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Summary:  

This project explores the Balchen model and the OSP package with a goal to find a vessel 

model through system identification and try to construct a DP system.  

The objective of this project is to perform literature research about DP systems for marine 

vessels, do system identification of an existing model and implement a DP system for the 

selected marine vessel.  

The methods chapter focuses on open loop testing to try to find the boundaries of the 

system, system identification in Simulink, and the development of an MPC controller in 

Simulink. Simulink was used to perform “live” simulations, while MATLAB was used to 

initialize Kalman filter, and set up NE diagrams showing the marine vessels position.  

For the MPC controller an LQ optimal control problem was selected as a start, and this 

had to be fit in the standard QP formulation that was supported by qpOASES solver.  

Finaly, the conclusion discusses how successful this project was in regards of the 

objective.  
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Preface 
This project stemmed from the curiosity to explore the OSP package, explore the possibilities 

it brings in regards of system identification and the development of an MPC controller for a 

marine vessel.  

This report follows the IMRaD structure with the introduction divided into introduction and 

theory. Here the reader will gain beginner friendly theory about DP systems and the different 

parts needed to design a controller with the OSP package, MATLAB and Simulink, and how 

to perform different experiments.  

The successful goal for this project is to be able to present an MPC controller designed for one 

of the elements in the OSP package. 

Lastly, I would like to thank my supervisor David Di Ruscio for the support and guidance 

throughout this project. His feedback on my work has been of great importance and has helped 

me navigate through a whole new field in my knowledge. I would also express my gratitude to 

my partner and family for supporting me throughout my work and helping me keep my eyes 

on the end goal, the final delivery. 

 

Porsgrunn, 15.05.2024 

 

Jan-Robin Brustad 
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Nomenclature/Abbreviation 
 

Table 1-1 Abbreviation list 

Abbreviation Definition Explanation 

DP Dynamic Positioning A system that can position a marine 

vessel at any place and keep it in that 

position. 

D-SR Deterministic and Stochastic 

systems and Realization 

A method of subspace system 

identification. It can be used to 

completely identify a Kalman filter 

model from known input and output 

data, as well as identifying the 

system order. 

FMI Functional Mock-up Interface FMI is a standardized interface 

predominantly utilized in computer 

simulations. It is widely recognized 

as the preferred standard for co-

simulation. 

FMU Functional Mockup Unit An FMU is a set of models that 

conforms to the FMI standard. It is 

commonly used to share models 

between different simulation 

environments. 

GPS Global positioning system GPS is a navigation system based on 

satellites and it can provide users 

around the world with precise 

location and time information. 

MCR Maximum continuous rating The highest power output that a 

marine engine can deliver 

continuously.  
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MIMO  Multiple Inputs, Multiple Outputs A system with more than one input 

and output.  

MPC Model Predictive Control MPC is a control algorithm that uses 

a predictive model to optimize future 

system responses based on given 

inputs, continually adjusting to 

achieve the best performance. 

NE North and East A two-dimensional diagram showing 

the marine vessel position in north 

and east. 

NED North, East, and Down. A diagram that shows the marine 

vessel position in north, east and 

down direction.  

PID Proportional Integral Derivative PID is a type of feedback controller 

that adjusts system outputs based on 

the measured error between a desired 

setpoint and the actual output. The 

error is processed through three 

distinct functions, the proportional, 

integral, and derivative which 

together adjust the control action to 

minimize the error. 

OSP Open Simulator Platform The OSP is an open-source software 

package for co-simulation of 

maritime vessels. The platform 

builds on the FMI standard and aims 

to reuse digital twins.  

SP Set point The desired value for a process that 

an operator has selected. 

SSM State space model A mathematical framework that can 

be used to predict the future states of 

a system and filter the output values.  
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1 Introduction 
In this chapter a brief introduction to dynamic positioning is given, the objective is elaborated 

and some of the previous work is discussed. There is also presented a short system overview 

which elaborates how this work differentiates from the previous work, and the report structure 

is explained at the end.  

1.1 Background 

Marine vessels are complex and can be very challenging to maneuver close to oil platforms 

or other marine installations. A typical marine vessel consists of actuators like tunnel 

thrusters in the front and the back, a propeller, and a rudder. To dock a marine vessel precise 

control of these actuators is needed and this is where dynamic positioning comes in handy.  

Dynamic positioning systems where first developed in the early 60’s in the USA[1] and the 

development soon escalated around the world for more advanced systems. The dynamic 

positioning systems in Norway were pioneered by Jens A. Balchen who traveled to USA to 

study their DP systems[1]. He later co-wrote an article that made the foundation for DP 

systems in Norway and influenced Kongsberg to take advantage of DP systems in 1975[1]. 

One of the big problems with classical PID controllers is the need for deviation for the 

controller to give a control value to the actuators. For marine vessels multiple PID controllers 

are needed, and each of them needs to be tuned individually. Jens A. Balchen solves this 

problem by implementing a modern control algorithm based on the Kalman filter[2]. The 

Kalman filter is especially useful since it can predict unmeasured states of the system that can 

be utilized in a control algorithm like the MPC controller.  

A DP system for ships can includes autopilot and automatic positioning without using an 

anchor.  

The background for this project is the interest to reconstruct the DP systems from the Balchen 

model through system identification and evaluate the need for a modified version. To reach 

this goal a model in the OSP package can be selected to perform system identification on, 

instead of a real ship.   

1.2 Objective 

The objective is divided into different tasks:  

• Perform literature research about DP systems of ships. 

• Use an existing dynamic model of a marine vessel and perform experiment design for 

system identification in order to create models of the vessel. 

• Implement a DP system for the vessel. 

• Perform Simulation experiments by using MATLAB or similar.  

The objective is further elaborated in Appendix A. 
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1.3 Previous work 

The previous work related to this project is spread around multiple topics. The first and 

maybe most important work is the Balchen et al 1980 model[2]. DP systems where first 

developed with PID controllers in the early sixties. There were one PID controller for each 

surge, yaw and sway motion [2]. This obviously has some disadvantages because of coupling 

between sway, surge, and yaw. This means that the integral action of the controllers must be 

slow in order for the controllers to give proper control value. Further on in the Balchen model 

a successful controller consisting of modern control algorithms, the Kalman filter and optimal 

control is introduced[2].   

In 2022 Nour Mohamad Bargouth developed a control system based on the Balchen model. 

Bargouth tried implementing several different controllers, all of them based on MPC. The types 

of MPC’s explored where standard MPC, reduced size MPC, simple MPC and simple MPC 

with integral action[3].  

1.4 System overview 

This project differs from the previous work in the model selection’s part, here there is taken 

an experimental approach to finding a model using the OSP package. The OSP package 

comes with a demo selection of maritime reference models[4], and the Gunnerus-DP was 

selected since it came with an ready to go marine vessel with thruster dynamics. The reason 

for this is to have the opportunity to do system identification on a model that is as realistic as 

possible.  

The developed systems are divided into 4 parts, one part for open loop testing, one for system 

identification, one for designing a state estimator and a final part where an MPC controller is 

developed for the selected marine vessel.  

The development tools that were selected are MATLAB and Simulink, where MATLAB is 

used for scripting, state estimatior initializing and for making NE diagrams which is very 

difficult in Simulink. Simulink is, however, a solid software for executing a simulation in real 

time and makes it easy for the operator to adjust the different set points and watch live 

changes.  

1.5 Methods 

This project is divided into multiple parts that are listed below.  

• Open loop testing. 

• System identification 

• Developing a state estimator. 

• Developing an MPC controller. 

• Developing an MPC controller with integral action. 

The reason for dividing the project into those parts is to create a barrier between the different 

systems developed. This way, one part is finished when the next part is started and can later 

be run individually as a standalone system.  
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The open loop testing focuses on testing the selected marine vessel and seeing how it reacts 

to inputs. It is also used to explore what a realistic thrust in the main propeller would look 

like. 

The system identification builds on the open loop test application but focuses more on 

making a setup to create random input signals to the different actuators and measure the 

outputs. 

The development of a state estimator also builds on the open loop setup but focuses on 

running a state estimator of the marine vessel in parallel with the real model to measure the 

accuracy of the identified state space model.  

The development of a controller mainly focuses on an MPC controller, but PID controller is 

also discussed. Further on the MPC controller is explored more in depth, and the 

implementation of integral action is considered.  

1.6 Report structure. 

The report is structured into 6 main parts, which includes the introduction, theory, methods, 

results, discussion and finally a conclusion. The purpose of the introduction chapter is to give 

the reader a picture of the work and methods used. 

In the theory chapter the reader gains some backgrounds knowledge about different topics 

such as PID, MPC, DP, OSP and more. This theory part is useful when reading this report if 

some of the subjects are unknown from before.  

The methods and result chapters are divided into two parts; the methods chapters elaborate 

the methods and strategies used to reach the objective, and the result chapter explains and 

presents the results.  

The discussion chapter analyses the results regarding problems or success with the given 

models, methods, and if there are any deviations. Finally, the conclusion summarizes the 

report and the work done to figure out if it is in line with the objective of this project.  
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2 Theory 
The following chapter presents relevant theory that will be considered when choosing a 

method.  

2.1 Dynamic positioning 

For a marine vessel to have a DP system, there must be a control system that controls surge, 

sway, and yaw. By controlling these variables, it is possible to keep a marine vessel at a 

stationary location. This is especially useful when trying to dock a supply ship close to an oil 

rig or other fixed positions[2].  

A dynamic positioning system usually consist of a control algorithm, positioning 

measurement, a propulsion and a rudder system[2]. The control algorithm can either be a PID 

controller for each surge, sway, and yaw or an MPC controller that controls them all at the 

same time. The controller algorithm can be considered the heart of the DP system and is 

crucial for a marine vessel to keep a position and maintain safety measures for the ship.  

The positioning measurement can consist of multiple sensors and models. Typically, a GPS 

system is implemented, but there can also be other systems. The positioning reference system 

can either be relative positioning, or absolute positioning system[5]. The GPS system is an 

absolute positioning system, while a relative positioning system can be based on laser 

technology and gives the position in relation to a target.  

The propulsion system usually consists of different thrusters and propellers. The main 

propeller controls the surge, and sway can be controlled using tunnel thrusters or azimuth 

thrusters[5]. Finally, yaw can be controlled using a rudder or even an azimuth thruster. Figure 

2-1 shows example of placement for the different thrusters, propeller, and rudder on a marine 

vessel.  
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Figure 2-1 Thrusters, propeller and rudder illustrated on a marine vessel. 

 

2.1.1 Six Degrees of freedom 

Figure 2-2 illustrates the six degrees of freedom that a marine vessel has. They are called 

yaw, sway, heave, roll, surge, and pitch [6], surge, sway and heave are linear measurements 

in meter and yaw, roll and pitch are angles measured in rad. Only three of them are directly 

controllable and those are surge, yaw, and sway. Typically, a propeller or a thruster controls 

surge which can be thought of as forward or backwards direction. Sway is sideway control 

and is typically done through tunnel thrusters. The yaw is a rotational movement that decides 

how the marine vessel turns. A rudder usually decides how yaw is controlled.   
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Figure 2-2 A marine vessel with six degrees of freedom. 

2.1.2 Input, output and predicted states.  

For this system there are three inputs, three outputs and three unknown states that can be 

predicted. In all there are six states in the model which is illustrated in Figure 2-3. The 

disturbances, if implemented, could also be thought of as an input and could be included in 

the system identification part.  

 

 

Figure 2-3 Inputs, Outputs, Disturbances, and states of the system. 
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2.2 Forces acting on a marine vessel. 

For this project three different disturbances are considered: The sea current, waves, and wind 

forces. These disturbances are neglected for the development parts of this project, but they 

are still relevant and will be discussed briefly in this chapter.  

2.2.1 Wind 

A marine vessel is subject to wind forces in all degrees of freedom, here only the wind forces 

in surge, sway and yaw will be analyzed. Figure 2-4 shows how the wind can affect surge, 

sway, and yaw. If the wind acts with greater pressure on either the rear or front of the marine 

vessel it will influence the marine vessel to rotate in the yaw direction. This means that the 

rudder, or azimuth thrusters need to compensate for the acting force.  

 

Figure 2-4 Wind force acting on marine vessel, in BODY coordinates. Here head wind is affecting surge 

direction, and beam wind is affecting sway direction. 

The combined wind force can be expressed like equation (2.1) for symmetric marine vessels 

at rest[7]. 

𝐹𝑤 = [

𝐹𝑤,𝑠𝑢
𝐹𝑤,𝑠𝑤
𝑁𝑤

] =
1

2
𝜌𝑎𝑉𝑤

2 ∙ [

𝐶𝑥 cos(𝛾)𝐴𝐹
𝐶𝑦 sin(𝛾) 𝐴𝐿
𝐶𝑁 sin(2𝛾) 𝐴𝐿𝐿

] 

(2.1) 

Here are the variables explained: 

𝐹𝑤: The total force of the wind given as a matrix.  

𝐹𝑤,𝑠𝑢: The wind force in surge direction [N]. 

𝐹𝑤,𝑠𝑤: The wind force in sway direction [N]. 
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𝑁𝑤: The wind force in yaw [Nm]. 

𝜌𝑎: The air density of the wind. 1.23[kg/m3][3]. 

𝑉𝑟𝑤: Relative wind speed [m/s]. 

𝐶𝑥: The wind coefficient in surge direction. 𝐶𝑥 ∈ [0.50, 0.90] [7]. 

𝐶𝑦: The wind coefficient in sway direction. 𝐶𝑦 ∈ [0.70, 0.95] [7]. 

𝐶𝑁: The wind coefficient in yaw. 𝐶𝑁 ∈ [0.05, 0.20] [7]. 

𝛾: The angle of the wind affecting the marine vessel. 

𝐴𝐹: The frontal projected area of the wind on the marine vessel. This is illustrated as head 

wind in Figure 2-4.  

𝐴𝐿: The lateral projected area of the wind on the marine vessel. This is illustrated as beam 

wind in Figure 2-4. 

𝐿: The overall length of the marine vessel.  

The wind angle of attack can be expressed as equation (2.2)[7]. 

𝛾 = 𝜓 − 𝛽𝑣𝑤 − 𝜋 (2.2) 

Here,  

𝜓: The angle of the wind relative to the vessel heading in surge.  

𝛽𝑣𝑤: The wind direction relative to the true north [rad]. 

𝜋: Shifting the wind angle by 180 degrees, changing the wind from where it is coming to 

where the wind is heading.  

Equation (2.3) shows the relative wind speed[7]. 

𝑉𝑟𝑤 = √𝑣𝑟𝑤,𝑠𝑢
2 + 𝑣𝑟𝑤,𝑠𝑤

2  
(2.3) 

Where:  

𝑣𝑟𝑤,𝑠𝑢 : The component of the relative wind speed in the surge direction.  

𝑣𝑟𝑤,𝑠𝑤: The component of the relative wind speed in the sway direction. 

𝑣𝑟𝑤,𝑠𝑢  = 𝑉𝑤 cos(𝛽𝑣𝑤 − 𝜓) (2.4) 

 

𝑣𝑟𝑤,𝑠𝑤  = 𝑉𝑤 sin(𝛽𝑣𝑤 − 𝜓) (2.5) 

For equation (2.4) and (2.5): 

𝑉𝑤: is the measured wind speed given in [m/s]. 

The wind speed and description of the wind is given in Table 2-1[7].  
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Table 2-1 Wind speed in knots 

Description of wind Wind speed [knots]. 

Calm 0-1 

Light air 2-3 

Light breeze 4-7 

Gentle breeze 8-11 

Moderate breeze 12-16 

Fresh breeze 17-21 

Strong breeze 22-27 

Moderate gale 28-33 

Fresh breeze 34-40 

Strong gale 41-48 

Whole gale 49-56 

Storm 57-65 

Hurricane  More than 65 

 

To calculate the wind speed in m/s, the formula in equation (2.6) can be used. 

1[𝑘𝑛𝑜𝑡𝑠] = 0.51[𝑚/𝑠] (2.6) 

 

2.2.2 Waves 

A marine vessel is influenced by waves in a first order and a second order part. This means 

that the waves exist of a low frequency part, and a higher frequency oscillatory part. For 

simulation purposes it is a good idea to separate those two[7].  

Wave-frequency motion: The first order wave force component gives a zero mean 

oscillatory motion. This can be removed by introducing a filter to the wave forces[7]. 
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Wave drift forces: The second order wave force component is a slow varying component 

which is often referred to as the low frequency wave motion. To counter this low frequency 

part of wave force integral action must be used[7].  

2.2.3 Sea current 

The Balchen model introduces the sea current in NED coordinates that includes the current 

velocity. The sea current is given in equation (2.12), (2.13), and (2.14) 

�̇�𝑐,𝑁 = 𝜂𝑐,𝑁 (2.7) 

�̇�𝑐,𝐸 = 𝜂𝑐,𝐸 (2.8) 

�̇�𝑐,𝜓 = 𝜂𝑐,𝜓 (2.9) 

Here:  

𝜂𝑐,𝑁 , 𝜂𝑐,𝐸 , 𝜂𝑐,𝜓 : zero mean white noises 

𝑣𝑐,𝑁: Water current velocity in the north direction. 

𝑣𝑐,𝐸: Water current velocity in the east direction. 

𝑁𝑐,𝜓: Water current moment in yaw 

To transform the sea current to BODY coordinates the transpose transformation matrix can 

be used from equation(2.10) [2].  

𝑅(𝜓) = [
cos(𝜓) − sin(𝜓) 0
sin(𝜓) cos(𝜓) 0
0 0 1

] 
(2.10) 

Water current velocities in BODY coordinates are then given in equation (2.11). 

[

𝑣𝑐,𝑠𝑢𝑟𝑔𝑒
𝑣𝑐,𝑠𝑤𝑎𝑦
𝑁𝑐

] = 𝑅(𝜓)𝑇 [

𝑣𝑐,𝑁
𝑣𝑐,𝐸
𝑁𝑐,𝜓

] 
(2.11) 

Here: 

𝑣𝑐,𝑠𝑢𝑟𝑔𝑒: Water current velocity in surge direction. 

𝑣𝑐,𝑠𝑤𝑎𝑦: Water current velocity in sway direction. 

𝑁𝑐 : Water current moment in yaw. 

2.3 Vessel models 

A vessel model can either be a mathematical model [2], a real marine vessel or a simulated 

version of a marine vessel. An example of an simulated vessel can be the Gunnerus-DP [8] 

provided as a reference model in the OSP package. In the following subchapters the Balchen 

model and Gunnerus models are given which will lay the foundation for the project work. 
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2.3.1 Balchen model 

The Balchen model is a mathematical model describing a marine vessel motion [2]. The 

model is designed to be used with a Kalman filter making it suitable for MPC controllers. To 

understand the basics behind the Balchen model, one would have to understand Newtons 

second law.  

∑𝐹 = 𝑚𝑎 
(2.12) 

Where:  

F – Forces acting on the vessel [N]. 

m – The mass of the vessel [kg]. 

a - The acceleration of the vessel [m/s2]. 

 

Equation (2.12) can be further expanded where the sum of forces is wind force, current force 

from water and thruster force.  

∑𝐹 = 𝐹𝑤 + 𝐹𝑐 + 𝐹𝑇 
(2.13) 

 

Here:  

Fw – The wind force [N]. 

Fc – The current force from sea water [N]. 

FT – The thruster force [N]. 

Since the high frequency part of the Balchen model is very small and oscillates around the 

low frequency part[2] it is neglected for this project. The low frequency model is given by 

equation (2.14) to (2.19). For easier readability the same variable letters and indexes have 

been used as in the previous work by Bargouth [3]. 

𝑑𝑥𝑠𝑢
𝑑𝑡

= 𝑣𝑠𝑢 
(2.14) 

𝑑𝑥𝑠𝑤
𝑑𝑡

= 𝑣𝑠𝑤 
(2.15) 

𝑑𝜓

𝑑𝑡
= 𝑣𝜓 

(2.16) 

𝑣𝑠𝑢 = −
𝑑1
𝑚1
|𝑣𝑠𝑢 − 𝑣𝑐𝑠𝑢|(𝑣𝑠𝑢 − 𝑣𝑐𝑠𝑢) +

1

𝑚1
(𝐹𝑤𝑠𝑢 + 𝐹𝑡𝑠𝑢) + 𝜂1 

(2.17) 
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𝑣𝑠𝑤 = −
𝑑2
𝑚2
|𝑣𝑠𝑤 − 𝑣𝑐𝑠𝑤|(𝑣𝑠𝑤 − 𝑣𝑐𝑠𝑤) +

1

𝑚2
(𝐹𝑤𝑠𝑤 + 𝐹𝑡𝑠𝑤) + 𝜂2 

(2.18) 

𝑣𝜓 = −
𝑑3
𝑚3
|𝑣𝜓|𝑣𝜓 −

𝑑4
𝑚3
|𝑣𝑠𝑤 − 𝑣𝑐𝑠𝑤|(𝑣𝑠𝑤 − 𝑣𝑐𝑠𝑤) +

1

𝑚3

(𝑁𝑐 + 𝑁𝑤 + 𝑁𝑡) + 𝜂3 
(2.19) 

 

The different variables are defined below:  

𝑥𝑠𝑢: The position of the marine vessel in x direction (surge) [m]. 

𝑣𝑠𝑢: The velocity of the marine vessel in x direction [m/s]. 

𝑥𝑠𝑤: The position of the marine vessel in y direction (sway) [m]. 

𝑣𝑠𝑤: The velocity of the marine vessel in y direction(sway) [m/s]. 

𝜓: The heading of the marine vessel in yaw [rad].   

𝑣𝜓: The yaw velocity in heading of the marine vessel [rad/s]. 

 

𝜂1, 𝜂2, 𝜂3: These are assumed to be from zero mean gaussian white noise process[2]. 

𝑑1, 𝑑2, 𝑑3, 𝑑4: These are the drag and momentum coefficients[2]. The difference in angle 

between the vessel heading and water current direction is usually given as a function, where 

the drag and momentum coefficients can be gathered.  

𝑚1, 𝑚1, 𝑚1: These are the inertial coefficients which can be assumed to be constants[2]. 

𝐹𝑤𝑠𝑢: This is the wind force in x direction. 

𝐹𝑤𝑠𝑤: This is the wind force in y direction. 

𝐹𝑡𝑠𝑢: This is the thruster force in x direction. 

𝐹𝑡𝑠𝑤: This is the thruster force in y direction. 

𝑁𝑐, 𝑁𝑤, 𝑁𝑡: This are the current moment, wind moment and thrust moment.  

𝑣𝑐𝑠𝑢 , 𝑣𝑐𝑠𝑤: Current in x direction and current in y direction. 

2.3.2 R/V Gunnerus 

The R/V Gunnerus is a marine research vessel owned by NTNU and was first deployed in 

2006 for its purposes. R/V Gunnerus is named after Johan Ernst Gunnerus and is the second 

ship named Gunnerus by NTNU[9].  

The Gunnerus-DP package comes with several FMUs that can be used. This includes the 

vessel model, and the vessel model is shown in Figure 2-5. 
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Figure 2-5 Vessel model imported as an FMU in Simulink. 

The sum of forces has been split into thrust, wave forces and current velocity. This is similar 

to the Balchen model as explained in chapter 2.3.1. The FMUs in the Gunnerus-DP package 

is depicted in Figure 2-6. 

 

Figure 2-6 Gunnerus-DP FMU packages description[8] 

As Figure 2-5 shows there are no wind forces connected to the vessel model. The 

documentation for the Gunnerus-DP states that additional forces can be connected to either 

the Wave_force, or the Thrust in Figure 2-5 since they are both internally connected to the 

same summation block [8].    
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2.4 OSP 

OSP stands for Open Simulation Platform and is an open-source software for simulating 

marine vessels[10]. It has the possibility to co-simulate marine equipment and even complete 

marine vessels like the Gunnerus-DP.   

The OSP package comes with many software applications, including a demo application with 

a user interface and a command prompt-based co-simulator(libcosim). There are also many 

reference models that can be freely used[4].  

The OSP packages are built on the FMI standard meaning it can be integrated into many 

different software’s, including MATLAB with Simulink. The Gunnerus-DP has been 

included in the reference model package and the vessel model can be imported as an FMU 

into Simulink[8].  

2.5 MATLAB and Simulink 

For this project MATLAB version 9.12.0.2327980 (R2022a) Update 7 and Simulink version 

10.5 (R2022a) is used. Both MATLAB and Simulink are products of MathWorks and are 

accessible from MathWorks.com[11]. MATLAB serves primarily as a scripting environment, 

and Simulink offers a graphical programming environment designed for modeling and 

simulating. They work great together and often an initializing script can be made in 

MATLAB for a simulation in Simulink. Furthermore, Simulink offers the ability to log data 

directly to MATLAB workspace that can be fetched and stored in matrices or vectors. This 

makes it possible to make graphs and analyze data in the MATLAB environment after a 

Simulink simulation.  

They both support extra packages outside the standard installation and are backed by a big 

community that provides a lot of learning resources. An example of this is the YouTube 

channel for MATLAB[12].  

2.6 FMI and FMU 

The OSP simulator depends on FMUs of different models to function. FMU can be the model 

of a marine vessel, thruster dynamics or even simple physics laws for simulation purposes. 

The main reason for having the FMI standard in the OSP simulator is to co-simulate. This 

means that different frameworks can use the same FMU model and interact with it at the 

same time. The reason they can communicate with the same FMU model lies in the FMI 

standard. FMI stands for Functional mock-up interface and is an interface that tells how 

software like MATLAB can communicate with FMUs. In Figure 2-7 it is shown how 

MATLAB with Simulink and a OSP simulation is both communicating to the same FMU 

model.   
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Figure 2-7 How MATLAB with Simulink and the OSP simulation can interact with the same FMU over the 

FMI standard. 

2.7 Kalman Filter 

The Kalman Filter is an algorithm for state estimation and prediction, and it is quite good at 

estimating states that are not easily measurable. It is a model-based algorithm which requires 

identifying a model of the system through system identification or mathematical modelling. It 

can estimate states that are not measured, and the states that are measured. Typically the 

Kalman filter runs in parallel with the real process to predict states that are not measured for 

various reasons[13]. The reasons can be that it is expensive to install sensor equipment, or 

that the state can’t be measured directly, for example the temperature in a rocket chamber of 

a spacecraft.  

 

Figure 2-8 Kalman Filter and real process illustrated together. 
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In Figure 2-8 yest is shown, this is the filtered value of y, the process value and sometimes it is 

better to use this if the measurements are prone to noise. The user interface can for example 

minimize ripple effects making graphs easier to read for the operator.  

The formulas used in the Kalman filter is shown in equation (2.20) and (2.21), this are the 

SSM formulas.  

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑓𝑘(�̅�𝑘) (2.20) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑔𝑘(�̅�𝑘) (2.21) 

Here: 

𝑥𝑘+1: The next predicted state.  

𝐴: State transition matrix. 

𝑥𝑘: The current state value. 

𝐵: The input matrix. 

𝑢𝑘: The input vector at current timestep. 

𝑦𝑘: The output value at current timestep.  

𝐶: The output matrix.  

𝑓𝑘(�̅�𝑘): Process noise or disturbance 

𝑔𝑘(�̅�𝑘): the measurement noise or disturbance in output.  

2.8 Controller 

There are many types of controllers that can be used to control a marine vessel. In this report 

two types of controllers are considered.  

2.8.1 MPC  

MPC stands for Model Predictive Control and is a controller type that uses a model of a 

system to predict future behavior. The reason for this is that the real system can’t be 

calculated in advance, but the model can[14].  

MPC is an algorithm that solves an optimization problem. The optimization problem is the 

control value and needs to be solved at each timestep. The reason for solving the control 

optimization problem at each timestep is that new measurement data is available[14].  

An MPC controller solves the control value for many steps forward but uses only the first 

control value. The rest is discarded since the control optimization problem must be solved 

again[15]. MPC can use a sliding horizon strategy where the initial state is used to calculate 

the first control value, then the system takes one timestep forward and uses the previous 

calculated state values to calculate a new control value[14].    

An MPC controller can handle MIMO systems very efficiently. This means that they can 

handle multiple control values for different actuators for example.  
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Figure 2-9 Block diagram for a basic MPC controller. 

Figure 2-9 shows the block diagram for a basic MPC controller. The controller consists of a 

prediction model, for example the Kalman filter and an optimizer.  

To use an MPC controller in Simulink a solver must be imported. qpOASES is an solver that 

is supported by Simulink and is relative easy to set up if the developer has some general 

knowledge in adding an C++ compiler in MATLAB, there are some instructions on this from 

Roshan Sharma website in the course “Model Predictive Control, IIA4717”[16].  

2.8.2 PID 

A PID controller is a controller that is dependent on the error to give a control value. PID 

stands for Proportional, Integral and Derivative. PID controllers are the main controllers of 

choice because of their simplicity. A PID controller can be split into simpler parts, for 

example P controller, PI controller, PID controller or a PD controller[17].  

Since the PID controller is dependent on the error, the error must be calculated continuously. 

The error is the difference between the reference value and the measured value as seen in 

formula (2.22).  

The PID controller is excellent for SISO models but can also be used for MIMO systems. For 

MIMO systems there must be a PID controller for each the surge, sway, and yaw.  

𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) (2.22) 

Here: 

𝑒(𝑡): The error signal, representing the error between reference value and measurement. 

𝑟(𝑡): The reference value, often referred to as SP which is the state the control system aims to 

achieve. 

𝑦(𝑡): The actual measurement value, typically from a sensor. 



 2 Theory 

25 

𝑢(𝑡) = 𝐾𝑝 ∙ 𝑒(𝑡) +
𝐾𝑝

𝑇𝑖
∙ ∫ 𝑒(𝑡) ∙ 𝑑𝑡 + 𝐾𝑝𝑇𝑑 ∙

𝑑 𝑒(𝑡)

𝑑𝑡

𝑡

0

 
(2.23) 

 

𝑢(𝑡): The control signal that is applied to the system, based on the error. 

𝐾𝑝: The proportional gain, this a tuning parameter that is multiplied to the error. 

𝑇𝑖: The integral time, used to calculate the integral gain 
𝐾𝑝

𝑇𝑖
. 

𝑇𝑑: The derivative time. Used to calculate the derivative gain 𝐾𝑝𝑇𝑑.  

 

Figure 2-10 Schematic view of the PID controller. 

 

 

2.9 System identification 

To make a mathematical model of the marine vessel, system identification is essential. As 

illustrated in Figure 2-11 the process of system identification is shown. Different values are 

inserted to the system’s inputs, and then the outputs are measured. This data is used to make a 

state space model through realization theory[18].  
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Figure 2-11 System identification principle. Here both the inputs and outputs must be logged.  

For a marine vessel the inputs consist of thrusters, wind, sea current, and wave forces. The 

outputs can consist of vessel position, the vessels velocity, and the vessels acceleration. The 

chosen model is assumed to be a state space model.  

The known inputs and measured outputs can be logged in to matrices, U for inputs and Y for 

outputs.  

The inputs consist of thrusters and may include waves, wind, and sea current. In this report 

only the thruster inputs are considered and put in the input matrix U as shown in equation 

(2.24). 

𝑈 =

[
 
 
 
𝑈𝑆𝑢𝑟𝑔𝑒,1 𝑈𝑠𝑤𝑎𝑦,1 𝑈𝜓,1
𝑈𝑠𝑢𝑟𝑔𝑒,2 𝑈𝑠𝑤𝑎𝑦,2 𝑈𝜓,2

⋮ ⋮ ⋮
𝑈𝑠𝑢𝑟𝑔𝑒,𝑁 𝑈𝑠𝑤𝑎𝑦,𝑁 𝑈𝜓,𝑁]

 
 
 

 

 

(2.24) 

The measured outputs are the position in north, east, and yaw. There is also possible to 

measure the velocity and acceleration in surge, sway, and yaw but this is not done in this 

report. The output matrix Y is given in equation (2.25).  

 

𝑌 =

[
 
 
 
𝑌𝑛𝑜𝑟𝑡ℎ,1 𝑌𝑒𝑎𝑠𝑡,1 𝑌𝜓,1
𝑌𝑛𝑜𝑟𝑡ℎ,2 𝑌𝑒𝑎𝑠𝑡,2 𝑌𝜓,2
⋮ ⋮ ⋮

𝑌𝑛𝑜𝑟𝑡ℎ,𝑁 𝑌𝑒𝑎𝑠𝑡,𝑁 𝑌𝜓,𝑁]
 
 
 

 

 

(2.25) 

In equation (2.24) and (2.25) N stands for the number of samples. 
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3 Methods 
The following chapter focuses on the methods used for solving the objective in this project. 

The first objective literature research is done through the theory chapter, and this method 

chapter focuses mainly on practical work.  

The marine vessel selected to conduct experiments on is the Gunnerus ship from the OSP 

package[8]. This package comes with both vessel model and a thruster dynamics model as 

FMUs. The reason for choosing this model is the lack of a real model, and it gives opportunities 

to explore the OSP package.  

3.1 Open loop testing.  

To test how the vessel model in Gunnerus-DP responds to step changes in surge, sway and 

yaw a Simulink program was made. The open loop testing program in Simulink is shown in 

Figure 3-1.  

 

 

Figure 3-1 Open loop testing in Simulink with only thruster force acting on the marine vessel. 

As Figure 3-1 shows there are used different approaches to generate an input signal to the 

vessel model. Here experiments with just a constant value, a step response and time delayed 

signals are tested. The results are evaluated in a NE diagram in chapter 5.1. This is a two-

dimensional representation of the marine vessel’s position as seen from above.  

The constant block with the value 1 shown in Figure 3-1 does nothing. ThrusterDynamics 

should have only three inputs, but an extra index 0 is added which doesn’t seem do anything, 

hence the use of an extra constant block. More on this in the discussion chapter. The 

ThrusterDynamics as well as the VesselModel FMUs are shown in Figure 3-2. 
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Figure 3-2 Thruster dynamics and vessel model imported as FMUs; this is the Vessel Model subfunction from 

Figure 3-1. 

The ship’s response to both positive and negative control inputs in the surge and yaw, as well 

as in surge and sway directions, was tested to determine the necessary forces for realistic 

vessel movement.  

During the experiments a force of 100000N was selected to give a realistic output force in 

regards to the datasheet[19] of R/V Gunnerus. Here the propeller’s horsepower is considered 

as well as the weight of the ship. Due to the absence of detailed specification of the azimuth 

thrusters and the rudders, their forces have been assumed to be equivalent to the main 

propeller. This approximation was necessary to proceed with the experiment, despite the lack 

of precise information on the forces these components generate.  

The thrust that the main propeller gives can be calculated by the equation in (3.1).  

Here: 

• T is thrust. 

• P is power in watts. 

• v is speed in m/s. 

• 𝜂 is the propulsion efficiency. 

𝑇 =
𝑃

𝑣 ∙ 𝜂
 

(3.1) 

With an educated guess of the propulsion efficacy of 𝜂 = 0.55 from figure 2.02 in “Basic 

principles of ship propulsion[20], the calculation of thrust is as follows.   

 

𝑇 =
1000000𝑊

6.842 ∙ 0.55
= 265750𝑁 

(3.2) 

 

3.2 System Identification 

This chapter describes the system identification process of the marine vessel Gunnerus. To 

identify a SSM there must be generated some input data and some measurements of the 

output data. Since there is provided an FMU model in the OSP package for the Gunnerus 

marine vessel, the input data and the measurements are recorded from the usage of this 

model. This FMU model is depicted in Figure 3-2. 
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To construct the SSM from the gathered input and output data the D-SR algorithm[21] is 

used. The D-SR algorithm presents the matrices for the SSM, and it is considered a ready to 

use discrete time linearized model.  

3.2.1 Input data and measurements.  

The input data is generated through a random source block and is then sent through a 

MATLAB function. The reason for this is that the random source block gives a single number 

between -1 and 1, for example 0.7. This is not a clean square wave input, and the MATLAB 

function(fcn) simply converts values over 0.0 to 1 and values equal to and below 0.0 to -1. 

This part of the program is shown in Figure 3-3. Notice that the signal is multiplied by a 

constant, and this is just to make a more realistic thrust that can move the ship as discussed in 

3.1. The selected value of force must be able to move the ship that is about 72t[19].  

The reason for making square wave inputs is that it is not sufficient to only estimate a model 

with a simple step response. A robust model demands an experiment with thruster forces in 

all available thrusters to capture the best possible model. It might also be needed to run the 

same experiment multiple times to find a more accurate model that represents the system 

behavior.   

 

 

 

 

 

Figure 3-3 A Simulink program for generation of input data in surge, sway, and Yaw. 
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Figure 3-4 Measuring the outputs from the Vessel Model in position North, East, and Yaw.  

When both the out.U and out.Y blocks have recorded the signals, they are now available in 

MATLAB workspace. Figure 3-5 shows how the data is made available from the logging 

through a MATLAB script.  

 

 

 

Figure 3-5 accessing input and output data from MATLAB workspace. 

The input matrix U and output matrix Y can now be created as shown in Figure 3-6. The 

complete code is shown in appendix H. 
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Figure 3-6 Creating input and output matrix. This was done several times until a sufficient SSM system was 

identified.    

3.2.2 Using D-SR to get an SSM. 

When the input matrix U and output matrix Y is found after the experiment it is time to use the 

D-SR function in MATLAB[21]. It is a ready to use function that will make the SSM based on 

matrix Y and U. Equation (3.3) shows the MATLAB command that is used to find the matrices 

A, B, C, D, CF, F and x0.  

 

[𝐴, 𝐵, 𝐶, 𝐷, 𝐶𝐹, 𝐹, 𝑥0] = 𝑑𝑠𝑟(𝑌, 𝑈, 𝐿) (3.3) 

Here:  

A is the state transition matrix.  

B is the input matrix. 

C is the output matrix 

D is the direct transmission matrix.  

x0 is the initial values. 

L is the identification horizon used to predict the number of states. If the user knows the number 

of states, the suggestion from the D-SR algorithm can be skipped and just enter det number of 

states.  

CF and F is related to the Kalman filter gain and can be calculated as equation (3.4) shows[21].  

𝐾 = 𝐶𝐹 ∙ 𝐹−1 (3.4) 
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3.2.3 Analysis of the SSM 

When system identification has found a model, it is a good idea to check the stability of the 

system. The stability of the system can be done by analyzing the eigenvalues of the state 

transition matrix A. To find the eigenvalues the MATLAB function eig.m can be used.  

Since the D-SR algorithm returns a discrete system there are some criteria for the system to 

be stable.  

Stable system: If all eigenvalues are inside the unity circle on the complex plane the system 

is considered stable. This means that the system can reach a steady state when there is an 

input to the system. For example, for a marine vessel the input could be increased propeller 

force.  

Unstable system: For an unstable system one or more of the eigenvalues are outside the 

unity circle. This means that the system is not able to reach a steady state if one or more of 

the eigenvalues is above 1.  

To check the controllability features of the system, the rank of the controllability matrix must 

be inspected. The controllability matrix is given by equation (3.5), and it is a tool to check if 

the pair (A, B) is controllable. The system is only controllable if the rank of the 

controllability matrix is equal to the rank of the system[22].  The rank of the system in this 

project is equal to the number of states.  

𝐶𝑛 = [𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛𝐵] (3.5) 

Here, 𝐶𝑛 is the controllability matrix.  

To check if the system is observable, the rank of the observability matrix must be examined. 

The system is observable if the rank of the observability matrix is equal to the rank of the 

system. The observability matrix is given in equation 

(3.6), and the rank of the system is equal to the system states[22]. 

𝑂 =

[
 
 
 
 

𝐷
𝐷𝐴
𝐷𝐴2

⋮
𝐷𝐴𝑚𝑖×𝑛]

 
 
 
 

 

 

(3.6) 

 

3.3 State estimation and Kalman filter. 

The linear Kalman filter is based on the linear SSM that was found in the system 

identification process. The system matrices are given in chapter 5.2.  

The Kalman filter can be used to filter the output values, or even predict unknown states. 

Here the goal is to predict the states 𝑣𝑠𝑢𝑟𝑔𝑒 , 𝑣𝑠𝑤𝑎𝑦 , and 𝑣𝑝𝑠𝑖 as shown in Figure 2-3. 

The state estimator made in Simulink is shown in Figure 3-7.  The only difference is that the 

vessel model takes the input in thrust as a vector and the state estimator takes each input 
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separately. There are also scopes that show the estimated states, the real measured output, and 

the filtered output value against each other.  

 

 

 

Figure 3-7 State estimator running in parallel with the vessel model. There are also placed scopes in the bottom 

right to better analyze the values. 

 

 

 

Figure 3-8 The inside of the state estimator based on linear Kalman Filter. This is the sub system “State 

Estimator” from Figure 3-7. A, B, C, D, and K are imported as constant parameters from the MATLAB 

workspace. 
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Figure 3-9 MATLAB function for State_estimator in Figure 3-8. 

There are also options to differentiate between random input values and manual input values. 

This is shown in Figure 3-10. This makes it easier to manually enter a step response to check 

the performance of the state estimator. 

 

 

Figure 3-10 Switching option between manual control and random input values. Here an on/off switch is shown 

in the upper left corner that activates the switching box. 

Since the simulation in Simulink happens as fast as the computer manages, it is a good idea to 

slow down the simulation. This is done using the realtime_pacer_lib which can adjust the 

simulation so that it’s like watching a real ship in action.  
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Figure 3-11 Real-Time Pacer block is to be inserted into the Simulink file to slow the simulation down to real 

time. On the left of the Real-Time Pacer is the configuration page where the relationship between simulation 

time and real time is given. 

3.4 Control of the marine vessels 

To make a complete DP system a controller is needed. This following chapter will discuss 

some types of controllers and result in one type of controller being pursued.  

3.4.1 PID Controller 

A PID controller might be a good choice in regards of controlling the Gunnerus marine 

vessel. But a challenge is that the controller would have to consist of multiple different PID 

controllers. The reason for this is that the PID controller is not suitable for MIMO systems, 

and the control problem must be described as multiple SISO systems. A PID controller would 

have to be divided into position control in surge, position control in sway and position control 

in yaw.  

Another problem with the PID controller for an advanced system like this is the lack of 

information on how the system should behave with different control values for thrusters, 

disturbances etc. A solution for this could be to use the state estimator developed in chapter 

3.3. 
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3.4.2 MPC Controller 

To make an MPC controller for a DP system, the problem can be thought of as an LQ optimal 

control problem. The LQ optimal control problem can be expressed like equation (3.7).  

𝐽 =
1

2
[𝑒1
𝑇𝑄1𝑒1 + 𝑢0

𝑇𝑃0𝑢0 + 𝑒2
𝑇𝑄2𝑒2 + 𝑢1

𝑇𝑃1𝑢1 +⋯+ 𝑒𝑁
𝑇𝑄𝑁𝑒𝑁

+ 𝑢𝑁−1
𝑇 𝑃𝑁−1𝑢𝑁−1] 

(3.7) 

In equation (3.7) N is the prediction horizon, Q is the error weighting matrix for each 

timestep, and P is the input weighting matrix for each timestep. For both Q and P, it is 

assumed that they are constant along the whole prediction horizon, meaning Q1= Q2=Q.  

The LQ optimal control problem is also subject to:  

 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 (3.8) 

𝑦𝑘 = 𝐶𝑥𝑘 (3.9) 

𝑒𝑘 = 𝑦𝑘 − 𝑟𝑘 (3.10) 

Since qpOASES doesn’t support the standard LQ optimal control problem formulation this 

has to be converted into the standard QP formulation as equation (3.11) shows. This is the 

same method for formulating a LQ optimal control problem to QP problem as given in 

“Lecture Notes for the course IIA 4117: Model Predictive Control”[14].  

𝐽 =
1

2
[

𝑢
𝑥
𝑒
𝑦

]

𝑇

⏟
𝑍𝑇

[

𝐻11 0 0 0
0 𝐻22 0 0
0 0 𝐻33 0
0 0 0 𝐻44

]

⏟              
𝐻

[

𝑢
𝑥
𝑒
𝑦

]

⏟
𝑍

+ [

𝑐1
𝑐2
𝑐3
𝑐4

]

𝑇

⏟  
𝑐𝑇

[

𝑢
𝑥
𝑒
𝑦

]

⏟
𝑍

 

(3.11) 

Linear equality constraints: 𝐴𝑒𝑥 = 𝑏𝑒 (3.12) 

Linear inequality constraints: 𝐴𝑖𝑥 = 𝑏𝑖 (3.13) 

Bounds: 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 (3.14) 

 

The Hessian matrix H is given by equation (3.15). 

𝐻 = [

𝐻11 0 0 0
0 𝐻22 0 0
0 0 𝐻33 0
0 0 0 𝐻44

] 

(3.15) 

The different blocks in the Hessian matrix are given below in (3.16), (3.17), (3.18), and (3.19) 
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𝐻11 = [

𝑃0 0 ⋯ 0
0 𝑃1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑃𝑁−1

]

𝑁×𝑁

= 𝐼𝑁⊗𝑃 

(3.16) 

𝐻22 = [

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

]

𝑁∙𝑛𝑥×𝑁∙𝑛𝑥

= 𝐼𝑁⊗0𝑛𝑥×𝑛𝑥 

(3.17) 

𝐻33 = [

𝑄1 0 ⋯ 0
0 𝑄2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑄𝑁

]

𝑁×𝑁

= 𝐼𝑁⊗𝑄 

(3.18) 

𝐻44 = [

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

]

𝑁∙𝑛𝑦×𝑁∙𝑛𝑦

= 𝐼𝑁⊗0𝑛𝑦×𝑛𝑦 

(3.19) 

For the prediction horizon N, the number of unknowns is given by equation (3.20). 

𝑛𝑧 = 𝑁 ∙ (𝑛𝑢 + 𝑛𝑥 + 𝑛𝑒 + 𝑛𝑦) (3.20) 

Since ny=ne equation (3.20) can be formulated as: 

𝑛𝑧 = 𝑁 ∙ (𝑛𝑢 + 𝑛𝑥 + 𝑛𝑦 + 𝑛𝑦) (3.21) 

Here: 

𝑛𝑢: The number of inputs. 

𝑛𝑥: The number of states. 

𝑛𝑦: The number of outputs. 

𝑛𝑒: The number of errors. 

𝑐 =

[
 
 
 
 
𝑐1
𝑐2
𝑐3
⋮
𝑐𝑁]
 
 
 
 

= 0𝑛𝑧×1 

(3.22) 
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For LQ optimal control problem in this project the inequality equality constraints do not 

exist. The linear equality constraints are given in equation (3.23) and expanded in equation 

(3.24) to (3.35). 

[

𝐴𝜀,1𝑢 𝐴𝜀,1𝑥 𝐴𝜀,1𝑒 𝐴𝜀,1𝑦
𝐴𝜀,2𝑢 𝐴𝜀,2𝑥 𝐴𝜀,2𝑒 𝐴𝜀,2𝑦
𝐴𝜀 ,2𝑢 𝐴𝜀,3𝑥 𝐴𝜀,3𝑒 𝐴𝜀,3𝑦

] [

𝑢
𝑥
𝑒
𝑦

] = [

𝑏𝑒,1
𝑏𝑒,2
𝑏𝑒,3

] 

(3.23) 

𝐴𝜀,1𝑢 = [

−𝐵 0 ⋯ 0
0 −𝐵 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ −𝐵

] = −𝐼𝑁⊗𝐵 

(3.24) 

𝐴𝜀,1𝑥 = [

𝐼 0 ⋯ 0 0
−𝐴 𝐼 ⋯ 0 0
0 −𝐴 ⋱ 0 0
0 0 ⋯ −𝐴 𝐼

] = −𝐼𝑁×𝑛𝑥 − (𝐼𝑁−1⊗𝐴) 

(3.25) 

𝐴𝜀,1𝑒 = [

0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 0

] = 0𝑁∙𝑛𝑥×𝑁⋅𝑛𝑦 

(3.26) 

𝐴𝜀,1𝑦 = [

0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 0

] = 0𝑁∙𝑛𝑥×𝑁⋅𝑛𝑦 

(3.27) 

𝐴𝜀,2𝑢 = [

0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 0

] = 0𝑁∙𝑛𝑦×𝑁⋅𝑛𝑢 

(3.28) 

 

𝐴𝜀,2𝑥 = [

−𝐶 0 ⋯ 0
0 −𝐶 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ −𝐶

] = 𝐼𝑁⊗𝐶 

(3.29) 

𝐴𝜀,2𝑒 = [

0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 0

] = 0𝑁∙𝑛𝑦×𝑁⋅𝑛𝑦 

(3.30) 
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𝐴𝜀,2𝑦 = [

𝐼 0 ⋯ 0
0 𝐼 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 𝐼

] = 𝐼𝑁∙𝑛𝑦 

(3.31) 

𝐴𝜀,3𝑢 = [

0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 0

] = 0𝑁∙𝑛𝑦×𝑁⋅𝑛𝑢 

(3.32) 

𝐴𝜀,3𝑥 = [

0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 0

] = 0𝑁∙𝑛𝑦×𝑁⋅𝑛𝑥 

(3.33) 

𝐴𝜀,3𝑒 = [

𝐼 0 ⋯ 0
0 𝐼 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 𝐼

] = 𝐼𝑁∙𝑛𝑦 

(3.34) 

𝐴𝜀,3𝑦 = [

𝐼 0 ⋯ 0
0 𝐼 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 𝐼

] = 𝐼𝑁∙𝑛𝑦 

(3.35) 

 

𝐵𝜀,1 =

[
 
 
 
𝐴𝑥0
0𝑛𝑥×1
⋮

0𝑛𝑥×1]
 
 
 
   𝐵𝜀,2 =

[
 
 
 
 
0𝑛𝑦×1

0𝑛𝑦×1
⋮

0𝑛𝑦×1]
 
 
 
 

   𝐵𝜀,3 = [

𝑟1
𝑟2
⋮
𝑟𝑁

] 

(3.36) 

𝑧𝐿 = [

−∞
−∞
⋮
−∞

]

𝑛𝑧×1

   𝑧𝑢 = [

∞
∞
⋮
∞

]

𝑛𝑧×1

    

(3.37) 
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Figure 3-12 The complete linear MPC controller with state estimator. The Real-Time pacer is also implemented 

which means this run-in real time and it is possible for humans to interact with setpoints.  

The complete MPC controller program made in Simulink is presented in Figure 3-12 and 

Figure 3-13. This program builds on the previous model made in Figure 3-7 for the state 

estimator. Figure 3-14 shows the subsystem Linear MPC which includes the QP formulation 

script, the S function and extraction of the first control input. 
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Figure 3-13 This is figure shows the live plotting and logging of data for the MPC controller. This is the right 

side of the system in Figure 3-13. 

 

Figure 3-14 This is the inside of the Linear MPC block from Figure 3-12. Here is a MATLAB function for QP 

problem formulation, and a S-function to implement the qpOASES solver. Only the first control input is needed 

and is extracted, the rest is discarded. 

To use qpOASES the number of unknowns must be known for the whole prediction horizon. 

If N=20, u=3, x=6, and y=3 the total number of unknowns can be found with equation (3.21) 

as shown in equation (3.38). 
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𝑛𝑧 = 20 ∙ (3 + 6 + 3 + 3) = 300 (3.38) 

This is then inserted into the qpOASES source file and compiled to a mex file as shown in 

Figure 3-15.  

 

Figure 3-15 A snapshot from the source file of qpOASES, showing the settings part. Here the total number of 

unknowns must be selected for the specific problem. Afterwards the “make” command must be run in the 

command window to compile the file. 

The compiled file qpOASES_SQProblem file shall then be selected in the S-function called 

QP solver from Figure 3-14. 

 

Figure 3-16 S-function that runs qpOASES solver. 

Figure 3-17 shows the start of the QP formulation script. The linear equality constraints are 

implemented in the same way as well as the bounds for the system, more on this in Appendix 

M.  
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Figure 3-17 A code snippet from the QP formulation script. Here it is shown where the weighting matrix for the 

error and weighting matrix for the input is set, and the MATLAB implementation of H and nz. 

3.4.3 MPC Controller with integral action 

To design an MPC controller with integral action, one would have to solve the issue with 

measurements being in north and east rather than being in BODY coordinates like surge and 

sway. The reason for this is that it makes more sense to give thrust in surge if the deviation is 

in surge. To counter this problem a rotational matrix[6] is introduced and given in equation 

(3.39). Notice that the rotational matrix doesn’t include heave as it is not measured in the 

original system.  

𝑅(𝜓) = [
cos(𝜓) − sin(𝜓)
sin(𝜓) cos(𝜓)

] 
(3.39) 

The system is almost equal to Figure 3-12 and Figure 3-13 but there are some deviations 

regarding the integral action. This is shown in Figure 3-18.  
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Figure 3-18 Here the integral action is implemented. First the error between the reference r and the measured 

output Y is calculated, then it is inserted into a NED/BODY conversion block. The signal is then split into surge 

sway and yaw and integral action is applied. 

The gain is found by trial and error and there is a different gain in each surge, sway, and yaw. 

The sub function NED/BODY conversion is shown in Figure 3-19. 
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Figure 3-19 Sub function NED/BODY conversion. 

The MATLAB function inside Figure 3-19 uses the rotational matrix equation (3.39) to find 

the coordinates in surge, sway, and yaw.  

 

Figure 3-20 Practical use of the rotational matrix from NED to BODY coordinates. 
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4 Requirements and Design 
To make a DP system for a ship some requirements for the system must be collected. This 

chapter presents some software engineering methods to collect the requirements for the 

system and generate a design for the final system.  

4.1 FURPS+  

The requirements for this system can be collected using FURPS+. The complete analysis is 

given below.  

Functional requirements:  

- It should be possible to change the set point in surge, sway, and yaw.  

- The controller should be able to compute control action based on the current state of 

the system and the predicted states.  

Usability requirements: 

- The control system should have an intuitive and easy to understand user interface. 

Reliability requirements:  

- The DP system shall be able to handle control in surge, sway, and yaw at the same 

time. 

Performance requirements:  

- The system should be quick to update to a new set point.  

- The system should be able to handle disturbances like wind, sea current and waves. 

Supportability requirements: 

- The DP system should be easy to upgrade for future needs.  

+ 

- There should be a version control system of the software like GIT.  

- A readme file is to be released with the finished product if released on GITHUB. 

 

4.2 UML diagrams 

Figure 4-1 shows a simple use case diagram that illustrates how the control system should 

work and how an operator would interact with it. The control system should read sensor input 

and adjust outputs accordingly to difference in SP and output. There should also be possible 

for user interaction like changing the different SP.  
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Figure 4-1 A simple use case diagram to better visualize the use cases and actors for the program. 

Figure 4-2 shows a simplified system sequence diagram. The goal for this diagram is to give 

a visual representation of how the program should work. Here an operator can start the 

control system, and even adjust the SP. The control system will after that maintain the 

selected SP the best it can through a control algorithm.  
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Figure 4-2 This shows a simple system sequence diagram on how the controller should operate. 

4.3 Design 

The design of the DP system should be easy to understand and should be simplified as much 

as an operator would need to run the system. Figure 4-3 shows a simplified version of the 

control system as a block diagram. The operator should also be familiar with the Figure 2-3 

which shows the different inputs, outputs states and disturbances. The filtered value �̂� can 

also be used for monitoring purposes instead of the measured value y since the filtered value 

should contain less noise.   
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Figure 4-3 A system overview of the complete control system. 

 

Figure 4-4 A system overview of a more advanced control system with integral action. 
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Figure 4-5 User interface for adjusting SP in North, East and Yaw in Simulink. 

Figure 4-5 shows a simplified user interface which the operator can use to change the 

different SP in North, East, and Yaw. Due to limitation in Simulink, it is chosen to not make 

a more advanced user interface.  
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5 Results 
This chapter will contain the results from this project. It will mainly follow the structure of 

the methods chapter unless some topics have not been pursued further.   

5.1 Open loop testing 

In Figure 5-1 a NE diagram is presented, based on the step response in Simulink code from 

Figure 3-1. These step responses generate movement of a marine vessel in both directions 

north and east, which can be plotted in MATLAB.  

 

 

Figure 5-1 NE diagram for a step response. Green Triangle marks start, and red circle marks end. This is the first 

trial with steps in Surge and Sway, and a step-in yaw after 150s.  

To make the NE diagram both the north position and east position must be logged to 

MATLABs workspace. This is done either by using a record block or a save to workspace 

block.  



 5 Results 

52 

 

 

Figure 5-2 Positive control input in both yaw and surge. Green Triangle marks start, and red circle marks end. 

Figure 5-2 shows the output in a NE diagram where there is given a positive control value in 

both yaw and surge. As expected, this is a circular movement when there are 0 disturbances, 

and the thrust is kept constant.  

 

 

Figure 5-3 Negative control input in yaw, and positive control input in surge. Green Triangle marks start, and 

red circle marks end. 

Figure 5-3 shows the output in a NE diagram where there is given a positive control value in 

surge, but a negative control value in yaw. As expected, there is a circular movement in the 

opposite direction as Figure 5-2. 
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Figure 5-4 Positive control input in sway. Green Triangle marks start, and red circle marks end. 

Figure 5-4 shows the response from the marine vessel with a positive control input in sway. 

As well as a movement to the side, the vessel also changes the yaw of the marine vessel.  

 

 

Figure 5-5 Positive control signal in surge, and negative control signal in sway. Green Triangle marks start, and 

red circle marks end. 
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Figure 5-5 shows the response from the marine vessel in a NE diagram with a positive control 

signal in surge, and a negative control signal in sway.  

 

Figure 5-6 step response in surge after 10s with a force in surge with the calculated force of 265750𝑁 as shown 

in equation (3.2). 

Figure 5-6 shows a step response in surge with a force of 265750N, and the Gunnerus reaches 

a velocity of about 1.7m/s. 

5.2 System Identification 

This following chapter presents the results from the system identification process of the 

Gunnerus marine vessel. First of in Figure 5-7 is the NE diagram where random control 

values in surge, sway and yaw are entered. The random control signal was multiplied by a 

force of 100000N to make the generated thrust more realistic so that it moves the vessel by a 

significant distance.  
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Figure 5-7 Random control values at -1 and 1 for each surge, sway, and yaw. Green Triangle marks start, and 

red circle marks end. The control value is multiplied with a force of 100000N to make a realistic force to move 

the vessel.  

Figure 5-8, Figure 5-9, and Figure 5-10 shows an example of the generated square pulses and 

the thrust input they generate in each surge, sway, and yaw.  
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Figure 5-8 Example of a random input signal between 1 and -1 and the thrust it generates in surge direction. 

 

Figure 5-9 Example of a random input signal between 1 and -1 and the thrust it generates in sway direction. 

 

Figure 5-10 Example of a random input signal between 1 and -1 and the thrust it generates in yaw direction. 
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5.2.1 System matrices. 

The matrices that represent the system well are given below. These matrices were found 

using the D-SR function as depicted in equation (3.3). The Kalman filter gain is calculated 

using equation (3.4) and is given as the matrix K.  

𝐴 =

[
 
 
 
 
 
1.0034 0.0207 0.4737 0.0463 −0.2364 2.3069
−0.001 0.9997 −0.054 0.1380 0.9540 −13.3772
0 0 0.9424 0.6183 −0.2177 2.1255
0 0 0.1676 −0.8000 0.4213 −5.1737
0 −0.0002 −0.0060 0.1014 −0.1223 −12.4611
0 0 0 −0.0004 −0.0028 −0.5637 ]

 
 
 
 
 

 

 

(5.1) 

 

𝐵 = 1.0𝑒 − 08 ∙

[
 
 
 
 
 
−0.8484 −0.3258 −0.1868
0.4781 −0.1277 −0.2667
−0.0948 −0.0255 −0.0254
0.2341 0.0767 0.1066
−0.0197 −0.0031 −0.1006
−0.0005 −0.0006 0.0006 ]

 
 
 
 
 

 

 

(5.2) 

 

𝐶 = [
0.6830 −0.1854 −0.2271 0.6690 0.0090 0.0006
0.1784 0.6819 −0.0555 −0.0024 −0.7072 0.0085
−0.0048 −0.0269 −0.6671 −0.2302 0.0345 0.7071

] 
(5.3) 

 

𝐷 = 1.0𝑒 − 08 ∙ [
−0.3458 −0.1652 −0.0717
−0.0376 −0.0129 −0.1373
0.0011 0.0020 −0.0003

] 
(5.4) 

 

𝐶𝐹 =  

[
 
 
 
 
 
0.0262 0.0068 0.0001
−0.0201 0.0256 0.0002
0.0036 −0.0004 −0.0004
−0.0095 −0.0001 −0.0001
−0.0044 0.0088 0.0002

0 0 −0.0001]
 
 
 
 
 

 

 

(5.5) 

 

𝐹 = 1.0𝑒 − 03 ∙ [
0.7813 0 0
−0.1125 0.6927 0
0.0020 −0.0019 0.0111

] 
(5.6) 
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𝑥0 =

[
 
 
 
 
 
−0.0031
0.0010
−0.0005
0.0014
−0.0001

0 ]
 
 
 
 
 

 

 

(5.7) 

 

𝐾 =

[
 
 
 
 
 
34.8690 9.8057 11.2373
−20.4980 36.9942 21.6928
4.6280 −0.6726 −33.1105
−12.2170 −0.1861 −5.2135
−3.8993 12.7559 16.9157
0.0335 −0.0487 −11.0087]

 
 
 
 
 

 

 

(5.8) 

 

5.2.2 System analysis. 

The eigenvalues were found using the eig.m function in MATLAB.  

𝑒𝑖𝑔(𝐴) =

[
 
 
 
 
 
1.0016 +  0.0045𝑖
1.0016 −  0.0045𝑖
0.9995 +  0.0000𝑖
−0.0002 +  0.0000𝑖
−0.9134 +  0.0000𝑖
−0.6296 +  0.0000𝑖]

 
 
 
 
 

 

 

(5.9) 

As equation (5.9) shows the system is unstable. The reason for this is the eigenvalues that are 

bigger than 1.  

Using the ctrb.m function it is possible to calculate the rank of the controllability matrix. The 

method in MATLAB is shown in Figure 5-11, and the rank was found to be 6. This means 

that the system is controllable.  

 

Figure 5-11 Using MATLAB to find the rank of the controllability matrix. 

The same method can be done for the observability matrix using the obsv.m function in 

MATLAB. As shown in Figure 5-12 the rank of the observability matrix is equal to 6. This 

means that the system is observable since the rank of the system is 6.  
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Figure 5-12 Using MATLAB to find the rank of the observability matrix. Note, MATLAB notation is C and not 

D as in equation  

(3.6). 

5.3 State estimator and Kalman filter. 

In this following chapter different experiments are carried out to test the performance of the 

Kalman filter in the state estimator. The model settings are shown in Figure 5-13. Notice that 

in this chapter there was an error in the NE script in MATLAB that switched the axes of 

north and east.  

 

Figure 5-13 Model settings for simulating in Simulink. 

The first experiment is carried out with a limited time span of 20s and a force of 50000N 

randomly inserted in surge, sway, and yaw. The force can also be negative. The results are 

shown in Figure 5-14, Figure 5-15, and Figure 5-16 below. 
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Figure 5-14 State estimator test with random input values, here north is shown. Here the real process is marked 

in yellow, the estimated value is marked in blue, and the filtered value marked in orange. 

 

Figure 5-15 State estimator test with random input values, here east is shown. The real process is marked in 

yellow, the estimated value is marked in blue, and the filtered value marked in orange. 
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Figure 5-16 NE diagram with random control input values. Notice the state estimator having an extra loop to the 

left before it follows the real model. 

The second test was with a time span of 200s and a random input force of 50000N in surge, 

sway, and yaw. Also here, the input force could be negative. Figure 5-17, Figure 5-18, Figure 

5-19, and Figure 5-20 shows the result from this experiment. 

 

Figure 5-17 The yellow line is north; the blue line is the estimated value, and the orange line is the filtered value 

for north. The timespan is 200s and the input force in surge, sway, and yaw is 50000.  
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Figure 5-18 The yellow line is east; the blue line is the estimated east value, and the orange line is the filtered 

value for east. Timespan is 200s.  

 

Figure 5-19 The yellow line is measured yaw, and the blue line is the estimated yaw. Timespan is 200s. 
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Figure 5-20 NE diagram with random values. Notice that the extra loop the state estimator makes is a lot less 

significant than in Figure 5-16. 

The third test was with a time span of 200s and a random input force of 100000N in surge, 

sway, and yaw. Also here, the input force could be negative. Figure 5-21, Figure 5-22, Figure 

5-23, and Figure 5-24 shows the result from this experiment. 

 

 

Figure 5-21 The yellow line is north; the blue line is the estimated value, and the orange line is the filtered value 

for north. The time span is 200s and the input force in surge, sway, and yaw is 100000N. 
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Figure 5-22 The yellow line is east; the blue line is the estimated value, and the orange line is the filtered value 

for east. The time span is 200s and the input force in surge, sway, and yaw is 100000N. 

 

 

Figure 5-23 The yellow line is yaw; the blue line is the estimated value. The time span is 200s and the input 

force in surge, sway, and yaw is 100000N. 
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Figure 5-24 NE diagram with random values. Notice that the extra loop the state estimator makes in the start is 

now negligible. But the deviation in end point is a little bigger than in Figure 5-20. 

5.4 Control of the marine vessel 

This chapter is divided into two parts, one part with an MPC controller with feedback from a 

state estimator, and one expanded version with integral action.  

5.4.1 MPC Controller  

The controller type for the marine vessel was selected to be an MPC controller. There were 

done several tests on how the controller behaved. Before the test was stopped, the control 

values in surge, sway and yaw were checked so the simulation wasn’t stopped in the middle 

of a control action.  

The first test was focused on the north direction. The settings for the weighting matrices Q 

and P are shown in Figure 5-25. 
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Figure 5-25 Simulink settings for testing the controller in the north direction. These settings are set in the QP 

problem formulation script block as shown in Figure 3-14. 

The results from this simulation is shown in Figure 5-26,Figure 5-27,Figure 5-28, and Figure 

5-29. The real model never reaches SP exactly but has a constant deviation. This might be 

because linear MPC is used on a nonlinear model.  

 

Figure 5-26 Here is the result of a SP= 10 in North direction. As shown the model reaches a steady state after 

about 400s. The yellow line is SP, the blue line is the real model, and the orange line is the estimated value. 
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Figure 5-27 Here the position in East is shown as the result of a SP=10 change in North direction. The yellow 

line is SP, the blue line is the real model, and the orange line is the estimated value. 

 

Figure 5-28 The estimated values for yaw don’t seem quite right. 
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Figure 5-29 NE diagram for a SP=10 change in north direction. Here it is shown that the Gunnerus ship is 

making a turn even though it is not necessary to reach the end position. 

The second test was done in the east direction. The settings are shown in Figure 5-30 for the 

weighting matrices Q and P. 

 

Figure 5-30 weighting settings for Q and P for simulation in east direction. Prediction horizon is 20.  
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Figure 5-31 A SP=10 change in the east direction. Notice that the deviation from SP is smaller than the 

experiment in north direction. The yellow line is SP, the blue line is the real model, and the orange line is the 

estimated value. 

 

 

Figure 5-32 Deviation in north when running a simulation for SP=10 in east direction and SP=0 in north 

direction. The yellow line is SP, the blue line is the real model, and the orange line is the estimated value. 
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Figure 5-33 NE diagram with SP=10 in east direction. SP=0 in north and SP=0 in yaw. 

The third test was with a SP=10 in north direction, and SP= 10 in east direction. The settings 

for the weights are shown in Figure 5-34. 

 

Figure 5-34 Weight settings for Q and P. SP=10 in North and SP=10 in East. 
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Figure 5-35 Simulation with SP=10 in north direction and SP=10 in east direction. Here are the results for the 

north direction. The yellow line is SP, the blue line is the real model, and the orange line is the estimated value. 

 

Figure 5-36 Simulation with SP=10 in north direction and SP=10 in east direction. Here are the results for east 

direction. The yellow line is SP, the blue line is the real model, and the orange line is the estimated value. 
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Figure 5-37 Simulation with SP=10 in north direction and SP=10 in east direction. Here are the results for yaw. 

The yellow line is SP, the blue line is the real model, and the orange line is the estimated value. 

 

 

Figure 5-38 NE diagram for simulation with SP=10 in both north and east directions. 
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Figure 5-39 is included to show how bad the MPC controller performs, and to show the need 

for improvement. When Gunnerus is going in a negative direction in east, the controller is far 

off. It was decided to stop trying to adjust weighing from this part and try to develop a better 

controller.  

 

 

Figure 5-39 Test with SP=-10 in east and SP=10 in north 

5.4.2 MPC Controller with integral action 

Since the identified model in chapter 3.2 and 5.2 seem to not respond well in yaw, it seems 

reasonable to put more trust on the weighting matrix Q rather than the weighting matrix P for 

yaw. This means that the MPC controller is more driven on the error rather than the 

prediction. 

While trying to adjust the integral action for surge direction the weightings in Q and P were 

adjusted to an unfavorable value in sway and yaw to minimize disturbance from those parts.  
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Figure 5-40 Figuring out the integral gain in surge. SP=10 in north direction and SP=0 in east direction. Here 

the north direction is shown. The yellow line is SP, the blue line is the real model, and the orange line is the 

estimated value. 

  

 

Figure 5-41 Figuring out the integral gain in surge. SP=10 in north direction and SP=0 in east direction. Here 

the east direction is shown. The yellow line is SP, the blue line is the real model, and the orange line is the 

estimated value. 
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Figure 5-42 Figuring out the integral gain in surge. SP=10 in north direction and SP=0 in east direction. Here 

the yaw angle is shown. Notice how far off the estimation is. The yellow line is SP, the blue line is the real 

model, and the orange line is the estimated value. 

 

Figure 5-43 NE diagram with SP=10 in north direction and SP=0 in east direction. 
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While trying to adjust the integral gain in sway and yaw it became clear that the state 

estimations where not good enough to feed back to the Linear MPC block from Figure 3-18. 

Therefore, the true measurements were added to the feedback loop together with the velocity 

estimates in surge, sway, and yaw. This was done in the State Estimator depicted in Figure 

3-18 and Figure 5-44 shows the result. Notice that there is a unit delay for each signal to 

avoid algebraic error due to initial values not being available at startup.  

 

Figure 5-44 The true measurements added as feedback in delta_x_hat as well as the estimates in velocity for 

surge, sway, and yaw. 

The results in Figure 5-45, Figure 5-46, and Figure 5-47 shows the result with SP= 5 in north 

and east, and SP=0 in yaw. For yaw it looks like the integral action is performing badly so it 

will be increased. For the north direction it seems like there is a bit of overshooting and the 

weightings will be adjusted to be more sensitive to error. The error in surge seems partly to 

stem from wrong integral action as well as wrong weighting setting in the error weight Q. But 

overall, the MPC controller seemed to perform better when the measurements are inputted 

directly to the MPC controller.  

 

 

Figure 5-45 Integral action in north direction with a bit of overshoot. SP=5 in north and east. The yellow line is 

SP, the blue line is the real model, and the orange line is the estimated value. 
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Figure 5-46 Integral action in east direction with a bit of overshoot. SP=5 in north and east. The yellow line is 

SP, the blue line is the real model, and the orange line is the estimated value. 

 

Figure 5-47 Integral action in yaw, notice how far off the yaw is for the real model. SP=5 in north and east. The 

yellow line is SP, the blue line is the real model, and the orange line is the estimated value. 
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Figure 5-48 NE diagram with a lot of overshoots in north and east direction. 

Figure 5-48 shows the overshoot more clearly, here it seems like the marine vessel is moving 

more than needed to stabilize at the SP. The next experiment will focus on how to adjust the 

weighting matrices Q and P, so that the weighting matrix Q is more sensitive to error. The 

new set points are now SP=5 in north and east, and SP=0 in yaw. The weighting settings are 

shown in Figure 5-49. 

 

 

Figure 5-49 The weighting settings for SP=5 in north and east, and SP=0 in yaw. 
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Figure 5-50 Here the position in north is shown and clearly there is sufficient integral action, and the weighting 

settings makes the controller behave well. The yellow line is SP, the blue line is the real model, and the orange 

line is the estimated value. 

 

Figure 5-51 Here the position in east is shown and there seems to be sufficient integral action. The weighting 

settings for P and Q does make the controller perform badly in sway and could be adjusted to be more sensitive 

in the error matrix Q. The yellow line is SP, the blue line is the real model, and the orange line is the estimated 

value. 
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Figure 5-52 Here yaw is shown, and the weightings might be correct, but the integral action uses a long time to 

adjust. The yellow line is SP, the blue line is the real model, and the orange line is the estimated value. 

 

Figure 5-53 In the NE diagram the oscillating effect in east becomes much more apparent. This oscillating effect 

can be removed by adjusting the weights Q and P. 
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The previous results were not satisfying, especially the oscillating effect in the east direction. 

Adjusting the weights so that the controller is more sensitive to errors in east direction, as 

well as north to decrease the overshooting effect. The gains in integral actions are now 23 in 

surge, 8 in sway, and 20 in yaw.  The weightings are shown in Figure 5-54 and the model 

now relies more on the error rather than the predicted output.  

 

 

Figure 5-54 The weighting settings relying more on the error rather than the model prediction. 

For this simulation the SP=5 in north and east, and SP=0 in yaw.  

 

Figure 5-55 Here the position in north is shown and the controller behaves well in both integral action and the 

weighting settings. The yellow line is SP, the blue line is the real model, and the orange line is the estimated 

value. 
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Figure 5-56 Here the position in east is shown and the controller behaves well with integral action, but there is 

still some overshoot. The yellow line is SP, the blue line is the real model, and the orange line is the estimated 

value. 

 

Figure 5-57 Here yaw is shown, and it still takes a long time for yaw to settle at SP. The yellow line is SP, the 

blue line is the real model, and the orange line is the estimated value. 
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Figure 5-58 Here is the NE diagram for SP=5 in north and east, and SP=0 in yaw. There is very little overshoot, 

and the overshoot is mainly in east direction. 

As the simulation experiments for a MPC controller without integral action shows in Figure 

5-38 and Figure 5-39 the results in a negative direction where much worse than in a positive 

direction in the NE diagram. A new experiment was performed to figure out how the MPC 

controller with integral action performs in a negative direction. Here the SP=-5 in north and 

east, and 0 in yaw. The weighting matrices P and Q are shown in Figure 5-59 and the results 

are shown in Figure 5-60, Figure 5-61, and Figure 5-62. 

 

Figure 5-59 The weighting settings for SP=-5 in north and east, and SP=0 in yaw. 
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Figure 5-60 Here the position in north is shown and both the weightings and the integral action seems to 

perform well. The yellow line is SP, the blue line is the real model, and the orange line is the estimated value. 

 

Figure 5-61 Here the position in east is shown and the weighting settings seems like they can be adjusted a bit in 

favor of the error matrix Q to compensate for the overshoot. The yellow line is SP, the blue line is the real 

model, and the orange line is the estimated value. 
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Figure 5-62 Here the yaw is shown, and it seems like the integral action is working but it takes over 2500s to 

adjust. The yellow line is SP, the blue line is the real model, and the orange line is the estimated value. 

 

Figure 5-63 In the NE diagram the overshoot in east direction is much clearer. 
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6 Discussion 
One of the earliest problems that occurred was that there was a mismatch between the 

required inputs in the model according to the documentation and the provided model in the 

OSP package. According to the documentation the vessel model required 6 inputs in thrust, 6 

inputs in wave force etc. But when the simulation started it seemed like the model needed 7 

input thrust, wave force etc. This was a strange problem, but it seems like the model uses 

index 1-6 or 1-4, but when imported as an FMU it also requires the index 0. The index 0 

doesn’t seem to do anything of importance in the simulation, and it doesn’t behave strangely 

when inputting different signals to it. The solution was to add an extra signal as index 0, and 

this signal was set to the constant 1. 

Since this was a provided model from the OSP package which seemed to accept every input 

force and create an output that doesn’t always make sense, it was decided to research the 

engine power output. The datasheet for the RV Gunnerus [19] states that each main propeller 

produce 500kW each, a total of 1000kW. The datasheet also specifies a 100% MCR at 12.6kn 

which results in about 6.842m/s. The thrust that the propeller produces will depend on the 

efficiency of the propeller and since there is no data about the propeller efficiency it is hard to 

calculate the thrust the propellers will produce. The estimate in equation (3.1) doesn’t seem to 

fit with the Gunnerus-DP package, as the velocity is closer to 2m/s at that force. It was 

decided from this point to not do further investigation on this part and continue with forces up 

to 265750N in all inputs. 

During the system identification there were some difficulties finding an accurate model. The 

Random source blocks in Simulink are discrete time as default. This means that the user can 

set a time interval which the block should update its random value. This also affected the 

vessel model which then behaved as a discrete model. This means that if the sample time for 

new values was set to 10 seconds, the vessel model only updated the outputs every 10 

seconds even though the model solver was selected to be Runge-Krutta with a timestep of 

0.1s. The solution for this was to make the Random Source block into a continuous time 

signal, but then the square pulses were locked to 0.1 timestep from the model settings. 

There is also a problem with the identification of the SSM for the vessel model since DS-R 

only finds a discrete linearized model. Therefore, the system identification must be limited 

either by time or force sent to the propeller to keep the vessel model close to Origo. 

Otherwise, the system identification process is unsuccessful, and the identified model is a 

horrible match. Another issue trying to find a linearized model is that when a successful SSM 

model is found, it doesn’t behave very well when the model moves further away from origo 

in north and east. This is likely due to 0 north and 0 east is the operation point for the 

linearized model, and the vessel model includes nonlinear parts.  

For the MPC controller it seems like the controller behaves well navigating in the north 

direction but is slower in the east direction. This can be due to the model not being accurate 

in east, or that the weighting matrices Q and P needs to be adjusted more.  

As Figure 5-26,  Figure 5-27, Figure 5-28, and Figure 5-29 shows there are some deviations 

in north direction, and the controller is tuned to be more smooth so that it doesn’t overshoot 

before stabilizing close to the SP. These deviations are likely due to the MPC controller being 

based on a linear model, and the deviations might be removed with integral actions. The same 



 6 Discussion 

87 

goes for Figure 5-31, Figure 5-32, and Figure 5-33 showing the results with a SP= 10 in east 

direction.  

When reaching for a SP=10 in both east and north the model has less deviations. This is 

shown in Figure 5-38. The reasons for this can be many, but it is likely due to the estimated 

model being a better fit for change in both north and east direction due to system 

identification process. When trying a SP=-10 in east direction, and SP=10 in north direction 

the model seems to have bigger deviations in SP as Figure 5-39 shows.  

To make a better model it might be needed to convert the vessel model from NED 

coordinates to BODY coordinates. The reason for this is because the MPC controller knows 

exactly that a thrust change in surge gives a change in surge position. The same goes for 

thrust in sway and sway position in BODY diagram.  

Another thing worth mentioning is that the control values from the MPC controller had to be 

multiplied by -1. This was discovered due to the model acting in opposite directions of the 

selected SP.  

When developing an MPC controller with integral action several adjustments were made to 

make the controller perform sufficiently. Since the state estimator wasn’t accurate in 

estimating yaw it was decided to use the measurements in north, east and yaw directly 

together with the velocity estimates in surge, sway, and yaw.  This made the controller 

perform better and now more trust could be put in the error weighing matrix Q to adjust for 

overshoot for example. The integral action performs very well in removing the deviation 

from SP, and together with weighting settings in favor of the error matrix Q the MPC 

controller with integral action performs well.  

At the end of the project phase, it was discovered an error in the OSP documentation 

regarding yaw, and this error is just a unit error. This error got into the report for some of the 

plots in yaw, and the correct unit should be [rad]. This makes sense since an angle is not a 

linear measurement.  

When looking back at the found system and MPC controller with integral action one 

drawback is the time the controller uses to stabilize and remove the deviation, especially in 

yaw with integral action. One solution to this could be to further explore weighting settings 

for the controller and see if there exist better weight settings for the error matrix Q.  

6.1 Further work 

Since the OSP is designed for co-simulation[10] and the reference models are used as a 

starting point to use the OSP package, it is a good idea to develop a new model to use for 

further work on this topic. The ship can still be the Gunnerus, but then the measurements for 

system identification should be taken on the real model. Otherwise, there can be taken data 

from other models, or even the Balchen model and build this model into an FMU for use with 

the OSP simulator.  

There could also be made a vessel model based on the Balchen model that runs in parallel 

with Gunnerus to check for similarities. This can be useful to find similarities which can be 

used to develop a DP system that is flexible and can be used on other marine vessels.  
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A further improvement that can be made directly to this work is to tune the MPC controller 

with integral action so that it responds faster. This is useful for the operators of the marine 

vessel to minimize the time to reach SP. This would likely require adjusting the weightings in 

Q and P, probably in favor of Q so it can compensate more for deviation from SP.  
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7 Conclusion 
The primary objective of this project was to do literature research of DP systems, use an 

existing dynamic model to perform system identification on and implement a DP system for 

the selected model. Part of the work done to reach this goal was to implement testing of the 

selected dynamic model, design a state estimator and experiment with different controller 

setup. MATLAB and Simulink were used to perform simulation experiments.  

While the theory chapter gave insight into different topics, the practical work was mainly from 

the methods and result chapter. Here the work was divided into multiple parts consisting of; 

open loop testing to see how the model behaved, system identification to find a model, state 

estimator to find the unknown states, and lastly the design of a controller to keep the marine 

vessel at certain position.  

There were two alternatives in regards of the model selection, but the final decision was made 

towards the Gunnerus model from the Gunnerus-DP reference model in the OSP package. The 

reason for this was to explore the OSP package and the Balchen model has been used in 

previous projects. This way the project was more in line with the background for this task.  

Based on the simulation experiments the most successful controller for the DP system was 

found to be a MPC controller with integral action. The MPC controller that was found gives 

very little deviations as shown in Figure 5-58 for example, and this can be acceptable for many 

marine applications. As with the problems with the identified model showed, most of them 

could be compensated for as presented in the discussion chapter.  

There is still room for improvements as mentioned in the discussion chapter. Directly related 

to this task is the tuning of the weighting matrices Q and P for the MPC controller. This can 

decrease the time the yaw uses to reach SP and make the controller more suitable for situations 

where the angle of the marine vessel is important.  

The final DP system also aligns well with the requirements and design chapter where the 

requirements where explored, and the controller behavior was analyzed on a top layer. As 

depicted in the result chapter the controller delivers adequate performance when changing SP 

and this is crucial for a DP system.    
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Appendix A – Project Description 
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Appendix B – GitHub Repository 

 

The GitHub repository can be found at:  

https://github.com/AutomationWithJan/Dynamic-Positioning-system-identification-and-

control-of-marine-vessels---using-the-OSP-simulator  

 

Here the different MATLAB scripts and Simulink files from this project will be available. 

  

https://github.com/AutomationWithJan/Dynamic-Positioning-system-identification-and-control-of-marine-vessels---using-the-OSP-simulator
https://github.com/AutomationWithJan/Dynamic-Positioning-system-identification-and-control-of-marine-vessels---using-the-OSP-simulator
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Appendix C – Plotting function for open loop testing. 
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Appendix D – Open loop testing. 
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Appendix E – Open loop testing Vessel Model. 
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Appendix F – System Identification. 
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Appendix G – System Identification control input function. 

 

 
 

A function to make the random source a square wave function. 
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Appendix H – System Identification input and output matrixes. 
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Appendix I – System Identification D-SR. 
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Appendix J – Kalman Initializing. 
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Appendix K – Plotting real model and estimated model. 

 
  



 

 

  Appendices 

104 

Appendix L – Real model and the state estimator. 
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Appendix M – QP formulation script. 
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Appendix N – MPC controller  

 



 

 

  Appendices 

107 

Appendix O – MPC controller with integral action 
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