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Summary: 

The thesis extensively explored state-of-the-art Graph Neural Networks (GNNs) for node-

level outlier detection within graph data. A comprehensive review of various GNN 

architectures and outlier detection algorithms was conducted. Using PyTorch and the 

PyGOD library, the performance of four  node-level outlier detection algorithms, 

DOMINANT, AnomalyDAE, CoLA, and GAAN was evaluated on the Cora and CiteSeer 

datasets, which were manually injected with 50 node-level outliers. 

The models were assessed based on their AUC scores derived from ROC curves. 

AnomalyDAE and DOMINANT exhibited the highest performance, achieving AUC 

scores of ~0.81 and ~0.83 for the Cora dataset, and ~0.80 and ~0.83 for the CiteSeer 

dataset, respectively. CoLA followed closely with AUC scores of ~0.78 for Cora and 

~0.80 for CiteSeer while GAAN demonstrated comparatively lower performance, with 

AUC scores of ~0.74 for Cora and ~0.78 for CiteSeer. Detection in node-level outliers 

where only 100 features were altered presented challenges across models, with variations 

observed in AUC scores. However, all models identified every node-level outliers where 

every features were altered.  
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1 Introduction 
This chapter presents the background information of graph theory, GNN and outlier detection. 

It includes the objectives of this work, research gap,  motivation, and the structure of the report. 

It sets the stage for the exploration and analysis of GNNs for outlier detection in the subsequent 

chapters. 

1.1 Background 

As the digital connectivity of the world is rapidly growing, so does the complexity of data 

generated across various domains, prompting the need for sophisticated analytical tools and 

mechanisms. In the era of interconnected data, networks have been ubiquitous across various 

aspects, influencing everything from social interactions to financial transactions and beyond. 

The surge in network-based data has naturally led to increased academic and practical interest 

in novel analytical methods that cater to the unique attributes of such data. The prevalence of 

graph-structured data in several essential applications, such as social networks, financial 

systems, molecular science, and sensor arrays, lays the foundation for significant research and 

development efforts in this area. Among the emerging frontiers in this space is GNN, a 

significant extension of deep learning approaches, shaped specifically to navigate and interpret 

the wealth of data inherent in graph structures. The complex network pattern of data can be 

modeled effectively using GNNs, which extend deep learning techniques to graph-based data, 

allowing for the extraction of intricate patterns and features not readily apparent through 

traditional data analysis methods [1], [2]. 

GNNs have proven particularly adept at discovering hidden patterns within network data, 

pertinent not only in understanding complex systems but also in identifying abnormalities that 

deviate from expected behavior—outliers that could signify critical security concerns. GNNs 

are capable of learning rich and transferable representations by aggregating information within 

the graph, thus offering unparalleled insights into the data's underlying structure. Traditional 

methods often treat data points as isolated instances, which limits their effectiveness when the 

data's structure and relationships are essential for analysis. These methods are typically 

designed for scenarios where data points are assumed to be independent and identically 

distributed. GNNs, on the other hand, represent a paradigm shift from these traditional methods 

in several keyways, data structure, aggregation scheme and message passing, relational 

inductive bias, learning from topology to name a few.  

Simultaneously, outlier detection in graph data has emerged as a critical challenge, particularly 

in security-sensitive fields. The ability to identify anomalies in a wide range of disciplines can 

help uncover not limiting to fraudulent transactions, detect network intrusions, reveal social 

network manipulations, toxicity predictions, disease pathway analyses. It is in this context that 

GNNs are being explored as a viable solution for efficient outlier detection, distinguishing 

themselves from other analytical approaches in handling relational data and their adaptability 

to the unique properties of each application domain. The utilization of GNNs for outlier 

detection embraces the essence of both disciplines – the structural intuition provided by graph 

theory and the predictive power of neural networks. This integration is pivotal for enhancing 
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security measures and for fostering trust in the digital infrastructures that increasingly underpin 

our society [3]. 

Therefore, this master thesis seeks to tap into the synergy between GNNs and the pressing 

requirement for robust outlier detection mechanisms within graph-structured data. By 

implementing and examining the latest GNN algorithms, specifically tailored for anomaly 

detection, this research aims to offer a comprehensive overview of the current landscape 

through a methodical evaluation of these algorithms using state-of-the-art libraries such as 

PyTorch [4] and PyGOD [5], and by closely scrutinizing their performance within specific 

application-related datasets. 

1.2 Research gap and motivation 

The rapid evolution of digital connectivity has ushered in an era where vast amounts of 

interconnected data are generated across diverse domains, necessitating sophisticated 

analytical tools to break down its complexities. Within this landscape, GNNs have emerged as 

a promising avenue for analyzing graph-structured data, offering unparalleled capabilities in 

extracting elaborate patterns and features. However, while GNNs have demonstrated 

remarkable prowess in various applications, a critical research gap exists in their application to 

outlier detection within graph data. 

The motivation to bridge this gap reduces from the clustering need for robust anomaly detection 

mechanisms in security-sensitive fields and beyond. Traditional outlier detection methods 

often falter in adequately capturing the relational intricacies inherent in graph data, thereby 

underscoring the relevance of GNNs in this domain. Moreover, as the prevalence of anomalies, 

ranging from fraudulent transactions to network intrusions, continues to pose significant 

threats, harnessing the potential of GNNs for outlier detection becomes imperative. By delving 

into this intersection between GNNs and outlier detection, this research endeavors to not only 

advance the theoretical understanding of GNNs but also to offer practical solutions that bolster 

the security and integrity of digital infrastructures. Through a systematic exploration of state-

of-the-art algorithms, meticulous evaluation using real-world datasets, and the proposal of 

potential enhancements, this thesis aims to contribute to the enhancement of anomaly detection 

capabilities, thereby fostering trust in the digital ecosystem. 

1.3 Objectives  

The objectives of this master thesis are as follows: 

1. Inspect the state-of-the-art of GNNs and understand the different GNN architectures. 

2. Review the state-of-the-art of GNN algorithms for outlier detection. 

3. Implement and study GNN algorithms for outlier detection using PyTorch and the Python 

library for graph outlier detection PyGOD 

4. Evaluate the performance of GNN based algorithms for outlier detection in datasets related 

to a specific application. 

5. Propose improvements of GNN based algorithms for outlier detection. 

6. Prepare a detailed report of the research process, findings, and conclusions, including code 

and data used in the thesis work.  
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The task description of this master thesis is included in Appendix A. 

1.4 Report Structure and Outline 

The report is structured in the following way. 

Chapter 2 presents an overview of graph theory and graph-based data. Here, the state-of-the-

art inspection of GNNs is performed. The architecture of GNN is thoroughly studied along 

with its nuances and variations. This includes a detailed review of the foundational elements 

that constitute GNNs and outlines how various architectures have evolved to address the 

challenges specific to learning from graphs, highlighting key advancements, and identifying 

the architectural traits that have contributed to their successes in outlier detection and other 

graph-based tasks. 

Chapter 3 delves into a systematic review of the state-of-the-art GNN algorithms specifically 

tailored for outlier detection encompassing a thorough analysis of the methodologies and 

frameworks that have been developed and employed in recent studies. 

Chapter 4 focuses on the hands-on implementation and in-depth study of GNN algorithms for 

outlier detection using PyTorch, along with PyGOD.  

Chapter 5 is dedicated to the evaluation of GNN-based algorithms' performance in detecting 

outliers within datasets relevant to a targeted application area. It also synthesizes and reflects 

on the findings gained from implementing and evaluating GNN-based outlier detection 

methods. Key points of discussion include the practicality of GNN models  and their 

performances. 

Chapter 6 delves into identifying and addressing potential shortcomings of current GNN-based 

algorithms in outlier detection. The aim is to propose methodological and technical 

improvements to GNN algorithms. The concluding chapter encapsulates the main contributions 

of the thesis, summarizing the key findings and reinforcing the significance of the research in 

advancing the understanding and application of GNNs for outlier detection. 
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2 An Overview of Graph Theory and GNNs 
This chapter provides a comprehensive overview that is necessary to understand GNNs and 

their application to outlier detection. It begins by introducing graph theory and the elements of 

graph-based data, laying down the definitions, types of graphs, and properties that are 

foundational to subsequent discussions on GNNs. The chapter is divided into three sections. It 

starts with an introduction to graph theory and its associated aspects, and then the introduction 

to GNNs. Finally, the chapter discusses the state-of-the-art GNN architectures including an 

exploration of the most recent and impactful research in the area along with the applications 

and challenges associated with GNNs. 

2.1 Graph Basics 

Perhaps, graphs are everywhere, almost in every fabric of the cosmos. Graphs can be seen as a 

reflection of the intricate tapestry of interconnections that weave together the elements of 

universe. From the neurons in human brain to the social ties that bind us, the stars in the cosmos, 

and the cities on maps, everything is interconnected in a complex network of relations and 

dependencies. These connections pattern the raw fabric of chaos into ordered structures that 

can be analyzed, understood, and optimized. Translating this philosophical contemplation into 

the realm of mathematics, graph theory emerges as the study of these patterns. A graph in this 

context is a collection of points, called vertices or nodes, connected by lines, known as edges. 

This simple construct is deceptively powerful, capable of representing virtually any system 

where a set of discrete entities maintains some form of relationship with one another [2], [6].   

In the language of graph theory, relationships become tangible, quantifiable, and open to 

inspection. Each node can represent an individual entity, and each edge can embody the 

relationship between entities, varying in nature – social, biological, computational, or 

conceptual. By mapping out the connections, graph theory enables to see a clearer picture of 

the underlying structures governing complex systems. In essence, graph theory gives form to 

the abstract concept of interconnectedness, allowing to navigate and make sense of the complex 

networks that define the world. It is a bridge between the philosophical idea of unity and the 

practical need to comprehend and manage the interconnected systems that underlie the essence 

of life and technology.  

A plain graph  can be simply represented mathematically as  = (V, E), where V represents 

the set of vertices or nodes, and E represents the set of edges. Figure 1 shows an overview of a 

typical plain graph. 
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Figure 1: A toy example of plain graph  consisting of four nodes 

(1,2,3 and 4). Here, node 1 and 2 are connected by edge e1, node 2 

and 3 by edge e2, node 3 and 4 by edge e3 and node 4 and 1 by edge 

e4. V = {1,2,3,4} is the set of nodes and E = {e1,e2,e3,e4} is the set 

of edges for a plain graph  

Nodes, also called vertices, represent entitles in the graph, such as people in a social network, 

paper or article in a citation network, cities in a transportation network, etc. Each node can have 

an identifier, and they can also carry attributes such as features or labels, commonly known as 

node features. Nodes are called plain nodes if they do not carry any additional information or 

attributed nodes if they carry additional information or attributes. In figure 1, the nodes, 1,2,3 

and 4 indicate four nodes of a plain graph . 

Edges, on the other hand, represent relationships or connections between nodes. Edges can 

have various properties and types, depending on how they connect the nodes and whether they 

carry additional information. Edges can be undirected or directed based on the direction. An 

undirected edge simply represents a bidirectional relationship between two nodes without any 

inherent direction whereas a directed edge has a specific direction from one node to another 

representing a one-way relationship or flow from a source node to a target node. 

Similarly, edges can also be weighted or unweighted based on the additional information 

carried. A weighted edge carries a numerical weight or value which can represent various 

properties such as distance or cost. Unweighted edge, on the other hand, does not contain any 

such numerical weight or value. Additionally, there are other instances of edges, such as 

multiple edges and self-loops. Two or more edges connecting the same pair of nodes are 

multiple edges and an edge that connects a node to itself is known as self-loops. Figure 2 

illustrates undirected and directed edge and figure 3 illustrates unweighted and weighted edge. 
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Figure 2: A toy example of undirected and directed edge. 

Edge e1 connecting node 1 and 2 is an undirected edge, edge 

e2 connecting node is an undirected edge. In e2, node 4 is a 

source node and node 3 is the destination node. 

 

 

 

Figure 3: A toy example of unweighted and weighted edge. 

Edge e3 connecting nodes 5 and 6 is an unweighted edge, 

edge e4 connecting nodes 7 and 8 with weight 1 is a weighted 

edge. 

 

An attributed graph, consequently, is another form of graph where nodes, edges or both are 

associated with additional features or attributes. Attributed graphs can represent enriched 

networks such as knowledge graphs, road networks, etc. These graphs are generally represented 

as G = (V, E, X), where V represents the set of nodes, E represents the set of edges and X 

represents the feature matrix. Figure 4 is the illustration of attributed graph. In figure 4, the 

transformed node feature vectors x1, x2, x3, and x4 are stacked row wise in the feature matrix 

X of the attributed graph G. 
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Figure 4: A toy example of attributed graph G consisting of 

four nodes 1,2,3,and 4. Here, x1, x2, x3, and x4 are the 

transformed node feature vectors for nodes 1,2,3, and 4 

respectively. 

Based on the dynamism, a graph can be represented as static or dynamic graph. In static graph, 

nodes, edges, and attributes do not change or evolve and remains unchanged over time. 

Dynamic graph, also called spatial-temporal graph, however, is a graph where graph’s structure 

including nodes, edges, or attributes evolve or change over time. A dynamic graph G(t)  can be 

represented mathematically as G(t) = (V(t), E(t), X(t)), where V(t) is the set of nodes at time t, E(t) 

is the set of edges at time t and X(t) is feature matrix at time t. 

2.1.1 Graph Connectivity and Representation 

There are several important parameters used for graph connectivity and representation. Some 

of them are discussed below [1]. 

Adjacency Matrix (A): An adjacency matrix A is a common mathematical representation of 

a graph's structure, describing which nodes are connected to each other. It is basically a matrix 

representation of the graph and is a square matrix of size |𝑉| x |𝑉|, where  |𝑉|  is the number 

of nodes in the graph. Each element A𝑢𝑣 in the matrix represents the connection between nodes 

𝑢 and 𝑣. In weighted graphs, the matrix includes the weight of the connections; in unweighted 

graphs, it is a binary matrix meaning if there is an edge from node 𝑢 to 𝑣 then A𝑢𝑣 = 1; 

otherwise, A𝑢𝑣 = 0. For undirected graphs, A is symmetric, meaning A𝑢𝑣 =A𝑣𝑢. Figure 5 shows 

the adjacency matrix A for a graph G. Figure 5 has an attributed graph G with four nodes. A is 

the corresponding adjacency matrix of graph G, a symmetric matrix, where each element 

corresponds to the edge information. Graph G being an unweighted graph, the element in 

matrix A is filled with binary values 0 and 1 corresponding to the absence and presence of 

edges between two nodes respectively. For weighted graph, binary values are replaced by the 

corresponding weights of the edges. 
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Figure 5: Adjacency matrix A for attributed graph G. For existence of edge between two nodes, the 

corresponding element in the matrix A is populated with 1 or else 0. The diagonal elements would 

be 1 if self-loops in all the nodes are present. 

 

Likewise, the degree matrix D is a diagonal matrix, where the diagonal entry 𝐃𝑢𝑢 represents 

the degree (number of edges) of node u and is essential for normalization process. 𝐃𝑢𝑢 is 

calculated as 𝐃𝑢𝑢 = ∑ 𝐀𝑢𝑣
|𝑉|
𝑣=1 , where 𝐀𝑢𝑣 is an adjacency matrix with nodes 𝑢 and 𝑣. 

The normalized adjacency matrix �̂� is computed by first augmenting the adjacency matrix A 

with an identity matrix I to account for self-loops, resulting in the matrix 𝐀′ = A + I. Self-loops 

are edges in a graph that connect nodes to themselves.  

Next, the degree matrix D is modified by adding an identity matrix I to each diagonal element, 

which increase each degree by one. This modified degree matrix is denoted as �̂� and is 

calculated as �̂� = D + I . 

To normalize the adjacency matrix, �̂� is computed as �̂� = �̂�−1/2 𝐀′ �̂�−1/2, where �̂�−1/2 is the 

inverse of square root of the modified degree matrix �̂�. By normalizing the adjacency matrix 

in this manner, the resulting matrix �̂� ensures that the learned graph representations are more 

stable and less influenced by nodes with different connectivity levels. 

Feature Matrix (X): A feature matrix X is a matrix, where each row corresponds to a node 

and each column corresponds to a feature. Each row of the feature matrix represents the feature 

vector for a node, containing the node's attributes such as labels, properties, or other data 

relevant to the graph. Thus, X  is a matrix of size  |V| x d, where |V|  is the number of nodes, 

and d is the number of features. This matrix provides input data to GNN, representing each 

node’s characteristics. It is the feature matrix in GNNs that undergoes transformations and 

aggregations to learn new representations of nodes, incorporating graph structure and feature 

information. 

Feature Vector (x): A transformed feature vector x for node u is represented by the uth row of 

the feature matrix X. A feature vector captures the attributes of the node, which may include 

numerical, categorical, or binary values. Each row of the feature matrix X is a transformed 
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feature vector representing a single node's features. Feature vectors provide a representation of 

each node based on its characteristics or attributes. These features might include node attributes 

such as color, type, label, or any other information relevant to the specific graph and 

application. Figure 6 shows the concept of feature vector and feature matrix for an attributed 

graph G = (V,E,X). The transform of feature vector x of all nodes stacked row wise produces 

the feature matrix X of graph G.  

 

 

Figure 6: Feature matrix X for an attributed graph G with nodes 1,2,3,4, and their respective transformed node 

feature vectors x1, x2, x3 and x4. 

 

These mathematical representations and concepts form the basis of graph data structures and 

their analysis in the context of GNNs and other graph-based algorithms are covered in the 

subsequent chapters. 

2.2 Graph Neural Networks 

Building on the philosophical understanding of interconnectedness, graph theory finds its tech-

savvy incarnation in GNNs [6]. Just as graphs illustrate the complex web of relationships in 

nature and society, GNNs capture and harness these relationships within the realm of data. 

GNNs are an innovative blend of graph theory and machine learning. While traditional neural 

network architectures excel at tasks with structured, grid-like data (such as images for 

Convolutional Neural Network (CNN) [7] or sequential text for Recurrent Neural network 

(RNN) [8]), GNNs are designed for the irregular, complex structures that graph data represents. 

They learn from the topological structure of graphs, accounting for the heterogeneous and rich 

relationships between nodes – a reflection of the real-world's complexity. 

In the GNN paradigm, nodes aggregate information from their neighbors through neural 

network layers, effectively allowing for the direct application of machine learning to graphs. 
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This aggregation captures not only the individual node features but also the global structure of 

the data, enabling the model to infer deep insights about the nature of each node within the 

context of its surrounding network. Just as individual beings find identity in their social and 

environmental contexts, GNNs understand each node by its relational position and interactions 

within the network. 

Furthermore, in applying GNNs to outlier detection, for instance, this powerful concept of 

GNNs is harnessed to identify the nodes or patterns that stand out as atypical or unexpected. 

GNNs, therefore, represent a synergy between age-old wisdom and cutting-edge technology, 

enabling a deeper understanding and interaction with the myriad networks that underpin the 

fabric of existence. 

Now  shifting the focus from philosophical point of view to scientifically and mathematically, 

GNNs are sophisticated computational models that operate on data represented as graphs. 

While traditional neural networks process fixed-size inputs and generate fixed-size outputs, 

which are not naturally adaptable to the variable-sized graphs characterized by an arbitrary 

number of nodes and connections, GNNs, however, are specifically engineered to handle this 

variability, capable of learning from data that is inherently relational and interconnected. Figure 

7 is the pictorial representation of GNN. 

 

 

Figure 7: Pictorial representation of GNN in [1] consisting of 3 layers building 

GNN blocks where graph is fed as input to produce transformed graph as an 

output. 

2.2.1 Learning Process 

GNNs [26] extend the concept of neural networks to graphs by using the notion of message 

passing and neighborhood aggregation. The fundamental idea of GNNs is to learn suitable 

representation of graph data for a neural network. This is also called representation learning. 

Using all the information about the graph including the node features and the connections 

stored in an adjacency matrix, the GNNs output new representations which are also called 

embeddings for each of the nodes. These node embeddings contain the structural as well as the 

feature information of the other nodes in the graph. It means each node knows something about 
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the other nodes, the connection to this node and its context in the graph. The embeddings can 

finally be used to perform the predictions [1], [6], [9].   

In a nutshell, for each node, GNNs aggregate information from its neighbors using an 

aggregation function. The aggregated information is then combined with the node's attributes 

using a transformation function. This process is repeated over several iterations or layers, 

allowing information to propagate across the network. This process is known as message 

passing. Message passing is a key concept in GNNs that essentially describes the process of 

transferring messages across nodes in the graph through their connections (edges). 

The aggregation step includes a new representation for each node by combining its own 

features with the features of its neighbors. For a given node 𝑣, the aggregated feature vector 

ℎ𝑣
(𝑎𝑔𝑔)

  is computed as: 

ℎ𝑣
(𝑎𝑔𝑔)

 = aggregate ((ℎ𝑢
(𝑘−1)

 : 𝑢  ∈ 𝓝(𝑣))) (1) 

where, ℎ𝑢
(𝑘−1)

 is the feature representation of node 𝑢 at layer (k-1), 𝑢 are the neighbor nodes 

belonging to the neighborhood 𝓝 (𝑣) of node 𝑣, and aggregate is the aggregation function. 

The neighborhood for the node 𝑣 is defined as 𝓝 (𝑣 ) ={ 𝑢 ∈ V  ∣ ( 𝑢, 𝑣) ∈ E }. 

The aggregate function typically involves normalized summing, averaging, finding the 

maximum of the neighboring features or more advanced methods such as the use of neural 

network as well. Aggregation is often followed by normalization to ensure stable and consistent 

updates. A common normalization strategy is to normalize the adjacency matrix (A) to obtain 

�̂�. These aggregated neighbor features are then combined with the node's current features using 

the combine function. Mathematically, the kth layer of a GNN could be represented as:  

ℎ𝑣
(𝑘)

= 𝑐𝑜𝑚𝑏𝑖𝑛𝑒(𝑘) (ℎ𝑣
(𝑘−1)

, 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑘)  ({ℎ𝑢
(𝑘−1)

 ∣ 𝑢 ∈ 𝓝(𝑣) })) (2) 

where, ℎ𝑣
(𝑘)

 is the feature representation of node 𝑣 at layer k,  ℎ𝑣
(𝑘−1)

 is the feature representation 

of node 𝑣 at layer (k-1), ℎ𝑣
(𝑎𝑔𝑔)

 is the aggregated feature representation of neighbor nodes of 

node 𝑣 and 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 is the function responsible for integrating the aggregated neighbor 

features with the node's current features. 

In GNNs, the process of aggregating information from neighboring nodes  and combining the 

aggregated information with the node’s information is referred to pooling [1]. Pooling in GNNs 

is simply a technique used to compress the information of a graph or a node’s neighborhood. 

Some common types of pooling are node pooling, edge pooling  and graph pooling. In node 

pooling, the information is aggregated from a node and its neighboring nodes to produce a new 

representation of a node. Similarly, in edge pooling, the information is aggregated from the 

edges of a graph. This can involve pooling edge features or aggregating information from edges 

and their incident nodes as well. In graph pooling, pooling is often used to create a single 

representation of the entire graph. While node pooling is done at the node level, edge pooling 

can provide more nuanced insights into graph data by helping to capture important relationships 

and interactions within the graph from edge level and connectivity which analysis from the 

node level is not often guaranteed. The primary applications of pooling are feature aggregation 
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(aggregate the features of a node’s neighbors to a single representation), graph summarization 

(create a summarized representation of the entire graph) and dimensionality reduction (reduce 

the dimensionality of the data).  

The learning objective of GNNs is typically framed around node-level, edge-level, or graph-

level tasks. Node-level tasks might involve classifying nodes into different categories, while 

edge-level tasks could include predicting the existence or properties of edges between nodes. 

Graph-level tasks often revolve around classifying entire graphs or predicting their properties. 

For all these tasks, loss functions measure the discrepancy between the model's predictions and 

the true outcomes. During training, the loss is backpropagated through the network to update 

weights and improve the model's predictions. Backpropagation in GNNs accounts for the 

derivative of the loss with respect to the node representations, which further translates into 

gradient updates for the neural network parameters, moving in the direction that minimally 

reduces the loss.  

2.2.2 Applications of GNN 

Scientifically, GNNs have broad implications due to their ability to model relational data 

authentically. They allow the capturing of dependencies and interactions that would otherwise 

be lost in non-relational representations. This has led to far-reaching applications in fields like 

chemistry, where GNNs can predict molecular properties, bioinformatics for protein-protein 

interaction networks, social network analysis, and even infrastructure and urban planning using 

road and utility networks. From a mathematical lens, GNNs also present new frontiers in 

understanding how to optimally aggregate and transform information in complex systems. The 

ongoing development of GNN theory and methods continues to be an interdisciplinary effort, 

bringing together insights from graph theory, linear algebra, computer science, and statistical 

learning theory [3], [6], [26]. 

Some of the major applications of GNNs are discussed below: 

• Recommendation Systems: GNNs are used to recommend products based on users' 

previous interactions and connections with other users [10]. 

• Drug Discovery and Bioinformatics: GNNs are applied in bioinformatics for modeling 

protein-protein interaction networks, gene regulatory networks, and drug-target 

interactions [11]. 

• Financial Applications: GNNs are used to analyze financial data modeled as graphs, such 

as transaction networks, for fraud detection, market analysis, and investment 

recommendations [12]. 

• Traffic and Mobility: GNNs are used to model traffic networks, such as road networks or 

transportation systems, for predicting traffic flow, optimizing routes, or managing mobility 

systems [13]. 

• Cybersecurity: GNNs are used to model and analyze network traffic as graphs for 

detecting anomalies or security threats, such as intrusion detection [14]. 

These are just a few examples of the many possible applications of GNNs. As the field 

continues to evolve, new applications are emerging in a variety of domains, where the 
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versatility and power of GNNs in processing and learning from graph-structured data are richly 

exploited. 

2.2.3 Challenges in GNN 

While GNNs have proven to be a powerful tool for learning from graph-structured data, they 

also present several challenges that needs to be addressed. These challenges arise from the 

complexity of graph data and the unique aspects of GNN architectures [6], [9], [15].   

Some of the key challenges in GNNs are explained below.  

• Over-Smoothing: Over-smoothing occurs when the node representations become 

increasingly similar as the number of layers in the GNN increases. This can lead to loss of 

distinctive features for nodes, making it difficult to differentiate between them. 

• Scalability: Graphs can be large and complex, with millions or even billions of nodes and 

edges. Also, graphs come in different shape and size. Handling such large-scale graphs 

efficiently is a major challenge for GNNs. 

• Heterogeneity: Many real-world graphs are heterogeneous, containing multiple types of 

nodes and edges with varying properties. Also, the non-Euclidean structure (no clear grid 

like structure) of graph makes the design of GNN architectures that can effectively handle 

such heterogeneity a challenge. 

• Dynamism: Many graphs are dynamic, with nodes and edges being added or removed over 

time. Learning from such evolving graphs is challenging as the graph structure and features 

change over time. 

• Graph Sampling: Efficiently sampling and selecting relevant subgraphs or neighbors for 

training is challenging, especially when dealing with large or dense graphs as poor 

sampling strategies can lead to biased or incomplete learning. 

• Isomorphism: Graphs are inherently permutation invariant, meaning their structure does 

not change under reordering of nodes. This poses a challenge when using adjacency 

matrices directly in feed-forward networks because they are sensitive to the order of the 

nodes. 

 

2.3 Review of GNN Architectures 

GNNs over the past have been realized in several different architectures mainly designed to 

work with various types of graph-structured data and tasks. These architectures leverage the 

graph structure and its features in different ways. The state-of-the-art of GNNs is a rapidly 

evolving landscape with diverse architectures tailored to harness the power of graph data. 

These architectures address specific challenges such as scalability, inductive learning, 

expressiveness, and interpretability. The concept of neural networks for graphs started with 

work by Gori et al. in [16], where GNNs are introduced as a generalization of RNNs [8] to 

graphs. The idea was to update node features based on neighboring nodes using recurrent 

computations.  

Message Passing Neural Networks (MPNNs) [17] are a framework that encompasses many 

GNN variants. Introduced by Gilmer et al in [17], MPNNs formalize GNN’s operation into a 
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message passing phase, where edges deliver messages between nodes, and an update phase, 

where node representations are updated based on incoming messages. MPNNs provide a 

unifying framework that shows how different GNN architectures can be seen as specific 

instances of a general message-passing scheme. Each MPNN is characterized by how it defines 

the message functions and the update functions. The message function determines how 

information should be passed along edges, and the update function decides how the node's new 

state should be computed based on the aggregated messages. These functions often involve 

learnable parameters, allowing the MPNN to be trained end-to-end using gradient descent. 

Some of the other prominent GNN architectures and their unique aspects are discussed in the 

following section. 

2.3.1 Graph Convolutional Network (GCN) 

GCN [18] is one of the most common GNN architectures and is based on convolutional 

operations on graph-structured data. It aggregates features from a node's neighbors, applies a 

linear transformation, and a non-linear activation function. GCNs extend the concept of 

convolution from regular grids (like images) to graph-structured data. They use a neighborhood 

aggregation approach where each node updates its representation by aggregating the 

representations of its neighbors. The key idea is to learn a transformation that is applied to the 

local neighborhood of a node. The simplicity and effectiveness of GCNs have made them a 

popular choice for node classification and link prediction tasks [18], [19], [20]. 

GCNs are a popular class of GNNs designed to handle graph data efficiently. Bruna et al. in 

[21] introduced the concept of spectral graph convolutional networks. These networks applied 

graph convolutions in the frequency domain using the graph Laplacian eigenvalues and 

eigenvectors. This work laid the foundation for the spectral approaches in GNNs. Kipf et al. 

introduced a simplified and scalable version of graph convolutions in [18]. In [18], two 

interesting ideas have been used. First, the aggregation is used for neighbor information as the 

normalized sum of the states. Additionally, it is incorporated with the update operation by 

adding a self-loop for a particular node including it into the summation meaning both update 

and aggregation is combined in one computation. The concept of GCN is shown pictorially in 

figure 8. 

 

Figure 8:  GCN represented as image in [20]. Input is a graph with nine nodes and 

thirteen edges. Two hidden layer followed by activation function ReLU are GCN 

layers where graph convolution happens in the input graph. 
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2.3.1.1 Learning Process 

GCNs are designed to learn node representations through a process known as message passing 

or graph convolution. In each layer of a GCN, nodes aggregate information from their 

neighbors, transform it, and update their own features accordingly. The node-order is invariant 

or equivariant meaning the order of nodes are permutational invariant making the overall 

convolution node-order equivariant. GCNs perform graph convolutions by aggregating the 

features from the neighbors of a node and combining them with the node's own features [18]. 

The working process of GCN can be explained stepwise in the following ways.  

Aggregation: The key idea behind GCNs is to perform convolutional operations directly on 

the graph structure. Unlike regular convolutions in grid-structured data (e.g., images), graph 

convolutions operate on irregular neighborhoods defined by the graph topology. For graph G 

= (V, E, X) with feature matrix X, the goal is to compute new feature representations for each 

node based on its local neighborhood. The graph convolution operation aggregates information 

from neighboring nodes and updates the node features using learnable parameters. For a node 

𝑣, the aggregation in GCN is calculated as: 

ℎ𝑣
(𝑘+1)=σ (𝐖(𝑘)  ∑ �̂�𝑣𝑢𝒖∈𝓝(𝒗 ) ) (3) 

where, ℎ𝑣
(𝑘+1)

 is the updated feature vector for node 𝑣 at layer k+1, 𝐖(𝑘) is the learnable weight 

matrix for layer k, �̂�𝑣𝑢 is the normalized adjacency matrix representing the connection 

between node 𝑢 and 𝑣, 𝓝 (𝑣) is the neighborhood of node 𝑣 and σ is the activation function to 

include non-linearity to the model. 

In equation (3), the new updated representation of node 𝑣, ℎ𝑣
(𝑘+1)

, is achieved by the 

convolution operation. The step ∑ �̂�𝑣𝑢𝑢∈𝒩(𝑣 )  is where the feature vectors of all neighbors u of 

node 𝑣 are aggregated and the learnable weight matrix 𝐖(𝑘) k transforms the aggregated 

features to a new updated feature vector for node 𝑣 at layer k. This updated representation is 

passed through a non-linear activation function σ. This overall sums up the aggregation process 

in GCN. 

Message Passing: GCNs typically employ a message passing scheme to propagate information 

across the graph. At each layer of the GCN, nodes exchange messages (information) with their 

neighbors, which are then aggregated to compute updated node representations. The equation 

(3) is performed for all the nodes present in the graph to obtain new node embeddings which 

contains the information aggregated from all the neighboring nodes. In general, the convolution 

operation or a message passing for a given layer in a GCN can be represented mathematically 

as: 

𝐇(𝑘+1)=𝜎(�̂�−1/2 𝐀′ �̂�−1/2 𝐇(𝑘)𝐖(𝑘)) (4) 

where, 𝐇(𝑘) is the feature matrix at layer 𝑘, with each row representing the transformed feature 

vector of a node, 𝐀′ =  A + I is the adjacency matrix with self-loops added (where I is the 

identity matrix), �̂�  is the diagonal degree matrix of �̂�, 𝐖(𝑘) is the learnable weight matrix at 
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layer 𝑘 and 𝜎 is a nonlinear activation function. 𝐇(𝑘+1) is the updated feature matrix at the next 

layer. 

Multi-Layer Perceptron (MLP): Each layer in GCN is responsible for aggregating 

information from the neighbors of each node and transforming it using a weight matrix and an 

activation function to generate new updated feature embeddings. The node feature 

representations are updated in each layer using linear transformations .This transformation is 

akin to the operations in a MLP but applied to the graph structure. This process continues 

through multiple layers, allowing information to propagate across the graph. The combination 

of linear transformations, non-linear activation functions, and weight matrices in each layer 

makes the GCN similar to an MLP in structure. 

These three concepts, aggregation, message passing, and MLP, are central to the functioning 

of GCNs and enable the network to learn from graph-structured data. GCNs are trained using 

backpropagation and gradient descent methods to minimize a loss function. The loss function 

depends on the specific task, such as node classification or graph classification. During 

training, the model learns optimal parameters (e.g., weight matrices) to effectively propagate 

and aggregate information across the graph while minimizing the prediction error. In a 

classification task, the final layer's output can be used for node classification, graph 

classification, or other downstream tasks.  

2.3.1.2 Limitations of GCNs 

Some of the noticeable limitations of GCNs are discussed below [3], [19], [22].  

• GCNs require knowledge of the complete graph for performing the convolution operation. 

which is very expensive computationally. New additions to the graph requires recalculation 

of the entire architecture parameters due to change in eigenvalues (λ) . 

• GCNs use a fixed neighborhood size, which may not be optimal for different nodes or 

graphs. 

• As the number of layers in a GCN increases, node features tend to become more similar 

(over-smoothed), leading to a loss of distinction between nodes. 

• GCNs may not be expressive enough to differentiate between different graph structures due 

to their reliance on linear transformations and fixed aggregation functions. 

• GCNs treat all neighbors equally during message passing, which may not capture the 

varying importance of different neighbors. 

• GCNs  leverage only transductive learning and cannot transfer knowledge from one domain 

to another.  

2.3.2 Graph Attention Network (GAT) 

GAT [23] uses attention mechanisms to weigh the importance of different neighbors when 

aggregating their features. This allows the network to focus more on relevant neighbors and 

less on less relevant ones. GATs introduce an attention mechanism to the aggregation step in 

GNNs. Nodes compute the coefficients of attention across their edges that indicate the 

importance of the neighboring node’s information. This allows the model to focus more on 
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relevant nodes and less on less relevant ones, enhancing the adaptability to different parts of 

the graph.  

Veličković et al. in [23] introduced GATs, which applied attention mechanisms to graph data. 

This allowed the model to focus on specific neighbors more than others during message 

passing, providing a more flexible and interpretable approach compared to GCNs.  

2.3.2.1 Learning Process 

The learning process and working mechanism of GATs is summarized below [23]:  

Attention Mechanism : GATs use an attention mechanism to compute a weight (attention 

score) for each neighbor of a node. The basic idea of attention mechanism is to additionally 

learn how important are the features of the neighboring nodes 𝑢 ∈ 𝓝(𝑣) for a node 𝑣. This 

importance is called the attention score or coefficient. Attention mechanism therefore allows 

the model to prioritize certain neighbors based on their importance. The attention score 𝑒𝑢𝑣 

between node 𝑣 and its neighbor 𝑢 is computed as: 

𝑒𝑢𝑣= 𝜎 (𝑎𝑇[𝐖ℎ𝑢∣∣𝐖ℎ𝑣]) (5) 

where, ℎ𝑢 and ℎ𝑣 are the feature vectors of nodes 𝑢 and 𝑣, 𝐖 is a learnable weight matrix, a is 

a learnable attention vector, ∣∣ denotes concatenation and 𝜎 is an activation function. Attention 

score essentially gives the weight of each neighbor fetching the information of how much 

attention should be paid to those specific nodes when updating the embedding.  

The attention scores are often normalized using a softmax function over the neighbors of a 

node. This process of normalization is done to bring the attention coefficients of all the nodes 

in the same scale. A softmax function makes the value sum up to 1. It is done by : 

α𝑢𝑣 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑣(𝑒𝑢𝑣)   =  
exp (𝑒𝑢𝑣)

∑ exp (𝑒𝑢𝑘)𝒌∈𝓝(𝒖)

 (6) 

where, α𝑢𝑣 is the normalized attention score between node 𝑢 and node 𝑣 and 𝓝(𝑢) is the set 
of neighbors of node 𝑣.  

There could be several different possibilities for calculating the attention coefficients. The 
explained approach is taken from [23] and is only one possibility. In [23], a shared single 

layer neural network is chosen. The input in this network are two transformed node feature 

vectors for an edge where the output indicates the importance of these nodes. This attention is 

effectively calculated for each node pair. The formula for full attention mechanism is expressed 

as : 

  α𝑢𝑣 =  =  
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑤𝑎

𝑇⃗⃗ ⃗⃗ ⃗⃗  
[𝐖ℎ𝑢∣∣𝐖ℎ𝑣))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑤𝑎
𝑇⃗⃗ ⃗⃗ ⃗⃗  
[𝐖ℎ𝑢∣∣𝐖ℎ𝑘))𝒌∈𝓝(𝒖)

 (7) 

where, 𝐖ℎ𝑢 and 𝐖ℎ𝑣 are two node embeddings passed as inputs, ∣∣ the concatenation 

operation, 𝑤𝑎
𝑇⃗⃗ ⃗⃗  ⃗ is a weight vector that is multiplied with Wℎ𝑢 ∣∣ Wℎ𝑣 when passed through a 

single layer neural network, LeakyReLU is an activation applied on each of the output to 
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emphasize the positive relationship between nodes and cutoff all the negative values and exp(.) 

is the softmax activation function. 

Message Passing : The node features in GATs are then updated using a weighted sum of the 

neighbors’ features as : 

 

  ℎ𝑣
′  = 𝜎(∑ α𝑢𝑣𝑢∈𝓝(𝑣) 𝐖ℎ𝑢) (8) 

where, ℎ𝑣
′  is the updated node embedding for a node 𝑣, α𝑢𝑣 is the attention coefficient between 

node 𝑢 and 𝑣. In equation 8, first, the node features ℎ𝑢  are transformed by multiplying them 

with shared weight matrix 𝐖. This learnable linear transformation (𝐖ℎ𝑢) converts the node 

features into the higher-level features. The weight matrix W comes from the fully connected 

neural network, its input would be the shape of the node feature vector and the output would 

be the shape of the node embeddings. 𝐖ℎ𝑢 is multiplied with its respective attention coefficient 

α𝑢𝑣 and finally, this process is wrapped up by applying an activation function 𝜎 giving the 

updated node embedding ℎ𝑣
′  for a node 𝑣 . This is carried out for all the nodes in the graph 

where all the nodes now contain the information of their neighbors along with their own 

information. Essentially, feature vectors weighted with the importance (attention coefficient) 

for each node amplifies the important nodes and the less important ones are effectively 

suppressed. Figure 9 is the representation of GAT architecture that illustrates the attention 

mechanism used in GAT. 

 
Figure 9: GAT architecture with attention mechanism in [24]. Attention coefficients ij for 

all the neighboring nodes of node xi are calculated. Self-attention coefficient of node xi and 

neighborhood attention coefficient for all the neighboring edges, yij are calculated and 

combined where softmax activation function is applied to obtain all the attention coefficients 

ij of all nodes xij.    
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Figure 10: Pictorial representation of how attention coefficients are utilized in GAT taking 

node 1 of the graph as an example in [25] 

Figure 10 explains the working mechanism of equation 7. In figure 10, a graph consisting of 5 

nodes with self-loop at node 1 is considered as an example. For node 1, first, node embeddings 

of  its neighboring nodes (ℎ2 and ℎ3) and its own (ℎ1) are collected, then they are all passed 

through a learnable linear transformation i.e. multiplying with W. The intermediate node states 

(ℎ1
∗ , ℎ2

∗  and ℎ3
∗ ) are then obtained. Now, for each edge, two corresponding intermediate node 

states are passed through the shared single layer neural network giving the attention coefficients 

α11, α12 and α13. The intermediate node states are then summed up as a linear combination 

weighted with the corresponding calculated attention coefficients. The final updated node 

embedding (ℎ1
′ ) for node 1 is then obtained. This is done for all the nodes in the network to 

obtain final updated feature matrix of the graph thus completing the message passing layer 

[25].To stabilize the learning process of self-attention, multiheaded attention (having several 

independent attention mechanisms) is performed [3]. 

2.3.2.2 Limitations of GATs 

The limitations observed in GATs are explained below [26]. 

• The use of attention mechanisms increases the computational complexity of GATs 

compared to GCNs. Attention computation requires calculating weights for each neighbor 

of each node, which can be expensive for large or dense graphs. 

• The attention mechanism in GATs assigns weights to each neighbor of a node based on 

their importance. However, this can introduce a bias towards certain types of edges, which 

might not always be desirable. Also, GATs focus primarily on node features and their 

relationships, but do not inherently consider edge features. Integrating edge features into 

the attention mechanism can be complex and may require modifications to the GAT 

architecture. 
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2.3.3 Graph Sample and Aggregation (GraphSAGE)  

Introduced by Hamilton et al. in [27], GraphSAGE is a popular GNN architecture. GraphSAGE 

was developed to address the limitations of then existing GNN models, particularly in handling 

large-scale graphs efficiently and learning node representations in an inductive manner (being 

able to generalize the unseen nodes and graphs during training). It uses a sampling method to 

select a subset of neighbors and create mini-batches for aggregation, improving scalability. It 

also supports different aggregation functions such as mean, max pooling, and LSTM-based 

methods. GraphSAGE enables inductive learning on graphs by learning aggregator functions 

that can induce the embedding of a new node based on its neighbors. Unlike transductive 

methods that necessitate knowledge of the entire graph (e.g., GCN), GraphSAGE generalize to 

unseen nodes, making it particularly useful for dynamic graphs where new nodes appear over 

time [3], [27].  

2.3.3.1 Learning Process 

The leaning process of GraphSAGE is explained below. 

Neighbor Sampling: GraphSAGE introduces a sampling mechanism that enables efficient 

training on large graphs by sampling a fixed-size neighborhood for each node during training. 

Here, a fixed number of neighbors are randomly sampled for each node which alleviates the 

computational burden and memory constraints associated with large graphs. For each node 𝑣, 

GraphSAGE samples a fixed-size neighborhood 𝓝(𝑣).  

Flexible Aggregation: GraphSAGE uses a flexible aggregation mechanism, allowing the 

model to use different aggregation functions (such as mean, max pooling) to combine 

information from neighboring nodes. The aggregated information is then transformed using a 

weight matrix and a non-linear activation function represented mathematically as: 

  ℎ𝑣
(𝑘+1)=σ (𝐖(𝑘)𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(ℎ𝑢

(𝑘)
)∣ 𝑢 ∈ 𝓝(𝑣))  (8) 

where ℎ𝑣
(𝑘+1)

is the representation of node 𝑣 at layer k,  𝐖(𝑘) is the weight matrix at layer k , 

𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(.) is the chosen aggregation function, σ is a non-linear activation function. 

Node Representation Learning: GraphSAGE learns node representations through a multi-

layer architecture. In each layer, nodes gather information from their neighbors using the 

specified aggregation function, update their representations, and pass the updated 

representations to the next layer. This continued process through multiple layers allow the 

model to learn increasingly abstract representations of the graph. Consequently, the final 

layer’s output can be used for classification tasks or link predictions. 

In general, GraphSAGE generates embeddings for previously unseen nodes by leveraging node 

feature information to efficiently generate node embeddings. Instead of training individual 

embeddings for each node, GraphSAGE learns a function that generates embeddings by 

sampling and aggregating features from a node’s local neighborhood. The algorithm assumes 

that the model parameters are already learned and fixed. It incorporates node features in the 

learning algorithm, allowing it to simultaneously learn the topological structure of each node’s 

neighborhood as well as the distribution of node features in the neighborhood. By training a 
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set of aggregator functions that learn to aggregate feature information from a node's local 

neighborhood, GraphSAGE can generate embeddings for entirely unseen nodes by applying 

the learned aggregation functions. The embedding generation (i.e., forward propagation) 

algorithm in GraphSAGE involves learning how to aggregate feature information from a 

node’s local neighborhood, such as the degrees or text attributes of nearby nodes. This process 

allows GraphSAGE to efficiently generate embeddings for previously unseen data. The model 

parameters can be learned using standard stochastic gradient descent and backpropagation 

techniques, enabling the generation of embeddings for unseen nodes. The approach is designed 

to generalize to graphs with the same form of features and can be applied to graphs without 

node features as well.  

2.3.3.2 Limitations of GraphSAGE 

Some of the limitations in GraphSAGE are discussed below [3], [26]. 

• The random sampling of neighbors can introduce noise or bias in the aggregated 

representations. Also, the choice of neighbor sampling strategy can significantly impact the 

model performance. 

• Although sampling helps with scalability, it can lead to a trade-off between efficiency and 

accuracy, as reducing the number of sampled neighbors can result in a loss of information.  

2.3.4 Graph Autoencoder (GAE) 

GAEs [28] are unsupervised GNNs that aim to learn graph representations through an 

encoding-decoding process. The encoder learns graph embeddings, while the decoder 

reconstructs the graph structure or features. GAEs are designed for unsupervised learning tasks 

on graphs. They work by encoding the nodes into a latent space and then reconstructing the 

graph's adjacency matrix or other graph properties from these embeddings. GAEs combine 

GNNs with the autoencoder framework to learn low-dimensional representations of graph data. 

These embeddings capture the structural properties of the graph and can be used for 

downstream tasks such as node clustering, community detection, and graph reconstruction. 

GAEs allow for unsupervised learning, making them useful for tasks where labeled data is 

scarce [26]. 

In [29], Kipf et. al proposed a variant of the autoencoder model, Variational Graph Auto-

Encoders (VGAE). VGAE extends autoencoder architecture by learning probabilistic 

embeddings that can generate new graph structures. VGAE combines the principle of GNNs 

with variational inference to encode graph structures and node features into a latent space and 

then reconstructs the graph from the latent representation. The latent representation is sampled 

from the Gaussian distribution during training, a reparameterization method, that ensures the 

model to learn the uncertainty in the latent space. Likewise, in [30], Pan et al.  proposed 

Adversarially Regularized Graph Autoencoder for graph embedding (ARGA). ARGA explores 

the combination of autoencoder architectures with adversarial training for better representation 

learning.  

In general, the architecture of GAE typically consists of two main components, encoder, and 

decoder. The encoder maps the input graph into a lower-dimensional representation. This is 

usually done using a GNN such as but not limited to GCN and GAT. The encoder takes the 
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adjacency matrix of the graph and the feature matrix as input and produces a latent 

representation of the graph. The decoder, on the other hand, reconstructs the graph from the 

encoded latent representation. In practice, the decoder is often a simple function that 

reconstructs the adjacency matrix or node features from the latent representation. Decoder can 

use various reconstruction techniques, such as inner product or bilinear decoding, depending 

on the specific GAE architecture. Figure 11 shows the general GAE architecture with an 

encoder and decoder.  

 

 

Figure 11: A general GAE architecture, comprising of an encoder and decoder with X as the input to the encoder 

and X’ the output generated by the decoder. Z is the latent space representation of the input X. Typically input is 

adjacency matrix, feature matrix or both. 

2.3.4.1 Learning Process 

The generalized learning process of GAE can be summarized below.  

Encoder: An encoder typically consists of a GNN, such as GCN or GAT, that takes an input 

graph represented by its adjacency matrix A and node feature matrix X. It then produces a 

lower dimension latent space representation Z of the graph given by Z = encoder(A, X) where 

encoder is any chosen GNN (GCN, GAT, etc.). 

Decoder: A decoder reconstructs the graph from the latent representation Z. The reconstruction 

can be performed using various techniques, such as inner product or bilinear decoding. For 

example, the inner product decoding computes the reconstructed adjacency matrix �̂� as �̂� = 

σ(Z 𝐙𝑇) where σ is a sigmoid function.  

Loss function: The loss function in GAEs is typically based on the reconstruction error 

between the input and reconstructed adjacency matrices. Taking Binary Cross-Entropy (BCE) 

loss as an example of loss function, the loss function L is given by: 

  L = − ∑ [𝐀𝑖𝑗𝑙𝑜𝑔𝐀𝑖𝑗
∗ + (1 − 𝐀𝑖𝑗)(1 − 𝐀𝑖𝑗

∗ )]𝑖,𝑗  

 

(9) 

where, 𝐀𝑖𝑗 is the actual adjacency matrix element between node i and node j, 𝐀𝑖𝑗
∗  is the 

predicted probability of edge between node i and j. GAE essentially learns by minimizing the 

loss function. 
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2.3.4.2 Limitations of GAE 

Some of the limitations of GAE are discussed below [26], [28] . 

• The learned node embeddings may lack interpretability, making it challenging to 

understand what the embeddings represent or how they relate to the original graph. 

• The choice of loss function can impact the performance of GAEs. For example, using the 

imprecise loss function could result in poor graph reconstruction or suboptimal 

embeddings. 

• Handling dynamic graphs (where the structure changes over time) can be challenging for 

GAEs, as the model may need to be retrained to accommodate new nodes and edges. 

2.3.5 Other GNNs 

While models like GCNs, GATs, and GAEs are designed to work with static attributed graphs, 

new GNN architectures have been introduced to handle dynamic graphs and other specific 

scenarios. Additionally, existing GNN architectures have also been refined and improved for 

better performance. 

Xu et al. in [22] proposed Graph Isomorphism Network (GIN) that uses a sum aggregation 

function and a trainable parameter to avoid over-smoothing and improve representational 

power to recognize different graph structures. GIN proposes a family of architectures that can 

accurately capture the structure of the graph to determine if two graphs are isomorphic 

(essentially the same in structure) or not. 

There are several dedicated GNNs to deal with dynamic graphs. As dynamic graphs pose 

unique challenges because they change over time, with nodes and edges being added or 

removed, several dedicated GNN architectures have been developed specifically for dynamic 

graphs to address the challenge. Temporal Graph Networks (TGNs) [31] and Structural-

Temporal Graph Neural Networks (STrGNNs)  [32] are some of the GNNs developed in the 

dynamic graph paradigm.  

The scope of this thesis work is limited to GNNs based on static attributed graph and does not 

cover the study of GNNs based on dynamic graph.  
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3 Review of GNN Algorithms for Outlier 
Detection  
This chapter provides an overview of the current state-of-the-art in GNN algorithms for outlier 

detection. It begins with a formal definition of outliers within the context of GNNs, 

understanding different types of outliers followed by the discussions of various categories of 

GNN algorithms tailored for detecting outliers in graph-structured data. It also examines the 

key approaches and methodologies employed in GNN-based outlier detection algorithms.  

3.1 Outliers in GNNs  

An outlier in any form of data is typically an anomaly, an observation that deviates significantly 

from the expected norm. Outlier could be anything from anomaly, rarity, peculiarity, novelty, 

or exception depending on several fields of applications that differ significantly from the mass 

in one form or the other and violate the norms and the standards. Much like a discordant note 

in a musical piece, outliers can disrupt the harmony of the system and affect its overall 

functioning. While traditional data analysis often views outliers as statistical anomalies, they 

can hold the key to understanding the complex dynamics within interconnected systems. 

Grubbs in [33] defined anomalies  as ‘one that appears to deviate markedly from other members 

of the sample in which it occurs’.  

In the context of GNNs, outliers take on a deeper significance due to the complex and 

interconnected nature of graph data. Graphs model relationships and interactions within various 

systems such as social networks, biological systems, and financial transactions. Anomalies that 

emerge within these relationships may indicate more than statistical oddities; they can signify 

critical shifts, disruptions, or irregularities within the system. Outliers are considered as data 

points in a graph such as nodes, edges, or subgraphs that exhibit atypical behavior or deviate 

significantly from the overall pattern or structure of the graph. This deviation could manifest 

in different forms, such as unexpected connections, unusual node features, or anomalous 

subgraph structures. Two important categories of outliers in graphs are node-level (contextual) 

outliers, and edge-level (structural) outliers [34],[35],[36]. 

• Node-level (Contextual) Outliers: Node-level outliers are nodes that deviate from 

expected behavior within a specific context or feature space. These outliers display 

unexpected attributes, or abnormal behaviors compared to other nodes. These are nodes 

whose attribute values (e.g., node features or properties) deviate significantly from the 

global distribution of attribute values in the graph. 

• Edge-level (Structural) Outliers: As edges represent the relationships or connections 

between nodes, outliers at the edge-level involve anomalous interactions or connections. 

Structural outliers are nodes that deviate from the expected structure or relationships in the 

data and don't follow the typical patterns of connectivity or interaction. For instance, in a 

citation network, an academic paper cited by an unusually high number of other papers in 

a short time could be an outlier. 
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There is also a third category of outliers, community-level (sub graph-level) outliers. This type 

of outliers include a group of nodes and edges that deviate significantly from the main graph.  

Figure 12 shows the concept of node-level and edge-level outliers in a graph. 

 

Figure 12: Examples of outliers in a graph in [37]. Nodes A and C are node-level 

outliers, nodes A and B are edge-level outliers. Node A is both node-level and 

edge-level outlier. 

3.2 Outlier Detection  

Outlier detection, in general, is a way to identify outliers from a given set of community or 

network. It can be seen as a data mining process that identifies the unusual patterns or behaviors 

or connections which deviate slightly or significantly from the majorities in an entire dataset. 

Outlier detection, also known as anomaly detection, is a critical application in the analysis of 

graph-structured data, where GNNs play a significant role in modeling complex relationships. 

This research area has garnered notable attention due to the widespread presence of outliers in 

various disciplines, including but not limited to security, finance, medicine, and social 

networks. GNNs provide a robust and adaptable framework for representing and interpreting 

graph data, which is a common data structure across many domains. By capturing intricate 

patterns and associations within graph data, GNNs facilitate the identification of anomalies that 

may signify potential risks or opportunities [34]. 

The challenge with outliers is the nuanced way in which these anomalies can manifest. 

Traditional outlier detection methods may not capture the complexity of relationships and 

structures in graph data. This is where GNNs come into the play, by learning representations 

of nodes, edges, and subgraphs, GNNs promise to  provide more sophisticated detection and 

interpretation of outliers. They are able to capture intricate patterns and relationships, making 

them particularly adept at identifying outliers. This capability enables more precise detection 

of critical events such as financial fraud, network intrusions, social spam, spread of 

misinformation, and other detrimental occurrences. 

Applications of Outlier Detection 

Outlier detection using GNNs is instrumental in uncovering peculiar events such as financial 

fraud, network intrusions, and social spam. For instance, in the finance sector, GNN-based 

outlier detection can reveal suspicious transactions indicative of money laundering or insider 
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trading. Similarly, in network security, GNNs can identify unusual network traffic patterns 

signaling potential cyber-attacks. In the realm of social media, GNNs can help detect the spread 

of fake news or misinformation by identifying anomalous patterns in content sharing and user 

interactions. Additionally, in the field of healthcare, GNN-based outlier detection can aid in 

the early identification of emerging diseases or unusual health trends. By recognizing these 

outliers, GNNs enable proactive responses to emerging threats and insights into underlying 

systemic shifts [12], [14], [32], [34], [35]. 

3.2.1 Review of Outlier Detection Algorithms in GNNs 

The state-of-the-art GNNs for outlier detection is a rapidly evolving area. Before the advent of 

deep learning, several non-deep learning techniques were used to identify outliers [33]. In such 

kind of approaches, graph outlier detection was initially transformed into traditional anomaly 

detection problem. OddBall [38] is one such approach that extracts the features from each node 

and its 1 hop neighbors to detect structural outliers. The identification of outlier nodes heavily 

relied on the selection of statistical features. However, it is not always possible to properly 

choose the most suitable features, especially from large datasets and hence these traditional 

approaches do not effectively capture structural information. The traditional way of manual 

feature engineering and building a tailored statistical model to detect outliers is also labor-

intensive, expensive, time consuming and above all not always effective as graph data of a real-

world network could easily contain millions of nodes and edges leading to computational 

overhead in both execution time and storage as well.  

Subsequently, network representation-based methods have been exercised in order to capture 

information from the graph structure. In network representation-based methods, first, the graph 

structure is encoded to an embedded vector  and outliers are detected through further analysis. 

By pairing the conventional anomaly detection methods such as density-based, distance-based 

with  node embedding methods, outliers are identified (node present in low-density area or 

node far away from the majorities). Node2Vec [39] and LINE [40]  are some of the earlier 

representative methods. Node2Vec uses biased random walks to explore the graph. To 

introduce bias in the random walks, Node2Vec uses two parameters, return parameter (p) to 

control how likely the walk is to revisit a node if it has already visited and in-out parameter (q) 

to control how far the walk is likely to stray from the starting node. The node embeddings are 

computed from these walks, and outliers can then be identified using metrics such as distance-

based measures and clustering in the embedding space. LINE, on the other hand, learns node 

embeddings by preserving the proximity relationships in a graph, capturing both first-order 

(direct relationships between nodes i.e., edges) and second-order (similarity between nodes’ 

neighborhoods i.e., the sets of nodes connected to them) proximity between nodes. The first-

order and second-order proximities are then combined using an objective function to obtain the 

node embeddings and outliers are detected using distance-based methods. 

While methods such as Node2Vec and LINE have been widely used for learning node 

embeddings from graph data, they do have certain limitations. These methods primarily focus 

on local neighborhood information through random walks or proximity measures making it 

difficult to capture global structures effectively. Also, these methods generate fixed embedding 

vectors for each node, which may not fully capture the intricate relationships in dynamic graph 

data where relationships and connections can change over time. Consequently, more advanced 
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techniques, particularly the use of deep learning-based architectures [41] were studied and have 

been brought to the implementation. Deep learning-based methods focus on learning complex 

representations from graph data, whereas traditional methods like Node2Vec and LINE 

primarily learn embeddings through fixed random walks or proximity measures. GNNs, in 

particular, have become a popular approach for efficiently detecting anomalies in graphs due 

to their ability to intuitively learn graph representations through message passing mechanisms. 

These networks handle graphs with complex structures and attributes as input data, making the 

process of learning and extracting anomalous patterns from graphs straightforward. This is 

especially useful when dealing with graphs that have intricate connections and diverse node 

attributes. In this approach, state-of-the-art graph anomaly detection methods often combine 

GNNs with existing deep learning approaches, such as RNNs [8] or transformers [42] . GNNs 

excel at simultaneously examining graph topology and node attributes, providing a 

comprehensive view of the graph’s behavior.  

Despite the novelty of this field, researchers have already covered a wide variety of graph types, 

such as static and dynamic graphs, as well as plain and attributed graphs. Structural anomalies 

in graph topology range from  node and edge anomalies to  subgraph-level anomalies but there 

appears to be a focus on outlier detection at node-level in static attributed graphs, leaving other 

areas with room for further exploration. 

The scope of this thesis is limited to node-level outlier detection algorithms in static attributed 

graphs. The following subchapters outline key aspects of GNN-based node-level outlier 

detection methods. 

3.3 GNN-based Node-level Outlier Detection in Static Graph 

In static attributed graphs, where nodes and edges remain consistent over time, various GNN-

based outlier detection algorithms have been developed. These algorithms often leverage GNN 

architectures such as GCN [18], GAT [23], GAE [28] either individually or in combination for 

detecting anomalies. While many algorithms focus on node-level outlier detection, there are 

also methods that address edge-level and graph-level outlier detection both on static and 

dynamic graphs. 

3.3.1 GCN-based method 

GCN-based methods [37] leverage the convolutional operation of GCNs [18], where 

information from a node’s neighbors is aggregated through message passing. This process 

allows the creation of new node embeddings that capture the graph’s structure and node 

features. These embeddings can then be analyzed to detect nodes that significantly deviate from 

the norm, indicating potential outliers. GCNs are often combined with GAE, where the GCN 

layers serve as the encoder component and are responsible for transforming the input graph 

data into a lower-dimensional latent space. The decoder component of the GAE then 

reconstructs the graph from these latent representations. This combination is particularly useful 

for outlier detection, as the model can be trained to capture the typical patterns in the graph 

during the encoding and decoding process. Anomalies can be identified by comparing the 
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reconstructed graph with the original input graph; significant discrepancies may indicate the 

presence of outliers [35].  

• Semi-GCN: Kumagai et al. in [43] proposed a method called semi-GCN that combines the 

elements of supervised and unsupervised learning to efficiently utilize the available labeled 

data while still learning from the entire graph. In this method, the main idea is to extend 

GCNs to scenarios where only some nodes in the graph have labels. This is known as a 

semi-supervised learning approach, as it leverages both labeled and unlabeled data. Like a 

standard GCN, semi-GCN method uses layers of graph convolution. Each layer aggregates 

information from a node’s neighbors and combines it with the node’s own features to create 

new representations. The semi-GCN method is trained using the labeled nodes in the graph. 

This means the model learns from the features and labels of the nodes with available labels. 

The model uses the learned parameters to propagate information throughout the graph. This 

allows it to generate predictions for nodes that were originally unlabeled based on the 

patterns it learned from the labeled nodes. The loss function used in semi-GCN focuses on 

the difference between the predicted labels and the true labels of the labeled nodes. After 

passing through the graph convolutional layers, nodes are embedded in a latent space. 

These embeddings capture the structure and features of the graph. Finally, a reconstruction 

error is computed based on the difference between the original node features and the 

reconstructed features obtained from the latent embeddings. The reconstruction error for a 

node 𝑣 is calculated as 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟𝑣 = ∥ ℎ𝑣−ℎ𝑣
(𝑓𝑖𝑛𝑎𝑙)

∥2 where ℎ𝑣 is the initial 

node embeddings of node 𝑣 and ℎ𝑣
(𝑓𝑖𝑛𝑎𝑙)

 is the final node embedding of node 𝑣 obtained 

from GCN layers. Nodes with a high reconstruction error are considered potential outliers, 

as they deviate significantly from the expected patterns learned from the graph. A threshold 

can be set to classify nodes as outliers based on their reconstruction error.  

• ResGCN: In[44], Pei et al. proposed Residual GCN (ResGCN), where GCNs are extended 

that incorporated residual connections, similar to those used in ResNet [45] in the field of 

deep learning for images. This model aims to alleviate issues such as vanishing gradients, 

sparsity and over-smoothing and improve training stability using residual connections, 

allowing the model to capture more complex patterns in graph-structured data. In each 

layer, the ResGCN performs a graph convolution similar to a standard GCN, but with the 

addition of a residual connection. ResGCN is almost same as semi-GCN, but ResGCN has  

residual connections that allows for better training stability. 

• Contrastive self-supervised learning (CoLA): Liu et al. in [46] proposed Contrastive 

self-supervised Learning (CoLA), a different method compared to semi-GCN and ResGCN 

in the sense that CoLA employed contrastive learning to generate representations of nodes 

that emphasize the differences between normal and anomalous patterns in the graph. CoLA 

is a variant of self-supervised learning, a technique used to pretrain neural networks on 

unlabeled data by creating supervised-like tasks from the data itself. In contrastive self-

supervised learning, the model learns to encode data samples in such a way that similar 

samples are pulled closer together in the embedding space, while dissimilar samples are 

pushed apart. CoLA is particularly useful when labeled data is scarce or expensive to 

obtain. 
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The contrastive loss function is designed to maximize the similarity between similar node 

pairs and minimize the similarity between dissimilar node pairs. Outliers are detected by 

analyzing the similarity scores between node pairs. Nodes that have lower similarity scores 

with other nodes (based on embeddings) were considered outliers. While semi-GCN and 

ResGCN focused more on reconstructing the input graph or learning node representations, 

CoLA’s contrastive learning focuses on maximizing differences between similar and 

dissimilar nodes. Figure 13 explains the framework of CoLA. 

 

 

Figure 13: CoLA framework presented in [46] 

The working process of CoLA can be summarized as follows. 

Data Augmentation: CoLA often starts with data augmentation techniques to generate 

augmented versions of the input data. This helps in exposing the model to diverse variations 

of the input samples and improves its robustness. 

Positive and Negative Samples: For each input sample, CoLA creates positive and 

negative pairs. Positive pairs consist of two augmented versions of the same input sample. 

Negative pairs consist of an input sample and another sample that is dissimilar to it, often 

randomly selected from the dataset.  

Embedding Generation: The encoder network takes both positive and negative samples 

as input and generates embeddings (feature representations) for each sample. 

Backpropagation and Parameter Update: The gradients of the contrastive loss are 

backpropagated through the network, and the model parameters are updated using 

optimization algorithms. 

 

However, designing effective data augmentation strategies is crucial for the success of 

CoLA. Choosing appropriate hyperparameters, such as the contrastive loss margin and 

temperature parameter, can significantly impact the quality of learned representations [46], 

[47]. 

3.3.2 GCN-based GAE method 

Autoencoder framework [28] has been extensively used in several of the GNN-based outlier 

detection methods. In general, nodes are often encoded into a latent space, and then the network 

tries to reconstruct the original graph structure from these embeddings. In outlier detection, 

nodes that are poorly reconstructed (high reconstruction error) are candidates for outliers, 

indicating that their pattern of connections differs significantly from the norm defined by the 
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rest of the graph. Combining the principles of autoencoders with GCNs, some models aim to 

reconstruct graph data using GCN-based encoding and decoding layers.  

• Deep Anomaly Detection on Attributed Network (DOMINANT): Ding et al. in [58] and 

is one such GCN-based GAE method where an anomaly score is calculated for each nodes 

using the network reconstruction errors. Here, GCN-based encoder is used to learn both the 

structure of the graph and the attributes of the nodes. A decoder is then used to utilize the 

reconstruction errors to detect outlier nodes in an unsupervised manner. DOMINANT uses 

GCN encoder, called as attributed network encoder, whose input is both topological 

structure and  nodal attributes of the graph. The encoder consisting of multiple graph 

convolutional layers subsequently aggregates information from a node’s neighbors and 

transform the input node features into a lower-dimensional latent space ultimately 

providing the latent space representations (embeddings) of the nodes along with the 

structural information of the graph. A decoder section, consisting of two decoders, 

structural reconstruction decoder and attribute reconstruction decoder, takes the latent 

representations as input and reconstructs both the original topological structure and nodal 

features. Finally, reconstruction errors for each node are computed by comparing the 

original node features with the reconstructed features obtained from the decoder and the 

nodes with high reconstruction errors are considered possible outliers. DOMINANT, unlike 

previously discussed models such as semi-GCN and ResGCN, spots anomalies by 

calculating the reconstruction errors from both nodal attributes and structural point of view 

in an unsupervised manner [58]. Figure 14 describes the architecture of DOMINANT. 

 

Figure 14: Architecture of DOMINANT shown in [58]. DOMINANT has one attributed 

network encoder made of GCN where adjacency matrix A and feature matrix X of input 

graph is fed which produces latent space representation matrix Z as the output. Through 

structure reconstruction decoder and attribute reconstruction decoder, DOMINANT 

produces estimated adjacency matrix �̂� and estimated feature matrix �̂�.  

 

In decoder section of DOMINANT, two reconstruction errors, structure reconstruction 

error and attribute reconstruction error are separately calculated. A structure reconstruction 

error is calculated as 𝑅𝑠 = A – �̂� where, A is the original adjacency matrix and �̂� is the 

estimated adjacency matrix for the learned latent representation matrix Z, an output of the 

attributed network encoder. Likewise, to calculate attribute reconstruction error, a link 

prediction layer is first trained based on the output of attributed network encoder Z. Here, 

�̂� is calculated as �̂� = sigmoid(Z ZT) where sigmoid is the sigmoid activation function. The 



 Review of GNN Algorithms for Outlier Detection 

 

31 

estimated node feature matrix �̂� is then calculated as �̂� = 𝑓𝑅𝑒𝑙𝑢(Z, A׀W) where 𝑓𝑅𝑒𝑙𝑢 is the 

ReLU activation function. With this, attribute reconstruction error R𝐴 is calculated as R𝐴 = 

X – �̂� where X is the original node feature matrix. Finally, the objective function L is 

obtained as L = (1-α) R𝑠 + αR𝐴, where α is the controlling parameter. The model works 

by minimizing the objective function L using gradient descent. After certain iterations, the 

outlier score of each node is then calculated and the ones with larger scores are considered 

as outliers. 

• Deep  multi-view framework for anomaly detection (ALARM): Peng et al. in [48] 

proposed  ALARM using a multi-view approach, leveraging different views of the graph 

to improve anomaly detection. It uses multiple views of the graph (e.g., different sets of 

node attributes or different graph structures) to improve the robustness and accuracy of 

anomaly detection. ALARM combines GCNs and autoencoders for learning embeddings 

and reconstructing node features from different views, and then uses an attention 

mechanism to integrate information from these views. Here, a learning process is typically 

multi-view learning utilizing multiple views of the graph. These views may include 

different sets of node attributes, graph structures, or combinations of both, each view 

providing a different perspective of the graph. For each view, ALARM uses a GCN-based 

GAE to learn latent space representations of the nodes and reconstruct the original features. 

3.3.3 GAT-based GAE method 

In GAT-based GAE method [37], GAT architectures are exploited to utilize their attention 

mechanisms to weigh the importance of each neighbor when aggregating the information for a 

given node. This attention-based approach allows the model to focus on the most relevant 

neighbors and better capture the complex relationships in the graph. This method essentially 

uses GAT layers as the encoder to generate the latent representations of the graph. These 

representations are then used by the decoder to  reconstruct the graph. The reconstruction error 

between the original graph and the reconstructed graph are then used to identify outliers.  

• Dual Autoencoder for Anomaly Detection on Attributed Networks (AnomalyDAE): 

In [49], Fan et al. introduced AnomalyDAE, an end-to-end variant of GAT-based GAE 

method consisting of dual autoencoders, structure autoencoder and attribute autoencoder. 

These autoencoders are trained jointly to capture complex interactions between network 

structure and node attributes in attributed networks. The working mechanism is explained 

as follows: 

Structural Autoencoder:  Here, the encoder first learns the node embeddings based on the 

network structure. GAT [23] layer is used to obtain attention mechanism in order to grasp 

important structural patterns. The structure encoder transforms the original node attribute 

matrix X into a lower-dimensional latent representation �̃�𝑣 as �̃�𝑣 = σ (X𝐖𝑣(1)  + 𝑏𝑣(1)) 

where, σ(.) is the activation function, 𝐖𝑣(1)  and 𝑏𝑣(1)  are the weight and bias learned by 

encoder. Using the transformed node embeddings �̃�𝑣, GAT layer aggregates information 

from neighbor nodes through a shared attention mechanism 𝑒𝑖,𝑗 = attn( �̃�𝑖
𝑣, �̃�𝑗

𝑣 ) where, 𝑒𝑖,𝑗 

is the importance weight of node 𝑣𝑖 to 𝑣𝑖 and attn(.) is the GAT. The final importance 

weight 𝛾𝑖,𝑗is computed using the softmax function. Consequently, the final node embedding 
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𝐙𝑖
𝑣 is then calculated by a weighted sum based on the learned importance weights as 𝐙𝑖

𝑣 = 

∑ 𝛾𝑖,𝑘 �̃�𝑘
𝑣

𝒌∈𝒩(𝒊 )  where 𝒩(𝒊 ) denotes the neighbors of node 𝑣𝑖. 

The structure decoder uses the final node embeddings 𝐙𝑣 as inputs to reconstruct the 

original network structure �̂� = sigmoid(𝐙𝑣 (𝐙𝑣)T) where sigmoid(.) is the sigmoid activation 

function. 

Attribute Autoencoder: In attribute encoder, two non-linear feature transformation layers 

are first utilized to map the observed attribute data to a latent attribute embedding 𝐙𝐴. The 

attribute decoder uses the node embeddings 𝐙𝑣 obtained from the structure encoder and the 

attribute embeddings 𝐙𝐴 to reconstruct the original node attributes �̂� as �̂� = (𝐙𝑣 (𝐙𝐴)T). In 

AnomalyDAE [49], the training objective is to minimize the reconstruction errors of both 

the network structure and node attributes. Finally, the anomaly score for nodes are 

calculated as the reconstruction error from both the network structure and node attribute 

perspectives. These scores can then be used to determine a threshold which allows for 

classification of nodes and anomalous based on their score, the one with highest scores 

often classified as anomalies. Figure 15 is the pictorial representation of AnomalyDAE 

algorithm. 

 

 

Figure 15: AnomalyDAE architecture presented in [49]. The framework is made up of 

two autoencoders, structure autoencoder and attribute autoencoder. Reconstructed 

adjacency matrix �̂� and feature matrix �̂� are calculated respectively from structure 

decoder and attribute decoder which are combinedly used to calculate the anomaly 

score and predict the outlier. 

3.3.4 Other GNN-based algorithms for outlier detection 

There are outlier detection algorithms that are based on different architectures other than GCN, 

GAT and GAE. Generative Adversarial Attributed Network Anomaly Detection (GAAN) [50] 

is one such algorithm which is based on Generative Adversarial Network (GAN) [51] . GANs 

are a class of machine learning models designed for generating new, synthetic data that 

resembles a given dataset. GANs use an adversarial framework and are known for their 

innovative approach to learning and generating new data. 

• Generative Adversarial Attributed Network Anomaly Detection (GAAN): Chen et al. 

(2020) in [50] proposed GAAN, a method to detect node level outlier based on GAN. The 

basic architecture of GAAN consists of three parts, generator, encoder, and discriminator. 
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The generator takes a Gaussian noise as input and generates synthetic graph nodes. The 

encoder then maps both real and fake graph nodes into a latent space and encodes graph 

structure information into the node’s latent representation through the sample covariance 

matrix for both real and fake nodes. Its goal is to create data that is indistinguishable from 

real data. The discriminator finally takes the output generated by the encoder as input and 

predicts whether the connected nodes are real (from the graph) or fake (from the generator). 

The model uses the encoder output to assess anomalies by considering sample 

reconstruction error and real-sample identification confidence. The working mechanism is 

summarized as follows: 

Generator: The generator, G𝑛, in the GAAN framework aims to approximate the 

distribution of the original feature matrix X using a low-dimensional prior Gaussian 

distribution. It employs  MLP as the generator, which consists of layers that perform linear 

transformations and non-linear mappings. Here, for nth MLP layer of generator G𝑛, the 

output 𝐇𝐺𝑛
(𝑛+1)

 is calculated as 𝐇𝐺𝑛
(𝑛+1)

 = f (𝐖𝐺𝑛
(𝑛)

𝐇𝐺𝑛
(𝑛)

 + 𝑏𝐺
(𝑛)

), where 𝐇𝐺𝑛
(𝑛)

 is the input of nth 

MLP layer, 𝐖𝐺𝑛
(𝑛)

 and 𝑏𝐺𝑛
(𝑛)

 are the nth layer parameter matrix and corresponding bias 

respectively. f (.) is ReLU activation function. 

 

Encoder: The encoder, E, converts the original node feature matrix X and the generator's 

output, approximated node feature matrix, X′ into a low-dimensional latent space with the 

same dimensions as the generator's prior data distribution. This transformation is achieved 

using a three-layer MLP with a ReLU activation function. The attribute matrix X and the 

generator's output matrix X′ serve as the initial inputs for the first layer eventually resulting 

in latent representations Z and Z′, respectively. 

 

Discriminator: The discriminator, D, in GAAN captures graph structure information by 

estimating the adjacency matrix A using graph embedding. The adjacency matrix is 

estimated through the dot product of the embedding output, which is then passed through 

an entry-wise sigmoid function. For real data, the adjacency matrix estimate �̂� is given as  

�̂� = sigmoid( ZZT), and for generated data by the generator, the adjacency matrix estimate  

�̂�′ is given as �̂�′ = sigmoid( Z′ Z′T). Here, Z and 𝑍′ are embeddings encoded from original 

node attributes X and generator output X′, respectively. For node pairs <vi,vj> with an 

existing link in the original graph, the discriminator is trained to differentiate whether the 

dot product of embeddings is from the real data's �̂�  or from the generator's �̂�′. 

 

GAAN is trained by minimizing the cross-entropy loss of the binary classifier. The 

optimization process in GAAN involves learning the encoder, generator, and discriminator 

to improve the model's ability to distinguish between real and fake data. The generator aims 

to confuse the discriminator, while the discriminator works to identify whether the data is 

from the real distribution or generated. After training, anomaly detection involves 

calculating an anomaly score for each node based on two loss components: context 

reconstruction loss and structure discriminator loss. The context reconstruction loss 

measures how well the generator can recreate the original attributes of a node, while the 

structure discriminator loss evaluates the model's accuracy in determining if connections 

between nodes are real. A higher anomaly score suggests the node is more likely to be 

anomalous. This scoring system helps identify potentially abnormal nodes in the graph 
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based on both attribute and structural inconsistencies. Figure 16 is the pictorial 

representation of GAAN. 

 

 

Figure 16: GAAN framework in [50]. GAAN consists of three parts, generator, 

encoder and discriminator. Generator uses noise level to produce approximated 

node feature matrix X′, encoder transforms both original feature matrix X and 

generated feature matrix X′ into latent space Z and Z′. Discriminator calculates 

loss from two latent space inputs and assigns the loss scores to all the nodes. 

 

3.4 Summary of GNN-based outlier detection methods  

The summary of node-level outlier detection methods explained in this report is shown in table 

1. 

Table 1 Summary of GNN based node-level outlier detection methods 

Graph Type Network Architecture Method Measurement Objective function 

Static 

Attributed 

GCN Semi-GCN [43] Outlier Score ∥ ℎ𝑣−ℎ𝑣
(𝑓𝑖𝑛𝑎𝑙)

∥2 

ResGCN [44] Outlier Score 
(1-α)||(𝐀 − �̂�)||F

2 + + α ||𝐗 − �̂� − λR||F
2

 

CoLA [46] Outlier Score -∑ 𝑦𝑖log (𝑠𝑖)N=1  + (1-𝑦𝑖)log(1-𝑠𝑖) 

GCN-based GAE  DOMINANT [58] Outlier Score (1-α) 𝑅𝑠 + α𝑅𝐴 

ALARM [48] Outlier Score 𝐿𝑠 + 𝐿𝑎 

GAT-based GAE AnomalyDAE [49] Reconstruction 

Loss 

α||(𝐀 − �̂�)θ||F
2 + + (1 − α) ||(𝐗 − 𝐗)̂η||F

2 

GAN GAAN [50] Outlier Score 𝛼𝐿G𝑛 (𝑣𝑖) + (1 − 𝛼) 𝐿D (𝑣𝑖) 
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4 Implementation of GNN Algorithms for 
Outlier Detection 
In this chapter, the practical aspects of implementing various GNN algorithms for outlier 

detection are explored. The focus is on hands-on coding and the in-depth application of the 

discussed algorithms using PyTorch [4] and the PyGOD [5] library, a dedicated framework for 

outlier detection in graphs. The chapter is focused on outlier node detection and covers a range 

of algorithms to represent each of the methodologies, GCN-based, GCN-based GAE, GAT-

based GAE, and GAN-based. Algorithms  CoLA, DOMINANT, AnomalyDAE and GAAN 

are chosen to illustrate each method, respectively and are used for node-level outlier detection 

in static attributed graph network. The datasets used for implementing these algorithms are the 

Cora  and CiteSeer datasets available in PyGOD. 

4.1 Introduction to PyTorch 

PyTorch [4] is an open-source machine learning library widely used for developing and 

deploying deep learning models. It offers a dynamic computational graph model, which allows 

for easier debugging and experimentation compared to static computational graph frameworks. 

PyTorch provides comprehensive support for neural networks, including efficient tensor 

operations, automatic differentiation, and GPU acceleration. These features make it a suitable 

choice for implementing GNNs and other machine learning algorithms. Some of the key 

features of PyTorch are explained below. 

1. Tensor Manipulation: PyTorch is known for its flexible tensor operations, which serve as 

the foundation for deep learning models. It supports various data types and operations, 

including matrix multiplication, reshaping, slicing, and more. 

2. Automatic Differentiation: PyTorch's ‘autograd’ feature automates the calculation of 

gradients for tensors, facilitating the training of neural networks. 

3. Neural Network Modules: PyTorch's ‘nn’ package provides a range of pre-built neural 

network layers and modules, including convolutional layers, recurrent layers, activation 

functions, loss functions, and optimizers. 

4. GPU Acceleration: PyTorch seamlessly supports running computations on GPUs, which 

significantly accelerates training and inference for large models. 

5. Data Loading and Preprocessing: PyTorch provides tools for data loading and 

preprocessing through its ‘torch.utils.data’ package, including ‘Dataset’ and ‘DataLoader’ 

classes. 

4.1.1 Introduction to PyTorch Geometric 

PyTorch Geometric (PyG) [4] is an open-source library built upon PyTorch that provides a 

comprehensive framework for building graph-based machine learning models using the 

PyTorch deep learning framework. It offers a wide range of tools and utilities specifically 

designed for working with graph data. Some of the noticeable features of PyG are as follows: 
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1. Graph Data Handling: PyG provides efficient and flexible data handling capabilities for 

graph data. It includes data structures such as ‘Data’ and ‘Batch’ that allow for easy 

representation of graph data, including node and edge features, adjacency information, and 

other attributes. PyG supports various graph types, including undirected and directed 

graphs, as well as heterogenous graphs with different types of nodes and edges. 

2. GNN Architectures: PyG offers a variety of GNN architectures, such as GCN, GAT, 

GraphSAGE, and more. These architectures are implemented as PyTorch Modules and can 

be easily customized and integrated even into larger models. 

3. Graph Datasets: PyG includes a collection of commonly used graph datasets, such as Cora, 

PubMed, and others. These datasets are available through the ‘torch_geometric.datasets’ 

module and can be easily loaded for use in experiments. PyG also supports loading and 

working with custom graph datasets. 

4. Graph Transformations and Utilities: PyG provides a variety of graph transformations and 

preprocessing utilities, such as adding self-loops, normalizing adjacency matrices, and 

performing random walks. These utilities facilitate data preparation and transformation for 

GNN models. 

5. Integration with PyTorch: PyG is built on top of PyTorch and leverages its features, such 

as automatic differentiation, GPU support, and the extensive ecosystem of deep learning 

tools. This integration allows for seamless use of PyTorch optimizers, loss functions, and 

other modules within PyG. 

4.2 Introduction to PyGOD 

PyGOD (Python Graph Outlier Detection) [5] is a specialized library for outlier detection in 

graph data. It extends PyTorch to provide efficient and easy-to-use implementations of various 

graph-based anomaly detection algorithms. Some of the salient features of PyGOD are 

explained below: 

1. Variety of Algorithms: PyGOD offers implementations of several GNN-based outlier 

detection methods, including DOMINANT, AnomalyDAE, CoLA, GAAN and more. 

These algorithms cater to different types of graph data and anomaly detection scenarios. 

2. Unified Interface: PyGOD provides a unified interface for using different outlier detection 

algorithms, making it easier to experiment and compare their performance on the same 

dataset. 

3. Customization and Flexibility: PyGOD allows users to customize hyperparameters and 

experiment with different model configurations. This flexibility is crucial for achieving 

optimal performance across different applications. 

4. Evaluation Metrics: PyGOD supports a variety of evaluation metrics, such as precision, 

recall, F1-score, and area under the ROC curve (AUC), to assess the performance of outlier 

detection algorithms. 

5. Documentation and Examples: PyGOD provides comprehensive documentation and 

examples to help users understand how to implement and apply the provided algorithms 

effectively. 



 Implementation of GNN Algorithms for Outlier Detection 

 

37 

4.3 Datasets 

In this work, two datasets are used, Cora dataset and Citeseer dataset provided by Planetoid 

and are openly available under PyTorch Geometric dataset. Both datasets are used for 

algorithm implementation and model development. The Cora and CiteSeer datasets are popular 

citation network datasets, a collection of benchmark datasets, where nodes represent academic 

papers (documents), and edges represent citations between papers.  

Although there are many datasets available within the library, the Cora and Citeseer datasets 

were selected  for this study. The datasets are widely used for research purposes in graph-based 

machine learning and are well-suited for the needs of this study. These datasets serve as a well-

known and frequently utilized resource for research in graph-based machine learning, 

particularly for node classification tasks.  

4.3.1 Cora Dataset 

The Cora dataset is characterized by the following attributes : 

Nodes: Cora dataset consists of 2,708 nodes, each representing a scientific paper. The nodes 

contain features that describe the paper, such as word presence in the abstract. 

Edges: There are 10556 edges in the dataset, which represent citation relationships between 

papers. If one paper cites another, an edge connects the two papers in the graph. 

Classes: The papers are categorized into seven distinct classes based on their research topics. 

The dataset has 7 classes starting from 0 to 6 as the index number of classes. 

Features: Each node in the graph is described by a feature vector of length 1,433. The feature 

vector is a numerical representation indicating the presence or absence of certain words in the 

paper's abstract. If any feature (which is word) is present, the feature value will have some 

numerical value or else 0. 

Graph: Cora dataset represents one single static attributed graph consisting of 2708 nodes and 

10556 edges with every node having 1433 features. The edges are directed and unweighted 

meaning any edge has a source and destination node but does not carry any weight. 

The graphical representation of Cora dataset is presented in figure 17. 
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Figure 17:  Graphical representation of Cora dataset with 2708 nodes and 

10556 edges. Different colors indicate the nodes belonging to 7 different class 

of the dataset. Labels of classes are indicated in numbers from 0 to 6. 

 

4.3.2 CiteSeer Dataset 

The CiteSeer dataset contains the following attributes : 

Nodes: There are 3327 nodes in Citeseer dataset, each representing an academic paper. Each 

node (paper) has a feature vector, typically a bag-of-words representation of the document's 

text.  

Edges: Citeseer dataset has 9104 edges representing the citation relationships between papers. 

If one paper cites another, an edge connects the two papers in the graph. 

Classes: Each papers are categorized into six distinct classes based on their research topics 

meaning the dataset has total of 6 classes starting from 0 to 6 as the index number of classes. 

Features: Each node in the graph of CiteSeer dataset is described by a feature vector of length 

3703. Here, the feature vector for each node is typically a bag-of-words representation of the 

document’s text.  

Graph: CiteSeer dataset is one single static attributed graph with 3327 nodes and 9104 edges 

with 3703 features for each node. Like Cora, the edges here are also directed and unweighted 

implying that any edge has a source and destination node but does not carry any weight. 
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The graphical representation of CiteSeer dataset is presented in figure 18. 

 

 

 

Figure 18: Graphical representation of CiteSeer dataset with 3327 

nodes and 9104 edges. Different colors indicate the nodes belonging 

to 6 different class of the dataset. Labels of classes are indicated in 

numbers from 0 to 6. 

 

4.3.3 Injection of  outliers in the datasets 

As both Cora and CiteSeer dataset do not contain any labeled outliers, manual injection of 

outliers is carried out to create a more realistic scenario for testing and benchmarking different 

outlier detection algorithms. By introducing known outliers into the dataset, the performance 

of various algorithms can be assessed and compared based on ground truth data. This setup 

also provides a basis for training and validating models in supervised learning settings, 

ensuring that models can be efficiently trained to identify and handle anomalous data points.  
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In both datasets, Cora and Citeseer, two types of outliers are manually injected, contextual 

outliers and structural outliers. Contextual outliers are injected into the graph by modifying the 

features of randomly selected nodes. Structural outliers, on the other hand, are injected by 

adding or removing the edges in the graph between randomly selected two nodes.  

Contextual Outliers (node-level outliers): Contextual outliers are introduced by modifying 

the features of randomly selected nodes in the graph. This can also be seen as injecting the 

node-level outliers. The main motive here is to change the existing feature values of the selected 

nodes. Based on the number of features modified, the contextual outliers in the datasets are 

injected in two different ways, naming them as soft contextual outliers and hard contextual 

outliers.  

• Soft Contextual Outliers: In soft contextual outliers, only 100 features out of all the 

node features are manipulated. To inject a soft contextual outlier into the dataset, first a 

node is randomly chosen. Again, 100 random features of that randomly chosen node are 

chosen. The randomly chosen features are altered. The alteration of features is performed 

by populating with any randomly generated values in the range of (0, 0.5). A total of 25 

soft contextual outliers are injected into the dataset. 

• Hard Contextual Outliers: In hard contextual outliers, all the features of node are 

modified. While injecting hard contextual outliers, a random node is chosen. For all the 

feature values of the randomly chosen node, the values are altered. A randomly 

generated value in the range of (0,0.5) is injected to all the features. A total of 25 hard 

contextual outliers are injected into the dataset. 

This process of modification for 50 different random nodes alters the characteristics of the 

nodes, making them outliers within the graph. The nodes that are altered by this process are 

stored. 

Structural Outliers (edge-level outliers): Structural outliers are introduced by manipulating 

the edges in the graph which involves adding or removing edges (based on the presence of 

edge) between pairs of randomly selected nodes. It is done so that adding new edges creates 

unexpected connections, while removing existing edges breaks connections in the graph. For 

each such outlier to inject, two nodes are randomly selected from the graph and the presence 

of edge between two selected nodes are checked. Based on the presence of edge, an edge is 

either added if previously not present or removed if previously present. Both the nodes involved 

in the edge modification are added to the set of structural outliers. This process is instantiated 

40 times to get a set of 80 structural outliers.  

After injecting both contextual outliers and structural outliers, the union of both the outliers are 

calculated to get a set of the total outliers from 50 contextual outliers and 80 structural outliers. 

As the process is random, total outliers might contain outliers which are both contextual and 

structural at the same time and also the nodes might get repeated which necessarily does not 

always produces 130 different outliers.  

In Cora dataset after injecting the outliers, it yielded 126 total distinct outliers out of which 50 

are contextual outliers(25 soft contextual and 25 hard contextual outliers), 78 are structural 

outliers and 2 are both contextual and structural outliers. The graphical representation of Cora 

dataset after manipulating 126 nodes as outliers is shown in figure 19. 
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Figure 19: A graphical representation of Cora dataset after 

injecting 128 outliers (50 contextual, 78 structural and 2 both). 

Different colors denote different types of nodes, inliers and 

types of outlier nodes. 

 

Likewise, in Citeseer dataset, the outlier injection process produced 128 total outliers injected 

in the graph. 50 of them are contextual outliers, 80 are structural outliers and 2 are both 

structural and contextual outlier. Citeseer dataset has 50 contextual outliers (25 soft and 25 

hard contextual outliers). The graphical representation of Citeseer dataset with outlier injected 

is shown in figure 20 where each type of nodes (inliers, contextual outliers, structural outliers 

and both type of outliers) are represented with different colors. 

 

Figure 20: A graphical representation of Cora dataset after 

injecting 128 outliers (50 contextual, 80 structural and 2 both). 

Different colors denote different types of nodes, inlier and types 

of outlier nodes. 
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The summary of statistics of the datasets used is shown in table 2. 

 

Table 2 Summary of datasets used 

Datasets Cora CiteSeer 

Number of nodes 2708 3327 

Number of edges 10566 9104 

Number of attributes 1433 3702 

Number of contextual outliers 50 50 

Number of structural outliers 78 80 

Number of both contextual and structural outliers 2 2 

 

4.4 Model Implementation  

The Cora dataset with injected outliers and the CiteSeer dataset with injected outliers are used 

as base datasets where GNN algorithms are implemented to perform outlier detection. Both 

datasets are first transformed using ‘NormalizeFeatures()’ as a parameter to normalize the 

feature matrix of the datasets. This transform essentially brings each feature in feature matrix 

to a consistent scale. There is also a class imbalance in the dataset, meaning 126 outlier nodes 

as compared to 2582 inlier nodes in Cora dataset and 128 outliers compared to 3199 inliers. 

However, both datasets do not have any labels associated with outliers and inliers. Also, GNN 

algorithms are designed to work in unsupervised learning where the models do not learn from 

the labeled examples but rather from normal patterns and relationships in the data. Therefore, 

class imbalances in both datasets (Cora dataset and CiteSeer dataset) are not addressed. 

A total of 4 models are designed to implement outlier detection in Cora and Citeseer datasets. 

Though the datasets contain both node-level (contextual) and edge-level (structural) outliers, 

the primary focus of the model implementation is in the detection of node-level outliers. 

However, the prediction of structural outliers by the models are also considered for evaluation 

to see how the models behave in such context. All the models are built on node-level based 

outlier detection algorithms. The algorithms chosen in this work are DOMINANT, 

AnomalyDAE, GAAN, and CoLA, the respective models are named as model_Dominant,  

model_AnomalyDAE, model_GAAN,  and model_CoLA. The motive here is to choose one 

algorithm from different GNN based methods in detecting node-level outliers in static 

attributed graph. 

DOMINANT uses GCN-based GAE framework, AnomalyDAE uses GAT-based GAE 

framework, GAAN uses GAN-based GAE framework and CoLA uses GCN framework . The 
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detection of edge-level based outliers and dynamic graph-based outliers are out of the scope of 

this work. 

Each model is run 10 times in both Cora and Citeseer dataset with outlier injected to detect the 

outliers. The average value of results of 10 such experiments is taken as the representative 

values for all the models in both datasets. The evaluation and comparison of all the designed 

models are based on the average value of 10 experiments.  

4.4.1 Outlier Detection with DOMINANT  

The algorithm DOMINANT [52] is readily available in PyGOD library [5]. The algorithm 

comes with several hyperparameters that need to be tailored for a specific task or dataset. Here, 

in this work, DOMINANT is imported from the library which is under pygod.detector [53]. A 

model (namely model_Dominant) is instantiated by creating the object of imported class 

DOMINANT.  

The hyperparameters of the model are set manually to obtain the optimum performance. In 

hyperparameters settings, ReLU is set as the activation function and GCN is chosen as the 

GNN layer (backbone) of the model. The training batch size is set to the total number of nodes 

present in the datasets (2708 for Cora dataset and 3327 for CiteSeer dataset). Likewise, other 

hyperparameters, contamination is set to 0.1 and dropout rate (total fraction of inputs to drop 

to prevent overfitting) is set to 0.2.  The hidden dimension (the dimension of latent space 

representation) is set to 128 while keeping the learning rate of the model (a hyperparameter 

that determines the size of the steps taken during the optimization process of training) to 0.04. 

The total number of GNN layers (which is GCN) in encoder is set to 2. The model is finally 

trained for 100 epochs. The hyperparameters were twigged manually by trying and testing the 

model and by referring to the documentation in [52] to get the best and optimum results. 

The model is trained 10 times for both Cora and Citeseer datasets with outliers injected. The 

decision scores of the model for each trainings is then calculated. Decision scores are the scores 

assigned by the model to each node in the dataset. The higher the score, the more likely the 

node is to be considered as an outlier. As there are 50 contextual outliers  injected in Cora 

dataset and CiteSeer dataset along with 126 total outliers in Cora dataset and 128 total outliers 

in CiteSeer outliers, two different sets of predicted outliers are calculated using two different 

thresholds. In Cora dataset, first (top) 50 outliers and top 126 outliers predicted by 

model_Dominant are extracted whereas in CiteSeer dataset, top 50 and top 128 outliers 

predicted by model_Dominant are extracted. 

The outliers predicted by model_Dominant are finally checked with the ground truth, the real 

outliers injected in the respective datasets. Both contextual outliers and structural outliers are 

evaluated. In addition to this, Receiver Operating Characteristic (ROC) curve of True Positive 

Rate vs False Positive Rate (FPR) for all node-level outlier prediction of the model is also 

calculated for all threshold settings. The Area Under the ROC Curve (AUC) score of the model 

from ROC curve is calculated to generalize the performance of DOMINANT in outlier 

detection for Cora and CiteSeer dataset respectively.  
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4.4.2 Outlier Detection with AnomalyDAE 

Similar to DOMINANT, AnomalyDAE [54] is also available in PYGOD [5] library. The 

method is imported and instantiated as model_AnomalyDAE with manually setting some of the 

hyperparameters referring to the documentation in [54]. 

The hyperparameters set during the training of model_AnomalyDAE are as mentioned. The 

activation function is chosen as ReLU, and the training batch size is set to the total number of 

nodes present in the datasets (2708 and 3327 for Cora and Citeseer dataset respectively). GAT 

is chosen as the GNN layers in encoder (backbone) while the number of GNN layers in encoder 

is set to 2. The learning rate of the model is set to  0.02 and the contamination parameter is set 

to 0.1. The hidden dimension (dimension of encoder output also called the latent space 

representation) is set to 128 and theta (decision threshold controlling hyperparameter) value of 

the model during the training is set to 1. [54]  

The AnomalyDAE based model ‘model_AnomalyDAE’ is then trained for Cora and CiteSeer 

dataset by fit(.) method for 10 times each. The decision scores for all the nodes in the network 

assigned by the model in each trainings are calculated and are checked against two different 

thresholds (top 50 and top 126 outliers for Cora dataset, top 50 and top 128 outliers for CiteSeer 

dataset) to generate the predicted outliers by the model. The outliers predicted by 

model_AnomalyDAE are finally evaluated against the real outliers injected in each of the 

dataset, Cora and CiteSeer. The evaluation for both contextual and structural outliers is 

performed in both datasets. ROC curve of TPR vs FPR for all node-level outlier prediction of 

the model is obtained for all threshold settings. AUC score from ROC curve is calculated.  

4.4.3 Outlier Detection with GAAN 

GAAN [55], another pre available algorithm for outlier detection in PYGOD [5], is imported, 

instantiated and trained for the datasets (Cora and CiteSeer dataset with injected outliers) for 

10 times each. The decision scores calculated by GAAN-based model (model_GAAN) for all 

the nodes in the network in each trainings are checked against the thresholds (top 50 and top 

126 outliers for Cora dataset, top 50 and 128 outliers for CiteSeer dataset) to produce the list 

of outliers predicted by the model. The outliers predicted by model_GAAN are then checked 

against the real outliers of the datasets. 

GAAN based model is instantiated with several hyperparameters settings. The model’s training 

batch size is set to 0 (0 for bull batch training [55]). The noise dimension of the model is set to 

32. Similarly, hidden dimension (dimension of latent space representation) is set to128 while 

keeping the learning rate of the model to 0.02. The model has 4 GNN layers as 4, 2 layers for 

generator and 2 for discriminator. The contamination parameter of the model during training 

is set to 0.1 and weight (a hyperparameter for reconstruction of node feature and structure) is 

set to 0.5 during training of the model. The model is trained for 100 epochs. [55] 

The trained model of GAAN is also used to calculate ROC curve. In ROC curve, TPR and TFR 

of the model for node-level outlier prediction are plotted against each other for all threshold 

settings. AUC score for ROC curve is calculated to generalize the outlier detecting performance 

of the model for both datasets, Cora and CiteSeer. 
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4.4.4 Outlier Detection with COLA 

CoLA [47], an algorithm for outlier detection available  in PYGOD [47], is implemented in a 

similar way to the other previously used algorithms DOMINANT [52], AnomalyDAE [54] and 

GAAN [55]. The CoLA model (model_CoLA) is imported, instantiated, and trained with Cora 

and CiteSeer dataset. The decision score of the model is checked with the thresholds (top 50 

and top 126 for Cora dataset, top 50 and 128 for CiteSeer dataset). The outliers are predicted 

based on the decision score of model_CoLA. The model is run for 10 times for each Cora and 

CiteSeer dataset. The predicted outliers by the model in both datasets are checked against the 

real outliers. 

CoLA based model is instantiated with different hyperparameters. The model has an activation 

function as ReLU and has 4 GCN layers in its encoder. The contamination rate of the model 

during training is set to 0.1 while the dropout rate is set to 0.2. The training batch size is set to 

the respective number of total nodes present in Cora and CiteSeer dataset. The model samples 

all the neighbors during training so ‘num_neigh’ hyperparameter is set to -1. The model is 

trained for 100 epochs. [47] 

Once the model is trained, TPR and FPR of the model for node-level outlier detection are 

plotted against each other at different threshold settings to obtain ROC curve. From the ROC 

curve of the model, AUC score is calculated and is taken as a parameter to generalize the 

performance of CoLA based model for node-level outlier predictions for Cora and CiteSeer 

dataset.
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5 Evaluation and Comparison of GNN-based 
algorithms 
This chapter presents the results obtained from the GNN models that are designed for outlier 

detection. The results obtained for each of the models, model_Dominant, model_AnomalyDAE, 

model_GAAN, and model_COLA  are discussed, analyzed, and compared.  

5.1 Results of DOMINANT 

A DOMINANT [52]  based model, model_Dominant, has been implemented to predict the 

outliers in Cora and CiteSeer dataset with injected outliers. The outliers predicted by this model 

are checked against the real outliers injected into the datasets. As two different kinds of outliers 

are injected, contextual (node-level) and structural (edge-level) outliers, the result obtained 

from the model is evaluated against both the outliers.  

Performance of DOMINANT model in Cora dataset 

Table 3 shows the status of outliers predicted by model_Dominant in Cora dataset with outliers 

injected. As the model was ran for 10 times, the number of outliers predicted along with their 

types for each run is shown in table 1. The average values from 10 runs for all the predicted 

outliers is calculated and this average value is taken as the representative result for the model, 

model_Dominant. Table 1 shows the number of hard contextual and soft outliers, and structural 

outliers correctly predicted by DOMINANT model along with the number of false predictions 

of outliers for two thresholds (top 50 outliers and top 126 outliers). The threshold number 50 

and 126 is chosen because of the fact that there are total 50 contextual outliers and 126 total 

outliers (contextual, structural and both combined).  

As the primary goal is to evaluate the performance of model in node-level outlier detection, a 

list of top 50 outlier nodes predicted by the model based on the outlier scores assigned to each 

of the nodes during model training is calculated. This list of predicted outliers are checked with 

the list of real outliers injected in the dataset and it is observed that on average, 41 predicted 

outliers are true outliers and remaining 9 are not the true outliers. Furthermore, out of 41 

correctly predicted outliers, all 25 hard contextual outliers are detected whereas 16 out of 25 

soft contextual outliers are truly detected. However, in all 10 runs, model_Dominant predicted 

only 2 true structural outliers which were in reality both structural and contextual outliers. This 

result showed that the model is incapable of correctly predicting the structural outliers. 

Likewise, considering the fact that Cora dataset has 126 total outliers injected, from a threshold 

value of 126, a list of top 126 outliers predicted by model_Dominant is extracted. It is found 

that upon checking upon with the list of real outlier injected in the dataset, on average 49 true 

outliers (22 soft contextual outliers, 25 hard contextual outliers, 2 structural outliers and 2 both 

contextual and structural outliers) are predicted leaving remaining 77  predicted outliers by the 

model as incorrect prediction.  
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Table 3 Status of outliers predicted by DOMINANT model in Cora dataset with outliers injected. The model is 

run for 10 instances in the dataset.  Average is the average value of each column for 10 experiments.   

Experiment 

Number 

Threshold : Top 50 Outliers 

Total number of prediction : 50 

Threshold : Top 126 Outliers 

Total number of prediction: 126 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

1 15 25 2 10 22 25 4 77 

2 16 25 2 9 23 25 5 75 

3 14 25 2 11 22 25 5 74 

4 18 25 2 7 22 25 4 76 

5 15 25 2 10 23 25 4 76 

6 16 25 2 9 22 25 5 76 

7 16 25 2 9 21 25 4 78 

8 17 25 2 8 22 25 4 77 

9 15 25 2 10 23 25 4 76 

10  14 25 2 11 24 25 5 74 

Average 16 25 2 9 22 25 4 77 

*SCO: Soft Contextual Outliers, *HCO: Hard Contextual Outliers.  

*Average is rounded up to the nearest highest integer value for all true prediction. 

 

In addition to the evaluation shown in table 3, ROC curve is also plotted to check the diagnostic 

ability of the model to predict the outliers in all threshold settings and AUC score is calculated. 

Figure 21 is the ROC curve for DOMINANT model taking only contextual outliers into 

consideration. The existence of structural outliers in the dataset is not considered.  

DOMINANT model has the AUC score of 0.80 in ROC curve for contextual outliers detection 

which is shown in figure 21. 
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Figure 21: ROC Curve for model_Dominant for contextual outlier 

predictions in Cora dataset containing injected outliers. TPR and 

FPR of the model are plotted against each other at various threshold 

of outlier scores assigned by the model. The diagonal dotted line 

represents the line of no discrimination. 

 

Performance of DOMINANT model in CiteSeer dataset 

In table 4, the performance of the model in CiteSeer dataset is shown. DOMINANT model is 

trained for 10 times for each of the two thresholds (top 50 outliers and top 128 outliers based 

on the outlier scores assigned by the model). For each run, number of true soft contextual 

outliers, true hard contextual outliers, structural outliers, and false outliers predicted are 

recorded. The average value of all 10 runs for both the threshold values from table 4 suggests 

that model_Dominant is incapable of truly predicting the structural outliers. For threshold of 

top 50 outliers, on average, the model predicted 18 soft contextual outliers and 25 hard 

contextual outliers keeping the number of correct contextual outliers prediction to 43 whereas 

7 are falsely predicted as outliers. Keeping the threshold value of top 128 outliers, the model 

is able to detect 24 soft contextual outliers, 25 hard contextual outliers essentially making the 

correct contextual outliers prediction number to 49 while 79 of the predictions made by the 

model as outliers are incorrect on average.     

In figure 22, ROC curve of TPR plotted against FPR for all the threshold settings of 

DOMINANT model for the prediction of outliers in CiteSeer dataset is presented where the 

model has AUC score of 0.83. This ROC curve is only for the contextual outlier prediction of 

the model while the scenario of structural outliers and their detection is dropped off. 
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Table 4 Status of outliers predicted by DOMINANT model in CiteSeer dataset with outliers injected. The model 

is run for 10 times in the dataset. Average is the average value of each column for 10 experiments.   

Experiment 

Number 

Threshold : Top 50 Outliers 

Total number of prediction : 50 

Threshold : Top 128 Outliers 

Total number of prediction : 128 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

1 18 25 2 7 23 25 3 79 

2 18 25 2 7 23 25 3 79 

3 17 25 2 8 24 25 3 78 

4 17 25 2 8 25 25 2 78 

5 18 25 2 7 24 25 2 79 

6 16 25 2 9 24 25 2 79 

7 18 25 2 7 23 25 3 79 

8 17 25 2 8 24 25 2 79 

9 18 25 2 7 23 25 3 79 

10  17 25 2 8 24 25 3 78 

Average 18 25 2 7 24 25 3 79 

*SCO: Soft Contextual Outliers, HCO: Hard Contextual Outliers.  

*Average is rounded up to the nearest highest integer value for all true prediction and to the nearest lowest integer value of false predictions. 

 

 

Figure 22: ROC Curve for model_Dominant for contextual outlier predictions 

in CiteSeer dataset containing injected outliers. TPR and FPR of the model are 

plotted against each other at various threshold of outlier scores assigned by the 

model. The diagonal dotted line represents the line of no discrimination. 
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5.2 Results of AnomalyDAE 

The contextual and structural outliers predicted by model_AnomalyDAE, which is based on 

AnomalyDAE algorithm [54] are checked against the real outliers injected into the datasets, 

Cora and CiteSeer.  

Performance of AnomalyDAE model in Cora dataset 

Table 5 shows the status of outliers predicted by model_AnomalyDAE for two thresholds of 

top 50 outliers and top 126 outliers. For each run of model indicated by the experiment number 

in table 5, the number of true soft contextual outliers, hard contextual outliers, true structural 

outliers and false predicted outliers in each of the thresholds are tabulated. The average value 

in the table suggests that in both thresholds, the performance of the model in structural outliers 

prediction is negligible. In the top 50 outliers predicted by the model, 18 are true soft contextual 

outliers, 25 are true hard contextual outliers and 7 are falsely predicted outliers. Likewise, the 

model predicted 48 contextual outliers (23 soft contextual and 25 hard contextual) while 75 of 

the outliers predicted are not the real outliers for threshold of top 126 outliers on an average. 

Ignoring the presence of structural outliers and their prediction by model_AnomalyDAE, ROC 

curve for contextual outlier detection is plotted and is shown in figure 23. TPR and FPR of 

outlier detection for various threshold values assigned by the model for the nodes in the graph 

of Cora dataset are plotted against each other to generate the ROC curve which gave the AUC 

score of 0.81. 

Table 5 Status of outliers predicted by AnomalyDAE model in Cora dataset with outliers injected. The model is 

run for 10 instances in the dataset. Average is the average value of each column for 10 experiments. 

Experiment 

Number 

Threshold : Top 50 Outliers  

Total number of prediction : 50 

Threshold : Top 126 Outliers 

Total number of prediction : 126 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

1 18 25 2 7 23 25 4 76 

2 17 25 2 8 23 25 5 75 

3 19 25 2 6 24 25 5 74 

4 19 25 2 6 23 25 4 76 

5 16 25 2 9 23 25 4 76 

6 17 25 2 8 24 25 5 74 

7 18 25 2 7 22 25 4 77 

8 20 25 2 5 22 25 4 77 

9 19 25 2 6 23 25 4 76 

10  16 25 2 6 22 25 5 76 

Average 18 25 2 7 23 25 5 75 

*SCO: Soft Contextual Outliers, *HCO: Hard Contextual Outliers. *Average is rounded up to the nearest highest integer value. 
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Figure 23: ROC Curve for model_AnomalyDAE for contextual outlier 

predictions in Cora dataset containing injected outliers. True Positive 

Rate and False Positive Rate of the model are plotted against each 

other at various threshold of outlier scores assigned by the model. 

The diagonal dotted line represents the line of no discrimination. 

 

Performance of AnomalyDAE model in CiteSeer dataset 

In CiteSeer dataset, the training of AnomalyDAE model for 10 runs is shown in table 6. With 

experiment number denoting the run of the model, the table highlights the predictions made by 

the model for two chosen thresholds, top 50 outliers and top 128 outliers predicted. The average 

value for all the predictions shows that in top 50 outliers threshold category, the model 

predicted 18 true soft contextual outliers and 25 hard contextual outliers which in combination 

is 43 true contextual outliers predictions. Remaining 7 predictions as outlier nodes by the model 

are incorrect. In top 128 outliers threshold section, the prediction made by the model reads 24 

true soft contextual outliers, 25 true hard contextual outliers, (47 true contextual outliers 

prediction) and 79 incorrectly predicted outliers. In both of thresholds, the model is incapable 

of predicting the structural outliers. The concern of structural outlier detection is kept aside and 

only the contextual outlier prediction is considered to build a ROC curve. In ROC curve, true 

positive rate and false positive rate of AnomalyDAE model to predict the contextual outliers 

in all the threshold settings are plotted against each other to obtain the AUC score of the model 

for CiteSeer dataset. The AUC score of AnomalyDAE based model is obtained to be 0.84 as 

shown in figure 2. that represents the ROC curve of AnomalyDAE model.   
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Table 6 Status of outliers predicted by AnomalyDAE model in CiteSeer dataset with outliers injected. The 

model is run for 10 instances in the dataset. Average is the average value of each column for 10 experiments. 

Experiment 

Number 

Threshold : Top 50 Outliers 

Total number of prediction : 50 

Threshold : Top 128 Outliers 

Total number of prediction : 128 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

1 17 25 2 8 23 25 3 79 

2 18 25 2 7 23 25 3 79 

3 18 25 2 7 24 25 3 78 

4 17 25 2 8 25 25 2 78 

5 16 25 2 9 24 25 2 79 

6 19 25 2 6 24 25 2 79 

7 17 25 2 8 23 25 3 79 

8 18 25 2 7 24 25 2 79 

9 18 25 2 7 23 25 3 79 

10  17 25 2 8 24 25 3 78 

Average 18 25 2 7 24 25 3 79 

*SCO: Soft Contextual Outliers, *HCO: Hard Contextual Outliers.  

*Average is rounded up to nearest highest integer value for all true prediction and to the nearest lowest integer value of false predictions 
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Figure 24: ROC Curve for model_AnomalyDAE for contextual outlier 

predictions in CiteSeer dataset containing injected outliers. True Positive Rate 

and False Positive Rate of the model are plotted against each other at various 

threshold of outlier scores assigned by the model. The diagonal dotted line 

represents the line of no discrimination. 

5.3 Results of GAAN 

In the datasets, Cora dataset and CiteSeer dataset where both of them contains manually 

injected outliers, GAAN [55] based model, model_GAAN, is trained. The model is trained for 

10 times in both the datasets. For all of 10 trainings, the outliers predicted by the model is 

recorded. 

Performance of GAAN  in Cora dataset 

Table 7 is the summary of the model performance in Cora dataset. The experiment number 

denotes the run of the model. Two different threshold values, top 50 outliers and top 126 

outliers are set to produce the lists of outliers predicted by the model. The average values in 

table 7 shows that in Cora dataset, for threshold value of top 50 outliers, model_GAAN 

predicted 8 true soft contextual outliers, 25 hard contextual outliers, 2 structural outliers (which 

are essentially both contextual and structural outliers) leaving 17 as the false predictions on 

average. Similarly, on average, for threshold of top 126 outliers, model_GAAN predicted 21 

true soft contextual outliers, 25 hard contextual outliers, 3 structural outliers while making 79 

false outlier predictions. The model fails to predict structural outliers present in the dataset. 

Keeping the focus on only contextual outlier predictions and taking out the equation of 

structural outliers, ROC curve of the model for contextual outlier detection in Cora dataset is 

plotted. TPR and FPR of the model in different threshold settings is plotted against each other 

in ROC curve as shown in figure 25. From figure 25, the AUC score of GAAN model is found 

out to be 0.74.  
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Table 7 Status of outliers predicted by GAAN model in Cora dataset with outliers injected. The model is run for 

10 instances in the dataset. Average is the average value of each column for 10 experiments. 

Experiment 

Number 

Threshold : Top 50 Outliers 

Total number of prediction : 50 

Threshold : Top 126 Outliers 

Total number of prediction : 126 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

1 8 25 2 17 22 25 3 78 

2 9 25 2 16 22 25 4 77 

3 8 25 2 17 21 25 3 79 

4 7 25 2 18 20 25 3 80 

5 7 25 2 18 22 25 3 78 

6 8 25 2 17 20 25 3 80 

7 10 25 2 15 21 25 3 79 

8 7 25 2 18 22 25 4 77 

9 8 25 2 17 21 25 3 79 

10  7 25 2 18 22 25 3 78 

Average 8 25 2 17 21 25 3 79 

*SCO: Soft Contextual Outliers, HCO: Hard Contextual Outliers.  

*Average is rounded up to nearest highest integer value for all true prediction and to the nearest lowest integer value of false predictions 

 

Figure 25: ROC Curve for model_GAAN for contextual outlier 

predictions in Cora dataset containing injected outliers. True Positive 

Rate and False Positive Rate of the model are plotted against each other 

at various threshold of outlier scores assigned by the model. The 

diagonal dotted line represents the line of no discrimination. 
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Performance of GAAN  in CiteSeer dataset 

In table 8, the summary of GAAN based model, model_GAAN in detecting the outliers in 

CiteSeer dataset with injected outliers is presented. Considering the average values of 10 runs 

of model from table 8, for threshold of top 50 outliers, GAAN model predicted 8 true soft 

contextual outliers, 25 hard contextual outliers, 2 structural outliers and 17 incorrectly 

predicted nodes as outliers. Also, for threshold of 128 outliers, there were total of 82 incorrectly 

predicted outliers, 21 true predicted soft contextual outliers, 25 true predicted hard contextual 

outliers, and 2 true predicted structural outliers. The model essentially predicted 33 true 

contextual outliers in top 50 outliers threshold and 46 true contextual outliers in top 128 outliers 

threshold. On the other hand, the model fails to predict structural outliers present in CiteSeer 

dataset. 

For the model’s ability to predict contextual outliers while keeping aside structural outliers, 

ROC curve is further plotted to generalize the performance. For all the threshold settings to 

determine the outliers in the dataset, model’s TPR and FPR are plotted against each other to 

obtain the ROC curve of model_GAAN as shown in figure 26. GAAN model has 0.78 AUC 

score. 

 

 

Figure 26: ROC Curve for model_GAAN for contextual outlier predictions in 

CiteSeer dataset containing injected outliers. True Positive Rate and False 

Positive Rate of the model are plotted against each other at various threshold of 

outlier scores assigned by the model. The diagonal dotted line represents the line 

of no discrimination. 
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Table 8 Status of outliers predicted by GAAN based model in CiteSeer dataset with outliers injected. The model 

is run for 10 instances in the dataset. Average is the average value of each column for 10 experiments. 

Experiment 

Number 

Threshold : Top 50 Outliers 

Total number of prediction : 50 

Threshold : Top 128 Outliers 

Total number of prediction : 128 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

1 9 25 2 16 21 25 2 82 

2 8 25 2 17 22 25 2 81 

3 8 25 2 17 21 25 2 82 

4 7 25 2 18 22 25 2 81 

5 7 25 2 18 22 25 2 81 

6 9 25 2 16 22 25 3 80 

7 7 25 2 18 21 25 3 82 

8 8 25 2 17 22 25 2 82 

9 8 25 2 17 22 25 2 82 

10  7 25 2 18 22 25 3 81 

Average 8 25 2 17 21 25 2 82 

*SCO: Soft Contextual Outliers, HCO: Hard Contextual Outliers.  

*Average is rounded up to nearest highest integer value for all true prediction and to the nearest lowest integer value of false predictions 

 

5.4 Results of CoLA 

For model_CoLA, a CoLA [47] based model, Cora dataset and Citeseer dataset with manually 

injected outliers are used as two benchmark datasets. The model is trained 10 times for each of 

the datasets and the outliers in the datasets are predicted. 

Performance of CoLA model in Cora dataset 

Table 9 presents the status of outliers predicted by CoLA model in Cora dataset. The 

information of the real outliers injected in the dataset is used for the evaluation of the 

prediction. For each of 10 runs of model, the outliers predicted by the model is presented in  

table 9. The model is set for two threshold values, top 50 outliers and top 126 outliers based on 

the outlier scores assigned by the model. The model under threshold of top 50 outliers yielded 

10 true soft contextual outliers, 25 true hard contextual outliers, 2 structural outliers and 14 

false outliers on average in its top 50 predicted outliers list. Similarly, the model predicted 22 

true soft contextual outliers, 25 hard contextual outliers, 4 structural outliers and 77 false 

outliers for its top 126 outliers threshold. In summary, model_CoLA had the true prediction of 

35 contextual outliers in its top 50 outliers threshold and 48 true contextual outliers in its top 

126 outliers threshold. The model fails to truly predict structural outliers. 
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ROC curve for contextual outlier prediction of CoLA model is shown in figure 27. TPR is 

plotted against FPR of the model for outlier detection in different threshold settings assigned 

by the model manually to draw the ROC curve which provides the AUC score of the model as 

0.78. 

 

 

Figure 27: ROC Curve for model_CoLA for contextual outlier predictions in 

Cora dataset containing injected outliers. True Positive Rate and False 

Positive Rate of the model are plotted against each other at various threshold 

of outlier scores assigned by the model. The diagonal dotted line represents 

the line of no discrimination.  
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Table 9 Status of outliers predicted by CoLA model in Cora dataset with outliers injected. The model is run for 

10 instances in the dataset. Average is the average value of each column for 10 experiments. 

Experiment 

Number 

Threshold : Top 50 Outliers 

Total number of prediction : 50 

Threshold : Top 126 Outliers 

Total number of prediction : 126 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

1 11 25 2 14 23 25 4 76 

2 12 25 2 12 22 25 3 77 

3 10 25 2 13 22 25 4 77 

4 10 25 2 15 23 25 4 76 

5 11 25 2 14 23 25 3 77 

6 9 25 2 16 22 25 4 77 

7 9 25 2 16 22 25 4 77 

8 10 25 2 15 22 25 5 76 

9 10 25 2 15 21 25 3 79 

10  11 25 2 14 23 25 3 77 

Average 10 25 2 15 22 25 4 77 

*SCO: Soft Contextual Outliers, *HCO: Hard Contextual Outliers.  

*Average is rounded up to nearest highest integer value for all true prediction and to the nearest lowest integer value of false predictions 

 

Performance of CoLA model in CiteSeer dataset 

To predict the outliers manually injected in CiteSeer dataset, CoLA model is trained 10 times. 

The individual value of status of outliers detected by the model representing all the 10 runs is 

tabulated in table 10. The outlier detection performance of the model is performed for two 

threshold values, top 50 outliers and top 128 top outliers based on the outlier scores assigned 

during the training of the model. Taking the average value as the representative value of the 

model, for threshold value of top 50 outliers, model_CoLA predicted 37 true contextual outliers 

present in the dataset while its 13 predictions are false predictions. Likewise, in the list of 128 

predictions given by the model during the threshold of top 128 outliers, 47 out of 50 true 

contextual outliers are predicted while remaining other 81 predictions made by the model are 

false predictions. The model is completely incapable of predicting structural outliers. 

ROC curve is drawn by plotting TPR against FPR  for contextual outliers prediction against 

each other for different threshold settings of outlier scores of the model. Figure 28 is the ROC 

curve representation of the model. From ROC curve, the AUC score is 0.80 as shown in figure 

28. 
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Table 10 Status of outliers predicted by CoLA model in CiteSeer dataset with outliers injected. The model is 

run for 10 instances in the dataset. Average is the average value of each column for 10 experiments. 

Experiment 

Number 

Threshold : Top 50 Outliers 

Total number of prediction : 50 

Threshold : Top 128 Outliers 

Total number of prediction : 128 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

True SCO 

Outliers 

Predicted 

True HCO 

Outliers 

Predicted 

True 

Structural 

Outliers 

Predicted  

False 

Predicted 

Outliers 

1 12 25 2 13 22 25 2 81 

2 12 25 2 13 22 25 2 81 

3 13 25 2 12 22 25 3 80 

4 13 25 2 12 21 25 2 83 

5 12 25 2 13 21 25 2 83 

6 14 25 2 11 21 25 4 80 

7 11 25 2 14 22 25 1 81 

8 12 25 2 13 21 25 2 82 

9 13 25 2 12 21 25 2 82 

10  11 25 2 14 23 25 2 80 

Average 12 25 2 13 22 25 2 81 

*SCO: Soft Contextual Outliers, *HCO: Hard Contextual Outliers. 

 *Average is rounded up to nearest highest integer value for all true prediction and to the nearest lowest integer value of false predictions 

 

 

Figure 28: ROC Curve for model_CoLA for contextual outlier predictions in 

CiteSeer dataset containing injected outliers. True Positive Rate and False Positive 

Rate of the model are plotted against each other at various threshold of outlier 

scores assigned by the model. The diagonal dotted line represents the line of no 

discrimination.  
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5.5 Comparison of results   

The performance of all the models (model_Dominant, model_AnomalyDAE, model_GAAN, 

and model_CoLA) is compared in this section. Table 11 provides the comparison of the 

performance of all the models in detecting the outliers for threshold of top 50 outliers in Cora 

and CiteSeer datasets. In figure 29, the line plots of the true predictions made by all the models 

for contextual outlier detection at threshold value of top 50 outliers are shown. Figure 29(a) is 

for Cora dataset and figure 29(b) is for CiteSeer dataset. 

Table 11 True Positive  and False Positive  of models for contextual outlier detection in Cora and CiteSeer dataset 

with outliers injected for threshold value of top 50 outliers 

Models Cora Dataset CiteSeer Dataset 

True outliers 

predicted  

False outliers 

predicted  

True outliers 

predicted  

False outliers 

predicted  

model_Dominant 41 9 43 7 

model_AnomalyDAE 43 7 43 7 

model_GAAN 33 15 33 17 

model_CoLA 35 15 37 13 

*All the values are average value taken from 10 different runs rounded up in highest nearest integer. 

 

 

 

 

Figure 29: Line plots for true predictions of models, Dominant, AnomalyDAE, GAAN, and CoLA 

for contextual outlier detections in Cora and CiteSeer dataset carried out for 10 experiments 

keeping threshold value top 50 outliers 
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The AUC score of all the models for Cora and CiteSeer dataset for contextual outlier prediction 

is shown in table 12. 

 

Table 12 AUC score of all the models in Cora and CiteSeer dataset for contextual outlier predictions 

 Cora  CiteSeer 

model_Dominant 0.80 0.83 

model_AnomalyDAE 0.81 0.84 

model_GAAN 0.74 0.78 

model_CoLA 0.78 0.80 

 

5.6 Discussion 

Contextual outliers are the outliers that possess significant deviation from other inlier nodes in 

terms of node attributes. In soft contextual outliers injection, 100 node features were altered, 

and hard contextual outliers injection modified all the node features randomly. All models, 

DOMINANT, AnomalyDAE, GAAN and CoLA are able to detect hard contextual outliers 

while the models showed variation in soft contextual outliers detection for both Cora and 

CiteSeer dataset as shown in table 3, 4, 5, 6, 7, 8, 9 and 10. This high detection rate of hard 

contextual outliers can be attributed to the distinct and pronounced modifications made to every 

feature of the affected nodes, making them easier to differentiate from normal instances. Soft 

contextual outliers being the softer nature of contextual outliers, where only a subset of 100 

features is modified, makes them more challenging to detect compared to hard contextual 

outliers. As far as structural outliers are concerned, these outliers involve anomalies introduced 

through changes in the graph structure, such as adding or removing edges. All models struggled 

to accurately detect structural outliers in both datasets. This difficulty arises from the complex 

interplay between nodes and edges, making it harder to isolate structural anomalies compared 

to node-level anomalies. Also, as the node features are not changed at all for all structural 

outliers that are injected in the datasets, the low detection rates for structural outliers suggest 

that the models primarily focus on node-level characteristics and struggle to effectively capture 

graph-level irregularities. However, as all the algorithms chosen in this work are node-level 

based outlier detection algorithms, the incapacity of the models to predict structural outliers 

does not carry any significance in models’ prediction performance. 

Additionally, adjusting the threshold for outlier detection influenced the number of outliers 

detected and the model's performance. Lower thresholds, such as the top 50 outliers, led to 

higher accuracy in identifying hard contextual outliers due to their more pronounced 

deviations. However, soft contextual outliers posed a greater challenge, resulting in varying 

detection rates across models.  

To account for the model’s performance in all thresholds, ROC curve is plotted that 

illustrates the trade-off between True Positive Rate (TPR) and False Positive Rate (FPR) for 

different threshold settings for the contextual outliers prediction. The AUC score quantifies the 

performance of the model across various thresholds. A higher AUC score indicates better 
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overall performance in distinguishing between normal and outlier instances. From table 12, 

AnomalyDAE has the highest AUC score in Cora dataset (0.81) followed by DOMINANT 

(0.8), CoLA (0.78) and GAAN (0.74). Likewise, in CiteSeer dataset, the highest AUC score 

order is AnomalyDAE (0.84), DOMINANT (0.83), CoLA (0.80) and GAAN (0.78).  As 

AnomalyDAE uses dual autoencoder structure, structural autoencoder and attribute 

autoencoder, with each encoder in GAT framework, the node embeddings contains more 

structural and attribute information leading to higher discrimination ability to inliers and node-

level outliers. Likewise, DOMINANT, a GCN based GAE algorithm, uses one attribute 

encoder based on GCN framework and two decoders, structure reconstruction decoder and 

attribute reconstruction decoder. This particular architecture is also equally powerful in 

identifying the node-level anomalies in the graph suggested by the AUC score. The generator 

and discriminator approach used in GAAN performed slightly lower (AUC score of 0.74 in 

Cora and 0.78 in CiteSeer) in node-level outlier detection as compared to AnomalyDAE and 

DOMINANT. This is because of the fact that the performance of model depends upon the 

appropriate selection of hyper parameters such as noise dimensions and number of neighbors 

in sampling. Fine tune of hyperparameters is therefore essential to optimize GAAN 

performance. Lastly, CoLA, a GCN based contrastive self-supervised method, is also equally 

sufficient to predict node-level outliers with AUC score of 0.78 in Cora and 0.80 CiteSeer.  

In summary, while the models exhibited strong performance in identifying hard contextual 

outliers, they faced challenges in detecting soft contextual and structural outliers. These 

findings underscore the importance of considering the nature of anomalies and the complexity 

of graph structures when developing outlier detection models. Fine tuning of hyperparameters 

is also another important factor to get the optimum result for the models in outlier detection. 

The variations in AUC scores among the models can be attributed to differences in architectural 

design, learning processes, feature representations, and robustness to noise and variations in 

data distribution. Each model has its strengths and weaknesses, which should be considered 

when selecting the most suitable model for a particular outlier detection task.
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6 Conclusion and Future work 
This thesis work has meticulously explored the realm of GNNs and their potential applications 

in unraveling outlier detection within graph data. Initially, an in-depth study of graph basics is 

conducted to understand the fundamental aspects associated with graph theory. This study 

progresses as an extensive state-of-the-art examination into various GNN architectures, 

including GCN, GAT, GAE, GraphSAGE, GIN, VGAE, and others, to establish a solid 

theoretical groundwork. Additionally, the research delves into a state-of-the-art study of GNN-

based outlier detection algorithms, preceded by a comprehensive analysis of the definition of 

outliers and their types in graph-based data. Furthermore, the primary focus is on node-level 

based outliers in static attributed graphs, leaving other outlier types such as edge-level outliers, 

sub-graph level outliers, and outliers in dynamic graphs for future exploration. The algorithms 

implemented for node-level based outlier detection are DOMINANT, AnomalyDAE, CoLA, 

and GAAN, each leveraging distinct GNN architectures and methodologies for anomaly 

identification. DOMINANT represents the GCN-based GAE method, AnomalyDAE 

represents the GAT-based GAE method, CoLA represents the GCN-based contrastive self-

supervised learning method, and GAAN represents the GAN-based method. 

This work has utilized the Cora dataset and CiteSeer dataset, popular benchmark citation 

networks, as the datasets to carry out the implementation of these GNN-based outlier detection 

algorithms. Since there were no outliers in both datasets, outliers are manually injected into the 

datasets. This is accomplished by randomly modifying node features and network structure by 

randomly selecting nodes to designate them as outliers in the graph representing the datasets. 

50 node-level (contextual) outliers and 80 edge-level (structural) outliers are injected into the 

datasets (Cora and CiteSeer), serving as the ground truth for model evaluation. Four different 

models are designed, each corresponding to the DOMINANT, AnomalyDAE, CoLA, and 

GAAN algorithms. The AUC score for each model from the ROC curve is calculated to 

evaluate the performance of the models in node-level outlier detection. For the ROC curve, the 

true positive rate and false positive rate of the model in node-level outlier prediction in the 

datasets at different threshold settings are plotted against each other, and the AUC score is 

calculated. The threshold settings are chosen automatically. Out of the four models, 

AnomalyDAE had the highest AUC scores of 0.81 and 0.83 for the Cora and CiteSeer datasets, 

respectively, followed by DOMINANT, with AUC scores of 0.80 and 0.83 for the Cora and 

CiteSeer datasets, respectively. Likewise, CoLA had the third-best AUC scores of 0.78 for 

Cora and 0.80 for CiteSeer datasets, while GAAN had the lowest AUC scores out of all four 

models, with scores of 0.74 and 0.78 for the Cora and CiteSeer datasets, respectively. These 

AUC scores have essentially illuminated the reliability of all the models. 

Conversely, during the injection of 50 node-level (contextual) outliers in the dataset, 25 of them 

were injected as soft contextual outliers, altering only the 100 features of the selected node, 

while 25 of them were injected as hard contextual outliers, altering each node feature of 

randomly selected nodes. The detection of soft contextual outliers presented a challenge across 

models, with variations observed in their AUC scores, underscoring the intricacies of anomaly 

detection in graph data, while all models detected all hard contextual outliers with ease. 

Despite the inherent challenges posed by soft node-level outliers, which all models have 

grappled with, this study underscores the effectiveness of all the models implemented in 

pinpointing outliers with notable precision. These findings, coupled with insights into the 

limitations and avenues for enhancement, particularly in the detection of soft contextual 

outliers, provide a solid foundation for future advancements in GNN-based outlier detection 

methodologies. By bridging the chasm between theoretical underpinnings and practical 
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implementation, this research propels the development of more robust and adaptable 

algorithms, poised to tackle the complexities of complex graph data structures with quantifiable 

evidence of their performance. 

Future Work 

In paving the way for future research endeavors, particularly within the realm of static 

attributed graphs and node-level outlier detection, several promising avenues beckon 

exploration. Firstly, delving deeper into the fusion of GNN architectures with advanced 

techniques such as graph attention mechanisms and graph convolutional networks holds 

immense potential. The exploration of novel architectures that adeptly capture intricate graph 

structures and attribute information while mitigating the challenges posed by noise and 

structural outliers is paramount. Additionally, extending the scope of analysis to dynamic graph 

settings could offer valuable insights, enabling the development of outlier detection algorithms 

capable of adapting to evolving graph structures over time. Furthermore, integrating domain-

specific knowledge and domain-specific features into outlier detection frameworks could 

enhance the robustness and interpretability of anomaly detection models. Lastly, the 

exploration of ensemble learning approaches, combining multiple outlier detection algorithms, 

could bolster performance and generalization capabilities, offering a promising avenue for 

future research endeavors in this domain.
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Appendix B Code for Importing datasets and graph visualization for datasets 

 

#importing libraries 

import torch 

import torch_geometric   

from torch_geometric.datasets import Planetoid 

from torch_geometric.transforms import NormalizeFeatures 

import torch.nn.functional as F 

import torch_geometric.utils as tg_utils 

from matplotlib import pyplot as plt 

import networkx as nx 

import numpy as np 

import random 

from matplotlib import pyplot as plt 

from pygod.detector import DOMINANT, AnomalyDAE, CoLA, GAAN 

 

 

 

#Cora Dataset 

data_cora = Planetoid(root='GNN', name='Cora', transform=NormalizeFeatures())[0] 

#CiteSeer Dataset 

 

data_citeseer = Planetoid(root='GNN', name='CiteSeer', transform=NormalizeFeatures())[0] 

# Print basic information about the cora dataset 

print(f'Number of nodes: {data_cora.num_nodes}') 

print(f'Number of edges: {data_cora.num_edges}')  # Edges are undirected, so each edge is 

counted twice 

print(f'Number of features per node: {data_cora.num_node_features}') 

print(f'Number of classes (labels): {data_cora.num_classes}') 

 

# Print basic information about the citeseer dataset 

print(f'Number of nodes: {data_ citeseer.num_nodes}')  
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print(f'Number of edges: {data_ citeseer.num_edges}')  # Edges are undirected, so each edge 

is counted twice 

print(f'Number of features per node: {data_ citeseer.num_node_features}') 

print(f'Number of classes (labels): {data_ citeseer.num_classes}') 

 

 

 

# Convert the graph data to a NetworkX graph for visualization of cora dataset 

graph = torch_geometric.utils.to_networkx(data_cora, to_undirected=True) 

# Draw the graph 

data = data _cora 

# Define a list of colors (one for each class) 

colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2'] 

# Visualize the graph using NetworkX and matplotlib 

plt.figure(figsize=(12, 12)) 

# pos is the layout (positioning) of the nodes 

pos = nx.spring_layout(graph, seed=42) 

# Draw nodes with different colors based on their class labels 

for label in range(7): 

    # Get nodes with the current class label 

    nodes = [i for i in range(data.num_nodes) if data.y[i] == label] 

    nx.draw_networkx_nodes( 

        graph, 

        pos, 

        nodelist=nodes, 

        node_size=20, 

        node_color=colors[label], 

        label=str(label) 

    ) 

# Draw edges with low opacity 

nx.draw_networkx_edges(graph, pos, alpha=0.2) 

# Add a legend for the class labels 

plt.legend(scatterpoints=1, markerscale=2, loc='upper right') 

# Remove axis labels  
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plt.axis('off') 

# Add a title that shows the number of nodes and edges 

plt.title(f'Cora Dataset Graph\nNodes: {data.num_nodes}, Edges: {data.num_edges}') 

# Show the graph 

plt.show() 

 

 

# Convert the graph data to a NetworkX graph for visualization of citeseer dataset 

graph = torch_geometric.utils.to_networkx(data_citeseer, to_undirected=True) 

data = citeseer_data 

# Define a list of colors (one for each class) 

colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b'] #, '#e377c2'] 

# Visualize the graph using NetworkX and matplotlib 

plt.figure(figsize=(12, 12)) 

# Initialize an empty list to store valid nodes 

valid_nodes = [] 

# Iterate over each class label 

for label in range(6): 

    # Get nodes with the current class label 

    nodes = [i for i in range(data.num_nodes) if data.y[i] == label] 

    valid_nodes += nodes 

# Create a new list to store nodes with valid positions 

valid_nodes_with_positions = [] 

# Iterate over each node and check if it has a position 

for node in valid_nodes: 

    try: 

        # Get the position of the node 

        position = pos[node] 

        valid_nodes_with_positions.append(node) 

    except KeyError: 

        # If the node has no position, skip it 

        pass 

# pos is the layout (positioning) of the nodes 

pos = nx.spring_layout(graph, seed=42) 
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# Draw nodes with different colors based on their class labels 

for label in range(6): 

    # Get nodes with the current class label 

    #nodes = [i for i in range(data.num_nodes) if data.y[i] == label] 

    nodes = [node for node in valid_nodes_with_positions if data.y[node] == label] 

    nx.draw_networkx_nodes( 

        graph, 

        pos, 

        nodelist=nodes, 

        node_size=20, 

        node_color=colors[label], 

        label=str(label) 

    ) 

# Draw edges with low opacity 

nx.draw_networkx_edges(graph, pos, alpha=0.2) 

# Add a legend for the class labels 

plt.legend(scatterpoints=1, markerscale=2, loc='upper right') 

# Remove axis labels 

plt.axis('off') 

# Add a title that shows the number of nodes and edges 

plt.title(f'CiteSeer Dataset Graph\nNodes: {data.num_nodes}, Edges: {data.num_edges}') 

# Show the graph 

plt.show() 
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Appendix C Outlier injection in datasets 

def inject_outliers(graph, node_outliers, edge_outliers): 

    #Define number of soft and hard contextual outliers 

    num_soft_outliers = 25 

    num_hard_outliers = node_outliers - num_soft_outliers 

    # Set to track contextual outliers (node-level) 

    contextual_outliers = set() 

    soft_contextual_outliers = set() 

    hard_contextual_outliers = set() 

 

    #define feature range 

    feature_range=(0, 0.5) 

     

    # Inject soft contextual outliers  

    for _ in range(num_soft_outliers): 

        # Randomly select a node to modify 

        node = random.choice(range(graph.num_nodes)) 

 

        # Randomly select 50% of the features to flip 

         num_features_to_modify = 100 

  features_to_modify = random.sample(range(graph.num_node_features), 

num_features_to_modify) 

 

        # Modify the selected features 

        for feature in features_to_modify: 

            graph.x[node][feature] = random.uniform(feature_range[0], feature_range[1]) 

 

        # Add the node to the set of soft contextual outliers 

        soft_contextual_outliers.add(node) 

        # Add the node to the set of contextual outliers 

        contextual_outliers.add(node) 

 

    # Inject hard contextual outliers 
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    for _ in range(num_hard_outliers): 

        # Randomly select a node to modify 

        node = random.choice(range(graph.num_nodes)) 

         

        # Modify all features of the selected node with random values from range (0, 0.5) 

        graph.x[node] = torch.tensor([random.uniform(feature_range[0], feature_range[1]) for _ 

in range(graph.num_node_features)]) 

         

        # Add the node to the set of hard contextual outliers 

        hard_contextual_outliers.add(node) 

        contextual_outliers.add(node) 

     

    # Set to track structural outliers (edge-level) 

    structural_outliers = set() 

 

    # Convert the graph to a NetworkX graph 

    nx_graph = tg_utils.to_networkx(graph, to_undirected=True) 

     

    # Inject outliers by modifying edges 

    outlier_edges = [] 

    for _ in range(edge_outliers): 

        # Choose two random nodes to form an edge 

        node1, node2 = random.sample(range(graph.num_nodes), 2) 

         

        # Check if an edge already exists between the two nodes 

        exists = nx_graph.has_edge(node1, node2) 

         

        if exists: 

 

            # If the edge exists, remove it to create an outlier 

            graph.edge_index, _ = tg_utils.remove_edge(graph.edge_index, node1, node2) 

            outlier_edges.append((node1, node2, 'removed')) 

             

        else: 
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            # If the edge does not exist, add it to create an outlier 

            # Add a new edge by concatenating to the existing edge_index 

            new_edge = torch.tensor([[node1], [node2]]) 

            graph.edge_index = torch.cat([graph.edge_index, new_edge], dim=1) 

            outlier_edges.append((node1, node2, 'added')) 

             

        # Add both nodes involved in the edge modification to the set of structural outliers 

        structural_outliers.add(node1) 

        structural_outliers.add(node2) 

     

    # Combine contextual and structural outliers to create total outliers 

    total_outliers = contextual_outliers.union(structural_outliers) 

 

    return graph, soft_contextual_outliers, hard_contextual_outliers, contextual_outliers, 

structural_outliers, total_outliers 

 

# Inject outliers into the dataset 

num_outliers = 50   

edge_outliers = 40 

 

data, sco, hco, co, so, outlier_indices = inject_outliers(data, num_outliers, edge_outliers) 

 

# Print the indices of the injected outlier nodes 

print(f"Injected contextual outlier nodes: {sorted(list(co))}") 

print(f"Injected structural outlier nodes: {sorted(list(so))}") 

print(f"Injected total outlier nodes: {sorted(list(outlier_indices))}") 

 

print(f"Total number of injected outliers : {len(outlier_indices)}") 

print(f"Total number of contextual outliers : {len(co)}") 

print(f"Total number of structural outliers : {len(so)}") 

 

# Convert lists to sets 

set_co = set(co) 

set_so = set(so) 
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# Find the common elements using intersection 

common_elements = set_co & set_so 

 

# Convert the set of common elements back to a list 

common_elements_list = list(common_elements) 

 

# Print the common elements 

print("Total Common contextual and structural outliers:", len(common_elements_list)) 

print("List of Common contextual and structural outliers:", common_elements_list) 

 

def visualize_graph(graph, contextual_outliers, structural_outliers): 

     

    # Convert the PyTorch Geometric graph to a NetworkX graph for visualization 

    nx_graph = tg_utils.to_networkx(graph, to_undirected=True) 

 

    # Calculate inliers (nodes not in contextual or structural outliers) 

    inliers = set(nx_graph.nodes()) - (contextual_outliers | structural_outliers) 

 

    # Calculate nodes that are both contextual and structural outliers 

    both_outliers = contextual_outliers & structural_outliers 

 

    # Define colors for each type of node 

    color_mapping = { 

        'inliers': 'green', 

        'contextual_outliers': 'red', 

        'structural_outliers': 'blue', 

        'both_outliers': 'yellow'  # Both contextual and structural outliers 

    } 

 

    # Define node colors based on the category 

    node_colors = [] 

    for node in nx_graph.nodes(): 

        if node in both_outliers: 
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            node_colors.append(color_mapping['both_outliers']) 

        elif node in contextual_outliers: 

            node_colors.append(color_mapping['contextual_outliers']) 

        elif node in structural_outliers: 

            node_colors.append(color_mapping['structural_outliers']) 

        else: 

            node_colors.append(color_mapping['inliers']) 

 

    # Visualize the graph using NetworkX and matplotlib 

    plt.figure(figsize=(10, 10)) 

 

    # Define a layout for the graph visualization 

    pos = nx.spring_layout(nx_graph, seed=42) 

 

    # Draw the graph 

    nx.draw(nx_graph, pos, node_size=30, node_color=node_colors, with_labels=False, 

alpha=0.7) 

 

    # Create a legend 

    labels = { 

        color_mapping['inliers']: 'Inliers', 

        color_mapping['contextual_outliers']: 'Contextual Outliers', 

        color_mapping['structural_outliers']: 'Structural Outliers', 

        color_mapping['both_outliers']: 'Both Contextual & Structural Outliers' 

    } 

    handles = [plt.Line2D([0], [0], marker='o', color='w', label=label, markersize=10, 

markerfacecolor=color) for color, label in labels.items()] 

    plt.legend(handles=handles, loc='upper right', title='Node Types') 

 

    # Remove axis labels and title 

    plt.axis('off') 

     

    # Show the graph 

    plt.title('CiteSeer dataset with outliers injected') 
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    plt.show() 

 

 

# Visualize the graph with inliers, contextual outliers, structural outliers, and both outliers 

visualize_graph(data_cora, co, so) 

visualize_graph(data_citeseer, co, so) 
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Appendix D Code of DOMINANT Model for outlier detection 

#model definition 

model = DOMINANT(lr=0.04,hid_dim=128,dropout=0.2,num_layers=4,theta =1.0, 

batch_size=data.num_node_features, backbone =GCN, num_layers =4, contamination=0.1, 

weight = 0.5, act = ReLU) 

 

#model train 

model.fit(data) 

 

# Get the decision scores and identify outlier nodes 

outlier_scores = model_.decision_score_ 

 

# Sort the outlier scores in descending order 

sorted_indices = torch.argsort(outlier_scores, descending=True) 

# Select the top 50 outliers based on their scores 

pred_outlier_indices = sorted_indices[:50].tolist() 

print('Number of outlier predicted', len(pred_outlier_indices)) 

# Get the outlier scores of the top 50 outliers 

pred_outlier_scores = outlier_scores[pred_outlier_indices].tolist() 

 

# Print the indices and scores of the top 50 outliers 

print("Top 50 outlier indices:", sorted(pred_outlier_indices)) 

print("Top 50 outlier scores:", pred_outlier_scores) 

 

# Filter out the labels corresponding to the outlier indices 

pred_outlier_labels = [labels[i] for i in pred_outlier_indices] 

print("Labels of top 50 predicted outliers:", pred_outlier_labels) 

 

# Convert lists to sets 

real_outliers_set = set(outlier_indices) 

detected_outliers_set = set(pred_outlier_indices) 

 

# Find the intersection of the two sets (common outliers) 

common_outliers = real_outliers_set & detected_outliers_set 
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# Print the common outliers 

print(f"Common outliers between real and detected outliers: {sorted(common_outliers)}") 

print('total nummber of common outliers :',len(common_outliers)) 

 

# Find the intersection of the two sets (contextual outliers) 

common_sco = sco & detected_outliers_set 

 

# Print the common outliers 

print(f"soft contextual outliers detected: {sorted(common_sco)}") 

print('total nummber of soft contextual outliers :',len(common_sco)) 

 

# Find the intersection of the two sets (contextual outliers) 

common_hco = hco & detected_outliers_set 

 

# Print the common outliers 

print(f"hard contextual outliers detected: {sorted(common_hco)}") 

print('total nummber of hard contextual outliers :',len(common_hco)) 

 

# Convert PyTorch Geometric data to a NetworkX graph 

nx_graph = tg_utils.to_networkx(data, to_undirected=True) 

 

# Set up the plot 

plt.figure(figsize=(12,12)) 

 

# Define positions for the nodes using a layout 

pos = nx.spring_layout(nx_graph) 

 

# Define colors for different types of nodes 

# Normal nodes 

normal_color = 'green' 

 

# Detected outliers (nodes detected as outliers by the model) 

detected_outlier_color = 'red' 
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# False positives (nodes detected as outliers by the model but not real outliers) 

false_positive_color = 'yellow' 

 

# Real outliers (nodes injected as outliers) 

undetected_outlier_color = 'blue' 

 

# Draw normal nodes 

normal_nodes = [node for node in nx_graph.nodes if node not in co and node not in so] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=normal_nodes, node_color=normal_color, 

node_size=30, alpha=0.7) 

 

# Draw true positive (true outliers predicted both contextual and structural outliers) 

real_outliers_predicted = sorted(list(common_hco)) + sorted(list(common_sco)) 

#real_outliers_predicted = [node for node in nx_graph.nodes if node in common_hco or node 

in common_sco] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=real_outliers_predicted, 

node_color=detected_outlier_color, node_size=30, alpha=0.7) 

 

# Draw contextual outliers not detected 

undetected_contextual_outliers = [node for node in nx_graph.nodes if node in co and node not 

in real_outliers_predicted] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=pred_outlier_indices, 

node_color=undetected_outlier_color, node_size=30, alpha=0.7) 

 

# Calculate false positives (nodes detected as outliers but not real outliers) 

false_positives = [node for node in nx_graph.nodes if node in pred_outlier_indices and node 

not in real_outliers_predicted] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=false_positives, 

node_color=false_positive_color, node_size=30, alpha=0.7) 

 

# Draw edges 

nx.draw_networkx_edges(nx_graph, pos) 

 

# Create a custom legend 

legend_labels = { 
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    f'Inliers ({len(normal_nodes)})': normal_color, 

    #f'Outliers not Detected ({len(undetected_contextual_outliers)})': detected_outlier_color, 

    f'True Predicted Outliers  ({len(real_outliers_predicted)})': undetected_outlier_color, 

    f'False Predicted Outliers ({len(false_positives)})': false_positive_color 

} 

 

handles = [plt.Line2D([0], [0], marker='o', color='w', label=label, markersize=10, 

markerfacecolor=color) 

           for label, color in legend_labels.items()] 

plt.legend(handles=handles, loc='upper right', title='Node Types') 

 

# Remove axis labels and title 

plt.axis('off') 

 

plt.show() 

 

from sklearn.metrics import roc_curve, auc 

 

pred_oulier_label_np = np.array(pred_outlier_labels)  # True labels (0: normal, 1: outlier) 

dominant_scores = np.array(pred_outlier_scores) 

 

# Calculate ROC curve and AUC for each model 

dominant_fpr, dominant_tpr, _ = roc_curve(pred_oulier_label_np, dominant_scores) 

dominant_auc = auc(dominant_fpr, dominant_tpr) 

 

# Plot ROC curve 

plt.figure(figsize=(8, 6)) 

plt.plot(dominant_fpr, dominant_tpr, color='green', lw=2, label=f'DOMINANT (AUC = 

{dominant_auc:.2f})') 

plt.plot([0, 1], [0, 1], color='gray', linestyle='--') 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 



 

 

 Appendices 

85 

plt.title('ROC Curve for model_DOMINANT') 

plt.legend(loc="lower right") 

plt.grid(True) 

plt.show() 
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Appendix E Code of AnomalyDAE Model for outlier detection 

 

#model defintion 

#model train 

model = AnomalyDAE(lr=0.01,hid_dim=128,dropout=0.2, batch_size = 

data.num_node_features,  backbone =GAT, num_layers =4, contamination=0.1, weight = 0.5, 

act = ReLU) 

model.fit(data) 

# Get the decision scores and identify outlier nodes 

outlier_scores = model_.decision_score_ 

# Sort the outlier scores in descending order 

sorted_indices = torch.argsort(outlier_scores, descending=True) 

 

# Select the top 50 outliers based on their scores 

pred_outlier_indices = sorted_indices[:50].tolist() 

 

print('Number of outlier predicted', len(pred_outlier_indices)) 

 

# Get the outlier scores of the top 50 outliers 

pred_outlier_scores = outlier_scores[pred_outlier_indices].tolist() 

 

# Print the indices and scores of the top 50 outliers 

print("Top 50 outlier indices:", sorted(pred_outlier_indices)) 

print("Top 50 outlier scores:", pred_outlier_scores) 

 

# Filter out the labels corresponding to the outlier indices 

pred_outlier_labels = [labels[i] for i in pred_outlier_indices] 

print("Labels of top 50 predicted outliers:", pred_outlier_labels) 

 

# Convert lists to sets 

real_outliers_set = set(outlier_indices) 

detected_outliers_set = set(pred_outlier_indices) 

 

# Find the intersection of the two sets (common outliers) 
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common_outliers = real_outliers_set & detected_outliers_set 

 

# Print the common outliers 

print(f"Common outliers between real and detected outliers: {sorted(common_outliers)}") 

print('total nummber of common outliers :',len(common_outliers)) 

 

# Find the intersection of the two sets (contextual outliers) 

common_sco = sco & detected_outliers_set 

 

# Print the common outliers 

print(f"soft contextual outliers detected: {sorted(common_sco)}") 

print('total number of soft contextual outliers :',len(common_sco)) 

 

# Find the intersection of the two sets (contextual outliers) 

common_hco = hco & detected_outliers_set 

 

# Print the common outliers 

print(f"hard contextual outliers detected: {sorted(common_hco)}") 

print('total nummber of hard contextual outliers :',len(common_hco)) 

 

# Convert PyTorch Geometric data to a NetworkX graph 

nx_graph = tg_utils.to_networkx(data, to_undirected=True) 

 

# Set up the plot 

plt.figure(figsize=(12,12)) 

 

# Define positions for the nodes using a layout 

pos = nx.spring_layout(nx_graph) 

 

# Define colors for different types of nodes 

# Normal nodes 

normal_color = 'green' 

 

# Detected outliers (nodes detected as outliers by the model) 
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detected_outlier_color = 'red' 

 

# False positives (nodes detected as outliers by the model but not real outliers) 

false_positive_color = 'yellow' 

 

# Real outliers (nodes injected as outliers) 

undetected_outlier_color = 'blue' 

 

# Draw normal nodes 

normal_nodes = [node for node in nx_graph.nodes if node not in co and node not in so] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=normal_nodes, node_color=normal_color, 

node_size=30, alpha=0.7) 

 

# Draw true positive (true outliers predicted both contextual and structural outliers) 

real_outliers_predicted = sorted(list(common_hco)) + sorted(list(common_sco)) 

#real_outliers_predicted = [node for node in nx_graph.nodes if node in common_hco or node 

in common_sco] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=real_outliers_predicted, 

node_color=detected_outlier_color, node_size=30, alpha=0.7) 

 

# Draw contextual outliers not detected 

undetected_contextual_outliers = [node for node in nx_graph.nodes if node in co and node not 

in real_outliers_predicted] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=pred_outlier_indices, 

node_color=undetected_outlier_color, node_size=30, alpha=0.7) 

 

# Calculate false positives (nodes detected as outliers but not real outliers) 

false_positives = [node for node in nx_graph.nodes if node in pred_outlier_indices and node 

not in real_outliers_predicted] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=false_positives, 

node_color=false_positive_color, node_size=30, alpha=0.7) 

 

# Draw edges 

nx.draw_networkx_edges(nx_graph, pos) 

 

# Create a custom legend 
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legend_labels = { 

    f'Inliers ({len(normal_nodes)})': normal_color, 

    #f'Outliers not Detected ({len(undetected_contextual_outliers)})': detected_outlier_color, 

    f'True Predicted Outliers  ({len(real_outliers_predicted)})': undetected_outlier_color, 

    f'False Predicted Outliers ({len(false_positives)})': false_positive_color 

} 

 

handles = [plt.Line2D([0], [0], marker='o', color='w', label=label, markersize=10, 

markerfacecolor=color) 

           for label, color in legend_labels.items()] 

plt.legend(handles=handles, loc='upper right', title='Node Types') 

 

# Remove axis labels and title 

plt.axis('off') 

plt.show() 

 

from sklearn.metrics import roc_curve, auc 

 

pred_oulier_label_np = np.array(pred_outlier_labels)  # True labels (0: normal, 1: outlier) 

anomalydae_scores = np.array(pred_outlier_scores) 

 

# Calculate ROC curve and AUC for each model 

anomalydae_fpr, anomalydae_tpr, _ = roc_curve(pred_oulier_label_np, anomalydae_scores) 

anomalydae_auc = auc(anomalydae_fpr, anomalydae_tpr) 

 

# Plot ROC curve 

plt.figure(figsize=(8, 6)) 

plt.plot(anomaly_dae_fpr, anomaly_dae_tpr, color='red', lw=2, label=f'AnomalyDAE (AUC = 

{anomaly_dae_auc:.2f})') 

plt.plot([0, 1], [0, 1], color='gray', linestyle='--') 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 
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plt.title('ROC Curve for model_AnomalyDAE') 

plt.legend(loc="lower right") 

plt.grid(True) 

plt.show() 
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Appendix F Code of CoLA Model for outlier detection 

 

#model defintion 

#model train 

model = CoLA(lr=0.04,hid_dim=128,dropout=0.2, batch_size=data.num_node_features, 

backbone =GCN, num_layers =4, contamination=0.1, weight = 0.5, act = ReLU) 

model.fit(data) 

# Get the decision scores and identify outlier nodes 

outlier_scores = model_.decision_score_ 

# Sort the outlier scores in descending order 

sorted_indices = torch.argsort(outlier_scores, descending=True) 

 

# Select the top 50 outliers based on their scores 

pred_outlier_indices = sorted_indices[:50].tolist() 

 

print('Number of outlier predicted', len(pred_outlier_indices)) 

 

# Get the outlier scores of the top 50 outliers 

pred_outlier_scores = outlier_scores[pred_outlier_indices].tolist() 

 

# Print the indices and scores of the top 50 outliers 

print("Top 50 outlier indices:", sorted(pred_outlier_indices)) 

print("Top 50 outlier scores:", pred_outlier_scores) 

 

# Filter out the labels corresponding to the outlier indices 

pred_outlier_labels = [labels[i] for i in pred_outlier_indices] 

print("Labels of top 50 predicted outliers:", pred_outlier_labels) 

 

# Convert lists to sets 

real_outliers_set = set(outlier_indices) 

detected_outliers_set = set(pred_outlier_indices) 

 

# Find the intersection of the two sets (common outliers) 

common_outliers = real_outliers_set & detected_outliers_set 
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# Print the common outliers 

print(f"Common outliers between real and detected outliers: {sorted(common_outliers)}") 

print('total nummber of common outliers :',len(common_outliers)) 

 

# Find the intersection of the two sets (contextual outliers) 

common_sco = sco & detected_outliers_set 

 

# Print the common outliers 

print(f"soft contextual outliers detected: {sorted(common_sco)}") 

print('total nummber of soft contextual outliers :',len(common_sco)) 

 

# Find the intersection of the two sets (contextual outliers) 

common_hco = hco & detected_outliers_set 

 

# Print the common outliers 

print(f"hard contextual outliers detected: {sorted(common_hco)}") 

print('total nummber of hard contextual outliers :',len(common_hco)) 

 

# Convert PyTorch Geometric data to a NetworkX graph 

nx_graph = tg_utils.to_networkx(data, to_undirected=True) 

 

# Set up the plot 

plt.figure(figsize=(12,12)) 

 

# Define positions for the nodes using a layout 

pos = nx.spring_layout(nx_graph) 

 

# Define colors for different types of nodes 

# Normal nodes 

normal_color = 'green' 

 

# Detected outliers (nodes detected as outliers by the model) 

detected_outlier_color = 'red' 
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# False positives (nodes detected as outliers by the model but not real outliers) 

false_positive_color = 'yellow' 

 

# Real outliers (nodes injected as outliers) 

undetected_outlier_color = 'blue' 

 

# Draw normal nodes 

normal_nodes = [node for node in nx_graph.nodes if node not in co and node not in so] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=normal_nodes, node_color=normal_color, 

node_size=30, alpha=0.7) 

 

# Draw true positive (true outliers predicted both contextual and structural outliers) 

real_outliers_predicted = sorted(list(common_hco)) + sorted(list(common_sco)) 

#real_outliers_predicted = [node for node in nx_graph.nodes if node in common_hco or node 

in common_sco] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=real_outliers_predicted, 

node_color=detected_outlier_color, node_size=30, alpha=0.7) 

 

# Draw contextual outliers not detected 

undetected_contextual_outliers = [node for node in nx_graph.nodes if node in co and node not 

in real_outliers_predicted] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=pred_outlier_indices, 

node_color=undetected_outlier_color, node_size=30, alpha=0.7) 

 

# Calculate false positives (nodes detected as outliers but not real outliers) 

false_positives = [node for node in nx_graph.nodes if node in pred_outlier_indices and node 

not in real_outliers_predicted] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=false_positives, 

node_color=false_positive_color, node_size=30, alpha=0.7) 

 

# Draw edges 

nx.draw_networkx_edges(nx_graph, pos) 

 

# Create a custom legend 

legend_labels = { 
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    f'Inliers ({len(normal_nodes)})': normal_color, 

    #f'Outliers not Detected ({len(undetected_contextual_outliers)})': detected_outlier_color, 

    f'True Predicted Outliers  ({len(real_outliers_predicted)})': undetected_outlier_color, 

    f'False Predicted Outliers ({len(false_positives)})': false_positive_color 

} 

 

handles = [plt.Line2D([0], [0], marker='o', color='w', label=label, markersize=10, 

markerfacecolor=color) 

           for label, color in legend_labels.items()] 

plt.legend(handles=handles, loc='upper right', title='Node Types') 

 

# Remove axis labels and title 

plt.axis('off') 

 

plt.show() 

 

from sklearn.metrics import roc_curve, auc 

 

pred_oulier_label_np = np.array(pred_outlier_labels)  # True labels (0: normal, 1: outlier) 

cola_scores = np.array(pred_outlier_scores) 

 

# Calculate ROC curve and AUC for each model 

cola_fpr, cola_tpr, _ = roc_curve(pred_oulier_label_np, cola_scores) 

cola_auc = auc(cola_fpr, cola_tpr) 

 

# Plot ROC curve 

plt.figure(figsize=(8, 6)) 

plt.plot(cola_fpr, cola_tpr, color='green', lw=2, label=f'CoLA (AUC = {cola_auc:.2f})') 

plt.plot([0, 1], [0, 1], color='gray', linestyle='--') 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('ROC Curve for model_CoLA') 
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plt.legend(loc="lower right") 

plt.grid(True) 

plt.show() 
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Appendix G Code of GAAN Model for outlier detection 

 

#model defintion 

#model train 

model_GAAN = GAAN(lr=0.04,hid_dim=128,dropout=0.2, batch_size=1024, backbone 

=GIN, num_layers =4, contamination=0.1, weight = 0.5, act = ReLU) 

model.fit(data) 

# Get the decision scores and identify outlier nodes 

outlier_scores = model_.decision_score_ 

# Sort the outlier scores in descending order 

sorted_indices = torch.argsort(outlier_scores, descending=True) 

 

# Select the top 50 outliers based on their scores 

pred_outlier_indices = sorted_indices[:50].tolist() 

 

print('Number of outlier predicted', len(pred_outlier_indices)) 

 

# Get the outlier scores of the top 50 outliers 

pred_outlier_scores = outlier_scores[pred_outlier_indices].tolist() 

 

# Print the indices and scores of the top 50 outliers 

print("Top 50 outlier indices:", sorted(pred_outlier_indices)) 

print("Top 50 outlier scores:", pred_outlier_scores) 

# Filter out the labels corresponding to the outlier indices 

pred_outlier_labels = [labels[i] for i in pred_outlier_indices] 

print("Labels of top 50 predicted outliers:", pred_outlier_labels) 

 

# Convert lists to sets 

real_outliers_set = set(outlier_indices) 

detected_outliers_set = set(pred_outlier_indices) 

 

# Find the intersection of the two sets (common outliers) 

common_outliers = real_outliers_set & detected_outliers_set 
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# Print the common outliers 

print(f"Common outliers between real and detected outliers: {sorted(common_outliers)}") 

print('total nummber of common outliers :',len(common_outliers)) 

 

# Find the intersection of the two sets (contextual outliers) 

common_sco = sco & detected_outliers_set 

 

# Print the common outliers 

print(f"soft contextual outliers detected: {sorted(common_sco)}") 

print('total nummber of soft contextual outliers :',len(common_sco)) 

 

# Find the intersection of the two sets (contextual outliers) 

common_hco = hco & detected_outliers_set 

 

# Print the common outliers 

print(f"hard contextual outliers detected: {sorted(common_hco)}") 

print('total nummber of hard contextual outliers :',len(common_hco)) 

 

# Convert PyTorch Geometric data to a NetworkX graph 

nx_graph = tg_utils.to_networkx(data, to_undirected=True) 

 

# Set up the plot 

plt.figure(figsize=(12,12)) 

 

# Define positions for the nodes using a layout 

pos = nx.spring_layout(nx_graph) 

 

# Define colors for different types of nodes 

# Normal nodes 

normal_color = 'green' 

 

# Detected outliers (nodes detected as outliers by the model) 

detected_outlier_color = 'red' 
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# False positives (nodes detected as outliers by the model but not real outliers) 

false_positive_color = 'yellow' 

 

# Real outliers (nodes injected as outliers) 

undetected_outlier_color = 'blue' 

 

# Draw normal nodes 

normal_nodes = [node for node in nx_graph.nodes if node not in co and node not in so] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=normal_nodes, node_color=normal_color, 

node_size=30, alpha=0.7) 

 

# Draw true positive (true outliers predicted both contextual and structural outliers) 

real_outliers_predicted = sorted(list(common_hco)) + sorted(list(common_sco)) 

#real_outliers_predicted = [node for node in nx_graph.nodes if node in common_hco or node 

in common_sco] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=real_outliers_predicted, 

node_color=detected_outlier_color, node_size=30, alpha=0.7) 

 

# Draw contextual outliers not detected 

undetected_contextual_outliers = [node for node in nx_graph.nodes if node in co and node not 

in real_outliers_predicted] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=pred_outlier_indices, 

node_color=undetected_outlier_color, node_size=30, alpha=0.7) 

 

# Calculate false positives (nodes detected as outliers but not real outliers) 

false_positives = [node for node in nx_graph.nodes if node in pred_outlier_indices and node 

not in real_outliers_predicted] 

nx.draw_networkx_nodes(nx_graph, pos, nodelist=false_positives, 

node_color=false_positive_color, node_size=30, alpha=0.7) 

 

# Draw edges 

nx.draw_networkx_edges(nx_graph, pos) 

 

# Create a custom legend 

legend_labels = { 

    f'Inliers ({len(normal_nodes)})': normal_color, 
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    #f'Outliers not Detected ({len(undetected_contextual_outliers)})': detected_outlier_color, 

    f'True Predicted Outliers  ({len(real_outliers_predicted)})': undetected_outlier_color, 

    f'False Predicted Outliers ({len(false_positives)})': false_positive_color 

} 

 

handles = [plt.Line2D([0], [0], marker='o', color='w', label=label, markersize=10, 

markerfacecolor=color) 

           for label, color in legend_labels.items()] 

plt.legend(handles=handles, loc='upper right', title='Node Types') 

 

# Remove axis labels and title 

plt.axis('off') 

 

plt.show() 

 

from sklearn.metrics import roc_curve, auc 

 

pred_oulier_label_np = np.array(pred_outlier_labels)  # True labels (0: normal, 1: outlier) 

gaan_scores = np.array(pred_outlier_scores) 

 

# Calculate ROC curve and AUC for each model 

gaan_fpr, gaan_tpr, _ = roc_curve(pred_oulier_label_np, gaan_scores) 

gaan_auc = auc(gaan_fpr, gaan_tpr) 

 

# Plot ROC curve 

plt.figure(figsize=(8, 6)) 

plt.plot(gaan_fpr, gaan_tpr, color='purple', lw=2, label=f'GAAN (AUC = {gaan_auc:.2f})') 

plt.plot([0, 1], [0, 1], color='gray', linestyle='--') 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('ROC Curve for model_GAAN') 

plt.legend(loc="lower right") 
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plt.grid(True) 

plt.show() 

 

 


