

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2024

Industrial IT and Automation

Dynamic Positioning, system
identification and control of marine

vessels - using the OSP simulator

Jan-Robin Brustad

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis, 2024

Title: Dynamic Positioning, system identification and control of marine vessels - using the

OSP simulator

Number of pages: 107

Keywords: Open Simulator Platform, MIMO system, Model predictive control, System

identification, State estimation, qpOASES, MATLAB and Simulink.

Student: Jan-Robin Brustad

Supervisor: David Di Ruscio

External partner: None

Summary:

This project explores the Balchen model and the OSP package with a goal to find a vessel

model through system identification and try to construct a DP system.

The objective of this project is to perform literature research about DP systems for marine

vessels, do system identification of an existing model and implement a DP system for the

selected marine vessel.

The methods chapter focuses on open loop testing to try to find the boundaries of the

system, system identification in Simulink, and the development of an MPC controller in

Simulink. Simulink was used to perform “live” simulations, while MATLAB was used to

initialize Kalman filter, and set up NE diagrams showing the marine vessels position.

For the MPC controller an LQ optimal control problem was selected as a start, and this

had to be fit in the standard QP formulation that was supported by qpOASES solver.

Finaly, the conclusion discusses how successful this project was in regards of the

objective.

 Preface

3

Preface
This project stemmed from the curiosity to explore the OSP package, explore the possibilities

it brings in regards of system identification and the development of an MPC controller for a

marine vessel.

This report follows the IMRaD structure with the introduction divided into introduction and

theory. Here the reader will gain beginner friendly theory about DP systems and the different

parts needed to design a controller with the OSP package, MATLAB and Simulink, and how

to perform different experiments.

The successful goal for this project is to be able to present an MPC controller designed for one

of the elements in the OSP package.

Lastly, I would like to thank my supervisor David Di Ruscio for the support and guidance

throughout this project. His feedback on my work has been of great importance and has helped

me navigate through a whole new field in my knowledge. I would also express my gratitude to

my partner and family for supporting me throughout my work and helping me keep my eyes

on the end goal, the final delivery.

Porsgrunn, 15.05.2024

Jan-Robin Brustad

 Contents

4

Contents

1 Introduction ... 8

1.1 Background ... 8
1.2 Objective .. 8
1.3 Previous work ... 9
1.4 System overview ... 9
1.5 Methods ... 9
1.6 Report structure. ... 10

2 Theory .. 11

2.1 Dynamic positioning... 11
2.1.1 Six Degrees of freedom .. 12
2.1.2 Input, output and predicted states. ... 13

2.2 Forces acting on a marine vessel. .. 14
2.2.1 Wind .. 14
2.2.2 Waves ... 16
2.2.3 Sea current... 17

2.3 Vessel models ... 17
2.3.1 Balchen model ... 18
2.3.2 R/V Gunnerus .. 19

2.4 OSP... 21
2.5 MATLAB and Simulink ... 21
2.6 FMI and FMU .. 21
2.7 Kalman Filter ... 22
2.8 Controller ... 23

2.8.1 MPC .. 23
2.8.2 PID .. 24

2.9 System identification .. 25

3 Methods ... 27

3.1 Open loop testing. .. 27
3.2 System Identification .. 28

3.2.1 Input data and measurements. .. 29
3.2.2 Using D-SR to get an SSM. ... 31
3.2.3 Analysis of the SSM .. 32

3.3 State estimation and Kalman filter. ... 32
3.4 Control of the marine vessels ... 35

3.4.1 PID Controller .. 35
3.4.2 MPC Controller .. 36
3.4.3 MPC Controller with integral action .. 43

4 Requirements and Design .. 46

4.1 FURPS+ .. 46
4.2 UML diagrams ... 46
4.3 Design .. 48

5 Results ... 51

5.1 Open loop testing ... 51
5.2 System Identification .. 54

5.2.1 System matrices. ... 57
5.2.2 System analysis. ... 58

 Contents

5

5.3 State estimator and Kalman filter. ... 59
5.4 Control of the marine vessel ... 65

5.4.1 MPC Controller .. 65
5.4.2 MPC Controller with integral action .. 73

6 Discussion ... 86

6.1 Further work .. 87

7 Conclusion .. 89

 Nomenclature/Abbreviation

6

Nomenclature/Abbreviation

Table 1-1 Abbreviation list

Abbreviation Definition Explanation

DP Dynamic Positioning A system that can position a marine

vessel at any place and keep it in that

position.

D-SR Deterministic and Stochastic

systems and Realization

A method of subspace system

identification. It can be used to

completely identify a Kalman filter

model from known input and output

data, as well as identifying the

system order.

FMI Functional Mock-up Interface FMI is a standardized interface

predominantly utilized in computer

simulations. It is widely recognized

as the preferred standard for co-

simulation.

FMU Functional Mockup Unit An FMU is a set of models that

conforms to the FMI standard. It is

commonly used to share models

between different simulation

environments.

GPS Global positioning system GPS is a navigation system based on

satellites and it can provide users

around the world with precise

location and time information.

MCR Maximum continuous rating The highest power output that a

marine engine can deliver

continuously.

 1 Introduction

7

MIMO Multiple Inputs, Multiple Outputs A system with more than one input

and output.

MPC Model Predictive Control MPC is a control algorithm that uses

a predictive model to optimize future

system responses based on given

inputs, continually adjusting to

achieve the best performance.

NE North and East A two-dimensional diagram showing

the marine vessel position in north

and east.

NED North, East, and Down. A diagram that shows the marine

vessel position in north, east and

down direction.

PID Proportional Integral Derivative PID is a type of feedback controller

that adjusts system outputs based on

the measured error between a desired

setpoint and the actual output. The

error is processed through three

distinct functions, the proportional,

integral, and derivative which

together adjust the control action to

minimize the error.

OSP Open Simulator Platform The OSP is an open-source software

package for co-simulation of

maritime vessels. The platform

builds on the FMI standard and aims

to reuse digital twins.

SP Set point The desired value for a process that

an operator has selected.

SSM State space model A mathematical framework that can

be used to predict the future states of

a system and filter the output values.

 1 Introduction

8

1 Introduction
In this chapter a brief introduction to dynamic positioning is given, the objective is elaborated

and some of the previous work is discussed. There is also presented a short system overview

which elaborates how this work differentiates from the previous work, and the report structure

is explained at the end.

1.1 Background

Marine vessels are complex and can be very challenging to maneuver close to oil platforms

or other marine installations. A typical marine vessel consists of actuators like tunnel

thrusters in the front and the back, a propeller, and a rudder. To dock a marine vessel precise

control of these actuators is needed and this is where dynamic positioning comes in handy.

Dynamic positioning systems where first developed in the early 60’s in the USA[1] and the

development soon escalated around the world for more advanced systems. The dynamic

positioning systems in Norway were pioneered by Jens A. Balchen who traveled to USA to

study their DP systems[1]. He later co-wrote an article that made the foundation for DP

systems in Norway and influenced Kongsberg to take advantage of DP systems in 1975[1].

One of the big problems with classical PID controllers is the need for deviation for the

controller to give a control value to the actuators. For marine vessels multiple PID controllers

are needed, and each of them needs to be tuned individually. Jens A. Balchen solves this

problem by implementing a modern control algorithm based on the Kalman filter[2]. The

Kalman filter is especially useful since it can predict unmeasured states of the system that can

be utilized in a control algorithm like the MPC controller.

A DP system for ships can includes autopilot and automatic positioning without using an

anchor.

The background for this project is the interest to reconstruct the DP systems from the Balchen

model through system identification and evaluate the need for a modified version. To reach

this goal a model in the OSP package can be selected to perform system identification on,

instead of a real ship.

1.2 Objective

The objective is divided into different tasks:

• Perform literature research about DP systems of ships.

• Use an existing dynamic model of a marine vessel and perform experiment design for

system identification in order to create models of the vessel.

• Implement a DP system for the vessel.

• Perform Simulation experiments by using MATLAB or similar.

The objective is further elaborated in Appendix A.

 1 Introduction

9

1.3 Previous work

The previous work related to this project is spread around multiple topics. The first and

maybe most important work is the Balchen et al 1980 model[2]. DP systems where first

developed with PID controllers in the early sixties. There were one PID controller for each

surge, yaw and sway motion [2]. This obviously has some disadvantages because of coupling

between sway, surge, and yaw. This means that the integral action of the controllers must be

slow in order for the controllers to give proper control value. Further on in the Balchen model

a successful controller consisting of modern control algorithms, the Kalman filter and optimal

control is introduced[2].

In 2022 Nour Mohamad Bargouth developed a control system based on the Balchen model.

Bargouth tried implementing several different controllers, all of them based on MPC. The types

of MPC’s explored where standard MPC, reduced size MPC, simple MPC and simple MPC

with integral action[3].

1.4 System overview

This project differs from the previous work in the model selection’s part, here there is taken

an experimental approach to finding a model using the OSP package. The OSP package

comes with a demo selection of maritime reference models[4], and the Gunnerus-DP was

selected since it came with an ready to go marine vessel with thruster dynamics. The reason

for this is to have the opportunity to do system identification on a model that is as realistic as

possible.

The developed systems are divided into 4 parts, one part for open loop testing, one for system

identification, one for designing a state estimator and a final part where an MPC controller is

developed for the selected marine vessel.

The development tools that were selected are MATLAB and Simulink, where MATLAB is

used for scripting, state estimatior initializing and for making NE diagrams which is very

difficult in Simulink. Simulink is, however, a solid software for executing a simulation in real

time and makes it easy for the operator to adjust the different set points and watch live

changes.

1.5 Methods

This project is divided into multiple parts that are listed below.

• Open loop testing.

• System identification

• Developing a state estimator.

• Developing an MPC controller.

• Developing an MPC controller with integral action.

The reason for dividing the project into those parts is to create a barrier between the different

systems developed. This way, one part is finished when the next part is started and can later

be run individually as a standalone system.

 1 Introduction

10

The open loop testing focuses on testing the selected marine vessel and seeing how it reacts

to inputs. It is also used to explore what a realistic thrust in the main propeller would look

like.

The system identification builds on the open loop test application but focuses more on

making a setup to create random input signals to the different actuators and measure the

outputs.

The development of a state estimator also builds on the open loop setup but focuses on

running a state estimator of the marine vessel in parallel with the real model to measure the

accuracy of the identified state space model.

The development of a controller mainly focuses on an MPC controller, but PID controller is

also discussed. Further on the MPC controller is explored more in depth, and the

implementation of integral action is considered.

1.6 Report structure.

The report is structured into 6 main parts, which includes the introduction, theory, methods,

results, discussion and finally a conclusion. The purpose of the introduction chapter is to give

the reader a picture of the work and methods used.

In the theory chapter the reader gains some backgrounds knowledge about different topics

such as PID, MPC, DP, OSP and more. This theory part is useful when reading this report if

some of the subjects are unknown from before.

The methods and result chapters are divided into two parts; the methods chapters elaborate

the methods and strategies used to reach the objective, and the result chapter explains and

presents the results.

The discussion chapter analyses the results regarding problems or success with the given

models, methods, and if there are any deviations. Finally, the conclusion summarizes the

report and the work done to figure out if it is in line with the objective of this project.

 2 Theory

11

2 Theory
The following chapter presents relevant theory that will be considered when choosing a

method.

2.1 Dynamic positioning

For a marine vessel to have a DP system, there must be a control system that controls surge,

sway, and yaw. By controlling these variables, it is possible to keep a marine vessel at a

stationary location. This is especially useful when trying to dock a supply ship close to an oil

rig or other fixed positions[2].

A dynamic positioning system usually consist of a control algorithm, positioning

measurement, a propulsion and a rudder system[2]. The control algorithm can either be a PID

controller for each surge, sway, and yaw or an MPC controller that controls them all at the

same time. The controller algorithm can be considered the heart of the DP system and is

crucial for a marine vessel to keep a position and maintain safety measures for the ship.

The positioning measurement can consist of multiple sensors and models. Typically, a GPS

system is implemented, but there can also be other systems. The positioning reference system

can either be relative positioning, or absolute positioning system[5]. The GPS system is an

absolute positioning system, while a relative positioning system can be based on laser

technology and gives the position in relation to a target.

The propulsion system usually consists of different thrusters and propellers. The main

propeller controls the surge, and sway can be controlled using tunnel thrusters or azimuth

thrusters[5]. Finally, yaw can be controlled using a rudder or even an azimuth thruster. Figure

2-1 shows example of placement for the different thrusters, propeller, and rudder on a marine

vessel.

 2 Theory

12

Figure 2-1 Thrusters, propeller and rudder illustrated on a marine vessel.

2.1.1 Six Degrees of freedom

Figure 2-2 illustrates the six degrees of freedom that a marine vessel has. They are called

yaw, sway, heave, roll, surge, and pitch [6], surge, sway and heave are linear measurements

in meter and yaw, roll and pitch are angles measured in rad. Only three of them are directly

controllable and those are surge, yaw, and sway. Typically, a propeller or a thruster controls

surge which can be thought of as forward or backwards direction. Sway is sideway control

and is typically done through tunnel thrusters. The yaw is a rotational movement that decides

how the marine vessel turns. A rudder usually decides how yaw is controlled.

 2 Theory

13

Figure 2-2 A marine vessel with six degrees of freedom.

2.1.2 Input, output and predicted states.

For this system there are three inputs, three outputs and three unknown states that can be

predicted. In all there are six states in the model which is illustrated in Figure 2-3. The

disturbances, if implemented, could also be thought of as an input and could be included in

the system identification part.

Figure 2-3 Inputs, Outputs, Disturbances, and states of the system.

 2 Theory

14

2.2 Forces acting on a marine vessel.

For this project three different disturbances are considered: The sea current, waves, and wind

forces. These disturbances are neglected for the development parts of this project, but they

are still relevant and will be discussed briefly in this chapter.

2.2.1 Wind

A marine vessel is subject to wind forces in all degrees of freedom, here only the wind forces

in surge, sway and yaw will be analyzed. Figure 2-4 shows how the wind can affect surge,

sway, and yaw. If the wind acts with greater pressure on either the rear or front of the marine

vessel it will influence the marine vessel to rotate in the yaw direction. This means that the

rudder, or azimuth thrusters need to compensate for the acting force.

Figure 2-4 Wind force acting on marine vessel, in BODY coordinates. Here head wind is affecting surge

direction, and beam wind is affecting sway direction.

The combined wind force can be expressed like equation (2.1) for symmetric marine vessels

at rest[7].

𝐹𝑤 = [

𝐹𝑤,𝑠𝑢
𝐹𝑤,𝑠𝑤
𝑁𝑤

] =
1

2
𝜌𝑎𝑉𝑤

2 ∙ [

𝐶𝑥 cos(𝛾)𝐴𝐹
𝐶𝑦 sin(𝛾) 𝐴𝐿
𝐶𝑁 sin(2𝛾) 𝐴𝐿𝐿

]

(2.1)

Here are the variables explained:

𝐹𝑤: The total force of the wind given as a matrix.

𝐹𝑤,𝑠𝑢: The wind force in surge direction [N].

𝐹𝑤,𝑠𝑤: The wind force in sway direction [N].

 2 Theory

15

𝑁𝑤: The wind force in yaw [Nm].

𝜌𝑎: The air density of the wind. 1.23[kg/m3][3].

𝑉𝑟𝑤: Relative wind speed [m/s].

𝐶𝑥: The wind coefficient in surge direction. 𝐶𝑥 ∈ [0.50, 0.90] [7].

𝐶𝑦: The wind coefficient in sway direction. 𝐶𝑦 ∈ [0.70, 0.95] [7].

𝐶𝑁: The wind coefficient in yaw. 𝐶𝑁 ∈ [0.05, 0.20] [7].

𝛾: The angle of the wind affecting the marine vessel.

𝐴𝐹: The frontal projected area of the wind on the marine vessel. This is illustrated as head

wind in Figure 2-4.

𝐴𝐿: The lateral projected area of the wind on the marine vessel. This is illustrated as beam

wind in Figure 2-4.

𝐿: The overall length of the marine vessel.

The wind angle of attack can be expressed as equation (2.2)[7].

𝛾 = 𝜓 − 𝛽𝑣𝑤 − 𝜋 (2.2)

Here,

𝜓: The angle of the wind relative to the vessel heading in surge.

𝛽𝑣𝑤: The wind direction relative to the true north [rad].

𝜋: Shifting the wind angle by 180 degrees, changing the wind from where it is coming to

where the wind is heading.

Equation (2.3) shows the relative wind speed[7].

𝑉𝑟𝑤 = √𝑣𝑟𝑤,𝑠𝑢
2 + 𝑣𝑟𝑤,𝑠𝑤

2
(2.3)

Where:

𝑣𝑟𝑤,𝑠𝑢 : The component of the relative wind speed in the surge direction.

𝑣𝑟𝑤,𝑠𝑤: The component of the relative wind speed in the sway direction.

𝑣𝑟𝑤,𝑠𝑢 = 𝑉𝑤 cos(𝛽𝑣𝑤 − 𝜓) (2.4)

𝑣𝑟𝑤,𝑠𝑤 = 𝑉𝑤 sin(𝛽𝑣𝑤 − 𝜓) (2.5)

For equation (2.4) and (2.5):

𝑉𝑤: is the measured wind speed given in [m/s].

The wind speed and description of the wind is given in Table 2-1[7].

 2 Theory

16

Table 2-1 Wind speed in knots

Description of wind Wind speed [knots].

Calm 0-1

Light air 2-3

Light breeze 4-7

Gentle breeze 8-11

Moderate breeze 12-16

Fresh breeze 17-21

Strong breeze 22-27

Moderate gale 28-33

Fresh breeze 34-40

Strong gale 41-48

Whole gale 49-56

Storm 57-65

Hurricane More than 65

To calculate the wind speed in m/s, the formula in equation (2.6) can be used.

1[𝑘𝑛𝑜𝑡𝑠] = 0.51[𝑚/𝑠] (2.6)

2.2.2 Waves

A marine vessel is influenced by waves in a first order and a second order part. This means

that the waves exist of a low frequency part, and a higher frequency oscillatory part. For

simulation purposes it is a good idea to separate those two[7].

Wave-frequency motion: The first order wave force component gives a zero mean

oscillatory motion. This can be removed by introducing a filter to the wave forces[7].

 2 Theory

17

Wave drift forces: The second order wave force component is a slow varying component

which is often referred to as the low frequency wave motion. To counter this low frequency

part of wave force integral action must be used[7].

2.2.3 Sea current

The Balchen model introduces the sea current in NED coordinates that includes the current

velocity. The sea current is given in equation (2.12), (2.13), and (2.14)

�̇�𝑐,𝑁 = 𝜂𝑐,𝑁 (2.7)

�̇�𝑐,𝐸 = 𝜂𝑐,𝐸 (2.8)

�̇�𝑐,𝜓 = 𝜂𝑐,𝜓 (2.9)

Here:

𝜂𝑐,𝑁 , 𝜂𝑐,𝐸 , 𝜂𝑐,𝜓 : zero mean white noises

𝑣𝑐,𝑁: Water current velocity in the north direction.

𝑣𝑐,𝐸: Water current velocity in the east direction.

𝑁𝑐,𝜓: Water current moment in yaw

To transform the sea current to BODY coordinates the transpose transformation matrix can

be used from equation(2.10) [2].

𝑅(𝜓) = [
cos(𝜓) − sin(𝜓) 0
sin(𝜓) cos(𝜓) 0
0 0 1

]
(2.10)

Water current velocities in BODY coordinates are then given in equation (2.11).

[

𝑣𝑐,𝑠𝑢𝑟𝑔𝑒
𝑣𝑐,𝑠𝑤𝑎𝑦
𝑁𝑐

] = 𝑅(𝜓)𝑇 [

𝑣𝑐,𝑁
𝑣𝑐,𝐸
𝑁𝑐,𝜓

]
(2.11)

Here:

𝑣𝑐,𝑠𝑢𝑟𝑔𝑒: Water current velocity in surge direction.

𝑣𝑐,𝑠𝑤𝑎𝑦: Water current velocity in sway direction.

𝑁𝑐 : Water current moment in yaw.

2.3 Vessel models

A vessel model can either be a mathematical model [2], a real marine vessel or a simulated

version of a marine vessel. An example of an simulated vessel can be the Gunnerus-DP [8]

provided as a reference model in the OSP package. In the following subchapters the Balchen

model and Gunnerus models are given which will lay the foundation for the project work.

 2 Theory

18

2.3.1 Balchen model

The Balchen model is a mathematical model describing a marine vessel motion [2]. The

model is designed to be used with a Kalman filter making it suitable for MPC controllers. To

understand the basics behind the Balchen model, one would have to understand Newtons

second law.

∑𝐹 = 𝑚𝑎
(2.12)

Where:

F – Forces acting on the vessel [N].

m – The mass of the vessel [kg].

a - The acceleration of the vessel [m/s2].

Equation (2.12) can be further expanded where the sum of forces is wind force, current force

from water and thruster force.

∑𝐹 = 𝐹𝑤 + 𝐹𝑐 + 𝐹𝑇
(2.13)

Here:

Fw – The wind force [N].

Fc – The current force from sea water [N].

FT – The thruster force [N].

Since the high frequency part of the Balchen model is very small and oscillates around the

low frequency part[2] it is neglected for this project. The low frequency model is given by

equation (2.14) to (2.19). For easier readability the same variable letters and indexes have

been used as in the previous work by Bargouth [3].

𝑑𝑥𝑠𝑢
𝑑𝑡

= 𝑣𝑠𝑢
(2.14)

𝑑𝑥𝑠𝑤
𝑑𝑡

= 𝑣𝑠𝑤
(2.15)

𝑑𝜓

𝑑𝑡
= 𝑣𝜓

(2.16)

𝑣𝑠𝑢 = −
𝑑1
𝑚1
|𝑣𝑠𝑢 − 𝑣𝑐𝑠𝑢|(𝑣𝑠𝑢 − 𝑣𝑐𝑠𝑢) +

1

𝑚1
(𝐹𝑤𝑠𝑢 + 𝐹𝑡𝑠𝑢) + 𝜂1

(2.17)

 2 Theory

19

𝑣𝑠𝑤 = −
𝑑2
𝑚2
|𝑣𝑠𝑤 − 𝑣𝑐𝑠𝑤|(𝑣𝑠𝑤 − 𝑣𝑐𝑠𝑤) +

1

𝑚2
(𝐹𝑤𝑠𝑤 + 𝐹𝑡𝑠𝑤) + 𝜂2

(2.18)

𝑣𝜓 = −
𝑑3
𝑚3
|𝑣𝜓|𝑣𝜓 −

𝑑4
𝑚3
|𝑣𝑠𝑤 − 𝑣𝑐𝑠𝑤|(𝑣𝑠𝑤 − 𝑣𝑐𝑠𝑤) +

1

𝑚3

(𝑁𝑐 + 𝑁𝑤 + 𝑁𝑡) + 𝜂3
(2.19)

The different variables are defined below:

𝑥𝑠𝑢: The position of the marine vessel in x direction (surge) [m].

𝑣𝑠𝑢: The velocity of the marine vessel in x direction [m/s].

𝑥𝑠𝑤: The position of the marine vessel in y direction (sway) [m].

𝑣𝑠𝑤: The velocity of the marine vessel in y direction(sway) [m/s].

𝜓: The heading of the marine vessel in yaw [rad].

𝑣𝜓: The yaw velocity in heading of the marine vessel [rad/s].

𝜂1, 𝜂2, 𝜂3: These are assumed to be from zero mean gaussian white noise process[2].

𝑑1, 𝑑2, 𝑑3, 𝑑4: These are the drag and momentum coefficients[2]. The difference in angle

between the vessel heading and water current direction is usually given as a function, where

the drag and momentum coefficients can be gathered.

𝑚1, 𝑚1, 𝑚1: These are the inertial coefficients which can be assumed to be constants[2].

𝐹𝑤𝑠𝑢: This is the wind force in x direction.

𝐹𝑤𝑠𝑤: This is the wind force in y direction.

𝐹𝑡𝑠𝑢: This is the thruster force in x direction.

𝐹𝑡𝑠𝑤: This is the thruster force in y direction.

𝑁𝑐, 𝑁𝑤, 𝑁𝑡: This are the current moment, wind moment and thrust moment.

𝑣𝑐𝑠𝑢 , 𝑣𝑐𝑠𝑤: Current in x direction and current in y direction.

2.3.2 R/V Gunnerus

The R/V Gunnerus is a marine research vessel owned by NTNU and was first deployed in

2006 for its purposes. R/V Gunnerus is named after Johan Ernst Gunnerus and is the second

ship named Gunnerus by NTNU[9].

The Gunnerus-DP package comes with several FMUs that can be used. This includes the

vessel model, and the vessel model is shown in Figure 2-5.

 2 Theory

20

Figure 2-5 Vessel model imported as an FMU in Simulink.

The sum of forces has been split into thrust, wave forces and current velocity. This is similar

to the Balchen model as explained in chapter 2.3.1. The FMUs in the Gunnerus-DP package

is depicted in Figure 2-6.

Figure 2-6 Gunnerus-DP FMU packages description[8]

As Figure 2-5 shows there are no wind forces connected to the vessel model. The

documentation for the Gunnerus-DP states that additional forces can be connected to either

the Wave_force, or the Thrust in Figure 2-5 since they are both internally connected to the

same summation block [8].

 2 Theory

21

2.4 OSP

OSP stands for Open Simulation Platform and is an open-source software for simulating

marine vessels[10]. It has the possibility to co-simulate marine equipment and even complete

marine vessels like the Gunnerus-DP.

The OSP package comes with many software applications, including a demo application with

a user interface and a command prompt-based co-simulator(libcosim). There are also many

reference models that can be freely used[4].

The OSP packages are built on the FMI standard meaning it can be integrated into many

different software’s, including MATLAB with Simulink. The Gunnerus-DP has been

included in the reference model package and the vessel model can be imported as an FMU

into Simulink[8].

2.5 MATLAB and Simulink

For this project MATLAB version 9.12.0.2327980 (R2022a) Update 7 and Simulink version

10.5 (R2022a) is used. Both MATLAB and Simulink are products of MathWorks and are

accessible from MathWorks.com[11]. MATLAB serves primarily as a scripting environment,

and Simulink offers a graphical programming environment designed for modeling and

simulating. They work great together and often an initializing script can be made in

MATLAB for a simulation in Simulink. Furthermore, Simulink offers the ability to log data

directly to MATLAB workspace that can be fetched and stored in matrices or vectors. This

makes it possible to make graphs and analyze data in the MATLAB environment after a

Simulink simulation.

They both support extra packages outside the standard installation and are backed by a big

community that provides a lot of learning resources. An example of this is the YouTube

channel for MATLAB[12].

2.6 FMI and FMU

The OSP simulator depends on FMUs of different models to function. FMU can be the model

of a marine vessel, thruster dynamics or even simple physics laws for simulation purposes.

The main reason for having the FMI standard in the OSP simulator is to co-simulate. This

means that different frameworks can use the same FMU model and interact with it at the

same time. The reason they can communicate with the same FMU model lies in the FMI

standard. FMI stands for Functional mock-up interface and is an interface that tells how

software like MATLAB can communicate with FMUs. In Figure 2-7 it is shown how

MATLAB with Simulink and a OSP simulation is both communicating to the same FMU

model.

 2 Theory

22

Figure 2-7 How MATLAB with Simulink and the OSP simulation can interact with the same FMU over the

FMI standard.

2.7 Kalman Filter

The Kalman Filter is an algorithm for state estimation and prediction, and it is quite good at

estimating states that are not easily measurable. It is a model-based algorithm which requires

identifying a model of the system through system identification or mathematical modelling. It

can estimate states that are not measured, and the states that are measured. Typically the

Kalman filter runs in parallel with the real process to predict states that are not measured for

various reasons[13]. The reasons can be that it is expensive to install sensor equipment, or

that the state can’t be measured directly, for example the temperature in a rocket chamber of

a spacecraft.

Figure 2-8 Kalman Filter and real process illustrated together.

 2 Theory

23

In Figure 2-8 yest is shown, this is the filtered value of y, the process value and sometimes it is

better to use this if the measurements are prone to noise. The user interface can for example

minimize ripple effects making graphs easier to read for the operator.

The formulas used in the Kalman filter is shown in equation (2.20) and (2.21), this are the

SSM formulas.

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑓𝑘(�̅�𝑘) (2.20)

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑔𝑘(�̅�𝑘) (2.21)

Here:

𝑥𝑘+1: The next predicted state.

𝐴: State transition matrix.

𝑥𝑘: The current state value.

𝐵: The input matrix.

𝑢𝑘: The input vector at current timestep.

𝑦𝑘: The output value at current timestep.

𝐶: The output matrix.

𝑓𝑘(�̅�𝑘): Process noise or disturbance

𝑔𝑘(�̅�𝑘): the measurement noise or disturbance in output.

2.8 Controller

There are many types of controllers that can be used to control a marine vessel. In this report

two types of controllers are considered.

2.8.1 MPC

MPC stands for Model Predictive Control and is a controller type that uses a model of a

system to predict future behavior. The reason for this is that the real system can’t be

calculated in advance, but the model can[14].

MPC is an algorithm that solves an optimization problem. The optimization problem is the

control value and needs to be solved at each timestep. The reason for solving the control

optimization problem at each timestep is that new measurement data is available[14].

An MPC controller solves the control value for many steps forward but uses only the first

control value. The rest is discarded since the control optimization problem must be solved

again[15]. MPC can use a sliding horizon strategy where the initial state is used to calculate

the first control value, then the system takes one timestep forward and uses the previous

calculated state values to calculate a new control value[14].

An MPC controller can handle MIMO systems very efficiently. This means that they can

handle multiple control values for different actuators for example.

 2 Theory

24

Figure 2-9 Block diagram for a basic MPC controller.

Figure 2-9 shows the block diagram for a basic MPC controller. The controller consists of a

prediction model, for example the Kalman filter and an optimizer.

To use an MPC controller in Simulink a solver must be imported. qpOASES is an solver that

is supported by Simulink and is relative easy to set up if the developer has some general

knowledge in adding an C++ compiler in MATLAB, there are some instructions on this from

Roshan Sharma website in the course “Model Predictive Control, IIA4717”[16].

2.8.2 PID

A PID controller is a controller that is dependent on the error to give a control value. PID

stands for Proportional, Integral and Derivative. PID controllers are the main controllers of

choice because of their simplicity. A PID controller can be split into simpler parts, for

example P controller, PI controller, PID controller or a PD controller[17].

Since the PID controller is dependent on the error, the error must be calculated continuously.

The error is the difference between the reference value and the measured value as seen in

formula (2.22).

The PID controller is excellent for SISO models but can also be used for MIMO systems. For

MIMO systems there must be a PID controller for each the surge, sway, and yaw.

𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) (2.22)

Here:

𝑒(𝑡): The error signal, representing the error between reference value and measurement.

𝑟(𝑡): The reference value, often referred to as SP which is the state the control system aims to

achieve.

𝑦(𝑡): The actual measurement value, typically from a sensor.

 2 Theory

25

𝑢(𝑡) = 𝐾𝑝 ∙ 𝑒(𝑡) +
𝐾𝑝

𝑇𝑖
∙ ∫ 𝑒(𝑡) ∙ 𝑑𝑡 + 𝐾𝑝𝑇𝑑 ∙

𝑑 𝑒(𝑡)

𝑑𝑡

𝑡

0

(2.23)

𝑢(𝑡): The control signal that is applied to the system, based on the error.

𝐾𝑝: The proportional gain, this a tuning parameter that is multiplied to the error.

𝑇𝑖: The integral time, used to calculate the integral gain
𝐾𝑝

𝑇𝑖
.

𝑇𝑑: The derivative time. Used to calculate the derivative gain 𝐾𝑝𝑇𝑑.

Figure 2-10 Schematic view of the PID controller.

2.9 System identification

To make a mathematical model of the marine vessel, system identification is essential. As

illustrated in Figure 2-11 the process of system identification is shown. Different values are

inserted to the system’s inputs, and then the outputs are measured. This data is used to make a

state space model through realization theory[18].

 2 Theory

26

Figure 2-11 System identification principle. Here both the inputs and outputs must be logged.

For a marine vessel the inputs consist of thrusters, wind, sea current, and wave forces. The

outputs can consist of vessel position, the vessels velocity, and the vessels acceleration. The

chosen model is assumed to be a state space model.

The known inputs and measured outputs can be logged in to matrices, U for inputs and Y for

outputs.

The inputs consist of thrusters and may include waves, wind, and sea current. In this report

only the thruster inputs are considered and put in the input matrix U as shown in equation

(2.24).

𝑈 =

[

𝑈𝑆𝑢𝑟𝑔𝑒,1 𝑈𝑠𝑤𝑎𝑦,1 𝑈𝜓,1
𝑈𝑠𝑢𝑟𝑔𝑒,2 𝑈𝑠𝑤𝑎𝑦,2 𝑈𝜓,2

⋮ ⋮ ⋮
𝑈𝑠𝑢𝑟𝑔𝑒,𝑁 𝑈𝑠𝑤𝑎𝑦,𝑁 𝑈𝜓,𝑁]

(2.24)

The measured outputs are the position in north, east, and yaw. There is also possible to

measure the velocity and acceleration in surge, sway, and yaw but this is not done in this

report. The output matrix Y is given in equation (2.25).

𝑌 =

[

𝑌𝑛𝑜𝑟𝑡ℎ,1 𝑌𝑒𝑎𝑠𝑡,1 𝑌𝜓,1
𝑌𝑛𝑜𝑟𝑡ℎ,2 𝑌𝑒𝑎𝑠𝑡,2 𝑌𝜓,2
⋮ ⋮ ⋮

𝑌𝑛𝑜𝑟𝑡ℎ,𝑁 𝑌𝑒𝑎𝑠𝑡,𝑁 𝑌𝜓,𝑁]

(2.25)

In equation (2.24) and (2.25) N stands for the number of samples.

 3 Methods

27

3 Methods
The following chapter focuses on the methods used for solving the objective in this project.

The first objective literature research is done through the theory chapter, and this method

chapter focuses mainly on practical work.

The marine vessel selected to conduct experiments on is the Gunnerus ship from the OSP

package[8]. This package comes with both vessel model and a thruster dynamics model as

FMUs. The reason for choosing this model is the lack of a real model, and it gives opportunities

to explore the OSP package.

3.1 Open loop testing.

To test how the vessel model in Gunnerus-DP responds to step changes in surge, sway and

yaw a Simulink program was made. The open loop testing program in Simulink is shown in

Figure 3-1.

Figure 3-1 Open loop testing in Simulink with only thruster force acting on the marine vessel.

As Figure 3-1 shows there are used different approaches to generate an input signal to the

vessel model. Here experiments with just a constant value, a step response and time delayed

signals are tested. The results are evaluated in a NE diagram in chapter 5.1. This is a two-

dimensional representation of the marine vessel’s position as seen from above.

The constant block with the value 1 shown in Figure 3-1 does nothing. ThrusterDynamics

should have only three inputs, but an extra index 0 is added which doesn’t seem do anything,

hence the use of an extra constant block. More on this in the discussion chapter. The

ThrusterDynamics as well as the VesselModel FMUs are shown in Figure 3-2.

 3 Methods

28

Figure 3-2 Thruster dynamics and vessel model imported as FMUs; this is the Vessel Model subfunction from

Figure 3-1.

The ship’s response to both positive and negative control inputs in the surge and yaw, as well

as in surge and sway directions, was tested to determine the necessary forces for realistic

vessel movement.

During the experiments a force of 100000N was selected to give a realistic output force in

regards to the datasheet[19] of R/V Gunnerus. Here the propeller’s horsepower is considered

as well as the weight of the ship. Due to the absence of detailed specification of the azimuth

thrusters and the rudders, their forces have been assumed to be equivalent to the main

propeller. This approximation was necessary to proceed with the experiment, despite the lack

of precise information on the forces these components generate.

The thrust that the main propeller gives can be calculated by the equation in (3.1).

Here:

• T is thrust.

• P is power in watts.

• v is speed in m/s.

• 𝜂 is the propulsion efficiency.

𝑇 =
𝑃

𝑣 ∙ 𝜂

(3.1)

With an educated guess of the propulsion efficacy of 𝜂 = 0.55 from figure 2.02 in “Basic

principles of ship propulsion[20], the calculation of thrust is as follows.

𝑇 =
1000000𝑊

6.842 ∙ 0.55
= 265750𝑁

(3.2)

3.2 System Identification

This chapter describes the system identification process of the marine vessel Gunnerus. To

identify a SSM there must be generated some input data and some measurements of the

output data. Since there is provided an FMU model in the OSP package for the Gunnerus

marine vessel, the input data and the measurements are recorded from the usage of this

model. This FMU model is depicted in Figure 3-2.

 3 Methods

29

To construct the SSM from the gathered input and output data the D-SR algorithm[21] is

used. The D-SR algorithm presents the matrices for the SSM, and it is considered a ready to

use discrete time linearized model.

3.2.1 Input data and measurements.

The input data is generated through a random source block and is then sent through a

MATLAB function. The reason for this is that the random source block gives a single number

between -1 and 1, for example 0.7. This is not a clean square wave input, and the MATLAB

function(fcn) simply converts values over 0.0 to 1 and values equal to and below 0.0 to -1.

This part of the program is shown in Figure 3-3. Notice that the signal is multiplied by a

constant, and this is just to make a more realistic thrust that can move the ship as discussed in

3.1. The selected value of force must be able to move the ship that is about 72t[19].

The reason for making square wave inputs is that it is not sufficient to only estimate a model

with a simple step response. A robust model demands an experiment with thruster forces in

all available thrusters to capture the best possible model. It might also be needed to run the

same experiment multiple times to find a more accurate model that represents the system

behavior.

Figure 3-3 A Simulink program for generation of input data in surge, sway, and Yaw.

 3 Methods

30

Figure 3-4 Measuring the outputs from the Vessel Model in position North, East, and Yaw.

When both the out.U and out.Y blocks have recorded the signals, they are now available in

MATLAB workspace. Figure 3-5 shows how the data is made available from the logging

through a MATLAB script.

Figure 3-5 accessing input and output data from MATLAB workspace.

The input matrix U and output matrix Y can now be created as shown in Figure 3-6. The

complete code is shown in appendix H.

 3 Methods

31

Figure 3-6 Creating input and output matrix. This was done several times until a sufficient SSM system was

identified.

3.2.2 Using D-SR to get an SSM.

When the input matrix U and output matrix Y is found after the experiment it is time to use the

D-SR function in MATLAB[21]. It is a ready to use function that will make the SSM based on

matrix Y and U. Equation (3.3) shows the MATLAB command that is used to find the matrices

A, B, C, D, CF, F and x0.

[𝐴, 𝐵, 𝐶, 𝐷, 𝐶𝐹, 𝐹, 𝑥0] = 𝑑𝑠𝑟(𝑌, 𝑈, 𝐿) (3.3)

Here:

A is the state transition matrix.

B is the input matrix.

C is the output matrix

D is the direct transmission matrix.

x0 is the initial values.

L is the identification horizon used to predict the number of states. If the user knows the number

of states, the suggestion from the D-SR algorithm can be skipped and just enter det number of

states.

CF and F is related to the Kalman filter gain and can be calculated as equation (3.4) shows[21].

𝐾 = 𝐶𝐹 ∙ 𝐹−1 (3.4)

 3 Methods

32

3.2.3 Analysis of the SSM

When system identification has found a model, it is a good idea to check the stability of the

system. The stability of the system can be done by analyzing the eigenvalues of the state

transition matrix A. To find the eigenvalues the MATLAB function eig.m can be used.

Since the D-SR algorithm returns a discrete system there are some criteria for the system to

be stable.

Stable system: If all eigenvalues are inside the unity circle on the complex plane the system

is considered stable. This means that the system can reach a steady state when there is an

input to the system. For example, for a marine vessel the input could be increased propeller

force.

Unstable system: For an unstable system one or more of the eigenvalues are outside the

unity circle. This means that the system is not able to reach a steady state if one or more of

the eigenvalues is above 1.

To check the controllability features of the system, the rank of the controllability matrix must

be inspected. The controllability matrix is given by equation (3.5), and it is a tool to check if

the pair (A, B) is controllable. The system is only controllable if the rank of the

controllability matrix is equal to the rank of the system[22]. The rank of the system in this

project is equal to the number of states.

𝐶𝑛 = [𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛𝐵] (3.5)

Here, 𝐶𝑛 is the controllability matrix.

To check if the system is observable, the rank of the observability matrix must be examined.

The system is observable if the rank of the observability matrix is equal to the rank of the

system. The observability matrix is given in equation

(3.6), and the rank of the system is equal to the system states[22].

𝑂 =

[

𝐷
𝐷𝐴
𝐷𝐴2

⋮
𝐷𝐴𝑚𝑖×𝑛]

(3.6)

3.3 State estimation and Kalman filter.

The linear Kalman filter is based on the linear SSM that was found in the system

identification process. The system matrices are given in chapter 5.2.

The Kalman filter can be used to filter the output values, or even predict unknown states.

Here the goal is to predict the states 𝑣𝑠𝑢𝑟𝑔𝑒 , 𝑣𝑠𝑤𝑎𝑦 , and 𝑣𝑝𝑠𝑖 as shown in Figure 2-3.

The state estimator made in Simulink is shown in Figure 3-7. The only difference is that the

vessel model takes the input in thrust as a vector and the state estimator takes each input

 3 Methods

33

separately. There are also scopes that show the estimated states, the real measured output, and

the filtered output value against each other.

Figure 3-7 State estimator running in parallel with the vessel model. There are also placed scopes in the bottom

right to better analyze the values.

Figure 3-8 The inside of the state estimator based on linear Kalman Filter. This is the sub system “State

Estimator” from Figure 3-7. A, B, C, D, and K are imported as constant parameters from the MATLAB

workspace.

 3 Methods

34

Figure 3-9 MATLAB function for State_estimator in Figure 3-8.

There are also options to differentiate between random input values and manual input values.

This is shown in Figure 3-10. This makes it easier to manually enter a step response to check

the performance of the state estimator.

Figure 3-10 Switching option between manual control and random input values. Here an on/off switch is shown

in the upper left corner that activates the switching box.

Since the simulation in Simulink happens as fast as the computer manages, it is a good idea to

slow down the simulation. This is done using the realtime_pacer_lib which can adjust the

simulation so that it’s like watching a real ship in action.

 3 Methods

35

Figure 3-11 Real-Time Pacer block is to be inserted into the Simulink file to slow the simulation down to real

time. On the left of the Real-Time Pacer is the configuration page where the relationship between simulation

time and real time is given.

3.4 Control of the marine vessels

To make a complete DP system a controller is needed. This following chapter will discuss

some types of controllers and result in one type of controller being pursued.

3.4.1 PID Controller

A PID controller might be a good choice in regards of controlling the Gunnerus marine

vessel. But a challenge is that the controller would have to consist of multiple different PID

controllers. The reason for this is that the PID controller is not suitable for MIMO systems,

and the control problem must be described as multiple SISO systems. A PID controller would

have to be divided into position control in surge, position control in sway and position control

in yaw.

Another problem with the PID controller for an advanced system like this is the lack of

information on how the system should behave with different control values for thrusters,

disturbances etc. A solution for this could be to use the state estimator developed in chapter

3.3.

 3 Methods

36

3.4.2 MPC Controller

To make an MPC controller for a DP system, the problem can be thought of as an LQ optimal

control problem. The LQ optimal control problem can be expressed like equation (3.7).

𝐽 =
1

2
[𝑒1
𝑇𝑄1𝑒1 + 𝑢0

𝑇𝑃0𝑢0 + 𝑒2
𝑇𝑄2𝑒2 + 𝑢1

𝑇𝑃1𝑢1 +⋯+ 𝑒𝑁
𝑇𝑄𝑁𝑒𝑁

+ 𝑢𝑁−1
𝑇 𝑃𝑁−1𝑢𝑁−1]

(3.7)

In equation (3.7) N is the prediction horizon, Q is the error weighting matrix for each

timestep, and P is the input weighting matrix for each timestep. For both Q and P, it is

assumed that they are constant along the whole prediction horizon, meaning Q1= Q2=Q.

The LQ optimal control problem is also subject to:

 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 (3.8)

𝑦𝑘 = 𝐶𝑥𝑘 (3.9)

𝑒𝑘 = 𝑦𝑘 − 𝑟𝑘 (3.10)

Since qpOASES doesn’t support the standard LQ optimal control problem formulation this

has to be converted into the standard QP formulation as equation (3.11) shows. This is the

same method for formulating a LQ optimal control problem to QP problem as given in

“Lecture Notes for the course IIA 4117: Model Predictive Control”[14].

𝐽 =
1

2
[

𝑢
𝑥
𝑒
𝑦

]

𝑇

⏟
𝑍𝑇

[

𝐻11 0 0 0
0 𝐻22 0 0
0 0 𝐻33 0
0 0 0 𝐻44

]

⏟
𝐻

[

𝑢
𝑥
𝑒
𝑦

]

⏟
𝑍

+ [

𝑐1
𝑐2
𝑐3
𝑐4

]

𝑇

⏟
𝑐𝑇

[

𝑢
𝑥
𝑒
𝑦

]

⏟
𝑍

(3.11)

Linear equality constraints: 𝐴𝑒𝑥 = 𝑏𝑒 (3.12)

Linear inequality constraints: 𝐴𝑖𝑥 = 𝑏𝑖 (3.13)

Bounds: 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 (3.14)

The Hessian matrix H is given by equation (3.15).

𝐻 = [

𝐻11 0 0 0
0 𝐻22 0 0
0 0 𝐻33 0
0 0 0 𝐻44

]

(3.15)

The different blocks in the Hessian matrix are given below in (3.16), (3.17), (3.18), and (3.19)

 3 Methods

37

𝐻11 = [

𝑃0 0 ⋯ 0
0 𝑃1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑃𝑁−1

]

𝑁×𝑁

= 𝐼𝑁⊗𝑃

(3.16)

𝐻22 = [

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

]

𝑁∙𝑛𝑥×𝑁∙𝑛𝑥

= 𝐼𝑁⊗0𝑛𝑥×𝑛𝑥

(3.17)

𝐻33 = [

𝑄1 0 ⋯ 0
0 𝑄2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑄𝑁

]

𝑁×𝑁

= 𝐼𝑁⊗𝑄

(3.18)

𝐻44 = [

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

]

𝑁∙𝑛𝑦×𝑁∙𝑛𝑦

= 𝐼𝑁⊗0𝑛𝑦×𝑛𝑦

(3.19)

For the prediction horizon N, the number of unknowns is given by equation (3.20).

𝑛𝑧 = 𝑁 ∙ (𝑛𝑢 + 𝑛𝑥 + 𝑛𝑒 + 𝑛𝑦) (3.20)

Since ny=ne equation (3.20) can be formulated as:

𝑛𝑧 = 𝑁 ∙ (𝑛𝑢 + 𝑛𝑥 + 𝑛𝑦 + 𝑛𝑦) (3.21)

Here:

𝑛𝑢: The number of inputs.

𝑛𝑥: The number of states.

𝑛𝑦: The number of outputs.

𝑛𝑒: The number of errors.

𝑐 =

[

𝑐1
𝑐2
𝑐3
⋮
𝑐𝑁]

= 0𝑛𝑧×1

(3.22)

 3 Methods

38

For LQ optimal control problem in this project the inequality equality constraints do not

exist. The linear equality constraints are given in equation (3.23) and expanded in equation

(3.24) to (3.35).

[

𝐴𝜀,1𝑢 𝐴𝜀,1𝑥 𝐴𝜀,1𝑒 𝐴𝜀,1𝑦
𝐴𝜀,2𝑢 𝐴𝜀,2𝑥 𝐴𝜀,2𝑒 𝐴𝜀,2𝑦
𝐴𝜀 ,2𝑢 𝐴𝜀,3𝑥 𝐴𝜀,3𝑒 𝐴𝜀,3𝑦

] [

𝑢
𝑥
𝑒
𝑦

] = [

𝑏𝑒,1
𝑏𝑒,2
𝑏𝑒,3

]

(3.23)

𝐴𝜀,1𝑢 = [

−𝐵 0 ⋯ 0
0 −𝐵 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ −𝐵

] = −𝐼𝑁⊗𝐵

(3.24)

𝐴𝜀,1𝑥 = [

𝐼 0 ⋯ 0 0
−𝐴 𝐼 ⋯ 0 0
0 −𝐴 ⋱ 0 0
0 0 ⋯ −𝐴 𝐼

] = −𝐼𝑁×𝑛𝑥 − (𝐼𝑁−1⊗𝐴)

(3.25)

𝐴𝜀,1𝑒 = [

0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 0

] = 0𝑁∙𝑛𝑥×𝑁⋅𝑛𝑦

(3.26)

𝐴𝜀,1𝑦 = [

0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 0

] = 0𝑁∙𝑛𝑥×𝑁⋅𝑛𝑦

(3.27)

𝐴𝜀,2𝑢 = [

0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 0

] = 0𝑁∙𝑛𝑦×𝑁⋅𝑛𝑢

(3.28)

𝐴𝜀,2𝑥 = [

−𝐶 0 ⋯ 0
0 −𝐶 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ −𝐶

] = 𝐼𝑁⊗𝐶

(3.29)

𝐴𝜀,2𝑒 = [

0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 0

] = 0𝑁∙𝑛𝑦×𝑁⋅𝑛𝑦

(3.30)

 3 Methods

39

𝐴𝜀,2𝑦 = [

𝐼 0 ⋯ 0
0 𝐼 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 𝐼

] = 𝐼𝑁∙𝑛𝑦

(3.31)

𝐴𝜀,3𝑢 = [

0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 0

] = 0𝑁∙𝑛𝑦×𝑁⋅𝑛𝑢

(3.32)

𝐴𝜀,3𝑥 = [

0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 0

] = 0𝑁∙𝑛𝑦×𝑁⋅𝑛𝑥

(3.33)

𝐴𝜀,3𝑒 = [

𝐼 0 ⋯ 0
0 𝐼 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 𝐼

] = 𝐼𝑁∙𝑛𝑦

(3.34)

𝐴𝜀,3𝑦 = [

𝐼 0 ⋯ 0
0 𝐼 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 𝐼

] = 𝐼𝑁∙𝑛𝑦

(3.35)

𝐵𝜀,1 =

[

𝐴𝑥0
0𝑛𝑥×1
⋮

0𝑛𝑥×1]

 𝐵𝜀,2 =

[

0𝑛𝑦×1

0𝑛𝑦×1
⋮

0𝑛𝑦×1]

 𝐵𝜀,3 = [

𝑟1
𝑟2
⋮
𝑟𝑁

]

(3.36)

𝑧𝐿 = [

−∞
−∞
⋮
−∞

]

𝑛𝑧×1

 𝑧𝑢 = [

∞
∞
⋮
∞

]

𝑛𝑧×1

(3.37)

 3 Methods

40

Figure 3-12 The complete linear MPC controller with state estimator. The Real-Time pacer is also implemented

which means this run-in real time and it is possible for humans to interact with setpoints.

The complete MPC controller program made in Simulink is presented in Figure 3-12 and

Figure 3-13. This program builds on the previous model made in Figure 3-7 for the state

estimator. Figure 3-14 shows the subsystem Linear MPC which includes the QP formulation

script, the S function and extraction of the first control input.

 3 Methods

41

Figure 3-13 This is figure shows the live plotting and logging of data for the MPC controller. This is the right

side of the system in Figure 3-13.

Figure 3-14 This is the inside of the Linear MPC block from Figure 3-12. Here is a MATLAB function for QP

problem formulation, and a S-function to implement the qpOASES solver. Only the first control input is needed

and is extracted, the rest is discarded.

To use qpOASES the number of unknowns must be known for the whole prediction horizon.

If N=20, u=3, x=6, and y=3 the total number of unknowns can be found with equation (3.21)

as shown in equation (3.38).

 3 Methods

42

𝑛𝑧 = 20 ∙ (3 + 6 + 3 + 3) = 300 (3.38)

This is then inserted into the qpOASES source file and compiled to a mex file as shown in

Figure 3-15.

Figure 3-15 A snapshot from the source file of qpOASES, showing the settings part. Here the total number of

unknowns must be selected for the specific problem. Afterwards the “make” command must be run in the

command window to compile the file.

The compiled file qpOASES_SQProblem file shall then be selected in the S-function called

QP solver from Figure 3-14.

Figure 3-16 S-function that runs qpOASES solver.

Figure 3-17 shows the start of the QP formulation script. The linear equality constraints are

implemented in the same way as well as the bounds for the system, more on this in Appendix

M.

 3 Methods

43

Figure 3-17 A code snippet from the QP formulation script. Here it is shown where the weighting matrix for the

error and weighting matrix for the input is set, and the MATLAB implementation of H and nz.

3.4.3 MPC Controller with integral action

To design an MPC controller with integral action, one would have to solve the issue with

measurements being in north and east rather than being in BODY coordinates like surge and

sway. The reason for this is that it makes more sense to give thrust in surge if the deviation is

in surge. To counter this problem a rotational matrix[6] is introduced and given in equation

(3.39). Notice that the rotational matrix doesn’t include heave as it is not measured in the

original system.

𝑅(𝜓) = [
cos(𝜓) − sin(𝜓)
sin(𝜓) cos(𝜓)

]
(3.39)

The system is almost equal to Figure 3-12 and Figure 3-13 but there are some deviations

regarding the integral action. This is shown in Figure 3-18.

 3 Methods

44

Figure 3-18 Here the integral action is implemented. First the error between the reference r and the measured

output Y is calculated, then it is inserted into a NED/BODY conversion block. The signal is then split into surge

sway and yaw and integral action is applied.

The gain is found by trial and error and there is a different gain in each surge, sway, and yaw.

The sub function NED/BODY conversion is shown in Figure 3-19.

 3 Methods

45

Figure 3-19 Sub function NED/BODY conversion.

The MATLAB function inside Figure 3-19 uses the rotational matrix equation (3.39) to find

the coordinates in surge, sway, and yaw.

Figure 3-20 Practical use of the rotational matrix from NED to BODY coordinates.

 4 Requirements and Design

46

4 Requirements and Design
To make a DP system for a ship some requirements for the system must be collected. This

chapter presents some software engineering methods to collect the requirements for the

system and generate a design for the final system.

4.1 FURPS+

The requirements for this system can be collected using FURPS+. The complete analysis is

given below.

Functional requirements:

- It should be possible to change the set point in surge, sway, and yaw.

- The controller should be able to compute control action based on the current state of

the system and the predicted states.

Usability requirements:

- The control system should have an intuitive and easy to understand user interface.

Reliability requirements:

- The DP system shall be able to handle control in surge, sway, and yaw at the same

time.

Performance requirements:

- The system should be quick to update to a new set point.

- The system should be able to handle disturbances like wind, sea current and waves.

Supportability requirements:

- The DP system should be easy to upgrade for future needs.

+

- There should be a version control system of the software like GIT.

- A readme file is to be released with the finished product if released on GITHUB.

4.2 UML diagrams

Figure 4-1 shows a simple use case diagram that illustrates how the control system should

work and how an operator would interact with it. The control system should read sensor input

and adjust outputs accordingly to difference in SP and output. There should also be possible

for user interaction like changing the different SP.

 4 Requirements and Design

47

Figure 4-1 A simple use case diagram to better visualize the use cases and actors for the program.

Figure 4-2 shows a simplified system sequence diagram. The goal for this diagram is to give

a visual representation of how the program should work. Here an operator can start the

control system, and even adjust the SP. The control system will after that maintain the

selected SP the best it can through a control algorithm.

 4 Requirements and Design

48

Figure 4-2 This shows a simple system sequence diagram on how the controller should operate.

4.3 Design

The design of the DP system should be easy to understand and should be simplified as much

as an operator would need to run the system. Figure 4-3 shows a simplified version of the

control system as a block diagram. The operator should also be familiar with the Figure 2-3

which shows the different inputs, outputs states and disturbances. The filtered value �̂� can

also be used for monitoring purposes instead of the measured value y since the filtered value

should contain less noise.

 4 Requirements and Design

49

Figure 4-3 A system overview of the complete control system.

Figure 4-4 A system overview of a more advanced control system with integral action.

 4 Requirements and Design

50

Figure 4-5 User interface for adjusting SP in North, East and Yaw in Simulink.

Figure 4-5 shows a simplified user interface which the operator can use to change the

different SP in North, East, and Yaw. Due to limitation in Simulink, it is chosen to not make

a more advanced user interface.

 5 Results

51

5 Results
This chapter will contain the results from this project. It will mainly follow the structure of

the methods chapter unless some topics have not been pursued further.

5.1 Open loop testing

In Figure 5-1 a NE diagram is presented, based on the step response in Simulink code from

Figure 3-1. These step responses generate movement of a marine vessel in both directions

north and east, which can be plotted in MATLAB.

Figure 5-1 NE diagram for a step response. Green Triangle marks start, and red circle marks end. This is the first

trial with steps in Surge and Sway, and a step-in yaw after 150s.

To make the NE diagram both the north position and east position must be logged to

MATLABs workspace. This is done either by using a record block or a save to workspace

block.

 5 Results

52

Figure 5-2 Positive control input in both yaw and surge. Green Triangle marks start, and red circle marks end.

Figure 5-2 shows the output in a NE diagram where there is given a positive control value in

both yaw and surge. As expected, this is a circular movement when there are 0 disturbances,

and the thrust is kept constant.

Figure 5-3 Negative control input in yaw, and positive control input in surge. Green Triangle marks start, and

red circle marks end.

Figure 5-3 shows the output in a NE diagram where there is given a positive control value in

surge, but a negative control value in yaw. As expected, there is a circular movement in the

opposite direction as Figure 5-2.

 5 Results

53

Figure 5-4 Positive control input in sway. Green Triangle marks start, and red circle marks end.

Figure 5-4 shows the response from the marine vessel with a positive control input in sway.

As well as a movement to the side, the vessel also changes the yaw of the marine vessel.

Figure 5-5 Positive control signal in surge, and negative control signal in sway. Green Triangle marks start, and

red circle marks end.

 5 Results

54

Figure 5-5 shows the response from the marine vessel in a NE diagram with a positive control

signal in surge, and a negative control signal in sway.

Figure 5-6 step response in surge after 10s with a force in surge with the calculated force of 265750𝑁 as shown

in equation (3.2).

Figure 5-6 shows a step response in surge with a force of 265750N, and the Gunnerus reaches

a velocity of about 1.7m/s.

5.2 System Identification

This following chapter presents the results from the system identification process of the

Gunnerus marine vessel. First of in Figure 5-7 is the NE diagram where random control

values in surge, sway and yaw are entered. The random control signal was multiplied by a

force of 100000N to make the generated thrust more realistic so that it moves the vessel by a

significant distance.

 5 Results

55

Figure 5-7 Random control values at -1 and 1 for each surge, sway, and yaw. Green Triangle marks start, and

red circle marks end. The control value is multiplied with a force of 100000N to make a realistic force to move

the vessel.

Figure 5-8, Figure 5-9, and Figure 5-10 shows an example of the generated square pulses and

the thrust input they generate in each surge, sway, and yaw.

 5 Results

56

Figure 5-8 Example of a random input signal between 1 and -1 and the thrust it generates in surge direction.

Figure 5-9 Example of a random input signal between 1 and -1 and the thrust it generates in sway direction.

Figure 5-10 Example of a random input signal between 1 and -1 and the thrust it generates in yaw direction.

 5 Results

57

5.2.1 System matrices.

The matrices that represent the system well are given below. These matrices were found

using the D-SR function as depicted in equation (3.3). The Kalman filter gain is calculated

using equation (3.4) and is given as the matrix K.

𝐴 =

[

1.0034 0.0207 0.4737 0.0463 −0.2364 2.3069
−0.001 0.9997 −0.054 0.1380 0.9540 −13.3772
0 0 0.9424 0.6183 −0.2177 2.1255
0 0 0.1676 −0.8000 0.4213 −5.1737
0 −0.0002 −0.0060 0.1014 −0.1223 −12.4611
0 0 0 −0.0004 −0.0028 −0.5637]

(5.1)

𝐵 = 1.0𝑒 − 08 ∙

[

−0.8484 −0.3258 −0.1868
0.4781 −0.1277 −0.2667
−0.0948 −0.0255 −0.0254
0.2341 0.0767 0.1066
−0.0197 −0.0031 −0.1006
−0.0005 −0.0006 0.0006]

(5.2)

𝐶 = [
0.6830 −0.1854 −0.2271 0.6690 0.0090 0.0006
0.1784 0.6819 −0.0555 −0.0024 −0.7072 0.0085
−0.0048 −0.0269 −0.6671 −0.2302 0.0345 0.7071

]
(5.3)

𝐷 = 1.0𝑒 − 08 ∙ [
−0.3458 −0.1652 −0.0717
−0.0376 −0.0129 −0.1373
0.0011 0.0020 −0.0003

]
(5.4)

𝐶𝐹 =

[

0.0262 0.0068 0.0001
−0.0201 0.0256 0.0002
0.0036 −0.0004 −0.0004
−0.0095 −0.0001 −0.0001
−0.0044 0.0088 0.0002

0 0 −0.0001]

(5.5)

𝐹 = 1.0𝑒 − 03 ∙ [
0.7813 0 0
−0.1125 0.6927 0
0.0020 −0.0019 0.0111

]
(5.6)

 5 Results

58

𝑥0 =

[

−0.0031
0.0010
−0.0005
0.0014
−0.0001

0]

(5.7)

𝐾 =

[

34.8690 9.8057 11.2373
−20.4980 36.9942 21.6928
4.6280 −0.6726 −33.1105
−12.2170 −0.1861 −5.2135
−3.8993 12.7559 16.9157
0.0335 −0.0487 −11.0087]

(5.8)

5.2.2 System analysis.

The eigenvalues were found using the eig.m function in MATLAB.

𝑒𝑖𝑔(𝐴) =

[

1.0016 + 0.0045𝑖
1.0016 − 0.0045𝑖
0.9995 + 0.0000𝑖
−0.0002 + 0.0000𝑖
−0.9134 + 0.0000𝑖
−0.6296 + 0.0000𝑖]

(5.9)

As equation (5.9) shows the system is unstable. The reason for this is the eigenvalues that are

bigger than 1.

Using the ctrb.m function it is possible to calculate the rank of the controllability matrix. The

method in MATLAB is shown in Figure 5-11, and the rank was found to be 6. This means

that the system is controllable.

Figure 5-11 Using MATLAB to find the rank of the controllability matrix.

The same method can be done for the observability matrix using the obsv.m function in

MATLAB. As shown in Figure 5-12 the rank of the observability matrix is equal to 6. This

means that the system is observable since the rank of the system is 6.

 5 Results

59

Figure 5-12 Using MATLAB to find the rank of the observability matrix. Note, MATLAB notation is C and not

D as in equation

(3.6).

5.3 State estimator and Kalman filter.

In this following chapter different experiments are carried out to test the performance of the

Kalman filter in the state estimator. The model settings are shown in Figure 5-13. Notice that

in this chapter there was an error in the NE script in MATLAB that switched the axes of

north and east.

Figure 5-13 Model settings for simulating in Simulink.

The first experiment is carried out with a limited time span of 20s and a force of 50000N

randomly inserted in surge, sway, and yaw. The force can also be negative. The results are

shown in Figure 5-14, Figure 5-15, and Figure 5-16 below.

 5 Results

60

Figure 5-14 State estimator test with random input values, here north is shown. Here the real process is marked

in yellow, the estimated value is marked in blue, and the filtered value marked in orange.

Figure 5-15 State estimator test with random input values, here east is shown. The real process is marked in

yellow, the estimated value is marked in blue, and the filtered value marked in orange.

 5 Results

61

Figure 5-16 NE diagram with random control input values. Notice the state estimator having an extra loop to the

left before it follows the real model.

The second test was with a time span of 200s and a random input force of 50000N in surge,

sway, and yaw. Also here, the input force could be negative. Figure 5-17, Figure 5-18, Figure

5-19, and Figure 5-20 shows the result from this experiment.

Figure 5-17 The yellow line is north; the blue line is the estimated value, and the orange line is the filtered value

for north. The timespan is 200s and the input force in surge, sway, and yaw is 50000.

 5 Results

62

Figure 5-18 The yellow line is east; the blue line is the estimated east value, and the orange line is the filtered

value for east. Timespan is 200s.

Figure 5-19 The yellow line is measured yaw, and the blue line is the estimated yaw. Timespan is 200s.

 5 Results

63

Figure 5-20 NE diagram with random values. Notice that the extra loop the state estimator makes is a lot less

significant than in Figure 5-16.

The third test was with a time span of 200s and a random input force of 100000N in surge,

sway, and yaw. Also here, the input force could be negative. Figure 5-21, Figure 5-22, Figure

5-23, and Figure 5-24 shows the result from this experiment.

Figure 5-21 The yellow line is north; the blue line is the estimated value, and the orange line is the filtered value

for north. The time span is 200s and the input force in surge, sway, and yaw is 100000N.

 5 Results

64

Figure 5-22 The yellow line is east; the blue line is the estimated value, and the orange line is the filtered value

for east. The time span is 200s and the input force in surge, sway, and yaw is 100000N.

Figure 5-23 The yellow line is yaw; the blue line is the estimated value. The time span is 200s and the input

force in surge, sway, and yaw is 100000N.

 5 Results

65

Figure 5-24 NE diagram with random values. Notice that the extra loop the state estimator makes in the start is

now negligible. But the deviation in end point is a little bigger than in Figure 5-20.

5.4 Control of the marine vessel

This chapter is divided into two parts, one part with an MPC controller with feedback from a

state estimator, and one expanded version with integral action.

5.4.1 MPC Controller

The controller type for the marine vessel was selected to be an MPC controller. There were

done several tests on how the controller behaved. Before the test was stopped, the control

values in surge, sway and yaw were checked so the simulation wasn’t stopped in the middle

of a control action.

The first test was focused on the north direction. The settings for the weighting matrices Q

and P are shown in Figure 5-25.

 5 Results

66

Figure 5-25 Simulink settings for testing the controller in the north direction. These settings are set in the QP

problem formulation script block as shown in Figure 3-14.

The results from this simulation is shown in Figure 5-26,Figure 5-27,Figure 5-28, and Figure

5-29. The real model never reaches SP exactly but has a constant deviation. This might be

because linear MPC is used on a nonlinear model.

Figure 5-26 Here is the result of a SP= 10 in North direction. As shown the model reaches a steady state after

about 400s. The yellow line is SP, the blue line is the real model, and the orange line is the estimated value.

 5 Results

67

Figure 5-27 Here the position in East is shown as the result of a SP=10 change in North direction. The yellow

line is SP, the blue line is the real model, and the orange line is the estimated value.

Figure 5-28 The estimated values for yaw don’t seem quite right.

 5 Results

68

Figure 5-29 NE diagram for a SP=10 change in north direction. Here it is shown that the Gunnerus ship is

making a turn even though it is not necessary to reach the end position.

The second test was done in the east direction. The settings are shown in Figure 5-30 for the

weighting matrices Q and P.

Figure 5-30 weighting settings for Q and P for simulation in east direction. Prediction horizon is 20.

 5 Results

69

Figure 5-31 A SP=10 change in the east direction. Notice that the deviation from SP is smaller than the

experiment in north direction. The yellow line is SP, the blue line is the real model, and the orange line is the

estimated value.

Figure 5-32 Deviation in north when running a simulation for SP=10 in east direction and SP=0 in north

direction. The yellow line is SP, the blue line is the real model, and the orange line is the estimated value.

 5 Results

70

Figure 5-33 NE diagram with SP=10 in east direction. SP=0 in north and SP=0 in yaw.

The third test was with a SP=10 in north direction, and SP= 10 in east direction. The settings

for the weights are shown in Figure 5-34.

Figure 5-34 Weight settings for Q and P. SP=10 in North and SP=10 in East.

 5 Results

71

Figure 5-35 Simulation with SP=10 in north direction and SP=10 in east direction. Here are the results for the

north direction. The yellow line is SP, the blue line is the real model, and the orange line is the estimated value.

Figure 5-36 Simulation with SP=10 in north direction and SP=10 in east direction. Here are the results for east

direction. The yellow line is SP, the blue line is the real model, and the orange line is the estimated value.

 5 Results

72

Figure 5-37 Simulation with SP=10 in north direction and SP=10 in east direction. Here are the results for yaw.

The yellow line is SP, the blue line is the real model, and the orange line is the estimated value.

Figure 5-38 NE diagram for simulation with SP=10 in both north and east directions.

 5 Results

73

Figure 5-39 is included to show how bad the MPC controller performs, and to show the need

for improvement. When Gunnerus is going in a negative direction in east, the controller is far

off. It was decided to stop trying to adjust weighing from this part and try to develop a better

controller.

Figure 5-39 Test with SP=-10 in east and SP=10 in north

5.4.2 MPC Controller with integral action

Since the identified model in chapter 3.2 and 5.2 seem to not respond well in yaw, it seems

reasonable to put more trust on the weighting matrix Q rather than the weighting matrix P for

yaw. This means that the MPC controller is more driven on the error rather than the

prediction.

While trying to adjust the integral action for surge direction the weightings in Q and P were

adjusted to an unfavorable value in sway and yaw to minimize disturbance from those parts.

 5 Results

74

Figure 5-40 Figuring out the integral gain in surge. SP=10 in north direction and SP=0 in east direction. Here

the north direction is shown. The yellow line is SP, the blue line is the real model, and the orange line is the

estimated value.

Figure 5-41 Figuring out the integral gain in surge. SP=10 in north direction and SP=0 in east direction. Here

the east direction is shown. The yellow line is SP, the blue line is the real model, and the orange line is the

estimated value.

 5 Results

75

Figure 5-42 Figuring out the integral gain in surge. SP=10 in north direction and SP=0 in east direction. Here

the yaw angle is shown. Notice how far off the estimation is. The yellow line is SP, the blue line is the real

model, and the orange line is the estimated value.

Figure 5-43 NE diagram with SP=10 in north direction and SP=0 in east direction.

 5 Results

76

While trying to adjust the integral gain in sway and yaw it became clear that the state

estimations where not good enough to feed back to the Linear MPC block from Figure 3-18.

Therefore, the true measurements were added to the feedback loop together with the velocity

estimates in surge, sway, and yaw. This was done in the State Estimator depicted in Figure

3-18 and Figure 5-44 shows the result. Notice that there is a unit delay for each signal to

avoid algebraic error due to initial values not being available at startup.

Figure 5-44 The true measurements added as feedback in delta_x_hat as well as the estimates in velocity for

surge, sway, and yaw.

The results in Figure 5-45, Figure 5-46, and Figure 5-47 shows the result with SP= 5 in north

and east, and SP=0 in yaw. For yaw it looks like the integral action is performing badly so it

will be increased. For the north direction it seems like there is a bit of overshooting and the

weightings will be adjusted to be more sensitive to error. The error in surge seems partly to

stem from wrong integral action as well as wrong weighting setting in the error weight Q. But

overall, the MPC controller seemed to perform better when the measurements are inputted

directly to the MPC controller.

Figure 5-45 Integral action in north direction with a bit of overshoot. SP=5 in north and east. The yellow line is

SP, the blue line is the real model, and the orange line is the estimated value.

 5 Results

77

Figure 5-46 Integral action in east direction with a bit of overshoot. SP=5 in north and east. The yellow line is

SP, the blue line is the real model, and the orange line is the estimated value.

Figure 5-47 Integral action in yaw, notice how far off the yaw is for the real model. SP=5 in north and east. The

yellow line is SP, the blue line is the real model, and the orange line is the estimated value.

 5 Results

78

Figure 5-48 NE diagram with a lot of overshoots in north and east direction.

Figure 5-48 shows the overshoot more clearly, here it seems like the marine vessel is moving

more than needed to stabilize at the SP. The next experiment will focus on how to adjust the

weighting matrices Q and P, so that the weighting matrix Q is more sensitive to error. The

new set points are now SP=5 in north and east, and SP=0 in yaw. The weighting settings are

shown in Figure 5-49.

Figure 5-49 The weighting settings for SP=5 in north and east, and SP=0 in yaw.

 5 Results

79

Figure 5-50 Here the position in north is shown and clearly there is sufficient integral action, and the weighting

settings makes the controller behave well. The yellow line is SP, the blue line is the real model, and the orange

line is the estimated value.

Figure 5-51 Here the position in east is shown and there seems to be sufficient integral action. The weighting

settings for P and Q does make the controller perform badly in sway and could be adjusted to be more sensitive

in the error matrix Q. The yellow line is SP, the blue line is the real model, and the orange line is the estimated

value.

 5 Results

80

Figure 5-52 Here yaw is shown, and the weightings might be correct, but the integral action uses a long time to

adjust. The yellow line is SP, the blue line is the real model, and the orange line is the estimated value.

Figure 5-53 In the NE diagram the oscillating effect in east becomes much more apparent. This oscillating effect

can be removed by adjusting the weights Q and P.

 5 Results

81

The previous results were not satisfying, especially the oscillating effect in the east direction.

Adjusting the weights so that the controller is more sensitive to errors in east direction, as

well as north to decrease the overshooting effect. The gains in integral actions are now 23 in

surge, 8 in sway, and 20 in yaw. The weightings are shown in Figure 5-54 and the model

now relies more on the error rather than the predicted output.

Figure 5-54 The weighting settings relying more on the error rather than the model prediction.

For this simulation the SP=5 in north and east, and SP=0 in yaw.

Figure 5-55 Here the position in north is shown and the controller behaves well in both integral action and the

weighting settings. The yellow line is SP, the blue line is the real model, and the orange line is the estimated

value.

 5 Results

82

Figure 5-56 Here the position in east is shown and the controller behaves well with integral action, but there is

still some overshoot. The yellow line is SP, the blue line is the real model, and the orange line is the estimated

value.

Figure 5-57 Here yaw is shown, and it still takes a long time for yaw to settle at SP. The yellow line is SP, the

blue line is the real model, and the orange line is the estimated value.

 5 Results

83

Figure 5-58 Here is the NE diagram for SP=5 in north and east, and SP=0 in yaw. There is very little overshoot,

and the overshoot is mainly in east direction.

As the simulation experiments for a MPC controller without integral action shows in Figure

5-38 and Figure 5-39 the results in a negative direction where much worse than in a positive

direction in the NE diagram. A new experiment was performed to figure out how the MPC

controller with integral action performs in a negative direction. Here the SP=-5 in north and

east, and 0 in yaw. The weighting matrices P and Q are shown in Figure 5-59 and the results

are shown in Figure 5-60, Figure 5-61, and Figure 5-62.

Figure 5-59 The weighting settings for SP=-5 in north and east, and SP=0 in yaw.

 5 Results

84

Figure 5-60 Here the position in north is shown and both the weightings and the integral action seems to

perform well. The yellow line is SP, the blue line is the real model, and the orange line is the estimated value.

Figure 5-61 Here the position in east is shown and the weighting settings seems like they can be adjusted a bit in

favor of the error matrix Q to compensate for the overshoot. The yellow line is SP, the blue line is the real

model, and the orange line is the estimated value.

 5 Results

85

Figure 5-62 Here the yaw is shown, and it seems like the integral action is working but it takes over 2500s to

adjust. The yellow line is SP, the blue line is the real model, and the orange line is the estimated value.

Figure 5-63 In the NE diagram the overshoot in east direction is much clearer.

 6 Discussion

86

6 Discussion
One of the earliest problems that occurred was that there was a mismatch between the

required inputs in the model according to the documentation and the provided model in the

OSP package. According to the documentation the vessel model required 6 inputs in thrust, 6

inputs in wave force etc. But when the simulation started it seemed like the model needed 7

input thrust, wave force etc. This was a strange problem, but it seems like the model uses

index 1-6 or 1-4, but when imported as an FMU it also requires the index 0. The index 0

doesn’t seem to do anything of importance in the simulation, and it doesn’t behave strangely

when inputting different signals to it. The solution was to add an extra signal as index 0, and

this signal was set to the constant 1.

Since this was a provided model from the OSP package which seemed to accept every input

force and create an output that doesn’t always make sense, it was decided to research the

engine power output. The datasheet for the RV Gunnerus [19] states that each main propeller

produce 500kW each, a total of 1000kW. The datasheet also specifies a 100% MCR at 12.6kn

which results in about 6.842m/s. The thrust that the propeller produces will depend on the

efficiency of the propeller and since there is no data about the propeller efficiency it is hard to

calculate the thrust the propellers will produce. The estimate in equation (3.1) doesn’t seem to

fit with the Gunnerus-DP package, as the velocity is closer to 2m/s at that force. It was

decided from this point to not do further investigation on this part and continue with forces up

to 265750N in all inputs.

During the system identification there were some difficulties finding an accurate model. The

Random source blocks in Simulink are discrete time as default. This means that the user can

set a time interval which the block should update its random value. This also affected the

vessel model which then behaved as a discrete model. This means that if the sample time for

new values was set to 10 seconds, the vessel model only updated the outputs every 10

seconds even though the model solver was selected to be Runge-Krutta with a timestep of

0.1s. The solution for this was to make the Random Source block into a continuous time

signal, but then the square pulses were locked to 0.1 timestep from the model settings.

There is also a problem with the identification of the SSM for the vessel model since DS-R

only finds a discrete linearized model. Therefore, the system identification must be limited

either by time or force sent to the propeller to keep the vessel model close to Origo.

Otherwise, the system identification process is unsuccessful, and the identified model is a

horrible match. Another issue trying to find a linearized model is that when a successful SSM

model is found, it doesn’t behave very well when the model moves further away from origo

in north and east. This is likely due to 0 north and 0 east is the operation point for the

linearized model, and the vessel model includes nonlinear parts.

For the MPC controller it seems like the controller behaves well navigating in the north

direction but is slower in the east direction. This can be due to the model not being accurate

in east, or that the weighting matrices Q and P needs to be adjusted more.

As Figure 5-26, Figure 5-27, Figure 5-28, and Figure 5-29 shows there are some deviations

in north direction, and the controller is tuned to be more smooth so that it doesn’t overshoot

before stabilizing close to the SP. These deviations are likely due to the MPC controller being

based on a linear model, and the deviations might be removed with integral actions. The same

 6 Discussion

87

goes for Figure 5-31, Figure 5-32, and Figure 5-33 showing the results with a SP= 10 in east

direction.

When reaching for a SP=10 in both east and north the model has less deviations. This is

shown in Figure 5-38. The reasons for this can be many, but it is likely due to the estimated

model being a better fit for change in both north and east direction due to system

identification process. When trying a SP=-10 in east direction, and SP=10 in north direction

the model seems to have bigger deviations in SP as Figure 5-39 shows.

To make a better model it might be needed to convert the vessel model from NED

coordinates to BODY coordinates. The reason for this is because the MPC controller knows

exactly that a thrust change in surge gives a change in surge position. The same goes for

thrust in sway and sway position in BODY diagram.

Another thing worth mentioning is that the control values from the MPC controller had to be

multiplied by -1. This was discovered due to the model acting in opposite directions of the

selected SP.

When developing an MPC controller with integral action several adjustments were made to

make the controller perform sufficiently. Since the state estimator wasn’t accurate in

estimating yaw it was decided to use the measurements in north, east and yaw directly

together with the velocity estimates in surge, sway, and yaw. This made the controller

perform better and now more trust could be put in the error weighing matrix Q to adjust for

overshoot for example. The integral action performs very well in removing the deviation

from SP, and together with weighting settings in favor of the error matrix Q the MPC

controller with integral action performs well.

At the end of the project phase, it was discovered an error in the OSP documentation

regarding yaw, and this error is just a unit error. This error got into the report for some of the

plots in yaw, and the correct unit should be [rad]. This makes sense since an angle is not a

linear measurement.

When looking back at the found system and MPC controller with integral action one

drawback is the time the controller uses to stabilize and remove the deviation, especially in

yaw with integral action. One solution to this could be to further explore weighting settings

for the controller and see if there exist better weight settings for the error matrix Q.

6.1 Further work

Since the OSP is designed for co-simulation[10] and the reference models are used as a

starting point to use the OSP package, it is a good idea to develop a new model to use for

further work on this topic. The ship can still be the Gunnerus, but then the measurements for

system identification should be taken on the real model. Otherwise, there can be taken data

from other models, or even the Balchen model and build this model into an FMU for use with

the OSP simulator.

There could also be made a vessel model based on the Balchen model that runs in parallel

with Gunnerus to check for similarities. This can be useful to find similarities which can be

used to develop a DP system that is flexible and can be used on other marine vessels.

 6 Discussion

88

A further improvement that can be made directly to this work is to tune the MPC controller

with integral action so that it responds faster. This is useful for the operators of the marine

vessel to minimize the time to reach SP. This would likely require adjusting the weightings in

Q and P, probably in favor of Q so it can compensate more for deviation from SP.

 7 Conclusion

89

7 Conclusion
The primary objective of this project was to do literature research of DP systems, use an

existing dynamic model to perform system identification on and implement a DP system for

the selected model. Part of the work done to reach this goal was to implement testing of the

selected dynamic model, design a state estimator and experiment with different controller

setup. MATLAB and Simulink were used to perform simulation experiments.

While the theory chapter gave insight into different topics, the practical work was mainly from

the methods and result chapter. Here the work was divided into multiple parts consisting of;

open loop testing to see how the model behaved, system identification to find a model, state

estimator to find the unknown states, and lastly the design of a controller to keep the marine

vessel at certain position.

There were two alternatives in regards of the model selection, but the final decision was made

towards the Gunnerus model from the Gunnerus-DP reference model in the OSP package. The

reason for this was to explore the OSP package and the Balchen model has been used in

previous projects. This way the project was more in line with the background for this task.

Based on the simulation experiments the most successful controller for the DP system was

found to be a MPC controller with integral action. The MPC controller that was found gives

very little deviations as shown in Figure 5-58 for example, and this can be acceptable for many

marine applications. As with the problems with the identified model showed, most of them

could be compensated for as presented in the discussion chapter.

There is still room for improvements as mentioned in the discussion chapter. Directly related

to this task is the tuning of the weighting matrices Q and P for the MPC controller. This can

decrease the time the yaw uses to reach SP and make the controller more suitable for situations

where the angle of the marine vessel is important.

The final DP system also aligns well with the requirements and design chapter where the

requirements where explored, and the controller behavior was analyzed on a top layer. As

depicted in the result chapter the controller delivers adequate performance when changing SP

and this is crucial for a DP system.

 References

90

References
[1] “The story behind dynamic positioning.” Accessed: Jan. 21, 2024. [Online]. Available:

https://www.kongsberg.com/kmagazine/2014/3/story-behind-dynamic-positioning/

[2] J. G. Balchen, N. A. Jenssen, E. Mathisen, and S. Sælid, “A dynamic positioning system

based on Kalman filtering and optimal control,” p. 29, 1980.

[3] N. M. Bargouth, “Dynamic positioning, system identification and control of marine

vessels,” Master Thesis, University of South-Eastern Norway, Porsgrunn, 2022.

Accessed: Jan. 24, 2024. [Online]. Available: https://openarchive.usn.no/usn-

xmlui/bitstream/handle/11250/3000363/no.usn%3Awiseflow%3A6583421%3A5022612

9.pdf?sequence=1&isAllowed=y

[4] “Maritime Reference Models,” Open Simulation Platform. Accessed: Feb. 11, 2024.

[Online]. Available: https://open-simulation-platform.github.io/demo-cases

[5] “Introduction to Dynamic Positioning (DP) Systems.” Dec. 2019. Accessed: Sep. 02,

2024. [Online]. Available:

https://www.dco.uscg.mil/Portals/9/OCSNCOE/References/Custom-Ref-Books/Intro-to-

DP-Systems-Dec2019.pdf?ver=d1Z9tUwX9p__Mi05A_NkwA%3D%3D

[6] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, Second

Edition. John Wiley & Sons Inc, 2021.

[7] T. I. Fossen, “Lecture Notes TTK 4190 Guidance, Navigation and Control of Vehicles.”

[Online]. Available:

https://www.dropbox.com/scl/fi/1hdy5puq6p0nzkd4bivtg/Ch10.pdf?rlkey=ro2t6otv1qfn6

qg20oi0nxapr&e=1&dl=0

[8] “Gunnerus-DP,” Open Simulation Platform. Accessed: Feb. 10, 2024. [Online].

Available: https://open-simulation-platform.github.io/cosim-demo-app/Gunnerus-DP

[9] “About us - Gunnerus Research Vessel - NTNU.” Accessed: Feb. 11, 2024. [Online].

Available: https://www.ntnu.edu/gunnerus/about-us

[10] “Open Simulation Platform,” Open Simulation Platform. Accessed: Feb. 10, 2024.

[Online]. Available: https://opensimulationplatform.com/

[11] “MathWorks - Makers of MATLAB and Simulink.” Accessed: Apr. 07, 2024.

[Online]. Available: https://se.mathworks.com/

[12] “MATLAB - YouTube.” Accessed: Apr. 07, 2024. [Online]. Available:

https://www.youtube.com/@MATLAB

[13] F. Haugen, “State estimation with Kalman Filter(chapter 29, lecture notes).”

[14] R. Sharma, Lecture notes for the course IIA 4117: Model Predictive Control. 2019.

Accessed: Feb. 18, 2024. [Online]. Available:

https://web01.usn.no/~roshans/mpc/downloads/lecture_notes_MPC.pdf

[15] “What is Model Predictive Control? - MATLAB & Simulink - MathWorks Nordic.”

Accessed: Feb. 18, 2024. [Online]. Available:

https://se.mathworks.com/help/mpc/gs/what-is-mpc.html

 References

91

[16] “Model Predictive Control.” Accessed: May 05, 2024. [Online]. Available:

https://web01.usn.no/~roshans/mpc/

[17] “What is PID Control?” Accessed: Feb. 18, 2024. [Online]. Available:

https://se.mathworks.com/discovery/pid-control.html

[18] D. Di Ruscio, SUBSPACE SYSTEM IDENTIFICATION Theory and applications.

2022.

[19] “RV GUNNERUS - LNVZ - Datasheet.” NTNU. Accessed: Oct. 03, 2024. [Online].

Available:

https://www.ntnu.edu/documents/1262202806/0/Specifications+RV+GUNNERUS.pdf/6

a6540e0-00ae-b7a2-a51d-bf365302bf61?t=1584611463564

[20] Man Energy Solutions, Basic principles of ship propulsion. Accessed: Apr. 18, 2024.

[Online]. Available: https://www.man-es.com/docs/default-source/document-sync-

archive/basic-principles-of-ship-propulsion-eng.pdf?sfvrsn=48fc05b5_7

[21] “D-SR.” Accessed: Mar. 09, 2024. [Online]. Available: https://davidr.no/iia2217/d-

sr/d-sr_e.html

[22] D. Di Ruscio, OPTIMAL MODEL BASED CONTROL: System Analysis and Design.

2022. [Online]. Available: http://davidr.no/iiav3017/syllabus/main_pc_e.pdf

 Appendices

92

Appendices

Appendix A – Project Description

Appendix B – GitHub Repository

Appendix C – Plotting function for open loop testing

Appendix D – Open loop testing

Appendix E - Open loop testing Vessel Model

Appendix F – System identification.

Appendix G – System Identification control input function.

Appendix H – System Identification input and output matrixes.

Appendix I – System Identification D-SR.

Appendix J – Kalman Initializing.

Appendix K – Plotting real model and estimated model.

Appendix L – Real model and the state estimator.

Appendix M - QP formulation script.

Appendix N – MPC controller

Appendix O - MPC controller with integral action

 Appendices

93

Appendix A – Project Description

 Appendices

94

Appendix B – GitHub Repository

The GitHub repository can be found at:

https://github.com/AutomationWithJan/Dynamic-Positioning-system-identification-and-

control-of-marine-vessels---using-the-OSP-simulator

Here the different MATLAB scripts and Simulink files from this project will be available.

https://github.com/AutomationWithJan/Dynamic-Positioning-system-identification-and-control-of-marine-vessels---using-the-OSP-simulator
https://github.com/AutomationWithJan/Dynamic-Positioning-system-identification-and-control-of-marine-vessels---using-the-OSP-simulator

 Appendices

95

Appendix C – Plotting function for open loop testing.

 Appendices

96

Appendix D – Open loop testing.

 Appendices

97

Appendix E – Open loop testing Vessel Model.

 Appendices

98

Appendix F – System Identification.

 Appendices

99

Appendix G – System Identification control input function.

A function to make the random source a square wave function.

 Appendices

100

Appendix H – System Identification input and output matrixes.

 Appendices

101

Appendix I – System Identification D-SR.

 Appendices

102

Appendix J – Kalman Initializing.

 Appendices

103

Appendix K – Plotting real model and estimated model.

 Appendices

104

Appendix L – Real model and the state estimator.

 Appendices

105

Appendix M – QP formulation script.

 Appendices

106

Appendix N – MPC controller

 Appendices

107

Appendix O – MPC controller with integral action

	1 Introduction
	1.1 Background
	1.2 Objective
	1.3 Previous work
	1.4 System overview
	1.5 Methods
	1.6 Report structure.

	2 Theory
	2.1 Dynamic positioning
	2.1.1 Six Degrees of freedom
	2.1.2 Input, output and predicted states.

	2.2 Forces acting on a marine vessel.
	2.2.1 Wind
	2.2.2 Waves
	2.2.3 Sea current

	2.3 Vessel models
	2.3.1 Balchen model
	2.3.2 R/V Gunnerus

	2.4 OSP
	2.5 MATLAB and Simulink
	2.6 FMI and FMU
	2.7 Kalman Filter
	2.8 Controller
	2.8.1 MPC
	2.8.2 PID

	2.9 System identification

	3 Methods
	3.1 Open loop testing.
	3.2 System Identification
	3.2.1 Input data and measurements.
	3.2.2 Using D-SR to get an SSM.
	3.2.3 Analysis of the SSM

	3.3 State estimation and Kalman filter.
	3.4 Control of the marine vessels
	3.4.1 PID Controller
	3.4.2 MPC Controller
	3.4.3 MPC Controller with integral action

	4 Requirements and Design
	4.1 FURPS+
	4.2 UML diagrams
	4.3 Design

	5 Results
	5.1 Open loop testing
	5.2 System Identification
	5.2.1 System matrices.
	5.2.2 System analysis.

	5.3 State estimator and Kalman filter.
	5.4 Control of the marine vessel
	5.4.1 MPC Controller
	5.4.2 MPC Controller with integral action

	6 Discussion
	6.1 Further work

	7 Conclusion

