
Faculty of Technology, Natural Sciences, and Maritime Sciences

CS5000 - Master’s Thesis

Study programme: MACS

Spring 2024

Stian ONARHEIM/ Candidate number: 8508

Using the Linux Kernel PREEMPT_RT
Patch in Mixed-Criticality Systems

University of South-Eastern Norway
Faculty of Technology, Natural Sciences, and Maritime Sciences
Department of Science and Industry systems
PO Box 235
NO-3603 Kongsberg, Norway

http://www.usn.no

© 2024 Stian Onarheim

This thesis is worth 60 study points

Using the Linux Kernel PREEMPT_RT
Patch in Mixed-Criticality Systems

Master’s Thesis in Computer Science

Stian ONARHEIM

Academic Supervisor
Prof. António L. L. RAMOS

University of South-Eastern Norway

Faculty of Technology, Natural Sciences and Maritime Sciences

Department of Science and Industry Systems

Campus Kongsberg

May 2024

i

Abstract
Due to advancements in embedded hardware platforms, implementing subsystems of
varying criticality levels on the same hardware platform is a trend for modern real-time
systems. The Linux kernel is a common candidate for mixed-criticality designs due to
its popularity, versatility, and open-source license. The Linux kernel has seen an in-
crease in interest for real-time usage, and for several years, a patch commonly known
as PREEMPT_RT has been developed to improve the kernel’s real-time capabilities.
This thesis evaluates a Linux-based mixed-criticality system with the PREEMPT_RT
patch. The focus is on the system’s ability to respond reliably to incoming messages
and signals over GPIO, Ethernet, and PCIe in a distributed system. Dedicated mea-
surement systems are designed to generate messages and signals over GPIO, Ethernet,
and PCIe and measure the round-trip time.

The Linux kernel’s isolation mechanisms effectively lower the round-trip time for GPIO,
Ethernet, and PCIe. They also increase the stability but do not provide total tem-
poral isolation. Polling-based implementations are less affected by system load than
interrupt-based implementations and produce reasonable results. The variance in the
Linux kernel system latencies makes the kernel insufficient for hard real-time systems.
Still, the proposed Linux-based mixed-criticality system design can be considered for
soft real-time systems.

ii

Acknowledgements

I want to express my gratitude to my supervisor, Professor António L. L. Ramos at the
University of South-Eastern Norway (USN), for his guidance and support throughout
the process of writing my master’s thesis. His encouragement has been instrumental
in pursuing this research topic. The process of working on my master’s thesis has been
an immensely rewarding and enlightening experience.

Additionally, I sincerely thank my family, colleagues, and classmates, whose encour-
agement has been an invaluable source of motivation. Furthermore, I am grateful for
the financial support I have received from my company, which enabled me to attend
the Embedded Open Source Summit 2023 in Prague. This experience inspired me to
research real-time Linux and contribute back to the Linux community.

Lastly, a special thanks to my classmate Kent Odde for being an outstanding sparring
partner throughout my academic journey and constantly motivating me to strive for
greatness.

Grammarly [1] has been used to receive suggestions for improving language and writ-
ing style.

Stian Onarheim
Kongsberg, Norway, May 24, 2024

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Proposal . 2
1.3 Outline . 2

2 Background and Related Work 4
2.1 Real-Time Operating Systems . 4
2.2 Real-Time Linux . 5

2.2.1 Co-Kernel Approach . 5
2.2.2 Single-Kernel Approach (PREEMPT_RT) 5

Preemption . 6
Locking Primitives . 7
Priority Inversion and Inheritance 8
Interrupts . 9
Scheduling Policies . 10
High Resolution Timers . 11

2.2.3 Tools . 11
Stressors . 11
Tracing Tools . 12
Benchmarking Tools . 12

2.3 Mixed-Criticality Systems . 13
2.3.1 Virtualization . 13
2.3.2 Resource Partitioning in Linux . 15

2.4 Tuning and Best Practices for Real-Time Linux 16
2.4.1 Memory . 16
2.4.2 Timer APIs . 16
2.4.3 Inter-Process Communication . 17
2.4.4 The Current State of Official PREEMPT_RT Guidelines 17

2.5 Workloads on Linux . 17
2.5.1 Ethernet . 18

2.6 Related Work With PREEMPT_RT . 19
2.7 Summary . 21

3 Methodology 22
3.1 Testing Environment . 22

3.1.1 Hardware Setup . 22

iv

The Linux-Based System . 23
Measurement System for Ethernet and PCIe 24
Measurement System for GPIO . 27

3.1.2 Measurement Software on the Linux-Based System 27
Ethernet . 28
PCIe . 28
GPIO . 29

3.1.3 Linux Configuration . 29
Kernel Configuration . 30
CPU Partitioning . 30

3.1.4 Stressors . 31
3.2 Testing Strategy . 31

3.2.1 Additional Measurement Runs . 33
3.2.2 Baseline Tests With Cyclictest . 33

3.3 BPF Programs . 33
3.3.1 Inter-Processor Interrupts . 34
3.3.2 Softirqs . 34

Softirq Raising . 34
Softirq Handling . 35

3.3.3 Hardirqs . 36

4 Results and Discussion 37
4.1 Baseline Test With Cyclictest . 38
4.2 GPIO . 40

4.2.1 GPIO Driver With No Modifications 41
4.2.2 Modified GPIO Driver With IRQF_NO_THREAD 42
4.2.3 The Impact of CPU Configuration and Load on the Cross-CPU

Wake-Up Mechanism . 44
4.2.4 Additional Measurement Runs for GPIO 46

4.3 Ethernet . 48
4.3.1 Measurement Runs for UDP . 48

Additional Measurement Runs for UDP 50
4.3.2 Measurement Runs for TCP/IP . 51

Additional Measurement Runs for TCP/IP 53
4.3.3 The Impact of Heavy Load on Ethernet Softirqs 54

4.4 PCIe . 56
4.4.1 Xilinx Driver With no Modifications 57
4.4.2 Modified Xilinx Driver Revision 1 61
4.4.3 Modified Xilinx XDMA Device Driver Revision 2 62
4.4.4 Modified Xilinx XDMA Device Driver Revision 3 66
4.4.5 Additional Measurement Runs for PCIe 68

4.5 Discussion . 71
4.5.1 Designing Real-Time Applications With Existing Device Drivers 71
4.5.2 The Impact of System Stress . 71
4.5.3 The effectiveness of the Linux kernel’s isolation techniques 72
4.5.4 Interrupt vs. Polling-Based Implemenations 73
4.5.5 Designing a Linux-based real-time system 73

v

5 Conclusion and Future Work 74
5.1 Conclusion . 74
5.2 Future Work . 75

A Additional Test Results 76
A.1 GPIO . 76
A.2 Ethernet . 78
A.3 PCIe . 80

B Stress-ng Stressors 83

Bibliography 84

vi

List of Figures

2.1 Co-kernel architecture with the Linux Kernel and a dedicated real-time
kernel. 5

2.2 Scenario with no forced preemption. 6
2.3 Scenario with a fully preemptible kernel. 7
2.4 Spinning locks. 7
2.5 Sleeping locks. 8
2.6 Scenario with priority inversion. 8
2.7 Scenario with priority inheritance. 9
2.8 SCHED_DEADLINE parameters. 11
2.9 Software-based virtualization methods. 14

3.1 Hardware Architecture. 23
3.2 Texas Instruments SK-AM69 Evaluation Board [88]. 23
3.3 AMD Zynq 7000 SoC ZC706 Evaluation Kit [91]. 24
3.4 FPGA System Architecture. 25
3.5 Simplified example of the FPGA state machine during a measurement

run for PCIe. 26
3.6 nRF52 DK [97] . 27
3.7 CPU Partitioning. 31

4.1 System wake-up time with timer migration enabled. 38
4.2 System wake-up time with timer migration disabled. 39
4.3 Comparison of system wake-up time with timer migration enabled and

disabled. 40
4.4 Highest measured RTT results for the interrupt-based GPIO implemen-

tation with an unmodified GPIO driver. 41
4.5 Highest measured RTT results for the polling-based GPIO implementa-

tion with an unmodified GPIO driver. 42
4.6 Highest measured RTT results for the interrupt-based GPIO implemen-

tation with a modified GPIO driver with IRQF_NO_THREAD. 43
4.7 Highest measured RTT results for the polling-based GPIO implementa-

tion with a modified GPIO driver with IRQF_NO_THREAD. 43
4.8 GPIO wake-up time with different CPU configurations and load level. . 45
4.9 Histogram of the average and highest measured RTT for the additional

measurement runs with the interrupt-based GPIO implementation. . . . 46
4.10 Histogram of the average and highest measured RTT for the additional

measurement runs with the polling-based GPIO implementation. 47
4.11 Highest measured RTT results for UDP. 48
4.12 Average RTT results for UDP. 49
4.13 Comparison of the impact of socket and pipe-based IPC stress for UDP. . 50

vii

4.14 Histogram of the average and highest measured RTT for the additional
measurement runs with the UDP implementation. 51

4.15 Highest measured RTT results for TCP/IP. 52
4.16 Average RTT results for TCP/IP. 52
4.17 Comparison of the impact of socket and pipe-based IPC stress for TCP/IP. 53
4.18 Histogram of the average and highest measured RTT for the additional

measurement runs with the TCP/IP implementation. 54
4.19 Difference in UDP softirq raising delay for a system under high and no

load. 55
4.20 Difference in UDP softirq processing time for a system under high and

no load. 56
4.21 Highest measured RTT results for the PCIe waitqueue-based implemen-

tation with an unmodified Xilinx XDMA device driver in polling mode. 57
4.22 Highest measured RTT results for the PCIe polling-based implementa-

tion with an unmodified Xilinx XDMA device driver in polling mode. . 58
4.23 Highest measured RTT results for the PCIe waitqueue-based implemen-

tation with an unmodified Xilinx XDMA device driver in interrupt mode. 59
4.24 Highest measured RTT results for the PCIe polling-based implementa-

tion with an unmodified Xilinx XDMA device driver in interrupt mode. 60
4.25 Highest measured RTT results for the PCIe waitqueue-based implemen-

tation with the first revision of the Xilinx XDMA device driver in polling
mode. 61

4.26 Highest measured RTT results for the PCIe polling-based implementa-
tion with the first revision of the Xilinx XDMA device driver in polling
mode. 62

4.27 Highest measured RTT results for the PCIe waitqueue-based implemen-
tation with the second revision of the Xilinx XDMA device driver in
polling mode. 63

4.28 Comparison of the highest measured RTT results for the PCIe waitqueue-
based implementation with the Xilinx XDMA device driver’s first and
second revisions in polling mode. 64

4.29 Highest measured RTT results for the PCIe polling-based implemen-
tation with the second revision of the Xilinx XDMA device driver in
polling mode. 64

4.30 Comparison of the highest measured RTT results for the PCIe polling-
based implementation with the Xilinx XDMA device driver revision 2 in
polling mode and interrupt mode. 65

4.31 Highest measured RTT results for the PCIe waitqueue-based implemen-
tation with the third revision of the Xilinx XDMA device driver. 66

4.32 Comparison of the highest measured RTT results for the PCIe waitqueue-
based implementation with the Xilinx XDMA device driver’s second
and third revisions. 67

4.33 Highest measured RTT results for the PCIe polling-based implementa-
tion with the third revision of the Xilinx XDMA device driver. 68

4.34 Histogram of the average and highest measured RTT for the additional
measurement runs with the waitqueue-based PCIe implementation. . . . 69

4.35 Histogram of the average and highest measured RTT for the additional
measurement runs with the polling-based PCIe implementation. 70

viii

A.1 Average RTT results for the interrupt-based GPIO implementation with
an unmodified GPIO driver. 76

A.2 Average RTT results for the interrupt-based GPIO implementation with
a modified GPIO driver with IRQF_NO_THREAD. 77

A.3 Difference in TCP softirq raising delay for a system under heavy load
and no load. 78

A.4 Difference in TCP softirq processing time for a system under heavy load
and no load. 79

A.5 The 20 worst-performing stress-ng stressors for UDP. 79
A.6 Highest measured RTT results for the PCIe waitqueue-based implemen-

tation with the first revision of the Xilinx XDMA device driver in inter-
rupt mode. 80

A.7 Highest measured RTT results for the PCIe polling-based implementa-
tion with the first revision of the Xilinx XDMA device driver in interrupt
mode. 81

A.8 Highest measured RTT results for the PCIe waitqueue-based implemen-
tation with the first revision of the Xilinx XDMA device driver in inter-
rupt mode. 81

A.9 Highest measured RTT results for the PCIe polling-based implementa-
tion with the second revision of the Xilinx XDMA device driver in inter-
rupt mode. 82

ix

List of Tables

2.1 Database Results for PREEMPT_RT. 19

3.1 FPGA BRAM Registers. 26
3.2 Initial testing parameters. 32
3.3 Initial hackbench parameters. 32

x

List of Listings

3.1 Linux Kernel command-line parameters and noteworthy kernel config-
uration options. 30

3.2 Cyclictest command. 33
3.3 IPI BPF Program example output. 34
3.4 Softirq Raise BPF Program example output. 35
3.5 Softirq Handle BPF Program example output. 35
3.6 Hardirq BPF Program example output. 36
4.1 Output from the IPI BPF Program, focusing on IPIs generated by the

GPIO interrupt routine when the measurement tool runs on a different
CPU. 45

B.1 List of used stress-ng stressors . 83
B.2 List of excluded stress-ng stressors . 83

xi

List of Abbreviations

ABI Application Binary Interface
API Application Programming Interface
BCC BPF Compiler Collection
BSP Board Support Package
C2H Card to Host
CBS Constant Bandwidth Server
CLI Command-line Interface
CPU Central Processing Unit
DPDK Data Plane Development Kit
EDF Earliest Deadline First
FIFO First-in, first-out
FPGA Field-Programmable Gate Array
GPIO General-Purpose Input/Output
GPOS General-Purpose Operating System
GUI Graphical User Interface
H2C Host to Card
HPC High-Performance Computing
IDE Integrated Development Environment
IPC Inter-process Communication
IPI Inter-processor interrupts
IP Intellectual Property
IRQ Interrupt Requests
LLC Last-Level Cache
MMU Memory Management Unit
NIC Network Interface Card
PCIe Peripheral Component Interconnect Express
PID Process Identifier
POSIX Portable Operating System Interface
QoS Quality of Service
RAM Random Access Memory
RCU Read-Copy-Update
RISC Reduced Instruction Set Computer
RTOS Real-Time Operating System
RTT Round-trip Time
SMP Symmetric Multi-Processing
SUT System Under Test
SoC System on a Chip
TLB Translation Lookaside Buffer
UART Universal Asynchronous Receiver-Transmitter
VFS Virtual File System

xii

VM Virtual Machine
WCET Worst Case Execution Time

1

Chapter 1

Introduction

The concept of utilizing the Linux kernel for real-time systems is nothing new [2]–[4].
However, interest has increased as newer systems become more complex and are met
with both safety-critical and non-safety-critical requirements. A system with applica-
tions of different criticality levels on a shared hardware platform is called a mixed-
criticality system. Designing a mixed-criticality system is becoming more achievable
with modern multi-core hardware platforms [5]. Isolation between the different criti-
cality levels on a shared hardware platform is attainable to a certain degree by hard-
ware and software-based virtualization solutions, where hardware resources such as
CPU cores, memory, and peripherals are partitioned among the criticality levels [6].

Linux is classified as a general-purpose operating system (GPOS) and has mainly been
developed for high throughput and versatility. It is used in various application do-
mains, such as servers, desktop computers, high-performance computing (HPC), and
embedded platforms. On the other hand, real-time operating systems (RTOS) pro-
vide a framework for developing reliable and deterministic systems at the expense of
throughput. Kernel developers have since 2005 been working on a patch commonly
known as the PREEMPT_RT patch, which improves the kernel’s real-time capabilities
without breaking compatibility with existing Linux applications. The patch is still a
work in progress and aims to be fully merged into the mainline Linux kernel [7], [8].

The Linux kernel’s popularity, versatility, open-source license, and extensive hardware
support make it an attractive platform for embedded systems. With the additional
advancing improvements by the PREEMPT_RT project, there is a growing interest in
utilizing the Linux kernel for real-time systems. In recent years, the Enabling Linux in
Safety Applications (ELISA) project has been established to work towards guidelines
for using the Linux kernel in safety-critical application domains such as aerospace and
automotive [9].

1.1 Motivation and Problem Statement

Linux-based embedded systems with the PREEMPT_RT patch have previously been
evaluated for real-time usage with varying results [10]. Compared to a vanilla Linux
kernel, the PREEMPT_RT patch manages to effectively lower the system latency at the
expense of throughput [11]–[13]. This is mainly achieved by reducing the amount of
non-preemptible code sections, allowing high-priority tasks to more frequently pre-
empt tasks with lower priority.

Chapter 1. Introduction 2

Hard real-time systems have traditionally been evaluated by calculating a Worst Case
Execution Time (WCET) to ensure the system meets critical timing requirements [14].
Repeated application execution on a Linux-based system has shown that a read(2)
system call can take 646 distinct paths in the kernel, making it infeasible to calculate a
WCET for a Linux-based system [15]. However, a Linux-based system with the PRE-
EMPT_RT patch can be considered for soft real-time systems where meeting the dead-
line most of the time is sufficient.

Several performance evaluations of PREEMPT_RT measure low system latency when
applying a specific load or no load to the system [13], [16], [17]. High-priority tasks are
significantly impacted by system load [18]–[20], indicating that system latencies are
highly dependent on the type of system load. Performance evaluations of PREEMPT_-
RT with no variance in system load may give false indications, as realistic systems are
subject to load.

1.2 Proposal

The thesis aims to evaluate a Linux-based mixed-criticality system with state-of-the-
art practices on a modern hardware platform. The goal is to produce relevant results
for modern real-time systems, which often are part of larger distributed systems. This
is achieved by measuring how reliably a Linux-based mixed-criticality system can re-
spond to incoming messages and signals over the common peripheral interfaces GPIO,
Ethernet, and PCIe.

Dedicated measurement systems will be developed to send messages and signals over
GPIO, Ethernet, and PCIe while additionally measuring the round-trip time. While
other performance evaluations of PREEMPT_RT have used the system under test (SUT)
to measure the SUT [13], [18], [21]–[24], an approach with dedicated measurement sys-
tems ensures that the measurements will not be affected by applied stress to the SUT.

The thesis will focus on the following:

• Research the state-of-the-art best practices for designing a Linux-based real-time
system.

• Design and implement independent measuring systems for GPIO, Ethernet, and
PCIe.

• Design a Linux-based mixed-criticality system.

• Measure round-trip times for GPIO, Ethernet, and PCIe and showcase the impact
of isolation techniques and applied system load.

1.3 Outline

The rest of this thesis is structured as follows. Chapter 2 introduces the necessary back-
ground information regarding the PREEMPT_RT patch and virtualization techniques
for mixed-criticality systems. The chapter also includes a literature review on related
works regarding Linux and the PREEMPT_RT patch, highlighting the state-of-the-art
practices and challenges. Chapter 3 provides the methodology with a description of

Chapter 1. Introduction 3

the testing environment, including the dedicated measurement systems, the proposed
Linux-based mixed-criticality system, custom measuring and tracing software, and the
testing strategy. Chapter 4 presents the results for round-trip-times over GPIO, Ether-
net, and PCIe, focusing on applied system stress and isolation techniques. The chapter
also discusses the results and the proposed Linux system configuration. Chapter 5
concludes the thesis by summarizing its objective and findings, as well as discussing
potential future work.

4

Chapter 2

Background and Related Work

This chapter covers the basic aspects of real-time Linux, with a deep dive into the most
important modifications introduced by the PREEMPT_RT patch. It further covers the
state-of-the-art best practices for implementing a Linux-based mixed-criticality system
and discusses the challenges and related work.

2.1 Real-Time Operating Systems

An operating system plays a crucial role in the design of systems for complex appli-
cation domains. In safety-critical systems, where ’safety’ primarily refers to functional
safety rather than security, the system needs to be deterministic, ensuring predictable
and reliable behavior. Determinism in this context means that system responses are
consistent and dependable, a critical requirement for the integrity of safety-critical op-
erations. Any unexpected behavior could result in fatal consequences. Real-time op-
erating systems purposefully ensure that tasks meet their deadlines and find use in
safety-critical systems.

Applications that fall under the real-time classification generally have a requirement
regarding the execution time, commonly expressed as a deadline. Real-time applica-
tions are usually divided into three classifications based on the validity of the result
and the consequence of a missed deadline.

• Soft real-time: Frequently missed deadlines are acceptable as long as the Quality
of Service (QoS) is kept at an acceptable level. The result can still be seen as useful
after the deadline.

• Firm real-time: Missing a deadline will cause the result to be invalid.

• Hard real-time: A missed deadline will result in a system failure, which can have
fatal consequences.

Commercial RTOSs like Wind River VxWorks and Green Hills Integrity have a long-
standing presence in critical application domains such as aerospace, automotive, de-
fense, and medical devices. These operating systems require licenses and often come
with their own compilers, debuggers, and integrated development environments (IDE).
Their source code is proprietary, with limited online resources, and, in most cases, re-
quires support from the distributor. Compared to GPOSs, RTOSs have limited support
for hardware platforms and peripherals.

Chapter 2. Background and Related Work 5

2.2 Real-Time Linux

The Linux kernel has primarily been developed for general-purpose computing. While
an RTOS focuses on being deterministic, a general-purpose operating system focuses
on maximizing throughput. The idea of utilizing the Linux kernel for real-time appli-
cations is nothing new. RTLinux (1997) [2], RTAI (2000) [3], and Xenomai (2002) [4] are
well-known open-source approaches based on the co-kernel concept [10].

2.2.1 Co-Kernel Approach

With a co-kernel design, the Linux kernel can co-exist with a real-time kernel. The
Linux kernel acts as an idle task for the real-time kernel and is scheduled when no
higher-priority task is running. The real-time kernel or a separate micro-kernel handles
the hardware interrupts and forwards them to the correct kernel. A typical co-kernel
system design would schedule applications with real-time requirements on the real-
time kernel while scheduling non-real-time sensitive applications on the Linux kernel.
Figure 2.1 describes a general co-kernel architecture.

Hardware

Interrupt Handler

Linux Kernel Real-time Kernel

RT Task

Non RT Task

RT Kernel APILinux Kernel API

Kernel Space

User Space
RT Task

I/O I/O

FIGURE 2.1: Co-kernel architecture with the Linux Kernel and a dedicated real-time kernel.

Applications written for Xenomai can be executed in user and kernel space, while
RTLinux and RTAI only allow applications to run in kernel space. A major drawback
of the co-kernel approach is that applications running on the real-time kernel must
use the real-time kernel’s API. This means that existing Linux applications and drivers
have to be rewritten [10].

2.2.2 Single-Kernel Approach (PREEMPT_RT)

The official single-kernel approach for real-time Linux started in 2005 with the release
of the Linux kernel PREEMPT_RT patch. The objective of the patch is to further de-
velop the existing Linux kernel to become more real-time compatible by reducing the
portion of kernel sections that are non-preemptible [7], [8]. This implies that, unlike

Chapter 2. Background and Related Work 6

the co-kernel approach, existing Linux drivers and applications are compatible and do
not need to be rewritten.

The PREEMPT_RT project has been kept alive by various funders throughout its life-
time. From military contracts to part-time funding from Red Hat. In 2014, the project
lost all funding and was considered a hobbyist project. Since 2015, the project has been
funded by the Linux Foundation [7]. To support the rising interest in the PREEMPT_-
RT patch, the Linux Foundation has founded the Enabling Linux in Safety Applica-
tions (ELISA) project. The project consists of working groups specialized in different
domains, such as aerospace and automotive. Their work focuses on defining processes
and tools for developing Linux-based safety-critical systems [9].

Preemption

A fundamental characteristic of an RTOS is the ability to preempt tasks to execute code
with higher priority, whether it is an interrupt handler or a task. Figure 2.2 describes a
scenario with the traditional Linux preemption model.

Task A
(User Mode)

Task A
(Kernel Mode)

System call

Task B
(User Mode)

Interrupt for waking up Task B

Sched-
uler

Task A
(Kernel Mode)

Returning from system call

Latency

FIGURE 2.2: Scenario with no forced preemption.

While Task A executes a system call in kernel mode, an interrupt for waking up the
more important Task B occurs. With the traditional preemption model, Task A has
to complete its code execution in kernel mode and return from the system call before
Task B can be scheduled [25]. This adds an unbounded latency that varies based on
the duration of the system call.

The PREEMPT_RT patch introduces a fully preemptible Linux kernel, allowing pre-
emption in kernel mode except for a few critical sections. Figure 2.3 describes the
previous scenario, only now, with a fully preemptible Linux kernel.

Chapter 2. Background and Related Work 7

Task A
(User Mode)

Task A
(Kernel Mode)

System call

Task B
(User Mode)

Interrupt for waking up Task B

Sched-
uler

FIGURE 2.3: Scenario with a fully preemptible kernel.

While Task A processes a system call in kernel mode, the interrupt for waking up the
more important Task B will implicitly trigger the scheduling routine. The scheduler
chooses to schedule Task B as it is ready to run and is more important than Task A,
regardless of Task A executing code in kernel mode. This negatively impacts Task A’s
execution time but results in a more deterministic system, as higher-priority tasks can
preempt lower-priority tasks whether they are in user or kernel mode.

Locking Primitives

In multi-threaded applications, locking primitives prevent shared objects from being
accessed or modified by multiple threads simultaneously. The most common example
is a mutually exclusive lock. While one thread obtains the lock, the others are blocked
while trying to acquire it. The Linux kernel offers two implementations of the blocking
mechanism: Either the task is suspended until the lock is freed, or the task will busy-
wait, also known as spinning.

Spinning locks, as illustrated in Figure 2.4, will implicitly disable preemption and keep
the CPU core hostage while busy-waiting until the lock is acquired. Consequently, other
tasks are prevented from running on the same CPU core until the lock has been ac-
quired and released. This is unfortunate in situations where high-priority tasks have
to wait for low-priority tasks that are spinning.

Running Blocked Running

Trying to acquire
lock Lock acquired

FIGURE 2.4: Spinning locks.

Sleeping locks will instead put the task to sleep while waiting for the lock to be avail-
able. This allows other tasks to run in the meantime. Figure 2.5 describes the typical
events of a sleeping lock. Sleeping locks are introduced to extra processing overhead
as they are scheduled out and in.

Chapter 2. Background and Related Work 8

Running Schedule
Out

Schedule
In Running

Trying to acquire lock Lock acquired

FIGURE 2.5: Sleeping locks.

Although busy-waiting can be seen as wasting CPU cycles, the lock will be acquired
much faster than by suspending the task and waiting to be rescheduled when the lock
is free. The overhead caused by scheduling and context switching is expensive. Busy-
waiting locks, therefore, have a purpose in critical sections.

With the PREEMPT_RT patch, spinning locks are converted to sleeping locks. This
decreases the amount of non-preemptible sections in the kernel. Critical code sections
that require preemption and interrupts to be disabled can utilize the spinning lock
raw_spinlock_t, as it will still act as a traditional spinning lock even with a PRE-
EMPT_RT patched Linux kernel [26].

Priority Inversion and Inheritance

When tasks with different priorities share a lock, one might experience a situation
known as the priority inversion problem. When a high-priority task tries to acquire
a lock that is shared and obtained by a task of lower priority, it will have to wait un-
til the lower-priority task has freed the shared lock. During this period, tasks with a
higher priority than the low-priority task might run, increasing the waiting time for the
high-priority task. Figure 2.6 describes a scenario with three tasks of varying priority
where the priority inversion problem is present.

Task A
Lock

Task B

Task C

Task A

Lock

Unlock

Task B

Task C
Lock

Low

Medium

High

Priority

Time

Priority Inversion

Task A and C shares the lock

FIGURE 2.6: Scenario with priority inversion.

The scenario starts with the low-priority Task A acquiring a lock that it shares with the
high-priority Task C. Before Task A has finished processing and freed the shared lock,
it is preempted by Task B and later Task C as they have higher priority. Task C then
tries to acquire the shared lock but fails as Task A still possesses the shared lock. Task
C is considered blocked and is scheduled out. Instead of prioritizing scheduling Task

Chapter 2. Background and Related Work 9

A so it can complete its processing and free the shared lock so Task C can be scheduled,
Task B is chosen by the scheduler as it has a higher priority than Task A. It is not until
Task B is finished that Task A can free the lock so Task C can continue its execution.
This scenario has only one task with a priority level between Task A and Task C. With
many tasks in between, the priority inversion problem only increases.

The PREEMPT_RT patch implements priority inheritance to solve the priority inversion
problem. When a task is waiting for a shared lock to be freed by a task with lower pri-
ority, the lower-priority task’s priority is temporarily boosted to the same priority as the
higher-priority task. This functionality is only implemented with the rt-mutex lock.
Figure 2.7 describes the previous scenario in Figure 2.6, now with priority inheritance.

Task A
Lock

Task B

Task C Task A
Lock Unlock

Task C
Lock

Low

Medium

High

Priority

Time

Task B

Task A and C shares the lock

FIGURE 2.7: Scenario with priority inheritance.

When Task C attempts to acquire the shared lock, currently obtained by the lower-
priority Task A, Task A’s priority is boosted to the same priority level as Task C. This
ensures that Task C is unblocked as soon as possible. After Task A has freed the lock,
it is downgraded to its previous priority level.

Interrupts

Interrupt routines with variable execution time are a common source of unwanted la-
tencies in the Linux kernel. Interrupt routines have precedence over system processes
and will block other pending interrupts. Interrupt routines should, therefore, ideally
be as short as possible. Devices will often trigger an interrupt that requires a large
amount of work to be processed, resulting in lengthy interrupt routines. The Linux
kernel fixes this problem by providing mechanisms for splitting interrupt handlers
into two halves. A top-half for critical code that has to be executed right away, and a
bottom-half that can run at a later stage. Maskable interrupts are only disabled during
a top-half routine, meaning that bottom-half routines can be interrupted.

Bottom-half routines have several implementations in the Linux kernel. With a vanilla
Linux kernel, it is possible to raise a bottom-half routine at the end of a top-half rou-
tine and have it executed right after the interrupt handler. User tasks may experience
lengthy delays caused by bottom-half routines that in a system design context are less
important.

Chapter 2. Background and Related Work 10

The PREEMPT_RT patch forces all top-half routines that are not explicitly declared
with the IRQF_NO_THREAD flag to run in a threaded context with the scheduling pol-
icy SCHED_FIFO and a default priority of 50. System processes with a higher priority
than 50 will, therefore, have precedence. The priority of threaded interrupts can be
set individually, allowing the system architect to correctly prioritize interrupt routines
concerning real-time applications [27].

Scheduling Policies

The scheduler plays a critical role in an operating system. Its job is to decide which
thread the CPU shall run next. Each thread has a state, scheduling policy, and a static pri-
ority, which is information the scheduler uses during its decision-making. The schedul-
ing policies can be divided into real-time and normal. The following scheduling poli-
cies SCHED_OTHER, SCHED_IDLE, and SCHED_BATCH are categorized as normal, and
their static priority value is set to 0. The real-time scheduling policies SCHED_FIFO
and SCHED_RR have a static priority inside a range of 1 - 99, where higher is better.

The scheduler maintains a queue of runnable threads for each static priority value. It
iterates over the queues and selects the thread at the front of the queue with the highest
static priority as the next thread to be scheduled. When a thread with a higher priority
than the currently running thread becomes runnable, the scheduler will preempt the
currently running thread and place it back into the queue for its respective static pri-
ority. Depending on the thread’s scheduling policy, it is placed at the front, back, or
somewhere in the middle of the queue.

The following scheduling policies fall into the real-time category.

SCHED_FIFO: Threads are inserted in a first-in, first-out (FIFO) scheme into its static
priority queue. Threads will run until they are blocked, preempted, or by explicitly
calling the system call sched_yield(2).

SCHED_RR: Threads are given an equal time slice. When a thread reaches the end of
its allocated time slice, it is placed back at the end of the queue. This scheduling policy
allows threads to share the CPU fairly.

SCHED_DEADLINE: The scheduling policy is based on the earliest deadline first (EDF)
and constant bandwidth server (CBS) algorithms, where global EDF is implemented
on multi-core systems to allow threads to migrate between cores. In its basic essence,
the thread with the shortest remaining relative deadline is scheduled to run next.

Each thread is configured with three additional parameters: period, runtime, and dead-
line [28]. The parameters are represented in Figure 2.8.

Chapter 2. Background and Related Work 11

Activation Start Absolute Deadline

Runtime

Deadline

Period

Time

FIGURE 2.8: SCHED_DEADLINE parameters.

Threads scheduled with the SCHED_DEADLINE policy are given the highest priority in
the system [28].

High Resolution Timers

Normal timers in the Linux kernel are tick-driven. This implies that the timer resolu-
tion is derived from the tick frequency, which normally is configured between 100 Hz
to 1000 Hz. With a tick frequency of 10 Hz, the timer resolution would be as low as 10
milliseconds.

With the introduction of the high-resolution timers subsystem, it is possible to request
a timer with a resolution of one nanosecond [29]. Applications in user space can utilize
high-resolution timers by using posix timers, itimers, or nanosleep as these
are re-implemented with high-resolution timers when the kernel configuration option
CONFIG_HIGH_RES_TIMERS is set [30].

2.2.3 Tools

The vast amount of tools available on Linux for kernel tracing, debugging, network-
ing performance, stress tests, and real-time analyses makes Linux a great platform for
software development. It is important for software development to be able to perform
analyses to find bugs and performance bottlenecks.

Stressors

When tuning the kernel for real-time workloads, it is interesting to analyze how well
a real-time application can withstand noise generated by other processes. Tools com-
monly known as stressors generate a simulated workload.

stress-ng is a powerful stress-testing tool with over 310 stressors. The tool includes
stressors that stress specific areas such as memory/CPU cache, file system, virtual
memory, scheduling, high-resolution timers, and networking. The tool is cited in over
80 academic research papers [31], where many are real-time related.

hackbench is another popular stressor within the real-time community and is a part
of the rt-tests test suite [32]. The tool focuses on the repeated setup and teardown
of threads and inter-process communication between them [33].

Chapter 2. Background and Related Work 12

Although stressors can simulate much of the workload generated by real-time sys-
tems, they cannot do so accurately. Most real-time systems communicate with external
hardware such as sensors and actuators, which stressors cannot simulate accurately.

Tracing Tools

The official tracer for the Linux kernel is called ftrace. It can be used for recording
the execution flow of kernel functions with additional information such as CPU ID,
PID, and timestamp. The tracer offers a great filter selection for specific events such as
scheduling, interrupts, and lock mechanisms. This information helps create a picture
of what is happening inside the kernel.

The tracer is accessible within the filesystem tracefs, which is mounted on /sys/k-
ernel/tracing and automatically within debugfs in /sys/kernel/debug/k-
ernel for backward compatibility with older applications. Interfacing the tracer by
writing and reading several files in the filesystem is impractical, which prompted the
development of the command line interface (CLI) program trace-cmd, a front-end
application to ftrace [34].

Reports generated by trace-cmd can be used together with the graphical user inter-
face (GUI) application KernelShark [35]. This allows for a visual representation of
the trace data with graph plots.

Tracers must be explicitly enabled when configuring the kernel and will result in a
performance loss. Due to their extra overhead, it is recommended that kernel tracers
be turned off in production systems.

Although still not widely used in the Linux real-time community, the up-and-coming
eBPF-technology [36] makes it possible to modify and extend the kernel during run-
time. This technology can be used to create better tools for analyzing real-time appli-
cations. A proof of concept was presented at the Embedded Open Source Summit 2023
by John Ogness [37].

Benchmarking Tools

Benchmarking tools are necessary to determine how well a system behaves and are
especially helpful in measuring the impact of small tuning changes.

cyclictest is the most commonly used benchmarking tool for real-time systems.
It is designed to measure latencies caused by the hardware and operating system.
The tool starts a pre-defined number of threads with real-time priorities that are wo-
ken up periodically. The time difference between the configured and actual wake-up
time is considered to be the scheduling latency. The tool displays the minimum, av-
erage, and maximum latency. The test is by default implemented with the clock_-
nanosleep(2) system call, which implies that the timer wake-up routine is executed
in a hard interrupt context. Therefore, applications that rely on threaded interrupts will
experience a longer wake-up latency than those measured with cyclictest [38].

rtla, which is short for real-time Linux analysis tool, is a set of tools for analyzing
the kernel’s real-time behavior. The tools utilize the kernel’s tracing capabilities to
record latencies caused by hardware and operating system noise and the timer latency
separately at the IRQ and Thread handler [39].

Chapter 2. Background and Related Work 13

perf is a powerful profiling tool that monitors hardware and software events. The
tool counts kernel events such as cache misses, page faults, context switches, and CPU
migrations. The tool can also analyze lock events, memory accesses, and scheduling
latencies.

2.3 Mixed-Criticality Systems

An ever-increasing trend for real-time systems is integrating multiple subsystems of
varying criticality levels onto the same multi-core hardware platform. Mixed-criticality
systems (MCS) use a common hardware platform to implement subsystems of different
criticality levels, such as safety-critical and non-safety-critical [40]. Mixed-criticality
systems’ main challenge is isolating and reducing interference between the different
criticality levels. Total isolation is important for safety-critical systems to guarantee
meeting their deadlines. Isolation solutions usually refer to the following three prop-
erties.

• Fault isolation: Faults within one partition shall not affect others.

• Spatial isolation: Memory reserved for one partition shall not be accessible to
others.

• Temporal isolation: Usage of hardware such as CPU, network and disk shall not
cause serious delays for other partitions.

2.3.1 Virtualization

Virtualization is a widely used solution for mixed-criticality systems. It enables mul-
tiple operating systems and bare-metal applications to run concurrently on a shared
hardware platform. Isolation is achieved by statically or dynamically partitioning the
hardware’s resources. Virtualization is not limited to systems with safety-critical re-
quirements, leading to a wide variety of available solutions.

Software-based virtualization solutions are typically classified into three categories:
Type I Hypervisor, Type II Hypervisor, and container-based. Type I Hypervisors run
directly on the hardware, while Type II Hypervisors run on top of a host OS. Containers
rely on the isolation capabilities provided by an operating system and are not used for
running multiple operating systems. Figure 2.9 shows a visual representation of the
three software-based virtualization classifications.

Chapter 2. Background and Related Work 14

Hardware

Hypervisor

Guest
OS

Libs

Guest
OS

Libs

App App

Hardware

Hypervisor

Guest
OS

Libs

Guest
OS

Libs

App App

Host OS

Hardware

Container Engine

Libs Libs

App App

Host OS

Type I Hypervisor Type II Hypervisor Container

FIGURE 2.9: Software-based virtualization methods.

In a safety-critical context, latency caused by interference from other containers or vir-
tual machines (VMs) has to be deterministic or non-existent. This imposes strict re-
quirements from application domains such as avionics, automotive, and railway for
virtualization solutions regarding isolation properties. Hypervisors classified as sep-
aration kernels, a small bare-metal hypervisor utilizing hardware virtualization exten-
sions to partition VMs statically and nothing more, and lightweight real-time micro-
kernel hypervisors that extend the concept of a separation kernel by additionally man-
aging memory, device drivers and scheduling for the VMs, are preferred for safety-
critical systems due to their compliance with safety standards. Hypervisors classified
as general-purpose are generally best suited for server and HPC domains but have
recently seen improvements regarding their real-time capabilities [6].

The two most relevant open-source general-purpose hypervisors for embedded Linux
are Xen [41] and KVM [42]. Xen is a bare-metal hypervisor (Type I) sponsored by the
Linux Foundation that, in recent years, has seen improvements regarding its real-time
capabilities. They have introduced static partitioning and cache-coloring, a concept
where the last level cache is partitioned among the VMs [43]. Their current objective
is to get the hypervisor certified for the Automotive Safety Integrity Level (ASIL) [44].
KVM extends the Linux kernel by allowing it to host isolated VMs while acting as the
host OS (Type II). KVM utilizes QEMU [45] for I/O hardware emulation for the VMs
[46].

The results of experimental analyses comparing latencies introduced by Xen and KVM
indicate that a KVM host kernel configured with PREEMPT_RT can achieve a worst-
case hypervisor latency of less than 100 microseconds when the system is under no
load, while Xen performs considerably worse [21]. Another performance analysis of
KVM showed a worst-case hypervisor latency of less than 200 microseconds when
deploying two virtual machines [47]. In the pursuit of designing an embedded mixed-
criticality system that can safely meet a 1 kHz periodic task’s 100 microseconds dead-
line, Li et al. [18] evaluated KVM with different types of stressors and found that
their system design managed to meet the deadline 99% of the time with 96% of the

Chapter 2. Background and Related Work 15

stressors. Most deadline misses were caused by hardware interference when running
bus-intensive stressors.

When selecting and evaluating an embedded hypervisor for the automotive indus-
try, E. Hamelin et al. [48] ruled out open-source solutions like Xen due to their lack
of safety standard appliances. After considering 23 different embedded hypervisors,
they chose the commercial separation kernel-based hypervisor PikeOS. In their per-
formance benchmark results with PikeOS, they discovered that resource sharing can
still lead to significant interference between virtual machines, with a 90% reduction in
network bandwidth and a 60% reduction in memory.

Due to the shared hardware resources, limiting interference among isolated partitions
in a mixed-criticality system is extremely challenging. Valsan et al. [49] found that
cache-coloring, a popular technique for partitioning shared last-level caches (LLC) be-
tween partitions, does not guarantee predictable cache access timing.

The literature indicates that modern virtualization methods for safety-critical mixed-
criticality systems can not guarantee temporal isolation.

2.3.2 Resource Partitioning in Linux

The Linux kernel provides a few techniques for partitioning resources among pro-
cesses. Control groups, commonly known as cgroups, is a mechanism that can group
processes and all their future children into hierarchical groups. Each group contains
a set of controllers that can distribute a specific type of system resource to a group’s
processes. The supported controllers are cpu, memory, io, cpuset, rdma, hugeTLB,
and misc [50]. Control groups are most famously used with the popular container
platform Docker for resource distribution between containers [51].

The cpu controller can partition the CPU’s bandwidth within a group. As a require-
ment, all tasks within the group need to be scheduled with non-RT scheduling poli-
cies. This implies that processes with real-time scheduling policies can not be placed
in a group that uses the cpu controller. M. Thiyyakat et al. [52] have performed a
study using the CPU controller to partition 95% of the total CPU bandwidth across all
cores for a group reserved for critical tasks. They find that under heavy load, cgroups
alone cannot guarantee the configured CPU bandwidth. They recommend using the
real-time scheduling policy SCHED_DEADLINE instead of the cgroup cpu controller
to meet CPU utilization requirements.

Interrupt requests (IRQ) in symmetric multi-processing (SMP) systems can be config-
ured to run on specific CPUs if the IRQ controller supports it. This can be configured in
procfs for each IRQ number or during boot with the kernel command-line parameter
irqaffinity [53]–[55]. In a mixed-criticality system design, moving IRQ processing
away from the real-time CPU cluster can halve the scheduling latencies for real-time
processes during heavy system load [17].

The kernel command-line parameter isolcpu can isolate CPUs from disturbances
caused by general SMP balancing, managed interrupts, and in some cases, scheduling
clock ticks. The latter option is referred to as NO_HZ. The settings set with isolcpu
during boot-time are irreversible and cannot be changed once the system is up and

Chapter 2. Background and Related Work 16

running. A runtime alternative to isolcpu is to partition the CPU cores with cpuset
within cgroups. This is the recommended approach [55].

2.4 Tuning and Best Practices for Real-Time Linux

Linux is, first of all, a general-purpose operating system. However, the kernel and
user applications can be tuned to perform better for specific domains and workloads,
whether high-performance computing, networking, low latency, or real-time. The
Linux kernel’s versatility is one of the reasons for its widespread usage.

2.4.1 Memory

The Linux kernel divides its virtual memory into pages, usually with a size of 4096
bytes. It is considered a "Page Fault" when a program tries to reference a virtual ad-
dress currently not mapped to a physical address in RAM by the Memory Management
Unit (MMU). This causes the CPU to be interrupted by the MMU to run the page fault
handler routine in kernel mode. Page faults are considered to be major when the page
is not located in RAM and has to be loaded from disk, and minor when the page has
to be allocated in RAM or is already present but needs to be re-mapped. This occurs
regularly as the MMU’s Translation Lookaside Buffer (TLB) is often smaller than the
total number of mappings that the kernel stores [56].

Latencies introduced by major page faults can be mitigated by pre-faulting the stack
and heap during program initialization and by locking the program’s virtual address
space into RAM to avoid swapping.

Memory locking is achieved by calling the mlockall(2) system call. A combination
of the MCL_FUTURE and MCL_CURRENT flag arguments ensures that the application’s
future and current memory pages are locked into RAM [57]. This method is a common
practice for real-time applications [58]–[61].

When a memory page is referenced for the first time, a minor page fault occurs and the
memory page has to be allocated in RAM. If an application’s maximum stack and heap
usage is known at program initialization, pre-faulting the stack and heap is done by
iterating over the number of memory pages and referencing them once. This ensures
that all memory pages are allocated in RAM and have been touched once, reducing the
unpredictable delay caused by minor page faults during program execution [61].

2.4.2 Timer APIs

There are some timer APIs to avoid when writing applications for real-time Linux.
The Linux kernel offers several ways to configure a timer. Timers configured with
timerfd can be monitored through a file descriptor with the select(2), poll(2),
and epoll_wait(2) system calls. POSIX timers can issue a signal when a timer
has elapsed. With the PREEMPT_RT config, all timers, whether standard or high-
resolution, will run in a threaded interrupt context. The only exception is clock_-
nanosleep(2), where the high-resolution timer’s wakeup function is executed in
hard interrupt context [30].

Chapter 2. Background and Related Work 17

For real-time applications, it is recommended to use the clock_nanosleep(2) sys-
tem call with the CLOCK_MONOTONIC and TIMER_ABSTIME parameters to achieve fast
response times and avoid drift [62].

2.4.3 Inter-Process Communication

It is common for processes to communicate with each other. The Linux kernel of-
fers several mechanisms for inter-process communication (IPC). System designs that
involve IPC between processes with different priorities will not automatically get pri-
ority boosted by applying the PREEMPT_RT patch. This can only be achieved explicitly
with rt-mutexes [63]. The developer has to be aware of this when considering IPC
mechanisms.

2.4.4 The Current State of Official PREEMPT_RT Guidelines

At the recent Linux Real-Time Summit 2023, it was pointed out that there is no official
documentation describing best practices concerning memory management, IPC, and
APIs to avoid [37]. This makes it even more challenging for developers to write appli-
cations for real-time Linux, as it requires a deep understanding of the Linux kernel to
avoid common pitfalls.

At the same conference, some basic guidelines for real-time Linux were recommended
by various authors. The recommendations include locking current and future memory
pages into physical RAM, isolating CPU cores for sensitive real-time workloads, en-
abling adaptive-tick mode, disabling lockup detectors, disabling CPU frequency scal-
ing, and disabling real-time throttling [19], [60].

2.5 Workloads on Linux

The Linux kernel divides its virtual address space into two parts with different levels
of privileges: user and kernel space. Processes running in user mode cannot access
kernel space data or execute code stored there. Processes running in user mode can
request services provided by the kernel through system calls. This can be everything
from simple file operations to interfacing hardware device drivers [64].

On Arm and other reduced instruction set computer (RISC) architectures, a system call
will cause a software interrupt to switch to kernel mode. On modern x86 architec-
tures, system calls have been implemented differently and will instead call a SYSCALL
instruction, which is faster as it eliminates the overhead caused by an interrupt [65].

A system call follows a synchronous execution model in the sense of waiting for the
kernel to complete the system call before continuing user-mode execution. Switching
context in and out of kernel mode comes with a cost. Soares and Stumm [66] find in
their analysis of the system call’s footprint that the cache is heavily polluted during a
system call.

A typical Linux system is disrupted at a typical rate of 100 to 1000 times per second
on each CPU. The kernel has to perform critical housekeeping tasks such as schedul-
ing, read-copy-update (RCU) callbacks, updating the kernel time, and executing work

Chapter 2. Background and Related Work 18

queues and bottom-half interrupt handlers. This periodic "tick" is referred to as the
periodic timer interrupt. Interrupting applications at such a high rate will naturally
impact performance. The Linux kernel offers configuration options to make the ker-
nel borderline tickless on designated CPUs. The default option CONFIG_NO_HZ_IDLE
disables the tick on idle CPUs, while the CONFIG_NO_HZ_FULL option enables full
tickless mode, also referred to as adaptive-tick mode.

There are a few requirements for the adaptive-tick mode to take effect. The CPUs must
be designated at boot time with the nohz_full= kernel command-line parameter,
where one CPU must remain in non-adaptive-tick mode to handle various housekeep-
ing tasks. Adaptive-tick CPUs will only enter adaptive-tick mode if a single process
is running or the CPU is idle [67], [68]. When adaptive-tick CPUs have to be woken
up, the adaptive-tick CPU will receive an inter-processor interrupt (IPI) from another
CPU.

Akkan et al. [69] have experimented with reducing OS noise in Linux by utilizing
adaptive-tick mode on their application cores. They find a slight increase in perfor-
mance; however, their system is much more deterministic regarding runtime variance.
The increase in determinism is partly due to the reduction of L1 cache misses, as each
tick causes the CPU to switch context from user mode to kernel mode, bringing new
data structures into the cache and causing cache eviction for application code.

2.5.1 Ethernet

The Linux kernel supports a wide range of network interface cards (NIC), making it
attractive for systems that rely on Ethernet communication. Applications in user mode
interact with the kernel’s networking stack through file descriptors provided by the
virtual file system (VFS). The VFS makes it possible to interface the kernel through
system calls such as read(2) and write(2) [70].

Zhang et al. [71] have analyzed the shortcomings of the Linux kernel’s network stack
and found that more than half of the time spent sending a packet is used for socket-
related operations. This includes the overhead caused by system calls and by copying
memory from user space to kernel space and vice versa. When the network stack
builds a packet or receives data, it will allocate temporary buffers in kernel space. Fre-
quent memory allocations will result in extra overhead caused by page faults.

Due to the inefficiencies of the native Linux kernel’s networking stack, alternative net-
working stacks have been created targeting hard real-time networking. RTnet [72] is
an open-source project that provides a hardware-independent software framework for
hard real-time Ethernet communication. It was mainly written for RTAI, and later
ported to Xenomai. A. Duca et al. [73] have created a port of RTnet for the Linux
kernel version 5.9 with the PREEMPT_RT patch. The patch is over 70,000 lines and
introduces new RTnet-specific system calls for sending and receiving UDP packets.
Compared with the native Linux kernel networking stack, their RTnet port reduces the
average RTT by half, with a worst-case RTT of 643 microseconds compared to 33,000
microseconds. Unfortunately, the port is not mainlined or maintained, but it shows the
potential of utilizing an alternative networking stack.

Networking systems that handle a great deal of networking traffic or require faster
packet processing, such as in the Financial Service Industries domain, can benefit from

Chapter 2. Background and Related Work 19

the use of the open-source Data Plane Development Kit (DPDK) [74]. With a DPDK-
supported NIC, it is possible to bypass the Linux kernel’s networking stack completely
by directly accessing the NIC and processing the data in user space. This eliminates
the extra overhead caused by the native Linux kernel’s networking stack. Li, Zongyao
[75] has experimented with DPDK when creating a high-performance software-based
router. He achieves a throughput increase of 8 - 10 times higher than when utilizing
the native Linux kernel network stack. Xu et al. [76] has created a DPDK-based DDS
solution suited for distributed real-time applications. Compared to the state-of-the-
art FastDDS that utilizes the Linux networking stack, their solution increases the data
transmission throughput by 51% and reduces the average RTT by 56%. Not all network
interface cards can benefit from DPDK, as only a limited amount is supported. Mainly
NIC for x86 systems are supported, but there exists a few supported Arm processors
[77].

The common trend for achieving high-performance Ethernet with Linux involves ei-
ther rewriting the networking stack or bypassing the Linux networking stack entirely.

To avoid latency-inducing interrupts for incoming packets, networking sockets in Linux
can be configured with the SO_BUSY_POLL option. This enables the socket layer to
poll the incoming packet queue directly. This removes the overhead caused by inter-
rupts and context switching [78]. While this feature improves the overall networking
performance, it has been disabled with PREEMPT_RT to avoid wrong locking context
problems [79].

2.6 Related Work With PREEMPT_RT

The current literature on real-time Linux is spread out in research articles, developer
conferences, wiki pages, and mailing lists. The majority of the core literature on real-
time Linux with the PREEMPT_RT patch, which is written by kernel developers, can
be considered to be non-academic. However, several academic papers have been pro-
duced with experiments with PREEMPT_RT. Table 2.1 shows statistics for the search
"PREEMPT_RT" from several online databases that are available to the University.

Database Number of Results

IEEE Xplore 25
ScienceDirect 44
Scopus 60
Springer Link 117

TABLE 2.1: Database Results for PREEMPT_RT.

Brown and Martin [80] have conducted a study to measure and compare the laten-
cies between a Xenomai kernel, a native Linux kernel, and a PREEMPT_RT patched
Linux kernel. They implement an application that responds to a GPIO signal in both
user and kernel space, resulting in six combinations. As some real-time tasks have less
strict timing requirements, where meeting the deadline 95% of the time is considered
good enough, the results differentiate the worst-case latency when 100% of the results

Chapter 2. Background and Related Work 20

are accounted for and only 95%. They find that Xenomai has lower latencies and less
jitter for hard real-time tasks than the Linux kernel. However, when the top 5% of la-
tency results are removed, the application implemented in kernel space with the native
Linux kernel slightly outperforms Xenomai. The authors recommend to only consider
designing a system with Xenomai if 95% is not considered good enough.

A WCET and schedulability analysis is necessary for hard real-time systems to verify
their timing correctness. In a safety-critical context, failing to meet a deadline can be
catastrophic [14]. Such analyses are increasingly more difficult for modern processors
due to the variable execution time caused by pipelines, caches, and branch predictions
[81]. Introducing Linux, a complex operating system, makes the analyses even harder
to perform, if not unfeasible. Tasks can experience unbounded interference caused
by kernel housekeeping, lock synchronization between tasks, and device interrupts,
to name a few. A timing analysis on PREEMPT_RT [82] finds a great variance in the
time spent scheduling and activating a task. This significantly impacts tasks waiting
to acquire a sleeping lock as it involves a lot of rescheduling.

Okech, Peter, et al. [83] find in their experiments that repeated application executions
might take different paths in the kernel. A repeated read(2) system call can follow a
path that includes anywhere from 92 - 888 function calls [15]. These uncertainties make
it infeasible to conduct static code analysis, a technique the IEC 61508 safety standard
highly recommends. Allende et al. describe the Linux kernel as a "composition of
several interdependent state machines, which are asynchronous concerning each other,
and thus, a given software execution path can exhibit stochastic behavior due to this
asynchronicity." [84]. Probabilistic theory can partially solve this problem. Allende
et al. [84] acknowledge that having unknown paths is a safety risk, as the paths are
consequently untested. They propose a method to quantify the uncertainties the Linux
kernel provides by estimating the percentage of unknown paths.

Xuebing Chen [85] evaluates the Linux kernel PREEMPT_RT patch for a Loongson
3A3000 processor. To reduce interference from housekeeping tasks and peripheral in-
terrupts, the kernel command-line argument isolcpu is used to reserve a single CPU
core for real-time applications. Task switching, interrupt response, and scheduling la-
tency are similar on a system with no load compared to one with a load that stresses
IO operations, network communication, graphics rendering, and inter-process com-
munication. C. Huang and C. Yang [23] finds that their custom application, meant
to resemble a real-time robot control system, manages to halve its worst-case latency
by pinning the application onto an isolated CPU core. The same application is im-
plemented in kernel space, effectively removing the overhead caused by system calls.
The kernel space variant’s worst-case latency is four times lower than the user-space
equivalent. Adam et al. [13] perform a similar experiment where a GPIO application is
implemented in both user and kernel space. Similar to Huang and Yang’s results, the
kernel space variant performs noticeably better than the user space equivalent.

Although user-space applications heavily relying on system calls will perform better if
implemented in kernel space, they can not be linked with the C-library and other user-
space libraries. Linux kernel modules have a more limited set of APIs and are harder
to debug than user space applications. Maintaining user-space applications is simpler
since deprecated Linux kernel system calls remain backward compatible with newer
Linux kernel versions. However, this is not the case for kernel-space APIs. These

Chapter 2. Background and Related Work 21

APIs are frequently modified and removed, meaning kernel modules must be ported
to newer Linux kernel versions.

2.7 Summary

The Linux kernel PREEMPT_RT patch improves the kernel’s real-time capabilities,
mainly by increasing the portion of preemptible sections. The PREEMPT_RT patch
performs worse than co-kernel approaches suited for hard real-time systems. How-
ever, its compatibility with existing Linux applications and device drivers makes it
preferable for system designs with soft real-time requirements.

Applying the PREEMPT_RT patch does not magically improve real-time performance.
The kernel has to be fine-tuned for the system’s real-time applications, which depends
on their characteristics. There are no official guidelines, and recommendations are
spread out in research articles, mailing lists, conferences, and news articles. The ker-
nel’s latencies are greatly affected by implementation and system load, making it chal-
lenging to provide general performance numbers. Configuring a real-time Linux sys-
tem requires a deep understanding of the kernel and the characteristics of the system
load.

Achieving temporal isolation on mixed-criticality systems is challenging, even with
modern virtualization methods. Certified embedded hypervisors for safety-critical
application domains experience the same interference problems caused by resource
sharing between virtual machines as general-purpose hypervisors. The Linux kernel’s
isolation capabilities show promising results regarding their effectiveness in reducing
system latencies when subjected to load.

22

Chapter 3

Methodology

This chapter discusses the methodology used to design and implement a Linux-based
mixed-criticality system, covering the hardware setup and software implementation.
The testing strategy and its goals are presented along with the Linux configuration.

3.1 Testing Environment

The thesis aims to implement a Linux-based mixed-criticality system and evaluate the
Linux kernel with the PREEMPT_RT patch for real-time usage with state-of-the-art best
practices. It is common for real-time systems to be a part of a larger distributed system
where they receive and produce data for other sub-systems. Therefore, it is worth
evaluating the Linux kernel with a focus on common high-speed transfer protocols.
Ethernet and PCIe are chosen as they are commonly used and available on several
modern hardware platforms. In addition, similar experiments are conducted for GPIO
due to its simplicity to determine if there are large latency differences between simple
and complex protocols.

Several studies use cylictest, the de facto standard measurement tool for real-time
Linux, to measure the system latency [13], [18], [21]–[24]. This implies that the sys-
tem under test (SUT) is used to measure the SUT. To ensure that the test results are
not affected by applied stress to the SUT, dedicated hardware platforms are designed
to produce and receive data over GPIO, Ethernet, and PCIe and, most importantly,
measure the round-trip time (RTT).

The custom software is made open-source, and commercial off-the-shelf (COTS) hard-
ware is used so that others can reproduce the experiments. The software referenced in
this chapter is available on GitLab [86].

3.1.1 Hardware Setup

The integrated hardware setup consists of three independent hardware platforms. Two
are used as dedicated measurement systems, while the last one runs Linux and is con-
sidered the SUT. Figure 3.1 shows the basic system architecture and highlights each
hardware platform’s operating system and the connected peripherals.

Chapter 3. Methodology 23

Linux PREEMPT_RT Zephyr RTOS

GPIO

FPGA and FreeRTOS

PCIeEthernet

UART

FIGURE 3.1: Hardware Architecture.

The Linux-based system is connected to the dedicated measurement systems via. GPIO,
Ethernet, PCIe, and UART. Unlike GPIO, Ethernet, and PCIe, UART is not subject to
testing and is only used to transfer testing parameters and results between the Linux-
based system and the measurement system for GPIO.

The dedicated measurement system for GPIO was initially used as a proof-of-concept
in the early stages of the thesis. This is why it is a separate measurement system and
not embedded into the measurement system for Ethernet and PCIe.

The Linux-Based System

The Linux-based system uses the Texas Instruments SK-AM69 evaluation board, based
on the AM69 AI vision processor. The processor consists of two 64-bit quad-core Arm
Cortex-A72 microprocessor clusters and PCIe, Ethernet, and GPIO peripherals. The
processor is marketed for smart vision camera applications [87]. An image of the eval-
uation board is shown in Figure 3.2.

FIGURE 3.2: Texas Instruments SK-AM69 Evaluation Board [88].

Chapter 3. Methodology 24

The Linux kernel and rootfs are built using Buildroot [89] with Texas Instruments’
Linux kernel fork [90]. The fork contains a branch for the 6.1 version of the Linux
kernel with the PREEMPT_RT patch version 21.

The hardware platform is ideal for mixed-criticality system designs as it consists of two
CPU clusters with individual shared last-level CPU caches. Having separate shared
last-level CPU caches is beneficial, as sharing the last-level CPU cache between isolated
partitions has negative implications [49].

Measurement System for Ethernet and PCIe

The measurement system for Ethernet and PCIe uses the Xilinx ZC706 Evaluation Kit,
which is based on the Zynq-7000 SoC. An image of the evaluation kit is shown in Figure
3.3.

FIGURE 3.3: AMD Zynq 7000 SoC ZC706 Evaluation Kit [91].

The SoC features several peripherals, where the 10/100/1000 tri-speed Ethernet MAC
and the eight-lane PCIe Gen2 are used for the experiments in this thesis. The SoC
comprises an integrated Processing System (PS) and Programmable Logic (PL). The PS
has two Arm Cortex-A9 CPUs and access to the Ethernet interface. The PCIe interface
is only accessible from the PL. The PS and PL communication is done through a high-
speed AXI interface [92].

The measurement system is connected to the Linux-based system via. Ethernet and
PCIe. The measurement system is idle until it receives commands from the Linux-
based system to start measurement runs for PCIe or Ethernet. The Ethernet interface
is used during measurement runs for Ethernet and for receiving commands and test
parameters from the Linux-based system. Test results and test statistics are also sent
over the Ethernet interface. The PCIe interface is only used to transfer dummy data
during measurement runs. Figure 3.4 shows the system FPGA architecture.

Chapter 3. Methodology 25

Ethernet PHY

Application Processor Unit
(APU)

BRAM Custom
Measuring IP

Xilinx XDMA IP

PCIe

ARM Cortex-A9
CPU

Custom
Measuring
Software

Processing System (PS) Programmable Logic (PL)

FIGURE 3.4: FPGA System Architecture.

The PS runs the FreeRTOS operating system [93] with custom software for handling
measurement runs and communication with the PL. FreeRTOS was chosen due to Xil-
inx’s official support for the operating system. Xilinx’s customized Light-weight IP
(LwIP) networking stack for embedded systems [94] is used for both TCP/IP and UDP,
and Xilinx’s standalone BRAM driver [95] is used for communication with the PL.

PS-PL communication is done by reading and writing to a shared memory map. The
memory map is defined and implemented in the PL as a Block RAM (BRAM) and is
accessible from the PS. The memory map is partitioned into 32-bit registers for com-
mands, status messages, parameters, results, and statistics. The registers are defined
in Table 3.1.

Chapter 3. Methodology 26

Address Description Valid Values

0x00 Command START, STOP, LOAD_CONFIG

0x04 Status MEASURING, LOAD_CONFIG_DONE, DONE

0x08 Number of Samples 0 - UINT32_MAX

0x0C Period Duration in us 0 - UINT32_MAX

0x10 FPGA Version 0 - UINT32_MAX

0x14 Mode TEST_RESULTS, TEST_STATISTICS

0x18 Total Time Upper 0 - UINT32_MAX

0x1C Total Time Lower 0 - UINT32_MAX

0x20 Result: Highest 0 - UINT32_MAX

0x24 Result: Lowest 0 - UINT32_MAX

0x28 Result: Timeouts 0 - UINT32_MAX

0x2C ... Result Data 0 - UINT32_MAX

TABLE 3.1: FPGA BRAM Registers.

The FPGA implementation uses a state-machine with the following simplified states:
IDLE, LOAD CONFIG, MEASURE, WRITE RESULTS, UPDATE RESULTS, WAIT FOR
REMAINING PERIOD and DONE. Due to the finite amount of RAM, it is not possible
to store the full test results during longer measurement runs. In these scenarios, the
FPGA can be configured to continuously update the lowest, highest, and average test
statistics instead of storing the test results.

Figure 3.5 shows a simplified example of the FPGA state machine during a measure-
ment run.

IDLE LOAD CONFIG MEASURE WRITE RESULTS WAIT FOR REMAINING
PERIOD

DONEState

PCIe User
Interrupt

Last Data
Received
Signal

Loop N times

IDLE

FIGURE 3.5: Simplified example of the FPGA state machine during a measurement run for
PCIe.

The FPGA is idle until the PS writes the Mode, Number of samples, and Period
configuration option to the shared memory map and commands the FPGA to load the
configuration. When the FPGA has finished loading the configuration options, the PS
commands it to start a measurement run. Each measurement starts by asserting the
PCIe user interrupt and initiating a counter with a microsecond resolution. When the
Linux-based system has reacted to the PCIe user interrupt and finished transferring

Chapter 3. Methodology 27

the dummy data over PCIe, the FPGA asserts the Last Data Received Signal.
The counter is then stopped, and the results are either written to RAM, or the lowest,
highest, and average test statistics are updated depending on the Mode configuration
option. If the RTT is less than the period, the FPGA waits until the next period before
repeating the measuring routine. After completing N measurements, the FPGA notifies
the PS and switches to the IDLE state. The test results are then available in the shared
memory map for the PS to retrieve and transfer to the Linux-based system.

Measurement System for GPIO

The measurement system for GPIO uses the Nordic Semiconductor nrF52 Develop-
ment kit, which is based on the nRF52832 SoC. The SoC has an Arm Cortex-M4 CPU
running at 64MHz, support for GPIO, and hardware timers capable of running at
16MHz [96]. The microcontroller runs ZephyrRTOS, and communication with the
Linux-based system is done over UART. Figure 3.6 shows an image of the develop-
ment kit.

FIGURE 3.6: nRF52 DK [97]

The 16MHz hardware timers allow for sub-microsecond precision, which is more than
sufficient for achieving a measuring resolution of one microsecond.

Two GPIOs are connected to the Linux-based system. One is configured as output,
while the other is configured to trigger on a rising-edge input. During a measurement
run, the output GPIO is asserted, signaling the Linux-based system to respond by as-
serting the measuring system’s input GPIO. In the meantime, a hardware timer is used
to measure the round-trip time.

The measurement system is idle until it is commanded by the Linux-based system to
initiate a measurement run. The final test statistics are transferred to the Linux-based
system at the end of a measurement run.

3.1.2 Measurement Software on the Linux-Based System

A command-line tool has been developed to orchestrate measurement runs with the
dedicated measurement systems. The measurement tool is executed on the Linux-
based system and commands the dedicated measurement systems to initiate measure-
ment runs.

Chapter 3. Methodology 28

Testing parameters are set by the user and transferred to the respective dedicated mea-
surement system before each measurement run. The testing parameters consist of the
period between each message/signal in microseconds and the minimum testing time
in seconds. In cases where the RTT is greater than the period, the total testing time
will exceed the configured minimum. The dedicated measurement systems are low
on RAM, which makes them incapable of storing the full test results during longer
measurement runs. The tool has an option for longer measurement runs where the
dedicated measurement systems produce test statistics instead of storing the raw test
results. The test statistics consist of an average, highest, and lowest measured RTT.

The tool responds to incoming messages and signals from the dedicated measurement
systems over Ethernet, PCIe, and GPIO. After a measurement run, the dedicated mea-
surement systems will send the final test statistics or the raw test results.

Ethernet

The measurement tool’s Ethernet implementation utilizes the native Linux networking
stack. Although DPDK-based networking stack solutions have been proven to provide
better results [75], [76], they have been dismissed due to not being supported by the
Linux-based system’s hardware platform [77].

A TCP/IP connection is established with the measurement system for Ethernet and
PCIe and is used for transferring test parameters and test results. The same connection
is used when testing the Linux kernel’s TCP/IP implementation. An additional UDP
connection is established when measuring the Linux kernel’s UDP implementation.

PCIe

The PCIe implementation uses Xilinx’s XDMA Linux driver for data transfers over
PCIe [98]. The FPGA PCIe IP provided by Xilinx does not allow the FPGA to initiate
C2H (Card to Host) transfers. Due to this design limitation, the Linux-based system
must initiate both H2C (Host to Card) and C2H transfers. The FPGA can, however,
initiate a PCIe user interrupt. Instead of measuring the time it takes for the FPGA to
send and receive data over PCIe, the total round-trip time is determined by measuring
the time interval between the FPGA generating a PCIe user interrupt and receiving
data from the Linux-based system.

Xilinx’s XDMA driver has been slightly modified with new custom ioctl(2) routines
for receiving interrupts initiated by the FPGA and starting data transfers to the FPGA.
The measurement tool uses the new ioctl(2) routines to catch PCIe user interrupts
and respond with dummy data over PCIe.

When inserting the Xilinx XDMA device driver into the kernel, the module can be con-
figured to be in either polling or interrupt mode. In both cases, initiating a data transfer
from the host to FPGA will result in the calling process signaling another process to
process the data transfer and wait for its completion before returning to user space.

In polling mode, the device driver creates per-CPU kthreads to handle data transfers.
However, the kthreads are immediately put to sleep as a consequence of waiting on
a waitqueue. When a data transfer is submitted, a kthread is signaled to wake up

Chapter 3. Methodology 29

and process the data transfer. Once the data transfer is processed, the kthread wakes
up the task initiating the data transfer.

By configuring the module to be in interrupt mode, an interrupt is issued to process
data transfers. The interrupt’s top-half routine will schedule the bottom-half process-
ing work onto the per-CPU kernel-global workqueue. When the data transfer has
been completed, the task initiating the data transfer is woken up.

With both modes, the process that handles the data transfers is scheduled with the
SCHED_OTHER policy with a nice value of 0. Therefore, data transfers over PCIe will
not be prioritized higher than normal tasks.

Two custom bottom-half interrupt service routines have been developed to handle
PCIe interrupts issued by the FPGA. One raises a flag and is suited for a polling-based
implementation where the measurement tool repeatedly calls a ioctl(2) routine that
checks if the flag has been raised and lowers it if it has. The other routine is suited for
an interrupt-based implementation and wakes up a waitqueue that the measurement
tool is blocked waiting on. The polling-based implementation checks the flag value ev-
ery five microseconds.

GPIO

Communication with the GPIO measurement system is done over UART and is used to
transfer testing parameters and statistics. Due to the measurement system’s memory
limitations, the system will only transfer test statistics, not raw test results.

The measurement tool utilizes the Linux userspace ABI found in <linux/gpio.h>
to read and write to the GPIOs. Both polling and interrupt-based implementations are
created.

The interrupt-based implementation will register a rising edge event on the INPUT_-
GPIO and wait for the event with the poll(2) system call. The polling-based imple-
mentation will instead actively read the INPUT_GPIO value every five microseconds.

The GPIO driver’s interrupt routine is split into a top and bottom half. The bottom-half
routine is explicitly configured as a threaded interrupt. Threaded interrupts will run
with a SCHED_FIFO scheduling policy and a static priority of 50.

3.1.3 Linux Configuration

All experiments are performed on a Linux kernel version 6.1 with the PREEMPT_-
RT patch version 21. As of writing this thesis, the long-term Linux kernel version 6.6
has been released, but the kernel driver needed for interfacing the Xilinx PCIe XDMA
FPGA IP has not been ported. Experiments comparing the vanilla Linux kernel against
the PREEMPT_RT version are not considered for this thesis as they have already been
widely researched. The PREEMPT_RT patch has a slightly negative effect on through-
put in favor of lower latencies [11]–[13].

Partitioning the Linux-based system with an embedded hypervisor has been dismissed
due to the lack of hardware support. Instead, the system is partitioned using the ker-
nel’s isolation techniques.

Chapter 3. Methodology 30

Kernel Configuration

The Linux kernel can be configured in numerous ways by enabling and disabling
Kconfig options and kernel command-line parameters. Testing the effect of Kcon-
fig options for real-time scenarios is important and an interesting research topic but
out of scope for this thesis.

The kernel configuration used in the experiments is based on recommendations from
real-time kernel developers [19], [60] and Texas Instruments’ real-time kernel configu-
ration [99].

Listing 3.1 describes the kernel command line parameters and some noteworthy kernel
configuration options.

Kernel command l i n e : i s o l c p u s =nohz , domain , managed_irq ,4 −7 skew_tick =1
nosoft lockup nowatchdog nohz_ful l =4−7 rcu_nocbs=4−7 rcu_nocb_pol l
cpuidle . o f f =1 cpufreq . o f f =1 processor . max_cstate =0 p r o c e s s o r _ i d l e .
max_cstate =0

Noteworthy kernel c o n f i g u r a t i o n opt ions :
CONFIG_PREEMPT_RT=y
CONFIG_NO_HZ_FULL=y
CONFIG_CPUSETS=y
CONFIG_CPU_FREQ=n
CONFIG_RT_GROUP_SCHED=n

CONFIG_GPIO_SYSFS=y

CONFIG_PCI=y
CONFIG_PCI_MSI=y
CONFIG_PCI_J721E_HOST=y
CONFIG_PCI_J721E=y

LISTING 3.1: Linux Kernel command-line parameters and noteworthy kernel configuration
options.

Timer migration has been turned off with the sysctl -w kernel.timer_migra-
tion=0 command. This ensures that timers will be armed on the same CPU as the
applications requesting the timer. Otherwise, one might experience a scenario where
CPU #0 is tasked to wake up an application on CPU #7.

The measurement tool running on the Linux-based system is configured with mlock-
all(2) with the MCL_FUTURE and MCL_CURRENT flag arguments to ensure that the
application’s future and current memory pages are locked into RAM.

CPU Partitioning

The Linux-based system has two quad-core Arm Cortex-A72 microprocessor clusters.
Figure 3.7 represents the CPU partitioning and configuration.

Chapter 3. Methodology 31

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7

Housekeeping Isolated and tickless

Shared L2 Cache Shared L2 Cache

FIGURE 3.7: CPU Partitioning.

The first CPU cluster is used for housekeeping and non-critical tasks, while the second
is reserved for real-time applications and is isolated from general scheduling algo-
rithms and SMP balancing. Applications and managed interrupts must be explicitly
configured to run on the isolated cores. The isolated cores are configured to be tickless
when the cores are idle or have a single task running. Each CPU cluster has a shared
L2 Cache, meaning the housekeeping and isolated CPU clusters do not share the last-
level cache (LLC). A shared LLC for housekeeping and real-time applications is shown
to cause extra latencies [23].

The CPU clusters are partitioned with the isolcpus kernel command-line parameter
instead of the more complex cgroup alternative. CPU partitioning with cgroups is
better suited for grouping multiple real-time applications. The thesis will only focus
on running one real-time application.

The CPU partitioning environment allows for various configurations as the measure-
ment tool and corresponding interrupts can be pinned to either cluster.

3.1.4 Stressors

The stress-ng and hackbench stressors are chosen to simulate workload and pro-
duce interference. They are executed on the housekeeping CPU cluster to simulate a
mixed-criticality system. The stressors are scheduled with the SCHED_OTHER schedul-
ing policy with a nice value of 0. The variety of stressors aims to highlight how well
the kernel performs under different workloads.

hackbench (Version 2.50) simulates inter-process communication between threads
and repeated setup and teardown. The stressor primarily affects the kernel’s sched-
uler. The stressor’s intensity is adjustable by changing the number of concurrent tasks.
By default, UNIX sockets are used for inter-process communication, but the stressor
can be configured to use pipes instead [33].

stress-ng (Version 0.15.07) has a large collection of stressors, with 242 out of 318
available for the Linux-based system’s CPU architecture and Linux configuration. The
number was determined by running all stressors and removing those that failed.

3.2 Testing Strategy

The initial experiments will use a set of parameters for the measurement tool, aiming
to capture the following aspects.

• The effect of pinning interrupts and applications to isolated CPU cores.

Chapter 3. Methodology 32

• The performance difference between polling and interrupt-based implementa-
tions.

• Whether changes in the frequency of incoming messages and signals affect the
round-trip time.

Table 3.2 shows the initial testing parameters for the measurement tool. The testing
duration for each combination is set to a relatively short period of one minute due to
the many combinations.

I = IRQ, P = Polling, WQ = Waitqueue, HC = Housekeeping cluster, IC = Isolated cluster

Protocol Read Input IRQ Pinning App Pinning Period Duration

TCP/IP I HC, IC HC, IC 1ms, 10ms, 1s 1m
UDP I HC, IC HC, IC 1ms, 10ms, 1s 1m
PCIe I+WQ,I+P HC, IC HC, IC 1ms, 10ms, 1s 1m
GPIO I,P HC HC, IC 1ms, 10ms, 1s 1m

TABLE 3.2: Initial testing parameters.

The GPIO driver does not allow GPIO interrupts to be pinned to any other CPU core
than CPU #0. However, the interrupts associated with the other protocols can be
pinned to both CPU clusters. In all cases, the device driver used for PCIe will gen-
erate an interrupt for incoming data. The I+WQ label means that a waitqueue is used
in the interrupt-handler to wake up the measurement tool, while the I+P label means
that the measurement tool regularly polls a flag that is set by the interrupt-handler.

The measurement tool runs with the SCHED_FIFO scheduling policy with a static pri-
ority of 80. This ensures that the measurement tool has a higher priority than threaded
interrupts and the stressor threads produced by hackbench and stress-ng.

Initial prototyping has found the hackbench stressor to be quite effective at stressing
the system and generally produces worse latencies than stress-ng. The initial test
runs will utilize four combinations of hackbench with two intensity levels and two
IPC mechanisms. The intensity level is adjusted by changing the number of concurrent
tasks. Ten groups and 20 file descriptors result in 400 concurrent tasks while increasing
the number of file descriptors to 200 results in 4000 tasks. The number of loops has been
set arbitrarily high, so the stressor runs throughout the testing period. The hackbench
command line parameters for each combination are shown in Table 3.3. The labels are
used in the test result graphs in section 4.

Label Parameters

h1 hackbench –datasize 100 –groups 10 –fds 20 –loops 99999999
h2 hackbench –datasize 100 –groups 10 –fds 20 –loops 99999999 –pipe
h3 hackbench –datasize 100 –groups 10 –fds 200 –loops 99999999
h4 hackbench –datasize 100 –groups 10 –fds 200 –loops 99999999 –pipe

TABLE 3.3: Initial hackbench parameters.

Chapter 3. Methodology 33

3.2.1 Additional Measurement Runs

When the optimal configuration has been determined, additional measurement runs
with stress-ng stressors are performed to show how well the configuration works
against a wide range of stressors. The frequency of incoming signals and messages is
configured to be 10 ms, and the test duration is one minute.

The collection of stress-ng stressors used in the measurement runs is shown in Listing
B.1. The list has been compiled by extracting all available stress-ng stressors and re-
moving those unsupported by the AArch64 CPU architecture, system configuration, or
caused the system to break. The list of excluded stress-ng stressors is shown in Listing
B.2.

3.2.2 Baseline Tests With Cyclictest

The cyclictest measurement tool is considered the de facto standard benchmark-
ing tool for real-time Linux. It is widely used in research papers to provide an idea
of the system’s worst-case scheduling latency. Baseline tests with cyclictest are
performed to produce comparable results.

Listing 3.2 shows the cylictest command used during the baseline tests.

c y c l i c t e s t −a <7 ,3> −m −p 80 − l 100000 −−seca l igned −−defaul t −system −−
quie t

LISTING 3.2: Cyclictest command.

3.3 BPF Programs

Custom BPF programs have been developed to trace the kernel’s inner workings. The
eBPF technology allows custom code to be attached to kernel hooks during runtime.

The BPF programs use the BPF-side APIs provided by libbpf. To avoid the com-
plications and runtime overhead that come with using the popular toolkit BCC (BPF
Compiler Collection) [100], I have taken advantage of libbpf’s BPF CO-RE concept
[101] that allows for BPF programs to be compiled once and executed anywhere.

Chapter 3. Methodology 34

3.3.1 Inter-Processor Interrupts

The inter-processor interrupts (IPI) program keeps track of all IPI calls with the origin
processor, PID, IPI type, and destination processor. In cases where the IPI call happens
in a hard interrupt context, the interrupt name is extracted instead of the task name.
An example is shown in Listing 3.3.

−−−
CPU PID Name I P I CPU0 CPU1 CPU2 CPU3
−−−
0 0 arch_t imer IPI_CALL_FUNC 61
0 15 ktimers /0 IPI_RESCHEDULE 1 9 8
0 20 rcuc /0 IPI_RESCHEDULE 1
0 184 kworker /0:3 IPI_RESCHEDULE 1 1 1
0 398 kworker/u16 : 2 IPI_RESCHEDULE 1
0 401 kworker/u16 : 7 IPI_RESCHEDULE 1 1
1 0 arch_t imer IPI_CALL_FUNC 3
1 28 ktimers /1 IPI_RESCHEDULE 1 1 2
2 0 arch_t imer IPI_CALL_FUNC 3
2 37 ktimers /2 IPI_RESCHEDULE 7 4 1
2 197 kworker /2:1 IPI_RESCHEDULE 1
2 401 kworker/u16 : 7 IPI_RESCHEDULE 1 1
3 0 arch_t imer IPI_CALL_FUNC 10
3 46 ktimers /3 IPI_RESCHEDULE 10 1 3
3 398 kworker/u16 : 2 IPI_RESCHEDULE 1
−−−

LISTING 3.3: IPI BPF Program example output.

3.3.2 Softirqs

Softirq is one of the kernel’s bottom-half interrupt routine implementations and is re-
served for the most time-critical interrupt handlers. Softirqs are usually raised by an
interrupt’s top-half routine and handled in the return from a hardware interrupt [102]
or by the per-CPU ksoftirqd daemon [57]. Each softirq is placed into one of the
following classifications: HI, TIMER, NET_TX, NET_RX, BLOCK, IRQ_POLL, TASKLET,
SCHED, HRTIMER, and RCU.

With the PREEMPT_RT patch, softirqs with the TIMER or HRTIMER classification are
handled by the per-CPU ktimers daemons that run with a higher priority than the
ksoftirqd daemons. Softirqs that are raised in hard interrupt context are handled in
the per-CPU ksoftirqd daemon, while softirqs raised in threaded interrupt handlers
are handled after the threaded interrupt handler [103].

Two independent BPF programs have been developed to capture the raising and han-
dling aspects of softirqs.

Softirq Raising

The Softirq Raising BPF Program creates an overview of the processes and hard inter-
rupt handlers that raise softirqs, and statistics for the time between a softirq is raised
and the beginning of its handling. An example is shown in Listing 3.4.

Chapter 3. Methodology 35

−−
CPU PID NAME VECTOR COUNT HIGHEST LOWEST AVERAGE (ns)
−−
0 0 arch_t imer TIMER 528 9145 4800 5179
0 0 arch_t imer SCHED 2515 17680 4365 4611
0 0 arch_t imer HRTIMER 54 5270 4215 4503
0 217 i r q /68 −46000000 NET_RX 3 3740 1960 2610
0 218 i r q /70 −46000000 TIMER 1 23340 23340 23340
0 218 i r q /70 −46000000 NET_RX 21 2410 1600 1814
0 292 i r q /218 −2880000 SCHED 1 3295 3295 3295
1 0 IPI_CALL_FUNC SCHED 2646 6980 4195 4719
1 0 arch_t imer TIMER 60 18600 5935 9079
1 0 arch_t imer SCHED 58 15805 7325 9304
1 0 arch_t imer HRTIMER 60 7820 4550 5351
1 2 kthreadd SCHED 1 65625 65625 65625
2 0 IPI_CALL_FUNC SCHED 9 8550 4410 5740
2 0 arch_t imer TIMER 84 10540 5820 6628
2 0 arch_t imer SCHED 6 10990 4775 8229
2 0 arch_t imer HRTIMER 50 6510 4905 5337
−−

LISTING 3.4: Softirq Raise BPF Program example output.

Softirq Handling

The Softirq Handling BPF Program keeps track of the number of softirqs handled by
each PID for each classification, with statistics for the duration in nanoseconds. An
example is shown in Listing 3.5.

VECTOR PID NAME COUNT HIGHEST LOWEST AVERAGE (ns)
−−
TIMER 15 ktimers /0 64 30675 1430 2425
TIMER 28 ktimers /1 7 4950 2855 3736
TIMER 37 ktimers /2 15 6610 1965 3935
TIMER 46 ktimers /3 10 6520 2290 3629
NET_RX 216 i r q /68 −46000000 1 12630 12630 12630
NET_RX 217 i r q /70 −46000000 3 31710 8590 16676
SCHED 14 k s o f t i r q d /0 313 6645 1760 1954
SCHED 29 k s o f t i r q d /1 80 9645 690 2306
SCHED 38 k s o f t i r q d /2 2 2780 855 1817
SCHED 47 k s o f t i r q d /3 4 1995 1020 1403
SCHED 15 ktimers /0 1 1445 1445 1445
SCHED 28 ktimers /1 7 2350 970 1877
SCHED 37 ktimers /2 13 1290 900 1047
SCHED 46 ktimers /3 9 1425 880 1080
HRTIMER 15 ktimers /0 5 3220 2350 2792
HRTIMER 28 ktimers /1 2 3850 3330 3590
HRTIMER 37 ktimers /2 6 5180 2480 3200
HRTIMER 46 ktimers /3 8 3700 2350 2823
−−

LISTING 3.5: Softirq Handle BPF Program example output.

Chapter 3. Methodology 36

3.3.3 Hardirqs

The Hardirq BPF Program captures all hard interrupt routines with count and timing
statistics. An example is shown in Listing 3.6.

−−−
CPU IRQ NAME COUNT HIGHEST LOWEST AVERAGE (ns)
−−−
0 1 IPI_RESCHEDULE 19 1160 325 485
0 11 arch_t imer 5008 6465 710 1839
0 70 46000000 . ethern 4 915 365 547
0 218 2880000 . s e r i a l 6 5295 325 1170
1 1 IPI_RESCHEDULE 14 970 505 640
1 2 IPI_CALL_FUNC 82 1500 530 684
1 11 arch_t imer 20 6905 765 2480
2 1 IPI_RESCHEDULE 13 1600 535 721
2 2 IPI_CALL_FUNC 5 1300 685 885
2 11 arch_t imer 12 4210 845 3328
3 1 IPI_RESCHEDULE 20 1240 455 681
3 2 IPI_CALL_FUNC 1 1230 1230 1230
3 11 arch_t imer 39 6325 770 2495
−−−

LISTING 3.6: Hardirq BPF Program example output.

37

Chapter 4

Results and Discussion

This chapter presents the test results obtained by following the testing strategy out-
lined in section 3.2. The test results focus on the effects of pinning real-time applica-
tions and their associated interrupt routines to an isolated CPU cluster configured as
tickless. It also examines how system loads of varying intensity and characteristics
impact the GPIO, Ethernet, and PCIe implementations.

Chapter 4. Results and Discussion 38

4.1 Baseline Test With Cyclictest

The cyclictest benchmarking tool effectively measures the system wake-up latency
by repeatedly going to sleep and calculating the time difference between the expected
and actual wake-up times. cyclictest is scheduled with a static priority of 80, and
routinely woken up using nanosleep(2).

The initial baseline test with cyclictest aims to capture the difference in schedul-
ing latency, also called wake-up latency, for applications running on the isolated and
housekeeping CPU clusters. The experiments are conducted with and without load on
the housekeeping CPU cluster to highlight the impact of system load and the kernel’s
isolation capabilities.

Figure 4.1 illustrates the variation in system wake-up latency for the housekeeping and
isolated CPU clusters when subjected to high load, as opposed to no load.

No
 Lo

ad
 -

Ho
us

ek
ee

pin
g C

PU
 cl

us
te

r

No
 Lo

ad
 -

Iso
lat

ed
 C

PU
 cl

us
te

r
Hi

gh
 Lo

ad
 -

Ho
us

ek
ee

pin
g C

PU
 cl

us
te

r

Hi
gh

 Lo
ad

 -
Iso

lat
ed

 C
PU

 cl
us

te
r

0

10

20

30

W
ak

e-
up

 la
te

nc
y

in
 u

s Lowest
Average
Highest

FIGURE 4.1: System wake-up time with timer migration enabled.

Applying a high load to the housekeeping CPU cluster increases the wake-up latency
for both CPU clusters. Applications running on the isolated CPU cluster are not ex-
empt from interference from the high load on the housekeeping CPU cluster.

Chapter 4. Results and Discussion 39

The wake-up latency is higher on the isolated CPU cluster, regardless of the system
load. This is a side effect of configuring the isolated CPU cluster as tickless. It takes
longer to wake up an idle tickless CPU core as it includes inter-processor communica-
tion.

The default configuration of Linux has timer migration enabled. This is unfortunate
for applications running on tickless CPU cores as the timer wake-up routine may be
executed on a different CPU core. This leads to extra scheduling overhead, as the
timer wake-up routine must issue a rescheduling inter-processor interrupt to the
CPU core running the application. Disabling timer migration ensures that timers will
be armed on the same CPU core as the application requesting the timer. Applications
running on tickless CPU cores will, therefore, not offload timer work to a different CPU
core. Figure 4.2 shows the same scenario as Figure 4.1, only now with timer migration
disabled.

No
 Lo

ad
 -

Ho
us

ek
ee

pin
g C

PU
 cl

us
te

r

No
 Lo

ad
 -

Iso
lat

ed
 C

PU
 cl

us
te

r
Hi

gh
 Lo

ad
 -

Ho
us

ek
ee

pin
g C

PU
 cl

us
te

r

Hi
gh

 Lo
ad

 -
Iso

lat
ed

 C
PU

 cl
us

te
r

0

5

10

15

20

25

30

W
ak

e-
up

 la
te

nc
y

in
 u

s Lowest
Average
Highest

FIGURE 4.2: System wake-up time with timer migration disabled.

Similar to the results with timer migration enabled, the wake-up latency is higher when
cyclictest is executed on the tickless isolated CPU cluster, and no load is applied to
the housekeeping CPU cluster. However, the trend changes when system load is ap-
plied to the housekeeping CPU cluster. With timer migration disabled and subjected to
high load, the highest measured and average wake-up latency is lower on the isolated
CPU cluster.

Figure 4.3 shows a direct comparison of the highest measured wake-up latency from
the previous results in Figure 4.1 and Figure 4.2, highlighting the effect of disabling
timer migration.

Chapter 4. Results and Discussion 40

No
 Lo

ad
 -

Ho
us

ek
ee

pin
g C

PU
 cl

us
te

r

No
 Lo

ad
 -

Iso
lat

ed
 C

PU
 cl

us
te

r
Hi

gh
 Lo

ad
 -

Ho
us

ek
ee

pin
g C

PU
 cl

us
te

r

Hi
gh

 Lo
ad

 -
Iso

lat
ed

 C
PU

 cl
us

te
r

0

10

20

30

40

W
ak

e-
up

 la
te

nc
y

in
 u

s Timer Migration = Disabled
Timer Migration = Enabled

FIGURE 4.3: Comparison of system wake-up time with timer migration enabled and disabled.

Disabling timer migration has a positive impact in all scenarios, especially when a high
load is applied to the housekeeping CPU cluster and cyclictest runs on the tickless
configured isolated CPU cluster.

The results from the baseline tests with cyclictest indicate that the system’s schedul-
ing latency is greatly affected by general system load. Pinning timing-critical applica-
tions that wake up periodically, similar to cyclictest, to a tickless configured iso-
lated CPU cluster is only beneficial when a general load is applied and timer migration
is disabled.

4.2 GPIO

The measurement runs for GPIO focus on two different implementations regarding
how the incoming GPIO signal is registered. One implementation is interrupt-based,
where the measurement tool waits to be woken up by the GPIO interrupt handler. The
other implementation is polling-based, polling the GPIO value every five microsec-
onds.

The GPIO interrupt handler can not be pinned to any other CPU core than CPU #0. This
implies that the interrupt handler will, in all cases, be executed on the housekeeping
CPU cluster. However, the measurement tool can be pinned to a CPU core in both
CPU clusters. The experiments and corresponding test results highlight the impact of
assigning GPIO-based applications to an isolated CPU cluster and how stress impacts
the Linux kernel’s ability to respond to a GPIO signal.

Chapter 4. Results and Discussion 41

4.2.1 GPIO Driver With No Modifications

The initial measurement runs use an unmodified version of the native Linux GPIO
driver. The native Linux GPIO driver splits the GPIO interrupt handler into a top half
and a threaded bottom half. The top-half routine is forcibly converted to a thread as
the Linux kernel is configured with the PREEMPT_RT patch. Both interrupt halves
run as threads with a SCHED_FIFO scheduling policy and a static priority of 50. The
interrupt threads are scheduled on the housekeeping CPU cluster as the isolated CPU
cluster is reserved against general SMP balancing. Even though the interrupt threads
run on the same CPU cluster as the stressor threads, they have a higher scheduling
priority.

Figure 4.4 shows the highest measured RTT results with the interrupt-based GPIO im-
plementation. The results highlight the wake-up time difference between the two CPU
clusters. All abbreviations used in the figures are introduced in section 3.2. In this
example, CPU=IC means that the measuring tool is pinned to the isolated CPU cluster.

s=
idl

e,p
=1

s
s=

idl
e,p

=1
0m

s
s=

idl
e,p

=1
ms

s=
h2

,p=
1s

s=
h2

,p=
10

ms
s=

h2
,p=

1m
s

s=
h1

,p=
1m

s
s=

h3
,p=

1s
s=

h3
,p=

1m
s

s=
h3

,p=
10

ms
s=

h1
,p=

10
ms

s=
h1

,p=
1s

s=
h4

,p=
1m

s
s=

h4
,p=

1s
s=

h4
,p=

10
ms

0

20

40

60

80

100

RT
T

in
 u

s

CPU=IC
CPU=HC

FIGURE 4.4: Highest measured RTT results for the interrupt-based GPIO implementation with
an unmodified GPIO driver.

When no additional load is applied to the housekeeping CPU cluster, the RTT is notice-
ably higher when the measurement tool is pinned to the tickless isolated CPU cluster.
The RTT increases when an additional load is introduced, but the differences between
the two CPU clusters are evened out. This behavior complies with the results from
the baseline tests with cyclictest described in section 4.1. There are no obvious
differences between the period configurations.

Figure 4.5 shows the highest measured RTT results with the polling-based GPIO im-
plementation.

Chapter 4. Results and Discussion 42

s=
h4

,p=
10

ms
s=

h3
,p=

1s
s=

h3
,p=

10
ms

s=
h3

,p=
1m

s
s=

h2
,p=

1s
s=

h2
,p=

10
ms

s=
h2

,p=
1m

s
s=

h1
,p=

1s
s=

idl
e,p

=1
s

s=
idl

e,p
=1

0m
s

s=
idl

e,p
=1

ms
s=

h4
,p=

1s
s=

h1
,p=

10
ms

s=
h1

,p=
1m

s
s=

h4
,p=

1m
s

0

5

10

15

20

25

30

35

RT
T

in
 u

s

CPU=IC
CPU=HC

FIGURE 4.5: Highest measured RTT results for the polling-based GPIO implementation with
an unmodified GPIO driver.

The results are relatively stable, with two spikes when the measurement tool is pinned
to the housekeeping CPU cluster. The polling-based GPIO implementation does not
seem to be heavily affected by the stressors. It is worth noting that both spikes oc-
curred when the period was one millisecond. This is the lowest period used in the
experiments.

4.2.2 Modified GPIO Driver With IRQF_NO_THREAD

Enabling the PREEMPT_RT patch will force all top-half interrupt routines to be con-
verted to threads. This is favorable for high-priority applications as they will expe-
rience shorter interference from interrupt handlers. Converting interrupt handlers to
threads comes with a reduction in throughput due to extra scheduling overhead. Inter-
rupts can be requested to not be converted to threads with the IRQF_NO_THREAD flag.
This configuration option is used for time-critical interrupts such as timers, per-CPU
interrupts, and inter-processor interrupts [27].

The following measurement runs use a modified native Linux GPIO driver, where the
interrupt halves have been merged into one, and the interrupt routine is executed im-
mediately in a hard interrupt context.

Figure 4.6 shows the highest measured RTT with the interrupt-based GPIO implemen-
tation with the modified GPIO driver. The results are similar to the measurement runs
for the interrupt-based GPIO implementation with the unmodified GPIO driver shown
in Figure 4.4. When comparing the results, the highest measured RTT is slightly lower
under heavy load with the modified GPIO driver. The results are, however, similar
when the system is idle.

Chapter 4. Results and Discussion 43

s=
idl

e,p
=1

s
s=

idl
e,p

=1
0m

s
s=

idl
e,p

=1
ms

s=
h1

,p=
1s

s=
h2

,p=
1s

s=
h2

,p=
10

ms
s=

h1
,p=

1m
s

s=
h3

,p=
1m

s
s=

h2
,p=

1m
s

s=
h4

,p=
1s

s=
h3

,p=
1s

s=
h3

,p=
10

ms
s=

h4
,p=

10
ms

s=
h4

,p=
1m

s
s=

h1
,p=

10
ms

0

20

40

60

80
RT

T
in

 u
s

CPU=IC
CPU=HC

FIGURE 4.6: Highest measured RTT results for the interrupt-based GPIO implementation with
a modified GPIO driver with IRQF_NO_THREAD.

Figure 4.7 shows the highest measured RTT with the polling-based GPIO implementa-
tion with the modified GPIO driver.

s=
h4

,p=
1s

s=
h4

,p=
10

ms
s=

h3
,p=

1s
s=

h3
,p=

10
ms

s=
h3

,p=
1m

s
s=

h2
,p=

1s
s=

h2
,p=

10
ms

s=
h2

,p=
1m

s
s=

h1
,p=

1s
s=

h1
,p=

10
ms

s=
h1

,p=
1m

s
s=

idl
e,p

=1
s

s=
idl

e,p
=1

0m
s

s=
idl

e,p
=1

ms
s=

h4
,p=

1m
s

0

5

10

15

20

25

30

35

RT
T

in
 u

s

CPU=IC
CPU=HC

FIGURE 4.7: Highest measured RTT results for the polling-based GPIO implementation with a
modified GPIO driver with IRQF_NO_THREAD.

Chapter 4. Results and Discussion 44

The results seem unchanged compared to the previous run with the unmodified GPIO
driver. However, they might be considered worse, as pinning the measurement tool to
the isolated CPU cluster did not help mitigate a spike.

Modifying the native Linux GPIO driver results in slightly better RTT results for the
interrupt-based GPIO implementation. The polling-based implementation is much
less affected by the stressors than the interrupt-based implementation. However, it
is not immune to spikes when configured with a short period and additional load is
applied to the housekeeping CPU cluster. Pinning the measurement tool to the isolated
CPU cluster has little impact on the polling-based implementation and varying posi-
tive impact on the interrupt-based implementation in terms of the highest measured
RTT.

The average RTT results for the interrupt-based implementation with the unmodified
GPIO driver are shown in Figure A.1, and the results with the modified GPIO driver
are shown in Figure A.2. Pinning the measurement tool to the isolated CPU cluster
is slightly preferable based on the average RTT. Similar results for the housekeeping
and isolated CPU clusters show that the Linux scheduler does a great job honoring the
measurement tool’s high-priority scheduling policy.

4.2.3 The Impact of CPU Configuration and Load on the Cross-CPU
Wake-Up Mechanism

During tracing sessions with ftrace and KernelShark, introduced in section 2.2.3,
the duration of the GPIO interrupt routine varies greatly based on system load and
CPU configuration. The last step of the GPIO interrupt routine is to wake up threads
waiting on the GPIO event. A custom BPF program is created to trace the time taken
to wake up other threads.

Previous results indicate that the wake-up time increases when a tickless CPU core is
involved. It is also interesting to look at the time difference between waking up an
application running on the same CPU core as the GPIO interrupt routine, compared to
a different one.

Figure 4.8 shows the lowest, average, and highest measured time needed to complete
the GPIO interrupt routine’s wake-up procedure. The application waiting on the GPIO
event is assigned to three different CPU cores with unique characteristics. CPU #0 is
the same CPU core used to process the GPIO interrupt, CPU #1 is in the housekeeping
CPU cluster, and CPU #7 is in the isolated CPU cluster and is configured as tickless.

Waking up CPU #1 and CPU #7 from CPU #0 requires an inter-processor interrupt,
introducing extra overhead. To highlight the impact of load, the experiments are re-
peated with an additional load on the housekeeping CPU cluster.

Chapter 4. Results and Discussion 45

ID
LE

 -
CP

U
0

ID
LE

 -
CP

U
1

ID
LE

 -
CP

U
7

Hi
gh

 Lo
ad

 -
CP

U
0

Hi
gh

 Lo
ad

 -
CP

U
1

Hi
gh

 Lo
ad

 -
CP

U
7

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
W

ak
eu

p
tim

e
in

 u
s

Lowest
Average
Highest

FIGURE 4.8: GPIO wake-up time with different CPU configurations and load level.

It takes longer to wake up applications running on a different CPU core than the GPIO
interrupt, especially if the CPU core is configured as tickless. The differences in the
highest measured time are evened out when the system is subjected to high load. How-
ever, the average wake-up time follows a similar trend regardless of load.

The custom IPI BPF Program introduced in section 3.3.1 can track the inter-processor
interrupts that occur when the measurement tool runs on a different CPU core than the
GPIO interrupt handler. Listing 4.1 shows the custom IPI BPF program’s output during
a measurement run with 150000 samples where the measurement tool was pinned to
CPU #7.

CPU PID Name I P I CPU0 . . . CPU7
−−
0 0 gpio −input − r i s i IPI_RESCHEDULE 14986

LISTING 4.1: Output from the IPI BPF Program, focusing on IPIs generated by the GPIO
interrupt routine when the measurement tool runs on a different CPU.

14986 rescheduling inter-processor interrupts for CPU #7 were initiated by the GPIO
interrupt routine running on CPU #0. The remaining samples were implicitly covered
by other rescheduling interrupts that were triggered by other means. The output from
the BPF Program proves that inter-processor interrupts are used to wake up the mea-
surement tool when a GPIO is triggered.

Chapter 4. Results and Discussion 46

4.2.4 Additional Measurement Runs for GPIO

Additional measurement runs are performed with the best-performing GPIO configu-
ration. The stressors used during the measurement runs are described in section 3.2.1.

Modifying the GPIO driver to force the GPIO interrupt routine to execute immediately
in a hard interrupt context results in a slightly lower average and highest measured
RTT for the interrupt-based GPIO implementation. However, choosing whether to
pin the measurement tool to the isolated or housekeeping CPU cluster is not obvious
for the interrupt-based GPIO implementation. Looking at the average RTT results in
Figure A.2, pinning the measurement tool to the isolated CPU cluster has a slight ad-
vantage when subjected to high load. The highest measured RTT results in Figure
4.6 indicate that pinning the measurement tool to the housekeeping CPU cluster is
more beneficial when idle or during the lesser aggressive stressor configurations. Pin-
ning the measurement tool to the isolated CPU cluster is slightly better when the most
aggressive stressors are active. The benefits of pinning the measurement tool to the
isolated CPU cluster are thus worth taking advantage of.

The best-performing GPIO configuration for the interrupt and polling-based imple-
mentations uses the modified GPIO driver as described in section 4.2.2 with the mea-
surement tool pinned to the isolated CPU cluster.

Figure 4.9 shows a histogram of the average and highest measured RTT for additional
measurement runs with the interrupt-based GPIO implementation.

40 60 80 100 120
RTT in us

0

10

20

30

40

Co
un

t

Highest measured RTT
Average RTT

FIGURE 4.9: Histogram of the average and highest measured RTT for the additional measure-
ment runs with the interrupt-based GPIO implementation.

Chapter 4. Results and Discussion 47

As indicated by the results from the previous measurement runs with the hackbench
stressor configurations, the interrupt-based GPIO implementation is heavily affected
by system load. The majority of the round-trip time results with the stress-ng stres-
sors are lower than 70 microseconds, while the results with the hackbench stressor
are higher. This indicates that the interrupt-based GPIO implementation is more vul-
nerable to intense scheduling stress than general stress.

Figure 4.10 shows a histogram of the average and highest measured RTT for additional
measurement runs with the polling-based GPIO implementation.

25 30 35 40 45
RTT in us

0

50

100

150

200

250

Co
un

t

Highest measured RTT
Average RTT

FIGURE 4.10: Histogram of the average and highest measured RTT for the additional measure-
ment runs with the polling-based GPIO implementation.

The average RTT is remarkably stable and remains unaffected by all stressors. Al-
though a few stressors impact the highest measured RTT, it remains relatively stable,
with 98% of the results being under 30 microseconds.

By comparing the determinism of the interrupt and polling-based GPIO implementa-
tions, it is clear that the polling-based GPIO implementation is the better choice. The
RTT results with the interrupt-based GPIO implementation vary greatly by the type
of stressor, but a highest measured RTT of 120 microseconds is usable in many sys-
tem designs. Although the polling-based implementation produces the best results, it
requires more CPU time, negatively affecting other processes.

Chapter 4. Results and Discussion 48

4.3 Ethernet

The measurement runs for Ethernet use the native Linux kernel networking stack with
no modifications. Incoming and outgoing Ethernet packets trigger an interrupt that
can be pinned to any given CPU core. The interrupt’s bottom-half routine is imple-
mented as a softirq, and the interrupt’s top-half routine is responsible for raising the
softirq at the end of its routine. As observed in the output from the custom Softirq BFP
Program in Listing 3.5, most softirqs are handled in dedicated per-CPU ksoftirqd
and ktimers processes. However, the Ethernet softirq is handled in the return of the
interrupt’s top-half routine as it is a threaded interrupt. This implies that the Ethernet
softirq is processed quicker than other softirqs.

Each combination of stressor and period is run with the four possible CPU cluster pin-
ning combinations. To reduce the amount figures, two primary colors with two shades
are used to represent the four CPU cluster pinning combinations. Blue represents the
Ethernet interrupt being pinned to the isolated CPU cluster, while red represents being
pinned to the housekeeping CPU cluster. The darker shade represents the measure-
ment tool running on the isolated CPU cluster and the lighter shade represents the
housekeeping CPU cluster.

Measurement runs for both UDP and TCP/IP are performed to determine the different
characteristics of the protocols.

4.3.1 Measurement Runs for UDP

Figure 4.11 shows the highest measured RTT results for the UDP implementation.

s=
idl

e,p
=1

0m
s

s=
idl

e,p
=1

s
s=

idl
e,p

=1
ms

s=
h2

,p=
10

ms
s=

h2
,p=

1m
s

s=
h1

,p=
10

ms
s=

h4
,p=

10
ms

s=
h1

,p=
1m

s
s=

h3
,p=

10
ms

s=
h1

,p=
1s

s=
h3

,p=
1m

s
s=

h3
,p=

1s
s=

h2
,p=

1s
s=

h4
,p=

1m
s

s=
h4

,p=
1s

0

100

200

300

400

500

600

RT
T

in
 u

s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE 4.11: Highest measured RTT results for UDP.

Chapter 4. Results and Discussion 49

The CPU pinning combinations represented by the darker shades are better in all cases.
This means that pinning the Ethernet interrupts or measurement tool to the isolated
CPU cluster has a beneficial effect regardless of load. This is opposed to the trend
indicated by the baseline tests with cyclictest and the test results for the interrupt-
based GPIO implementation. The UDP implementation benefits from running on a
CPU core configured as tickless regardless of load.

A heavy load and a short period of one millisecond can result in spikes when the
measurement tool is pinned to the housekeeping CPU cluster and the Ethernet inter-
rupts are pinned to the isolated CPU cluster. It is not the top-half interrupt routines or
the bottom-half softirq routines that cause the spikes, but rather the processing of the
read(2) and write(2) system calls to the networking stack.

Excluding the combination that caused the two spikes, the highest measured RTT is
similar for all periods and stressor configurations. CPU pinning has a less noticeable
impact on an idle system but shows a noticeable beneficial impact during heavy loads
and shorter periods. The average RTT shown in Figure 4.12 is much more affected by
the period.

s=
idl

e,p
=1

ms
s=

idl
e,p

=1
0m

s
s=

h2
,p=

1m
s

s=
idl

e,p
=1

s
s=

h1
,p=

1m
s

s=
h2

,p=
10

ms
s=

h4
,p=

1m
s

s=
h3

,p=
1m

s
s=

h1
,p=

10
ms

s=
h4

,p=
10

ms
s=

h3
,p=

10
ms

s=
h2

,p=
1s

s=
h1

,p=
1s

s=
h3

,p=
1s

s=
h4

,p=
1s

0

50

100

150

200

250

RT
T

in
 u

s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE 4.12: Average RTT results for UDP.

The four worst results are all from measurement runs with a one-second period. The
average RTT is more affected by period than stressor intensity. Pinning the measure-
ment tool and Ethernet interrupts to the isolated CPU cluster does not change the pe-
riod trend. Overall, pinning the measurement tool and the corresponding Ethernet
interrupts to the isolated CPU cluster is preferred in all cases.

Chapter 4. Results and Discussion 50

The stressor configurations use either sockets or pipes for IPC between the stressor
threads. Figure 4.13 shows the two IPC mechanisms’ impact on the highest measured
RTT for UDP with the measurement tool and Ethernet interrupts pinned to the isolated
CPU cluster.

th
re

ad
s=

40
0,p

er
iod

=1
0m

s
th

re
ad

s=
40

0,p
er

iod
=1

ms
th

re
ad

s=
40

0,p
er

iod
=1

s
th

re
ad

s=
40

00
,pe

rio
d=

10
ms

th
re

ad
s=

40
00

,pe
rio

d=
1m

s
th

re
ad

s=
40

00
,pe

rio
d=

1s

0

50

100

150

200

RT
T

in
 u

s

Pipe IPC
Socket IPC

FIGURE 4.13: Comparison of the impact of socket and pipe-based IPC stress for UDP.

The highest measured RTT for UDP is similar for both IPC mechanisms. The pipe IPC
mechanism is preferable when 400 stressor threads are applied to the housekeeping
CPU cluster during shorter periods. However, when the number of stressor threads is
ten-folded, sockets are preferred. Based on these results, predicting the best-performing
IPC mechanism during other load types is challenging.

Additional Measurement Runs for UDP

Additional measurement runs are performed with the best-performing UDP configu-
ration. The stressors used during the measurement runs are described in section 3.2.1.

The results for the highest measured RTT in Figure 4.11 and average RTT in Figure
4.12 indicate that pinning the Ethernet interrupt and measurement tool to the isolated
CPU cluster is the best-performing configuration for the UDP implementation. This
configuration is thus used in the additional measurement runs.

Figure 4.14 shows a histogram of the highest measured and average RTT for the addi-
tional measurement runs with the UDP implementation.

Chapter 4. Results and Discussion 51

200 400 600 800 1000 1200 1400 1600
RTT in us

0

10

20

30

40

50

60

70
Co

un
t

Highest measured RTT
Average RTT

FIGURE 4.14: Histogram of the average and highest measured RTT for the additional measure-
ment runs with the UDP implementation.

The Linux kernel’s native UDP implementation is relatively stable but experiences a
spike with the stress-ng stressor procfs. Appendix A.5 shows a detailed descrip-
tion of the worst-performing stressors. With 95% of the stressors, the UDP implemen-
tation achieves a round-trip time of under 350 microseconds.

More than half of the stress-ng stressors produced worse round-trip times than the
most intense hackbench configuration with 4000 concurrent tasks. This indicates that
other kernel characteristics affect the UDP implementation more than an increase in
scheduling delay.

4.3.2 Measurement Runs for TCP/IP

The following test results focus on the Linux kernel’s TCP/IP implementation. The
TCP/IP protocol is more comprehensive than UDP, requiring more processing time.
The TCP/IP protocol is similarly implemented as the UDP protocol, utilizing inter-
rupts and softirqs for incoming and outgoing Ethernet packets.

The highest measured RTT results for the TCP/IP measurement runs are shown in
Figure 4.15. Similar to the results for the UDP implementation described in section
4.3.1, pinning the measurement tool and corresponding Ethernet interrupts to the iso-
lated CPU cluster provides better results. The TCP/IP implementation is vulnerable to
spikes when the measurement tool is pinned to the housekeeping CPU cluster and the
Ethernet interrupts are pinned to the isolated CPU cluster.

Chapter 4. Results and Discussion 52

s=
idl

e,p
=1

s
s=

idl
e,p

=1
0m

s
s=

idl
e,p

=1
ms

s=
h2

,p=
1m

s
s=

h1
,p=

1m
s

s=
h2

,p=
10

ms
s=

h4
,p=

1m
s

s=
h3

,p=
1m

s
s=

h4
,p=

10
ms

s=
h1

,p=
10

ms
s=

h3
,p=

1s
s=

h3
,p=

10
ms

s=
h2

,p=
1s

s=
h4

,p=
1s

s=
h1

,p=
1s

0

100

200

300

400

500

600

RT
T

in
 u

s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE 4.15: Highest measured RTT results for TCP/IP.

The average RTT results for the TCP/IP implementation are shown in Figure 4.16.

s=
idl

e,p
=1

ms
s=

idl
e,p

=1
0m

s
s=

h2
,p=

1m
s

s=
idl

e,p
=1

s
s=

h1
,p=

1m
s

s=
h2

,p=
10

ms
s=

h4
,p=

1m
s

s=
h3

,p=
1m

s
s=

h1
,p=

10
ms

s=
h4

,p=
10

ms
s=

h3
,p=

10
ms

s=
h2

,p=
1s

s=
h3

,p=
1s

s=
h1

,p=
1s

s=
h4

,p=
1s

0

50

100

150

200

250

300

RT
T

in
 u

s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE 4.16: Average RTT results for TCP/IP.

The average RTT results for TCP/IP follow the same trend as the UDP implementation,
where the RTT is more affected by period than stressor configuration.

Chapter 4. Results and Discussion 53

Figure 4.17 highlights the difference in the highest measured RTT for TCP/IP when
the stressor threads use sockets rather than pipes for IPC.

th
re

ad
s=

40
0,p

er
iod

=1
0m

s
th

re
ad

s=
40

0,p
er

iod
=1

ms
th

re
ad

s=
40

0,p
er

iod
=1

s
th

re
ad

s=
40

00
,pe

rio
d=

10
ms

th
re

ad
s=

40
00

,pe
rio

d=
1m

s
th

re
ad

s=
40

00
,pe

rio
d=

1s

0

50

100

150

200

250
RT

T
in

 u
s

Pipe IPC
Socket IPC

FIGURE 4.17: Comparison of the impact of socket and pipe-based IPC stress for TCP/IP.

In most cases, the highest measured RTT for TCP/IP is higher when the stressor threads
use sockets instead of pipes for IPC. This differs from the UDP implementation, where
it was unclear whether sockets or pipes were preferred. The choice of IPC mechanism
for tasks running on the housekeeping CPU cluster affects the Linux kernel’s TCP/IP
implementation, even when assigning all network-related processing to the isolated
CPU cluster.

Additional Measurement Runs for TCP/IP

Additional measurement runs are performed with the best-performing TCP/IP con-
figuration. The stressors used during the measurement runs are described in section
3.2.1.

Like the UDP implementation, pinning the measurement tool and the Ethernet inter-
rupt to the isolated CPU cluster is the best-performing configuration. The results for
the additional measurement runs for TCP/IP are shown in Figure 4.18.

Chapter 4. Results and Discussion 54

125 150 175 200 225 250 275 300
RTT in us

0

20

40

60

80

100
Co

un
t

Highest measured RTT
Average RTT

FIGURE 4.18: Histogram of the average and highest measured RTT for the additional measure-
ment runs with the TCP/IP implementation.

The highest measured RTT is equal for half of the stressors, while the average RTT is
more varied. Compared to the additional measurement run results for the UDP im-
plementation, the TCP/IP implementation is more stable and did not experience any
spikes. It is unknown what caused the spike to happen for the UDP implementation.
As the TCP/IP implementation is similar to the UDP implementation, the TCP/IP im-
plementation may probably experience a spike if the experiments were run for a longer
duration.

4.3.3 The Impact of Heavy Load on Ethernet Softirqs

The native Linux kernel networking stack uses softirqs to process incoming and out-
going Ethernet packets. A small experiment is conducted to determine if there is any
noticeable difference regarding softirq raising and handling during idle and heavy sys-
tem load. The interrupts responsible for raising the Ethernet softirqs are pinned to a
CPU in the isolated CPU cluster. The softirq is processed in the return of the interrupt,
implying that it is processed on a CPU in the isolated CPU cluster. When simulating a
system with a heavy load, the hackbench config h4 is performed on the housekeeping
CPU cluster.

The Softirq Raise BPF Program introduced in section 3.3.2 can track the time between
a softirq is raised, and until it starts processing. Figure 4.19 shows the output from the
Softirq Raise BPF Program, where the softirq handling incoming Ethernet packets is
tracked during high and no load.

Chapter 4. Results and Discussion 55

ID
LE

 -
NE

T_
RX

 So
fti

rq

Hi
gh

 Lo
ad

 -
NE

T_
RX

 So
fti

rq

0

5

10

15

20

25

30

Ra
isi

ng
 d

el
ay

 in
 u

s

Lowest
Average
Highest

FIGURE 4.19: Difference in UDP softirq raising delay for a system under high and no load.

The difference in softirq raising delay is noticeable. The average delay doubles and the
highest measured delay is ten times worse, even though the raising and handling of
the softirq are processed on an isolated CPU core.

The softirq processing time is measured with the Softirq Handle BPF Program intro-
duced in section 3.3.2. Figure 4.20 shows the processing time for the softirq handling
incoming Ethernet packets during high and no load. The highest measured processing
time is similar, but the average time has drastically increased.

Chapter 4. Results and Discussion 56

ID
LE

 -
NE

T_
RX

 So
fti

rq

Hi
gh

 Lo
ad

 -
NE

T_
RX

 So
fti

rq

0

10

20

30

40

50

60

70

80

Pr
oc

es
sin

g
tim

e
in

 u
s

Lowest
Average
Highest

FIGURE 4.20: Difference in UDP softirq processing time for a system under high and no load.

The experiment was also conducted for the TCP/IP implementation. The results for
the softirq raising delay are shown in Figure A.3, and the results for the softirq pro-
cessing time are shown in Figure A.4. The results follow a similar trend to the UDP
implementation but with a higher highest measured raising delay with an idle system.

4.4 PCIe

The Xilinx XDMA device driver plays an important role regarding the RTT results for
PCIe. The device driver handles all PCIe data transfers to and from the PCIe and
Ethernet measurement system. The inner workings of the device driver are discussed
in section 3.1.2.

The device driver has two configuration options regarding how data transfers are pro-
cessed. The default configuration option is called Interrupt Mode and issues an inter-
rupt that adds data transferring work to a global kernel workqueue. The other op-
tion is called Polling Mode and wakes up a kthread that handles the data transferring
work. With both configuration options, the data transferring work is offloaded to a
different thread.

The measurement tool has two implementations regarding how it is notified of PCIe
interrupts sent by the measurement system. The first implementation has the mea-
surement tool sleeping on a kernel waitqueue, where the PCIe interrupt handler is
responsible for waking up threads sleeping on the waitqueue. This implementation
is referred to as the waitqueue-based implementation. The other implementation is
polling-based, where the measurement tool polls a flag every five microseconds. The

Chapter 4. Results and Discussion 57

flag is raised by the PCIe interrupt handler. This implementation is referred to as the
polling-based implementation.

Measurement runs are performed for all four combinations to determine distinct per-
formance differences.

4.4.1 Xilinx Driver With no Modifications

The initial measurement runs use an unmodified Xilinx XDMA device driver. Figure
4.21 shows the highest measured RTT results for the measurement tool’s waitqueue-
based implementation with an unmodified Xilinx XDMA device driver in polling mode.

s=
idl

e,p
=1

0m
s

s=
idl

e,p
=1

s
s=

idl
e,p

=1
ms

s=
h1

,p=
10

ms
s=

h1
,p=

1s
s=

h2
,p=

1s
s=

h2
,p=

10
ms

s=
h3

,p=
1s

s=
h4

,p=
1s

s=
h2

,p=
1m

s
s=

h1
,p=

1m
s

s=
h3

,p=
10

ms
s=

h3
,p=

1m
s

s=
h4

,p=
10

ms
s=

h4
,p=

1m
s

102

103

104

105

106

RT
T

in
 u

s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE 4.21: Highest measured RTT results for the PCIe waitqueue-based implementation
with an unmodified Xilinx XDMA device driver in polling mode.

The stressors have a massive impact on the highest measured RTT regardless of the
PCIe interrupt and the application’s CPU cluster pinning configuration. The six worst-
performing configurations have a period shorter than one second. While measure-
ment runs with a one second period are relatively less affected by stress, they are still
ten times worse when compared to an idle system. The same goes for measurement
runs with a period of 10 ms with the h1 and h2 stressor configurations. The h3 and
h4 stressor configurations spawn ten times more threads than the h1 and h2 stressor
configurations. There is a direct correlation between the number of threads and the
highest measured RTT.

The relatively good performance of the measurement runs with a one-second period
is due to the high processing time needed to process a PCIe data transfer. When the
Ethernet and PCIe measurement system receives data from the Linux-based system, it
might issue a new PCIe interrupt before the Linux-based system is finished processing

Chapter 4. Results and Discussion 58

a PCIe data transfer. The longer the period between each PCIe interrupt, the more time
the Linux-based system has at its disposal to finish the data transfer and prepare itself
for incoming PCIe interrupts. With the ten and one millisecond periods, the Linux-
based system cannot finish the data transfer processing before the next PCIe interrupt,
resulting in higher round trip times.

Figure 4.22 shows the highest measured RTT results for the measurement tool’s polling-
based implementation with an unmodified Xilinx XDMA device driver in polling mode.

s=
idl

e,p
=1

s
s=

idl
e,p

=1
ms

s=
idl

e,p
=1

0m
s

s=
h1

,p=
1s

s=
h2

,p=
10

ms
s=

h1
,p=

10
ms

s=
h2

,p=
1s

s=
h4

,p=
1s

s=
h3

,p=
1s

s=
h2

,p=
1m

s
s=

h1
,p=

1m
s

s=
h3

,p=
10

ms
s=

h4
,p=

10
ms

s=
h3

,p=
1m

s
s=

h4
,p=

1m
s

102

103

104

105

106

RT
T

in
 u

s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE 4.22: Highest measured RTT results for the PCIe polling-based implementation with
an unmodified Xilinx XDMA device driver in polling mode.

The results are similar to the waitqueue-based implementation results in Figure 4.21.
Both results show that the Xilinx XDMA device driver in polling mode provides un-
stable results, especially during short periods. As discussed in section 3.1.2, the polling
mode implementation implies that the data transferring work is handled by a kthread
with a scheduling policy of SCHED_OTHER and a nice value of 0. The threads spawned
by the stressor program are scheduled with the same scheduling policy as the kthread.
Regardless of the PCIe interrupt and measurement tool’s high priority and CPU cluster
pinning configurations, the data transferring will always be handled by a thread with
low priority.

Although the Xilinx XDMA device driver initiates a kthread for each CPU core, in-
cluding the CPU cores in the isolated CPU cluster, the data transfer work is always
handled by the kthread running on CPU #1. CPU #1 is a part of the housekeeping
CPU cluster, which implies that the kthread has to compete for CPU time with the
stressor threads. Pinning the PCIe interrupt or measurement tool to the isolated CPU
cluster does not affect which CPU core the kthread uses.

Chapter 4. Results and Discussion 59

Figure 4.23 shows the highest measured RTT results for the measurement tool’s waitqueue-
based implementation with an unmodified Xilinx XDMA device driver in interrupt
mode.

s=
idl

e,p
=1

ms
s=

idl
e,p

=1
0m

s
s=

idl
e,p

=1
s

s=
h2

,p=
1m

s
s=

h2
,p=

10
ms

s=
h1

,p=
1m

s
s=

h1
,p=

10
ms

s=
h2

,p=
1s

s=
h1

,p=
1s

s=
h3

,p=
1m

s
s=

h3
,p=

1s
s=

h3
,p=

10
ms

s=
h4

,p=
1s

s=
h4

,p=
1m

s
s=

h4
,p=

10
ms

102

103

104

105

106

RT
T

in
 u

s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE 4.23: Highest measured RTT results for the PCIe waitqueue-based implementation
with an unmodified Xilinx XDMA device driver in interrupt mode.

Switching the device driver configuration to interrupt mode has an immediate positive
impact. Spikes only occur when the PCIe interrupt is pinned to the housekeeping
CPU cluster. The measurement runs with the PCIe interrupt pinned to the isolated
CPU cluster are not highly impacted by variations in period and stressor intensity.
Compared to an idle system, there is, of course, a significant difference.

Figure 4.24 shows the highest measured RTT results for the measurement tool’s polling-
based implementation with an unmodified Xilinx XDMA device driver in interrupt
mode.

Chapter 4. Results and Discussion 60

s=
idl

e,p
=1

ms
s=

idl
e,p

=1
s

s=
idl

e,p
=1

0m
s

s=
h1

,p=
1m

s
s=

h1
,p=

1s
s=

h1
,p=

10
ms

s=
h2

,p=
1m

s
s=

h4
,p=

1m
s

s=
h2

,p=
10

ms
s=

h2
,p=

1s
s=

h3
,p=

1m
s

s=
h4

,p=
1s

s=
h3

,p=
1s

s=
h3

,p=
10

ms
s=

h4
,p=

10
ms

102

103

104

105

106

RT
T

in
 u

s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE 4.24: Highest measured RTT results for the PCIe polling-based implementation with
an unmodified Xilinx XDMA device driver in interrupt mode.

Spikes occur when the PCIe interrupt is pinned to the housekeeping CPU cluster. Com-
pared to the previous results in Figure 4.23 with the waitqueue-based implementation,
the highest measured RTTs are lower with the polling-based implementation for the
configurations that pin the PCIe interrupt to the isolated CPU cluster. This is due to
the latencies induced by the kernel’s cross-CPU wake-up mechanism. How system
load and CPU configuration impact the cross-CPU wake-up latencies is discussed in
section 4.2.3.

Pinning the PCIe interrupt to the isolated CPU cluster causes a great reduction in RTT
when the period is short and the system is under a heavy load. As discussed in sec-
tion 3.1.2, configuring the Xilinx XDMA device driver to be in interrupt mode means
that the data transfer work is added to the per-CPU global kernel workqueue. The
workqueue is handled by a kworker thread with a SCHED_OTHER scheduling policy
and a nice value of 0. This is the same scheduling policy as the kthread used when
the device driver is configured to be in polling mode and the threads spawned by the
stressor program.

There is a huge performance difference between the device driver’s two modes when
the PCIe interrupt is pinned to the isolated CPU cluster. This is due to a difference in
where the data transferring work is processed. When the device driver is configured
to be in interrupt mode, the data transferring work is processed on the same CPU core
as the PCIe interrupt. Pinning the PCIe interrupt to the isolated CPU cluster will then
cause the data transferring work to be processed on the isolated CPU cluster. With the
device driver’s polling mode configuration, the data transferring work is always pro-
cessed on the housekeeping CPU cluster regardless of the CPU pinning configuration,
meaning that it has to compete for CPU time with hundreds of threads spawned by
the stressor program.

Chapter 4. Results and Discussion 61

4.4.2 Modified Xilinx Driver Revision 1

The previous results indicated that moving the task responsible for processing the data
transfers to a CPU core within the isolated CPU cluster provides better results. The
Xilinx XDMA device driver has been modified to pin the kthread in polling mode
and kworker in interrupt mode to a CPU core in the isolated CPU cluster. Figure 4.25
shows the highest measured RTT results with the device driver in polling mode and
the measurement tool’s waitqueue-based implementation.

s=
idl

e,p
=1

0m
s

s=
idl

e,p
=1

s
s=

idl
e,p

=1
ms

s=
h3

,p=
1s

s=
h1

,p=
1m

s
s=

h2
,p=

1s
s=

h2
,p=

1m
s

s=
h1

,p=
10

ms
s=

h1
,p=

1s
s=

h3
,p=

10
ms

s=
h4

,p=
1s

s=
h2

,p=
10

ms
s=

h4
,p=

10
ms

s=
h4

,p=
1m

s
s=

h3
,p=

1m
s

0

20

40

60

80

100

120

RT
T

in
 u

s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE 4.25: Highest measured RTT results for the PCIe waitqueue-based implementation
with the first revision of the Xilinx XDMA device driver in polling mode.

Compared to the results with the unmodified Xilinx XDMA device driver, forcing the
data transfer work to be processed on a CPU core in the isolated CPU cluster has a great
impact on all four PCIe interrupt and measurement tool CPU pinning configurations.
The stressors still cause a noticeable increase in RTT but are more stable regardless of
the period and number of stressor threads.

Figure 4.26 shows the highest measured RTT results with the measurement tool’s polling
implementation and the same device driver configuration.

Chapter 4. Results and Discussion 62

s=
idl

e,p
=1

s
s=

idl
e,p

=1
0m

s
s=

idl
e,p

=1
ms

s=
h2

,p=
1s

s=
h1

,p=
1s

s=
h2

,p=
10

ms
s=

h1
,p=

10
ms

s=
h1

,p=
1m

s
s=

h4
,p=

1s
s=

h3
,p=

1m
s

s=
h3

,p=
1s

s=
h4

,p=
10

ms
s=

h3
,p=

10
ms

s=
h4

,p=
1m

s
s=

h2
,p=

1m
s

0

20

40

60

80
RT

T
in

 u
s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE 4.26: Highest measured RTT results for the PCIe polling-based implementation with
the first revision of the Xilinx XDMA device driver in polling mode.

The polling-based measurement tool implementation yields even more stable results
than the waitqueue-based implementation. When focusing on the results where the
application is pinned to the isolated CPU cluster, the lowest and highest results are
less than doubled.

Changing the device driver’s configuration from polling mode to interrupt mode shows
a small increase in RTT for both the polling and waitqueue-based implementations as
an extra interrupt is introduced. The test results with the polling-based measurement
tool implementation are shown in Figure A.6, and results with the waitqueue-based
implementation are shown in Figure A.7.

4.4.3 Modified Xilinx XDMA Device Driver Revision 2

The dedicated measurement system will trigger a PCIe user interrupt, regardless of
the device driver’s polling and interrupt mode configurations. The results for GPIO in
section 4.2.2 find that requesting interrupts with the IRQF_NO_THREAD flag effectively
reduces the round-trip time. The second revision of the Xilinx XDMA device driver is
modified to request the PCIe interrupt with the IRQF_NO_THREAD flag.

Figure 4.27 shows the highest measured RTT for the measurement tool’s waitqueue-
based implementation with the second revision of the device driver in polling mode.

Chapter 4. Results and Discussion 63

s=
idl

e,p
=1

ms
s=

idl
e,p

=1
0m

s
s=

idl
e,p

=1
s

s=
h1

,p=
1m

s
s=

h1
,p=

1s
s=

h3
,p=

1m
s

s=
h3

,p=
1s

s=
h2

,p=
10

ms
s=

h1
,p=

10
ms

s=
h2

,p=
1m

s
s=

h4
,p=

10
ms

s=
h2

,p=
1s

s=
h3

,p=
10

ms
s=

h4
,p=

1m
s

s=
h4

,p=
1s

0

10

20

30

40

50

60

70

80

RT
T

in
 u

s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE 4.27: Highest measured RTT results for the PCIe waitqueue-based implementation
with the second revision of the Xilinx XDMA device driver in polling mode.

The impact of pinning the PCIe interrupt and application to the isolated CPU cluster is
massive, and pinning them both, as highlighted in dark blue colors, is impressively sta-
ble under stress. Changing the device driver’s configuration to interrupt mode yields
similar results as seen in Figure A.8. With the second revision, the distinction between
the two device driver modes is diminished, as interrupt-based implementations expe-
rience less scheduling overhead with the IRQF_NO_THREAD flag.

Figure 4.28 compares the highest measured RTT between the first and second revi-
sions of the device driver. The measurement tool and PCIe interrupt are pinned to the
isolated CPU cluster, and the polling-based measurement tool implementation is used.

The IRQF_NO_THREAD modification introduced in the second revision of the device
driver significantly improves the RTT results. The RTT is reduced by a third or more
and performs similarly regardless of stressor and period configuration. The only ex-
ception is when the system is idle.

Figure 4.29 shows the highest measured RTT for the measurement tool’s polling-based
implementation with the second revision of the device driver in polling mode.

Chapter 4. Results and Discussion 64

s=
idl

e,p
=1

ms
s=

idl
e,p

=1
0m

s
s=

idl
e,p

=1
s

s=
h3

,p=
1s

s=
h3

,p=
1m

s
s=

h1
,p=

1s
s=

h1
,p=

1m
s

s=
h2

,p=
10

ms
s=

h2
,p=

1m
s

s=
h4

,p=
10

ms
s=

h1
,p=

10
ms

s=
h2

,p=
1s

s=
h4

,p=
1m

s
s=

h3
,p=

10
ms

s=
h4

,p=
1s

0

20

40

60

80

100

120

RT
T

in
 u

s

Device driver revision 2 in polling mode (IRQ=IC and APP=IC)
Device driver revision 1 in polling mode (IRQ=IC and APP=IC)

FIGURE 4.28: Comparison of the highest measured RTT results for the PCIe waitqueue-based
implementation with the Xilinx XDMA device driver’s first and second revisions in polling

mode.

s=
idl

e,p
=1

ms
s=

idl
e,p

=1
s

s=
idl

e,p
=1

0m
s

s=
h1

,p=
1s

s=
h2

,p=
1s

s=
h2

,p=
1m

s
s=

h2
,p=

10
ms

s=
h1

,p=
10

ms
s=

h3
,p=

1s
s=

h4
,p=

1s
s=

h1
,p=

1m
s

s=
h3

,p=
1m

s
s=

h4
,p=

1m
s

s=
h4

,p=
10

ms
s=

h3
,p=

10
ms

0

10

20

30

40

50

RT
T

in
 u

s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE 4.29: Highest measured RTT results for the PCIe polling-based implementation with
the second revision of the Xilinx XDMA device driver in polling mode.

Chapter 4. Results and Discussion 65

The polling-based implementation experiences the same reduction in RTT as the waitqueue-
based implementation. When focusing on the results highlighted in dark blue, the
gap between the lowest and highest RTT results is relatively low. This is unlike the
waitqueue-based implementation, where the difference in the highest measured RTT
is noticeably different between an idle and stressed system.

Figure 4.30 highlights the differences in the highest measured RTT for the device driver’s
second revision in polling mode and interrupt mode.

s=
idl

e,p
=1

ms
s=

idl
e,p

=1
s

s=
idl

e,p
=1

0m
s

s=
h2

,p=
1s

s=
h1

,p=
1s

s=
h2

,p=
1m

s
s=

h2
,p=

10
ms

s=
h1

,p=
10

ms
s=

h3
,p=

1s
s=

h4
,p=

1s
s=

h3
,p=

1m
s

s=
h1

,p=
1m

s
s=

h4
,p=

1m
s

s=
h4

,p=
10

ms
s=

h3
,p=

10
ms

0

5

10

15

20

25

30

35

RT
T

in
 u

s

Device driver revision 2 in polling mode (IRQ=IC and APP=IC)
Device driver revision 2 in interrupt mode (IRQ=IC and APP=IC)

FIGURE 4.30: Comparison of the highest measured RTT results for the PCIe polling-based
implementation with the Xilinx XDMA device driver revision 2 in polling mode and interrupt

mode.

With the polling-based implementation, the two device driver modes perform sim-
ilarly. For most stressor configurations, the device driver’s polling mode performs
slightly better.

Overall, the polling-based implementation is more stable than the waitqueue-based
implementation and gives lower RTT results. For this revision, the device driver’s
polling mode configuration option is slightly preferred for both the waitqueue and
polling-based implementations.

Chapter 4. Results and Discussion 66

4.4.4 Modified Xilinx XDMA Device Driver Revision 3

Whether the Xilinx XDMA device driver is in polling mode or interrupt mode, the
data transferring work is handled by a different process than the one requesting the
transfer. In the meantime, the process requesting the transfer is blocked until the data
transferring work is completed.

In the third revision of the device driver, the process requesting a data transfer is re-
sponsible for processing the data transfer instead of offloading the work to a kthread
or kworker. The device driver’s polling mode and interrupt mode have previously
dictated how the data transfer is processed. These modes are now irrelevant as the
data transfer is always processed by the process requesting the data transfer.

Figure 4.31 shows the highest measured RTT results for the waitqueue-based imple-
mentation with the third revision of the modified Xilinx XDMA device driver.

s=
idl

e,p
=1

s
s=

idl
e,p

=1
0m

s
s=

idl
e,p

=1
ms

s=
h2

,p=
1m

s
s=

h2
,p=

1s
s=

h1
,p=

1s
s=

h1
,p=

10
ms

s=
h1

,p=
1m

s
s=

h4
,p=

1m
s

s=
h3

,p=
1s

s=
h2

,p=
10

ms
s=

h4
,p=

10
ms

s=
h3

,p=
1m

s
s=

h4
,p=

1s
s=

h3
,p=

10
ms

0

10

20

30

40

50

60

70

80

RT
T

in
 u

s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE 4.31: Highest measured RTT results for the PCIe waitqueue-based implementation
with the third revision of the Xilinx XDMA device driver.

Compared to the previous revision, the results are more or less identical. Figure 4.32
shows the difference between the second and third revisions of the device driver with
the waitqueue-based implementation.

Chapter 4. Results and Discussion 67

s=
idl

e,p
=1

0m
s

s=
idl

e,p
=1

s
s=

idl
e,p

=1
ms

s=
h2

,p=
1m

s
s=

h1
,p=

10
ms

s=
h1

,p=
1s

s=
h2

,p=
1s

s=
h1

,p=
1m

s
s=

h3
,p=

1s
s=

h4
,p=

1m
s

s=
h2

,p=
10

ms
s=

h4
,p=

10
ms

s=
h3

,p=
1m

s
s=

h3
,p=

10
ms

s=
h4

,p=
1s

0

10

20

30

40

50
RT

T
in

 u
s

Device driver revision 3 in polling mode (IRQ=IC and APP=IC)
Device driver revision 2 in polling mode (IRQ=IC and APP=IC)

FIGURE 4.32: Comparison of the highest measured RTT results for the PCIe waitqueue-based
implementation with the Xilinx XDMA device driver’s second and third revisions.

In two-thirds of the results, the third revision performs slightly better. The results for
the polling-based implementation as seen in Figure 4.33 are also similar to the results
for the previous revision.

Chapter 4. Results and Discussion 68

s=
idl

e,p
=1

s
s=

idl
e,p

=1
0m

s
s=

idl
e,p

=1
ms

s=
h2

,p=
10

ms
s=

h1
,p=

1s
s=

h4
,p=

1s
s=

h4
,p=

1m
s

s=
h2

,p=
1m

s
s=

h4
,p=

10
ms

s=
h2

,p=
1s

s=
h1

,p=
1m

s
s=

h3
,p=

1s
s=

h1
,p=

10
ms

s=
h3

,p=
10

ms
s=

h3
,p=

1m
s

0

10

20

30

40

50
RT

T
in

 u
s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE 4.33: Highest measured RTT results for the PCIe polling-based implementation with
the third revision of the Xilinx XDMA device driver.

The results for the third revision of the device driver show a slight improvement over
the second revision, but are similar overall. Applying a few simple modifications to the
device driver has drastically reduced the highest measured RTT from over one second
to less than 80 microseconds for the waitqueue-based implementation with the PCIe
interrupt and measurement tool pinned to the housekeeping CPU cluster. Pinning the
PCIe interrupt and measurement tool to the isolated CPU cluster further reduces the
highest measured RTT to less than 50 microseconds. More importantly, the results are
stable regardless of the hackbench stressor configuration.

4.4.5 Additional Measurement Runs for PCIe

Additional measurement runs are performed with the best-performing PCIe configu-
ration. The stressors used during the measurement runs are described in section 3.2.1.

Although the second and third revisions of the Xilinx XDMA device driver produce
more or less the same results, the third revision is chosen as the optimal version. The
third revision is less complex as the data transfers are processed by the same thread that
initiated a data transfer. The other revisions offloaded the data transferring work to
another thread, introducing the need for extra scheduling overhead and inter-process
communication. Pinning the PCIe interrupt and measurement tool to the isolated CPU
cluster is the most consistent combination and has the lowest RTT in most measure-
ments.

The results for the additional measurement runs for PCIe with the waitqueue-based
implementation are shown in Figure 4.34.

Chapter 4. Results and Discussion 69

30 40 50 60 70
RTT in us

0

10

20

30

40

50

60

Co
un

t

Highest measured RTT
Average RTT

FIGURE 4.34: Histogram of the average and highest measured RTT for the additional measure-
ment runs with the waitqueue-based PCIe implementation.

Although the waitqueue-based implementation was consistent with all four hack-
bench configurations, the same cannot be said for stress-ng’s variety of stressors.
The highest measured RTT varies from 20 to 70 microseconds, with a 40-microsecond
RTT for most stressors. Figure 4.35 shows the additional measurement results for the
polling-based implementation.

Chapter 4. Results and Discussion 70

20 25 30 35 40 45 50 55
RTT in us

0

10

20

30

40

50
Co

un
t

Highest measured RTT
Average RTT

FIGURE 4.35: Histogram of the average and highest measured RTT for the additional measure-
ment runs with the polling-based PCIe implementation.

As expected, the RTT results for the polling-based implementation are lower and less
spread out compared to the RTT results for the waitqueue-based implementation. Sim-
ilar to the results from the additional measurement runs for the polling-based imple-
mentation for GPIO described in section 4.2.4, the polling-based PCIe implementation
is not exempt from experiencing spikes.

The highest measured round-trip time for the waitqueue and polling-based PCIe im-
plementations is less than 70 microseconds. With most workloads, the highest mea-
sured round-trip time is under 50 microseconds.

Chapter 4. Results and Discussion 71

4.5 Discussion

This section summarizes the various observations obtained from the test results and
discusses the most important findings in detail.

4.5.1 Designing Real-Time Applications With Existing Device Drivers

One of the many reasons for designing a system with the Linux kernel instead of a
dedicated RTOS is the vast number of available tools, programs, and device drivers.
Instead of writing device drivers from scratch, existing open-source device drivers can
be incorporated into real-time applications. However, the currently available device
drivers for Linux may not have been written with real-time usage in mind [104], [105].

The measurement system for PCIe and Ethernet, designed for this thesis, uses the
freely available Xilinx PCIe XDMA FPGA module for PCIe data transfers with the
Linux-based system. The FPGA module has a corresponding open-source device driver
for Linux, which the measurement tool uses on the Linux-based system. The alterna-
tive would have been to write an FPGA module and a corresponding Linux device
driver from scratch, requiring expertise and a huge effort. Reusing existing modules
saves a lot of time, which is essential for products fighting for time to market.

The measurement runs for PCIe, described in section 4.4, initially use an unmodified
version of the Xilinx PCIe XDMA device driver. It is quickly revealed that the device
driver is unstable when stress is introduced to the system. CPU pinning configura-
tions that have proven effective for Ethernet and GPIO do not seem to make much of
a difference for the unmodified device driver. When investigating the device driver,
it is revealed that the process responsible for processing data transfers over PCIe is
scheduled with the same priority and scheduling policy as the stressor threads. After
three revisions of the device driver, the PCIe data transfers are processed by the ini-
tiator, which is the measurement tool, and the PCIe interrupt is forced to be executed
immediately in a hard interrupt context instead of being scheduled as a thread. These
small modifications drastically improve the device driver’s performance for real-time
usage.

The experiments and results for PCIe prove that open-source Linux device drivers may
not be optimized for real-time usage. On a positive note, the experiment results show
that small modifications can sometimes drastically improve the device driver’s real-
time usability. With the increase of Linux-based real-time systems, open-source device
drivers may gradually be optimized for real-time in the coming years.

4.5.2 The Impact of System Stress

Stress negatively affects the round-trip time results for GPIO, Ethernet, and PCIe. Al-
though some implementation modifications and CPU configuration options reduce the
impact, the protocols perform considerably worse during a high system load. The pro-
tocols are affected to different degrees, with a variance in the gap between the worst
and best round-trip times.

The additional measurement runs serve as an effective evaluation of the protocols’
stability by measuring against various stressors with different characteristics. These

Chapter 4. Results and Discussion 72

experiments highlight the inherent instability of the Linux kernel. The round-trip time
results exhibit significant variation depending on the stressor. This makes it challeng-
ing to predict a worst-case round-trip time when the system load and characteristics of
the real-time application are unknown. The test results can only help indicate a proba-
ble worst-case round-trip time. It is worth noting that the measurement runs were only
conducted for a relatively short time duration. Increasing the duration might reveal
different results, as the probability of experiencing spikes is higher.

The BPF program created for tracing the softirq raising and handling mechanisms re-
vealed that the kernel’s softirq implementation is unstable and quite affected by stress.
The same trend is seen for the kernel’s wake-up mechanism in the results from the
baseline tests with cyclictest. These are core elements of the kernel, impacting a
wide range of applications. Moving the processing of these core elements to an isolated
CPU core does not exempt them from being affected by general system load. This indi-
cates that the kernel’s core elements are tightly coupled with all CPU cores, and cannot
be completely shielded with the kernel’s isolation techniques.

The results from this thesis may not directly translate to other systems and should only
be seen as an indication. Getting an accurate indication can only be done by measuring
against the actual system load.

4.5.3 The effectiveness of the Linux kernel’s isolation techniques

The Linux-based system is configured to partition its two quad-core Arm Cortex-A72
microprocessor clusters into a housekeeping and isolated CPU cluster. The isolated
CPU cluster is also configured as tickless and excluded from general SMP scheduling.
Applications and interrupts must, therefore, be explicitly assigned to the isolated CPU
cluster in order to run there.

The initial baseline tests with cylictest find that when no additional load is applied
to the system, the scheduling latency is higher on the isolated CPU cluster than on the
housekeeping CPU cluster. The same trend is observed for PCIe and the interrupt-
based GPIO implementation. This negative implication is due to the isolated CPU
cluster being configured as tickless.

Configuring a CPU core as tickless comes with a trade-off. High-processing applica-
tions will benefit from the tickless CPU configuration as the applications are not pe-
riodically interrupted by the system tick, increasing the throughput. Consequently,
waking up an application running on a tickless CPU core takes more time, especially if
woken up by a different CPU core. This was highlighted in the experiments with timer
migration in section 4.1.

During the measurement runs conducted in this thesis, the measurement tool is mostly
blocked, waiting to be woken up by an inter-processor interrupt or a periodic timer.
Little to no data processing is performed between each cycle. Therefore, in most situa-
tions, the measurement tool does not benefit from being assigned to a tickless CPU core
and is mostly negatively affected by the CPU configuration. However, the trend turns
during the Ethernet experiments as the networking stack requires more data process-
ing. It is essential to know the characteristics of the application when contemplating
configuring a CPU core as tickless.

Chapter 4. Results and Discussion 73

Assigning the measurement tool and the corresponding interrupts to the isolated CPU
cluster does not provide temporal isolation. The GPIO, Ethernet, and PCIe implemen-
tations are still negatively affected by stress. In return, the round-trip times are lower
and more stable. Isolating and dedicating a CPU core for real-time tasks is simple and
should be considered for multi-processor real-time Linux system designs.

4.5.4 Interrupt vs. Polling-Based Implemenations

Interrupt and polling-based implementations were compared for GPIO and PCIe. The
polling-based implementations yield lower and more stable results than their interrupt-
based counterparts. The great performance of the polling-based implementations does
not come without consequences. The threads performing the polling will frequently
preempt other threads with lower priority. Context switching is generally considered
to be expensive, especially at this rate. Dedicating a CPU core for a polling-based real-
time application is becoming more achievable as modern SoCs have multiple CPU
cores. For smaller and older SoCs with fewer CPU cores, interrupt-based implemen-
tations are more compelling as more CPU bandwidth is available for other processes.
The interrupt-based implementations are more affected by system load, as shown in
the results from the additional measurement runs for GPIO in section 4.2.4 and PCIe
in section 4.4.5. How well the interrupt-based implementations perform varies by the
different kinds of system load with great variance. The polling-based implementations
are more stable but still perform differently based on the kind of system load.

Forcing interrupt handlers to be executed immediately in a hard interrupt context in-
stead of being scheduled as a thread has shown to be quite effective at reducing the
RTT and increasing the stability of the GPIO and PCIe implementations. This does not
come without consequences, as extending the time in a hard interrupt context nega-
tively affects other tasks, whether high-priority or not. It should only be considered
for small interrupt handlers and interrupt handlers that are more important than any
other task in the system.

4.5.5 Designing a Linux-based real-time system

Writing time-sensitive applications for Linux with the PREEMPT_RT patch requires a
good understanding of the kernel’s inner workings. Although the PREEMPT_RT patch
introduces priority inheritance for threads that share locking primitives, this function-
ality does not automatically take effect when enabling the CONFIG_PREEMPT_RT ker-
nel configuration option. The shared locking primitives must be explicitly declared
with the PTHREAD_PRIO_INHERIT protocol attribute [106]. Another great example is
the kernel’s timer mechanisms. The kernel offers multiple timer mechanisms, but only
one is executed in a hard interrupt context and can be considered reliable. The others
are forcibly converted to threads, which can lead to unwanted delay.

The open-source Xilinx XDMA PCIe device driver is an excellent example of a driver
that needed modifications before it could be considered for real-time usage. It has been
necessary to understand the negative implications of its design in order to make the
required modifications.

74

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, a comprehensive hardware setup with dedicated measurement systems
is developed to measure the Linux kernel’s ability to reliably respond to incoming mes-
sages and signals over GPIO, Ethernet, and PCIe. The experiments are conducted to
determine if the Linux kernel with the PREEMPT_RT patch can provide reliable high-
speed serial communication with devices in a distributed system. The Linux kernel’s
isolation mechanisms are evaluated to determine if the Linux kernel alone can achieve
temporal isolation and be used to implement a mixed-criticality system.

The proposed Linux-based mixed-criticality system, designed with state-of-the-art prac-
tices, can not provide total temporal isolation. However, the Linux kernel’s isolation
mechanisms are proven to deliver more stable and lower round-trip times for GPIO,
Ethernet, and PCIe.

A fundamental attribute of the PREEMPT_RT patch is its compatibility with preex-
isting Linux kernel applications and device drivers. An open-source device driver
is used to conduct data transfers over PCIe to an FPGA-based measurement system.
When stress is applied to the Linux-based system, the device driver’s performance de-
grades significantly. Analyzing and applying a few modifications to the device driver
drastically improves its performance and makes it relatively stable during high sys-
tem load. Pre-existing Linux drivers may require minor modifications to work with
real-time applications.

Polling and interrupt-based implementations are compared for GPIO and PCIe. The
interrupt-based implementations perform worse, mainly due to the inclusion of inter-
process communication and the variance in wake-up latency. Polling-based imple-
mentations are proven to be less affected by system stress and provide reliably low
round-trip times.

Although the highest measured round-trip times for GPIO, Ethernet, and PCIe can not
be regarded as absolute worst-case round-trip times, they indicate that state-of-the-art
methods for real-time Linux effectively decrease the round-trip times and increase the
stability. However, the Linux kernel is still greatly impacted by stress. The variance in
the kernel’s system latencies makes the kernel insufficient for hard real-time systems.
However, the round-trip time results are stable enough to be considered for soft real-
time systems.

Chapter 5. Conclusion and Future Work 75

5.2 Future Work

When stress is introduced to the Linux-based system, an increase in latency among core
Linux kernel mechanisms such as scheduling, softirqs, and the wake-up mechanism is
observed. The round-trip time results for GPIO, Ethernet, and PCIe vary greatly de-
pending on the stressor configuration, indicating that the Linux kernel’s core mecha-
nisms are not deterministic. It is worth investigating the causes behind the increased
system latency and the common denominators of the worst-performing stressor con-
figurations.

The polling-based GPIO implementation was unaffected by 98% of the stressor config-
urations, indicating that polling-based implementations can obtain temporal isolation
with a wide variety of system stressors. It would be interesting to measure the stabil-
ity of other polling-based implementations under the same stress conditions, such as a
DPDK-based Ethernet implementation.

This thesis implements a mixed-criticality system using only the Linux kernel’s isola-
tion mechanisms. Although embedded hypervisors can not guarantee total temporal
isolation, it would be interesting to reimplement the mixed-criticality system using an
embedded hypervisor and compare the results.

The test results indicate that configuring the isolated CPU cluster as tickless had a more
negative than positive effect on PCIe and the interrupt-based GPIO implementation.
It would be interesting to conduct additional measurement runs without the tickless
CPU configuration and compare the impact.

The literature suggests that the Linux kernel’s networking stack is not ideal for real-
time systems, favoring alternative real-time networking stacks. However, the native
Linux kernel networking stack offers various parameters that can be adjusted. Fine-
tuning the networking stack could potentially improve the round-trip time and stabil-
ity of the Ethernet results.

76

Appendix A

Additional Test Results

A.1 GPIO

Figure A.1 shows the average RTT results for the interrupt-based GPIO implementa-
tion with an unmodified GPIO driver.

s=
idl

e,p
=1

0m
s

s=
idl

e,p
=1

ms
s=

idl
e,p

=1
s

s=
h2

,p=
1m

s
s=

h1
,p=

1m
s

s=
h2

,p=
10

ms
s=

h4
,p=

1m
s

s=
h3

,p=
1m

s
s=

h1
,p=

10
ms

s=
h4

,p=
10

ms
s=

h2
,p=

1s
s=

h3
,p=

10
ms

s=
h1

,p=
1s

s=
h3

,p=
1s

s=
h4

,p=
1s

0

20

40

60

80

RT
T

in
 u

s

CPU=IC
CPU=HC

FIGURE A.1: Average RTT results for the interrupt-based GPIO implementation with an un-
modified GPIO driver.

Figure A.2 shows the average RTT results for the interrupt-based GPIO implemen-
tation with a modified GPIO driver with IRQF_NO_THREAD. The modifications are
discussed in section 4.2.2.

Appendix A. Additional Test Results 77

s=
h2

,p=
1m

s
s=

idl
e,p

=1
s

s=
idl

e,p
=1

0m
s

s=
idl

e,p
=1

ms
s=

h1
,p=

1m
s

s=
h2

,p=
10

ms
s=

h4
,p=

1m
s

s=
h3

,p=
1m

s
s=

h1
,p=

10
ms

s=
h4

,p=
10

ms
s=

h3
,p=

10
ms

s=
h2

,p=
1s

s=
h1

,p=
1s

s=
h3

,p=
1s

s=
h4

,p=
1s

0

10

20

30

40

50

60

70
RT

T
in

 u
s

CPU=IC
CPU=HC

FIGURE A.2: Average RTT results for the interrupt-based GPIO implementation with a modi-
fied GPIO driver with IRQF_NO_THREAD.

Appendix A. Additional Test Results 78

A.2 Ethernet

Figure A.3 shows the difference in TCP softirq raising delay for a system under heavy
load and no load.

ID
LE

 -
NE

T_
RX

 So
fti

rq

Hi
gh

 Lo
ad

 -
NE

T_
RX

 So
fti

rq

0

5

10

15

20

25

30

Ra
isi

ng
 d

el
ay

 in
 u

s

Lowest
Average
Highest

FIGURE A.3: Difference in TCP softirq raising delay for a system under heavy load and no
load.

Figure A.4 shows the difference in TCP softirq processing time for a system under
heavy load and no load.

Appendix A. Additional Test Results 79

ID
LE

 -
NE

T_
RX

 So
fti

rq

Hi
gh

 Lo
ad

 -
NE

T_
RX

 So
fti

rq

0

10

20

30

40

50

60

70

80

Pr
oc

es
sin

g
tim

e
in

 u
s

Lowest
Average
Highest

FIGURE A.4: Difference in TCP softirq processing time for a system under heavy load and no
load.

Figure A.5 shows the top 20 worst-performing stress-ng stressors for the UDP im-
plementation.

0 200 400 600 800 1000 1200 1400 1600
RTT in us

procfs
epoll

sockpair
vm

mmapaddr
shm

memthrash
matrix-3d
mmapfork

mremap
shm-sysv

clone
vm-rw
mlock

randlist
sigpipe

tree
rawsock

sock
unshare

Te
st

 L
ab

el

FIGURE A.5: The 20 worst-performing stress-ng stressors for UDP.

Appendix A. Additional Test Results 80

A.3 PCIe

Figure A.6 shows the highest measured RTT for the measurement tool’s waitqueue-
based implementation with the first revision of the device driver in interrupt mode.

s=
idl

e,p
=1

ms
s=

idl
e,p

=1
0m

s
s=

idl
e,p

=1
s

s=
h1

,p=
10

ms
s=

h3
,p=

1s
s=

h2
,p=

1m
s

s=
h2

,p=
1s

s=
h2

,p=
10

ms
s=

h1
,p=

1m
s

s=
h1

,p=
1s

s=
h3

,p=
1m

s
s=

h4
,p=

1m
s

s=
h4

,p=
1s

s=
h4

,p=
10

ms
s=

h3
,p=

10
ms

0

20

40

60

80

100

120

RT
T

in
 u

s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE A.6: Highest measured RTT results for the PCIe waitqueue-based implementation
with the first revision of the Xilinx XDMA device driver in interrupt mode.

Figure A.7 shows the highest measured RTT for the measurement tool’s polling- based
implementation with the first revision of the device driver in interrupt mode.

Appendix A. Additional Test Results 81

s=
idl

e,p
=1

s
s=

idl
e,p

=1
ms

s=
idl

e,p
=1

0m
s

s=
h2

,p=
1m

s
s=

h3
,p=

10
ms

s=
h3

,p=
1m

s
s=

h2
,p=

1s
s=

h1
,p=

1m
s

s=
h2

,p=
10

ms
s=

h3
,p=

1s
s=

h1
,p=

10
ms

s=
h1

,p=
1s

s=
h4

,p=
10

ms
s=

h4
,p=

1m
s

s=
h4

,p=
1s

0

20

40

60

80

100

RT
T

in
 u

s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE A.7: Highest measured RTT results for the PCIe polling-based implementation with
the first revision of the Xilinx XDMA device driver in interrupt mode.

Figure A.8 shows the highest measured RTT for the measurement tool’s waitqueue-
based implementation with the second revision of the device driver in interrupt mode.

s=
idl

e,p
=1

ms
s=

idl
e,p

=1
s

s=
idl

e,p
=1

0m
s

s=
h1

,p=
1m

s
s=

h1
,p=

1s
s=

h3
,p=

1m
s

s=
h2

,p=
1m

s
s=

h4
,p=

1s
s=

h2
,p=

10
ms

s=
h2

,p=
1s

s=
h4

,p=
10

ms
s=

h1
,p=

10
ms

s=
h3

,p=
10

ms
s=

h4
,p=

1m
s

s=
h3

,p=
1s

0

10

20

30

40

50

60

70

80

RT
T

in
 u

s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE A.8: Highest measured RTT results for the PCIe waitqueue-based implementation
with the first revision of the Xilinx XDMA device driver in interrupt mode.

Appendix A. Additional Test Results 82

Figure A.9 shows the highest measured RTT for the measurement tool’s polling- based
implementation with the second revision of the device driver in interrupt mode.

s=
idl

e,p
=1

0m
s

s=
idl

e,p
=1

ms
s=

idl
e,p

=1
s

s=
h3

,p=
1s

s=
h4

,p=
1m

s
s=

h1
,p=

1s
s=

h2
,p=

10
ms

s=
h2

,p=
1s

s=
h2

,p=
1m

s
s=

h4
,p=

1s
s=

h1
,p=

1m
s

s=
h3

,p=
1m

s
s=

h1
,p=

10
ms

s=
h3

,p=
10

ms
s=

h4
,p=

10
ms

0

10

20

30

40

50

60
RT

T
in

 u
s

IRQ=IC, APP=IC
IRQ=IC, APP=HC
IRQ=HC, APP=IC
IRQ=HC, APP=HC

FIGURE A.9: Highest measured RTT results for the PCIe polling-based implementation with
the second revision of the Xilinx XDMA device driver in interrupt mode.

83

Appendix B

Stress-ng Stressors

Listing B.1 shows the list of the stress-ng stressors used in the additional measurement
runs in sections 4.2.4, 4.4.5, 4.3.1 and 4.3.2.
a c c e s s a f f i n i t y alarm atomic bad− a l t s t a c k bigheap branch brk bsearch cache
c a c h e l i n e c h a t t r chdir chmod chown chroot c lock clone c l o s e contex t
copy− f i l e cpu crypt c y c l i c daemon dekker dentry dev dev−shm d i r dirdeep
dirmany dnot i fy dup dynlib enosys env e p o l l eventfd e x i t −group f a l l o c a t e
f a n o t i f y far −branch f a u l t f c n t l f i f o f i l e − i o c t l f i lename f l o c k f lushcache
fork forkheavy fp fp − e r r o r fpunch f s i z e f s t a t f u l l f u n c c a l l f u n c r e t fu tex
get getdent getrandom goto handle hash hdd hsearch icache icmp−flood
inode − f l a g s i n o t i f y io iomix i o p r i o i t i m e r kcmp k i l l klog l e a s e l i n k l i s t
locka lockbus l o c k f lockofd longjmp loop l s e a r c h madvise malloc matrix
matrix −3d mcontend memcpy memfd memhotplug memrate memthrash mincore
misaligned mknod mlock mmap mmapaddr mmapfixed mmapfork mmaphuge
mmapmany mprotect mq mremap msg msync msyncmany munmap mutex nanosleep
netdev net l ink −task nice nop n u l l numa opcode open pagemove pageswap
pci p e r s o n a l i t y peterson physpage pipe pipeherd pkey p o l l p r c t l p r e f e t c h
priv − i n s t r proc fs pthread ptrace pty qsor t r a n d l i s t ramfs
rawpkt rawsock rawudp readahead reboot regs remap rename resched resources
rev io ring −pipe r l i m i t rmap r o t a t e schedpol icy s e a l seek sem sem−sysv
s e n d f i l e s e s s i o n s e t s h e l l s o r t shm shm−sysv s i g a b r t s igc h ld s i g f d s i g f p e
s i g i o s i g n a l s i g n e s t sigpending s igpipe s igq s i g r t s igsegv sigsuspend
s i g t r a p s k i p l i s t s leep sock sockabuse sockdiag sockfd sockpair sockmany
sparsematr ix s p l i c e s tack stackmmap s t r stream switch symlink sync − f i l e
syncload sysbadaddr s y s c a l l s y s i n f o s y s f s t e e t imer t imerfd t l b −shootdown
tmpfs touch t r e e t s e a r c h tun udp udp−flood umount unshare urandom utime
vdso vecfp vecmath vecshuf vecwide vfork vforkmany vm vm−addr vm−rw
vm−segv vm− s p l i c e wait waitcpu y i e l d zero z l i b zombie

LISTING B.1: List of used stress-ng stressors

Listing B.2 shows the list of excluded stress-ng stressors. The reason for the exclusion
is mentioned in section 3.2.1.
af −alg aio a i o l apparmor bad− i o c t l b i n de r f s bind−mount cap cgroup
cpu−onl ine dccp e f i v a r eigen exec fiemap fma gpu heapsort hrt imers
id le −page i o p o r t io −uring ipsec −mb jpeg judy key kvm l1cache landlock
led l l c − a f f i n i t y loadavg membarrier mergesort metamix mlockmany module
mpfr net l ink −proc oom−pipe pidfd ping−sock plugin quota race −sched

r a d i x s o r t
rawdev rdrand rseq r t c schedmix sc tp seccomp secretmem sigbus sigxcpu

s i g x f s z smi sof t lockup spawn swap s y s i n v a l t r i g t s c uprobe u s e r f a u l t f d
u s e r s y s c a l l v e r i t y vma vnni watchdog wcs workload x86cpuid x 8 6 s y s c a l l x a t t r

LISTING B.2: List of excluded stress-ng stressors

84

Bibliography

[1] Grammarly. (2024). Grammarly, Inc. Accessed: May 17, 2024. [Online]. Avail-
able: https://www.grammarly.com/

[2] M. Barabanov, “A Linux-based real-time operating system,” M.S. thesis, New
Mexico Institute of Mining and Technology, Socorro, NM, USA, Jun. 1997.

[3] P. Mantegazza, E. L. Dozio, and S. Papacharalambous, “RTAI: Real time ap-
plication interface,” Linux Journal, vol. 2000, no. 72es, 10–es, Apr. 2000, ISSN:
1075-3583.

[4] S. R. Koganti and K. Gowthami, “Implementation of Xenomai framework in
GNU/Linux environment to run applications in a real time environment,” In-
dian Journal of Science and Technology, vol. 9, May 2016. DOI: 10.17485/ijst/2016/
v9i17/93109.

[5] C. Gu, N. Guan, Q. Deng, and W. Yi, “Partitioned mixed-criticality scheduling
on multiprocessor platforms,” in 2014 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), Mar. 2014, pp. 1–6. DOI: 10.7873/DATE.2014.305.

[6] M. Cinque, D. Cotroneo, L. De Simone, and S. Rosiello, “Virtualizing mixed-
criticality systems: A survey on industrial trends and issues,” Future Generation
Computer Systems, vol. 129, pp. 315–330, Apr. 2022, ISSN: 0167739X. DOI: 10 .
1016/j.future.2021.12.002. arXiv: 2112.06875.

[7] The Linux Foundation. PREEMPT_RT History. (2022). Accessed: Dec. 20, 2023.
[Online]. Available: https : / / wiki . linuxfoundation . org / realtime / rtl / blog #
preempt-rt-history

[8] Paul McKenney. "A realtime preemption overview." lwn.net. Accessed: Apr. 22,
2024. [Online]. Available: https://lwn.net/Articles/146861/

[9] S. H. VanderLeest and K. Stewart, “Enabling Linux in aerospace applications,”
in 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC), Oct. 2023,
pp. 1–6. DOI: 10.1109/DASC58513.2023.10311338.

[10] F. Reghenzani, G. Massari, and W. Fornaciari, “The real-time linux kernel: A
survey on PREEMPT_RT,” ACM Computing Surveys, vol. 52, no. 1, Jan. 2019,
ISSN: 15577341. DOI: 10.1145/3297714.

[11] R. Rosmaninho, D. Raposo, P. Rito, and S. Sargento, “Time constraints on ve-
hicular edge computing: A performance analysis,” in NOMS 2023-2023 IEEE/I-
FIP Network Operations and Management Symposium, May 2023, pp. 1–7. DOI:
10.1109/NOMS56928.2023.10154306.

[12] X. Fan, T. Zheng, S. Sun, M. Gidlund, and J. Åkerberg, “Can embedded real-
time Linux aystem effectively support multipath transmission? An experimen-
tal study,” in 2023 IEEE 19th International Conference on Factory Communication
Systems (WFCS), Apr. 2023, pp. 1–8. DOI: 10.1109/WFCS57264.2023.10144118.

https://www.grammarly.com/
https://doi.org/10.17485/ijst/2016/v9i17/93109
https://doi.org/10.17485/ijst/2016/v9i17/93109
https://doi.org/10.7873/DATE.2014.305
https://doi.org/10.1016/j.future.2021.12.002
https://doi.org/10.1016/j.future.2021.12.002
https://arxiv.org/abs/2112.06875
https://wiki.linuxfoundation.org/realtime/rtl/blog#preempt-rt-history
https://wiki.linuxfoundation.org/realtime/rtl/blog#preempt-rt-history
https://lwn.net/Articles/146861/
https://doi.org/10.1109/DASC58513.2023.10311338
https://doi.org/10.1145/3297714
https://doi.org/10.1109/NOMS56928.2023.10154306
https://doi.org/10.1109/WFCS57264.2023.10144118

Bibliography 85

[13] G. K. Adam, N. Petrellis, and L. T. Doulos, “Performance assessment of
Linux kernels with PREEMPT_RT on arm-based embedded devices,” Electron-
ics (Switzerland), vol. 10, no. 11, Jun. 2021, ISSN: 20799292. DOI: 10 . 3390 /
electronics10111331.

[14] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang, A Survey of WCET
Analysis of Real-Time Operating Systems. Jan. 2009, p. 72. DOI: 10.1109/ICESS.
2009.24.

[15] P. Okech, N. M. Guire, and W. Okelo-Odongo, “Inherent diversity in replicated
architectures,” Oct. 2015. arXiv: 1510.02086. [Online]. Available: http://arxiv.
org/abs/1510.02086.

[16] X. Chen, X. Kong, Y. Ling, and X. Cao, “DDS performance evaluation for PRE-
EMPT_RT Linux,” in 2021 International Conference on Computer, Blockchain and
Financial Development (CBFD), Apr. 2021, pp. 84–89. DOI: 10.1109/CBFD52659.
2021.00024.

[17] Y. Wei, “Research on real-time improvement technology of Linux based on
multi-core ARM,” in 2021 IEEE International Conference on Artificial Intelligence
and Computer Applications (ICAICA), Dalian, China: IEEE, Jun. 2021, pp. 1061–
1066, ISBN: 978-1-66541-867-6. DOI: 10.1109/ICAICA52286.2021.9498165.

[18] Y. Li, Y. Matsubara, H. Takada, K. Suzuki, and H. Murata, “A performance eval-
uation of embedded multi-core mixed-criticality system based on PREEMPT RT
Linux,” Journal of Information Processing, vol. 31, pp. 78–87, 2023, ISSN: 18826652.
DOI: 10.2197/ipsjjip.31.78.

[19] K. Kozlowski. (2023). Preparing Linux real-time kernel and tuning robotics plat-
form with a modern ARM64 SoC. Presented at the Embedded Open Source
Summit, Prague, Czech Republic. [Online]. Available: https : / / static . sched .
com/hosted_files/eoss2023/1d/Linux%20Real - Time%20kernel%20and%
20tuning % 20robotics % 20platform % 20 - %20Krzysztof % 20Kozlowski % 2C %
20Linaro%20-%20ELCE%202023.pdf

[20] S. Alonso, J. Lázaro, J. Jiménez, U. Bidarte, and L. Muguira, “Evaluating latency
in multiprocessing embedded systems for the smart grid,” Energies, vol. 14,
no. 11, p. 3322, Jan. 2021, ISSN: 1996-1073. DOI: 10.3390/en14113322. (accessed
Oct. 2, 2023).

[21] L. Abeni and D. Faggioli, “An experimental analysis of the Xen and KVM la-
tencies,” in Proceedings - 2019 IEEE 22nd International Symposium on Real-Time
Distributed Computing, ISORC 2019, Test, Institute of Electrical and Electronics
Engineers Inc., May 2019, pp. 18–26, ISBN: 978-1-72810-150-7. DOI: 10 . 1109 /
ISORC.2019.00014.

[22] J. Altenberg. (2023). Evaluation of PREEMPT_RT in virtualized environments.
Presented at the Embedded Open Source Summit, Prague, Czech Republic.
[Online]. Available: https : / / static . sched . com / hosted _ files / eoss2023 / 51 /
preempt_rt_virtualization.pdf

[23] C. C. J. Huang and C. F. Yang, “An empirical approach to minimize latency of
real-time multiprocessor Linux kernel,” in Proceedings - 2020 International Com-
puter Symposium, ICS 2020, Institute of Electrical and Electronics Engineers Inc.,
Dec. 2020, pp. 214–218, ISBN: 978-1-72819-255-0. DOI: 10.1109/ICS51289.2020.
00051.

[24] N. Litayem and S. B. Saoud, “Impact of the Linux real-time enhancements on
the system performances for multi-core Intel architectures,” International Journal

https://doi.org/10.3390/electronics10111331
https://doi.org/10.3390/electronics10111331
https://doi.org/10.1109/ICESS.2009.24
https://doi.org/10.1109/ICESS.2009.24
https://arxiv.org/abs/1510.02086
http://arxiv.org/abs/1510.02086
http://arxiv.org/abs/1510.02086
https://doi.org/10.1109/CBFD52659.2021.00024
https://doi.org/10.1109/CBFD52659.2021.00024
https://doi.org/10.1109/ICAICA52286.2021.9498165
https://doi.org/10.2197/ipsjjip.31.78
https://static.sched.com/hosted_files/eoss2023/1d/Linux%20Real-Time%20kernel%20and%20tuning%20robotics%20platform%20-%20Krzysztof%20Kozlowski%2C%20Linaro%20-%20ELCE%202023.pdf
https://static.sched.com/hosted_files/eoss2023/1d/Linux%20Real-Time%20kernel%20and%20tuning%20robotics%20platform%20-%20Krzysztof%20Kozlowski%2C%20Linaro%20-%20ELCE%202023.pdf
https://static.sched.com/hosted_files/eoss2023/1d/Linux%20Real-Time%20kernel%20and%20tuning%20robotics%20platform%20-%20Krzysztof%20Kozlowski%2C%20Linaro%20-%20ELCE%202023.pdf
https://static.sched.com/hosted_files/eoss2023/1d/Linux%20Real-Time%20kernel%20and%20tuning%20robotics%20platform%20-%20Krzysztof%20Kozlowski%2C%20Linaro%20-%20ELCE%202023.pdf
https://doi.org/10.3390/en14113322
https://doi.org/10.1109/ISORC.2019.00014
https://doi.org/10.1109/ISORC.2019.00014
https://static.sched.com/hosted_files/eoss2023/51/preempt_rt_virtualization.pdf
https://static.sched.com/hosted_files/eoss2023/51/preempt_rt_virtualization.pdf
https://doi.org/10.1109/ICS51289.2020.00051
https://doi.org/10.1109/ICS51289.2020.00051

Bibliography 86

of Computer Applications, vol. 17, no. 3, pp. 17–23, Mar. 2011. [Online]. Available:
https://ijcaonline.org/archives/volume17/number3/2202-2796/ (accessed
May 18, 2024).

[25] The Linux Foundation. Preemption Models. (2023). Accessed: Dec. 31, 2023. [On-
line]. Available: https://wiki.linuxfoundation.org/realtime/documentation/
technical_basics/preemption_models

[26] The Linux Foundation. Lock types and their rules — The Linux Kernel documenta-
tion. (2022). Accessed: Apr. 22, 2024. [Online]. Available: https://docs.kernel.
org/locking/locktypes.html

[27] The Linux Foundation. Threaded interrupt handler. (2023). Accessed: Jan. 4,
2024. [Online]. Available: https : / / wiki . linuxfoundation . org / realtime /
documentation/technical_details/threadirq

[28] The Linux Foundation. Sched(7) - Linux manual page. (2023). Accessed: Jan. 10,
2024. [Online]. Available: https://man7.org/linux/man-pages/man7/sched.
7.html

[29] T. Gleixner and D. Niehaus, “Hrtimers and beyond: Transforming the Linux
time subsystems,” 2006. [Online]. Available: https://www.kernel.org/doc/
ols/2006/ols2006v1-pages-333-346.pdf.

[30] The Linux Foundation. How to use high resolution timers? (2023). Accessed:
Jan. 26, 2024. [Online]. Available: https://wiki.linuxfoundation.org/realtime/
documentation/technical_details/hr_timers

[31] stress-ng (stress next generation). (2023). C. I. King. Accessed: Oct. 1, 2023. [On-
line]. Available: https://github.com/ColinIanKing/stress-ng

[32] rt-tests. (2024). The Linux Foundation. Accessed: Mar. 17, 2024. [Online]. Avail-
able: https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git/

[33] The Linux Foundation. Hackbench. (2023). Accessed: Mar. 17, 2024. [Online].
Available: https : / / wiki . linuxfoundation . org / realtime / documentation /
howto/tools/hackbench

[34] S. Rostedt. Ftrace - Function Tracer. (2022). Accessed: Oct. 12, 2023. [Online].
Available: https://www.kernel.org/doc/html/v6.1/trace/ftrace.html

[35] KernelShark. (2023). The Linux Foundation. Accessed: Oct. 12, 2023. [Online].
Available: https://git.kernel.org/pub/scm/utils/trace-cmd/kernel-shark.
git/

[36] Matt Fleming. "A thorough introduction to eBPF." lwn.net. Accessed: Feb. 6,
2024. [Online]. Available: https://lwn.net/Articles/740157/

[37] J. Ogness. (2023). Proposing a new tracer to monitor RT-task behavior. Pre-
sented at the Embedded Open Source Summit, Prague, Czech Republic. Ac-
cessed: Aug. 23, 2023. [Online]. Available: https://static.sched.com/hosted_
files / eoss2023 / 27 / Proposing % 20a % 20new % 20tracer % 20to % 20monitor %
20RT%20task%20behavior%20-%20John%20Ogness.pdf

[38] The Linux Foundation. Cyclictest. (2023). Accessed: Jan. 15, 2024. [Online].
Available: https : / / wiki . linuxfoundation . org / realtime / documentation /
howto/tools/cyclictest/start

[39] rtla. (2023). D. B. de Oliveira. Accessed: Oct. 1, 2023. [Online]. Available: https:
//www.kernel.org/doc/html/next/tools/rtla/rtla.html

[40] A. Burns and R. I. Davis, “A survey of research into mixed criticality systems,”
ACM Computing Surveys, vol. 50, no. 6, pp. 1–37, Nov. 2018, ISSN: 0360-0300,
1557-7341. DOI: 10.1145/3131347. (accessed Sep. 29, 2023).

https://ijcaonline.org/archives/volume17/number3/2202-2796/
https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/preemption_models
https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/preemption_models
https://docs.kernel.org/locking/locktypes.html
https://docs.kernel.org/locking/locktypes.html
https://wiki.linuxfoundation.org/realtime/documentation/technical_details/threadirq
https://wiki.linuxfoundation.org/realtime/documentation/technical_details/threadirq
https://man7.org/linux/man-pages/man7/sched.7.html
https://man7.org/linux/man-pages/man7/sched.7.html
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf
https://wiki.linuxfoundation.org/realtime/documentation/technical_details/hr_timers
https://wiki.linuxfoundation.org/realtime/documentation/technical_details/hr_timers
https://github.com/ColinIanKing/stress-ng
https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git/
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/hackbench
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/hackbench
https://www.kernel.org/doc/html/v6.1/trace/ftrace.html
https://git.kernel.org/pub/scm/utils/trace-cmd/kernel-shark.git/
https://git.kernel.org/pub/scm/utils/trace-cmd/kernel-shark.git/
https://lwn.net/Articles/740157/
https://static.sched.com/hosted_files/eoss2023/27/Proposing%20a%20new%20tracer%20to%20monitor%20RT%20task%20behavior%20-%20John%20Ogness.pdf
https://static.sched.com/hosted_files/eoss2023/27/Proposing%20a%20new%20tracer%20to%20monitor%20RT%20task%20behavior%20-%20John%20Ogness.pdf
https://static.sched.com/hosted_files/eoss2023/27/Proposing%20a%20new%20tracer%20to%20monitor%20RT%20task%20behavior%20-%20John%20Ogness.pdf
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://www.kernel.org/doc/html/next/tools/rtla/rtla.html
https://www.kernel.org/doc/html/next/tools/rtla/rtla.html
https://doi.org/10.1145/3131347

Bibliography 87

[41] P. Barham, B. Dragovic, K. Fraser, et al., “Xen and the art of virtualization,”
in Proceedings of the nineteenth ACM symposium on Operating systems principles,
ser. SOSP ’03, New York, NY, USA: Association for Computing Machinery, Oct.
2003, pp. 164–177, ISBN: 978-1-58113-757-6. DOI: 10.1145/945445.945462.

[42] A. Qumranet, Y. Qumranet, D. Qumranet, U. Qumranet, and A. Liguori, “KVM:
The Linux virtual machine monitor,” Proceedings Linux Symposium, vol. 15, Jan.
2007.

[43] rromoff. "Cache Coloring: Interference-free Real-time Virtualization." xenpro-
ject.org. Accessed: Oct. 4, 2023. [Online]. Available: https ://xenproject .org/
2020/09/03/cache-coloring-interference-free-real-time-virtualization/

[44] The Linux Foundation. "Xen For Automotive / Embedded." xenproject.org.
Accessed: Feb. 6, 2024. [Online]. Available: https : / / xenproject . org / users /
automotive-embedded/

[45] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” 2005.
[46] I. Habib, “Virtualization with KVM,” Linux Journal, vol. 2008, no. 166, 8:8, Feb.

2008, ISSN: 1075-3583. [Online]. Available: https://dl.acm.org/doi/fullHtml/
10.5555/1344209.1344217.

[47] Jun Zhang, Kai Chen, Baojing Zuo, Ruhui Ma, Yaozu Dong, and Haibing Guan,
“Performance analysis towards a KVM-Based embedded real-time virtualiza-
tion architecture,” in 5th International Conference on Computer Sciences and Con-
vergence Information Technology, Seoul, Korea (South): IEEE, Nov. 2010, pp. 421–
426, ISBN: 978-1-4244-8567-3. DOI: 10.1109/ICCIT.2010.5711095.

[48] E. Hamelin, M. Ait Hmid, A. Naji, Y. Mouafo-Tchinda, and J. Land Rover,
“Selection and evaluation of an embedded hypervisor: Application to an au-
tomotive platform,” 2020. [Online]. Available: https : / / www. mentor. com /
embedded-software/hypervisor/.

[49] P. K. Valsan, H. Yun, and F. Farshchi, “Taming non-blocking caches to improve
isolation in multicore real-time systems,” in 2016 IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS), Apr. 2016, pp. 1–12. DOI: 10.
1109/RTAS.2016.7461361.

[50] The Linux Foundation. Control Group v2 — The Linux Kernel documentation.
(2015). Accessed: Feb. 6, 2024. [Online]. Available: https://www.kernel.org/
doc/html/v6.1/admin-guide/cgroup-v2.html

[51] D. Merkel, “Docker: Lightweight Linux containers for consistent development
and deployment,” Linux Journal, vol. 2014, no. 239, 2:2, Mar. 2014, ISSN: 1075-
3583.

[52] M. Thiyyakat, S. Kalambur, and D. Sitaram, “Improving resource isolation of
critical tasks in a workload,” in Job Scheduling Strategies for Parallel Processing:
23rd International Workshop, JSSPP 2020, New Orleans, LA, USA, May 22, 2020,
Revised Selected Papers, Berlin, Heidelberg: Springer-Verlag, May 2020, pp. 45–
67, ISBN: 978-3-030-63170-3. DOI: 10.1007/978-3-030-63171-0_3.

[53] The Linux Foundation. What is an IRQ? — The Linux Kernel documentation.
(2022). Accessed: Dec. 2, 2023. [Online]. Available: https://www.kernel.org/
doc/html/v6.1/core-api/irq/concepts.html

[54] The Linux Foundation. SMP IRQ affinity — The Linux Kernel documentation.
(2022). Accessed: Dec. 2, 2023. [Online]. Available: https://www.kernel.org/
doc/html/v6.1/core-api/irq/irq-affinity.html

https://doi.org/10.1145/945445.945462
https://xenproject.org/2020/09/03/cache-coloring-interference-free-real-time-virtualization/
https://xenproject.org/2020/09/03/cache-coloring-interference-free-real-time-virtualization/
https://xenproject.org/users/automotive-embedded/
https://xenproject.org/users/automotive-embedded/
https://dl.acm.org/doi/fullHtml/10.5555/1344209.1344217
https://dl.acm.org/doi/fullHtml/10.5555/1344209.1344217
https://doi.org/10.1109/ICCIT.2010.5711095
https://www.mentor.com/embedded-software/hypervisor/
https://www.mentor.com/embedded-software/hypervisor/
https://doi.org/10.1109/RTAS.2016.7461361
https://doi.org/10.1109/RTAS.2016.7461361
https://www.kernel.org/doc/html/v6.1/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/v6.1/admin-guide/cgroup-v2.html
https://doi.org/10.1007/978-3-030-63171-0_3
https://www.kernel.org/doc/html/v6.1/core-api/irq/concepts.html
https://www.kernel.org/doc/html/v6.1/core-api/irq/concepts.html
https://www.kernel.org/doc/html/v6.1/core-api/irq/irq-affinity.html
https://www.kernel.org/doc/html/v6.1/core-api/irq/irq-affinity.html

Bibliography 88

[55] The Linux Foundation. The kernel’s command-line parameters — The Linux Kernel
documentation. (2022). Accessed: Dec. 2, 2023. [Online]. Available: https://www.
kernel.org/doc/html/v6.1/admin-guide/kernel-parameters.html

[56] The Linux Foundation. Page Tables — The Linux Kernel documentation. (2022).
Accessed: Apr. 22, 2024. [Online]. Available: https://docs.kernel .org/mm/
page_tables.html

[57] M. M. Madden, “Challenges using Linux as a real-time operating system,” in
AIAA Scitech 2019 Forum, San Diego, California: American Institute of Aeronau-
tics and Astronautics, Jan. 2019, ISBN: 978-1-62410-578-4. DOI: 10.2514/6.2019-
0502.

[58] H. Austad, E. R. Jellum, S. Hendseth, et al., “Composable distributed real-time
systems with deterministic network channels,” Journal of Systems Architecture,
vol. 137, p. 102 853, Apr. 2023, ISSN: 13837621. DOI: 10.1016/j.sysarc.2023.102853.
(accessed Oct. 2, 2023).

[59] K. G. Erickson, M. D. Boyer, and D. Higgins, “NSTX-U advances in real-time de-
terministic PCIe-based internode communication,” Fusion Engineering and De-
sign, vol. 133, pp. 104–109, Aug. 2018, ISSN: 0920-3796. DOI: 10.1016/j.fusengdes.
2018.02.055. (accessed Oct. 1, 2023).

[60] S. Khan and E. Copperman. (2023). RT Linux in safety-critical systems: The po-
tential and the challenges. Presented at the Embedded Open Source Summit,
Prague, Czech Republic. Accessed: Aug. 23, 2023. [Online]. Available: https :
//static.sched.com/hosted_files/eoss2023/fd/RT%20Linux%20in%20Safety%
20Critical%20Systems_%20the%20potential%20and%20the%20challenges%20.
pdf

[61] D. Duval, “From fast to predictably fast,” in Ottawa Linux Symposium, Montreal,
Quebec Canada, 2009. [Online]. Available: https://www.kernel.org/doc/ols/
2009/ols2009-pages-79-86.pdf.

[62] John Ogness. "A checklist for real-time applications in Linux." linutronix.de.
Accessed: Apr. 24, 2024. [Online]. Available: https://www.linutronix.de/blog.
php

[63] The Linux Foundation. RT-mutex subsystem with PI support — The Linux Ker-
nel documentation. (2020). Accessed: Apr. 22, 2024. [Online]. Available: https :
//www.kernel.org/doc/html/v6.1/locking/rt-mutex.html

[64] W. Mauerer, Professional Linux Kernel Architecture. GBR: Wrox Press Ltd., Sep.
2008, ISBN: 978-0-470-34343-2.

[65] M. Bagherzadeh, N. Kahani, C.-P. Bezemer, A. E. Hassan, J. Dingel, and J. R.
Cordy, “Analyzing a decade of Linux system calls,” in Proceedings of the 40th In-
ternational Conference on Software Engineering, ser. ICSE ’18, New York, NY, USA:
Association for Computing Machinery, May 2018, p. 267, ISBN: 978-1-4503-5638-
1. DOI: 10.1145/3180155.3182518.

[66] L. Soares and M. Stumm, “FlexSC: Flexible system call scheduling with
exception-less system calls,” in Proceedings of the 9th USENIX conference on Oper-
ating systems design and implementation, ser. OSDI’10, USA: USENIX Association,
Oct. 2010, pp. 33–46.

[67] Jonathan Corbet. "(Nearly) full tickless operation in 3.10." lwn.net. Accessed:
Dec. 6, 2023. [Online]. Available: https://lwn.net/Articles/549580/

https://www.kernel.org/doc/html/v6.1/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/v6.1/admin-guide/kernel-parameters.html
https://docs.kernel.org/mm/page_tables.html
https://docs.kernel.org/mm/page_tables.html
https://doi.org/10.2514/6.2019-0502
https://doi.org/10.2514/6.2019-0502
https://doi.org/10.1016/j.sysarc.2023.102853
https://doi.org/10.1016/j.fusengdes.2018.02.055
https://doi.org/10.1016/j.fusengdes.2018.02.055
https://static.sched.com/hosted_files/eoss2023/fd/RT%20Linux%20in%20Safety%20Critical%20Systems_%20the%20potential%20and%20the%20challenges%20.pdf
https://static.sched.com/hosted_files/eoss2023/fd/RT%20Linux%20in%20Safety%20Critical%20Systems_%20the%20potential%20and%20the%20challenges%20.pdf
https://static.sched.com/hosted_files/eoss2023/fd/RT%20Linux%20in%20Safety%20Critical%20Systems_%20the%20potential%20and%20the%20challenges%20.pdf
https://static.sched.com/hosted_files/eoss2023/fd/RT%20Linux%20in%20Safety%20Critical%20Systems_%20the%20potential%20and%20the%20challenges%20.pdf
https://www.kernel.org/doc/ols/2009/ols2009-pages-79-86.pdf
https://www.kernel.org/doc/ols/2009/ols2009-pages-79-86.pdf
https://www.linutronix.de/blog.php
https://www.linutronix.de/blog.php
https://www.kernel.org/doc/html/v6.1/locking/rt-mutex.html
https://www.kernel.org/doc/html/v6.1/locking/rt-mutex.html
https://doi.org/10.1145/3180155.3182518
https://lwn.net/Articles/549580/

Bibliography 89

[68] The Linux Foundation. NO_HZ: Reducing Scheduling-Clock Ticks — The Linux
Kernel documentation. (2023). Accessed: Dec. 6, 2023. [Online]. Available: https:
//docs.kernel.org/timers/no_hz.html

[69] H. Akkan, M. Lang, and L. Liebrock, “Understanding and isolating the noise in
the Linux kernel,” International Journal of High Performance Computing Applica-
tions, vol. 27, pp. 136–146, May 2013. DOI: 10.1177/1094342013477892.

[70] The Linux Foundation. Overview of the Linux Virtual File System — The Linux
Kernel documentation. (2023). Accessed: Nov. 27, 2023. [Online]. Available: https:
//www.kernel.org/doc/html/next/filesystems/vfs.html

[71] H. Zhang, H. Zhang, L. Zhang, and Y. Wu, “FastUDP: A highly scalable user-
level UDP framework in multi-core systems for fast packet I/O,” The Journal of
Supercomputing, vol. 77, pp. 1–28, May 2021. DOI: 10.1007/s11227-020-03486-6.

[72] J. Kiszka, B. Wagner, Y. Zhang, and J. Broenink, “RTnet – A flexible hard real-
time networking framework,” Jan. 2005. DOI: 10.1109/ETFA.2005.1612559.

[73] L.-C. Duca and A. Duca, “Achieving hard real-time networking on PREEMPT_-
RT Linux with RTnet,” in 2020 International Symposium on Fundamentals of Elec-
trical Engineering (ISFEE), Nov. 2020, pp. 1–4. DOI: 10.1109/ISFEE51261.2020.
9756165.

[74] DPDK Project. "DPDK." dpdk.org. Accessed: Feb. 7, 2024. [Online]. Available:
https://www.dpdk.org/

[75] Z. Li, “HPSRouter: A high performance software router based on DPDK,”
in 2018 20th International Conference on Advanced Communication Technology
(ICACT), Feb. 2018, pp. 503–506. DOI: 10.23919/ICACT.2018.8323810.

[76] T. Xu, X. Chen, C. Wu, et al., “3DS: An efficient DPDK-based data distribution
service for distributed real-time applications,” in 2022 IEEE 24th Int Conf on
High Performance Computing & Communications; 8th Int Conf on Data Science &
Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud
& Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Dec. 2022,
pp. 1283–1290. DOI: 10 .1109/HPCC- DSS- SmartCity- DependSys57074.2022.
00201.

[77] DPDK Project. "DPDK - Supported Hardware." dpdk.org. Accessed: Mar. 18,
2024. [Online]. Available: https://core.dpdk.org/supported/

[78] Julie Cummings, Eliezer Tamir, “Open Source Kernel Enhancements for Low
Latency Sockets using Busy Poll,” 2013. [Online]. Available: https://caxapa.
ru/thumbs/793343/Open_Source_Kernel_Enhancements_for_Low-.pdf.

[79] S. A. Siewior. "[PATCH net-next] net/core: disable NET_RX_BUSY_POLL on
PREEMPT_RT - Sebastian Andrzej Siewior." lore.kernel.org. Accessed: Nov. 27,
2023. [Online]. Available: https://lore.kernel.org/all/20211001145841.2308454-
1-bigeasy@linutronix.de/

[80] D. J. H. Brown and Martin, Brad, “How fast is fast enough? Choosing between
Xenomai and Linux for real-time applications,” 2010.

[81] R. Wilhelm, J. Engblom, A. Ermedahl, et al., “The worst-case execution-time
problem—overview of methods and survey of tools,” ACM Transactions on Em-
bedded Computing Systems, vol. 7, no. 3, 36:1–36:53, May 2008, ISSN: 1539-9087.
DOI: 10.1145/1347375.1347389. (accessed Dec. 25, 2023).

[82] D. B. de Oliveira and R. S. de Oliveira, “Timing analysis of the PREEMPT RT
Linux kernel,” Software: Practice and Experience, vol. 46, no. 6, pp. 789–819, 2016,
ISSN: 1097-024X. DOI: 10.1002/spe.2333.

https://docs.kernel.org/timers/no_hz.html
https://docs.kernel.org/timers/no_hz.html
https://doi.org/10.1177/1094342013477892
https://www.kernel.org/doc/html/next/filesystems/vfs.html
https://www.kernel.org/doc/html/next/filesystems/vfs.html
https://doi.org/10.1007/s11227-020-03486-6
https://doi.org/10.1109/ETFA.2005.1612559
https://doi.org/10.1109/ISFEE51261.2020.9756165
https://doi.org/10.1109/ISFEE51261.2020.9756165
https://www.dpdk.org/
https://doi.org/10.23919/ICACT.2018.8323810
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00201
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00201
https://core.dpdk.org/supported/
https://caxapa.ru/thumbs/793343/Open_Source_Kernel_Enhancements_for_Low-.pdf
https://caxapa.ru/thumbs/793343/Open_Source_Kernel_Enhancements_for_Low-.pdf
https://lore.kernel.org/all/20211001145841.2308454-1-bigeasy@linutronix.de/
https://lore.kernel.org/all/20211001145841.2308454-1-bigeasy@linutronix.de/
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1002/spe.2333

Bibliography 90

[83] P. Okech, N. Mc Guire, and C. Fetzer, “Utilizing Inherent Diversity in Complex
Software Systems,” pp. 71–78, 2014.

[84] I. Allende, N. Mc Guire, J. Perez, L. G. Monsalve, and R. Obermaisser, “Towards
Linux based safety systems—A statistical approach for software execution path
coverage,” Journal of Systems Architecture, vol. 116, Jun. 2021, ISSN: 13837621.
DOI: 10.1016/j.sysarc.2021.102047.

[85] X. Chen, “Research on Linux real-time and performance evaluation for Loong-
son 3A3000 processor,” in Journal of Physics: Conference Series, Cited By :2,
vol. 1453, 2020. DOI: 10.1088/1742-6596/1453/1/012100.

[86] Stian Onarheim / masters-thesis - GitLab. (2024). Stian Onarheim. Accessed:
May 17, 2024. [Online]. Available: https://gitlab.com/Feqzz/masters-thesis

[87] Texas Instruments. AM69x Processors, Silicon. (2023). Accessed: Oct. 1, 2023. [On-
line]. Available: https : / / www. ti . com / lit / ds / symlink / am69 . pdf ? ts =
1696168389669&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%
252FAM69

[88] Texas Instruments. "SK-AM69 Evaluation board." ti.com. Accessed: Apr. 3, 2024.
[Online]. Available: https://www.ti.com/tool/SK-AM69

[89] Buildroot. "Buildroot - Making Embedded Linux Easy." buildroot.com. Ac-
cessed: Apr. 3, 2024. [Online]. Available: https://buildroot.org/

[90] ti-linux-kernel. (2024). Texas Instruments. Accessed: Nov. 26, 2023. [Online].
Available: https://git.ti.com/cgit/ti-linux-kernel/ti-linux-kernel/

[91] AMD. "AMD Zynq 7000 SoC ZC706 Evaluation Kit." xilinx.com. Accessed:
Mar. 30, 2024. [Online]. Available: https://www.xilinx.com/products/boards-
and-kits/ek-z7-zc706-g.html

[92] Xilinx. Zynq-7000 SoC Data Sheet: Overview (DS190). (2018). Accessed: Aug. 13,
2023. [Online]. Available: https://docs.amd.com/v/u/en-US/ds190-Zynq-
7000-Overview

[93] FreeRTOS. "FreeRTOS - Market leading RTOS (Real Time Operating System) for
embedded systems with Internet of Things extensions." freertos.org. Accessed:
Mar. 30, 2024. [Online]. Available: https://www.freertos.org/index.html

[94] LwIP. (2023). Xilinx. Accessed: Apr. 28, 2024. [Online]. Available: https : / /
github . com/ Xilinx/embeddedsw /tree /master/ ThirdParty/ sw_services /
lwip213

[95] BRAM Standalone driver. (2023). Xilinx. Accessed: Apr. 28, 2024. [Online].
Available: https : / / github . com / Xilinx / embeddedsw / tree / master /
XilinxProcessorIPLib/drivers/bram

[96] Nordic Semiconductor. nRF52832 Product Specification (v1.8). (2021). Accessed:
Aug. 13, 2023. [Online]. Available: https://infocenter.nordicsemi.com/pdf/
nRF52832_PS_v1.8.pdf

[97] Nordic Semiconductor. "nRF52 DK - Development kit for Bluetooth Low En-
ergy and Bluetooth mesh." nordicsemi.com. Accessed: Apr. 3, 2024. [Online].
Available: https://www.nordicsemi.com/Products/Development-hardware/
nRF52-DK

[98] xilinx/dma_ip_drivers. (2024). Xilinx. Accessed: Mar. 16, 2024. [Online]. Avail-
able: https://github.com/Xilinx/dma_ip_drivers

[99] ti_rt.config. (2024). Texas Instruments. Accessed: Apr. 24, 2024. [Online]. Avail-
able: https://git.ti.com/cgit/ti- linux-kernel/ti- linux-kernel/tree/kernel/
configs/ti_rt.config?h=ti-rt-linux-6.1.y

https://doi.org/10.1016/j.sysarc.2021.102047
https://doi.org/10.1088/1742-6596/1453/1/012100
https://gitlab.com/Feqzz/masters-thesis
https://www.ti.com/lit/ds/symlink/am69.pdf?ts=1696168389669&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FAM69
https://www.ti.com/lit/ds/symlink/am69.pdf?ts=1696168389669&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FAM69
https://www.ti.com/lit/ds/symlink/am69.pdf?ts=1696168389669&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FAM69
https://www.ti.com/tool/SK-AM69
https://buildroot.org/
https://git.ti.com/cgit/ti-linux-kernel/ti-linux-kernel/
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://docs.amd.com/v/u/en-US/ds190-Zynq-7000-Overview
https://docs.amd.com/v/u/en-US/ds190-Zynq-7000-Overview
https://www.freertos.org/index.html
https://github.com/Xilinx/embeddedsw/tree/master/ThirdParty/sw_services/lwip213
https://github.com/Xilinx/embeddedsw/tree/master/ThirdParty/sw_services/lwip213
https://github.com/Xilinx/embeddedsw/tree/master/ThirdParty/sw_services/lwip213
https://github.com/Xilinx/embeddedsw/tree/master/XilinxProcessorIPLib/drivers/bram
https://github.com/Xilinx/embeddedsw/tree/master/XilinxProcessorIPLib/drivers/bram
https://infocenter.nordicsemi.com/pdf/nRF52832_PS_v1.8.pdf
https://infocenter.nordicsemi.com/pdf/nRF52832_PS_v1.8.pdf
https://www.nordicsemi.com/Products/Development-hardware/nRF52-DK
https://www.nordicsemi.com/Products/Development-hardware/nRF52-DK
https://github.com/Xilinx/dma_ip_drivers
https://git.ti.com/cgit/ti-linux-kernel/ti-linux-kernel/tree/kernel/configs/ti_rt.config?h=ti-rt-linux-6.1.y
https://git.ti.com/cgit/ti-linux-kernel/ti-linux-kernel/tree/kernel/configs/ti_rt.config?h=ti-rt-linux-6.1.y

Bibliography 91

[100] iovisor/bcc. (2024). iovisor. Accessed: Mar. 10, 2024. [Online]. Available: https:
//github.com/iovisor/bcc

[101] The Linux Foundation. Libbpf Overview — The Linux Kernel documentation.
(2023). Accessed: Mar. 10, 2024. [Online]. Available: https://docs.kernel.org/
bpf/libbpf/libbpf_overview.html

[102] The Linux Foundation. Unreliable Guide To Hacking The Linux Kernel — The Linux
Kernel documentation. (2022). Accessed: Mar. 16, 2024. [Online]. Available: https:
//www.kernel.org/doc/html/v6.1/kernel-hacking/hacking.html

[103] S. A. Siewior. (2024). How to not break PREEMPT_RT. Presented at the Em-
bedded Open Source Summit, Seattle, Washington, USA. [Online]. Available:
https : / / static . sched . com / hosted _ files / eoss24 / b2 / EOSS _ 2024 -
HowToNotBreakPreemptRT.pdf

[104] L.-C. Duca, A. Duca, and A.-S. Lup, “Real-time Linux drivers and latency eval-
uation system for TI OMAP4 mcSPI peripheral,” in 2020 International Confer-
ence on Electrical, Communication, and Computer Engineering (ICECCE), Istan-
bul, Turkey: IEEE, Jun. 2020, pp. 1–4, ISBN: 978-1-72817-116-6. DOI: 10 .1109/
ICECCE49384.2020.9179286.

[105] Vaishnav Achath, Vignesh Raghavendra, and Keerthy J. (2023). Tweaking de-
vice drivers for achieving real-time performance in embedded systems using
real-time Linux. Presented at the Open Source Embedded Summit, Prague,
Czech Republic. Accessed: Apr. 15, 2024. [Online]. Available: https ://static .
sched.com/hosted_files/eoss2023/ce/RT_Linux_Device_Driver.pdf

[106] The Linux Foundation. Pthread_mutexattr_getprotocol(3) - Linux man page. (2023).
Accessed: Apr. 15, 2024. [Online]. Available: https://linux.die.net/man/3/
pthread_mutexattr_getprotocol

https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://docs.kernel.org/bpf/libbpf/libbpf_overview.html
https://docs.kernel.org/bpf/libbpf/libbpf_overview.html
https://www.kernel.org/doc/html/v6.1/kernel-hacking/hacking.html
https://www.kernel.org/doc/html/v6.1/kernel-hacking/hacking.html
https://static.sched.com/hosted_files/eoss24/b2/EOSS_2024-HowToNotBreakPreemptRT.pdf
https://static.sched.com/hosted_files/eoss24/b2/EOSS_2024-HowToNotBreakPreemptRT.pdf
https://doi.org/10.1109/ICECCE49384.2020.9179286
https://doi.org/10.1109/ICECCE49384.2020.9179286
https://static.sched.com/hosted_files/eoss2023/ce/RT_Linux_Device_Driver.pdf
https://static.sched.com/hosted_files/eoss2023/ce/RT_Linux_Device_Driver.pdf
https://linux.die.net/man/3/pthread_mutexattr_getprotocol
https://linux.die.net/man/3/pthread_mutexattr_getprotocol

	Abstract
	Acknowledgements
	Introduction
	Motivation and Problem Statement
	Proposal
	Outline

	Background and Related Work
	Real-Time Operating Systems
	Real-Time Linux
	Co-Kernel Approach
	Single-Kernel Approach (PREEMPT_RT)
	Preemption
	Locking Primitives
	Priority Inversion and Inheritance
	Interrupts
	Scheduling Policies
	High Resolution Timers

	Tools
	Stressors
	Tracing Tools
	Benchmarking Tools

	Mixed-Criticality Systems
	Virtualization
	Resource Partitioning in Linux

	Tuning and Best Practices for Real-Time Linux
	Memory
	Timer APIs
	Inter-Process Communication
	The Current State of Official PREEMPT_RT Guidelines

	Workloads on Linux
	Ethernet

	Related Work With PREEMPT_RT
	Summary

	Methodology
	Testing Environment
	Hardware Setup
	The Linux-Based System
	Measurement System for Ethernet and PCIe
	Measurement System for GPIO

	Measurement Software on the Linux-Based System
	Ethernet
	PCIe
	GPIO

	Linux Configuration
	Kernel Configuration
	CPU Partitioning

	Stressors

	Testing Strategy
	Additional Measurement Runs
	Baseline Tests With Cyclictest

	BPF Programs
	Inter-Processor Interrupts
	Softirqs
	Softirq Raising
	Softirq Handling

	Hardirqs

	Results and Discussion
	Baseline Test With Cyclictest
	GPIO
	GPIO Driver With No Modifications
	Modified GPIO Driver With IRQF_NO_THREAD
	The Impact of CPU Configuration and Load on the Cross-CPU Wake-Up Mechanism
	Additional Measurement Runs for GPIO

	Ethernet
	Measurement Runs for UDP
	Additional Measurement Runs for UDP

	Measurement Runs for TCP/IP
	Additional Measurement Runs for TCP/IP

	The Impact of Heavy Load on Ethernet Softirqs

	PCIe
	Xilinx Driver With no Modifications
	Modified Xilinx Driver Revision 1
	Modified Xilinx XDMA Device Driver Revision 2
	Modified Xilinx XDMA Device Driver Revision 3
	Additional Measurement Runs for PCIe

	Discussion
	Designing Real-Time Applications With Existing Device Drivers
	The Impact of System Stress
	The effectiveness of the Linux kernel's isolation techniques
	Interrupt vs. Polling-Based Implemenations
	Designing a Linux-based real-time system

	Conclusion and Future Work
	Conclusion
	Future Work

	Additional Test Results
	GPIO
	Ethernet
	PCIe

	Stress-ng Stressors
	Bibliography

