interconnected. Figure

7 is the pictorial representation of GNN.

Figure 7: Pictorial representation of GNN in [1] consisting of 3 layers building

GNN blocks where graph is fed as input to produce transformed graph as an

output.

2.2.1 Learning Process

GNNs [26] extend the concept of neural networks to graphs by using the notion of message

passing and neighborhood aggregation. The fundamental idea of GNNs is to learn suitable

representation of graph data for a neural network. This is also called representation learning.

Using all the information about the graph including the node features and the connections

stored in an adjacency matrix, the GNNs output new representations which are also called

embeddings for each of the nodes. These node embeddings contain the structural as well as the

feature information of the other nodes in the graph. It means each node knows something about

 An Overview of Graph Theory and GNNs

11

the other nodes, the connection to this node and its context in the graph. The embeddings can

finally be used to perform the predictions [1], [6], [9].

In a nutshell, for each node, GNNs aggregate information from its neighbors using an

aggregation function. The aggregated information is then combined with the node's attributes

using a transformation function. This process is repeated over several iterations or layers,

allowing information to propagate across the network. This process is known as message

passing. Message passing is a key concept in GNNs that essentially describes the process of

transferring messages across nodes in the graph through their connections (edges).

The aggregation step includes a new representation for each node by combining its own

features with the features of its neighbors. For a given node 𝑣, the aggregated feature vector

ℎ𝑣
(𝑎𝑔𝑔)

 is computed as:

ℎ𝑣
(𝑎𝑔𝑔)

 = aggregate ((ℎ𝑢
(𝑘−1)

 : 𝑢 ∈ 𝓝(𝑣))) (1)

where, ℎ𝑢
(𝑘−1)

 is the feature representation of node 𝑢 at layer (k-1), 𝑢 are the neighbor nodes

belonging to the neighborhood 𝓝 (𝑣) of node 𝑣, and aggregate is the aggregation function.

The neighborhood for the node 𝑣 is defined as 𝓝 (𝑣) ={ 𝑢 ∈ V  ∣ (𝑢, 𝑣) ∈ E }.

The aggregate function typically involves normalized summing, averaging, finding the

maximum of the neighboring features or more advanced methods such as the use of neural

network as well. Aggregation is often followed by normalization to ensure stable and consistent

updates. A common normalization strategy is to normalize the adjacency matrix (A) to obtain

�̂�. These aggregated neighbor features are then combined with the node's current features using

the combine function. Mathematically, the kth layer of a GNN could be represented as:

ℎ𝑣
(𝑘)

= 𝑐𝑜𝑚𝑏𝑖𝑛𝑒(𝑘) (ℎ𝑣
(𝑘−1)

, 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑘) ({ℎ𝑢
(𝑘−1)

 ∣ 𝑢 ∈ 𝓝(𝑣) })) (2)

where, ℎ𝑣
(𝑘)

 is the feature representation of node 𝑣 at layer k, ℎ𝑣
(𝑘−1)

 is the feature representation

of node 𝑣 at layer (k-1), ℎ𝑣
(𝑎𝑔𝑔)

 is the aggregated feature representation of neighbor nodes of

node 𝑣 and 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 is the function responsible for integrating the aggregated neighbor

features with the node's current features.

In GNNs, the process of aggregating information from neighboring nodes and combining the

aggregated information with the node’s information is referred to pooling [1]. Pooling in GNNs

is simply a technique used to compress the information of a graph or a node’s neighborhood.

Some common types of pooling are node pooling, edge pooling and graph pooling. In node

pooling, the information is aggregated from a node and its neighboring nodes to produce a new

representation of a node. Similarly, in edge pooling, the information is aggregated from the

edges of a graph. This can involve pooling edge features or aggregating information from edges

and their incident nodes as well. In graph pooling, pooling is often used to create a single

representation of the entire graph. While node pooling is done at the node level, edge pooling

can provide more nuanced insights into graph data by helping to capture important relationships

and interactions within the graph from edge level and connectivity which analysis from the

node level is not often guaranteed. The primary applications of pooling are feature aggregation

 An Overview of Graph Theory and GNNs

12

(aggregate the features of a node’s neighbors to a single representation), graph summarization

(create a summarized representation of the entire graph) and dimensionality reduction (reduce

the dimensionality of the data).

The learning objective of GNNs is typically framed around node-level, edge-level, or graph-

level tasks. Node-level tasks might involve classifying nodes into different categories, while

edge-level tasks could include predicting the existence or properties of edges between nodes.

Graph-level tasks often revolve around classifying entire graphs or predicting their properties.

For all these tasks, loss functions measure the discrepancy between the model's predictions and

the true outcomes. During training, the loss is backpropagated through the network to update

weights and improve the model's predictions. Backpropagation in GNNs accounts for the

derivative of the loss with respect to the node representations, which further translates into

gradient updates for the neural network parameters, moving in the direction that minimally

reduces the loss.

2.2.2 Applications of GNN

Scientifically, GNNs have broad implications due to their ability to model relational data

authentically. They allow the capturing of dependencies and interactions that would otherwise

be lost in non-relational representations. This has led to far-reaching applications in fields like

chemistry, where GNNs can predict molecular properties, bioinformatics for protein-protein

interaction networks, social network analysis, and even infrastructure and urban planning using

road and utility networks. From a mathematical lens, GNNs also present new frontiers in

understanding how to optimally aggregate and transform information in complex systems. The

ongoing development of GNN theory and methods continues to be an interdisciplinary effort,

bringing together insights from graph theory, linear algebra, computer science, and statistical

learning theory [3], [6], [26].

Some of the major applications of GNNs are discussed below:

• Recommendation Systems: GNNs are used to recommend products based on users'

previous interactions and connections with other users [10].

• Drug Discovery and Bioinformatics: GNNs are applied in bioinformatics for modeling

protein-protein interaction networks, gene regulatory networks, and drug-target

interactions [11].

• Financial Applications: GNNs are used to analyze financial data modeled as graphs, such

as transaction networks, for fraud detection, market analysis, and investment

recommendations [12].

• Traffic and Mobility: GNNs are used to model traffic networks, such as road networks or

transportation systems, for predicting traffic flow, optimizing routes, or managing mobility

systems [13].

• Cybersecurity: GNNs are used to model and analyze network traffic as graphs for

detecting anomalies or security threats, such as intrusion detection [14].

These are just a few examples of the many possible applications of GNNs. As the field

continues to evolve, new applications are emerging in a variety of domains, where the

 An Overview of Graph Theory and GNNs

13

versatility and power of GNNs in processing and learning from graph-structured data are richly

exploited.

2.2.3 Challenges in GNN

While GNNs have proven to be a powerful tool for learning from graph-structured data, they

also present several challenges that needs to be addressed. These challenges arise from the

complexity of graph data and the unique aspects of GNN architectures [6], [9], [15].

Some of the key challenges in GNNs are explained below.

• Over-Smoothing: Over-smoothing occurs when the node representations become

increasingly similar as the number of layers in the GNN increases. This can lead to loss of

distinctive features for nodes, making it difficult to differentiate between them.

• Scalability: Graphs can be large and complex, with millions or even billions of nodes and

edges. Also, graphs come in different shape and size. Handling such large-scale graphs

efficiently is a major challenge for GNNs.

• Heterogeneity: Many real-world graphs are heterogeneous, containing multiple types of

nodes and edges with varying properties. Also, the non-Euclidean structure (no clear grid

like structure) of graph makes the design of GNN architectures that can effectively handle

such heterogeneity a challenge.

• Dynamism: Many graphs are dynamic, with nodes and edges being added or removed over

time. Learning from such evolving graphs is challenging as the graph structure and features

change over time.

• Graph Sampling: Efficiently sampling and selecting relevant subgraphs or neighbors for

training is challenging, especially when dealing with large or dense graphs as poor

sampling strategies can lead to biased or incomplete learning.

• Isomorphism: Graphs are inherently permutation invariant, meaning their structure does

not change under reordering of nodes. This poses a challenge when using adjacency

matrices directly in feed-forward networks because they are sensitive to the order of the

nodes.

2.3 Review of GNN Architectures

GNNs over the past have been realized in several different architectures mainly designed to

work with various types of graph-structured data and tasks. These architectures leverage the

graph structure and its features in different ways. The state-of-the-art of GNNs is a rapidly

evolving landscape with diverse architectures tailored to harness the power of graph data.

These architectures address specific challenges such as scalability, inductive learning,

expressiveness, and interpretability. The concept of neural networks for graphs started with

work by Gori et al. in [16], where GNNs are introduced as a generalization of RNNs [8] to

graphs. The idea was to update node features based on neighboring nodes using recurrent

computations.

Message Passing Neural Networks (MPNNs) [17] are a framework that encompasses many

GNN variants. Introduced by Gilmer et al in [17], MPNNs formalize GNN’s operation into a

 An Overview of Graph Theory and GNNs

14

message passing phase, where edges deliver messages between nodes, and an update phase,

where node representations are updated based on incoming messages. MPNNs provide a

unifying framework that shows how different GNN architectures can be seen as specific

instances of a general message-passing scheme. Each MPNN is characterized by how it defines

the message functions and the update functions. The message function determines how

information should be passed along edges, and the update function decides how the node's new

state should be computed based on the aggregated messages. These functions often involve

learnable parameters, allowing the MPNN to be trained end-to-end using gradient descent.

Some of the other prominent GNN architectures and their unique aspects are discussed in the

following section.

2.3.1 Graph Convolutional Network (GCN)

GCN [18] is one of the most common GNN architectures and is based on convolutional

operations on graph-structured data. It aggregates features from a node's neighbors, applies a

linear transformation, and a non-linear activation function. GCNs extend the concept of

convolution from regular grids (like images) to graph-structured data. They use a neighborhood

aggregation approach where each node updates its representation by aggregating the

representations of its neighbors. The key idea is to learn a transformation that is applied to the

local neighborhood of a node. The simplicity and effectiveness of GCNs have made them a

popular choice for node classification and link prediction tasks [18], [19], [20].

GCNs are a popular class of GNNs designed to handle graph data efficiently. Bruna et al. in

[21] introduced the concept of spectral graph convolutional networks. These networks applied

graph convolutions in the frequency domain using the graph Laplacian eigenvalues and

eigenvectors. This work laid the foundation for the spectral approaches in GNNs. Kipf et al.

introduced a simplified and scalable version of graph convolutions in [18]. In [18], two

interesting ideas have been used. First, the aggregation is used for neighbor information as the

normalized sum of the states. Additionally, it is incorporated with the update operation by

adding a self-loop for a particular node including it into the summation meaning both update

and aggregation is combined in one computation. The concept of GCN is shown pictorially in

figure 8.

Figure 8: GCN represented as image in [20]. Input is a graph with nine nodes and

thirteen edges. Two hidden layer followed by activation function ReLU are GCN

layers where graph convolution happens in the input graph.

 An Overview of Graph Theory and GNNs

15

2.3.1.1 Learning Process

GCNs are designed to learn node representations through a process known as message passing

or graph convolution. In each layer of a GCN, nodes aggregate information from their

neighbors, transform it, and update their own features accordingly. The node-order is invariant

or equivariant meaning the order of nodes are permutational invariant making the overall

convolution node-order equivariant. GCNs perform graph convolutions by aggregating the

features from the neighbors of a node and combining them with the node's own features [18].

The working process of GCN can be explained stepwise in the following ways.

Aggregation: The key idea behind GCNs is to perform convolutional operations directly on

the graph structure. Unlike regular convolutions in grid-structured data (e.g., images), graph

convolutions operate on irregular neighborhoods defined by the graph topology. For graph G

= (V, E, X) with feature matrix X, the goal is to compute new feature representations for each

node based on its local neighborhood. The graph convolution operation aggregates information

from neighboring nodes and updates the node features using learnable parameters. For a node

𝑣, the aggregation in GCN is calculated as:

ℎ𝑣
(𝑘+1)=σ (𝐖(𝑘) ∑ �̂�𝑣𝑢𝒖∈𝓝(𝒗)) (3)

where, ℎ𝑣
(𝑘+1)

 is the updated feature vector for node 𝑣 at layer k+1, 𝐖(𝑘) is the learnable weight

matrix for layer k, �̂�𝑣𝑢 is the normalized adjacency matrix representing the connection

between node 𝑢 and 𝑣, 𝓝 (𝑣) is the neighborhood of node 𝑣 and σ is the activation function to

include non-linearity to the model.

In equation (3), the new updated representation of node 𝑣, ℎ𝑣
(𝑘+1)

, is achieved by the

convolution operation. The step ∑ �̂�𝑣𝑢𝑢∈𝒩(𝑣) is where the feature vectors of all neighbors u of

node 𝑣 are aggregated and the learnable weight matrix 𝐖(𝑘) k transforms the aggregated

features to a new updated feature vector for node 𝑣 at layer k. This updated representation is

passed through a non-linear activation function σ. This overall sums up the aggregation process

in GCN.

Message Passing: GCNs typically employ a message passing scheme to propagate information

across the graph. At each layer of the GCN, nodes exchange messages (information) with their

neighbors, which are then aggregated to compute updated node representations. The equation

(3) is performed for all the nodes present in the graph to obtain new node embeddings which

contains the information aggregated from all the neighboring nodes. In general, the convolution

operation or a message passing for a given layer in a GCN can be represented mathematically

as:

𝐇(𝑘+1)=𝜎(�̂�−1/2 𝐀′ �̂�−1/2 𝐇(𝑘)𝐖(𝑘)) (4)

where, 𝐇(𝑘) is the feature matrix at layer 𝑘, with each row representing the transformed feature

vector of a node, 𝐀′ = A + I is the adjacency matrix with self-loops added (where I is the

identity matrix), �̂� is the diagonal degree matrix of �̂�, 𝐖(𝑘) is the learnable weight matrix at

 An Overview of Graph Theory and GNNs

16

layer 𝑘 and 𝜎 is a nonlinear activation function. 𝐇(𝑘+1) is the updated feature matrix at the next

layer.

Multi-Layer Perceptron (MLP): Each layer in GCN is responsible for aggregating

information from the neighbors of each node and transforming it using a weight matrix and an

activation function to generate new updated feature embeddings. The node feature

representations are updated in each layer using linear transformations .This transformation is

akin to the operations in a MLP but applied to the graph structure. This process continues

through multiple layers, allowing information to propagate across the graph. The combination

of linear transformations, non-linear activation functions, and weight matrices in each layer

makes the GCN similar to an MLP in structure.

These three concepts, aggregation, message passing, and MLP, are central to the functioning

of GCNs and enable the network to learn from graph-structured data. GCNs are trained using

backpropagation and gradient descent methods to minimize a loss function. The loss function

depends on the specific task, such as node classification or graph classification. During

training, the model learns optimal parameters (e.g., weight matrices) to effectively propagate

and aggregate information across the graph while minimizing the prediction error. In a

classification task, the final layer's output can be used for node classification, graph

classification, or other downstream tasks.

2.3.1.2 Limitations of GCNs

Some of the noticeable limitations of GCNs are discussed below [3], [19], [22].

• GCNs require knowledge of the complete graph for performing the convolution operation.

which is very expensive computationally. New additions to the graph requires recalculation

of the entire architecture parameters due to change in eigenvalues (λ) .

• GCNs use a fixed neighborhood size, which may not be optimal for different nodes or

graphs.

• As the number of layers in a GCN increases, node features tend to become more similar

(over-smoothed), leading to a loss of distinction between nodes.

• GCNs may not be expressive enough to differentiate between different graph structures due

to their reliance on linear transformations and fixed aggregation functions.

• GCNs treat all neighbors equally during message passing, which may not capture the

varying importance of different neighbors.

• GCNs leverage only transductive learning and cannot transfer knowledge from one domain

to another.

2.3.2 Graph Attention Network (GAT)

GAT [23] uses attention mechanisms to weigh the importance of different neighbors when

aggregating their features. This allows the network to focus more on relevant neighbors and

less on less relevant ones. GATs introduce an attention mechanism to the aggregation step in

GNNs. Nodes compute the coefficients of attention across their edges that indicate the

importance of the neighboring node’s information. This allows the model to focus more on

 An Overview of Graph Theory and GNNs

17

relevant nodes and less on less relevant ones, enhancing the adaptability to different parts of

the graph.

Veličković et al. in [23] introduced GATs, which applied attention mechanisms to graph data.

This allowed the model to focus on specific neighbors more than others during message

passing, providing a more flexible and interpretable approach compared to GCNs.

2.3.2.1 Learning Process

The learning process and working mechanism of GATs is summarized below [23]:

Attention Mechanism : GATs use an attention mechanism to compute a weight (attention

score) for each neighbor of a node. The basic idea of attention mechanism is to additionally

learn how important are the features of the neighboring nodes 𝑢 ∈ 𝓝(𝑣) for a node 𝑣. This

importance is called the attention score or coefficient. Attention mechanism therefore allows

the model to prioritize certain neighbors based on their importance. The attention score 𝑒𝑢𝑣

between node 𝑣 and its neighbor 𝑢 is computed as:

𝑒𝑢𝑣= 𝜎 (𝑎𝑇[𝐖ℎ𝑢∣∣𝐖ℎ𝑣]) (5)

where, ℎ𝑢 and ℎ𝑣 are the feature vectors of nodes 𝑢 and 𝑣, 𝐖 is a learnable weight matrix, a is

a learnable attention vector, ∣∣ denotes concatenation and 𝜎 is an activation function. Attention

score essentially gives the weight of each neighbor fetching the information of how much

attention should be paid to those specific nodes when updating the embedding.

The attention scores are often normalized using a softmax function over the neighbors of a

node. This process of normalization is done to bring the attention coefficients of all the nodes

in the same scale. A softmax function makes the value sum up to 1. It is done by :

α𝑢𝑣 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑣(𝑒𝑢𝑣) =
exp (𝑒𝑢𝑣)

∑ exp (𝑒𝑢𝑘)𝒌∈𝓝(𝒖)

 (6)

where, α𝑢𝑣 is the normalized attention score between node 𝑢 and node 𝑣 and 𝓝(𝑢) is the set
of neighbors of node 𝑣.

There could be several different possibilities for calculating the attention coefficients. The
explained approach is taken from [23] and is only one possibility. In [23], a shared single

layer neural network is chosen. The input in this network are two transformed node feature

vectors for an edge where the output indicates the importance of these nodes. This attention is

effectively calculated for each node pair. The formula for full attention mechanism is expressed

as :

 α𝑢𝑣 = =
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑤𝑎

𝑇⃗⃗ ⃗⃗ ⃗⃗
[𝐖ℎ𝑢∣∣𝐖ℎ𝑣))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑤𝑎
𝑇⃗⃗ ⃗⃗ ⃗⃗
[𝐖ℎ𝑢∣∣𝐖ℎ𝑘))𝒌∈𝓝(𝒖)

 (7)

where, 𝐖ℎ𝑢 and 𝐖ℎ𝑣 are two node embeddings passed as inputs, ∣∣ the concatenation

operation, 𝑤𝑎
𝑇⃗⃗ ⃗⃗ ⃗ is a weight vector that is multiplied with Wℎ𝑢 ∣∣ Wℎ𝑣 when passed through a

single layer neural network, LeakyReLU is an activation applied on each of the output to

 An Overview of Graph Theory and GNNs

18

emphasize the positive relationship between nodes and cutoff all the negative values and exp(.)

is the softmax activation function.

Message Passing : The node features in GATs are then updated using a weighted sum of the

neighbors’ features as :

 ℎ𝑣
′ = 𝜎(∑ α𝑢𝑣𝑢∈𝓝(𝑣) 𝐖ℎ𝑢) (8)

where, ℎ𝑣
′ is the updated node embedding for a node 𝑣, α𝑢𝑣 is the attention coefficient between

node 𝑢 and 𝑣. In equation 8, first, the node features ℎ𝑢 are transformed by multiplying them

with shared weight matrix 𝐖. This learnable linear transformation (𝐖ℎ𝑢) converts the node

features into the higher-level features. The weight matrix W comes from the fully connected

neural network, its input would be the shape of the node feature vector and the output would

be the shape of the node embeddings. 𝐖ℎ𝑢 is multiplied with its respective attention coefficient

α𝑢𝑣 and finally, this process is wrapped up by applying an activation function 𝜎 giving the

updated node embedding ℎ𝑣
′ for a node 𝑣 . This is carried out for all the nodes in the graph

where all the nodes now contain the information of their neighbors along with their own

information. Essentially, feature vectors weighted with the importance (attention coefficient)

for each node amplifies the important nodes and the less important ones are effectively

suppressed. Figure 9 is the representation of GAT architecture that illustrates the attention

mechanism used in GAT.

Figure 9: GAT architecture with attention mechanism in [24]. Attention coefficients ij for

all the neighboring nodes of node xi are calculated. Self-attention coefficient of node xi and

neighborhood attention coefficient for all the neighboring edges, yij are calculated and

combined where softmax activation function is applied to obtain all the attention coefficients

ij of all nodes xij.

 An Overview of Graph Theory and GNNs

19

Figure 10: Pictorial representation of how attention coefficients are utilized in GAT taking

node 1 of the graph as an example in [25]

Figure 10 explains the working mechanism of equation 7. In figure 10, a graph consisting of 5

nodes with self-loop at node 1 is considered as an example. For node 1, first, node embeddings

of its neighboring nodes (ℎ2 and ℎ3) and its own (ℎ1) are collected, then they are all passed

through a learnable linear transformation i.e. multiplying with W. The intermediate node states

(ℎ1
∗ , ℎ2

∗ and ℎ3
∗) are then obtained. Now, for each edge, two corresponding intermediate node

states are passed through the shared single layer neural network giving the attention coefficients

α11, α12 and α13. The intermediate node states are then summed up as a linear combination

weighted with the corresponding calculated attention coefficients. The final updated node

embedding (ℎ1
′) for node 1 is then obtained. This is done for all the nodes in the network to

obtain final updated feature matrix of the graph thus completing the message passing layer

[25].To stabilize the learning process of self-attention, multiheaded attention (having several

independent attention mechanisms) is performed [3].

2.3.2.2 Limitations of GATs

The limitations observed in GATs are explained below [26].

• The use of attention mechanisms increases the computational complexity of GATs

compared to GCNs. Attention computation requires calculating weights for each neighbor

of each node, which can be expensive for large or dense graphs.

• The attention mechanism in GATs assigns weights to each neighbor of a node based on

their importance. However, this can introduce a bias towards certain types of edges, which

might not always be desirable. Also, GATs focus primarily on node features and their

relationships, but do not inherently consider edge features. Integrating edge features into

the attention mechanism can be complex and may require modifications to the GAT

architecture.

 An Overview of Graph Theory and GNNs

20

2.3.3 Graph Sample and Aggregation (GraphSAGE)

Introduced by Hamilton et al. in [27], GraphSAGE is a popular GNN architecture. GraphSAGE

was developed to address the limitations of then existing GNN models, particularly in handling

large-scale graphs efficiently and learning node representations in an inductive manner (being

able to generalize the unseen nodes and graphs during training). It uses a sampling method to

select a subset of neighbors and create mini-batches for aggregation, improving scalability. It

also supports different aggregation functions such as mean, max pooling, and LSTM-based

methods. GraphSAGE enables inductive learning on graphs by learning aggregator functions

that can induce the embedding of a new node based on its neighbors. Unlike transductive

methods that necessitate knowledge of the entire graph (e.g., GCN), GraphSAGE generalize to

unseen nodes, making it particularly useful for dynamic graphs where new nodes appear over

time [3], [27].

2.3.3.1 Learning Process

The leaning process of GraphSAGE is explained below.

Neighbor Sampling: GraphSAGE introduces a sampling mechanism that enables efficient

training on large graphs by sampling a fixed-size neighborhood for each node during training.

Here, a fixed number of neighbors are randomly sampled for each node which alleviates the

computational burden and memory constraints associated with large graphs. For each node 𝑣,

GraphSAGE samples a fixed-size neighborhood 𝓝(𝑣).

Flexible Aggregation: GraphSAGE uses a flexible aggregation mechanism, allowing the

model to use different aggregation functions (such as mean, max pooling) to combine

information from neighboring nodes. The aggregated information is then transformed using a

weight matrix and a non-linear activation function represented mathematically as:

 ℎ𝑣
(𝑘+1)=σ (𝐖(𝑘)𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(ℎ𝑢

(𝑘)
)∣ 𝑢 ∈ 𝓝(𝑣)) (8)

where ℎ𝑣
(𝑘+1)

is the representation of node 𝑣 at layer k, 𝐖(𝑘) is the weight matrix at layer k ,

𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(.) is the chosen aggregation function, σ is a non-linear activation function.

Node Representation Learning: GraphSAGE learns node representations through a multi-

layer architecture. In each layer, nodes gather information from their neighbors using the

specified aggregation function, update their representations, and pass the updated

representations to the next layer. This continued process through multiple layers allow the

model to learn increasingly abstract representations of the graph. Consequently, the final

layer’s output can be used for classification tasks or link predictions.

In general, GraphSAGE generates embeddings for previously unseen nodes by leveraging node

feature information to efficiently generate node embeddings. Instead of training individual

embeddings for each node, GraphSAGE learns a function that generates embeddings by

sampling and aggregating features from a node’s local neighborhood. The algorithm assumes

that the model parameters are already learned and fixed. It incorporates node features in the

learning algorithm, allowing it to simultaneously learn the topological structure of each node’s

neighborhood as well as the distribution of node features in the neighborhood. By training a

 An Overview of Graph Theory and GNNs

21

set of aggregator functions that learn to aggregate feature information from a node's local

neighborhood, GraphSAGE can generate embeddings for entirely unseen nodes by applying

the learned aggregation functions. The embedding generation (i.e., forward propagation)

algorithm in GraphSAGE involves learning how to aggregate feature information from a

node’s local neighborhood, such as the degrees or text attributes of nearby nodes. This process

allows GraphSAGE to efficiently generate embeddings for previously unseen data. The model

parameters can be learned using standard stochastic gradient descent and backpropagation

techniques, enabling the generation of embeddings for unseen nodes. The approach is designed

to generalize to graphs with the same form of features and can be applied to graphs without

node features as well.

2.3.3.2 Limitations of GraphSAGE

Some of the limitations in GraphSAGE are discussed below [3], [26].

• The random sampling of neighbors can introduce noise or bias in the aggregated

representations. Also, the choice of neighbor sampling strategy can significantly impact the

model performance.

• Although sampling helps with scalability, it can lead to a trade-off between efficiency and

accuracy, as reducing the number of sampled neighbors can result in a loss of information.

2.3.4 Graph Autoencoder (GAE)

GAEs [28] are unsupervised GNNs that aim to learn graph representations through an

encoding-decoding process. The encoder learns graph embeddings, while the decoder

reconstructs the graph structure or features. GAEs are designed for unsupervised learning tasks

on graphs. They work by encoding the nodes into a latent space and then reconstructing the

graph's adjacency matrix or other graph properties from these embeddings. GAEs combine

GNNs with the autoencoder framework to learn low-dimensional representations of graph data.

These embeddings capture the structural properties of the graph and can be used for

downstream tasks such as node clustering, community detection, and graph reconstruction.

GAEs allow for unsupervised learning, making them useful for tasks where labeled data is

scarce [26].

In [29], Kipf et. al proposed a variant of the autoencoder model, Variational Graph Auto-

Encoders (VGAE). VGAE extends autoencoder architecture by learning probabilistic

embeddings that can generate new graph structures. VGAE combines the principle of GNNs

with variational inference to encode graph structures and node features into a latent space and

then reconstructs the graph from the latent representation. The latent representation is sampled

from the Gaussian distribution during training, a reparameterization method, that ensures the

model to learn the uncertainty in the latent space. Likewise, in [30], Pan et al. proposed

Adversarially Regularized Graph Autoencoder for graph embedding (ARGA). ARGA explores

the combination of autoencoder architectures with adversarial training for better representation

learning.

In general, the architecture of GAE typically consists of two main components, encoder, and

decoder. The encoder maps the input graph into a lower-dimensional representation. This is

usually done using a GNN such as but not limited to GCN and GAT. The encoder takes the

 An Overview of Graph Theory and GNNs

22

adjacency matrix of the graph and the feature matrix as input and produces a latent

representation of the graph. The decoder, on the other hand, reconstructs the graph from the

encoded latent representation. In practice, the decoder is often a simple function that

reconstructs the adjacency matrix or node features from the latent representation. Decoder can

use various reconstruction techniques, such as inner product or bilinear decoding, depending

on the specific GAE architecture. Figure 11 shows the general GAE architecture with an

encoder and decoder.

Figure 11: A general GAE architecture, comprising of an encoder and decoder with X as the input to the encoder

and X’ the output generated by the decoder. Z is the latent space representation of the input X. Typically input is

adjacency matrix, feature matrix or both.

2.3.4.1 Learning Process

The generalized learning process of GAE can be summarized below.

Encoder: An encoder typically consists of a GNN, such as GCN or GAT, that takes an input

graph represented by its adjacency matrix A and node feature matrix X. It then produces a

lower dimension latent space representation Z of the graph given by Z = encoder(A, X) where

encoder is any chosen GNN (GCN, GAT, etc.).

Decoder: A decoder reconstructs the graph from the latent representation Z. The reconstruction

can be performed using various techniques, such as inner product or bilinear decoding. For

example, the inner product decoding computes the reconstructed adjacency matrix �̂� as �̂� =

σ(Z 𝐙𝑇) where σ is a sigmoid function.

Loss function: The loss function in GAEs is typically based on the reconstruction error

between the input and reconstructed adjacency matrices. Taking Binary Cross-Entropy (BCE)

loss as an example of loss function, the loss function L is given by:

 L = − ∑ [𝐀𝑖𝑗𝑙𝑜𝑔𝐀𝑖𝑗
∗ + (1 − 𝐀𝑖𝑗)(1 − 𝐀𝑖𝑗

∗)]𝑖,𝑗

(9)

where, 𝐀𝑖𝑗 is the actual adjacency matrix element between node i and node j, 𝐀𝑖𝑗
∗ is the

predicted probability of edge between node i and j. GAE essentially learns by minimizing the

loss function.

 An Overview of Graph Theory and GNNs

23

2.3.4.2 Limitations of GAE

Some of the limitations of GAE are discussed below [26], [28] .

• The learned node embeddings may lack interpretability, making it challenging to

understand what the embeddings represent or how they relate to the original graph.

• The choice of loss function can impact the performance of GAEs. For example, using the

imprecise loss function could result in poor graph reconstruction or suboptimal

embeddings.

• Handling dynamic graphs (where the structure changes over time) can be challenging for

GAEs, as the model may need to be retrained to accommodate new nodes and edges.

2.3.5 Other GNNs

While models like GCNs, GATs, and GAEs are designed to work with static attributed graphs,

new GNN architectures have been introduced to handle dynamic graphs and other specific

scenarios. Additionally, existing GNN architectures have also been refined and improved for

better performance.

Xu et al. in [22] proposed Graph Isomorphism Network (GIN) that uses a sum aggregation

function and a trainable parameter to avoid over-smoothing and improve representational

power to recognize different graph structures. GIN proposes a family of architectures that can

accurately capture the structure of the graph to determine if two graphs are isomorphic

(essentially the same in structure) or not.

There are several dedicated GNNs to deal with dynamic graphs. As dynamic graphs pose

unique challenges because they change over time, with nodes and edges being added or

removed, several dedicated GNN architectures have been developed specifically for dynamic

graphs to address the challenge. Temporal Graph Networks (TGNs) [31] and Structural-

Temporal Graph Neural Networks (STrGNNs) [32] are some of the GNNs developed in the

dynamic graph paradigm.

The scope of this thesis work is limited to GNNs based on static attributed graph and does not

cover the study of GNNs based on dynamic graph.

 Review of GNN Algorithms for Outlier Detection

24

3 Review of GNN Algorithms for Outlier
Detection
This chapter provides an overview of the current state-of-the-art in GNN algorithms for outlier

detection. It begins with a formal definition of outliers within the context of GNNs,

understanding different types of outliers followed by the discussions of various categories of

GNN algorithms tailored for detecting outliers in graph-structured data. It also examines the

key approaches and methodologies employed in GNN-based outlier detection algorithms.

3.1 Outliers in GNNs

An outlier in any form of data is typically an anomaly, an observation that deviates significantly

from the expected norm. Outlier could be anything from anomaly, rarity, peculiarity, novelty,

or exception depending on several fields of applications that differ significantly from the mass

in one form or the other and violate the norms and the standards. Much like a discordant note

in a musical piece, outliers can disrupt the harmony of the system and affect its overall

functioning. While traditional data analysis often views outliers as statistical anomalies, they

can hold the key to understanding the complex dynamics within interconnected systems.

Grubbs in [33] defined anomalies as ‘one that appears to deviate markedly from other members

of the sample in which it occurs’.

In the context of GNNs, outliers take on a deeper significance due to the complex and

interconnected nature of graph data. Graphs model relationships and interactions within various

systems such as social networks, biological systems, and financial transactions. Anomalies that

emerge within these relationships may indicate more than statistical oddities; they can signify

critical shifts, disruptions, or irregularities within the system. Outliers are considered as data

points in a graph such as nodes, edges, or subgraphs that exhibit atypical behavior or deviate

significantly from the overall pattern or structure of the graph. This deviation could manifest

in different forms, such as unexpected connections, unusual node features, or anomalous

subgraph structures. Two important categories of outliers in graphs are node-level (contextual)

outliers, and edge-level (structural) outliers [34],[35],[36].

• Node-level (Contextual) Outliers: Node-level outliers are nodes that deviate from

expected behavior within a specific context or feature space. These outliers display

unexpected attributes, or abnormal behaviors compared to other nodes. These are nodes

whose attribute values (e.g., node features or properties) deviate significantly from the

global distribution of attribute values in the graph.

• Edge-level (Structural) Outliers: As edges represent the relationships or connections

between nodes, outliers at the edge-level involve anomalous interactions or connections.

Structural outliers are nodes that deviate from the expected structure or relationships in the

data and don't follow the typical patterns of connectivity or interaction. For instance, in a

citation network, an academic paper cited by an unusually high number of other papers in

a short time could be an outlier.

 Review of GNN Algorithms for Outlier Detection

25

There is also a third category of outliers, community-level (sub graph-level) outliers. This type

of outliers include a group of nodes and edges that deviate significantly from the main graph.

Figure 12 shows the concept of node-level and edge-level outliers in a graph.

Figure 12: Examples of outliers in a graph in [37]. Nodes A and C are node-level

outliers, nodes A and B are edge-level outliers. Node A is both node-level and

edge-level outlier.

3.2 Outlier Detection

Outlier detection, in general, is a way to identify outliers from a given set of community or

network. It can be seen as a data mining process that identifies the unusual patterns or behaviors

or connections which deviate slightly or significantly from the majorities in an entire dataset.

Outlier detection, also known as anomaly detection, is a critical application in the analysis of

graph-structured data, where GNNs play a significant role in modeling complex relationships.

This research area has garnered notable attention due to the widespread presence of outliers in

various disciplines, including but not limited to security, finance, medicine, and social

networks. GNNs provide a robust and adaptable framework for representing and interpreting

graph data, which is a common data structure across many domains. By capturing intricate

patterns and associations within graph data, GNNs facilitate the identification of anomalies that

may signify potential risks or opportunities [34].

The challenge with outliers is the nuanced way in which these anomalies can manifest.

Traditional outlier detection methods may not capture the complexity of relationships and

structures in graph data. This is where GNNs come into the play, by learning representations

of nodes, edges, and subgraphs, GNNs promise to provide more sophisticated detection and

interpretation of outliers. They are able to capture intricate patterns and relationships, making

them particularly adept at identifying outliers. This capability enables more precise detection

of critical events such as financial fraud, network intrusions, social spam, spread of

misinformation, and other detrimental occurrences.

Applications of Outlier Detection

Outlier detection using GNNs is instrumental in uncovering peculiar events such as financial

fraud, network intrusions, and social spam. For instance, in the finance sector, GNN-based

outlier detection can reveal suspicious transactions indicative of money laundering or insider

 Review of GNN Algorithms for Outlier Detection

26

trading. Similarly, in network security, GNNs can identify unusual network traffic patterns

signaling potential cyber-attacks. In the realm of social media, GNNs can help detect the spread

of fake news or misinformation by identifying anomalous patterns in content sharing and user

interactions. Additionally, in the field of healthcare, GNN-based outlier detection can aid in

the early identification of emerging diseases or unusual health trends. By recognizing these

outliers, GNNs enable proactive responses to emerging threats and insights into underlying

systemic shifts [12], [14], [32], [34], [35].

3.2.1 Review of Outlier Detection Algorithms in GNNs

The state-of-the-art GNNs for outlier detection is a rapidly evolving area. Before the advent of

deep learning, several non-deep learning techniques were used to identify outliers [33]. In such

kind of approaches, graph outlier detection was initially transformed into traditional anomaly

detection problem. OddBall [38] is one such approach that extracts the features from each node

and its 1 hop neighbors to detect structural outliers. The identification of outlier nodes heavily

relied on the selection of statistical features. However, it is not always possible to properly

choose the most suitable features, especially from large datasets and hence these traditional

approaches do not effectively capture structural information. The traditional way of manual

feature engineering and building a tailored statistical model to detect outliers is also labor-

intensive, expensive, time consuming and above all not always effective as graph data of a real-

world network could easily contain millions of nodes and edges leading to computational

overhead in both execution time and storage as well.

Subsequently, network representation-based methods have been exercised in order to capture

information from the graph structure. In network representation-based methods, first, the graph

structure is encoded to an embedded vector and outliers are detected through further analysis.

By pairing the conventional anomaly detection methods such as density-based, distance-based

with node embedding methods, outliers are identified (node present in low-density area or

node far away from the majorities). Node2Vec [39] and LINE [40] are some of the earlier

representative methods. Node2Vec uses biased random walks to explore the graph. To

introduce bias in the random walks, Node2Vec uses two parameters, return parameter (p) to

control how likely the walk is to revisit a node if it has already visited and in-out parameter (q)

to control how far the walk is likely to stray from the starting node. The node embeddings are

computed from these walks, and outliers can then be identified using metrics such as distance-

based measures and clustering in the embedding space. LINE, on the other hand, learns node

embeddings by preserving the proximity relationships in a graph, capturing both first-order

(direct relationships between nodes i.e., edges) and second-order (similarity between nodes’

neighborhoods i.e., the sets of nodes connected to them) proximity between nodes. The first-

order and second-order proximities are then combined using an objective function to obtain the

node embeddings and outliers are detected using distance-based methods.

While methods such as Node2Vec and LINE have been widely used for learning node

embeddings from graph data, they do have certain limitations. These methods primarily focus

on local neighborhood information through random walks or proximity measures making it

difficult to capture global structures effectively. Also, these methods generate fixed embedding

vectors for each node, which may not fully capture the intricate relationships in dynamic graph

data where relationships and connections can change over time. Consequently, more advanced

 Review of GNN Algorithms for Outlier Detection

27

techniques, particularly the use of deep learning-based architectures [41] were studied and have

been brought to the implementation. Deep learning-based methods focus on learning complex

representations from graph data, whereas traditional methods like Node2Vec and LINE

primarily learn embeddings through fixed random walks or proximity measures. GNNs, in

particular, have become a popular approach for efficiently detecting anomalies in graphs due

to their ability to intuitively learn graph representations through message passing mechanisms.

These networks handle graphs with complex structures and attributes as input data, making the

process of learning and extracting anomalous patterns from graphs straightforward. This is

especially useful when dealing with graphs that have intricate connections and diverse node

attributes. In this approach, state-of-the-art graph anomaly detection methods often combine

GNNs with existing deep learning approaches, such as RNNs [8] or transformers [42] . GNNs

excel at simultaneously examining graph topology and node attributes, providing a

comprehensive view of the graph’s behavior.

Despite the novelty of this field, researchers have already covered a wide variety of graph types,

such as static and dynamic graphs, as well as plain and attributed graphs. Structural anomalies

in graph topology range from node and edge anomalies to subgraph-level anomalies but there

appears to be a focus on outlier detection at node-level in static attributed graphs, leaving other

areas with room for further exploration.

The scope of this thesis is limited to node-level outlier detection algorithms in static attributed

graphs. The following subchapters outline key aspects of GNN-based node-level outlier

detection methods.

3.3 GNN-based Node-level Outlier Detection in Static Graph

In static attributed graphs, where nodes and edges remain consistent over time, various GNN-

based outlier detection algorithms have been developed. These algorithms often leverage GNN

architectures such as GCN [18], GAT [23], GAE [28] either individually or in combination for

detecting anomalies. While many algorithms focus on node-level outlier detection, there are

also methods that address edge-level and graph-level outlier detection both on static and

dynamic graphs.

3.3.1 GCN-based method

GCN-based methods [37] leverage the convolutional operation of GCNs [18], where

information from a node’s neighbors is aggregated through message passing. This process

allows the creation of new node embeddings that capture the graph’s structure and node

features. These embeddings can then be analyzed to detect nodes that significantly deviate from

the norm, indicating potential outliers. GCNs are often combined with GAE, where the GCN

layers serve as the encoder component and are responsible for transforming the input graph

data into a lower-dimensional latent space. The decoder component of the GAE then

reconstructs the graph from these latent representations. This combination is particularly useful

for outlier detection, as the model can be trained to capture the typical patterns in the graph

during the encoding and decoding process. Anomalies can be identified by comparing the

 Review of GNN Algorithms for Outlier Detection

28

reconstructed graph with the original input graph; significant discrepancies may indicate the

presence of outliers [35].

• Semi-GCN: Kumagai et al. in [43] proposed a method called semi-GCN that combines the

elements of supervised and unsupervised learning to efficiently utilize the available labeled

data while still learning from the entire graph. In this method, the main idea is to extend

GCNs to scenarios where only some nodes in the graph have labels. This is known as a

semi-supervised learning approach, as it leverages both labeled and unlabeled data. Like a

standard GCN, semi-GCN method uses layers of graph convolution. Each layer aggregates

information from a node’s neighbors and combines it with the node’s own features to create

new representations. The semi-GCN method is trained using the labeled nodes in the graph.

This means the model learns from the features and labels of the nodes with available labels.

The model uses the learned parameters to propagate information throughout the graph. This

allows it to generate predictions for nodes that were originally unlabeled based on the

patterns it learned from the labeled nodes. The loss function used in semi-GCN focuses on

the difference between the predicted labels and the true labels of the labeled nodes. After

passing through the graph convolutional layers, nodes are embedded in a latent space.

These embeddings capture the structure and features of the graph. Finally, a reconstruction

error is computed based on the difference between the original node features and the

reconstructed features obtained from the latent embeddings. The reconstruction error for a

node 𝑣 is calculated as 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟𝑣 = ∥ ℎ𝑣−ℎ𝑣
(𝑓𝑖𝑛𝑎𝑙)

∥2 where ℎ𝑣 is the initial

node embeddings of node 𝑣 and ℎ𝑣
(𝑓𝑖𝑛𝑎𝑙)

 is the final node embedding of node 𝑣 obtained

from GCN layers. Nodes with a high reconstruction error are considered potential outliers,

as they deviate significantly from the expected patterns learned from the graph. A threshold

can be set to classify nodes as outliers based on their reconstruction error.

• ResGCN: In[44], Pei et al. proposed Residual GCN (ResGCN), where GCNs are extended

that incorporated residual connections, similar to those used in ResNet [45] in the field of

deep learning for images. This model aims to alleviate issues such as vanishing gradients,

sparsity and over-smoothing and improve training stability using residual connections,

allowing the model to capture more complex patterns in graph-structured data. In each

layer, the ResGCN performs a graph convolution similar to a standard GCN, but with the

addition of a residual connection. ResGCN is almost same as semi-GCN, but ResGCN has

residual connections that allows for better training stability.

• Contrastive self-supervised learning (CoLA): Liu et al. in [46] proposed Contrastive

self-supervised Learning (CoLA), a different method compared to semi-GCN and ResGCN

in the sense that CoLA employed contrastive learning to generate representations of nodes

that emphasize the differences between normal and anomalous patterns in the graph. CoLA

is a variant of self-supervised learning, a technique used to pretrain neural networks on

unlabeled data by creating supervised-like tasks from the data itself. In contrastive self-

supervised learning, the model learns to encode data samples in such a way that similar

samples are pulled closer together in the embedding space, while dissimilar samples are

pushed apart. CoLA is particularly useful when labeled data is scarce or expensive to

obtain.

 Review of GNN Algorithms for Outlier Detection

29

The contrastive loss function is designed to maximize the similarity between similar node

pairs and minimize the similarity between dissimilar node pairs. Outliers are detected by

analyzing the similarity scores between node pairs. Nodes that have lower similarity scores

with other nodes (based on embeddings) were considered outliers. While semi-GCN and

ResGCN focused more on reconstructing the input graph or learning node representations,

CoLA’s contrastive learning focuses on maximizing differences between similar and

dissimilar nodes. Figure 13 explains the framework of CoLA.

Figure 13: CoLA framework presented in [46]

The working process of CoLA can be summarized as follows.

Data Augmentation: CoLA often starts with data augmentation techniques to generate

augmented versions of the input data. This helps in exposing the model to diverse variations

of the input samples and improves its robustness.

Positive and Negative Samples: For each input sample, CoLA creates positive and

negative pairs. Positive pairs consist of two augmented versions of the same input sample.

Negative pairs consist of an input sample and another sample that is dissimilar to it, often

randomly selected from the dataset.

Embedding Generation: The encoder network takes both positive and negative samples

as input and generates embeddings (feature representations) for each sample.

Backpropagation and Parameter Update: The gradients of the contrastive loss are

backpropagated through the network, and the model parameters are updated using

optimization algorithms.

However, designing effective data augmentation strategies is crucial for the success of

CoLA. Choosing appropriate hyperparameters, such as the contrastive loss margin and

temperature parameter, can significantly impact the quality of learned representations [46],

[47].

3.3.2 GCN-based GAE method

Autoencoder framework [28] has been extensively used in several of the GNN-based outlier

detection methods. In general, nodes are often encoded into a latent space, and then the network

tries to reconstruct the original graph structure from these embeddings. In outlier detection,

nodes that are poorly reconstructed (high reconstruction error) are candidates for outliers,

indicating that their pattern of connections differs significantly from the norm defined by the

 Review of GNN Algorithms for Outlier Detection

30

rest of the graph. Combining the principles of autoencoders with GCNs, some models aim to

reconstruct graph data using GCN-based encoding and decoding layers.

• Deep Anomaly Detection on Attributed Network (DOMINANT): Ding et al. in [58] and

is one such GCN-based GAE method where an anomaly score is calculated for each nodes

using the network reconstruction errors. Here, GCN-based encoder is used to learn both the

structure of the graph and the attributes of the nodes. A decoder is then used to utilize the

reconstruction errors to detect outlier nodes in an unsupervised manner. DOMINANT uses

GCN encoder, called as attributed network encoder, whose input is both topological

structure and nodal attributes of the graph. The encoder consisting of multiple graph

convolutional layers subsequently aggregates information from a node’s neighbors and

transform the input node features into a lower-dimensional latent space ultimately

providing the latent space representations (embeddings) of the nodes along with the

structural information of the graph. A decoder section, consisting of two decoders,

structural reconstruction decoder and attribute reconstruction decoder, takes the latent

representations as input and reconstructs both the original topological structure and nodal

features. Finally, reconstruction errors for each node are computed by comparing the

original node features with the reconstructed features obtained from the decoder and the

nodes with high reconstruction errors are considered possible outliers. DOMINANT, unlike

previously discussed models such as semi-GCN and ResGCN, spots anomalies by

calculating the reconstruction errors from both nodal attributes and structural point of view

in an unsupervised manner [58]. Figure 14 describes the architecture of DOMINANT.

Figure 14: Architecture of DOMINANT shown in [58]. DOMINANT has one attributed

network encoder made of GCN where adjacency matrix A and feature matrix X of input

graph is fed which produces latent space representation matrix Z as the output. Through

structure reconstruction decoder and attribute reconstruction decoder, DOMINANT

produces estimated adjacency matrix �̂� and estimated feature matrix �̂�.

In decoder section of DOMINANT, two reconstruction errors, structure reconstruction

error and attribute reconstruction error are separately calculated. A structure reconstruction

error is calculated as 𝑅𝑠 = A – �̂� where, A is the original adjacency matrix and �̂� is the

estimated adjacency matrix for the learned latent representation matrix Z, an output of the

attributed network encoder. Likewise, to calculate attribute reconstruction error, a link

prediction layer is first trained based on the output of attributed network encoder Z. Here,

�̂� is calculated as �̂� = sigmoid(Z ZT) where sigmoid is the sigmoid activation function. The

 Review of GNN Algorithms for Outlier Detection

31

estimated node feature matrix �̂� is then calculated as �̂� = 𝑓𝑅𝑒𝑙𝑢(Z, A׀W) where 𝑓𝑅𝑒𝑙𝑢 is the

ReLU activation function. With this, attribute reconstruction error R𝐴 is calculated as R𝐴 =

X – �̂� where X is the original node feature matrix. Finally, the objective function L is

obtained as L = (1-α) R𝑠 + αR𝐴, where α is the controlling parameter. The model works

by minimizing the objective function L using gradient descent. After certain iterations, the

outlier score of each node is then calculated and the ones with larger scores are considered

as outliers.

• Deep multi-view framework for anomaly detection (ALARM): Peng et al. in [48]

proposed ALARM using a multi-view approach, leveraging different views of the graph

to improve anomaly detection. It uses multiple views of the graph (e.g., different sets of

node attributes or different graph structures) to improve the robustness and accuracy of

anomaly detection. ALARM combines GCNs and autoencoders for learning embeddings

and reconstructing node features from different views, and then uses an attention

mechanism to integrate information from these views. Here, a learning process is typically

multi-view learning utilizing multiple views of the graph. These views may include

different sets of node attributes, graph structures, or combinations of both, each view

providing a different perspective of the graph. For each view, ALARM uses a GCN-based

GAE to learn latent space representations of the nodes and reconstruct the original features.

3.3.3 GAT-based GAE method

In GAT-based GAE method [37], GAT architectures are exploited to utilize their attention

mechanisms to weigh the importance of each neighbor when aggregating the information for a

given node. This attention-based approach allows the model to focus on the most relevant

neighbors and better capture the complex relationships in the graph. This method essentially

uses GAT layers as the encoder to generate the latent representations of the graph. These

representations are then used by the decoder to reconstruct the graph. The reconstruction error

between the original graph and the reconstructed graph are then used to identify outliers.

• Dual Autoencoder for Anomaly Detection on Attributed Networks (AnomalyDAE):

In [49], Fan et al. introduced AnomalyDAE, an end-to-end variant of GAT-based GAE

method consisting of dual autoencoders, structure autoencoder and attribute autoencoder.

These autoencoders are trained jointly to capture complex interactions between network

structure and node attributes in attributed networks. The working mechanism is explained

as follows:

Structural Autoencoder: Here, the encoder first learns the node embeddings based on the

network structure. GAT [23] layer is used to obtain attention mechanism in order to grasp

important structural patterns. The structure encoder transforms the original node attribute

matrix X into a lower-dimensional latent representation �̃�𝑣 as �̃�𝑣 = σ (X𝐖𝑣(1) + 𝑏𝑣(1))

where, σ(.) is the activation function, 𝐖𝑣(1) and 𝑏𝑣(1) are the weight and bias learned by

encoder. Using the transformed node embeddings �̃�𝑣, GAT layer aggregates information

from neighbor nodes through a shared attention mechanism 𝑒𝑖,𝑗 = attn(�̃�𝑖
𝑣, �̃�𝑗

𝑣) where, 𝑒𝑖,𝑗

is the importance weight of node 𝑣𝑖 to 𝑣𝑖 and attn(.) is the GAT. The final importance

weight 𝛾𝑖,𝑗is computed using the softmax function. Consequently, the final node embedding

 Review of GNN Algorithms for Outlier Detection

32

𝐙𝑖
𝑣 is then calculated by a weighted sum based on the learned importance weights as 𝐙𝑖

𝑣 =

∑ 𝛾𝑖,𝑘 �̃�𝑘
𝑣

𝒌∈𝒩(𝒊) where 𝒩(𝒊) denotes the neighbors of node 𝑣𝑖.

The structure decoder uses the final node embeddings 𝐙𝑣 as inputs to reconstruct the

original network structure �̂� = sigmoid(𝐙𝑣 (𝐙𝑣)T) where sigmoid(.) is the sigmoid activation

function.

Attribute Autoencoder: In attribute encoder, two non-linear feature transformation layers

are first utilized to map the observed attribute data to a latent attribute embedding 𝐙𝐴. The

attribute decoder uses the node embeddings 𝐙𝑣 obtained from the structure encoder and the

attribute embeddings 𝐙𝐴 to reconstruct the original node attributes �̂� as �̂� = (𝐙𝑣 (𝐙𝐴)T). In

AnomalyDAE [49], the training objective is to minimize the reconstruction errors of both

the network structure and node attributes. Finally, the anomaly score for nodes are

calculated as the reconstruction error from both the network structure and node attribute

perspectives. These scores can then be used to determine a threshold which allows for

classification of nodes and anomalous based on their score, the one with highest scores

often classified as anomalies. Figure 15 is the pictorial representation of AnomalyDAE

algorithm.

Figure 15: AnomalyDAE architecture presented in [49]. The framework is made up of

two autoencoders, structure autoencoder and attribute autoencoder. Reconstructed

adjacency matrix �̂� and feature matrix �̂� are calculated respectively from structure

decoder and attribute decoder which are combinedly used to calculate the anomaly

score and predict the outlier.

3.3.4 Other GNN-based algorithms for outlier detection

There are outlier detection algorithms that are based on different architectures other than GCN,

GAT and GAE. Generative Adversarial Attributed Network Anomaly Detection (GAAN) [50]

is one such algorithm which is based on Generative Adversarial Network (GAN) [51] . GANs

are a class of machine learning models designed for generating new, synthetic data that

resembles a given dataset. GANs use an adversarial framework and are known for their

innovative approach to learning and generating new data.

• Generative Adversarial Attributed Network Anomaly Detection (GAAN): Chen et al.

(2020) in [50] proposed GAAN, a method to detect node level outlier based on GAN. The

basic architecture of GAAN consists of three parts, generator, encoder, and discriminator.

 Review of GNN Algorithms for Outlier Detection

33

The generator takes a Gaussian noise as input and generates synthetic graph nodes. The

encoder then maps both real and fake graph nodes into a latent space and encodes graph

structure information into the node’s latent representation through the sample covariance

matrix for both real and fake nodes. Its goal is to create data that is indistinguishable from

real data. The discriminator finally takes the output generated by the encoder as input and

predicts whether the connected nodes are real (from the graph) or fake (from the generator).

The model uses the encoder output to assess anomalies by considering sample

reconstruction error and real-sample identification confidence. The working mechanism is

summarized as follows:

Generator: The generator, G𝑛, in the GAAN framework aims to approximate the

distribution of the original feature matrix X using a low-dimensional prior Gaussian

distribution. It employs MLP as the generator, which consists of layers that perform linear

transformations and non-linear mappings. Here, for nth MLP layer of generator G𝑛, the

output 𝐇𝐺𝑛
(𝑛+1)

 is calculated as 𝐇𝐺𝑛
(𝑛+1)

 = f (𝐖𝐺𝑛
(𝑛)

𝐇𝐺𝑛
(𝑛)

 + 𝑏𝐺
(𝑛)

), where 𝐇𝐺𝑛
(𝑛)

 is the input of nth

MLP layer, 𝐖𝐺𝑛
(𝑛)

 and 𝑏𝐺𝑛
(𝑛)

 are the nth layer parameter matrix and corresponding bias

respectively. f (.) is ReLU activation function.

Encoder: The encoder, E, converts the original node feature matrix X and the generator's

output, approximated node feature matrix, X′ into a low-dimensional latent space with the

same dimensions as the generator's prior data distribution. This transformation is achieved

using a three-layer MLP with a ReLU activation function. The attribute matrix X and the

generator's output matrix X′ serve as the initial inputs for the first layer eventually resulting

in latent representations Z and Z′, respectively.

Discriminator: The discriminator, D, in GAAN captures graph structure information by

estimating the adjacency matrix A using graph embedding. The adjacency matrix is

estimated through the dot product of the embedding output, which is then passed through

an entry-wise sigmoid function. For real data, the adjacency matrix estimate �̂� is given as

�̂� = sigmoid(ZZT), and for generated data by the generator, the adjacency matrix estimate

�̂�′ is given as �̂�′ = sigmoid(Z′ Z′T). Here, Z and 𝑍′ are embeddings encoded from original

node attributes X and generator output X′, respectively. For node pairs <vi,vj> with an

existing link in the original graph, the discriminator is trained to differentiate whether the

dot product of embeddings is from the real data's �̂� or from the generator's �̂�′.

GAAN is trained by minimizing the cross-entropy loss of the binary classifier. The

optimization process in GAAN involves learning the encoder, generator, and discriminator

to improve the model's ability to distinguish between real and fake data. The generator aims

to confuse the discriminator, while the discriminator works to identify whether the data is

from the real distribution or generated. After training, anomaly detection involves

calculating an anomaly score for each node based on two loss components: context

reconstruction loss and structure discriminator loss. The context reconstruction loss

measures how well the generator can recreate the original attributes of a node, while the

structure discriminator loss evaluates the model's accuracy in determining if connections

between nodes are real. A higher anomaly score suggests the node is more likely to be

anomalous. This scoring system helps identify potentially abnormal nodes in the graph

 Review of GNN Algorithms for Outlier Detection

34

based on both attribute and structural inconsistencies. Figure 16 is the pictorial

representation of GAAN.

Figure 16: GAAN framework in [50]. GAAN consists of three parts, generator,

encoder and discriminator. Generator uses noise level to produce approximated

node feature matrix X′, encoder transforms both original feature matrix X and

generated feature matrix X′ into latent space Z and Z′. Discriminator calculates

loss from two latent space inputs and assigns the loss scores to all the nodes.

3.4 Summary of GNN-based outlier detection methods

The summary of node-level outlier detection methods explained in this report is shown in table

1.

Table 1 Summary of GNN based node-level outlier detection methods

Graph Type Network Architecture Method Measurement Objective function

Static

Attributed

GCN Semi-GCN [43] Outlier Score ∥ ℎ𝑣−ℎ𝑣
(𝑓𝑖𝑛𝑎𝑙)

∥2

ResGCN [44] Outlier Score
(1-α)||(𝐀 − �̂�)||F

2 + + α ||𝐗 − �̂� − λR||F
2

CoLA [46] Outlier Score -∑ 𝑦𝑖log (𝑠𝑖)N=1 + (1-𝑦𝑖)log(1-𝑠𝑖)

GCN-based GAE DOMINANT [58] Outlier Score (1-α) 𝑅𝑠 + α𝑅𝐴

ALARM [48] Outlier Score 𝐿𝑠 + 𝐿𝑎

GAT-based GAE AnomalyDAE [49] Reconstruction

Loss

α||(𝐀 − �̂�)θ||F
2 + + (1 − α) ||(𝐗 − 𝐗)̂η||F

2

GAN GAAN [50] Outlier Score 𝛼𝐿G𝑛 (𝑣𝑖) + (1 − 𝛼) 𝐿D (𝑣𝑖)

 Implementation of GNN Algorithms for Outlier Detection

35

4 Implementation of GNN Algorithms for
Outlier Detection
In this chapter, the practical aspects of implementing various GNN algorithms for outlier

detection are explored. The focus is on hands-on coding and the in-depth application of the

discussed algorithms using PyTorch [4] and the PyGOD [5] library, a dedicated framework for

outlier detection in graphs. The chapter is focused on outlier node detection and covers a range

of algorithms to represent each of the methodologies, GCN-based, GCN-based GAE, GAT-

based GAE, and GAN-based. Algorithms CoLA, DOMINANT, AnomalyDAE and GAAN

are chosen to illustrate each method, respectively and are used for node-level outlier detection

in static attributed graph network. The datasets used for implementing these algorithms are the

Cora and CiteSeer datasets available in PyGOD.

4.1 Introduction to PyTorch

PyTorch [4] is an open-source machine learning library widely used for developing and

deploying deep learning models. It offers a dynamic computational graph model, which allows

for easier debugging and experimentation compared to static computational graph frameworks.

PyTorch provides comprehensive support for neural networks, including efficient tensor

operations, automatic differentiation, and GPU acceleration. These features make it a suitable

choice for implementing GNNs and other machine learning algorithms. Some of the key

features of PyTorch are explained below.

1. Tensor Manipulation: PyTorch is known for its flexible tensor operations, which serve as

the foundation for deep learning models. It supports various data types and operations,

including matrix multiplication, reshaping, slicing, and more.

2. Automatic Differentiation: PyTorch's ‘autograd’ feature automates the calculation of

gradients for tensors, facilitating the training of neural networks.

3. Neural Network Modules: PyTorch's ‘nn’ package provides a range of pre-built neural

network layers and modules, including convolutional layers, recurrent layers, activation

functions, loss functions, and optimizers.

4. GPU Acceleration: PyTorch seamlessly supports running computations on GPUs, which

significantly accelerates training and inference for large models.

5. Data Loading and Preprocessing: PyTorch provides tools for data loading and

preprocessing through its ‘torch.utils.data’ package, including ‘Dataset’ and ‘DataLoader’

classes.

4.1.1 Introduction to PyTorch Geometric

PyTorch Geometric (PyG) [4] is an open-source library built upon PyTorch that provides a

comprehensive framework for building graph-based machine learning models using the

PyTorch deep learning framework. It offers a wide range of tools and utilities specifically

designed for working with graph data. Some of the noticeable features of PyG are as follows:

 Implementation of GNN Algorithms for Outlier Detection

36

1. Graph Data Handling: PyG provides efficient and flexible data handling capabilities for

graph data. It includes data structures such as ‘Data’ and ‘Batch’ that allow for easy

representation of graph data, including node and edge features, adjacency information, and

other attributes. PyG supports various graph types, including undirected and directed

graphs, as well as heterogenous graphs with different types of nodes and edges.

2. GNN Architectures: PyG offers a variety of GNN architectures, such as GCN, GAT,

GraphSAGE, and more. These architectures are implemented as PyTorch Modules and can

be easily customized and integrated even into larger models.

3. Graph Datasets: PyG includes a collection of commonly used graph datasets, such as Cora,

PubMed, and others. These datasets are available through the ‘torch_geometric.datasets’

module and can be easily loaded for use in experiments. PyG also supports loading and

working with custom graph datasets.

4. Graph Transformations and Utilities: PyG provides a variety of graph transformations and

preprocessing utilities, such as adding self-loops, normalizing adjacency matrices, and

performing random walks. These utilities facilitate data preparation and transformation for

GNN models.

5. Integration with PyTorch: PyG is built on top of PyTorch and leverages its features, such

as automatic differentiation, GPU support, and the extensive ecosystem of deep learning

tools. This integration allows for seamless use of PyTorch optimizers, loss functions, and

other modules within PyG.

4.2 Introduction to PyGOD

PyGOD (Python Graph Outlier Detection) [5] is a specialized library for outlier detection in

graph data. It extends PyTorch to provide efficient and easy-to-use implementations of various

graph-based anomaly detection algorithms. Some of the salient features of PyGOD are

explained below:

1. Variety of Algorithms: PyGOD offers implementations of several GNN-based outlier

detection methods, including DOMINANT, AnomalyDAE, CoLA, GAAN and more.

These algorithms cater to different types of graph data and anomaly detection scenarios.

2. Unified Interface: PyGOD provides a unified interface for using different outlier detection

algorithms, making it easier to experiment and compare their performance on the same

dataset.

3. Customization and Flexibility: PyGOD allows users to customize hyperparameters and

experiment with different model configurations. This flexibility is crucial for achieving

optimal performance across different applications.

4. Evaluation Metrics: PyGOD supports a variety of evaluation metrics, such as precision,

recall, F1-score, and area under the ROC curve (AUC), to assess the performance of outlier

detection algorithms.

5. Documentation and Examples: PyGOD provides comprehensive documentation and

examples to help users understand how to implement and apply the provided algorithms

effectively.

 Implementation of GNN Algorithms for Outlier Detection

37

4.3 Datasets

In this work, two datasets are used, Cora dataset and Citeseer dataset provided by Planetoid

and are openly available under PyTorch Geometric dataset. Both datasets are used for

algorithm implementation and model development. The Cora and CiteSeer datasets are popular

citation network datasets, a collection of benchmark datasets, where nodes represent academic

papers (documents), and edges represent citations between papers.

Although there are many datasets available within the library, the Cora and Citeseer datasets

were selected for this study. The datasets are widely used for research purposes in graph-based

machine learning and are well-suited for the needs of this study. These datasets serve as a well-

known and frequently utilized resource for research in graph-based machine learning,

particularly for node classification tasks.

4.3.1 Cora Dataset

The Cora dataset is characterized by the following attributes :

Nodes: Cora dataset consists of 2,708 nodes, each representing a scientific paper. The nodes

contain features that describe the paper, such as word presence in the abstract.

Edges: There are 10556 edges in the dataset, which represent citation relationships between

papers. If one paper cites another, an edge connects the two papers in the graph.

Classes: The papers are categorized into seven distinct classes based on their research topics.

The dataset has 7 classes starting from 0 to 6 as the index number of classes.

Features: Each node in the graph is described by a feature vector of length 1,433. The feature

vector is a numerical representation indicating the presence or absence of certain words in the

paper's abstract. If any feature (which is word) is present, the feature value will have some

numerical value or else 0.

Graph: Cora dataset represents one single static attributed graph consisting of 2708 nodes and

10556 edges with every node having 1433 features. The edges are directed and unweighted

meaning any edge has a source and destination node but does not carry any weight.

The graphical representation of Cora dataset is presented in figure 17.

 Implementation of GNN Algorithms for Outlier Detection

38

Figure 17: Graphical representation of Cora dataset with 2708 nodes and

10556 edges. Different colors indicate the nodes belonging to 7 different class

of the dataset. Labels of classes are indicated in numbers from 0 to 6.

4.3.2 CiteSeer Dataset

The CiteSeer dataset contains the following attributes :

Nodes: There are 3327 nodes in Citeseer dataset, each representing an academic paper. Each

node (paper) has a feature vector, typically a bag-of-words representation of the document's

text.

Edges: Citeseer dataset has 9104 edges representing the citation relationships between papers.

If one paper cites another, an edge connects the two papers in the graph.

Classes: Each papers are categorized into six distinct classes based on their research topics

meaning the dataset has total of 6 classes starting from 0 to 6 as the index number of classes.

Features: Each node in the graph of CiteSeer dataset is described by a feature vector of length

3703. Here, the feature vector for each node is typically a bag-of-words representation of the

document’s text.

Graph: CiteSeer dataset is one single static attributed graph with 3327 nodes and 9104 edges

with 3703 features for each node. Like Cora, the edges here are also directed and unweighted

implying that any edge has a source and destination node but does not carry any weight.

 Implementation of GNN Algorithms for Outlier Detection

39

The graphical representation of CiteSeer dataset is presented in figure 18.

Figure 18: Graphical representation of CiteSeer dataset with 3327

nodes and 9104 edges. Different colors indicate the nodes belonging

to 6 different class of the dataset. Labels of classes are indicated in

numbers from 0 to 6.

4.3.3 Injection of outliers in the datasets

As both Cora and CiteSeer dataset do not contain any labeled outliers, manual injection of

outliers is carried out to create a more realistic scenario for testing and benchmarking different

outlier detection algorithms. By introducing known outliers into the dataset, the performance

of various algorithms can be assessed and compared based on ground truth data. This setup

also provides a basis for training and validating models in supervised learning settings,

ensuring that models can be efficiently trained to identify and handle anomalous data points.

 Implementation of GNN Algorithms for Outlier Detection

40

In both datasets, Cora and Citeseer, two types of outliers are manually injected, contextual

outliers and structural outliers. Contextual outliers are injected into the graph by modifying the

features of randomly selected nodes. Structural outliers, on the other hand, are injected by

adding or removing the edges in the graph between randomly selected two nodes.

Contextual Outliers (node-level outliers): Contextual outliers are introduced by modifying

the features of randomly selected nodes in the graph. This can also be seen as injecting the

node-level outliers. The main motive here is to change the existing feature values of the selected

nodes. Based on the number of features modified, the contextual outliers in the datasets are

injected in two different ways, naming them as soft contextual outliers and hard contextual

outliers.

• Soft Contextual Outliers: In soft contextual outliers, only 100 features out of all the

node features are manipulated. To inject a soft contextual outlier into the dataset, first a

node is randomly chosen. Again, 100 random features of that randomly chosen node are

chosen. The randomly chosen features are altered. The alteration of features is performed

by populating with any randomly generated values in the range of (0, 0.5). A total of 25

soft contextual outliers are injected into the dataset.

• Hard Contextual Outliers: In hard contextual outliers, all the features of node are

modified. While injecting hard contextual outliers, a random node is chosen. For all the

feature values of the randomly chosen node, the values are altered. A randomly

generated value in the range of (0,0.5) is injected to all the features. A total of 25 hard

contextual outliers are injected into the dataset.

This process of modification for 50 different random nodes alters the characteristics of the

nodes, making them outliers within the graph. The nodes that are altered by this process are

stored.

Structural Outliers (edge-level outliers): Structural outliers are introduced by manipulating

the edges in the graph which involves adding or removing edges (based on the presence of

edge) between pairs of randomly selected nodes. It is done so that adding new edges creates

unexpected connections, while removing existing edges breaks connections in the graph. For

each such outlier to inject, two nodes are randomly selected from the graph and the presence

of edge between two selected nodes are checked. Based on the presence of edge, an edge is

either added if previously not present or removed if previously present. Both the nodes involved

in the edge modification are added to the set of structural outliers. This process is instantiated

40 times to get a set of 80 structural outliers.

After injecting both contextual outliers and structural outliers, the union of both the outliers are

calculated to get a set of the total outliers from 50 contextual outliers and 80 structural outliers.

As the process is random, total outliers might contain outliers which are both contextual and

structural at the same time and also the nodes might get repeated which necessarily does not

always produces 130 different outliers.

In Cora dataset after injecting the outliers, it yielded 126 total distinct outliers out of which 50

are contextual outliers(25 soft contextual and 25 hard contextual outliers), 78 are structural

outliers and 2 are both contextual and structural outliers. The graphical representation of Cora

dataset after manipulating 126 nodes as outliers is shown in figure 19.

 Implementation of GNN Algorithms for Outlier Detection

41

Figure 19: A graphical representation of Cora dataset after

injecting 128 outliers (50 contextual, 78 structural and 2 both).

Different colors denote different types of nodes, inliers and

types of outlier nodes.

Likewise, in Citeseer dataset, the outlier injection process produced 128 total outliers injected

in the graph. 50 of them are contextual outliers, 80 are structural outliers and 2 are both

structural and contextual outlier. Citeseer dataset has 50 contextual outliers (25 soft and 25

hard contextual outliers). The graphical representation of Citeseer dataset with outlier injected

is shown in figure 20 where each type of nodes (inliers, contextual outliers, structural outliers

and both type of outliers) are represented with different colors.

Figure 20: A graphical representation of Cora dataset after

injecting 128 outliers (50 contextual, 80 structural and 2 both).

Different colors denote different types of nodes, inlier and types

of outlier nodes.

 Implementation of GNN Algorithms for Outlier Detection

42

The summary of statistics of the datasets used is shown in table 2.

Table 2 Summary of datasets used

Datasets Cora CiteSeer

Number of nodes 2708 3327

Number of edges 10566 9104

Number of attributes 1433 3702

Number of contextual outliers 50 50

Number of structural outliers 78 80

Number of both contextual and structural outliers 2 2

4.4 Model Implementation

The Cora dataset with injected outliers and the CiteSeer dataset with injected outliers are used

as base datasets where GNN algorithms are implemented to perform outlier detection. Both

datasets are first transformed using ‘NormalizeFeatures()’ as a parameter to normalize the

feature matrix of the datasets. This transform essentially brings each feature in feature matrix

to a consistent scale. There is also a class imbalance in the dataset, meaning 126 outlier nodes

as compared to 2582 inlier nodes in Cora dataset and 128 outliers compared to 3199 inliers.

However, both datasets do not have any labels associated with outliers and inliers. Also, GNN

algorithms are designed to work in unsupervised learning where the models do not learn from

the labeled examples but rather from normal patterns and relationships in the data. Therefore,

class imbalances in both datasets (Cora dataset and CiteSeer dataset) are not addressed.

A total of 4 models are designed to implement outlier detection in Cora and Citeseer datasets.

Though the datasets contain both node-level (contextual) and edge-level (structural) outliers,

the primary focus of the model implementation is in the detection of node-level outliers.

However, the prediction of structural outliers by the models are also considered for evaluation

to see how the models behave in such context. All the models are built on node-level based

outlier detection algorithms. The algorithms chosen in this work are DOMINANT,

AnomalyDAE, GAAN, and CoLA, the respective models are named as model_Dominant,

model_AnomalyDAE, model_GAAN, and model_CoLA. The motive here is to choose one

algorithm from different GNN based methods in detecting node-level outliers in static

attributed graph.

DOMINANT uses GCN-based GAE framework, AnomalyDAE uses GAT-based GAE

framework, GAAN uses GAN-based GAE framework and CoLA uses GCN framework . The

 Implementation of GNN Algorithms for Outlier Detection

43

detection of edge-level based outliers and dynamic graph-based outliers are out of the scope of

this work.

Each model is run 10 times in both Cora and Citeseer dataset with outlier injected to detect the

outliers. The average value of results of 10 such experiments is taken as the representative

values for all the models in both datasets. The evaluation and comparison of all the designed

models are based on the average value of 10 experiments.

4.4.1 Outlier Detection with DOMINANT

The algorithm DOMINANT [52] is readily available in PyGOD library [5]. The algorithm

comes with several hyperparameters that need to be tailored for a specific task or dataset. Here,

in this work, DOMINANT is imported from the library which is under pygod.detector [53]. A

model (namely model_Dominant) is instantiated by creating the object of imported class

DOMINANT.

The hyperparameters of the model are set manually to obtain the optimum performance. In

hyperparameters settings, ReLU is set as the activation function and GCN is chosen as the

GNN layer (backbone) of the model. The training batch size is set to the total number of nodes

present in the datasets (2708 for Cora dataset and 3327 for CiteSeer dataset). Likewise, other

hyperparameters, contamination is set to 0.1 and dropout rate (total fraction of inputs to drop

to prevent overfitting) is set to 0.2. The hidden dimension (the dimension of latent space

representation) is set to 128 while keeping the learning rate of the model (a hyperparameter

that determines the size of the steps taken during the optimization process of training) to 0.04.

The total number of GNN layers (which is GCN) in encoder is set to 2. The model is finally

trained for 100 epochs. The hyperparameters were twigged manually by trying and testing the

model and by referring to the documentation in [52] to get the best and optimum results.

The model is trained 10 times for both Cora and Citeseer datasets with outliers injected. The

decision scores of the model for each trainings is then calculated. Decision scores are the scores

assigned by the model to each node in the dataset. The higher the score, the more likely the

node is to be considered as an outlier. As there are 50 contextual outliers injected in Cora

dataset and CiteSeer dataset along with 126 total outliers in Cora dataset and 128 total outliers

in CiteSeer outliers, two different sets of predicted outliers are calculated using two different

thresholds. In Cora dataset, first (top) 50 outliers and top 126 outliers predicted by

model_Dominant are extracted whereas in CiteSeer dataset, top 50 and top 128 outliers

predicted by model_Dominant are extracted.

The outliers predicted by model_Dominant are finally checked with the ground truth, the real

outliers injected in the respective datasets. Both contextual outliers and structural outliers are

evaluated. In addition to this, Receiver Operating Characteristic (ROC) curve of True Positive

Rate vs False Positive Rate (FPR) for all node-level outlier prediction of the model is also

calculated for all threshold settings. The Area Under the ROC Curve (AUC) score of the model

from ROC curve is calculated to generalize the performance of DOMINANT in outlier

detection for Cora and CiteSeer dataset respectively.

 Implementation of GNN Algorithms for Outlier Detection

44

4.4.2 Outlier Detection with AnomalyDAE

Similar to DOMINANT, AnomalyDAE [54] is also available in PYGOD [5] library. The

method is imported and instantiated as model_AnomalyDAE with manually setting some of the

hyperparameters referring to the documentation in [54].

The hyperparameters set during the training of model_AnomalyDAE are as mentioned. The

activation function is chosen as ReLU, and the training batch size is set to the total number of

nodes present in the datasets (2708 and 3327 for Cora and Citeseer dataset respectively). GAT

is chosen as the GNN layers in encoder (backbone) while the number of GNN layers in encoder

is set to 2. The learning rate of the model is set to 0.02 and the contamination parameter is set

to 0.1. The hidden dimension (dimension of encoder output also called the latent space

representation) is set to 128 and theta (decision threshold controlling hyperparameter) value of

the model during the training is set to 1. [54]

The AnomalyDAE based model ‘model_AnomalyDAE’ is then trained for Cora and CiteSeer

dataset by fit(.) method for 10 times each. The decision scores for all the nodes in the network

assigned by the model in each trainings are calculated and are checked against two different

thresholds (top 50 and top 126 outliers for Cora dataset, top 50 and top 128 outliers for CiteSeer

dataset) to generate the predicted outliers by the model. The outliers predicted by

model_AnomalyDAE are finally evaluated against the real outliers injected in each of the

dataset, Cora and CiteSeer. The evaluation for both contextual and structural outliers is

performed in both datasets. ROC curve of TPR vs FPR for all node-level outlier prediction of

the model is obtained for all threshold settings. AUC score from ROC curve is calculated.

4.4.3 Outlier Detection with GAAN

GAAN [55], another pre available algorithm for outlier detection in PYGOD [5], is imported,

instantiated and trained for the datasets (Cora and CiteSeer dataset with injected outliers) for

10 times each. The decision scores calculated by GAAN-based model (model_GAAN) for all

the nodes in the network in each trainings are checked against the thresholds (top 50 and top

126 outliers for Cora dataset, top 50 and 128 outliers for CiteSeer dataset) to produce the list

of outliers predicted by the model. The outliers predicted by model_GAAN are then checked

against the real outliers of the datasets.

GAAN based model is instantiated with several hyperparameters settings. The model’s training

batch size is set to 0 (0 for bull batch training [55]). The noise dimension of the model is set to

32. Similarly, hidden dimension (dimension of latent space representation) is set to128 while

keeping the learning rate of the model to 0.02. The model has 4 GNN layers as 4, 2 layers for

generator and 2 for discriminator. The contamination parameter of the model during training

is set to 0.1 and weight (a hyperparameter for reconstruction of node feature and structure) is

set to 0.5 during training of the model. The model is trained for 100 epochs. [55]

The trained model of GAAN is also used to calculate ROC curve. In ROC curve, TPR and TFR

of the model for node-level outlier prediction are plotted against each other for all threshold

settings. AUC score for ROC curve is calculated to generalize the outlier detecting performance

of the model for both datasets, Cora and CiteSeer.

 Implementation of GNN Algorithms for Outlier Detection

45

4.4.4 Outlier Detection with COLA

CoLA [47], an algorithm for outlier detection available in PYGOD [47], is implemented in a

similar way to the other previously used algorithms DOMINANT [52], AnomalyDAE [54] and

GAAN [55]. The CoLA model (model_CoLA) is imported, instantiated, and trained with Cora

and CiteSeer dataset. The decision score of the model is checked with the thresholds (top 50

and top 126 for Cora dataset, top 50 and 128 for CiteSeer dataset). The outliers are predicted

based on the decision score of model_CoLA. The model is run for 10 times for each Cora and

CiteSeer dataset. The predicted outliers by the model in both datasets are checked against the

real outliers.

CoLA based model is instantiated with different hyperparameters. The model has an activation

function as ReLU and has 4 GCN layers in its encoder. The contamination rate of the model

during training is set to 0.1 while the dropout rate is set to 0.2. The training batch size is set to

the respective number of total nodes present in Cora and CiteSeer dataset. The model samples

all the neighbors during training so ‘num_neigh’ hyperparameter is set to -1. The model is

trained for 100 epochs. [47]

Once the model is trained, TPR and FPR of the model for node-level outlier detection are

plotted against each other at different threshold settings to obtain ROC curve. From the ROC

curve of the model, AUC score is calculated and is taken as a parameter to generalize the

performance of CoLA based model for node-level outlier predictions for Cora and CiteSeer

dataset.

 Evaluation and Comparison of GNN based algorithms

46

5 Evaluation and Comparison of GNN-based
algorithms
This chapter presents the results obtained from the GNN models that are designed for outlier

detection. The results obtained for each of the models, model_Dominant, model_AnomalyDAE,

model_GAAN, and model_COLA are discussed, analyzed, and compared.

5.1 Results of DOMINANT

A DOMINANT [52] based model, model_Dominant, has been implemented to predict the

outliers in Cora and CiteSeer dataset with injected outliers. The outliers predicted by this model

are checked against the real outliers injected into the datasets. As two different kinds of outliers

are injected, contextual (node-level) and structural (edge-level) outliers, the result obtained

from the model is evaluated against both the outliers.

Performance of DOMINANT model in Cora dataset

Table 3 shows the status of outliers predicted by model_Dominant in Cora dataset with outliers

injected. As the model was ran for 10 times, the number of outliers predicted along with their

types for each run is shown in table 1. The average values from 10 runs for all the predicted

outliers is calculated and this average value is taken as the representative result for the model,

model_Dominant. Table 1 shows the number of hard contextual and soft outliers, and structural

outliers correctly predicted by DOMINANT model along with the number of false predictions

of outliers for two thresholds (top 50 outliers and top 126 outliers). The threshold number 50

and 126 is chosen because of the fact that there are total 50 contextual outliers and 126 total

outliers (contextual, structural and both combined).

As the primary goal is to evaluate the performance of model in node-level outlier detection, a

list of top 50 outlier nodes predicted by the model based on the outlier scores assigned to each

of the nodes during model training is calculated. This list of predicted outliers are checked with

the list of real outliers injected in the dataset and it is observed that on average, 41 predicted

outliers are true outliers and remaining 9 are not the true outliers. Furthermore, out of 41

correctly predicted outliers, all 25 hard contextual outliers are detected whereas 16 out of 25

soft contextual outliers are truly detected. However, in all 10 runs, model_Dominant predicted

only 2 true structural outliers which were in reality both structural and contextual outliers. This

result showed that the model is incapable of correctly predicting the structural outliers.

Likewise, considering the fact that Cora dataset has 126 total outliers injected, from a threshold

value of 126, a list of top 126 outliers predicted by model_Dominant is extracted. It is found

that upon checking upon with the list of real outlier injected in the dataset, on average 49 true

outliers (22 soft contextual outliers, 25 hard contextual outliers, 2 structural outliers and 2 both

contextual and structural outliers) are predicted leaving remaining 77 predicted outliers by the

model as incorrect prediction.

 Evaluation and Comparison of GNN based algorithms

47

Table 3 Status of outliers predicted by DOMINANT model in Cora dataset with outliers injected. The model is

run for 10 instances in the dataset. Average is the average value of each column for 10 experiments.

Experiment

Number

Threshold : Top 50 Outliers

Total number of prediction : 50

Threshold : Top 126 Outliers

Total number of prediction: 126

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

1 15 25 2 10 22 25 4 77

2 16 25 2 9 23 25 5 75

3 14 25 2 11 22 25 5 74

4 18 25 2 7 22 25 4 76

5 15 25 2 10 23 25 4 76

6 16 25 2 9 22 25 5 76

7 16 25 2 9 21 25 4 78

8 17 25 2 8 22 25 4 77

9 15 25 2 10 23 25 4 76

10 14 25 2 11 24 25 5 74

Average 16 25 2 9 22 25 4 77

*SCO: Soft Contextual Outliers, *HCO: Hard Contextual Outliers.

*Average is rounded up to the nearest highest integer value for all true prediction.

In addition to the evaluation shown in table 3, ROC curve is also plotted to check the diagnostic

ability of the model to predict the outliers in all threshold settings and AUC score is calculated.

Figure 21 is the ROC curve for DOMINANT model taking only contextual outliers into

consideration. The existence of structural outliers in the dataset is not considered.

DOMINANT model has the AUC score of 0.80 in ROC curve for contextual outliers detection

which is shown in figure 21.

 Evaluation and Comparison of GNN based algorithms

48

Figure 21: ROC Curve for model_Dominant for contextual outlier

predictions in Cora dataset containing injected outliers. TPR and

FPR of the model are plotted against each other at various threshold

of outlier scores assigned by the model. The diagonal dotted line

represents the line of no discrimination.

Performance of DOMINANT model in CiteSeer dataset

In table 4, the performance of the model in CiteSeer dataset is shown. DOMINANT model is

trained for 10 times for each of the two thresholds (top 50 outliers and top 128 outliers based

on the outlier scores assigned by the model). For each run, number of true soft contextual

outliers, true hard contextual outliers, structural outliers, and false outliers predicted are

recorded. The average value of all 10 runs for both the threshold values from table 4 suggests

that model_Dominant is incapable of truly predicting the structural outliers. For threshold of

top 50 outliers, on average, the model predicted 18 soft contextual outliers and 25 hard

contextual outliers keeping the number of correct contextual outliers prediction to 43 whereas

7 are falsely predicted as outliers. Keeping the threshold value of top 128 outliers, the model

is able to detect 24 soft contextual outliers, 25 hard contextual outliers essentially making the

correct contextual outliers prediction number to 49 while 79 of the predictions made by the

model as outliers are incorrect on average.

In figure 22, ROC curve of TPR plotted against FPR for all the threshold settings of

DOMINANT model for the prediction of outliers in CiteSeer dataset is presented where the

model has AUC score of 0.83. This ROC curve is only for the contextual outlier prediction of

the model while the scenario of structural outliers and their detection is dropped off.

 Evaluation and Comparison of GNN based algorithms

49

Table 4 Status of outliers predicted by DOMINANT model in CiteSeer dataset with outliers injected. The model

is run for 10 times in the dataset. Average is the average value of each column for 10 experiments.

Experiment

Number

Threshold : Top 50 Outliers

Total number of prediction : 50

Threshold : Top 128 Outliers

Total number of prediction : 128

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

1 18 25 2 7 23 25 3 79

2 18 25 2 7 23 25 3 79

3 17 25 2 8 24 25 3 78

4 17 25 2 8 25 25 2 78

5 18 25 2 7 24 25 2 79

6 16 25 2 9 24 25 2 79

7 18 25 2 7 23 25 3 79

8 17 25 2 8 24 25 2 79

9 18 25 2 7 23 25 3 79

10 17 25 2 8 24 25 3 78

Average 18 25 2 7 24 25 3 79

*SCO: Soft Contextual Outliers, HCO: Hard Contextual Outliers.

*Average is rounded up to the nearest highest integer value for all true prediction and to the nearest lowest integer value of false predictions.

Figure 22: ROC Curve for model_Dominant for contextual outlier predictions

in CiteSeer dataset containing injected outliers. TPR and FPR of the model are

plotted against each other at various threshold of outlier scores assigned by the

model. The diagonal dotted line represents the line of no discrimination.

 Evaluation and Comparison of GNN based algorithms

50

5.2 Results of AnomalyDAE

The contextual and structural outliers predicted by model_AnomalyDAE, which is based on

AnomalyDAE algorithm [54] are checked against the real outliers injected into the datasets,

Cora and CiteSeer.

Performance of AnomalyDAE model in Cora dataset

Table 5 shows the status of outliers predicted by model_AnomalyDAE for two thresholds of

top 50 outliers and top 126 outliers. For each run of model indicated by the experiment number

in table 5, the number of true soft contextual outliers, hard contextual outliers, true structural

outliers and false predicted outliers in each of the thresholds are tabulated. The average value

in the table suggests that in both thresholds, the performance of the model in structural outliers

prediction is negligible. In the top 50 outliers predicted by the model, 18 are true soft contextual

outliers, 25 are true hard contextual outliers and 7 are falsely predicted outliers. Likewise, the

model predicted 48 contextual outliers (23 soft contextual and 25 hard contextual) while 75 of

the outliers predicted are not the real outliers for threshold of top 126 outliers on an average.

Ignoring the presence of structural outliers and their prediction by model_AnomalyDAE, ROC

curve for contextual outlier detection is plotted and is shown in figure 23. TPR and FPR of

outlier detection for various threshold values assigned by the model for the nodes in the graph

of Cora dataset are plotted against each other to generate the ROC curve which gave the AUC

score of 0.81.

Table 5 Status of outliers predicted by AnomalyDAE model in Cora dataset with outliers injected. The model is

run for 10 instances in the dataset. Average is the average value of each column for 10 experiments.

Experiment

Number

Threshold : Top 50 Outliers

Total number of prediction : 50

Threshold : Top 126 Outliers

Total number of prediction : 126

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

1 18 25 2 7 23 25 4 76

2 17 25 2 8 23 25 5 75

3 19 25 2 6 24 25 5 74

4 19 25 2 6 23 25 4 76

5 16 25 2 9 23 25 4 76

6 17 25 2 8 24 25 5 74

7 18 25 2 7 22 25 4 77

8 20 25 2 5 22 25 4 77

9 19 25 2 6 23 25 4 76

10 16 25 2 6 22 25 5 76

Average 18 25 2 7 23 25 5 75

*SCO: Soft Contextual Outliers, *HCO: Hard Contextual Outliers. *Average is rounded up to the nearest highest integer value.

 Evaluation and Comparison of GNN based algorithms

51

Figure 23: ROC Curve for model_AnomalyDAE for contextual outlier

predictions in Cora dataset containing injected outliers. True Positive

Rate and False Positive Rate of the model are plotted against each

other at various threshold of outlier scores assigned by the model.

The diagonal dotted line represents the line of no discrimination.

Performance of AnomalyDAE model in CiteSeer dataset

In CiteSeer dataset, the training of AnomalyDAE model for 10 runs is shown in table 6. With

experiment number denoting the run of the model, the table highlights the predictions made by

the model for two chosen thresholds, top 50 outliers and top 128 outliers predicted. The average

value for all the predictions shows that in top 50 outliers threshold category, the model

predicted 18 true soft contextual outliers and 25 hard contextual outliers which in combination

is 43 true contextual outliers predictions. Remaining 7 predictions as outlier nodes by the model

are incorrect. In top 128 outliers threshold section, the prediction made by the model reads 24

true soft contextual outliers, 25 true hard contextual outliers, (47 true contextual outliers

prediction) and 79 incorrectly predicted outliers. In both of thresholds, the model is incapable

of predicting the structural outliers. The concern of structural outlier detection is kept aside and

only the contextual outlier prediction is considered to build a ROC curve. In ROC curve, true

positive rate and false positive rate of AnomalyDAE model to predict the contextual outliers

in all the threshold settings are plotted against each other to obtain the AUC score of the model

for CiteSeer dataset. The AUC score of AnomalyDAE based model is obtained to be 0.84 as

shown in figure 2. that represents the ROC curve of AnomalyDAE model.

 Evaluation and Comparison of GNN based algorithms

52

Table 6 Status of outliers predicted by AnomalyDAE model in CiteSeer dataset with outliers injected. The

model is run for 10 instances in the dataset. Average is the average value of each column for 10 experiments.

Experiment

Number

Threshold : Top 50 Outliers

Total number of prediction : 50

Threshold : Top 128 Outliers

Total number of prediction : 128

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

1 17 25 2 8 23 25 3 79

2 18 25 2 7 23 25 3 79

3 18 25 2 7 24 25 3 78

4 17 25 2 8 25 25 2 78

5 16 25 2 9 24 25 2 79

6 19 25 2 6 24 25 2 79

7 17 25 2 8 23 25 3 79

8 18 25 2 7 24 25 2 79

9 18 25 2 7 23 25 3 79

10 17 25 2 8 24 25 3 78

Average 18 25 2 7 24 25 3 79

*SCO: Soft Contextual Outliers, *HCO: Hard Contextual Outliers.

*Average is rounded up to nearest highest integer value for all true prediction and to the nearest lowest integer value of false predictions

 Evaluation and Comparison of GNN based algorithms

53

Figure 24: ROC Curve for model_AnomalyDAE for contextual outlier

predictions in CiteSeer dataset containing injected outliers. True Positive Rate

and False Positive Rate of the model are plotted against each other at various

threshold of outlier scores assigned by the model. The diagonal dotted line

represents the line of no discrimination.

5.3 Results of GAAN

In the datasets, Cora dataset and CiteSeer dataset where both of them contains manually

injected outliers, GAAN [55] based model, model_GAAN, is trained. The model is trained for

10 times in both the datasets. For all of 10 trainings, the outliers predicted by the model is

recorded.

Performance of GAAN in Cora dataset

Table 7 is the summary of the model performance in Cora dataset. The experiment number

denotes the run of the model. Two different threshold values, top 50 outliers and top 126

outliers are set to produce the lists of outliers predicted by the model. The average values in

table 7 shows that in Cora dataset, for threshold value of top 50 outliers, model_GAAN

predicted 8 true soft contextual outliers, 25 hard contextual outliers, 2 structural outliers (which

are essentially both contextual and structural outliers) leaving 17 as the false predictions on

average. Similarly, on average, for threshold of top 126 outliers, model_GAAN predicted 21

true soft contextual outliers, 25 hard contextual outliers, 3 structural outliers while making 79

false outlier predictions. The model fails to predict structural outliers present in the dataset.

Keeping the focus on only contextual outlier predictions and taking out the equation of

structural outliers, ROC curve of the model for contextual outlier detection in Cora dataset is

plotted. TPR and FPR of the model in different threshold settings is plotted against each other

in ROC curve as shown in figure 25. From figure 25, the AUC score of GAAN model is found

out to be 0.74.

 Evaluation and Comparison of GNN based algorithms

54

Table 7 Status of outliers predicted by GAAN model in Cora dataset with outliers injected. The model is run for

10 instances in the dataset. Average is the average value of each column for 10 experiments.

Experiment

Number

Threshold : Top 50 Outliers

Total number of prediction : 50

Threshold : Top 126 Outliers

Total number of prediction : 126

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

1 8 25 2 17 22 25 3 78

2 9 25 2 16 22 25 4 77

3 8 25 2 17 21 25 3 79

4 7 25 2 18 20 25 3 80

5 7 25 2 18 22 25 3 78

6 8 25 2 17 20 25 3 80

7 10 25 2 15 21 25 3 79

8 7 25 2 18 22 25 4 77

9 8 25 2 17 21 25 3 79

10 7 25 2 18 22 25 3 78

Average 8 25 2 17 21 25 3 79

*SCO: Soft Contextual Outliers, HCO: Hard Contextual Outliers.

*Average is rounded up to nearest highest integer value for all true prediction and to the nearest lowest integer value of false predictions

Figure 25: ROC Curve for model_GAAN for contextual outlier

predictions in Cora dataset containing injected outliers. True Positive

Rate and False Positive Rate of the model are plotted against each other

at various threshold of outlier scores assigned by the model. The

diagonal dotted line represents the line of no discrimination.

 Evaluation and Comparison of GNN based algorithms

55

Performance of GAAN in CiteSeer dataset

In table 8, the summary of GAAN based model, model_GAAN in detecting the outliers in

CiteSeer dataset with injected outliers is presented. Considering the average values of 10 runs

of model from table 8, for threshold of top 50 outliers, GAAN model predicted 8 true soft

contextual outliers, 25 hard contextual outliers, 2 structural outliers and 17 incorrectly

predicted nodes as outliers. Also, for threshold of 128 outliers, there were total of 82 incorrectly

predicted outliers, 21 true predicted soft contextual outliers, 25 true predicted hard contextual

outliers, and 2 true predicted structural outliers. The model essentially predicted 33 true

contextual outliers in top 50 outliers threshold and 46 true contextual outliers in top 128 outliers

threshold. On the other hand, the model fails to predict structural outliers present in CiteSeer

dataset.

For the model’s ability to predict contextual outliers while keeping aside structural outliers,

ROC curve is further plotted to generalize the performance. For all the threshold settings to

determine the outliers in the dataset, model’s TPR and FPR are plotted against each other to

obtain the ROC curve of model_GAAN as shown in figure 26. GAAN model has 0.78 AUC

score.

Figure 26: ROC Curve for model_GAAN for contextual outlier predictions in

CiteSeer dataset containing injected outliers. True Positive Rate and False

Positive Rate of the model are plotted against each other at various threshold of

outlier scores assigned by the model. The diagonal dotted line represents the line

of no discrimination.

 Evaluation and Comparison of GNN based algorithms

56

Table 8 Status of outliers predicted by GAAN based model in CiteSeer dataset with outliers injected. The model

is run for 10 instances in the dataset. Average is the average value of each column for 10 experiments.

Experiment

Number

Threshold : Top 50 Outliers

Total number of prediction : 50

Threshold : Top 128 Outliers

Total number of prediction : 128

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

1 9 25 2 16 21 25 2 82

2 8 25 2 17 22 25 2 81

3 8 25 2 17 21 25 2 82

4 7 25 2 18 22 25 2 81

5 7 25 2 18 22 25 2 81

6 9 25 2 16 22 25 3 80

7 7 25 2 18 21 25 3 82

8 8 25 2 17 22 25 2 82

9 8 25 2 17 22 25 2 82

10 7 25 2 18 22 25 3 81

Average 8 25 2 17 21 25 2 82

*SCO: Soft Contextual Outliers, HCO: Hard Contextual Outliers.

*Average is rounded up to nearest highest integer value for all true prediction and to the nearest lowest integer value of false predictions

5.4 Results of CoLA

For model_CoLA, a CoLA [47] based model, Cora dataset and Citeseer dataset with manually

injected outliers are used as two benchmark datasets. The model is trained 10 times for each of

the datasets and the outliers in the datasets are predicted.

Performance of CoLA model in Cora dataset

Table 9 presents the status of outliers predicted by CoLA model in Cora dataset. The

information of the real outliers injected in the dataset is used for the evaluation of the

prediction. For each of 10 runs of model, the outliers predicted by the model is presented in

table 9. The model is set for two threshold values, top 50 outliers and top 126 outliers based on

the outlier scores assigned by the model. The model under threshold of top 50 outliers yielded

10 true soft contextual outliers, 25 true hard contextual outliers, 2 structural outliers and 14

false outliers on average in its top 50 predicted outliers list. Similarly, the model predicted 22

true soft contextual outliers, 25 hard contextual outliers, 4 structural outliers and 77 false

outliers for its top 126 outliers threshold. In summary, model_CoLA had the true prediction of

35 contextual outliers in its top 50 outliers threshold and 48 true contextual outliers in its top

126 outliers threshold. The model fails to truly predict structural outliers.

 Evaluation and Comparison of GNN based algorithms

57

ROC curve for contextual outlier prediction of CoLA model is shown in figure 27. TPR is

plotted against FPR of the model for outlier detection in different threshold settings assigned

by the model manually to draw the ROC curve which provides the AUC score of the model as

0.78.

Figure 27: ROC Curve for model_CoLA for contextual outlier predictions in

Cora dataset containing injected outliers. True Positive Rate and False

Positive Rate of the model are plotted against each other at various threshold

of outlier scores assigned by the model. The diagonal dotted line represents

the line of no discrimination.

 Evaluation and Comparison of GNN based algorithms

58

Table 9 Status of outliers predicted by CoLA model in Cora dataset with outliers injected. The model is run for

10 instances in the dataset. Average is the average value of each column for 10 experiments.

Experiment

Number

Threshold : Top 50 Outliers

Total number of prediction : 50

Threshold : Top 126 Outliers

Total number of prediction : 126

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

1 11 25 2 14 23 25 4 76

2 12 25 2 12 22 25 3 77

3 10 25 2 13 22 25 4 77

4 10 25 2 15 23 25 4 76

5 11 25 2 14 23 25 3 77

6 9 25 2 16 22 25 4 77

7 9 25 2 16 22 25 4 77

8 10 25 2 15 22 25 5 76

9 10 25 2 15 21 25 3 79

10 11 25 2 14 23 25 3 77

Average 10 25 2 15 22 25 4 77

*SCO: Soft Contextual Outliers, *HCO: Hard Contextual Outliers.

*Average is rounded up to nearest highest integer value for all true prediction and to the nearest lowest integer value of false predictions

Performance of CoLA model in CiteSeer dataset

To predict the outliers manually injected in CiteSeer dataset, CoLA model is trained 10 times.

The individual value of status of outliers detected by the model representing all the 10 runs is

tabulated in table 10. The outlier detection performance of the model is performed for two

threshold values, top 50 outliers and top 128 top outliers based on the outlier scores assigned

during the training of the model. Taking the average value as the representative value of the

model, for threshold value of top 50 outliers, model_CoLA predicted 37 true contextual outliers

present in the dataset while its 13 predictions are false predictions. Likewise, in the list of 128

predictions given by the model during the threshold of top 128 outliers, 47 out of 50 true

contextual outliers are predicted while remaining other 81 predictions made by the model are

false predictions. The model is completely incapable of predicting structural outliers.

ROC curve is drawn by plotting TPR against FPR for contextual outliers prediction against

each other for different threshold settings of outlier scores of the model. Figure 28 is the ROC

curve representation of the model. From ROC curve, the AUC score is 0.80 as shown in figure

28.

 Evaluation and Comparison of GNN based algorithms

59

Table 10 Status of outliers predicted by CoLA model in CiteSeer dataset with outliers injected. The model is

run for 10 instances in the dataset. Average is the average value of each column for 10 experiments.

Experiment

Number

Threshold : Top 50 Outliers

Total number of prediction : 50

Threshold : Top 128 Outliers

Total number of prediction : 128

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

True SCO

Outliers

Predicted

True HCO

Outliers

Predicted

True

Structural

Outliers

Predicted

False

Predicted

Outliers

1 12 25 2 13 22 25 2 81

2 12 25 2 13 22 25 2 81

3 13 25 2 12 22 25 3 80

4 13 25 2 12 21 25 2 83

5 12 25 2 13 21 25 2 83

6 14 25 2 11 21 25 4 80

7 11 25 2 14 22 25 1 81

8 12 25 2 13 21 25 2 82

9 13 25 2 12 21 25 2 82

10 11 25 2 14 23 25 2 80

Average 12 25 2 13 22 25 2 81

*SCO: Soft Contextual Outliers, *HCO: Hard Contextual Outliers.

 *Average is rounded up to nearest highest integer value for all true prediction and to the nearest lowest integer value of false predictions

Figure 28: ROC Curve for model_CoLA for contextual outlier predictions in

CiteSeer dataset containing injected outliers. True Positive Rate and False Positive

Rate of the model are plotted against each other at various threshold of outlier

scores assigned by the model. The diagonal dotted line represents the line of no

discrimination.

 Evaluation and Comparison of GNN based algorithms

60

5.5 Comparison of results

The performance of all the models (model_Dominant, model_AnomalyDAE, model_GAAN,

and model_CoLA) is compared in this section. Table 11 provides the comparison of the

performance of all the models in detecting the outliers for threshold of top 50 outliers in Cora

and CiteSeer datasets. In figure 29, the line plots of the true predictions made by all the models

for contextual outlier detection at threshold value of top 50 outliers are shown. Figure 29(a) is

for Cora dataset and figure 29(b) is for CiteSeer dataset.

Table 11 True Positive and False Positive of models for contextual outlier detection in Cora and CiteSeer dataset

with outliers injected for threshold value of top 50 outliers

Models Cora Dataset CiteSeer Dataset

True outliers

predicted

False outliers

predicted

True outliers

predicted

False outliers

predicted

model_Dominant 41 9 43 7

model_AnomalyDAE 43 7 43 7

model_GAAN 33 15 33 17

model_CoLA 35 15 37 13

*All the values are average value taken from 10 different runs rounded up in highest nearest integer.

Figure 29: Line plots for true predictions of models, Dominant, AnomalyDAE, GAAN, and CoLA

for contextual outlier detections in Cora and CiteSeer dataset carried out for 10 experiments

keeping threshold value top 50 outliers

 Evaluation and Comparison of GNN based algorithms

61

The AUC score of all the models for Cora and CiteSeer dataset for contextual outlier prediction

is shown in table 12.

Table 12 AUC score of all the models in Cora and CiteSeer dataset for contextual outlier predictions

 Cora CiteSeer

model_Dominant 0.80 0.83

model_AnomalyDAE 0.81 0.84

model_GAAN 0.74 0.78

model_CoLA 0.78 0.80

5.6 Discussion

Contextual outliers are the outliers that possess significant deviation from other inlier nodes in

terms of node attributes. In soft contextual outliers injection, 100 node features were altered,

and hard contextual outliers injection modified all the node features randomly. All models,

DOMINANT, AnomalyDAE, GAAN and CoLA are able to detect hard contextual outliers

while the models showed variation in soft contextual outliers detection for both Cora and

CiteSeer dataset as shown in table 3, 4, 5, 6, 7, 8, 9 and 10. This high detection rate of hard

contextual outliers can be attributed to the distinct and pronounced modifications made to every

feature of the affected nodes, making them easier to differentiate from normal instances. Soft

contextual outliers being the softer nature of contextual outliers, where only a subset of 100

features is modified, makes them more challenging to detect compared to hard contextual

outliers. As far as structural outliers are concerned, these outliers involve anomalies introduced

through changes in the graph structure, such as adding or removing edges. All models struggled

to accurately detect structural outliers in both datasets. This difficulty arises from the complex

interplay between nodes and edges, making it harder to isolate structural anomalies compared

to node-level anomalies. Also, as the node features are not changed at all for all structural

outliers that are injected in the datasets, the low detection rates for structural outliers suggest

that the models primarily focus on node-level characteristics and struggle to effectively capture

graph-level irregularities. However, as all the algorithms chosen in this work are node-level

based outlier detection algorithms, the incapacity of the models to predict structural outliers

does not carry any significance in models’ prediction performance.

Additionally, adjusting the threshold for outlier detection influenced the number of outliers

detected and the model's performance. Lower thresholds, such as the top 50 outliers, led to

higher accuracy in identifying hard contextual outliers due to their more pronounced

deviations. However, soft contextual outliers posed a greater challenge, resulting in varying

detection rates across models.

To account for the model’s performance in all thresholds, ROC curve is plotted that

illustrates the trade-off between True Positive Rate (TPR) and False Positive Rate (FPR) for

different threshold settings for the contextual outliers prediction. The AUC score quantifies the

performance of the model across various thresholds. A higher AUC score indicates better

 Evaluation and Comparison of GNN based algorithms

62

overall performance in distinguishing between normal and outlier instances. From table 12,

AnomalyDAE has the highest AUC score in Cora dataset (0.81) followed by DOMINANT

(0.8), CoLA (0.78) and GAAN (0.74). Likewise, in CiteSeer dataset, the highest AUC score

order is AnomalyDAE (0.84), DOMINANT (0.83), CoLA (0.80) and GAAN (0.78). As

AnomalyDAE uses dual autoencoder structure, structural autoencoder and attribute

autoencoder, with each encoder in GAT framework, the node embeddings contains more

structural and attribute information leading to higher discrimination ability to inliers and node-

level outliers. Likewise, DOMINANT, a GCN based GAE algorithm, uses one attribute

encoder based on GCN framework and two decoders, structure reconstruction decoder and

attribute reconstruction decoder. This particular architecture is also equally powerful in

identifying the node-level anomalies in the graph suggested by the AUC score. The generator

and discriminator approach used in GAAN performed slightly lower (AUC score of 0.74 in

Cora and 0.78 in CiteSeer) in node-level outlier detection as compared to AnomalyDAE and

DOMINANT. This is because of the fact that the performance of model depends upon the

appropriate selection of hyper parameters such as noise dimensions and number of neighbors

in sampling. Fine tune of hyperparameters is therefore essential to optimize GAAN

performance. Lastly, CoLA, a GCN based contrastive self-supervised method, is also equally

sufficient to predict node-level outliers with AUC score of 0.78 in Cora and 0.80 CiteSeer.

In summary, while the models exhibited strong performance in identifying hard contextual

outliers, they faced challenges in detecting soft contextual and structural outliers. These

findings underscore the importance of considering the nature of anomalies and the complexity

of graph structures when developing outlier detection models. Fine tuning of hyperparameters

is also another important factor to get the optimum result for the models in outlier detection.

The variations in AUC scores among the models can be attributed to differences in architectural

design, learning processes, feature representations, and robustness to noise and variations in

data distribution. Each model has its strengths and weaknesses, which should be considered

when selecting the most suitable model for a particular outlier detection task.

 Conclusion and Future work

63

6 Conclusion and Future work
This thesis work has meticulously explored the realm of GNNs and their potential applications

in unraveling outlier detection within graph data. Initially, an in-depth study of graph basics is

conducted to understand the fundamental aspects associated with graph theory. This study

progresses as an extensive state-of-the-art examination into various GNN architectures,

including GCN, GAT, GAE, GraphSAGE, GIN, VGAE, and others, to establish a solid

theoretical groundwork. Additionally, the research delves into a state-of-the-art study of GNN-

based outlier detection algorithms, preceded by a comprehensive analysis of the definition of

outliers and their types in graph-based data. Furthermore, the primary focus is on node-level

based outliers in static attributed graphs, leaving other outlier types such as edge-level outliers,

sub-graph level outliers, and outliers in dynamic graphs for future exploration. The algorithms

implemented for node-level based outlier detection are DOMINANT, AnomalyDAE, CoLA,

and GAAN, each leveraging distinct GNN architectures and methodologies for anomaly

identification. DOMINANT represents the GCN-based GAE method, AnomalyDAE

represents the GAT-based GAE method, CoLA represents the GCN-based contrastive self-

supervised learning method, and GAAN represents the GAN-based method.

This work has utilized the Cora dataset and CiteSeer dataset, popular benchmark citation

networks, as the datasets to carry out the implementation of these GNN-based outlier detection

algorithms. Since there were no outliers in both datasets, outliers are manually injected into the

datasets. This is accomplished by randomly modifying node features and network structure by

randomly selecting nodes to designate them as outliers in the graph representing the datasets.

50 node-level (contextual) outliers and 80 edge-level (structural) outliers are injected into the

datasets (Cora and CiteSeer), serving as the ground truth for model evaluation. Four different

models are designed, each corresponding to the DOMINANT, AnomalyDAE, CoLA, and

GAAN algorithms. The AUC score for each model from the ROC curve is calculated to

evaluate the performance of the models in node-level outlier detection. For the ROC curve, the

true positive rate and false positive rate of the model in node-level outlier prediction in the

datasets at different threshold settings are plotted against each other, and the AUC score is

calculated. The threshold settings are chosen automatically. Out of the four models,

AnomalyDAE had the highest AUC scores of 0.81 and 0.83 for the Cora and CiteSeer datasets,

respectively, followed by DOMINANT, with AUC scores of 0.80 and 0.83 for the Cora and

CiteSeer datasets, respectively. Likewise, CoLA had the third-best AUC scores of 0.78 for

Cora and 0.80 for CiteSeer datasets, while GAAN had the lowest AUC scores out of all four

models, with scores of 0.74 and 0.78 for the Cora and CiteSeer datasets, respectively. These

AUC scores have essentially illuminated the reliability of all the models.

Conversely, during the injection of 50 node-level (contextual) outliers in the dataset, 25 of them

were injected as soft contextual outliers, altering only the 100 features of the selected node,

while 25 of them were injected as hard contextual outliers, altering each node feature of

randomly selected nodes. The detection of soft contextual outliers presented a challenge across

models, with variations observed in their AUC scores, underscoring the intricacies of anomaly

detection in graph data, while all models detected all hard contextual outliers with ease.

Despite the inherent challenges posed by soft node-level outliers, which all models have

grappled with, this study underscores the effectiveness of all the models implemented in

pinpointing outliers with notable precision. These findings, coupled with insights into the

limitations and avenues for enhancement, particularly in the detection of soft contextual

outliers, provide a solid foundation for future advancements in GNN-based outlier detection

methodologies. By bridging the chasm between theoretical underpinnings and practical

 Conclusion and Future work

64

implementation, this research propels the development of more robust and adaptable

algorithms, poised to tackle the complexities of complex graph data structures with quantifiable

evidence of their performance.

Future Work

In paving the way for future research endeavors, particularly within the realm of static

attributed graphs and node-level outlier detection, several promising avenues beckon

exploration. Firstly, delving deeper into the fusion of GNN architectures with advanced

techniques such as graph attention mechanisms and graph convolutional networks holds

immense potential. The exploration of novel architectures that adeptly capture intricate graph

structures and attribute information while mitigating the challenges posed by noise and

structural outliers is paramount. Additionally, extending the scope of analysis to dynamic graph

settings could offer valuable insights, enabling the development of outlier detection algorithms

capable of adapting to evolving graph structures over time. Furthermore, integrating domain-

specific knowledge and domain-specific features into outlier detection frameworks could

enhance the robustness and interpretability of anomaly detection models. Lastly, the

exploration of ensemble learning approaches, combining multiple outlier detection algorithms,

could bolster performance and generalization capabilities, offering a promising avenue for

future research endeavors in this domain.

 References

65

References
[1] B. Sanchez-Lengeling, E. Reif, A. Pearce, and A. Wiltschko, “A Gentle Introduction to

Graph Neural Networks,” Distill, vol. 6, no. 8, p. 10.23915/distill.00033, Aug. 2021, doi:

10.23915/distill.00033.

[2] M. Newman, Networks. Oxford University Press, 2018.

[3] J. Zhou et al., “Graph Neural Networks: A Review of Methods and Applications.” arXiv,

Oct. 06, 2021. Accessed: Apr. 27, 2024. [Online]. Available:

http://arxiv.org/abs/1812.08434

[4] “PyTorch documentation — PyTorch 2.3 documentation.” Accessed: May 13, 2024.

[Online]. Available: https://pytorch.org/docs/stable/index.html

[5] “PyGOD 1.1.0 documentation.” Accessed: May 13, 2024. [Online]. Available:

https://docs.pygod.org/en/latest/index.html

[6] L. Wu, P. Cui, J. Pei, and L. Zhao, Graph Neural Networks: Foundations, Frontiers, and

Applications. Springer Nature, 2022.

[7] K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks.” arXiv, Dec.

02, 2015. Accessed: May 14, 2024. [Online]. Available: http://arxiv.org/abs/1511.08458

[8] S. Grossberg, “Recurrent neural networks,” Scholarpedia, vol. 8, no. 2, p. 1888, 2013, doi:

10.4249/scholarpedia.1888.

[9] Understanding Graph Neural Networks | Part 2/3 - GNNs and it’s Variants, (Sep. 20,

2020). Accessed: May 13, 2024. [Online Video]. Available:

https://www.youtube.com/watch?v=ABCGCf8cJOE

[10] R. van den Berg, T. N. Kipf, and M. Welling, “Graph Convolutional Matrix

Completion.” arXiv, Oct. 25, 2017. Accessed: Apr. 05, 2024. [Online]. Available:

http://arxiv.org/abs/1706.02263

[11] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur, “Protein Interface Prediction using Graph

Convolutional Networks,” in Advances in Neural Information Processing Systems, Curran

Associates, Inc., 2017. Accessed: May 14, 2024. [Online]. Available:

https://proceedings.neurips.cc/paper/2017/hash/f507783927f2ec2737ba40afbd17efb5-

Abstract.html

[12] S. X. Rao et al., “xFraud: Explainable Fraud Transaction Detection,” Proc. VLDB

Endow., vol. 15, no. 3, pp. 427–436, Nov. 2021, doi: 10.14778/3494124.3494128.

[13] Z. Cui, K. Henrickson, R. Ke, Z. Pu, and Y. Wang, “Traffic Graph Convolutional

Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic

Learning and Forecasting.” arXiv, Nov. 04, 2019. Accessed: May 14, 2024. [Online].

Available: http://arxiv.org/abs/1802.07007

[14] W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann, “E-GraphSAGE:

A Graph Neural Network based Intrusion Detection System for IoT,” in NOMS 2022-2022

IEEE/IFIP Network Operations and Management Symposium, Apr. 2022, pp. 1–9. doi:

10.1109/NOMS54207.2022.9789878.

[15] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional networks: a

comprehensive review,” Comput. Soc. Netw., vol. 6, no. 1, p. 11, Dec. 2019, doi:

10.1186/s40649-019-0069-y.

 References

66

[16] M. Gori, G. Monfardini, and F. Scarselli, A new model for Learning in Graph Domains,

vol. 2. 2005, p. 734 vol. 2. doi: 10.1109/IJCNN.2005.1555942.

[17] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Message Passing

Neural Networks,” in Machine Learning Meets Quantum Physics, K. T. Schütt, S. Chmiela,

O. A. von Lilienfeld, A. Tkatchenko, K. Tsuda, and K.-R. Müller, Eds., Cham: Springer

International Publishing, 2020, pp. 199–214. doi: 10.1007/978-3-030-40245-7_10.

[18] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convolutional

Networks.” arXiv, Feb. 22, 2017. Accessed: May 13, 2024. [Online]. Available:

http://arxiv.org/abs/1609.02907

[19] A. Daigavane, B. Ravindran, and G. Aggarwal, “Understanding Convolutions on

Graphs,” Distill, vol. 6, no. 8, p. 10.23915/distill.00032, Aug. 2021, doi:

10.23915/distill.00032.

[20] “How powerful are Graph Convolutional Networks?” Accessed: May 13, 2024.

[Online]. Available: http://tkipf.github.io/graph-convolutional-networks/

[21] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral Networks and Locally

Connected Networks on Graphs.” arXiv, May 21, 2014. Accessed: May 13, 2024. [Online].

Available: http://arxiv.org/abs/1312.6203

[22] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are Graph Neural

Networks?” arXiv, Feb. 22, 2019. Accessed: May 13, 2024. [Online]. Available:

http://arxiv.org/abs/1810.00826

[23] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph

Attention Networks.” arXiv, Feb. 04, 2018. Accessed: May 13, 2024. [Online]. Available:

http://arxiv.org/abs/1710.10903

[24] H. İ. Hatun, “Graph Neural Networks (GNNs),” Medium. Accessed: May 13, 2024.

[Online]. Available: https://halil7hatun.medium.com/graph-neural-networks-gnns-

1f463df4bb77

[25] Understanding Graph Attention Networks, (Apr. 16, 2021). Accessed: May 13, 2024.

[Online Video]. Available: https://www.youtube.com/watch?v=A-yKQamf2Fc

[26] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A Comprehensive Survey

on Graph Neural Networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 1, pp. 4–

24, Jan. 2021, doi: 10.1109/TNNLS.2020.2978386.

[27] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive Representation Learning on Large

Graphs,” in Advances in Neural Information Processing Systems, Curran Associates, Inc.,

2017. Accessed: May 13, 2024. [Online]. Available:

https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-

Abstract.html

[28] A. Majumdar, “Graph structured autoencoder,” Neural Netw., vol. 106, pp. 271–280,

Oct. 2018, doi: 10.1016/j.neunet.2018.07.016.

[29] T. N. Kipf and M. Welling, “Variational Graph Auto-Encoders.” arXiv, Nov. 21, 2016.

Accessed: Apr. 08, 2024. [Online]. Available: http://arxiv.org/abs/1611.07308

[30] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversarially Regularized

Graph Autoencoder for Graph Embedding.” arXiv, Jan. 07, 2019. Accessed: Apr. 28, 2024.

[Online]. Available: http://arxiv.org/abs/1802.04407

 References

67

[31] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein, “Temporal

Graph Networks for Deep Learning on Dynamic Graphs.” arXiv, Oct. 09, 2020. Accessed:

Apr. 04, 2024. [Online]. Available: http://arxiv.org/abs/2006.10637

[32] L. Cai et al., “Structural Temporal Graph Neural Networks for Anomaly Detection in

Dynamic Graphs.” arXiv, May 25, 2020. Accessed: Apr. 04, 2024. [Online]. Available:

http://arxiv.org/abs/2005.07427

[33] F. E. Grubbs, “Procedures for Detecting Outlying Observations in Samples,”

Technometrics, vol. 11, no. 1, pp. 1–21, Feb. 1969, doi:

10.1080/00401706.1969.10490657.

[34] H. Kim, B. S. Lee, W.-Y. Shin, and S. Lim, “Graph Anomaly Detection With Graph

Neural Networks: Current Status and Challenges,” IEEE Access, vol. 10, pp. 111820–

111829, 2022, doi: 10.1109/ACCESS.2022.3211306.

[35] X. Ma et al., “A Comprehensive Survey on Graph Anomaly Detection with Deep

Learning,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 12, pp. 12012–12038, Dec. 2023,

doi: 10.1109/TKDE.2021.3118815.

[36] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM

Comput. Surv., vol. 41, no. 3, pp. 1–58, Jul. 2009, doi: 10.1145/1541880.1541882.

[37] H. Kim, B. S. Lee, W.-Y. Shin, and S. Lim, “Graph Anomaly Detection With Graph

Neural Networks: Current Status and Challenges,” IEEE Access, vol. 10, pp. 111820–

111829, 2022, doi: 10.1109/ACCESS.2022.3211306.

[38] L. Akoglu, M. McGlohon, and C. Faloutsos, “oddball: Spotting Anomalies in Weighted

Graphs,” in Advances in Knowledge Discovery and Data Mining, vol. 6119, M. J. Zaki, J.

X. Yu, B. Ravindran, and V. Pudi, Eds., in Lecture Notes in Computer Science, vol. 6119.

, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 410–421. doi: 10.1007/978-3-

642-13672-6_40.

[39] A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for Networks,” in

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, San Francisco California USA: ACM, Aug. 2016, pp. 855–

864. doi: 10.1145/2939672.2939754.

[40] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: Large-scale

Information Network Embedding,” in Proceedings of the 24th International Conference

on World Wide Web, Florence Italy: International World Wide Web Conferences Steering

Committee, May 2015, pp. 1067–1077. doi: 10.1145/2736277.2741093.

[41] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, “A survey of deep learning-

based network anomaly detection,” Clust. Comput., vol. 22, no. S1, pp. 949–961, Jan. 2019,

doi: 10.1007/s10586-017-1117-8.

[42] A. Vaswani et al., “Attention Is All You Need.” arXiv, Aug. 01, 2023. Accessed: Apr.

08, 2024. [Online]. Available: http://arxiv.org/abs/1706.03762

[43] A. Kumagai, T. Iwata, and Y. Fujiwara, “Semi-supervised Anomaly Detection on

Attributed Graphs.” arXiv, Feb. 27, 2020. Accessed: May 13, 2024. [Online]. Available:

http://arxiv.org/abs/2002.12011

[44] Y. Pei, T. Huang, W. Van Ipenburg, and M. Pechenizkiy, “ResGCN: attention-based

deep residual modeling for anomaly detection on attributed networks,” Mach. Learn., vol.

111, no. 2, pp. 519–541, Feb. 2022, doi: 10.1007/s10994-021-06044-0.

 References

68

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition.”

arXiv, Dec. 10, 2015. Accessed: May 13, 2024. [Online]. Available:

http://arxiv.org/abs/1512.03385

[46] Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, “Anomaly Detection on

Attributed Networks via Contrastive Self-Supervised Learning,” IEEE Trans. Neural

Netw. Learn. Syst., vol. 33, no. 6, pp. 2378–2392, Jun. 2022, doi:

10.1109/TNNLS.2021.3068344.

[47] “CoLA - PyGOD 1.1.0 documentation.” Accessed: May 13, 2024. [Online]. Available:

https://docs.pygod.org/en/latest/generated/pygod.detector.CoLA.html

[48] Z. Peng, M. Luo, J. Li, L. Xue, and Q. Zheng, “A Deep Multi-View Framework for

Anomaly Detection on Attributed Networks,” IEEE Trans. Knowl. Data Eng., pp. 1–1,

2020, doi: 10.1109/TKDE.2020.3015098.

[49] H. Fan, F. Zhang, and Z. Li, “AnomalyDAE: Dual autoencoder for anomaly detection

on attributed networks.” arXiv, Feb. 12, 2020. Accessed: May 06, 2024. [Online].

Available: http://arxiv.org/abs/2002.03665

[50] Z. Chen, B. Liu, M. Wang, P. Dai, J. Lv, and L. Bo, “Generative Adversarial Attributed

Network Anomaly Detection,” in Proceedings of the 29th ACM International Conference

on Information & Knowledge Management, Virtual Event Ireland: ACM, Oct. 2020, pp.

1989–1992. doi: 10.1145/3340531.3412070.

[51] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath,

“Generative Adversarial Networks: An Overview,” IEEE Signal Process. Mag., vol. 35,

no. 1, pp. 53–65, Jan. 2018, doi: 10.1109/MSP.2017.2765202.

[52] “DOMINANT - PyGOD 1.1.0 documentation.” Accessed: May 13, 2024. [Online].

Available:

https://docs.pygod.org/en/latest/generated/pygod.detector.DOMINANT.html#pygod.dete

ctor.DOMINANT

[53] “pygod.detector - PyGOD 1.1.0 documentation.” Accessed: May 13, 2024. [Online].

Available: https://docs.pygod.org/en/latest/pygod.detector.html

[54] “AnomalyDAE - PyGOD 1.1.0 documentation.” Accessed: May 13, 2024. [Online].

Available: https://docs.pygod.org/en/latest/generated/pygod.detector.AnomalyDAE.html

[55] “GAAN - PyGOD 1.1.0 documentation.” Accessed: May 13, 2024. [Online]. Available:

https://docs.pygod.org/en/latest/generated/pygod.detector.GAAN.html

[56] Understanding Graph Neural Networks | Part 1/3 - Introduction, (Sep. 20, 2020).

Accessed: May 13, 2024. [Online Video]. Available:

https://www.youtube.com/watch?v=fOctJB4kVlM

[57] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information

Processing Systems, Curran Associates, Inc., 2017. Accessed: May 14, 2024. [Online].

Available:

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-

Abstract.html

[58] K. Ding, J. Li, R. Bhanushali, and H. Liu, ‘‘Deep anomaly detection on attributed

 networks,’’ in Proc. SIAM Int. Conf. Data Mining (SDM), May 2019, pp. 594–602.

 Appendices

69

Appendices

Appendix A Task description

 Appendices

70

 Appendices

71

Appendix B Code for Importing datasets and graph visualization for datasets

#importing libraries

import torch

import torch_geometric

from torch_geometric.datasets import Planetoid

from torch_geometric.transforms import NormalizeFeatures

import torch.nn.functional as F

import torch_geometric.utils as tg_utils

from matplotlib import pyplot as plt

import networkx as nx

import numpy as np

import random

from matplotlib import pyplot as plt

from pygod.detector import DOMINANT, AnomalyDAE, CoLA, GAAN

#Cora Dataset

data_cora = Planetoid(root='GNN', name='Cora', transform=NormalizeFeatures())[0]

#CiteSeer Dataset

data_citeseer = Planetoid(root='GNN', name='CiteSeer', transform=NormalizeFeatures())[0]

Print basic information about the cora dataset

print(f'Number of nodes: {data_cora.num_nodes}')

print(f'Number of edges: {data_cora.num_edges}') # Edges are undirected, so each edge is

counted twice

print(f'Number of features per node: {data_cora.num_node_features}')

print(f'Number of classes (labels): {data_cora.num_classes}')

Print basic information about the citeseer dataset

print(f'Number of nodes: {data_ citeseer.num_nodes}')

 Appendices

72

print(f'Number of edges: {data_ citeseer.num_edges}') # Edges are undirected, so each edge

is counted twice

print(f'Number of features per node: {data_ citeseer.num_node_features}')

print(f'Number of classes (labels): {data_ citeseer.num_classes}')

Convert the graph data to a NetworkX graph for visualization of cora dataset

graph = torch_geometric.utils.to_networkx(data_cora, to_undirected=True)

Draw the graph

data = data _cora

Define a list of colors (one for each class)

colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2']

Visualize the graph using NetworkX and matplotlib

plt.figure(figsize=(12, 12))

pos is the layout (positioning) of the nodes

pos = nx.spring_layout(graph, seed=42)

Draw nodes with different colors based on their class labels

for label in range(7):

 # Get nodes with the current class label

 nodes = [i for i in range(data.num_nodes) if data.y[i] == label]

 nx.draw_networkx_nodes(

 graph,

 pos,

 nodelist=nodes,

 node_size=20,

 node_color=colors[label],

 label=str(label)

)

Draw edges with low opacity

nx.draw_networkx_edges(graph, pos, alpha=0.2)

Add a legend for the class labels

plt.legend(scatterpoints=1, markerscale=2, loc='upper right')

Remove axis labels

 Appendices

73

plt.axis('off')

Add a title that shows the number of nodes and edges

plt.title(f'Cora Dataset Graph\nNodes: {data.num_nodes}, Edges: {data.num_edges}')

Show the graph

plt.show()

Convert the graph data to a NetworkX graph for visualization of citeseer dataset

graph = torch_geometric.utils.to_networkx(data_citeseer, to_undirected=True)

data = citeseer_data

Define a list of colors (one for each class)

colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b'] #, '#e377c2']

Visualize the graph using NetworkX and matplotlib

plt.figure(figsize=(12, 12))

Initialize an empty list to store valid nodes

valid_nodes = []

Iterate over each class label

for label in range(6):

 # Get nodes with the current class label

 nodes = [i for i in range(data.num_nodes) if data.y[i] == label]

 valid_nodes += nodes

Create a new list to store nodes with valid positions

valid_nodes_with_positions = []

Iterate over each node and check if it has a position

for node in valid_nodes:

 try:

 # Get the position of the node

 position = pos[node]

 valid_nodes_with_positions.append(node)

 except KeyError:

 # If the node has no position, skip it

 pass

pos is the layout (positioning) of the nodes

pos = nx.spring_layout(graph, seed=42)

 Appendices

74

Draw nodes with different colors based on their class labels

for label in range(6):

 # Get nodes with the current class label

 #nodes = [i for i in range(data.num_nodes) if data.y[i] == label]

 nodes = [node for node in valid_nodes_with_positions if data.y[node] == label]

 nx.draw_networkx_nodes(

 graph,

 pos,

 nodelist=nodes,

 node_size=20,

 node_color=colors[label],

 label=str(label)

)

Draw edges with low opacity

nx.draw_networkx_edges(graph, pos, alpha=0.2)

Add a legend for the class labels

plt.legend(scatterpoints=1, markerscale=2, loc='upper right')

Remove axis labels

plt.axis('off')

Add a title that shows the number of nodes and edges

plt.title(f'CiteSeer Dataset Graph\nNodes: {data.num_nodes}, Edges: {data.num_edges}')

Show the graph

plt.show()

 Appendices

75

Appendix C Outlier injection in datasets

def inject_outliers(graph, node_outliers, edge_outliers):

 #Define number of soft and hard contextual outliers

 num_soft_outliers = 25

 num_hard_outliers = node_outliers - num_soft_outliers

 # Set to track contextual outliers (node-level)

 contextual_outliers = set()

 soft_contextual_outliers = set()

 hard_contextual_outliers = set()

 #define feature range

 feature_range=(0, 0.5)

 # Inject soft contextual outliers

 for _ in range(num_soft_outliers):

 # Randomly select a node to modify

 node = random.choice(range(graph.num_nodes))

 # Randomly select 50% of the features to flip

 num_features_to_modify = 100

 features_to_modify = random.sample(range(graph.num_node_features),

num_features_to_modify)

 # Modify the selected features

 for feature in features_to_modify:

 graph.x[node][feature] = random.uniform(feature_range[0], feature_range[1])

 # Add the node to the set of soft contextual outliers

 soft_contextual_outliers.add(node)

 # Add the node to the set of contextual outliers

 contextual_outliers.add(node)

 # Inject hard contextual outliers

 Appendices

76

 for _ in range(num_hard_outliers):

 # Randomly select a node to modify

 node = random.choice(range(graph.num_nodes))

 # Modify all features of the selected node with random values from range (0, 0.5)

 graph.x[node] = torch.tensor([random.uniform(feature_range[0], feature_range[1]) for _

in range(graph.num_node_features)])

 # Add the node to the set of hard contextual outliers

 hard_contextual_outliers.add(node)

 contextual_outliers.add(node)

 # Set to track structural outliers (edge-level)

 structural_outliers = set()

 # Convert the graph to a NetworkX graph

 nx_graph = tg_utils.to_networkx(graph, to_undirected=True)

 # Inject outliers by modifying edges

 outlier_edges = []

 for _ in range(edge_outliers):

 # Choose two random nodes to form an edge

 node1, node2 = random.sample(range(graph.num_nodes), 2)

 # Check if an edge already exists between the two nodes

 exists = nx_graph.has_edge(node1, node2)

 if exists:

 # If the edge exists, remove it to create an outlier

 graph.edge_index, _ = tg_utils.remove_edge(graph.edge_index, node1, node2)

 outlier_edges.append((node1, node2, 'removed'))

 else:

 Appendices

77

 # If the edge does not exist, add it to create an outlier

 # Add a new edge by concatenating to the existing edge_index

 new_edge = torch.tensor([[node1], [node2]])

 graph.edge_index = torch.cat([graph.edge_index, new_edge], dim=1)

 outlier_edges.append((node1, node2, 'added'))

 # Add both nodes involved in the edge modification to the set of structural outliers

 structural_outliers.add(node1)

 structural_outliers.add(node2)

 # Combine contextual and structural outliers to create total outliers

 total_outliers = contextual_outliers.union(structural_outliers)

 return graph, soft_contextual_outliers, hard_contextual_outliers, contextual_outliers,

structural_outliers, total_outliers

Inject outliers into the dataset

num_outliers = 50

edge_outliers = 40

data, sco, hco, co, so, outlier_indices = inject_outliers(data, num_outliers, edge_outliers)

Print the indices of the injected outlier nodes

print(f"Injected contextual outlier nodes: {sorted(list(co))}")

print(f"Injected structural outlier nodes: {sorted(list(so))}")

print(f"Injected total outlier nodes: {sorted(list(outlier_indices))}")

print(f"Total number of injected outliers : {len(outlier_indices)}")

print(f"Total number of contextual outliers : {len(co)}")

print(f"Total number of structural outliers : {len(so)}")

Convert lists to sets

set_co = set(co)

set_so = set(so)

 Appendices

78

Find the common elements using intersection

common_elements = set_co & set_so

Convert the set of common elements back to a list

common_elements_list = list(common_elements)

Print the common elements

print("Total Common contextual and structural outliers:", len(common_elements_list))

print("List of Common contextual and structural outliers:", common_elements_list)

def visualize_graph(graph, contextual_outliers, structural_outliers):

 # Convert the PyTorch Geometric graph to a NetworkX graph for visualization

 nx_graph = tg_utils.to_networkx(graph, to_undirected=True)

 # Calculate inliers (nodes not in contextual or structural outliers)

 inliers = set(nx_graph.nodes()) - (contextual_outliers | structural_outliers)

 # Calculate nodes that are both contextual and structural outliers

 both_outliers = contextual_outliers & structural_outliers

 # Define colors for each type of node

 color_mapping = {

 'inliers': 'green',

 'contextual_outliers': 'red',

 'structural_outliers': 'blue',

 'both_outliers': 'yellow' # Both contextual and structural outliers

 }

 # Define node colors based on the category

 node_colors = []

 for node in nx_graph.nodes():

 if node in both_outliers:

 Appendices

79

 node_colors.append(color_mapping['both_outliers'])

 elif node in contextual_outliers:

 node_colors.append(color_mapping['contextual_outliers'])

 elif node in structural_outliers:

 node_colors.append(color_mapping['structural_outliers'])

 else:

 node_colors.append(color_mapping['inliers'])

 # Visualize the graph using NetworkX and matplotlib

 plt.figure(figsize=(10, 10))

 # Define a layout for the graph visualization

 pos = nx.spring_layout(nx_graph, seed=42)

 # Draw the graph

 nx.draw(nx_graph, pos, node_size=30, node_color=node_colors, with_labels=False,

alpha=0.7)

 # Create a legend

 labels = {

 color_mapping['inliers']: 'Inliers',

 color_mapping['contextual_outliers']: 'Contextual Outliers',

 color_mapping['structural_outliers']: 'Structural Outliers',

 color_mapping['both_outliers']: 'Both Contextual & Structural Outliers'

 }

 handles = [plt.Line2D([0], [0], marker='o', color='w', label=label, markersize=10,

markerfacecolor=color) for color, label in labels.items()]

 plt.legend(handles=handles, loc='upper right', title='Node Types')

 # Remove axis labels and title

 plt.axis('off')

 # Show the graph

 plt.title('CiteSeer dataset with outliers injected')

 Appendices

80

 plt.show()

Visualize the graph with inliers, contextual outliers, structural outliers, and both outliers

visualize_graph(data_cora, co, so)

visualize_graph(data_citeseer, co, so)

 Appendices

81

Appendix D Code of DOMINANT Model for outlier detection

#model definition

model = DOMINANT(lr=0.04,hid_dim=128,dropout=0.2,num_layers=4,theta =1.0,

batch_size=data.num_node_features, backbone =GCN, num_layers =4, contamination=0.1,

weight = 0.5, act = ReLU)

#model train

model.fit(data)

Get the decision scores and identify outlier nodes

outlier_scores = model_.decision_score_

Sort the outlier scores in descending order

sorted_indices = torch.argsort(outlier_scores, descending=True)

Select the top 50 outliers based on their scores

pred_outlier_indices = sorted_indices[:50].tolist()

print('Number of outlier predicted', len(pred_outlier_indices))

Get the outlier scores of the top 50 outliers

pred_outlier_scores = outlier_scores[pred_outlier_indices].tolist()

Print the indices and scores of the top 50 outliers

print("Top 50 outlier indices:", sorted(pred_outlier_indices))

print("Top 50 outlier scores:", pred_outlier_scores)

Filter out the labels corresponding to the outlier indices

pred_outlier_labels = [labels[i] for i in pred_outlier_indices]

print("Labels of top 50 predicted outliers:", pred_outlier_labels)

Convert lists to sets

real_outliers_set = set(outlier_indices)

detected_outliers_set = set(pred_outlier_indices)

Find the intersection of the two sets (common outliers)

common_outliers = real_outliers_set & detected_outliers_set

 Appendices

82

Print the common outliers

print(f"Common outliers between real and detected outliers: {sorted(common_outliers)}")

print('total nummber of common outliers :',len(common_outliers))

Find the intersection of the two sets (contextual outliers)

common_sco = sco & detected_outliers_set

Print the common outliers

print(f"soft contextual outliers detected: {sorted(common_sco)}")

print('total nummber of soft contextual outliers :',len(common_sco))

Find the intersection of the two sets (contextual outliers)

common_hco = hco & detected_outliers_set

Print the common outliers

print(f"hard contextual outliers detected: {sorted(common_hco)}")

print('total nummber of hard contextual outliers :',len(common_hco))

Convert PyTorch Geometric data to a NetworkX graph

nx_graph = tg_utils.to_networkx(data, to_undirected=True)

Set up the plot

plt.figure(figsize=(12,12))

Define positions for the nodes using a layout

pos = nx.spring_layout(nx_graph)

Define colors for different types of nodes

Normal nodes

normal_color = 'green'

Detected outliers (nodes detected as outliers by the model)

detected_outlier_color = 'red'

 Appendices

83

False positives (nodes detected as outliers by the model but not real outliers)

false_positive_color = 'yellow'

Real outliers (nodes injected as outliers)

undetected_outlier_color = 'blue'

Draw normal nodes

normal_nodes = [node for node in nx_graph.nodes if node not in co and node not in so]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=normal_nodes, node_color=normal_color,

node_size=30, alpha=0.7)

Draw true positive (true outliers predicted both contextual and structural outliers)

real_outliers_predicted = sorted(list(common_hco)) + sorted(list(common_sco))

#real_outliers_predicted = [node for node in nx_graph.nodes if node in common_hco or node

in common_sco]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=real_outliers_predicted,

node_color=detected_outlier_color, node_size=30, alpha=0.7)

Draw contextual outliers not detected

undetected_contextual_outliers = [node for node in nx_graph.nodes if node in co and node not

in real_outliers_predicted]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=pred_outlier_indices,

node_color=undetected_outlier_color, node_size=30, alpha=0.7)

Calculate false positives (nodes detected as outliers but not real outliers)

false_positives = [node for node in nx_graph.nodes if node in pred_outlier_indices and node

not in real_outliers_predicted]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=false_positives,

node_color=false_positive_color, node_size=30, alpha=0.7)

Draw edges

nx.draw_networkx_edges(nx_graph, pos)

Create a custom legend

legend_labels = {

 Appendices

84

 f'Inliers ({len(normal_nodes)})': normal_color,

 #f'Outliers not Detected ({len(undetected_contextual_outliers)})': detected_outlier_color,

 f'True Predicted Outliers ({len(real_outliers_predicted)})': undetected_outlier_color,

 f'False Predicted Outliers ({len(false_positives)})': false_positive_color

}

handles = [plt.Line2D([0], [0], marker='o', color='w', label=label, markersize=10,

markerfacecolor=color)

 for label, color in legend_labels.items()]

plt.legend(handles=handles, loc='upper right', title='Node Types')

Remove axis labels and title

plt.axis('off')

plt.show()

from sklearn.metrics import roc_curve, auc

pred_oulier_label_np = np.array(pred_outlier_labels) # True labels (0: normal, 1: outlier)

dominant_scores = np.array(pred_outlier_scores)

Calculate ROC curve and AUC for each model

dominant_fpr, dominant_tpr, _ = roc_curve(pred_oulier_label_np, dominant_scores)

dominant_auc = auc(dominant_fpr, dominant_tpr)

Plot ROC curve

plt.figure(figsize=(8, 6))

plt.plot(dominant_fpr, dominant_tpr, color='green', lw=2, label=f'DOMINANT (AUC =

{dominant_auc:.2f})')

plt.plot([0, 1], [0, 1], color='gray', linestyle='--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

 Appendices

85

plt.title('ROC Curve for model_DOMINANT')

plt.legend(loc="lower right")

plt.grid(True)

plt.show()

 Appendices

86

Appendix E Code of AnomalyDAE Model for outlier detection

#model defintion

#model train

model = AnomalyDAE(lr=0.01,hid_dim=128,dropout=0.2, batch_size =

data.num_node_features, backbone =GAT, num_layers =4, contamination=0.1, weight = 0.5,

act = ReLU)

model.fit(data)

Get the decision scores and identify outlier nodes

outlier_scores = model_.decision_score_

Sort the outlier scores in descending order

sorted_indices = torch.argsort(outlier_scores, descending=True)

Select the top 50 outliers based on their scores

pred_outlier_indices = sorted_indices[:50].tolist()

print('Number of outlier predicted', len(pred_outlier_indices))

Get the outlier scores of the top 50 outliers

pred_outlier_scores = outlier_scores[pred_outlier_indices].tolist()

Print the indices and scores of the top 50 outliers

print("Top 50 outlier indices:", sorted(pred_outlier_indices))

print("Top 50 outlier scores:", pred_outlier_scores)

Filter out the labels corresponding to the outlier indices

pred_outlier_labels = [labels[i] for i in pred_outlier_indices]

print("Labels of top 50 predicted outliers:", pred_outlier_labels)

Convert lists to sets

real_outliers_set = set(outlier_indices)

detected_outliers_set = set(pred_outlier_indices)

Find the intersection of the two sets (common outliers)

 Appendices

87

common_outliers = real_outliers_set & detected_outliers_set

Print the common outliers

print(f"Common outliers between real and detected outliers: {sorted(common_outliers)}")

print('total nummber of common outliers :',len(common_outliers))

Find the intersection of the two sets (contextual outliers)

common_sco = sco & detected_outliers_set

Print the common outliers

print(f"soft contextual outliers detected: {sorted(common_sco)}")

print('total number of soft contextual outliers :',len(common_sco))

Find the intersection of the two sets (contextual outliers)

common_hco = hco & detected_outliers_set

Print the common outliers

print(f"hard contextual outliers detected: {sorted(common_hco)}")

print('total nummber of hard contextual outliers :',len(common_hco))

Convert PyTorch Geometric data to a NetworkX graph

nx_graph = tg_utils.to_networkx(data, to_undirected=True)

Set up the plot

plt.figure(figsize=(12,12))

Define positions for the nodes using a layout

pos = nx.spring_layout(nx_graph)

Define colors for different types of nodes

Normal nodes

normal_color = 'green'

Detected outliers (nodes detected as outliers by the model)

 Appendices

88

detected_outlier_color = 'red'

False positives (nodes detected as outliers by the model but not real outliers)

false_positive_color = 'yellow'

Real outliers (nodes injected as outliers)

undetected_outlier_color = 'blue'

Draw normal nodes

normal_nodes = [node for node in nx_graph.nodes if node not in co and node not in so]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=normal_nodes, node_color=normal_color,

node_size=30, alpha=0.7)

Draw true positive (true outliers predicted both contextual and structural outliers)

real_outliers_predicted = sorted(list(common_hco)) + sorted(list(common_sco))

#real_outliers_predicted = [node for node in nx_graph.nodes if node in common_hco or node

in common_sco]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=real_outliers_predicted,

node_color=detected_outlier_color, node_size=30, alpha=0.7)

Draw contextual outliers not detected

undetected_contextual_outliers = [node for node in nx_graph.nodes if node in co and node not

in real_outliers_predicted]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=pred_outlier_indices,

node_color=undetected_outlier_color, node_size=30, alpha=0.7)

Calculate false positives (nodes detected as outliers but not real outliers)

false_positives = [node for node in nx_graph.nodes if node in pred_outlier_indices and node

not in real_outliers_predicted]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=false_positives,

node_color=false_positive_color, node_size=30, alpha=0.7)

Draw edges

nx.draw_networkx_edges(nx_graph, pos)

Create a custom legend

 Appendices

89

legend_labels = {

 f'Inliers ({len(normal_nodes)})': normal_color,

 #f'Outliers not Detected ({len(undetected_contextual_outliers)})': detected_outlier_color,

 f'True Predicted Outliers ({len(real_outliers_predicted)})': undetected_outlier_color,

 f'False Predicted Outliers ({len(false_positives)})': false_positive_color

}

handles = [plt.Line2D([0], [0], marker='o', color='w', label=label, markersize=10,

markerfacecolor=color)

 for label, color in legend_labels.items()]

plt.legend(handles=handles, loc='upper right', title='Node Types')

Remove axis labels and title

plt.axis('off')

plt.show()

from sklearn.metrics import roc_curve, auc

pred_oulier_label_np = np.array(pred_outlier_labels) # True labels (0: normal, 1: outlier)

anomalydae_scores = np.array(pred_outlier_scores)

Calculate ROC curve and AUC for each model

anomalydae_fpr, anomalydae_tpr, _ = roc_curve(pred_oulier_label_np, anomalydae_scores)

anomalydae_auc = auc(anomalydae_fpr, anomalydae_tpr)

Plot ROC curve

plt.figure(figsize=(8, 6))

plt.plot(anomaly_dae_fpr, anomaly_dae_tpr, color='red', lw=2, label=f'AnomalyDAE (AUC =

{anomaly_dae_auc:.2f})')

plt.plot([0, 1], [0, 1], color='gray', linestyle='--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

 Appendices

90

plt.title('ROC Curve for model_AnomalyDAE')

plt.legend(loc="lower right")

plt.grid(True)

plt.show()

 Appendices

91

Appendix F Code of CoLA Model for outlier detection

#model defintion

#model train

model = CoLA(lr=0.04,hid_dim=128,dropout=0.2, batch_size=data.num_node_features,

backbone =GCN, num_layers =4, contamination=0.1, weight = 0.5, act = ReLU)

model.fit(data)

Get the decision scores and identify outlier nodes

outlier_scores = model_.decision_score_

Sort the outlier scores in descending order

sorted_indices = torch.argsort(outlier_scores, descending=True)

Select the top 50 outliers based on their scores

pred_outlier_indices = sorted_indices[:50].tolist()

print('Number of outlier predicted', len(pred_outlier_indices))

Get the outlier scores of the top 50 outliers

pred_outlier_scores = outlier_scores[pred_outlier_indices].tolist()

Print the indices and scores of the top 50 outliers

print("Top 50 outlier indices:", sorted(pred_outlier_indices))

print("Top 50 outlier scores:", pred_outlier_scores)

Filter out the labels corresponding to the outlier indices

pred_outlier_labels = [labels[i] for i in pred_outlier_indices]

print("Labels of top 50 predicted outliers:", pred_outlier_labels)

Convert lists to sets

real_outliers_set = set(outlier_indices)

detected_outliers_set = set(pred_outlier_indices)

Find the intersection of the two sets (common outliers)

common_outliers = real_outliers_set & detected_outliers_set

 Appendices

92

Print the common outliers

print(f"Common outliers between real and detected outliers: {sorted(common_outliers)}")

print('total nummber of common outliers :',len(common_outliers))

Find the intersection of the two sets (contextual outliers)

common_sco = sco & detected_outliers_set

Print the common outliers

print(f"soft contextual outliers detected: {sorted(common_sco)}")

print('total nummber of soft contextual outliers :',len(common_sco))

Find the intersection of the two sets (contextual outliers)

common_hco = hco & detected_outliers_set

Print the common outliers

print(f"hard contextual outliers detected: {sorted(common_hco)}")

print('total nummber of hard contextual outliers :',len(common_hco))

Convert PyTorch Geometric data to a NetworkX graph

nx_graph = tg_utils.to_networkx(data, to_undirected=True)

Set up the plot

plt.figure(figsize=(12,12))

Define positions for the nodes using a layout

pos = nx.spring_layout(nx_graph)

Define colors for different types of nodes

Normal nodes

normal_color = 'green'

Detected outliers (nodes detected as outliers by the model)

detected_outlier_color = 'red'

 Appendices

93

False positives (nodes detected as outliers by the model but not real outliers)

false_positive_color = 'yellow'

Real outliers (nodes injected as outliers)

undetected_outlier_color = 'blue'

Draw normal nodes

normal_nodes = [node for node in nx_graph.nodes if node not in co and node not in so]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=normal_nodes, node_color=normal_color,

node_size=30, alpha=0.7)

Draw true positive (true outliers predicted both contextual and structural outliers)

real_outliers_predicted = sorted(list(common_hco)) + sorted(list(common_sco))

#real_outliers_predicted = [node for node in nx_graph.nodes if node in common_hco or node

in common_sco]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=real_outliers_predicted,

node_color=detected_outlier_color, node_size=30, alpha=0.7)

Draw contextual outliers not detected

undetected_contextual_outliers = [node for node in nx_graph.nodes if node in co and node not

in real_outliers_predicted]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=pred_outlier_indices,

node_color=undetected_outlier_color, node_size=30, alpha=0.7)

Calculate false positives (nodes detected as outliers but not real outliers)

false_positives = [node for node in nx_graph.nodes if node in pred_outlier_indices and node

not in real_outliers_predicted]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=false_positives,

node_color=false_positive_color, node_size=30, alpha=0.7)

Draw edges

nx.draw_networkx_edges(nx_graph, pos)

Create a custom legend

legend_labels = {

 Appendices

94

 f'Inliers ({len(normal_nodes)})': normal_color,

 #f'Outliers not Detected ({len(undetected_contextual_outliers)})': detected_outlier_color,

 f'True Predicted Outliers ({len(real_outliers_predicted)})': undetected_outlier_color,

 f'False Predicted Outliers ({len(false_positives)})': false_positive_color

}

handles = [plt.Line2D([0], [0], marker='o', color='w', label=label, markersize=10,

markerfacecolor=color)

 for label, color in legend_labels.items()]

plt.legend(handles=handles, loc='upper right', title='Node Types')

Remove axis labels and title

plt.axis('off')

plt.show()

from sklearn.metrics import roc_curve, auc

pred_oulier_label_np = np.array(pred_outlier_labels) # True labels (0: normal, 1: outlier)

cola_scores = np.array(pred_outlier_scores)

Calculate ROC curve and AUC for each model

cola_fpr, cola_tpr, _ = roc_curve(pred_oulier_label_np, cola_scores)

cola_auc = auc(cola_fpr, cola_tpr)

Plot ROC curve

plt.figure(figsize=(8, 6))

plt.plot(cola_fpr, cola_tpr, color='green', lw=2, label=f'CoLA (AUC = {cola_auc:.2f})')

plt.plot([0, 1], [0, 1], color='gray', linestyle='--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC Curve for model_CoLA')

 Appendices

95

plt.legend(loc="lower right")

plt.grid(True)

plt.show()

 Appendices

96

Appendix G Code of GAAN Model for outlier detection

#model defintion

#model train

model_GAAN = GAAN(lr=0.04,hid_dim=128,dropout=0.2, batch_size=1024, backbone

=GIN, num_layers =4, contamination=0.1, weight = 0.5, act = ReLU)

model.fit(data)

Get the decision scores and identify outlier nodes

outlier_scores = model_.decision_score_

Sort the outlier scores in descending order

sorted_indices = torch.argsort(outlier_scores, descending=True)

Select the top 50 outliers based on their scores

pred_outlier_indices = sorted_indices[:50].tolist()

print('Number of outlier predicted', len(pred_outlier_indices))

Get the outlier scores of the top 50 outliers

pred_outlier_scores = outlier_scores[pred_outlier_indices].tolist()

Print the indices and scores of the top 50 outliers

print("Top 50 outlier indices:", sorted(pred_outlier_indices))

print("Top 50 outlier scores:", pred_outlier_scores)

Filter out the labels corresponding to the outlier indices

pred_outlier_labels = [labels[i] for i in pred_outlier_indices]

print("Labels of top 50 predicted outliers:", pred_outlier_labels)

Convert lists to sets

real_outliers_set = set(outlier_indices)

detected_outliers_set = set(pred_outlier_indices)

Find the intersection of the two sets (common outliers)

common_outliers = real_outliers_set & detected_outliers_set

 Appendices

97

Print the common outliers

print(f"Common outliers between real and detected outliers: {sorted(common_outliers)}")

print('total nummber of common outliers :',len(common_outliers))

Find the intersection of the two sets (contextual outliers)

common_sco = sco & detected_outliers_set

Print the common outliers

print(f"soft contextual outliers detected: {sorted(common_sco)}")

print('total nummber of soft contextual outliers :',len(common_sco))

Find the intersection of the two sets (contextual outliers)

common_hco = hco & detected_outliers_set

Print the common outliers

print(f"hard contextual outliers detected: {sorted(common_hco)}")

print('total nummber of hard contextual outliers :',len(common_hco))

Convert PyTorch Geometric data to a NetworkX graph

nx_graph = tg_utils.to_networkx(data, to_undirected=True)

Set up the plot

plt.figure(figsize=(12,12))

Define positions for the nodes using a layout

pos = nx.spring_layout(nx_graph)

Define colors for different types of nodes

Normal nodes

normal_color = 'green'

Detected outliers (nodes detected as outliers by the model)

detected_outlier_color = 'red'

 Appendices

98

False positives (nodes detected as outliers by the model but not real outliers)

false_positive_color = 'yellow'

Real outliers (nodes injected as outliers)

undetected_outlier_color = 'blue'

Draw normal nodes

normal_nodes = [node for node in nx_graph.nodes if node not in co and node not in so]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=normal_nodes, node_color=normal_color,

node_size=30, alpha=0.7)

Draw true positive (true outliers predicted both contextual and structural outliers)

real_outliers_predicted = sorted(list(common_hco)) + sorted(list(common_sco))

#real_outliers_predicted = [node for node in nx_graph.nodes if node in common_hco or node

in common_sco]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=real_outliers_predicted,

node_color=detected_outlier_color, node_size=30, alpha=0.7)

Draw contextual outliers not detected

undetected_contextual_outliers = [node for node in nx_graph.nodes if node in co and node not

in real_outliers_predicted]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=pred_outlier_indices,

node_color=undetected_outlier_color, node_size=30, alpha=0.7)

Calculate false positives (nodes detected as outliers but not real outliers)

false_positives = [node for node in nx_graph.nodes if node in pred_outlier_indices and node

not in real_outliers_predicted]

nx.draw_networkx_nodes(nx_graph, pos, nodelist=false_positives,

node_color=false_positive_color, node_size=30, alpha=0.7)

Draw edges

nx.draw_networkx_edges(nx_graph, pos)

Create a custom legend

legend_labels = {

 f'Inliers ({len(normal_nodes)})': normal_color,

 Appendices

99

 #f'Outliers not Detected ({len(undetected_contextual_outliers)})': detected_outlier_color,

 f'True Predicted Outliers ({len(real_outliers_predicted)})': undetected_outlier_color,

 f'False Predicted Outliers ({len(false_positives)})': false_positive_color

}

handles = [plt.Line2D([0], [0], marker='o', color='w', label=label, markersize=10,

markerfacecolor=color)

 for label, color in legend_labels.items()]

plt.legend(handles=handles, loc='upper right', title='Node Types')

Remove axis labels and title

plt.axis('off')

plt.show()

from sklearn.metrics import roc_curve, auc

pred_oulier_label_np = np.array(pred_outlier_labels) # True labels (0: normal, 1: outlier)

gaan_scores = np.array(pred_outlier_scores)

Calculate ROC curve and AUC for each model

gaan_fpr, gaan_tpr, _ = roc_curve(pred_oulier_label_np, gaan_scores)

gaan_auc = auc(gaan_fpr, gaan_tpr)

Plot ROC curve

plt.figure(figsize=(8, 6))

plt.plot(gaan_fpr, gaan_tpr, color='purple', lw=2, label=f'GAAN (AUC = {gaan_auc:.2f})')

plt.plot([0, 1], [0, 1], color='gray', linestyle='--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC Curve for model_GAAN')

plt.legend(loc="lower right")

 Appendices

100

plt.grid(True)

plt.show()

