
www.usn.no

Faculty of Technology, Natural Sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master Thesis 2024
Industrial IT and Automation

Computer vision-guided autonomous grasping system
using Leo Rover with robotic arm.

Nasir Ali

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this student report.

Course: FMH606 Master's Thesis, 2024
Title: Computer vision-guided autonomous grasping system using Leo Rover with robotic
arm
Number of pages: 104
Keywords: Leo Rover, Lidar sensor, ZED2 stereo camera, Pincher robotic arm, autonomous
navigation using SLAM, real-time object detection, grasping system, simulation

Student: Nasir Ali

Supervisor: Ru Yan, Nils-Olav Skeie, Roshan Sharma

External partner: Applied Modeling and Control (AMOC) research group at
USN.

Summary:
The master’s thesis project explores Leo Rover, equipped with a Lidar sensor, stereo
camera, and robotic arm, available at University of South-Easten Norway. Leo Rover is
a semi-autonomous mobile robot used for research and development purposes using the
robot operating system (ROS).
The project aims to develop a computer vision-guided autonomous grasping system,
where the rover detects nearby AR-tags (fiducial markers) based objects, determines the
most suitable grasping approaches using its robotic arm, plan and execute Motion
Planning (MoveIt) to pick-up and place small objects. The rover also performs
autonomous navigation, including simultaneous localization and mapping (SLAM).
Various methods are used including utilization of OpenCV tool for real-time object
detection, configuring and integration of rover’s ROS network, testing multiple ROS
packages, evaluating rover and its arm’s performance in both simulated and physical
environment.
The thesis report provides valuable insights into the capabilities and limitations of the
rover and its robotic arm. Consequently, a comprehensive risk assessment is carried out
to identify potential safety concerns and ethical factors. This research serves as a
foundational setup for future work for autonomous navigation and advanced grasping
technologies in mobile robotics.

 ww.usn.no

3

Preface
This master’s thesis “Computer vision-guided autonomous grasping system using Leo rover
and robotic arm”, conducted by final year student in the course “Industrial IT and Automation
(IIA)” at University of South-Easten Norway, Porsgrunn campus, during the spring term of
2024. It serves as a mandatory part of master’s degree to fulfill the course requirements.
The target audience includes individuals with an interest or background in mobile robotics,
sensor technologies, autonomous navigation and grasping system are beneficial for a
comprehensive understanding of this master thesis. It has been challenging and time consuming
while working with this thesis, however it offered an opportunity to learn more about robot
operating systems. In this thesis, I utilized my knowledge and skills which was obtained
throughout the courses “Control for robotic”, “Software engineering” and “Introduction to
autonomy” to achieve the project’s tasks. With obtained results, I am satisfied to present my
work to complete my journey of this thesis.
I would also like to express my gratitude to the research group (AMOC) and IT staff at USN,
for providing all Leo rover and necessary hardware resources for completing success journey
for master thesis. A special thanks to my supervisors, Ru Yan, Nils-Olav for continuous
guidance and feedback. Their support and mentorship significantly enriched my knowledge
and skills throughout the entire master thesis.
Overall, this journey reflects my commitment to achieve academic excellence and hands-on
practical experience within industrial IT and automation.

Porsgrunn, 15.05.2023

Nasir Ali

 ww.usn.no

4

Contents
Preface ... 3
Contents .. 4
Nomenclature .. 6

1 Introduction ... 8
1.1 Background ... 8
1.2 Objectives .. 9
1.3 Methods ... 9
1.4 Scope ... 9
1.5 Contribution .. 9
1.6 Software tools ... 10
1.7 Report Structure ... 10

2 Literature review ... 11

3 System architecture .. 19
3.1 Specifications of Leo Rover .. 19
3.2 Hardware components for the rover ... 21
3.3 Rover system architecture ... 23

3.3.1 Hardware architecture .. 23
3.3.2 Software architecture ... 25
3.3.3 Use case ... 26
3.3.4 Domain model ... 27
3.3.5 Use Case analysis ... 27
3.3.6 System sequence diagram ... 28
3.3.7 Development process: .. 29

3.4 ROS nodes and topics for rover .. 30

4 Sensor integration .. 33
4.1 Assembly of Lidar sensor .. 33
4.2 Assembly of ZED2 camera ... 35
4.3 Interfacing with ROS... 36

4.3.1 ROS commands .. 36
4.3.2 ROS packages ... 37
4.3.3 ROS workspace ... 37
4.3.4 Establishing a network connection ... 38
4.3.5 Rplidar A2M12 Lidar sensor ... 38
4.3.6 Phantom-X Pincher arm ... 42
4.3.7 ZED2 stereo camera .. 44

5 Autonomous navigation ... 46
5.1 Integration of leo_navigation package ... 46

5.1.1 Odometry ... 49
5.1.2 SLAM .. 49
5.1.3 Navigation .. 50

6 Object recognition & detection .. 51
6.1 AR-tags .. 51
6.2 Integration of Alvar package ... 51

 ww.usn.no

5

6.3 Testing AR-tags using Leo Rover (RPi) camera .. 53
6.4 Testing AR-tags using ZED2 stereo camera .. 55

7 Optimized grasping position .. 57
7.1 Pincher arm working span area .. 57
7.2 MoveIt ... 58
7.3 Motion planning and execution with MoveIt .. 58

7.3.1 Simulation of Pincher arm .. 59
7.3.2 Preliminary testing .. 61
7.3.3 Testing Pincher arm using Python script ... 62

7.4 Integration of grasping with AR-tags .. 63
7.4.1 AR-tag real-time identification ... 63
7.4.2 Grasping procedure .. 64

8 Risk assessment and ethical considerations ... 68
8.1 Preliminary hazard analysis (PHA) ... 68

9 Discussion ... 70
9.1 Setup and configurations .. 70
9.2 Camera selection .. 70
9.3 Autonomous navigation ... 71
9.4 Object detection .. 71
9.5 Arm’s motors Ids correction .. 72
9.6 MoveIt ... 72
9.7 Simulation environment ... 72

10 Conclusion .. 73
10.1 Future work .. 73

11 References ... 74

12 Appendices .. 76
12.1 Appendix A – FMH606 Master thesis task description .. 77
12.2 Appendix B – Python script for testing both AR-tag and end-effector pose 79
12.3 Appendix C – Python script for optimized grasping (Picking) 81
12.4 Appendix D – Python script for following AR-tag and optimized grasping 83
12.5 Appendix E – Configuration setup with rover and laptop ... 88

12.5.1 ROS1 installation guide for Linux operating system on Laptop 88
12.5.2 LeoOS installation for Leo Rover .. 88
12.5.3 Connect to Leo Rover AP ... 89
12.5.4 Connect via remote desktop .. 89
12.5.5 Connect to a local network and the internet using remote desktop 90
12.5.6 Connecting ROS network to the laptop .. 91
12.5.7 Building necessary ROS packages ... 91

12.6 Appendix F – QuickStart Guide for Leo Rover ... 95
12.6.1 Prerequisites requirements: .. 95
12.6.2 Procedure: ... 95

12.7 Appendix G – Testing the hardware and software for the rover 97

 ww.usn.no

6

Nomenclature
AC – Alternative Current
AD – Automated Driving
ADAS – Advanced Driver Assistance System
API – Application Programming Interface
ARS – Autonomous Robotic System
AVP – Automated Valet Parking
CNN – Convolution Neural Networks
CM – Centimeter
CSI – Camera Serial Interface
CPU – Centeral Procssing Unint
COCO – Microsoft Common Objects in Context
CUDA – Computer Unified Device Architecture
DC – Direct Current
DL – Deep learning
D-CNN – Deep Convolutional Neural Networks
DOF – Degree-of-freedom
EKF – Extended Kalman Filter
FK – Forward Kinematics
FDUCD – Fully Dressed User Case Diagram
FURPS+ – Functionality Usability Reliability Performance Supportability
FTDI-USB – Future Technology Devices International – USB Cable
GIPO – General Purpose Input/Output
GPS – Global Positioning System
GPU – Graphincal Procssing Unit
HLF – High-Level Fusion
IK – Inverse Kinematics
IKFast – Inverse Kinematics Fast
ITRI – Industrial Technology Research Institute
IMU – Inertial Measurement Unit
IR – Infrared
JSON – JavaScript Object Notation
KITTI – Karlsruhe Institute of Technology and Toyota Technological Institute
LED – Light-emitting Diode
LeoOS – Leo Operating System
LLF – Low-level Fusion
Lidar – Light detection and ranging
mAh – Milliampere-hour

 ww.usn.no

7

MSE – Mean Square Error
MSDF – Multi-Agent Service Function Chain Migration Framework
MPx – Mega Pixel
ML – Machine Learning
MLF – Mid-level Fusion
MIT – Massachusetts Institute of Technology
PCM – Phase Change Material
PV-RCNN – PointVoxel- Region-based Convolution Neural Network
PWR – Power
ROS – Robot Operating System
RPi – Raspberry Pi
RGB – Red Green and Blue
RGB-D – RGB with Depth
Rviz – ROS Visualization
SDK – Software Development Kit
SAV – Soft Actor-Critic
SSD – System Sequence Diagram
SLAM – Simultaneous Localization and Mapping
SMPS – Switched Mode Power Supply
Sonar – Sound Navigation and Ranging
SSD – Single-Stage Object Detection
TCP – Tool Center Point
TF – Transform Tree
u.FL – Ultra Miniature Coaxial Connector
UART – Universal Asynchronous Receive/Transmitter
UI – User Interface
UKF – Unscented Kalman Filter
USB – Universal Serial Bus
URDF – Unified Robot Description Format
XML – Extensible Markup Language
XML-RPC – Extensible Markup Language - Remote Procedure Call
YAML – Yet Another Markup Language
YOLO – You Only Look Once

 ww.usn.no

8

1 Introduction
This chapter provides an introduction related to the thesis, focusing on the development of
computer vision-guided grasping system using Leo Rover and its robotic arm. It also includes
several key elements. Firstly, it provides the background information regarding master’s thesis
and related research in mobile robotics. After that, it outlines objectives, including primary
focus and goals of the achieved tasks. Finally, it discusses the employed methods, the scope of
the project, contribution, software tools and an overview of the report structure.

1.1 Background
Nowadays, mobile robotics is one of the fastest-growing areas of scientific research. Mobile
robotics is an industry focused on creating mobile robots that can move around in a physical
environment. Mobile robots [1] are such kind of machines typically controlled by software that
use various sensors and technologies to identify their surroundings. Due to their capabilities,
these robots can replace humans in a variety of fields including exploration, remote handling
of explosive materials, mining, construction, fire firefighting and rescue etc. It is apparent that
mobile robots are becoming popular across a wide range of sectors because they are being used
to assist in work processes to perform those tasks which are dangerous or impossible for human
workers.
There are two main types of mobile robots such as autonomous and non-autonomous mobile
robots. An autonomous mobile robot can explore its environments without using any external
guidance, whereas a non-autonomous mobile robot can move around in its surrounding based
on some type of instruction or guidance system [2]. Mobile robots equipped with robotic arms
are autonomous machines, which allow them to navigate their surroundings and perform
complex tasks. These kinds of mobile robots are becoming increasingly common in research
and laboratories because they are versatile and perform repetitive tasks precisely in
unpredictable environments. In distribution centres, they are especially useful for order
picking, packaging, and shipping form one place to another place.
The University of South-Eastern Norway (USN) has a mobile robot Leo Rover which is
equipped with robotic arm. It is physically available at Porsgrunn campus, accessible for on-
campus students. The physical rover looks like shown Figure 1-1, when it received on the first
day of master thesis project.

Figure 1-1: Leo Rover trying to pick up a red object.

 ww.usn.no

9

1.2 Objectives
The primary objective of the project is to develop a computer vision-guided grasping system
for the Leo Rover using its robotic arm. The system is combined with computer-vision to
enable the rover to identify small objects within its nearby area, determine the optimized
approach for grasping and retrieve the object using its robotic arm. Along with robotic arm,
rover is modified by assembling Lidar sensor and ZED2 stereo camera to perform autonomous
navigation and real-time object detection respectively. Key technologies also include installing
ROS on Linux platform, setting-up necessary packages for rover and its electronics
components, visualize rover in both simulated and physical environment, and perform motion
planning.

1.3 Methods
There are various methods used to fulfil the project requirements, as outlined following stages:

• Finalizing the rover design:
o It involves assembling and integration of Lidar sensor and stereo camera.

• Establishing the project environment:
o It includes the installation of ROS on Linux platforms and configuration of

necessary packages.
• Testing and evaluation:

o Simultaneous localization and mapping (SLAM) in simple and complex
environments.

o Real-time object detection using fiducial marker system (AR-tags).
o Implementation of motional planning using MoveIt

• Risk assessment using preliminary hazard analysis (PHA)

1.4 Scope
The master thesis project focusses on the Leo Rover, an open-source ROS-based mobile robot.
The project has a specific timeframe to fulfil the tasks requirements which were set from
08.01.2024 to 15.05. 2024. The research includes testing and evaluation of the rover equipped
with arm and its attached sensor performance in an actual and simulated environment.
However, it can be extended to perform further exploration by using its features.

1.5 Contribution
The master thesis contribution fucuses on the integration of AR-tag (Fiducial marker system)
based small objects and robotic arm manipulation techniques into the Leo Rover platform, to
enhance the grasping capabilities. This integration involves writing Python code, conducting
testing and evaluation on both simulated and physical environments. While previous research
has explored pick-and-place tasks using AR-tags, this thesis addresses the important aspect of
performing grasping action based on the detected tag’s pose (position and orientation), where
the rover is empowered to accurately locate and grasp objects within the environment.

 ww.usn.no

10

1.6 Software tools
There are various software tools related websites are utilized throughout the thesis, including:

• Ubuntu 20.04 (Focal) as Linux operating system.
• ROS Noetic Ninjemys for controlling rover’s functionalities.
• Creo Parametric for designing 3D designs.
• Micro for making system architectures diagrams.
• MoveIt for motion planning and manipulation using rover’s arm.
• Rviz for simulation and visualization of rover and its connected devices.
• Python programming language.
• Visual studio code editor for writing Python code.
• ChatGPT for troubleshooting and research purposes.
• StarUML for drawing use case, classes etc.

1.7 Report Structure
The structure of thesis report as follows:
Chapter 2: Literature review describes the literature studies including computer-vision, sensor
fusion in robotics, machine learning technique for object handling and robotic adaptive
grasping.
Chapter 3: System architecture describes the specifications, software, and hardware structures
of Leo Rover.
Chapter 4: Sensor integration describes assembling of rover’s sensors, stereo camera, setup,
and configuration of necessary ROS packages.
Chapter 5: Autonomous navigation describe how leo_navigation ROS package is incorporated
into rover for autonomous navigation and SLAM (Simultaneously Localization and Mapping)
including relationship of ROS nodes and topics.
Chapter 6: Real-time object recognition & detection describe the multiple AR-tags (Fiducial
markers) real-time detections and recognition using both RPi and ZED2 stereo cameras.
Chapter 7: Optimized grasping position describe the implementation of motion planning and
execution using MeovIt, preliminary testing for both simulated and physical rover’ arm using
Python script and presented optimized results for picking and placing AR-tags based small
objects.
Chapter 8: Risk assessment and ethical considerations describes preliminary hazards analysis
and ethical considerations related to rover and its arm.
Chapter 9: Discussion describes the how implications, limitations, challenges, and their
solutions are addressed.
Chapter 10: Conclusion describes the summary of the thesis and future work for research
development.

 ww.usn.no

11

2 Literature review
This chapter provides a comprehensive overview and analysis of the existing research studies
related to three important topics: computer-vision, sensor fusion technologies, machine
learning for object handling and adaptive grasping system in robotics.
With the help of technological advancements in sensor fusion technology and obstacle
detection algorithms, automated driving systems revolutionized more advanced transportation.
It heavily relies on various types of sensors to perceive the environment surroundings, and the
performance of multiple integrated technologies which directly impact safety and feasibility.
Sensor capabilities and technical performance were evaluated throughout the article. It
primarily focused on vision cameras and Lidar sensor, which are commonly used in
autonomous vehicles. Automated vehicles or self-driving vehicles can perform all the
functions of conventional vehicles, but they can also perceive the environment and navigate
the target with minimal or zero human involvement. A precedence research report predicts that
from 2020 to 2027, sales of autonomous vehicles which were embedded with multiple sensors
had increased by 63.5%. Globally, these vehicles' market reached approximately 6500 units in
2019 [3].
Two types of sensors were analyzed including proprioceptive and exteroceptive sensor. These
sensors allow the vehicle to perceive their surroundings using localization for path planning
and decision-making capabilities. Most importantly to control vehicle motion based on
information which was acquired by sensors. Primarily multiple vision cameras, Lidar,
ultrasonic and IMU sensors were utilized to determine the absolute relative position of
autonomous vehicle. The working principle of a camera lay on its lens which was used to detect
the light emitted from its surroundings on a photosensitive surface to produce neat and clean
images. It also had the capability to detect both static and moving obstacles with its field of
view and deliver high-resolution images. In the case of road traffic when the vehicle was on
the road, all these capabilities allowed the vehicle’s perception system in a way, so it identified
the road signs, traffic lights, road lanes and barriers properly. In autonomous vehicles, cameras
were commonly used for detecting traffic signs, traffic light signals and road lanes but due to
high dependence of camera performance in the environment, it often needed to be fused with
other sensor data such as Lidar sensor which ensured the perception ability.
Lidar technologies has been used for development of ADAS (Advanced Driver Assistance
System) and AD (Automated Driving) vehicles. It is a remote sensing device that operates on
the principle of emitting infrared beams or laser light, bounce off target objects to detect them.
These bounced reflected laser lights used to measure distance of objects from the Lidar sensor.
In most autonomous systems, including industrial robots and self-driving cars, sensor fusion
plays an important role in overcoming the detection uncertainties. Similarly, both camera and
Radar sensor were also fused to provide high-quality images for detection purposes. Several
factors are compared to analyze the sensors perform, Table 2-1.

 ww.usn.no

12

Tabel 2-1: Comparison of common sensors used in self-driving cars [3].

Factors Camera LiDar Radar Fusion
Range ∼ ∼ ✓ ✓

Resolution ✓ ∼ ✕ ✓
Distance Accuracy ∼ ✓ ✓ ✓

Velocity ∼ ✕ ✓ ✓
Colour Perception ✓ ✕ ✕ ✓
Object detection ∼ ✓ ✓ ✓

Object classification ✓ ∼ ✕ ✓
Lang detection ✓ ✕ ✕ ✓

Obstacle edge detection ✓ ✓ ✕ ✓
Illumination conditions ✕ ✓ ✓ ✓

Weather conditions ✕ ∼ ✓ ✓

The table provides a comprehensive comparison of the common sensors which were used in
self-driving cars, including camera, Lidar, and Radar sensors, considered as technical
characteristics as well as other external factors. There are three symbols “✓”, “✕” and “~”.
According to “✓” represents the sensor operate competently under the given specific factor,
“✕” indicates that the sensor does not operate well under the specific factor and “~” represent
the sensor perform the tasks reasonably good.
There were three types of fusion methods used to combine the sensor data from various sensing
modalities in Multi-Agent Service Function Chain Migration Framework (MSDF): low-level
fusion (LLF), mid-level fusion (MLF) and high-level fusion (HLF). HLF method was
compared to the other two methods, and it discarded lower-confidence classifications, whereas
LLF required precise extrinsic calibration and temporary calibration. MLF fused multi-target
features extracted from sensor data from a given environment and contextual information. In
addition, sensor fusion techniques were extensively classified into classical and deep learning
sensor fusion algorithms. Whereas classical algorithms utilized theories of uncertainty to fuse
sensor data, while deep learning algorithms processed raw data and extracted features for
intelligent tasks. Along with it, various other algorithms such as YOLO (You Only Look Once),
SSD (Single-stage Object Detection), VoxelNet, and PointNet had proposed for object
detection in autonomous vehicles.
Based on ARS (Autonomous Robotic System), autonomous robots are equipped with several
sensors to detect sound, light, temperature, or pressure. Studies [4] have shown that
autonomous vehicles can facilitate human life to provide safer transportation, but a simple
mistake can cause tragic accidents. Therefore, the data from the sensors must be as accurate
and reliable as possible for implementation. Camera and Lidar sensor were two of the most
common electronics devices used in autonomous systems excessively, but they each have
strengths and weaknesses.

 ww.usn.no

13

For example, when the light intensity was too high/too low in camera images, pixels lost image
processing tasks. Similarly, Lidar sensor was sensitive in bad weather conditions which lead to
negative consequences for obstacle detection. However, when the information was given by a
sensor in the form of fusion, then more positive results were obtained based on the dataset.
The study was carried out on a mini mobile robot [4] supplied by the Opezeka, used in the
Massachusetts Institute of Technology (MIT)’s autonomous vehicle racing competition. The
kit includes some of the same features which have been utilized on the Leo Rover model, such
as ZED stereo camera, Lidar sensor and Nvidia Jetson developer kit. They have the capability
to process computer vision algorithms. The camera was used to capture high-resolution images
for image processing techniques. The result has shown, the raw data obtained from the camera
and Lidar sensor were fused with the DL and CNN models for object detections. Furthermore,
at the end of model representation, the fusion model was compared with the Lidar sensor and
camera model, which gave better results than the individual sensor applications.
For the data collection, the data set to be used for training and testing operations was collected
from the laboratory. The data set consisted of 5126 camera images and converted into grayscale
Lidar point space data. The Rplidar A2 Lidar sensor on the car kit was used to detect obstacles
up to 25 meters away, but the vehicle was not able to perform autonomous driving efficiently
with this data set. To solve this problem, the pixel values o Lidar measurements at 15 cm and
closer distances has changed to 255 as it was shown in Figure 2-1:

Figure 2-1: Grayscale transformation [4].

Using ML models, it was preferred to evaluate the performance of predicted values based on
the learning process. To do this, MSE (Mean Square Error) state was employed to measures
the regression curve from a series of points. When the MSE value was close to zero, the
learning process considered as efficient, and the predictions produced near to real value as
shown in Figure 2-2.
In the case of regression model, the accuracy metric looked different as compared to training
and validation, that is why the sometime vehicle complete AVP (Automated Valet Parking)
autonomously without any problems. Another evaluation criterion was changing in error
functions during training and testing using camera, lidar sensor and combined data. Training
and testing error functions were closed to each other if the process results were efficient.
Overall results shows that performance become smoother when both electronic devices were
fused.

 ww.usn.no

14

Figure 2-2: Loss graph of using camera, Lidar and fusion data respectively [4].

Unmanned vehicle system [5] was designed using multi-modal sensor fusion focuses to solve
the problem of poor performance of positioning accuracy using low-cost sensors. System
framework was analyzed to understand how SLAM algorithm used on RPi to sense the actual
position of the unmanned vehicle. The Figure 2-3 shows that how navigation system was
composed with GPS and IMU, fused with image data taken by the binocular camera T265
throughout Kalman filter to achieve the accurate position of the vehicle. In computer vision,
binocular vision localization plays an important role for providing path planning to mobile
robots. Throughout the results, the quality of path planning experienced not effective due to
having binocular vision as it had low sensitivity to perceive weak texture features. Therefore,
in the case of binocular vision cameras with missing scene features, the data input needed to
be effective in compensating for the lack of spatial coordinate information of the camera to
obtain optimized results.

Figure 2-3: System framework for unmanned vehicle [5].

Several sensors were used in autonomous mobile robots to acquire information from its
environment. The definition of sensor fusion given by Hall and Llinas [6]: by combining the
data which is collected by multiple sensors with information from their associated databases,
sensor fusion techniques enhance the performance of mobile robots and provide ability to make
more precise decision that could be achieved using a single sensor. It is important to note that
there were three fundamental ways mentioned how to combine sensor data i.e. competitive,
complementary, and cooperative. Competitive types of sensor fusion were used for fault
tolerance. The fault tolerance for a system requires exact information of how it fails. By
configuring the sensor in this way, the risk of an incorrect indication was reduced. The
reduction of noise by overlaying two camera’s images was one example of a competitive
method. In complementary type of sensor configuration, system ensures that the sensor was
not dependent on each other but rather complement one another by providing different
measurement. It helped to solve the incompleteness of sensor data and was particularly useful
for localization.

 ww.usn.no

15

An example of complementary, employing multiple cameras to observe different areas of
mobile robot surrounding to build up a picture of the environment. In order to execute
complementary method, the relevant information was available from two different sensors to
create data that would not have been feasible from a single sensor alone. In stereoscopic vision,
this cooperative method was used to generate 3D of sensor by combining two dimensional
images from two cameras at slightly dissimilar viewpoints.
Object detections solution [7] using deep learning on 3D point cloud was discussed for the
measurement of shape and depth of information of targeted objects in small and medium-size
enterprises (SMEs). Three challenges have addressed including 1) detecting workstation for
human with increased robustness in the SME environment; 2) Navigating and localizing the
mobile manipulator in workstation precisely; 3) developing suitable tools for gripper to
perform stable and precise manipulation for production tasks.
Technical details of the detections and localization of the target object were utilized using two
methods including data acquisition and dataset establishment. Localization of the mobile robot
was conducted using pre-organized maps which were built by SLAM. Due to generating
localization error when the layout of nearby objects target were changes. It preferred to use
precise localization techniques which were calculated manually using transformation matrix
method from the targeted object to the robot based on detection results. At the end, the
evaluation and performance were performed based on detection method and experimental
results. Point cloud dataset was utilized which consist of five parts; printing machine, laser
cutter, human, charging station, plug and sockets. To overcome the complexity for difference
size, labeling techniques for training performance. KITTI dataset [7] referred to train the
mobile robot where 4400 training samples were taken, which divided into training dataset (80%
samples) and the evaluation dataset (20% samples). The main goal was to perform automatic
plug-in charging tasks using a mobile manipulator. In addition, PV-RCNN was trained using
dataset including these five parts.
Transformation was required when robotic arm needed to perform manipulation tasks. As
shown in Figure 2-4, relative position was required to calculate by the transformation from
targeted objects to the mobile robot.

Figure 2-4: Coordinates and transformation matrices of the system [7].

 ww.usn.no

16

Coordinate frames TCP (Tool Center Point) associated with mobile robots, the manipulator
base, the manipulator, camera, and targeted object. All these frameworks were indicated by
sub-indexes m, b, e, c, and w, respectively from the targeted object to the mobile robot [7];

 𝑇𝑇𝑤𝑤𝑚𝑚 = 𝑇𝑇𝑏𝑏𝑚𝑚 . 𝑇𝑇𝑒𝑒𝑏𝑏 . 𝑇𝑇𝑐𝑐𝑒𝑒 . 𝑇𝑇𝑤𝑤𝑐𝑐 (1)

The equation presented as a co-related form with other transformation points which observed
thought arrows symbols in Figure 2-4. Where the matrix 𝑇𝑇𝑏𝑏𝑚𝑚 represents last joint of the
manipulator, and matrix 𝑇𝑇𝑤𝑤𝑐𝑐 denotes the transformation matrix from the targeted object he 3D
camera. The matrix 𝑇𝑇𝑒𝑒𝑏𝑏 from the TCP to the base of the manipulator obtained by kinematics of
the manipulator and matrix 𝑇𝑇𝑐𝑐𝑒𝑒 from the camera to the end-effector obtained by the hand-eye
calibration method.
After the transformation, using machine learning method, training was performed on a dataset
of 4000 samples and an evaluation dataset of 400 sample, model performance was evaluated
by comparing overlap volume between predicted cuboid boxed and ground truth boxes. Where
PV-RCNN training was involved with its network parameters to determine the impact of the
number of cloud points and epochs on detection performance. Results demonstrated that the
model achieved stable detection result with 1000 cloud points and epochs when it started to
exceed 500. However, almost similar results have achieved for average overlap volumes of
charging station, printing machine, humans, socket and plug presented in paper [7].
Subsequently, two-finger gripper was also used which directly mounted on the end-effector of
robotic arm. It helped to grasp small items such as plugs and wood sheets post-cutting, but this
gripper arm was extended by integrating vacuum module. This vacuum module allowed the
robotic end-effector to handle various production components within framework such as
needles, name tags and medals. However, there were some limitations when dealing with large,
thin board-shaped components like wooden sheets or cardboard. To address this challenge, two
solutions were proposed. One of them involves purchasing a tool changer, while the other one
refers to leverages a module that gripper can directly grasp and charge. Consequently, the
vacuum module has appropriate geometry and electrical connections to the on-board 12V
vacuum pump and the 24C 3/2 valve as it can been seen in Figure 2-5.

Figure 2-5: The vacuum module and the wiring diagram of the electrical components [7].

 ww.usn.no

17

Results were analysed throughout experiment that shows the integration of SLAM mapping
which enables the mobile manipulator to navigate efficiently on working stations, where both
localization and calibration processes were executed. The precision achieved in calibrating the
robot's position relative to the printing machine, facilitated by 2D camera calibration. In
addition, the integration of real-time human detection ensures operational safety, with the
mobile manipulator adapting its path accordingly. Finally, the application of the PV-RCNN
model extends to the detection of charging stations, with subsequent point cloud to facilitate
accurate plug and socket positioning for efficient charging.
Robotic grasping types are divided into three types: familiar, known, and unknown. Known
objects means that it is included in training datasets where robotics can generate and execute
grasping poses based on prior experience. In contrast, unknown objects and familiar objects
have not been encountered previously, but familiar objects have some resemblance with
training datasets. However, grasping known objects has been well-established in several
industries. It is observed [8] that current research revolves around developing deep learning
grasping models for unknown objects, with methodologies DCNN, RGB images, and depth
images. Furthermore, a general grasping process was discussed for both offline generation and
online grasping phases. In the offline phase, the training was performed on grasping different
objects based followed by quality of each grasping process. After that, a grasping model was
prepared based on the training data which was stored in a database for further development.
On the other hand, in the online phase, object detection tasks were performed using vision-
based techniques and mapped to the model database. Afterward, the learning database was used
to generate a grasping pose and discard those objects that cannot be grasped.
In the industrial sector [9], vision-based pick-and-place tasks using industrial manipulator were
used to grasp the objects. But in that case, the 3D object model needed to be known in advance.
There were two ways for grasping objects. It either analyze the grasping shape of the object
and try to find a proper way to grasp the object or could perform feature matching and shape
recognition to find suitable position for the manipulator to perform grasping task including
pick-and-place tasks. However, it had some limitations and a sensitive approach. For example,
in that case, the grasping object was not known in advance, then their grasping approaches
failed. With the help of machine learning algorithm particularly deep learning methods were
referred to perform automatic object grasping tasks.
The object grasping technique combined with computer vision-based, particularly three tasks
such as object detection/localization/recognition using a deep learning reinforcement learning
algorithm, shown in Figure 2-6. A robotic pick-and-place system was developed, where YOLO
detected objects based on interest of image, captured by stereo camera. SAC used to provide
desired grasping location in the image point based on information of dept images. At the final
stage, grasping point (2D-image plane) convert to 6D desired grasping pose in the Cartesian
space (linear movement). By doing this, the robot manipulator grasped the object and placed it
at the designated position. The whole process was based on a reward mechanism.

 ww.usn.no

18

Figure 2-6: Schematic diagram of robotic pick-and-place based on computer vision [9].

Both real experimentation and simulator environments were employed to achieve the tasks.
The primary purpose of the simulated environment was to facilitate the training and testing of
deep neural networks. On another hand, the real experiment involved the utilization of an
articulated robot manipulator produced by ITRI (Industrial Technology Research Institute),
boasting a 6-degree-of-freedom (6-DOF) range of motion. Multiple AC servomotors were
integrated at each joint of the robot manipulator, with a vacuum sucker (capable of handling a
maximum payload of 3 kg) attached to the end-effector. Additionally, a Kinect v2 RGB-D
camera was utilized for vision sensing tasks. This camera captured images of various objects,
including apples, oranges, a banana, a cup, a box, and building blocks, with the YOLO
algorithm employed for categorization. The experimental setup included two robust computers
responsible for controlling the 6-DOF robot manipulator and vacuum sucker. To train the
YOLO v3 model, the COCO dataset was utilized, with training conducted over 45,000
iterations until the loss function converged to 0.0391. Subsequently, the performance of the
trained YOLOv3 model was evaluated by placing several objects randomly on a table, and the
detection results were compared with those of the trained objects.
The OpenCV library method was also used to find the actual position of board including four
corners. In this paper, robotic manipulator was particularly two approached used for object
recognition: RGB and depth-based object recognition. Based on the requirement on board, a
depth-based method was developed to detect objects. The major reason was that it allowed the
manipulator’s detection system to solve the problem even if objects fail to detect when object
was in the same color background or due to changing light intensity. In results, it was concluded
that the object recognition system could only work for 2D depth images effectively and it could
not recognize 3D object information.

 ww.usn.no

19

3 System architecture
This chapter provides detailed information about the specifications of rover, configuration of
hardware and software architecture used throughout the thesis.

3.1 Specifications of Leo Rover
The Leo Rover is a small-sized, 4-wheeled, open-source robotic platform developed by Fiction-
lab. It is mainly based on Raspberry Pi module which runs on Ubuntu Linux 20.04 with ROS
(Robot Operating System) [10]. This rover has been modified to fulfil the requirements of a
master thesis project. However, the Figure 3-1 shows assembled rover without attachment of
sensors and electronic devices.

Figure 3-1: A 4-wheel drive-controlled Leo Rover without modifications [11].

A quick overview of the specification and technical drawing of Leo rover can be seen in Table
3-1 and Figure 3-2:

Figure 3-2:Technical drawing for Leo Rover [10].

 ww.usn.no

20

Table 3-1: A quick overview of the Leo Rover specifications [10].

Leo Rover

Size and performance

Weight 6.5 kg

Dimension 447 mm (length) x 433 (width) x 249 mm (height)

Max. linear speed Approximately 0.4 meter/s

Max. angular speed Around 60 degree/s

Running time 4 hours

Connecting range Up-to 100 meters (with live video streaming)

Payload

Payload capacity Approximately 5 kg

Upper mounting
platform Dimensions 299 mm x 183 mm

Hole grid 18 x 15 mm

Holes 40 x Φ 7mm + 22 x Φ 5,5mm

Components

Wheels
Motors 4 x in-hub DC motor with 73.2:1 planetary gearbox

and 12 CPR (Counts Per Revolution) encoder
Wheel diameter 130 mm

Tire material Rubber with foam insert (non-pneumatic)

Battery

Voltage 11.1 V DC

Capacity 5000 mAh
Type Li-ion with internal PCM (Phase Change Material)
Max. current 8A (total for the whole Rover)

Camera
Camera resolution 5 MPx (Mega Pixels)

Lens Fisheye with 170 deg field of view

Network
Primary modem WiFi 2.4 GHz access point with external antenna

Secondary modem WiFi 2.4 GHZ + 5 GHz on internal RPi antennas for
connectivity

Software

Operating system LeoOS based on Ubuntu 20.04 + ROS

UI (User Interface) Ready-to-go UI located under '10.0.0.1' when using
standard Leo Software Image

Firmware Open-source firmware

Electronics boards
Main computer Raspberry Pi 4B

Microcontroller LeoCore2 board

In general, a robotic system is a complex system represented by multiple sub-systems, known
as mechanical, actuation, sensory and control system [1]. The most essential component of a
robotic system in Leo Rover is mechanical system, which endows with locomotion apparatus
(four-wheeled) and manipulation apparatus (robotic arm including end-effectors). Actuation
systems execute an action including both locomotion and manipulation to move the mechanical
components of mobile robot, which is done through Bühler Gear DC and its drivers.

 ww.usn.no

21

The sensory system is responsible for perception which acquires data from the internal status
of mechanical system (i.e. identifying position of transducer using preceptive sensor) and
external status of the environment (i.e. exteroceptive sensors and vision system cameras).
Lastly, the control system works like a controller with coordinating and integrating the actions
from sensors.

3.2 Hardware components for the rover
The Leo rover is powered by LeoCore (Core2-ROS) electronics board connected with GPIO
input/output header of RPi via UART. The configuration of boards shown in Figure 3-3,
demonstrates the utilized blocks (red color) in the rover. A 12V (5000 mAh) DC battery
supplies power to both RPi and LeoCore boards. The primary function of LeoCore is to control
the rover functionalities including four Bühler Gear servo motors, IMU sensor and facilitate
communication with RPi board.

Figure 3-3: Raspberry Pi 4B module [12] and LeoCore2 boards [13].

To get the access point of rover’s connectivity, a primary Wi-Fi modem operating at a
frequency of 2.4 GHz (gigahertz) frequency and a secondary modem operating at both
frequency of 2.4 GHz and 5 GHz on the internal RPi antenna are used. The external antenna is
connected to the rover’s RPi board via a u.FL connector, allowing to connect with internet and
remote desktop access on a laptop, shown in Figure 3-4.

Figure 3-4: External antenna attached with rover’s RPi board.

 ww.usn.no

22

The remotely controlled PhantomX Pincher 4-degree-of-freedom robotic arm (shown in Figure
3-5) is employed to facilitate vision-based pick and place applications. Its primary function is
to plan and execute grasping tasks to grab small objects near to the rover. Additionally, an
Arbotix-M controller is used to control the five Dynamixel servo motors of Pincher arm,
connected to RPi board via FTDI-USB cable. Before the assembling the Lidar sensor and stereo
camera, the rover appears as shown in Figure 3-6. The small red circle on the arm indicates the
Iss (1 till 5) of the servo motors.

Figure 3-5: PhantomX Pincher arm and Arbotix-M controller [14].

Figure 3-6: Pincher arm along with motors Ids equipped with rover.

To enhance the rover’s capabilities for autonomous navigation and computer vision, two most
important electronic components are utilized along with Pincher arm: the Rplidar A2M12 Lidar
sensor and ZED2 stereo camera along with additional computer Nvidia Xaviour NX
reComputer Industrial J2012. The Figure 3-7 shows the upgraded version of rover after
assembling and integrating with robotic-based system.

 ww.usn.no

23

Figure 3-7: Enhanced Leo Rover: After assembling and integrating Lidar Sensor, ZED2 Camera along with

additional computer.

3.3 Rover system architecture
A robotic system is a collection of sensors and actuators that interact with each other within
the given environment. The primary purpose of the robotic system is to achieve a specific set
of tasks. Along with these tasks, robotic system architecture is necessary for enabling the robot
to achieve the goal without requiring a complex system. In general, the system architecture is
defined by two parts including the structure and style [15]. The structure defines the way
components are divided into a system and how they interact with each other. While the style
refers to the computation concepts that define the implementation of the design.
The robots are designed with the combination of hardware and software architecture , where
hardware is responsible for system assembling and software for system operations [16]. These
components must be seamlessly integrated to enable a robotic system’s functions as expected.

3.3.1 Hardware architecture
The hardware structure of a mobile robot generally consists of four main important
components: controller, sensors, actuator, and power system. The same concept is applied to
Leo Rover to design its hardware architecture, illustrated in Figure 3-8.
The rover is mainly based on a microcontroller (RPi board) attached with another controller
(LeoCore) via GPIO pins. These boards are empowered by 12V DC battery to provide the
power supply including the boards itself and attached sensors. Sensors provide feedback about
the robot environment, such as distance and relevant data. In this case, Lidar sensors is
connected to the rover’s board via USB cable, to generate 2D maps for autonomous navigation
using simultaneous localization and mapping (SLAM). Similarly, IMU sensor is connected to
rover using IMU module (Grove – IMU 9DOF) to the LeoCore microcontroller board to enable
the precise movements and positioning for the SLAM. Along with these sensors, two cameras
including RPi 5-mega-pixel and ZED2 stereo camera are attached to the rover.

 ww.usn.no

24

The ZED2 is a powerful AI camera that can capture images from two different lenses
simultaneously, enabling depth perception capability and 3D mapping. It is linked with an
additional computer, the Nvidia Jetson J2012 computer via Ethernet cable to the RPi board.
While RPi camera is connected to RPi board via CSI connector. Moreover, to get rover’s access
point, external antenna is connected to the RPi board via USB cable. It also helps to connect
with Wi-Fi network to access the internet facilities.
The final part is actuators which are responsible for the movement of rover and its robotic arm.
This rover is designed for locomotion (4-wheeled), along with four DC gear motors, which are
connected to LeoCore controller to perform linear and angular movements. On the other hand,
the 4-DOF Pincher arm along with Arbotix-M controller is configured to the rover via USB
cable to control the 5 Dynamixel servor motors, with specific Ids (1 till 5).

Figure 3-8: Hardware structure of Leo Rover [17].

Note: The figure is modified by Fiction-lab hardware structure, where the rounded rectangle
shape represents the indication of connected devices and sensors, while dotted rounder
rectangle shapes refers the specific sections.

 ww.usn.no

25

3.3.2 Software architecture
Before making software architecture, it is required to make software analysis for the Leo Rover
equipped with robotic arm, Lidar, IMU sensor, RPi and ZED2 stereo camera. The rover is
based on a collective system including autonomous navigation, object detection and grasping
system. In the whole system process, rover autonomously performs simultaneous localization
and mapping (SLAM), detect, and recognize AR-tag Fiducial marker and perform pick-and-
place activities within an environment.
There are various approaches to collect the system’s requirements. Developing software
architecture for the rover, the FURPS+ approach is employed to gather requirements for the
rover’s collective system. It is used to collect and classify requirements. It stands for
functionality, usability, reliability, performance, and supportability, with the “+” sign
indicating additional characteristics [18].

3.3.2.1 Functionality

The main functions of the system are as follows:
1. Autonomous navigation:

• The rover should be able to navigate autonomously using SLAM.
• It should plan the path and reach the targeted goal while avoiding obstacles.

2. Object recognition and detection:
• The rover’s RPi and ZED2 cameras should detect AR-tag markers.
• It should also accurately identify, locate the detected objects, and provide its

coordinates pose (position and orientation).
3. Object manipulation using MoveIt:

• The rover’s Pincher arm should be able to grasp AR-tag based objects.
• It should be capable of picking up and placing grasped objects at specific

locations.

3.3.2.2 Usability

Usability is the interaction between the user and system, as follows:

• Rover should be controlled by Web UI, accessed via web browser.
• It should also display a camera stream from the Web video server and output

of the current battery voltage measurement.
• It should also include GUI of the controlled system to interact with the user

to perform these tasks.

3.3.2.3 Reliability

Reliability covers a range of issues, ensuring that the availability of the system, implementation
of error handling mechanisms, and enabling efficient recovery from failure, as follows:

• The system must be recoverable if error occurs and ensure the accuracy of sensor
data such as Lidar and IMU sensor for reliable navigation.

 ww.usn.no

26

3.3.2.4 Performance

Performance ensures speed, capacity, and utilization of resource, as follows:

• RPi board should ensure smooth operation for all tasks and timely response.
• If the sensors and electronic devices do not work properly as per the requirements,

the system should be able to trigger indication to shut down or restart the system.

3.3.2.5 Supportability

Supportability refers to ease maintenance of the system, as follows:

• The system to be easily maintainable, allowing for updates its functionality in
future.

3.3.2.6 “+”

“+” signs indicate additional characteristics of the system, as follows:

• System should implement security measurements to protect data transmitted by
sensors and camera by the rover.

• It should ensure that only authorized users have access to interact with the rover.
• It should facilitate seamless integration with ROS for communication between its

components.

3.3.3 Use case
A use case represents the main functions that the system performs. StarUML software is used
to draw use case diagram, shown in Figure 3-9. Therea are five use cases which are being
performed throughout the project. The actors (user interface and Leo Rover) are associated
with a system using arrows. These arrows represent a conversation between the actor and the
system components which are responsible for executing the use cases.

Figure 3-9: Use case for Leo Rover

 ww.usn.no

27

3.3.4 Domain model
A domain model consists of a set of classes. Each class represents a specific entity within the
domain model and shows the relationship between the entities. It also defines the attributes and
operation of classes based on the requirement of the system. The purpose of creating a domain
model is to establish a clear overview of system architecture, shown in Figure 3-10.

Figure 3-10: Domain model for Leo Rover

Note: The dark gray box shows the main operating system of rover and rest of the boxes
show the representation of classes generated in StarUML software.

3.3.5 Use Case analysis
To describe the functionality and behavior of system requirements, a fully dressed use case
document (FDUCD) is performed to identify the most important use case, “Control linear and
angular motion”. The reason to prioritize is because it plays a core foundation to perform all
related tasks. For example, it is essential for enabling precise movement, which is important
autonomous navigation, object detection and robotic arm manipulation. Accurate movements
ensure the rover planned path, avoid obstacles, and reach specific destinations to perform
grasping activities.
The following points cover FDUCD, as follows:

1. User case name: Control Linear and Angular Motion
2. Scope: Web UI and Rviz software
3. Level: Monitoring rover’s movements while performing tasks
4. Primary actor: User
5. Stakeholder

and interest: No stakeholder in this case
6. Precondition:

 ww.usn.no

28

a) The rover should be power ON.
b) The Web UI or command console should be accessible.
c) The rover’s sensors and motors are functioning correctly.
d) All ROS nodes and topics should be activated.

7. Success guarantee: The rover moves according to the specified linear
and angular velocities without any error.

8. Main success scenario:
a) User get the rover’s access point to test the rover’s

movements including move forward, backward, or turn left,
right via the web interface.

b) The LeoCore controller sends the control signal to motors
accurately.

c) The system continuously monitors the rover’s movements
and provides feedback to the user.

d) User stop or adjust movement speed (increase or decrease
the speed of actuators) as based on feedback.

9. Extensions:
a) If the command is invalid, the system displays an error

message and prompts the user to re-enter the commands to
the terminal.

b) If there is any communication failure with the actuators, the
system should send a message to the user to re-establish
communication.

c) The system automatically stops the rover when it collides
with the boundaries.

10. Special requirements: The system must ensure the safety mechanism to stop

the rover if it collides with boundaries/obstacle. Because
it may damage the attached sensors which are costly to
repair or replace it.

11. Technology list: Various types of input devices (RPi camera)
12. Frequency of occurrence: User needs to ensure RPi camera ROS topic list available.
13. Miscellaneous: The user can store the data for further analysis

and debugging.

3.3.6 System sequence diagram
The system sequence diagram provide an overview of the system behaviour for selected use
case. It based on main success scenarios from the use case analysis and used to represent the
function requirement for the system, shown in Figure 3-11

 ww.usn.no

29

Figure 3-11: SSD for selected use case.

3.3.7 Development process:
To develop a software structure for the rover, Unified Process (UP) approach required to
proceed software development. It consists on four phases, including, inception, eleboration,
construction and transition phase [19]. As there are five use cases for the rover collective
system. For each phase of iteration, only one use case will be selected to plan and collect the
requirement, implement the analysis, desing and teste the deployed code until all use case are
tested. Totale time for UP depends upon the resources, developer team and level of deteails
required in each phase.

 ww.usn.no

30

3.4 ROS nodes and topics for rover
To get better understanding for connected sensors for the Leo Rover, it is beneficial to
familiarize some fundamental of robot operating system (ROS):
 ROS is an open-source framework used for writing robotic software. It provides a set of
libraries and tools to develop complex robot applications, including drivers, packages,
algorithms, and communication protocols. For Leo Rover, ROS1 Noetic version is utilized to
test the rover’s functionalities. The biggest strength is that it provides an ability connect
multiple ROS nodes together. The ROS nodes are pieces of blocks (a small software which can
be written in Python/C++) contain messages (a set of information). These nodes share their
information by using Publish/Subscribe protocols to ROS topics. Topics are like channels
which exchange information between nodes. In other words, it allows nodes to share
information without needing to know each other’s identity. ROS services provide a way for
nodes to request specific actions or computations from other nodes. ROS messages define the
data structures (integers, floats, and arrays) for nodes, which describe the format and
connection of information shared via topics and services and actions [20].

Figure 3-12: ROS-master-node-topic relationship [20].

For example, a Laser scan message might contain distance measurement from Rplidar A2M12
Lidar sensor. Everything is handled by the ROS Master node, which runs everywhere in the
ROS network, and makes sure that all nodes are properly connected. In this master thesis
project, ROS master node runs on the rover RPi board.
The structure for the ROS nodes and topics is modified using the ROS rqt_graph, which
provides a convenient graphical display for rover’s components and relationship [21]. It is
commonly used in ROS environments for visualizing the connection between ROS nodes and
topics, facilitating easier understanding, and debugging of the system’s architecture.
The complete the structure, it is divided into two segments, shown in both Figure 3-13 and
Figure 3-14. The first figure includes a diagram illustrating the ROS nodes and topics launched
by Lidar sensor. Meanwhile, the second figure illustrates ROS nodes and topics launched by
Pincher arm, RPi and ZED2 cameras.
The rover utilizes the Leo Operating System (LeoOS) based on ROS1 Noetic. The operating
system mainly runs on two parts: Firmware and ROS nodes shown in both figures. Along with
these two parts, the ROS core incorporates various other electronic equipment which are
available with rover, such as IMU and Lidar sensor, Pincher arm, RPi and ZED2 camera.

 ww.usn.no

31

Figure 3-13: Software structure of Leo Rover (Segment-1) [22].

Figure 3-14: Software structure of Leo Rover (Segment-2) [22].

Note: The oval and rounded rectangle shapes represent the ROS nodes, while the rectangle with solid lines
represents the ROS topics. The arrows between ovals, rounded and solid rectangles lines represent the
Publish/Subscribe protocols. The dotted rounded rectangle shapes indicate the specific section.

 ww.usn.no

32

In Figure 3-13, Firmware is the core program that runs on the processor of LeoCore (Core2
electronic board). It provides several functionalities to the RPi board through serial bus. The
key feature of firmware based on leo_firmware package (GitHub) includes: differential drive
controller (cmd_vel interface), battery voltage monitoring, wheel odometry calculation, wheel
states monitoring (joint_states interface) and IMU support.
The differential driver controller is responsible for rover’s movements (linear, angular) along
with cmd_vel interface, which expresses velocity commands in free space into linear and
angular movements, while wheel states continuously track wheel status along with joint_states
interface, which holds data to describe the state of a set of torque-controlled joints. Moreover,
IMU support utilizes data from the IMU sensor to measure the orientation, velocity, and
gravitation force of rover. Lastly, wheel odometry calculates the rover position and orientation
based on wheel rotations and movements.
When the RPi boots, a set of ROS nodes are initialized. These nodes allow different kinds of
features via ROS topics and services. They are defined in leo_bringup package (GitHub). This
package mainly consists of three elements: ROS serial node, bridge server and Raspicam (RPi
camera) node. The ROS serial node establishes communication with Firmware of LeoCore
(Core2 electronic board) and enables access to its functionalities through ROS topics and
services. ROS bridge server generates a WebSocket which provides a JSON-API to ROS
functionalities for non-ROS applications. It also facilitates Leo System node which provides
both system shutdown and reboot operations through ROS topics.
Raspicam node publishes images captured by the RPi camera module to ROS image transport
topics. These three elements incorporate with flexible framework known as ROS Core, which
provides a set of tools and libraries via ROS Master node (a centralized XML-RPC server). It
also enables communication between different parts electronics component (such as Lidar and
IMU sensor, Pincher arm, RPi and ZED2 camera) and control manager of rover to perform
autonomous navigation, grasping task and object detection.

Note: Testing procedure of hardware and software for attached devices are explained in
appendix section 12.7.

https://github.com/LeoRover/core2_firmware
https://docs.ros.org/en/melodic/api/geometry_msgs/html/msg/Twist.html
https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/JointState.html
https://github.com/fictionlab-archive/leo_bringup

 ww.usn.no

33

4 Sensor integration
This chapter provides in-depth information about how Lidar sensor and ZED2 stereo camera
are assembled with Leo Rover. The subsequent sections describe the ROS integration
(necessary packages) with the rover and its attached electronics components. These packages
offer base structure and enhance the rover’s functionalities.
Sensor integration into rover is an important setup towards achieving autonomous navigations,
objects detection and perception capabilities. To assemble the upgraded version of rover, little
assistance is taken by USN engineers to ensure working conditions. The Figure 4-1 present a
comparison of rover before and after modification. The left side shows the rover before the
integration of Lidar Sensor and ZED2 camera along with additional computer, while the right
side depicts the rover after assembling and integration. The Pincher arm has already been
assembled; however, the arm connection and configuration are not integrated with rover’s
board on the first day when the rover is received.

Figure 4-1:Comparing Leo Rover: Before and after assembling and integrating Lidar Sensor, ZED2 Camera,

and Pincher Arm.

4.1 Assembly of Lidar sensor
Light detection and ranging is mechanisms used for generating a map for the environment,
tracking the speed of vehicle, obstacle avoidance, robot navigation and in a variety of other
applications. The Rplidar A2M12 is a two-dimensional 360-degree triangulation laser sensing
scanner which is developed by Slamtech[21]. In the rover, Lidar sensor performs autonomous
navigation using simultaneous localization and mapping technique.

 ww.usn.no

34

The Figure 4-2 shows 3D printable adapter (developed by Fiction-lab) which allow to mount
the Lidar sensor to the rover’s mounting plate. A simple design (shown in Figure 4-3) using
aluminum plate (4 mm) is prepared at USN workshop. It is positioned on the middle of rover’s
mounting plate which provides a wide field of view with minimal obstacle for the laser beam.
The plate's dimensions are 21 cm in height and 9 cm in length for both the top and bottom
sides. After preparing the design, it is attached to mounted plate of the rover, shown in Figure
4-3.

Figure 4-2: Rplidar A2 adapter [21].

A brushless motor in the board of Lidar sensor, the laser scanner operates smoothly which help
to reduce the mechanical friction. By scanning its 360-degrees environment using a laser range
scanner and generating an outline map, the device's core rotates in a clockwise direction.
Furthermore, with its high rotation speed, it can take up to 8000 laser range samples per second,
making it one of the fastest and most accurate Lidar scanner. With a range up to 12 meter, it
performs two-dimensional 360-degree scanning operations and generates highly detailed point
cloud data that can be used for mapping, localization, and navigation [21].

Figure 4-3: Aluminum frame for Lidar sensor attached with Leo Rover.

 ww.usn.no

35

4.2 Assembly of ZED2 camera
The ZED2 stereo camera is capable of simultaneously capturing images from two lenses. As a
result, this ZED2 can determine the distance between objects from the cameras based on the
position [23]. This information can then be used in a variety of applications. For example, in
Leo rover, stereo camera is used to detect AR-tags which based on small object (a small square
box). To connect with rover, additional computer “Nvida Xaviour NX reComputer Industrial
J2012”. The reason to this additional computer is that the RPi board does not support CUDA
operations and does not have capability to perform high level image processing.
Ethernet cable is used to connect additional computer to the Leo Rover, shown in Figure 4-4
and Figure 4-5, mounted at the top back side to the rover using mounting holes. ZED2 camera
is attached with first servo motor of the Pincher arm using steel plate, shown in Figure 4-6. In
addition, for supplying power to the additional computer, it is connected to rover’s battery
(power box) via electronic connector (shown in Figure 4-4), while the ZED2 camera is directly
connected to additional computer via USB cable.

Figure 4-4: Addition computer connected with ethernet cable to the rover.

Figure 4-5: The same ethernet cable connected to the rover’s RPi.

 ww.usn.no

36

Figure 4-6: Design for ZED2 camera.

Note: The ZED2 design is a steel plate which is designed at USN workshop. The plant’s
dimension is 5 cm long from top and bottom side and have 3 cm bend. Small holes are punched
to attached with servo mote and ZED2 camera.

4.3 Interfacing with ROS
ROS is a versatile framework for writing robot software. It contain several collection tools,
libraries and conventions that aim to simplify the task of developing complex and robust robot
behaviour, adaptable to various robotic platforms particularly available at –
https://www.ros.org/ [24]. It allows to communicate with nodes running on Leo Rover and
easier to interact ROS network within a robotic based environment. It also gives the possibility
to write and run different processes (known as rosnode) which communicate with each other
by sending and receiving messages through channels (known as rostopic) or by calling remote
procedures (known as rosservices). In this project, the utilization of LeoOS-1.2.0-2023-11-02-
full.img.xz (GitHub) is installed to facilitates ROS operation.

4.3.1 ROS commands
ROS provides some commands tools for inspecting the current networks of active nodes which
are used to proceed Leo Rover sensors integrations. These tools include [25]:

1. rosnode: It is responsible for printing information about currently running available
nodes, terminate them and testing its connectivity.

2. rostopic: It is responsible for listing and printing available topics information which are
currently be used. It also publishes the messages to topics and find a type of published
messages.

3. rosservice: It is responsible for listing and printing information of available services
and call the services with specified arguments.

4. rosmsg: It displays the type of messages.

https://www.ros.org/
https://github.com/LeoRover/LeoOS/releases

 ww.usn.no

37

4.3.2 ROS packages
To achieve the task requirements of master thesis project, various ROS packages are utilized
to develop and implement Leo Rover functionalities. These packages include leo_description,
leo_bringup, leo_viz, rplidar_ros, leo_navigation_tutorial, leo_examples (for ARTags),
leo_alvar_example, arbotix_arm, arbotix_test, pincher_arm, and zed_wrapper. These
packages collectively contribute to the development of a comprehensive robotic system [11].
The installation process and corresponding GitHub links are provided explained in 12.5.7
Building necessary ROS packages.

• leo_description: It provides a detailed description of the rover’s physical
characteristics.

• leo_bringup: It initializes various nodes and parameters which are essential for bringing
up the Leo robot system, i.e. servo motors, serial nodes (ports) and web video camera.

• leo_viz: It offers visualization tools including Rviz software for debugging and
analysis.

• leo_navigation_tutorial: It uses many other available packages such as
robot_localization, move_base and twist_mux in ROS to provide autonomous
capabilities (discussed in 5.1). It facilitates the integration of navigation capabilities
into the rover's control system for SLAM implementation.

• leo_examples and leo_alvar_example: These two packages are used for implementing
marker-based localization using AR-tags and Avar libraries, respectively, (discussed in
6.2).

• arbotix_arm, arbotix_test and pincher_arm: These three packages enable control and
manipulation of robotic arm using MoveIt (discussed in 7.3).

• zed_wrapper: It interfaces with the ZED stereo camera for perception tasks (discussed
in appendix section 4.3.7).

4.3.3 ROS workspace
All packages are built using the Catkin build system, which compiles and manages
dependencies, ensuring that software components interact seamlessly. It provides an overlay
mechanism, allowing one workspace to extend another result space [25]. It also offers a
catkin_make commands for building empty workspace. Having this advantage, ROS
workspace ros_ws is created inside home directory on RPi operating system which perform
Leo Rover functions. All available packages are listed in this directory as shown in Figure 4-7
and their installation process is discussed in appendix section 12.5.

Figure 4-7: List of installed packages at ROS workspace ros_ws .

 ww.usn.no

38

In addition to LeoOS, ROS packages need to integrate with its functionalities which provides
an easy mechanism for adding new functionalities without building additional package. The
whole process of starting to depend on the following files [26]:

• /etc/ros/robot.launch: It is a launch file that starts the robot’s functionality. A launch
file is an XML file that outlines a collection of nodes to be initiated along with specific
parameters. It incorporates the launch files from the “leo_bringup” package which is
responsible for initiating the base of the rover. For example, Lidar sensor, Pincher arm,
RPi camera and Alvar packages are assigned in this file to run their ROS nodes
simultaneously. The file script is attached in appendix section 12.5.7

• /etc/ros/setup.bash: It is an environment setup file which initialize ROS nodes
successfully. It sources the setup file from the designated ROS distribution typically
located at “/opt/ros/noetic/setup.bash” and configure additional environment variable
for ROS operations.

• /usr/bin/leo-start: It is a script file which start the Leo Rover’s functionality and source
the /etc/ros/setup.file and launches the /etc/ros/robot.launch files.

• /usr/bin/leo-stop: It is another script file which stops the currently running leo-start
process from Leo Rover.

4.3.4 Establishing a network connection
To establish a connection with the Leo Rover, connecting process begin by activating it using
the main power button situated on the left side of the battery. Upon activation, the LED on the
button starts blinking green, indicating the startup process. After approximately, 30 seconds,
the LED stop blinking, signalling that the Leo Rover is now operationally ready for interaction.
Subsequently, the host device for Wi-Fi networks LeoRover-XXXX is available to connect the
with the rover, where XXXX represent a unique identifier for rover’s computer which has
contain password.
After establishing a connection with the rover, it required to control the rover’s interface. For
remote desktop Remmina Remote Desktop Client software is installed on RPi operating
systems to control rover’s session. The whole process along with screenshots is discussed in
appendix sections 12.5.3, 12.5.4, 12.5.5 and 12.5.6.

4.3.5 Rplidar A2M12 Lidar sensor
The first thing is needed to make sure that the device has the correct permission and is available
at the fixed path on operating system. As it can be seen in Figure 4-8, there are two USBs
(ttyUSB0 and ttyUSB1) connected to the RPi of Leo Rover. The Lidar sensor is connected to
ttyUSB0, while robotic arm is connected to ttyUSB1.

 ww.usn.no

39

Figure 4-8: Available devices attached with RPi of Leo Rover.

Some specified rules are used for enabling Lidar sensor functionalities, After using the
following command on RPi terminal, shown in Figure 4-9, the lidar.rules is appended to the
directory path /etc/udev/rules.d . This action ensures the availability of the sensor at the
designated path /dev/lidar.

Figure 4-9: Identifying Lidar sensor rules [21].

To ensure the sensor’s functionality is accessible with the ROS ecosystem, rplidar-ros package
(GitHub) is installed to start the Rplidar A2M12 Lidar sensor. This is achieved by executing
the following command “sudo apt install ros-noetic-rplidar-ros” on RPi terminal.
After identifying the Lidar rules and installing its package, additional launch file is added with
following script to the path /etc/ros/laser.launch, illustrated in Figure 4-10. This script is used
to launch Lidar ROS nodes, which is responsible for interfacing with the sensor.

Figure 4-10: Creating a lunch file to start ROS node for Lidar sensor [21].

The following script shown in Figure 4-11, is added to the path /etc/ros/robot.launch where
the rover starts from boot to run related rosnode for Lidar sensor when leo-start command
started.

Figure 4-11: Including a Lidar sensor launch file into Leo Rover model.

It is important that the rover need to be aware, where the sensor is located and what space it
occupies. To make it sure, following script is added to /etc/ros/urdf/laser.urdf.xacro file with
the path, illustrated in Figure 4-12. It is XML file that describe the Lidar sensor model using

https://github.com/Slamtec/rplidar_ros

 ww.usn.no

40

the Unified Robot Description Format (URDF) representation of lidar sensor in simulation.
The URDF is commonly used in robotic to represent the robot geometries and physical
properties [21]. It is important to note that necessary changes are made within the file, as the
sensor is located at the top middle side of the rover.
The laser.urdf.xacro file composed with two links: rplidar_link and laser_frame. Within the
file, <robot> tag encloses the entire sensor description. The first link represents the physical
body of sensor including visual and collision properties, while the second link represents an
abstract form associated with the laser scanner. However, the second link does not have any
visual and collision properties.
The rplidar_joint is joint which connect the rplidar_link to the base_link at fix position. As it
shown in Figure 4-12, Laser sensor is mounted at “xyz” coordinates with of (-0.0075, 0, 0)
meters. Similarly, the laser_joint connects the rplidar_link to the laser_frame at fix position
(like rplidar_joint). After making these changes, the Lidar sensor is attached to rover along
with its robotic, shown in Figure 4-13. The rover model looks exactly same in simulation and
real form.

Figure 4-12: Creating a URDF /laser.urdf.xacro file for Lidar sensor [21].

 ww.usn.no

41

Figure 4-13: Position of Lidar sensor and robotic arm at Leo Rover.

The robot should now publish the LaserScan message on the /scan topic as it available in ROS
topic list, shown in Figure 4-14. It also starts rotating the Laser scanner when the rover is turn
ON.

Figure 4-14:ROS topics list for Lidar sensor after integration.

For the graphical representation of the rover and attached Lidar sensor, Rviz tools is utilized
through leo_viz package, as depicted in Figure 4-15. It illustrates the RobotModel (Leo Rover)
positioned at a specific location and visualizes the LaserScan using /scan topic. The Laser data
is shown with red dotted lines, each representing a scan point, with a size of 0.05 meters.

Figure 4-15: LaserScan data /scan topic visualization in Rviz.

Note: On the left side of the figure, there is a tab named “Displays” which shows all available
ROS topic while the Rplidar A2M12 Lidar sensor is running.

https://docs.ros.org/en/api/sensor_msgs/html/msg/LaserScan.html

 ww.usn.no

42

4.3.6 Phantom-X Pincher arm
Before installing pincher_arm ROS package, driver for Arbotix-M controller board is derived
via arbotix_package (GitHub) in order to configure Dynamixel servo motors Ids. The FTDI-
USB cable is connected to RPi computer make a proper communication channel with Arbotix
controller to control the motors. In addition, 12 V SMPS (from power box) is supplied to the
controller to start the controller. There are five server motors (AX-12A) in Pincher arm, which
are consecutively connected. However, before connecting these motors together, all servo
motors are individually tested using the method, shown in Figure 4-16, and specified them into
five Ids from 1 till 5, shown in Figure 4-17.

Figure 4-16: Testing individual servos motors [14].

To test the servo motors, arbotix_arm and arobitx_test packages are installed in ROS
workspace “ros_ws”, shown in Figure 4-7. As it can been in Figure 4-17, after assigning servo
motors IDs, using command “arbotix_termnial /dev/ttyUSB1” on Rpi terminal, the available
five motors are listed. The package installation process is discussed in appendix section 12.5.7.

Figure 4-17: Testing the servo motors of robotic arm.

After testing all the servo motors, pincher_arm package is installed into the rover workspace
ros_ws to utilized Pincher arm functionalities. It also include Move_it configuration, pick and
place demo, IKFast Kinematic, URDF model integration with rover.
 To test the arm, its package “pincher_arm_bringup” is launched to verify the ROS topics
(shown in Figure 4-18) for performing further tasks.

https://github.com/vanadiumlabs/arbotix_ros.git

 ww.usn.no

43

Figure 4-18: ROS topic list for robotic arm.

In the final stage, following script in robot.urdf.xacro (shown in Figure 4-19) is added to is
added robot.launch files to the path etc/ros/urdf/ and /etc/ros/ respectively. It is XML file that
describe rover model using URDF in simulation. Within the file, Pincher arm URDF model is
added along with Leo Rover model and Lidar sensor, where the arm_base_joint joint connect
the arm_base_link (Pincher arm) to base_link (Leo Rover). The arm is mounted at “xyz”
coordinates (0.0093, 0, 0.265) meters.

Figure 4-19: Robot's URDF description for Leo Rover including Lidar sensor and robotic arm.

 ww.usn.no

44

To visualize the arm position at the rover, it can visualize in Rviz simulation tool, shown in
Figure 4-20. It is situated at the same position which is defined in the robot.urdf.xacro file.
After launching the pincher_arm_bringup launch file form it ROS package, MotionPlanning
with Move_it configuration is tested and ready to perform grasping activities.

Figure 4-20: Testing Move_it configuration in RViz.

Note: On the left side of the figure, there is a tabs named “Displays” and “MotionPlanning”.
The Display tab shows all available ROS topic while the robotic arm is running. In the
MotionPlanning tab, there are several other tabs which are responsible to test the arm’s
functionalities.

4.3.7 ZED2 stereo camera
The ZED2 stereo camera, developed by Stereolabs which offers stereo vision capabilities and
depth sensing, makes it an ideal choice for increasing the rover’s perception abilities.
The initial step in the ROS integration process involved installing the ZED SDK on an
additional computer. The primary purpose of SDK is to enable depth sensing capabilities. It
allows to understand the 3D structure of the environment which is important to achieve related
tasks such as object detection, augmented reality, 3D mapping for robotics [23].
To interface the camera with ROS, the ZED ROS wrapper_package (GitHub) is utilized to
facilitates the camera functionalities such as left and right rectified/unrectified images, depth
maps, object detections and among others. Subsequently, all required dependencies are
installed, and the ROS package is built properly on additional computer.
Prior to running the nodes, environment variables specifying the ROS master, the IP address
(shown in Figure 4-21) of additional computer (10.0.0.82) is exported into the rover’s ROS

https://github.com/stereolabs/zed-ros-wrapper.git

 ww.usn.no

45

network. Moreover, the additional computer is connected to the same network as the rover’s
network with access point (LeoRover-18d4). This process ensured seamless communication
with the ROS master note and connected devices. After launching the zed2.launch launch file
from its zed_wrapper package, shown in Figure 4-22, the ROS nodes and topic list for ZED2
stereo camera are available for further implementations, shown in Figure 4-23.

Figure 4-21: IP address of additional computer (Xavior).

Figure 4-22: Launching ZED2 Camera on additional computer.

Figure 4-23: ZED2 Camera ROS node lists on Leo Rover.

Note: The appendix section 12.5.6 discussed how to connect ROS network to additional
computer or laptop.

 ww.usn.no

46

5 Autonomous navigation
This chapter describes the testing results of SLAM in both simulated and physical environment
and highlights the rover’s performance in given scanned map after utilizing leo_navigation
ROS package.
SLAM is a fascinating technique which is utilized using Lidar sensor and it allows to generate
a map of its environment while simultaneously determining its own position into the rover [21].
In this process, two sensors (Lisar and IMU sensors) work together to perform autonomous
navigation, simultaneous localization and mapping.

5.1 Integration of leo_navigation package
The leo_navigation package (GitHub) is built within ROS workstation ros_ws of RPi board by
installing all dependencies. The installation process is discussed in appendix section 12.5.7.
The package consists of three main parts which describe its functionalities, including
Odometry, SLAM and Navigation.
Odometry is necessary for an autonomous navigation system to estimate the exact position of
the rover, which is done by using wheel-encoder and IMU sensor. After estimating the rover’s
position, SLAM uses both Lidar and IMU data measurement along with wheel-encoder to
produce an occupied map of the terrain. While doing so, the estimated position needs to be
corrected based on the loop closure detections. Once the whole terrain is mapped, the map is
saved to a file for later use to track rover’s pose against it. With an accurate enough pose
estimation and occupied map, autonomous navigation can be performed.
When a navigation target is set on an occupied map, a path planning algorithm (A*) tries to
find collision-free path to reach the desired goal. After that another algorithm (Trajectory
tracking algorithm) sends velocity commands to the rover. It receives information about the
desired path from the path planning algorithm (A*), as well as feedback from sensors to
determine the rover’s pose (current position and orientation). Based on this information, it
calculates the appropriate velocity commands (linear and angular velocities) to steer the rover
along the desired path while also avoiding obstacles detected in the environment.
SSN housing room is mapped to test SLAM’s performance. Both Figure 5-1 and Figure 5-2
show the Rviz simulation results, where three launch files are launched including
odometry.launch, gmapping.launch and navigation.launch together for utilizing the
autonomous navigation and SLAM. The rover is placed at one position (Figure 5-1) on scanned
map of the terrain and after providing a target goal using “2D Nav Goal” from the toolbar
located at the top, the rover localize itself within the scanned map to drive autonomously to
designated position successfully. As it can been seen in Figure 5-2, the rover is reached to
targeted position where the green line shows the path which follows by path planning algorithm
after being given navigation goal. In the left side of figure, The Displays tab show all available
ROS topics such as RobotModel, Image, Odometry, Map, LaserScan, Path and Global Costmap
are activated. In the camera, it can be visualized the position of rover is changed after the target
is achieved.

https://github.com/LeoRover/leo_navigation_tutorial.git

 ww.usn.no

47

Figure 5-1: Testing SLAM (Part-1).

Figure 5-2: Testing SLAM (Part-2).

Note: On the left-side of the figure, available ROS topics are activated.

 ww.usn.no

48

The Figure 5-3 shows a diagram generated by rqt_graph while odometry, gmapping and navigation launch files are actively running.
The diagram illustrates ROS nodes and topics launched by A2M12 Lidar sensor launch rplidar_a2m12.lauch file.

Figure 5-3: ROS nodes and topics launched by rplidar_a2m12.launch file.

Note: The oval shape represents the ROS nodes, while the rectangles with solid lines represent the ROS topics. The arrows between the oval and
rectangles shapes represent the Publish/Subscribe protocols. The red line indicates the continuous section begin from ROS topic /cmd_vel. The
bigger rectangle box indicates the groups.

 ww.usn.no

49

These three sections 5.1.1, 5.1.2 and 5.1.3 describe how ROS nodes and topics of Lidar
sensor working together along with the rover.

5.1.1 Odometry
To estimate the Leo Rover’s position from the wheel encoders and IMU sensor measurements,
additional robot_localization package (Link) is utilized, contain two state estimation nodes: the
ekf_localization_node which implements Extended Kalaman Filter and the
ukf_localization_node which implements Unscented Kalman Filter. In the localization
package, efk_localization_node is preferred [21] because it has less computationally expensive
than other one. In this graph, the state estimation node requires input topics (under /firmware
section), stamped with ROS messages which contain covariance matrices. That is the reason
leo_navigation package provide /firmware_message_converter node which include:

• For each message on /firmware/wheel_odom topic, publishes a message on the
/wheel_odom_with_covariance topic which contains the same data but with an
extension of covariance matrix.

• For each pair of /firmware/Imu and /firmware/wheel_states topics, publish a message
on /Imu/data_raw topic which combine the two messages with an extension of
covariance matrices.

• Apart from these topics, the ekf_localization_node publish the data to /odometry/filter
topic and subscribe the previous both topics as common reference frame.

Figure 5-4: ROS nodes and topics launched by the odometry.launch file.

5.1.2 SLAM
There is one issue found related to SLAM which lies in the challenge of constructing an
accurate map of the environment while simultaneously determining the rover’s position within
given circumstances [26]. To solve this issue, GMapping approach is used that utilizes range
data from Lidar sensor (A2M12) and local odometry source. It consists of algorithms that has
its own ROS wrapper node in the gmapping package (Link). After loading this package, rover
is capable of generating maps, as illustrated in Figure 5-1 and Figure 5-2. The Figure 5-5 shows
the diagram for the gmapping.launch launch file. This diagram is straightforward, illustrating
that the /gmapping node receive input from A2M12 Lidar sensor (/scan topic) and produces an
occupied grip map of the terrain as an output (/map topic).

https://docs.ros.org/en/noetic/api/robot_localization/html/index.html
https://wiki.ros.org/gmapping

 ww.usn.no

50

Figure 5-5: ROS nodes and topics launched by gmapping.launch file.

5.1.3 Navigation
As it demonstrated in section 5.1.2, the map is successfully generated. Consequently, the rover
attains the capability to localize itself within its designated environment and autonomously
navigate to predefined positions on the map. This functionality is achieved through the
utilization of move_base (Link) and twist_mux (Link) packages. The move_base package gives
a navigation goal and utilize path planning algorithm (A*) to reach at designated position via
appropriate velocity commands. It also incorporates many other components which have their
own ROS API to achieve the navigation capabilities. The ROS API is a list of the ROS topics,
services, action server and messages that Leo Rover provide to give access to hardware, i.e.
servo motors and Lidar sensor [26].
Finally, a twist_mux package performs multiplex several velocity commands, prioritizing one
over the others. The Figure 5-6 shows the diagram for the navigation.launch file is launched.
In the configuration, the /move_base node’s inputs include:

• Lidar laser scan data (/scan topic)
• Occupied map which is generated by GMapping (/map topic)
• Current position estimation from the Odometry (/odometry/filtered topic)
• The move_base/action_topics send/receive a navigation goal to track the execution

status and cancelling operation.
After a navigation goal is being executed, the /move_base node publishes velocity commands
for the Leo Rover on the /nav_vel topic. In a final process, the /twis_mux node chooses /nav_vel
topic with velocity commands to forward to the /cmd_vel topic to achieve the target goal.

Figure 5-6: ROS nodes and topics by navigation.launch file.

https://wiki.ros.org/move_base
https://wiki.ros.org/move_base

 ww.usn.no

51

6 Object recognition & detection
The chapter focuses on OpenCV library, based on Fiducial marker system which provides
detection and recognition capabilities. It also presents both cameras (RPi camera and ZED2
stereo camera) testing results for detecting multiple AR-tags.

6.1 AR-tags
AR-tags inspired by ARToolKit Fiducial marker system which allows the camera to recognize
and locate AR-tags [27]. In a robot’s environment, AR-tags servers as a point of reference for
detecting and tracking visual markers in real-time applications. It typically consists of a square
shape, four corner points and black-and-white patterns with unique Id numbers. When the
rover’s camera captures an AR-tag, the system computes its pose (positional and orientation
along with x, y, z and w axes) of the marker relative to the camera. This information is crucial
for end-effector of robotic arm (Pincher arm) to reach specific pose.

6.2 Integration of Alvar package
To detect individual markers in the Leo Rover, ar_track_alvar package (GitHub) is installed
in ROS workstation (/ros_ws) by installing all dependencies in order to test multiple tags. Alvar
is a software library, developed by the VTT Technical Research Centre of Finland, is a versatile
tool for creating virtual and augmented reality applications. It also offers high-level tools that
allows to create AR experiences which is dependent on OpenCV 2.4.0 library [28].
To utilize its functionalities, another package leo_alvar_example is employed which integrates
with ar_track_alvar package. Along with this package, two additional directories (launch and
config) are added inside the package to launch and test the Alvar files, as can be seen in Figure
6-1.

Figure 6-1: Alvar package directories and available files.

Inside the /launch directory of leo_alvar_example, alvar.launch file is modified along with the
following script, shown in Figure 6-2. It is responsible for configuration and launching the
ar_track_alvar ROS nodes, which facilitates individual marker detection. It also sets up the
necessary parameters and remapping to ensure proper communication with the rover’s camera
ROS topics.

https://www.leorover.tech/integrations/alvar

 ww.usn.no

52

Figure 6-2: Alvar package launch file [27].

Inside the /config directory of leo_alvar_example, another alvar.yaml file is modified along
with the following script, shown in Figure 6-3. It serves as a configuration file for fine-tuning
parameters related to marker detection and tracking using the ar_track_alvar package. The
maker size is set to 2.5 centimetres which specify the size of the AR-tag marker. The given
marker size is used for further implementation to test it in front of both cameras.

Figure 6-3: Alvar Yaml file for fine-tuning parameters [27].

Using creatMarker command from ar_track_alvar package, markterdate_0.png file is
generated that stores a size of (2.5cm x 2.5cm) marker with id_0, shown in Figure 6-4. This
marker is printed it out on a sheet of paper and attached to 3D printed square box with the same
dimension. The box is printed it out at USN printer machine.

Figure 6-4: Marker (2.5cm x 2.5cm) with id_0.

Figure 6-5: Alvar topics after launching ar_track_alvar launch file.

After launching ar_track_alvar files from its package, all ROS topics are available, shown in
Figure 6-5.

 ww.usn.no

53

6.3 Testing AR-tags using Leo Rover (RPi) camera
To visualize detected AR-tag in Rviz tool, related topics are enabled, including Fixed Frame
(base_foorprint), Marker (/visualization_marker), Image (/camera/image_raw) and TF
(transform tree), shown the left side of Figure 6-6. In the bottom-left side of the figure, an AR-
tag is physically available in front of the Leo Rover camera, shown in red-colour squared box.

Figure 6-6: Enabling visualization marker, camera, TF in Rviz software.

In Figure 6-7, detected AR-tag (in blue colour) is shown in front of the rover model, in Rviz
tool. To measure the distance of AR-tag from camera, the rostopic echo /ar_pose_marker
command is used on RPi terminal, results are shown in Figure 6-8. It checks the tag's ID,
position, and orientation. It indicates that the AR-tag (with Id_0) is placed at “xyz” position
coordinates (0.349, -0.11, 0.096) and “xyzw” orientation coordinates (-0.450, 0.528, 0.547, -
0.467). The information of axes is written as approximate but it simultaneously change when
the tag is moved. Moreover, the tag is approximately 0.34 meters away from the camera. The
TF is activated to display tag’s axis (x, y, and z) position, indicated in red, green, and blue
colour respectively. Based on the tag’s position and orientation, robotic arm will perform
grasping activities, discussed in section.

 ww.usn.no

54

Figure 6-7: Detected AR-Tag (Id_0).

Figure 6-8: Detected AR-tag position and orientation place and its transform tree.

The Figure 6-9 shows the ROS nodes and topics list while running the Alvar package,
drowned by rqt_graph. It tells the relationship between nodes and topics.

Figure 6-9: ROS nodes and topics launched by /ar_track_alvar package.

 ww.usn.no

55

6.4 Testing AR-tags using ZED2 stereo camera
The ar_track_alvar package is also tested on ZED2 camera to detect and localize the AR-tag
markers. To test the package, zed2.launch launch file is launched on additional computer,
shown in Figure 6-10.

Figure 6-10: Launching ZED2 camera.

The additional computer ROS network is exported to laptop using its IP address (10.0.0.82)
and launched the ar_track_usb_cam.launch, shown in Figure 6-11. It automatically starts the
ar_track_alvar and zed_wrapper nodes to test marker near to the camera.

Figure 6-11: Launching Alvar package.

Necessary modifications have been made to package configuration files to enable the camera
to capture the images from ZED2 camera. The camera consists of two frames: left and right.
Left frame (zed2_lef_camera_frame) is set to test the AR marker. The Figure 6-12 shows the
Rviz simulation acquired by ar_track_alvar and zed_wrapper packages. On the top-left corner
of the figure, ROS topics such as Grid, camera, axes, and TF are activated to display the results.

 ww.usn.no

56

Two AR-tags (Id_4 and Id_5) are placed in front of camera, as shown in the bottom-left corner
of the figure. In the middle of the figure, simulation illustrate the ZED2 camera and tags,
represented as three axis (x (green), y (red), and z(blue). By utilizing the TF topic, the distance
and the names of the tags are displayed. On the right side of the figure, two terminals are
running to find the exact pose (position (x, y, and z) and orientation (x, y, z, and w)) of AR-
tags, including ar_marker_4(id_4) and ar_marker_5(id_5).

Figure 6-12: ZED2 camera results on Rviz.

In the next stage, it is important to determine which camera need to use for grasping activities
using rover’s arm. So far, both cameras have yielded identical results using the Fiducial marker
system. However, each camera has its own pros and cons. For the further implementation, RPi
camera is chosen to perform detection for grasping tasks. The reason behind this choice is that
the RPi camera offers flexibility and comes with built-in capabilities for the rover. Moreover,
it provides comparable results obtained by the ZED2 camera, making it a cost-effective and
requires less computation processing. However, running the ZED2 camera on the RPi board
would require additional resources, and currently, the RPi board struggles to handle all nodes
simultaneously. Despite these challenges, optimize grasping is not yet performed.

 ww.usn.no

57

7 Optimized grasping position
The chapter presents the simulated and physical testing of rover’s arm. The Rviz simulation
tool is utilized to perform motion planning and execution via MoveIt. It also describes the
integration of vision and manipulation with rover’s control system to conduct the preliminary
tests, via arm’s joint control system and Python language (position control system).

7.1 Pincher arm working span area
The PhantomX Pincher arm, manufactured by Trossen Robotics, is a robotic arm that is
commonly used for mobile robot platforms. It utilizes the five AX-12A Dynamixel servo
motors with unique Id’s (1 till 5). These motors are connected to each other and are designed
to deliver good performance including high torque. It also offers 4-degree-of-freedom,
including an end-effector (gripper) and a full 360-degree range of rotation. Moreover, it relies
on Arbotix controller, which serves as an interface between servo motors and rover’s RPi
board, allowing easy access to integrate with robotic operating system.
A quick overview and specification of the PhantomX Pincher arm is shown Table 7-1 and
Figure 7-1.

Table 7-1: Overview of Pincher Arm [29].

PhantomX Pincher Arm

Degree of Freedom (DOF) 4-DOF

AX-12A Dynamixel servo motors 5

Electronics board Arbotix-R controller

Total span 64 cm

Gripper strength (holding) 500 grams

Vertical reach 35 cm

Horizontal reach 31 cm

Total weight of arm 550 grams

The workspace of a Pincher arm represents a specific range of motion, where the arm can
operate functions. It has a specific workspace that is determined by its manufacturer.
The Figure 7-1 shows top and planner views, that represent the recommended workspace area
and arm movements respectively. It covers 640 mm span (360 degree), while 95 mm is
accessible height from the base for picking and placing small objects.
Similarly, the working payload of a Pincher arm represents maximum weight (500g), that arm
can lift and manipulate easily while performing pick/place operations. It plays a crucial role to

https://www.trossenrobotics.com/

 ww.usn.no

58

consider while selecting or designing an arm for specific tasks. Because it directly influences
precision, speed, accuracy, and safety of arm’s movements.

Figure 7-1: Pincher arm recommended workspace [29].

7.2 MoveIt
With MoveIt, the Leo Rover achieved seamless coordination between Pincher arm and
computer-vision capabilities. It is an open-source software framework which facilitates precise
motion planning, execution, and control using a set of tools, libraries, and APIs [14]. The
pincher arm, with its 4 DOF and compatibility with MoveIt, provides valuable results for
vision-based pick-and-place tasks using AR-tags. It also helps to develop a module for
determining optimized grasp positions based on object’s geometry.

7.3 Motion planning and execution with MoveIt
To test the MoveIt functionalities, it is required to configure laptop with ROS network to run
the nodes that interfere with the rover’s hardware, as well as graphical tools (like rqt and Rviz)
directly on host machines, discusses in appendix section 12.5.7. After installing ROS on the
host machine, environment variables are assigned to specify the rover’s master node and IP
address of the host machine.
To test the motion planning, pincher_arm_moveit.launch file is launched from pincher_arm
package, shown in Figure 7-2.

Figure 7-2: Specifying the IP address of the laptop to access master node and launching pincher arm package.

 ww.usn.no

59

7.3.1 Simulation of Pincher arm
The advantage of MoveIt is that it controls the Pinhcer arm using both forward and inverse
kinematics. Forward kinematics deals with calculating the pose (position and orientation) of
the end-effector (gripper) of an arm when given the joint angles or displacement. On the other
hand, inverse kinematics is the reverse process which calculates the joint angles when given
the end-effector pose (position and orientation) [30].
The robot model (Leo Rover), with Pincher arm and Lidar sensor, resulting Rviz windows with
MoveIt plugin, shown in Figure 7-3. There are several tabs, but two most important tabs are
used while performing its operations, including Planning and Joints. In the Planning tab, the
“Commands” section is used for performing the Plan & Execute, which allows rover to follow
the instruction after changing joints position. Morver, the “Query” section shows the positions
of the arm and end-effector. For example, “Start State” and “Goal State” show current and goal
position of arm and end-effector (Gripper). The arm state is checked by default (resting) but
can be changed into right-up (straight) and forward. Similarly, the gripper state is also checked
by default (gripper-open) and can be changed into gripper-mid and gripper-closed.

Figure 7-3: Robot model with MoveIt plugin.

Figure 7-4 and Figure 7-5 show a few different positions of simulated Pincher’s arm and
gripper positions in Rviz achieved with forward kinematics by utilizing the “Joints” tab. In the
figures, the dark gray-shade shows the motion planning (preparation), while the orange-shade
shows the execution(action). Motion planning determine the optimal path of trajectory for the
robotic and while the execution perform the planned path which is followed by roboti arm
system. It also involves actual movement, control, and interaction with in given environment.
During the process, both Collision-aware and Approx IK Solutions are being activated.

 ww.usn.no

60

Figure 7-4: Pincher’s Arm Motion Planning

Figure 7-5: Pincher’s Gripper Motion Planning.

Note: Motion Planning is also performed with the actual robotic arm which shows the exact
same results. For example, when the gripper is closed in simulation, it also closed from the
actual robot, etc.

 ww.usn.no

61

7.3.2 Preliminary testing
There are three ways to control the physical arm. The first method is through commands using
Arbotix Controller on Linux terminal, covered section in 4.3.6. The second method is with
MoveIt in Rviz, covered in section 7.3.1. The third method is with Python scripts, covered in
section 7.3.3.
The common thing in these three methods is the startup Pincher arm ROS package. The
following command also required to launch the arm for physical testing shown in Figure 7-2.
Both Figure 7-6 and Figure 7-7 show the same results which is achieved by MoveIt. The arm
and gripper positions can be compared with Figure 7-4 and Figure 7-5, pose of arm is same in
both simulation and real scenario respectively. Throughout the experiments, the specification
results are compared with actual result, shows that the maximum and minimum limits for
gripper are 0.016 m and 0.01m which is used for grasping small objects.

Figure 7-6: Physical testing for arm.

Figure 7-7: Physical testing of Gripper.

 ww.usn.no

62

7.3.3 Testing Pincher arm using Python script
The following commands (attached with appendix 12.2) executes a Python script for forward
kinematic. It allows the rover’s arm to reach at specific position, where the object is located. It
also identifies the exact pose (position and orientation) of Pincher arm and position of an AR-
Tag based objects, shown in Figure 7-8. The orange box shows the current pose (position and
orientation) of the arm and the blue box shows the current position of AR-tags. The terminal
shows the pose values (x, y, z and w axes) based on the end-effector and tag position. In this
case, the task is 0.24 meters away from the rover.

Figure 7-8: Python Script"" identify pose of arm and AR-tag.

 ww.usn.no

63

7.4 Integration of grasping with AR-tags
To enhance the grasping capabilities of the rover, computer vision and MoveIt are integrated
together, including the ability to identify AR-tags using both RPi camera and ZED2 stereo
camera, perform grasping and return to a resting position. However, results from both cameras
are consistent. Therefore, RPi camera is preferred to perform subsequent tasks.
The following two Python scripts are intended for identifying AR-tags based small objects,
picking up a 3D printed small solid box, placing inside a plastic box, explained in three sections
7.4.1, 7.4.2 and 7.4.3.
7.4.1 AR-tag real-time identification
Figure 7-9 illustrates how rover detects an AR-tags based object, after running the Python script
(attached with appendix section 12.2). The rover identified a small solid box (measuring 2.5
cm on each side) within its environment. Each side of object features an AR-tags (specifically
with Id_0) attached to it. Remarkably, the RPi camera consistently detects the object and
displays its pose (position (x, y, and z axis) and orientation (x, y, z, and w axis)). The object’s
information is acquired by using the command ‘rostopic /echo /ar_pose_marker’ in the Linux
terminal, also shown in the middle of figure. On the top-left side of the figure, two main parts
are depicted: Rviz tabs and RPi camera. Rviz tabs activated topics such as MotionPlanning,
Marker, Camera, and TF. On the bottom-left side of the figure, RPi camera captures the
information about the marker (ar_marker_0). In the middle of the figure, a simulated rover
equipped with an arm is shown along with terminal, identifying the object’s location. The TF
indicates the arrow and information of axis direction, including x (green), y (red), and z(blue).
On the right side of the figure, a physical rover and AR-tag can be observed.

Figure 7-9: AR-tag identification.

 ww.usn.no

64

7.4.2 Grasping procedure
In the grasping procedure, there are two methods involve including picking up an AR-tag based
object and placing a grasped object to a particular position, explained in sections 7.4.2.1 and
7.4.2.2.

7.4.2.1 Picking up an AR-tag based object

Figure 7-10 illustrates how rover pick an AR-tags based object, after running the Python script
(attached with appendix section 12.3). Once an object is detected (shown Figure 7-9), the
rover’s 4 degree-of-freedom Pincher arm swings into action where the object is located. As
shown in middle and right side of the figure, where rover’s arm performs Planning (gray-
shadow) and Execution (orange-shadow) using MoveIt. It also calculates the optimal position
of end-effector for grasping, based on object’s location, perform precise movements action
which allows the rover’s arm to securely grasp the small solid box.
On the top-left side of the figure, three main tabs are shown: Displays, MotionPlanning and
RPi camera. Within the MotionPlanning tab, the Joints tab displays information such as the
arm’s angle of each joint and the current state of gripper. On the bottom-left side of the figure,
it is shown that the arm is positioned where the tag is located. In the middle of the figure, a
simulated rover equipped with an arm is shown, performing grasping actions. In the Rviz tool,
the AR-tag based object (with Id_0) is shown in blue color, where TF indicates the arrow and
tag’s axis direction, including x (green), y (red), and z(blue).

Figure 7-10: Rover’s arm is picking an AR-tag based object.

 ww.usn.no

65

After successful grasping an object, the rover’s arm returns to a predefined resting position. It
can be seen on the right side of Figure 7-11, the object is grasped, and arm return to predefined
position where it started. On the right-side of the figure, actual arm performs the same trajectory
execution which are being running in Rviz tool simultaneously.

Figure 7-11: Rover's arm returns to resting position.

In the result, it is shown that the arm successfully grasped an object and there is no other
object available in front of the rover’s camera.
After picking up the object, rover needs to place the grasped object at specific position.

7.4.2.2 Placing a grasped object

In the next stage, another python script is utilized (attached with appendix section 12.4). In this
scenario, the rover diligently follows the tag which is placed in front of the rover’s camera and
moves towards the location where it is located. The specific AR-tag (Id_5) affixed to a box
(measuring 10cm x 10 cm), shown in Figure 7-12.
Once the rover reaches the designated location, the rover’s arm performs a precise motion
planning and execution using MoveIt, and place the grasped object inside the box, shown in
Figure 7-13.
The left side of the figure shows the performed simulation results including motion planning
and execution of robotic arm, while the right side shows the physical demonstration of rover
and its arm. Notably, both simulation and actual execution show a consistent result. It is clearly
shown in Figure 7-13, after placing a grasped object, rover goes back to return position.

 ww.usn.no

66

Figure 7-12: Rover is moving toward another AR-tag (Id_5).

Figure 7-13: Placing an object inside a plastic box.

 ww.usn.no

67

While running Python script, all ROS node and topic lists are drawn on rqt_graph, shown in
Figure 7-14. It displays the relation between activated ROS nodes and topics while running the
Python scripts.
Each ROS node and topic communicates with each other using the publish-subscribe protocol
system. For example, a node that has specific data (messages) publishes it to a topic.
Simultaneously, other nodes subscribe to that topic to receive the data (messages).
The same protocol applies to the given diagram shown in the Figure 7-14, such as.

• raspicam_node node publishes data (message) from RPi camera through the
/camera/images_images topic.

• /ar_track_node subscribe to the /camera/images_raw topic to get the data from the Rpi
camera. This node detects an AR-tag and publishes the pose (position and orientation)
to three nodes including /place, /pick and /follow_ar_track simultaneously. These three
nodes are generated by Python scripts.

• /pickup and /place nodes are responsible for picking up and placing an object. Both
subscribe pose from /ar_track_alvar and publish motion commands to /move_group
node, simultaneously.

• /cmd_vel node caries velocity command for the rover’s wheels and publish movements
commands toward LeoCore via /serial_node node.

• /execute_trajecotry topic is responsible for the MoveIt which perform planned
trajectory for the rover’s arm.

Figure 7-14: ROS nodes and topic lists (using rqt_graph) launched by Python script.

 ww.usn.no

68

8 Risk assessment and ethical
considerations

This chapter identifies potential safety issues and ethical factors related to rover and its robotic
arm using preliminary hazard analysis (PHA) method.
Mobile robot equipped with robotic arm and advanced sensor presents a remarkable
advancement in automation technologies, offering several benefits in various industries such
as warehouses, agriculture sites and hard-to-reach areas. Despite from their benefits, it is also
important to perform risk assessments to provide a safe and efficient environment for user.
Risk assessment is a systematic process which is used to identify hazards that might occur
while performing machine’s (robots) operation [31].

8.1 Preliminary hazard analysis (PHA)
The Leo Rover equipped with robotic arm and Lidar sensor perform various functionalities,
including autonomous navigation, AR-tags detection, and grasping capabilities. However, the
absence of obstacle detection sensor, specifically Sonar sensor, present a safety concern. Sonar
is a type of sensor commonly used in mobile robotics applications to detect objects and measure
distances. It uses sound waves to detect and located the objects in both environments,
underwater and air.
Without Sonar sensor, the rover has significant blind spots, especially above its main body and
within the reach of robotic arm. This incapability to stopping the rover create a high collision
risk. For example, during SLAM operation, a map is generated with Lidar sensor to test the
autonomous navigation. If the navigation goal fell outside the predefined map boundaries, the
rover persisted to reach the gaol, even if it beyond its operational range. In such situation, there
is a risk of collisions with the boundaries, flipping over which potentially damaging the rover
including surrounding electronic equipment such as its robotic arm, and attached sensors. This
collision can lead disruption in operation and costly repairs if action is not promptly taken. The
action should be taken manually by operator, requires holding this rover and stop it manually.
Similarly, using PHA is performed to identify the potential hazards associated with rover and
its arm. It is crucial first step in risk assessment, aiming to mention potential hazards early in
the development stage, shown in Table 9-1.
Ethical considerations are also important when assessing risk assessment for Leo Rover
because it helps to minimize harm, promotes fairness, and fosters trust in technologies, showing
in Table 9-2.

 ww.usn.no

69

Table 9-1: Preliminary Hazard Analysis (PHA) of rover and its robotic arm

System
element Hazard No.

Hazardous events
(what, where, and

when)

Causes
(Triggering

events)

Consequence (Harming
conditions)

Risk level
(Likelihood and

Severity)
Risk-reducing measurement Responsible

person

Leo
Rover

Collision
hazard L1

Collision with
boundaries while

perform SLAM in a
map.

Sonar sensor
It could damage Leo Rover

including electronic equipment, such
as Lidar sensor and Pincher arm.

Medium High

• Implement Sonar sensor to stop
the rover if it collides with
boundaries.

• Immediate turn-off rover if it
goes beyond the boundaries.

Hardware and
software
engineer

Pincher
Arm

Falling
objects P1

Object grasped by the
arm falls during

movement due to
improper gripping

strategy.

End-effector
(Gripper)

It could damage sensitive objects.
For example, if the arm is handling

an egg with an AR-tag attached,
improper gripping strategy could

cause the egg to break.

Medium Medium
• Design the end-effector

securely hold sensitive objects
of various shapes and size.

Design
engineer

Pincher
Arm

End-effector
(Gripper)

malfunction
P2

Excessive gripping
force break the

gripper’s endpoints
(hardware).

Haptic sensor It could lead to costly repair servo
motor and gripper endpoints. High Medium

• Equipped the gripper with
object sensitivity sensor like
Haptic sensor can significantly
reduce the risk of damage.

Desing
engineer

Table 9-2: Ethical considerations of rover

Consideration Description

Data privacy and security Securing stored, encrypted, and transmitted data between the system are important and
need to secure communication and protection against the unauthorized access.

Autonomy and decision-making If full autonomy is given to the rover, it might take some unethical decision. For
example, prioritizing its objectives over potential risks to human safety.

 ww.usn.no

70

9 Discussion
This chapter presents analysis, challenges, and limitations of developed autonomous navigation
and advanced grasping system throughout the master thesis.

9.1 Setup and configurations
Two minicomputers were available for configuration of Leo Rover: built-in Raspberry Pi 4b
module, and additional computer, specifically the Nvidia reCopmuter J2012. The robot
operating system (ROS) was successfully installed on both computers, and their efficiency was
compared. Each of them presented its own set of pros and cons for testing the rover’s
functionalities. The advantage of RPi board was that it has LeoCore controller through GPIO
pins, responsible for controlling the rover’s wheel motors and IMU sensor. However,
configuring with an additional computer required manual intervention.
Upon installing ROS packages on both systems, their performance compared. The additional
computer delivered outstanding performance and worked faster than RPi board. Its powerful
processor ARM-based CPU and GPU support AI and machine learning tasks provided a
significant performance. On the other hand, RPi board has become slow, especially loading
multiple packages simultaneously. However, it is preferred to choose RPi board because it
directly controlls wheel motors for performing tasks related to autonomous navigations.

9.2 Camera selection
Leo Rover is equipped with a built-in 5-megapixel camera featuring a fisheye lens and night-
vision mode. However, for advanced image processing, it was recommended to use ZED2
stereo camera due to its superior capabilities. The RPi does not support stereo cameras due to
graphic card limitations. Consequently, it was configured with an additional computer for
testing. Initially, determining the optimal location for ZED2 camera was challenging, as the
rover already had a built-in camera. After carefully analyses, it is attached with robotic arm
servo motor using steel frame, which enabled 360-degree movement.
The object detection tasks were implemented using an OpenCV library, enable AR-tags marker
detection, OpenCV library and its results were compared obtained by both cameras. Despite
differences in field of view and depth capabilities, the ZED2 camera performed very well as
compared to RPi camera. However, the results were the same but the RPi camera exhibited
limitation in low-light conditions, particularly detecting small tags (2.5 cm). To address this
issue, throughout research analysis, one result found which can be implemented in future work,
shown in Figure 10-1.

 ww.usn.no

71

Figure 9-1: Additional front lights for the rover.

9.3 Autonomous navigation
Leo Rover successfully performed SLAM and navigation using Lidar and IMU sensor. Lidar
sensor is attached with additional frame to avoid the obstacle while scanning. While IMU
sensor is attached on bottom side of the rover and both sensor’s axes are aligned with base_link
of Leo Rover. In the software integration of Lidar sensor, necessary modifications were made
in launch files to provide the same joint links for both simulated and physical rover.
Initially, rover faced several challenges to perform autonomous navigation. One of the issues
arose when it switched the rover base_link to map in framework, which disrupt the G-mapping
functionality. Consequently, rover began generating a new map based on the scanned map,
which cause spinning the rover around a particular point where it stuck. To address this issue,
all launch files were launched separately, which allowed more systematic and controlled
approach to troubleshoot and resolve the navigation issue.

9.4 Object detection
Through literature review, several object detection machine learning algorithms were studied,
including YOLO, SSD, and fiducial markers. After careful analysis, Alvar detection method
was chosen for Leo Rover due to specific advantages and suitability for the rover’s tasks. It is
based on fiducial marker system and has ability to detect multiple AR-tags simultaneously.
One of the significant advantages of Alvar detection method, was their ability to provide real-
time detection with minimal processing, made well-suited for the rover’s electronic board
(RPi). Moreover, it allowed to detect multiple tags simultaneously, which was crucial for
picking and placing multiple small objects using rover’s arm. It also delivered precise results,
including distance measurements and pose (position and orientation) based on tag
measurements. Unlike SSD and YOLO, demands significant computation resources, including
powerful hardware like as ZED2 stereo camera along with additional computer, which costly
expensive.
During testing, two approaches were used for utilizing the AR-tags: one for picking an AR-
tags based small object and another for following the AR-tags. For example, in the context of
picking AR-based small object (Id_0), gripper had specific limitations, which required

 ww.usn.no

72

predefined grasping limit for such tasks. After successfully picking up an object, it needed to
be placed inside another AR-tag based box (Id_5).
The first approach utilized Motion Planning using MoveIt, while the second approach relied on
following AR-tags, both higher computational resources from the RPi board. Rover was not
able to perform both approaches simultaneously because both had different size of tags. To
address the issue, both approaches were run separately due to the differences in the size of the
tags (2.5 cm and 10 cm respectively). However, despite this issue, the detection results for
both approaches were smooth and efficient. And managing different tag sizes, the AR-tag
detection process proved successful, enabling the rover to perform its object manipulation and
following tasks effectively.

9.5 Arm’s motors Ids correction
Initially Pincher arm’s motors were given wrong ID’s, which lead to stopping the arm motors.
In the simulation, it shows the Motional Planning was done. Although, the physical arm did
not perform the simulated Motion Plalning.
To address this issue, all motors were given Id’s number started from 1 till 5 in ascending
orders. There were five motors namely, arm_should_pan_join(id_1), arm_shoulder_lift_joint
(id_2), arm_elblow_flex_joint (id_3), arm_wrist_flex_joint (id_5) responsible for control the
arm and gripper_joint(id_5) responsible for gripping objects.

9.6 MoveIt
There were multiple algorithms available for motion planning to utilize MoveIt configurations.
The Pincher arm detected all kind of AR-tags pose (position and orientation) nearby the rover’s
camera and successfully performed grasping activities manually, by providing pose
information via a Python script. However, it also automatically performs grasping based on tag
position, but it encountered difficulties in execution tasks which were based on orientation.
Despite the presence of several algorithm in its directories, attempted to follow them during
grasping task but could not being successfully followed. Because the Path planning algorithms
provided by MoveIt mainly focuses on 6DOF but for this rover 4DOF is utilized. To address
this issue, AR-tags were placed in predefined orientations. This adjustment enabled smother
motion planning and execution.

9.7 Simulation environment
All ROS packages were typically launched manually in Leo Rover operating systems, which
are based on RPi board. After loading the Rviz tool on the same operating system
simultaneously executing required package, as a result, the system slowed down significantly.
It was not allowed to perform any task on RPi board because of its processor limitations. To
overcome this issue, a solution was implemented whereby the same ROS version was installed
on Linux operating system. By doing so, the ROS network was exported which enabled the
seamless utilization of the Rviz tool with improved performance.

 ww.usn.no

73

10 Conclusion
This master’s thesis has successfully implemented a computer vision-guided grasping system
into mobile robot Leo Rover, which equipped with a robotic arm, Lidar, RPi and stereo.
Initially, literature review was conducted to understand the current stage of research areas in
mobile robotics, highlighting the importance of computer vision, sensor fusion and machine
learning techniques for object handling in mobile robotics. Subsequently, a system architecture
was designed to ensure seamless communication and coordination among the connected
components by utilizing multiple ROS packages into the rover’s operating system.
Overall, Leo Rover perception abilities, including autonomous navigation, object detection
based on AR-tags, and optimized grasping capabilities, were significantly improved. These
improvement results were achieved through the utilization of simultaneous localization and
mapping technique, employing Fiducial marker system, and execution of Motion Planning
using MoveIt, respectively. As a result, Leo Rover independently navigates and locates AR-
tags based objects within nearby areas to perform grasping activities (pick-and-place). These
results were achieved through testing and evaluation in both simulated and actual environment.

10.1 Future work
Throughout the achievement, rover can perform autonomous navigation using Lidar. However,
sometime it collides with boundaries if the path planning algorithm did not work properly
within the map. To address this issue, the integration of Sonar sensor could serve to stop the
rover upon colliding with boundaries, which will also enhance rover capabilities.
Additionally, the object detection was not good in low-light conditions. Attaching additional
LED alongside the camera could improve visibility in darker areas. Consequently, the
utilization of the RPi 4B module for testing the rover’s functionalities on Rviz tool presented
some limitation while running all ROS package simultaneously. Upgrading to a more powerful
computer, like Nvidia Jetson, can increase the overall performance of rover and provide more
sustainable results. Finally, while testing rover’s arm, the AR-tag based object orientation
needs to be adjusted to grasp it using robotic arm. In future work, employing a 6-DOF robotic
arm would yield more efficient outcomes compared to a 4-DOF of arm. Addressing these
aspects in future work will improve the results for further development in this project.

 ww.usn.no

74

11 References
[1] T. F. Agidew, ‘Mechatronics & Robotics: Robotics’, Mechatronics & Robotics. Accessed:

Apr. 07, 2024. [Online]. Available: https://tayeonblogger.blogspot.com/p/robotics.html
[2] K. Brush, ‘Mobile Robotics’, IoT Agenda. Accessed: Apr. 07, 2024. [Online]. Available:

https://www.techtarget.com/iotagenda/definition/mobile-robot-mobile-robotics
[3] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, ‘Sensor and Sensor Fusion

Technology in Autonomous Vehicles: A Review’, Sensors, vol. 21, no. 6, p. 2140, Mar.
2021, doi: 10.3390/s21062140.

[4] B. Yildiz, A. Durdu, A. Kayabaşi, and M. Duramaz, ‘CNN based sensor fusion method for
real-time autonomous robotics systems’, Turk. J. Electr. Eng. Comput. Sci., vol. 30, no. 1,
pp. 79–93, Jan. 2022, doi: 10.3906/elk-2008-147.

[5] Y.-L. Chen, Y.-R. Cai, and M.-Y. Cheng, ‘Vision-Based Robotic Object Grasping—A
Deep Reinforcement Learning Approach’, Machines, vol. 11, no. 2, p. 275, Feb. 2023, doi:
10.3390/machines11020275.

[6] M. B. Alatise and G. P. Hancke, ‘A Review on Challenges of Autonomous Mobile Robot
and Sensor Fusion Methods’, IEEE Access, vol. 8, pp. 39830–39846, 2020, doi:
10.1109/ACCESS.2020.2975643.

[7] Z. Zhou, L. Li, A. Fürsterling, H. J. Durocher, J. Mouridsen, and X. Zhang, ‘Learning-
based object detection and localization for a mobile robot manipulator in SME production’,
Robot. Comput.-Integr. Manuf., vol. 73, p. 102229, Feb. 2022, doi:
10.1016/j.rcim.2021.102229.

[8] Z. Xie, X. Liang, and C. Roberto, ‘Learning-based robotic grasping: A review’, Front.
Robot. AI, vol. 10, p. 1038658, Apr. 2023, doi: 10.3389/frobt.2023.1038658.

[9] F.-C. Cheng, C.-C. Yen, and T.-S. Jeng, ‘Object Recognition and User Interface Design
for Vision-based Autonomous Robotic Grasping Point Determination’, presented at the
CAADRIA 2021: Projections, Hong Kong, 2021, pp. 633–642. doi:
10.52842/conf.caadria.2021.1.633.

[10] Fictionlab, ‘Leo Rover Documentation - Specification’. Accessed: Apr. 24, 2024.
[Online]. Available: https://www.leorover.tech/documentation/specification

[11] ‘Robots/Leo Rover - ROS Wiki’. Accessed: Apr. 26, 2024. [Online]. Available:
https://wiki.ros.org/Robots/Leo%20Rover

[12] ‘Raspberry Pi 4 Information’. Accessed: Apr. 25, 2024. [Online]. Available:
https://www.pishop.ca/raspberry-pi-4-information/

[13] ‘CORE2 | Husarion’. Accessed: Apr. 25, 2024. [Online]. Available:
https://husarion.com/manuals/core2/

[14] Fictionlab, ‘Leo Rover Integrations - PhantomX Pincher’. Accessed: Mar. 25, 2024.
[Online]. Available: https://www.leorover.tech/integrations/phantomx-pincher

 ww.usn.no

75

[15] S. Battle, ‘Principles of Robot Autonomy I’. Accessed: May 13, 2024. [Online].
Available: https://stanfordasl.github.io/PoRA-I/aa174a_aut2324/

[16] A. Ahmad and M. A. Babar, ‘Software architectures for robotic systems: A systematic
mapping study’, J. Syst. Softw., vol. 122, pp. 16–39, Dec. 2016, doi:
10.1016/j.jss.2016.08.039.

[17] Fictionlab, ‘Leo Rover Documentation - Hardware structure’. Accessed: May 11, 2024.
[Online]. Available: https://www.leorover.tech/documentation/hardware-structure

[18] Halvorsen, Software Development.
[19] H.-P. Halvorsen, ‘Software Development a Practical Approach’, Docslib. Accessed:

May 14, 2024. [Online]. Available: https://docslib.org/doc/1178867/software-
development-a-practical-approach

[20] S. Sebo, ‘Intro Robotics’. Accessed: Apr. 24, 2024. [Online]. Available:
https://classes.cs.uchicago.edu/archive/2021/winter/20600-1/ros_resources.html

[21] Fictionlab, ‘Leo Rover Integrations - RPLiDAR A2M8 / A2M12’. Accessed: Mar. 25,
2024. [Online]. Available: https://www.leorover.tech/integrations/rplidar

[22] Fictionlab, ‘Leo Rover Documentation - Software structure’. Accessed: May 11, 2024.
[Online]. Available: https://www.leorover.tech/documentation/software-structure

[23] Fictionlab, ‘Leo Rover Integrations - ZED Stereo Camera’. Accessed: Mar. 25, 2024.
[Online]. Available: https://www.leorover.tech/integrations/zed

[24] ‘ROS: Home’. Accessed: Apr. 19, 2024. [Online]. Available: https://www.ros.org/
[25] Fictionlab, ‘Leo Rover Developer Guides - ROS Development’. Accessed: Apr. 19,

2024. [Online]. Available: https://www.leorover.tech/guides/ros-development
[26] ‘Leo Rover Developer Guides - Autonomous Navigation’. Accessed: Apr. 20, 2024.

[Online]. Available: https://www.leorover.tech/guides/autonomous-navigation
[27] Fictionlab, ‘Leo Rover Integrations - ARTag tracking with Alvar’. Accessed: May 12,

2024. [Online]. Available: https://www.leorover.tech/integrations/alvar
[28] S. Niekum, ‘ar_track_alvar: ALVAR 2.0.0’. Accessed: Apr. 13, 2024. [Online].

Available: https://docs.ros.org/en/melodic/api/ar_track_alvar/html/index.html
[29] H. Toquica Cáceres, PhantomX Pincher Specifications. 2018. doi:

10.13140/RG.2.2.28484.12160.
[30] A. Stevens, ‘Forward Kinematics’, Accessed: May 11, 2024. [Online]. Available:

https://opentextbooks.clemson.edu/wangrobotics/chapter/forward-kinematics/
[31] C. Bernier, ‘Robotic Risk Assessment: Who, Why, and How? | HowToRobot’.

Accessed: May 05, 2024. [Online]. Available: https://howtorobot.com/expert-
insight/robotic-risk-assessment

 ww.usn.no

76

12 Appendices
Appendix A – FMH606 Master thesis task description
Appendix B – Python script for testing both AR-tag and end-effector pose
Appendix C – Python script for optimized grasping (Picking)
Appendix D – Python script for following AR-tag and optimized grasping (Placing).
Appendix E – Configuration setup with rover and laptop
Appendix F – QuickStart Guide for Leo Rover
Appendix G – Testing the hardware and software for the rover

 ww.usn.no

77

12.1 Appendix A – FMH606 Master thesis task description

 ww.usn.no

78

 ww.usn.no

79

12.2 Appendix B – Python script for testing both AR-tag and
end-effector pose

GitHub Link for the given below code is attached:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

#Name: Nasir Ali
#Date: 02.15.2024
#!/usr/bin/env python
import sys
import rospy
from ar_track_alvar_msgs.msg import AlvarMarkers
from geometry_msgs.msg import PoseStamped
import moveit_commander
from moveit_commander import PlanningSceneInterface
import time
import copy
import moveit_msgs.msg

class MoveArm():
 def __init__(self):
 rospy.init_node('arm_controller', anonymous=True)
 rospy.Subscriber("/ar_pose_marker", AlvarMarkers,self.callback)
 self.position = None
 self.orientation = None
 self.data = None # Store data as an instance variable
 moveit_commander.roscpp_initialize(sys.argv)
 scene = PlanningSceneInterface()
 robot = moveit_commander.RobotCommander()
 self.arm_group= moveit_commander.MoveGroupCommander("arm")
 self.gripper_group= moveit_commander.MoveGroupCommander("gripper")
 current_state = robot.get_current_state()
 current_pose = self.arm_group.get_current_pose().pose

 # Print the current pose
 print("Current End Effector Pose:")
 print(current_pose)
 self.grasp_pose = PoseStamped()
 self.movearm()
 rospy.spin()

 def callback(self, data):
 self.data = data # Store data
 for marker in data.markers:
 self.position = marker.pose.pose.position
 self.orientation = marker.pose.pose.orientation
 self.frame_id = marker.header.frame_id
 self.pose = marker.pose.pose

 #It displays the marker's detatils continouesly
 #print("Marker ID:", marker.id)
 #print("Position :", self.position)
 #print("Orientation :", self.orientation)

 def movearm(self):

https://github.com/nasirali029/Autonomous-grasping-system/blob/main/arm_with_ar_tag_values.py

 ww.usn.no

80

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
79
80
81
82

 time.sleep(5)
 print()
 print("AR-Tag Pose:")
 print(self.pose)

 # print("AR-Tag Orientation :", self.orientation)
 if self.position is not None:

 self.grasp_pose.header.frame_id = "base_footprint"
 self.grasp_pose.pose.position.x = 0.2502012225613189
 self.grasp_pose.pose.position.y = -0.0032156971548337535
 self.grasp_pose.pose.position.z = 0.17652794280001272

 self.grasp_pose.pose.orientation.x = 0.007705798279333313
 self.grasp_pose.pose.orientation.y = 0.7534836526780807
 self.grasp_pose.pose.orientation.z = -0.006723028973121577
 self.grasp_pose.pose.orientation.w = 0.657387105670017
 self.arm_group.set_pose_target(self.grasp_pose)

 #plan = self.arm_group.plan()
 #self.arm_group.execute(plan[1])

if __name__ == '__main__':
 move_arm = MoveArm()

 ww.usn.no

81

12.3 Appendix C – Python script for optimized grasping
(Picking)

GitHub Link for the given below code is attached:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

#Name: Nasir Ali
#Date: 02.15.2024
#!/usr/bin/env python
import sys
import rospy
from ar_track_alvar_msgs.msg import AlvarMarkers
from geometry_msgs.msg import PoseStamped
import moveit_commander
from moveit_commander import PlanningSceneInterface
import time
import copy
import moveit_msgs.msg
from sensor_msgs.msg import JointState
from std_msgs.msg import Float64

class MoveArm():
 def __init__(self):
 rospy.init_node('arm_controller', anonymous=True)
 rospy.Subscriber("/ar_pose_marker", AlvarMarkers, self.callback)
 self.position = None
 self.orientation = None
 self.data = None # Store data as an instance variable
 moveit_commander.roscpp_initialize(sys.argv)
 scene = PlanningSceneInterface()
 robot = moveit_commander.RobotCommander()
 self.arm_group=moveit_commander.MoveGroupCommander("arm")
 self.gripper_group=moveit_commander.MoveGroupCommander("gripper")
 current_state = robot.get_current_state()
 current_pose = self.arm_group.get_current_pose().pose

 # Print the current pose
 # print("Current End Effector Pose:")
 # print(current_pose)
 # display_trajectory_publisher = rospy.Publisher('/move_group/
 display_planned_path', moveit_msgs.msg.DisplayTrajectory)
 self.joint1_pub = rospy.Publisher
 ('/gripper_finger1_joint/command', Float64, queue_size=10)
 self.joint2_pub = rospy.Publisher
 ('/gripper_finger2_joint/command', Float64, queue_size=10)
 self.arm_group.set_planning_time(10)
 self.grasp_pose=PoseStamped()
 self.gripper_pose=PoseStamped()
 # Initialize ROS node
 self.movearm()
 rospy.spin()

 def callback(self, data):
 self.data = data # Store data
 for marker in data.markers:

https://github.com/nasirali029/Autonomous-grasping-system/blob/main/with_ar_tag.py

 ww.usn.no

82

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

 self.position = marker.pose.pose.position
 self.orientation = marker.pose.pose.orientation
 self.frame_id = marker.header.frame_id
 # print("Marker ID:", marker.id)
 # print("Position :", self.position)
 # print("Orientation :", self.orientation)

 def control_joints(self, joint_positions):
 # Publish joint positions
 self.joint1_pub.publish(joint_positions[0])
 self.joint2_pub.publish(joint_positions[1])

 def movearm(self):
 time.sleep(3)
 if self.position is not None:

 joint_positions = [0.016, 0.016]
 self.control_joints(joint_positions)
 print("AR TAG Position :", self.position)
 print()
 self.grasp_pose.header.frame_id = "base_footprint"
 # position is from marker
 self.grasp_pose.pose.position.x = self.position.x
 self.grasp_pose.pose.position.y = self.position.y + 0.0129
 self.grasp_pose.pose.position.z = self.position.z + 0.0247

 self.grasp_pose.pose.orientation.x = -0.03443147641271983
 #self.orientation.x
 self.grasp_pose.pose.orientation.y = 0.7476661826604609
 #self.orientation.y
 self.grasp_pose.pose.orientation.z = 0.03050846109213684
 #self.orientation.z
 self.grasp_pose.pose.orientation.w = 0.662479423484054
 #self.orientation.w
 self.arm_group.set_pose_target(self.grasp_pose)
 print("ROBOTIC ARM Position :", self.grasp_pose)
 plan = self.arm_group.plan()
 self.arm_group.execute(plan[1])
 time.sleep(2)
 joint_positions = [0.01, 0.01]
 self.control_joints(joint_positions)
 time.sleep(2)
 self.arm_group.set_named_target("resting")
 self.arm_group.go()

if __name__ == '__main__':
 move_arm = MoveArm()

 ww.usn.no

83

12.4 Appendix D – Python script for following AR-tag and
optimized grasping (Placing).

The original code (GitHub Link) was written by the developer; however, necessary changes
have been made to include the part of optimized grasping (Placing).
GitHub Link for the given below code is attached:
#Name: Nasir Ali
#Date: 02.15.2024
#!/usr/bin/env python3
import math
import sys
import rospy
import moveit_commander
from geometry_msgs.msg import Twist, Vector3, PoseStamped
from nav_msgs.msg import Odometry
from ar_track_alvar_msgs.msg import AlvarMarkers
from moveit_commander import PlanningSceneInterface
import time
import copy
import moveit_msgs.msg
from sensor_msgs.msg import JointState
from std_msgs.msg import Float64

def translate(value, leftMin, leftMax, rightMin, rightMax):
 value = min(max(value, leftMin), leftMax)

 # Figure out how 'wide' each range is
 leftSpan = leftMax - leftMin
 rightSpan = rightMax - rightMin

 # Convert the left range into a 0-1 range (float)
 valueScaled = float(value - leftMin) / float(leftSpan)

 # Convert the 0-1 range into a value in the right range.
 return rightMin + (valueScaled * rightSpan)

class MoveArm():
 def __init__(self):
 self.position = None
 self.orientation = None
 self.data = None # Store data as an instance variable
 moveit_commander.roscpp_initialize(sys.argv)
 scene = PlanningSceneInterface()
 robot = moveit_commander.RobotCommander()
 self.arm_group=moveit_commander.MoveGroupCommander("arm")
 self.gripper_group=moveit_commander.MoveGroupCommander("gripper")

 self.arm_group.set_planning_time(10)
 self.grasp_pose=PoseStamped()
 self.joint1_pub = rospy.Publisher
 ('/gripper_finger1_joint/command', Float64, queue_size=10)
 self.joint2_pub = rospy.Publisher

https://github.com/LeoRover/leo_examples/blob/master/leo_example_line_follower/scripts/line_follower.py
https://github.com/nasirali029/Autonomous-grasping-system/blob/main/follow_ar_tag_and_place.py

 ww.usn.no

84

 ('/gripper_finger2_joint/command', Float64, queue_size=10)
 self.grasp_pose=PoseStamped()

 def control_joints(self, joint_positions):
 # Publish joint positions
 self.joint1_pub.publish(joint_positions[0])
 self.joint2_pub.publish(joint_positions[1])

 def movearm(self):
 time.sleep(5)

 # print(self.arm_group.get_current_pose())
 self.grasp_pose.header.frame_id = "base_footprint"
 self.grasp_pose.pose.position.x = 0.3290330861089922
 self.grasp_pose.pose.position.y = -0.01086978096035385
 self.grasp_pose.pose.position.z = 0.30036546454443824

 self.grasp_pose.pose.orientation.x = 0.011299476542224629
 self.grasp_pose.pose.orientation.y = 0.4909875622814981
 self.grasp_pose.pose.orientation.z = -0.020041837152399145
 self.grasp_pose.pose.orientation.w = 0.8708627103500876
 self.arm_group.set_pose_target(self.grasp_pose)

 plan = self.arm_group.plan()

 self.arm_group.execute(plan[1])
 time.sleep(2)

 joint_positions = [0.016, 0.016]
 self.control_joints(joint_positions)
 time.sleep(2)

 joint_positions = [0.01, 0.01]
 self.control_joints(joint_positions)
 time.sleep(2)

 self.arm_group.set_named_target("resting")
 self.arm_group.go()

class ARTagFollower:
 def __init__(self):
 self.last_marker_ts = rospy.Time()
 self.last_marker_position = None
 self.marker_angle = 0.0
 self.marker_distance = 0.0

 self.last_odom_ts = None
 self.odom_position = Vector3()
 self.odom_yaw = 0.0
 self.twist_cmd = Twist()
 self.get_parameters()
 self.cmd_vel_pub = rospy.Publisher("cmd_vel", Twist, queue_size=1)

 self.ar_pose_sub = rospy.Subscriber
 ("ar_pose_marker", AlvarMarkers,

 ww.usn.no

85

 self.callback_ar_pose, queue_size=1)

 self.wheel_odom_sub = rospy.Subscriber(
 "wheel_odom_with_covariance",
 Odometry,
 self.callback_wheel_odom,
 queue_size=1,
)
 def get_parameters(self):
 self.follow_id = rospy.get_param("~follow_id", 5)
 self.marker_timeout =
 rospy.Duration(rospy.get_param("~marker_timeout", 0.5))
 self.min_ang_vel = rospy.get_param("~min_ang_vel", 0.1)
 self.max_ang_vel = rospy.get_param("~max_ang_vel", 1.0)
 self.angle_min = rospy.get_param("~angle_min", 0.1)
 self.angle_max = rospy.get_param("~angle_max", 0.7)
 self.min_lin_vel_forward = rospy.get_param
 ("~min_lin_vel_forward", 0.05)
 self.max_lin_vel_forward = rospy.get_param
 ("~max_lin_vel_forward", 0.2)
 self.distance_min_forward =
 rospy.get_param("~distance_min_forward", 0.5)
 self.distance_max_forward =
 rospy.get_param("~distance_max_forward", 2.0)
 self.min_lin_vel_reverse =
 rospy.get_param("~min_lin_vel_reverse", 0.05)
 self.max_lin_vel_reverse = rospy.get_param
 ("~max_lin_vel_reverse", 0.2)
 self.distance_min_reverse =
 rospy.get_param("~distance_min_reverse", 0.5)
 self.distance_max_reverse =
 rospy.get_param("~distance_max_reverse", 2.0)

 def run(self):
 rate = rospy.Rate(10)
 while not rospy.is_shutdown():
 self.update_cmd()
 self.cmd_vel_pub.publish(self.twist_cmd)
 rate.sleep()

 def update_cmd(self):
 # Check for a timeout
 if self.last_marker_ts + self.marker_timeout < rospy.get_rostime():
 self.twist_cmd.linear.x = 0.0
 self.twist_cmd.angular.z = 0.0
 return
 # Get the absolute angle to the marker
 angle = math.fabs(self.marker_angle)
 # Get the direction multiplier
 dir = -1.0 if self.marker_angle < 0.0 else 1.0

 # Calculate angular command
 if angle < self.angle_min:
 ang_cmd = 0.0
 else:

 ww.usn.no

86

 ang_cmd = translate(
 angle,
 self.angle_min,
 self.angle_max,
 self.min_ang_vel,
 self.max_ang_vel,
)
 # Calculate linear command
 if self.marker_distance >= self.distance_min_forward:
 lin_cmd = translate(
 self.marker_distance,
 self.distance_min_forward,
 self.distance_max_forward,
 self.min_lin_vel_forward,
 self.max_lin_vel_forward,
)
 elif self.marker_distance <= self.distance_max_reverse:
 lin_cmd = -translate(
 self.marker_distance,
 self.distance_min_reverse,
 self.distance_max_reverse,
 self.max_lin_vel_reverse,
 self.min_lin_vel_reverse,
)
 else:
 lin_cmd = 0.0
 move_arm = MoveArm()
 move_arm.movearm()
 return

 self.twist_cmd.angular.z = dir * ang_cmd
 self.twist_cmd.linear.x = lin_cmd

 def update_marker_angle_distance(self):
 if self.last_marker_position:
 position_x = self.last_marker_position.x - self.odom_position.x
 position_y = self.last_marker_position.y - self.odom_position.y
 self.marker_angle = math.atan(position_y / position_x) –
 self.odom_yaw

 self.marker_distance = math.sqrt(
 position_x * position_x + position_y * position_y)

 def callback_ar_pose(self, msg):
 for marker in msg.markers:
 if marker.id != self.follow_id:
 continue
 if marker.header.stamp < self.last_marker_ts:
 rospy.logwarn_throttle(
 3.0, "Got marker position with an older timestamp"
)
 continue

 self.last_marker_ts = marker.header.stamp
 self.last_marker_position = marker.pose.pose.position

 ww.usn.no

87

 self.odom_position = Vector3()
 self.odom_yaw = 0.0

 self.update_marker_angle_distance()

 def callback_wheel_odom(self, msg):
 if self.last_odom_ts:
 start_ts = max(self.last_odom_ts, self.last_marker_ts)

 end_ts = msg.header.stamp
 if end_ts < start_ts:
 rospy.logwarn

("Reveived odometry has timestamp older than last marker
position")

 step_duration = (end_ts - start_ts).to_sec()

 # Integrate the velocity using rectangular rule
 self.odom_yaw += msg.twist.twist.angular.z * step_duration
 self.odom_position.x += (
 msg.twist.twist.linear.x * math.cos(self.odom_yaw) *
 step_duration)
 self.odom_position.y += (
 msg.twist.twist.linear.x * math.sin(self.odom_yaw) *
 step_duration)
 self.update_marker_angle_distance()
 self.last_odom_ts = msg.header.stamp
if __name__ == "__main__":
 rospy.init_node("follow_ar_tag")
 ar_tag_follower = ARTagFollower()
 ar_tag_follower.run()

 ww.usn.no

88

12.5 Appendix E – Configuration setup with rover and laptop

12.5.1 ROS1 installation guide for Linux operating system on Laptop
1. Download and install Ubuntu 20.04.6 LTS (Focal Fossa). Create a bootable USB drive

and follow the installation process.
2. Install ROS Noetic and required ROS packages on laptop. It allows to communicate with

nodes running on Leo rover which can easily launch graphical interface and visualization
tools. The following command refer to Linux terminal and shows the installation process:

It is important to source the bash terminal to setup the ROS environment. The following command
automatically source the bash terminal. There will no need to source the terminal every time after
editing /.bashrc file.

3. Installing required ROS package for the rover:

12.5.2 LeoOS installation for Leo Rover
1. Download the newest LeoOS image, LeoOS-1.2.0-2023-11-02-full.img.xz, and flash

Raspberry pi image to microSD card (minimum 32 GB) using Etcher bootable software.
2. After the flashing completes, disconnect the microSD card and put it back into the rover.

To access the microSD to Leo Rover, open the main electronics box by unscrewing the 4
socket-headed screws and insert it to the SD card slot on the Raspberry Pi.

https://releases.ubuntu.com/focal/
https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview
http://wiki.ros.org/ROS/Installation
https://wiki.ros.org/noetic/Installation/Ubuntu
https://github.com/LeoRover/LeoOS/releases
https://etcher.balena.io/

 ww.usn.no

89

12.5.3 Connect to Leo Rover AP
1. Turn ON the rover using its main power button located on the left side of the battery. The

LED on the button should start blinking green. After approximately 30 seconds later, the
LED should stop blinking and the Rover should be operational.

2. When the light stops blinking, check the host device for the WiFi network on Laptop. The
default credential start from LeoRover-XXXX, but instead of XXXX keyword, it will
appear unique identifies to the rover’s computer, shown in given below figure. To connect
with the SSID (LeoRover-18d4), use the default password “password”.

12.5.4 Connect via remote desktop
In the Leo Rover, full version of LeoOS is installed, which have desktop environments
installed, as well as RDP (Microsoft Remote Desktop Protocol) server. It allows to remotely
control desktop environment on Rover from laptop. Rover can be remotely controlled by all
operating systems, Windows, Linux, Mac. For this session Linux operating system is used to
install remote desktop.
1. Install and open Remmina Remote Desktop Client, shown in below figure:

2. Click on the + icon and fill the following fields:

• Server: 10.0.0.1
• Username: pi
• User password: raspberry
• Color depth: True color (32 bpp)
• (Optional) Name - if you want to save the settings.
• (Optional) Resolution - If you want to use a custom resolution.

3. After filling the setting, click on Save and Connect, shown in below figure:

https://remmina.org/how-to-install-remmina/

 ww.usn.no

90

12.5.5 Connect to a local network and the internet using remote desktop
By connecting the Rover to available local network, it provides Internet connection, and
allows to download files to the Rover. The LeoOS uses NetworkManager to manage the
Raspberry Pi's internal Wifi. The Wifi interface can connect to both 2.4 GHz and 5 GHz
networks. The easiest way to connect the internet, use remote desktop.

1. Click on the NetworkManager applet icon on the system tray, choose available
network and type the password and connected it. In the below figure, available
network is connected with the rover’s computer,.

 ww.usn.no

91

12.5.6 Connecting ROS network to the laptop
Configuring laptop with ROS network allows to run nodes that interfere with Leo Rover's
hardware, as well as graphical tools (like rqt or rviz) directly on your host machine.

1. Connect the laptop to the same network of rover is connected to, using Rover's Access
Point (LeoRover-18d4).

2. To properly communicate over the ROS network, laptop needs to be able to resolve
the master.localnet hostname. Open a terminal on the laptop and type the following
commands:

Note: If you don't see any output, that means you cannot resolve the hostname.

3. Check the IP address of the laptop using following command.

4. Specify the address of the rover’s master node and laptop IP address, by using the

following commands:

5. After this following the above steps, all ROS nodes will available on laptop which

being running on Leo Rover, easy to visualize the Rviz tool for simulation.

12.5.7 Building necessary ROS packages
In Leo Rover, ROS uses its own build system for building packages. These packages are the
main unit for organizing software in ROS. It lies on catkin workspace (catkin_ws) which
built as a standalone project, but it also allows to create own workspaces depending on
project requirements. To extend the ROS distribution, it is recommended to create empty
workspace named ros_ws inside the home directory on Raspberry Pi.

1. To create empty workspace ros_ws, use the following command inside the RPi
terminal.

2. Some of the packages will require installing additional dependencies to build and run

them. As the leo_bringup package is already installed on the system, this step is
redundant. For any other package, it is recommended to install rosdep which will
automatically install any related package dependencies:

3. Build the workspace using the following command, shown in below figure. If

workspace properly built, it would appear similar to like this.

 ww.usn.no

92

4. If everything works smoothly, a development space should be created inside the devel

directory. The last step is to modify the /etc/ros/setup.bash to use the overlay. Simply
edit this file (e.g. with nano) by adding the source file, where necessary packages are
going to installed.

5. After building development space in /ros_ws directory of RPi computer. All necessary

packages required to clone using GitHub links in the directory.
6. The GitHub links are attached to the packages name, including arbotix_ros,

leo_alvar_example, leo_example, leo_navigation_tutorial, pincher_arm and
rplidar_ros. User needs to clone GitHub links using the following command (as a
sample) git clone https://github.com/LeoRover/leo_navigation_tutorial.git inside /src
directory of /ros_ws, shown in below figure:

7. After cloning all required ROS package, it needs to build the workspace using

command catin buit, it looks similar to below figure:

https://wiki.ros.org/catkin/workspaces#Development_.28Devel.29_Space
https://github.com/vanadiumlabs/arbotix_ros.git
https://github.com/ros-perception/ar_track_alvar
https://github.com/LeoRover/leo_examples
https://github.com/LeoRover/leo_navigation_tutorial.git
https://github.com/urd00m/PincherArmInstallTutorial
https://github.com/Slamtec/rplidar_ros

 ww.usn.no

93

8. The last step to include these packages launch files robot.launch file, available at

/etc/ros/ directory, will start theirs ROS nodes at boot using leo-start on terminal . All
including launch files, it should be like the given below figure:

 ww.usn.no

94

 ww.usn.no

95

12.6 Appendix F – QuickStart Guide for Leo Rover

12.6.1 Prerequisites requirements:
• Ubuntu Linux 20.04 should run to the laptop.
• ROS1 Noetic and necessary package should installed to the rover.
• Lidar sensor, robotic arm and RPi camera should available and integrated with rover

ROS network.

12.6.2 Procedure:
Follow the steps subsequently in the given order. All commands throughout the guide means
to be type on Ubuntu terminal on laptop and rover’s computer terminal.

1. Turn ON the rover using its main power button located on the left side of the battery.
2. Connect to rover’s access point (LeoRover-18d4) with laptop.
3. If the rover is successfully connected with the rover’s access point, Lidar sensor start

rotating and robotic arm Arbotix controller’s light start blinking.
Note: It means that, rover’s ROS nodes automatically are started. However, it is
recommended to start the rover manually for proper functionalities.

4. Open the Remmina Remote Desktop Client from the laptop and click on saved rover’s
name.

a. Open the RPi terminal and stop the rover using the leo-stop command on
terminal, shown in given below figure:

b. Now, to start the nodes manually using the leo-start command on terminal,

shown in given below figure:

 ww.usn.no

96

Note: Press Ctrl+C is used to stop the nodes and exit the script. After starting
nodes manually, the Lidar sensor start rotating and available for performing
autonomous navigation. Simultaneously, robotic arm controller’s LED light
start blinking and available for performing grasping AR-Tags based small
objects.

5. Connect ROS network to the laptop for visualization of Leo Rover in simulated
environment, type the following commands on laptop Ubuntu terminal.

Note: All ROS nodes and topics are available on laptop which are currently running
on rover’s RPi computer.

a. Type the following commands to test the autonomous navigation on Rviz
simulation and physical environments for the Leo Rover.

b. Type the following commands to test the rover’s arm using Motion Planning

on Rviz simulation and physical environments.

c. To test the real-time object detection, activate available Marker
(/visualization_marker ROS topic) in Rviz tool, shown in below figure.

d. To find the exact position of AR-tag and arm’ end-effector, run the python

code mentioned in Appendix B – Python script for testing both AR-tag and
end-effector pose.

e. To perform the optimized grasping (picking) an AR-tag based small object,
run the python code mentioned in Appendix C – Python script for optimized
grasping (Picking).

f. To perform placing grasped small objects, run the python code mentioned in
Appendix D – Python script for following AR-tag and optimized grasping
(Placing)..

The QuickStart guide for the Leo Rover is now completed and available at USN, Porsgrun
campus for testing in both simulated and physical environment.

 ww.usn.no

97

12.7 Appendix G – Testing the hardware and software for the
rover

1. Setup and Prerequisites
Ensure the following steps:

a. Lidar sensor and robotic arm connected via USB to the Raspberry Pi (RPi).
b. ZED2 stereo camera is connected to additional computer vis USB cable and

the Ethernet cable is connected to both RPi board and additional computer.
c. Basic familiarity with Linux command line and ROS.

2. Hardware verfications
a. Power ON the rover from the left side of power box.

i. Ensure the Rpi, Lidar sensor, robotic arm and ZED2 camera are
properly connected and powered.

ii. Verfiy that RPi board, Lidar sensor connection, arm’s controller and
ZED2 indicate LEDs ON.

b. Connection verfication
i. Check the connected USBs deviced to the RPi board, as following

commands, ls -l /dev |grep ttyUSB.

3. Software setup:

a. Connect your laptop to the rover’s AP using its «passowrd», as follow:

b. Connect the baord via SSH connection

i. Use SSH to access the RPi (10.0.0.1) using the password «raspberry»

4. Installing required ROS Packages

 ww.usn.no

98

a. Follow the Instalation process, discussed in appendix section 12.5.7.
5. Testing ROS nodes and topics for Lidar

a. Start the rover using leo-start command on laptop terminal, as follows:

b. After starting the rover, its ROS nodes and topics are activated and available,
as it shown in red-color boxes in section a.

c. If the ROS nodes are succefully activated, the Lidar sensor start rotating and
the robotic arm Arbotix controller’s LED ligth start blinking continoesly.

d. To test the availabe ROS nodes and topics, use the following command
rostopic list, as shown in below figure.

 ww.usn.no

99

e. To the data
being published on a ROS topic /scan, using following command rostopic
echo /scan, as follow.

Note: Scan topic shows the Publised data by Laser scanner attached to Lidar.
You can also visulaize the Lase data in Rviz tool, shown in .

 ww.usn.no

100

6. Testing ROS nodes and topics for Pincher Arm
a. To verify the rover arm’s Dynamixel servo motors, use the follwoing

commands, arbotix_terminal /dev/ttyUSB1, as follows:

b. To test the servo motors, launch the test.launch file from arbotix_test

package, as follows:

c. After the launching the file all ROS nodes and topic related to arm will
available using rostopic list command, as follows:

 ww.usn.no

101

d. To test the motors on terminal, use the following commands, as follows:

Note: The same commands will be used to test the other servo motors. You
just need to change the motor name /dynamixel?.

7. Testing ROS nodes and topics for ZED2 camera
a. Make sure the Ethernet cable is connected to additional computer and has

same network as RPi.
b. Launch the zed2.luanch file from its installed ROS package zed_wrapper,

available at workspace directory /ros_ws, as follows:

c. Export the IP address of the additional computer (10.0.0.82) to RPi board to
test the camera functionalities in rover’s operating system, as follows:

Note: There are multiple ROS nodes and topic for ZED2 camera, however few
of them are listed in the figure.

8. Testing Lidar sensor in Rviz tool

 ww.usn.no

102

a. To test the Lidar sensor, run the follwoing command, as follows:

b. Rover will look like this as shown in given below figure:

Note: If the Lidar sensor and robotic arm are succefully connected to rover, it
will also visulize in Rviz tool. Make sure the postion of the attached devices
should be same as in physical model.

 ww.usn.no

103

c. To check the publised Lidar data, enable /scan topic by pressing Add tab ,
shown in red-colour box, as follows:

Note: The Laser data is shown in red-dotted lines along with the rover in Rviz tool. This
process ensure that the Lidar sensor is sucessfully connected and working properly.

9. Testing Robotic arm in Rviz tool
a. Launch the pincher_arm_moveit.launch file from its ROS package

pincher_arm_moveit_config, as follows:

b. The rover will appear in light-red color in Rviz tool after.

 ww.usn.no

104

Note: In the left side of the figure, there are several tabs to test the arm fucntionalities.
This process ensure that the robotic arm is succesfully connected and ready for testing.

	1 Introduction
	1.1 Background
	1.2 Objectives
	1.3 Methods
	1.4 Scope
	1.5 Contribution
	1.6 Software tools
	1.7 Report Structure

	2 Literature review
	3 System architecture
	3.1 Specifications of Leo Rover
	3.2 Hardware components for the rover
	3.3 Rover system architecture
	3.3.1 Hardware architecture
	3.3.2 Software architecture
	3.3.2.1 Functionality
	3.3.2.2 Usability
	3.3.2.3 Reliability
	3.3.2.4 Performance
	3.3.2.5 Supportability
	3.3.2.6 “+”

	3.3.3 Use case
	3.3.4 Domain model
	3.3.5 Use Case analysis
	3.3.6 System sequence diagram
	3.3.7 Development process:

	3.4 ROS nodes and topics for rover

	4 Sensor integration
	4.1 Assembly of Lidar sensor
	4.2 Assembly of ZED2 camera
	4.3 Interfacing with ROS
	4.3.1 ROS commands
	4.3.2 ROS packages
	4.3.3 ROS workspace
	4.3.4 Establishing a network connection
	4.3.5 Rplidar A2M12 Lidar sensor
	4.3.6 Phantom-X Pincher arm
	4.3.7 ZED2 stereo camera

	5 Autonomous navigation
	5.1 Integration of leo_navigation package
	5.1.1 Odometry
	5.1.2 SLAM
	5.1.3 Navigation

	6 Object recognition & detection
	6.1 AR-tags
	6.2 Integration of Alvar package
	6.3 Testing AR-tags using Leo Rover (RPi) camera
	6.4 Testing AR-tags using ZED2 stereo camera

	7 Optimized grasping position
	7.1 Pincher arm working span area
	7.2 MoveIt
	7.3 Motion planning and execution with MoveIt
	7.3.1 Simulation of Pincher arm
	7.3.2 Preliminary testing
	7.3.3 Testing Pincher arm using Python script

	7.4 Integration of grasping with AR-tags
	7.4.1 AR-tag real-time identification
	7.4.2 Grasping procedure
	7.4.2.1 Picking up an AR-tag based object
	7.4.2.2 Placing a grasped object

	8 Risk assessment and ethical considerations
	8.1 Preliminary hazard analysis (PHA)

	9 Discussion
	9.1 Setup and configurations
	9.2 Camera selection
	9.3 Autonomous navigation
	9.4 Object detection
	9.5 Arm’s motors Ids correction
	9.6 MoveIt
	9.7 Simulation environment

	10 Conclusion
	10.1 Future work

	11 References
	12 Appendices
	12.1 Appendix A – FMH606 Master thesis task description
	12.2 Appendix B – Python script for testing both AR-tag and end-effector pose
	12.3 Appendix C – Python script for optimized grasping (Picking)
	12.4 Appendix D – Python script for following AR-tag and optimized grasping (Placing).
	12.5 Appendix E – Configuration setup with rover and laptop
	12.5.1 ROS1 installation guide for Linux operating system on Laptop
	12.5.2 LeoOS installation for Leo Rover
	12.5.3 Connect to Leo Rover AP
	12.5.4 Connect via remote desktop
	12.5.5 Connect to a local network and the internet using remote desktop
	12.5.6 Connecting ROS network to the laptop
	12.5.7 Building necessary ROS packages

	12.6 Appendix F – QuickStart Guide for Leo Rover
	12.6.1 Prerequisites requirements:
	12.6.2 Procedure:

	12.7 Appendix G – Testing the hardware and software for the rover

