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Summary:  

Dynamic Positioning (DP) is essential for ensuring the secure operation of marine vessels 

across different industries. Hence, it is important to use reliable models and accurate control 

techniques for these vessels. 

The main objective of this study is to simplify the Balchen low frequency model and develop 

accurate control methods to perform simulation experiments on the simplified model.  

The model is simplified by eliminating the drag and momentum coefficients, and its behavior 

is observed. A comparison between the simplified model and the original model is performed. 

Standard MPC, Reduced Size MPC, Simple MPC, Simple MPC with integral action, and LQ 

optimal control with integral action were selected as control methods. The performance of 

the controllers is evaluated using Integrated Absolute Error (IAE) and Total Variation (TV) 

indexes. 

The simulation results shows that the simplified model is a three-double integrator model. 

The comparison between the simplified model and the original model gives almost identical 

behavior. Based on the experimental results and the evaluation indexes, the Simple MPC with 

integral action is chosen as the best control approach for the simplified model, although the 

Reduced Size MPC also performs well overall. 
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Preface 
Dynamic Positioning (DP) is a system which utilizes active thrust to automatically keep the 

vessel in position. The system utilizes thrusters, rudders, and propellers to withstand wind, 

waves, and current. Dynamic positioning systems were first introduced in 1960 and improved 

and modified to support the emerging offshore and oil industries.  

One of the earliest methods that are implemented on the vessel is Balchen model. The model 

was used to build a DP system based on Kalman filtering and optimal control.  

This thesis develops a dynamic positioning system based on a simplified Balchen model. 

Additionally, the thesis investigates the efficiency of the system using various types of 

controllers and provides a performance analysis of these controllers. MATLAB form Math-

works was used to perform all the simulations. 

This research is completed in Spring 2024 as a requirement for the Industrial IT and 

Automation course at the University of South-Eastern Norway. 

I want to express my sincere gratitude and thanks to my supervisor Professor David Luigi Di 

Ruscio for his invaluable advice, guidance and direction throughout the research period. 

Finally, I want to give my thanks to my family and friends who always gave their support and 

encouragement.   
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Nomenclature 
Symbol  Description 

𝑅(𝜓) : Transformation Matrix (NED to Body) 

𝐹𝑤𝑠𝑢 : Wind force in surge [N] 

𝐹𝑤𝑠𝑤 : Wind force in sway [N] 

𝑁𝑤 : Wind moment in yaw [N.m] 

𝜌 : Density of the wind [kg/m3] 

𝑉𝑤𝑟 : Relative wind speed [m/s] 

𝐶𝑥 , 𝐶𝑦 , 𝐶𝑁  : Wind coefficients 

𝐴𝐹 : Windage area of the head wind [m2] 

𝐴𝐿 : Windage area of the beam [m2] 

𝐿 : Vessel length [m] 

𝑣𝑐𝑠𝑢 : Water current velocity in surge direction [m/s] 

𝑣𝑐𝑠𝑤 : Water current velocity in sway direction [m/s] 

𝑁𝑐 : Water current moment in yaw [N.m] 

𝜏 : Thruster Force [N] 

𝐾 : Thruster coefficients 

𝑙 : Thruster lever arm 

m : Mass of a body [kg] 

a 
: acceleration of a body [𝑚/𝑠2] 

F : Forces action on the body [N] 

𝑥𝑠𝑢 : Position in Surge [m] 

𝑥𝑠𝑤 : Position in Sway [m] 

𝜓 : Heading in yaw [rad] 

𝑣𝑠𝑢 : Velocity in Surge [m/s] 

𝑣𝑠𝑤 : Velocity in Sway [m/s] 
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𝑣𝜓 : Heading rate [rad/s] 

𝐹𝑡𝑠𝑢 : Thruster force in Surge [N] 

𝐹𝑡𝑠𝑤 : Thruster force in Sway [N] 

 𝑁𝑡 : Thruster moment in Yaw [N.m] 

𝜂1, 𝜂2, 𝜂3 : Gaussian white noise 

𝑑𝑖  : Drag and momentum coefficients 

𝑥 : State vector 

u : Input vector 

y : Output vector 

w : Process noise 

v : Measurement noise 

Abbreviations  Description 

DP : Dynamic Positioning 

MIMO : Multiple Input Multiple Output 

LQ : Linear Quadratic 

MPC : Model Predictive Control 

NED : North, East, Down coordinate System 

GPS : Global Positioning System 

DOF : Degrees of Freedom 

IAE : Integrated Absolute Error 

TV : Total Variation 

 

 



 

 

  List of Figures 

 8 

List of Figures 
Figure 1.1: Block diagram of a vessel with DP systems.......................................................... 11 

Figure 1.2: Basic block diagram of the DP control system with reduced Balchen model as 

process, different controllers and state estimator. .................................................................... 14 

Figure 2.1: Six degrees of freedom of a marine vessel. [18] ................................................... 15 

Figure 2.2: NED and Body coordinate system. [19] ................................................................ 16 

Figure 2.3: Different thrusters in a DP marine vessel [17]. ..................................................... 19 

Figure 4.1: Behavior of the reduced Balchen model. .............................................................. 38 

Figure 4.2: Reduced model behavior under wind disturbances in surge direction. ................. 40 

Figure 4.3: Reduced model behavior under wind disturbances in yaw direction. ................... 41 

Figure 4.4: Reduced model behavior under wind disturbances in sway direction. ................. 41 

Figure 4.5: Comparison between Balchen and Reduced Balchen model in surge direction. .. 42 

Figure 4.6: Comparison between Balchen and reduced Balchen model in yaw direction. ..... 43 

Figure 4.7: Comparison between Balchen and reduced Balchen model in sway direction. .... 43 

Figure 4.8: Simulation output in surge direction for standard MPC........................................ 46 

Figure 4.9: Simulation output in yaw direction for standard MPC.......................................... 47 

Figure 4.10: Simulation output in sway direction for standard MPC. ..................................... 47 

Figure 4.11: Vessel's position in NED coordinate system. ...................................................... 48 

Figure 4.12: Output in surge direction when Kalman filter is used for estimating 

immeasurable states. ................................................................................................................ 49 

Figure 4.13: Output in sway direction when Kalman filter is used for estimating 

immeasurable states. ................................................................................................................ 49 

Figure 4.14: Vessel heading in yaw direction when Kalman filter is used for estimating 

immeasurable states. ................................................................................................................ 51 

Figure 4.15: Vessel's position in NED coordinate system. ...................................................... 51 

Figure 4.16: Simulation output in surge direction for Reduced-size MPC.............................. 52 

Figure 4.17: Simulation output in sway direction for Reduced-size MPC. ............................. 52 

Figure 4.18: Vessel heading in yaw direction for Reduced-size MPC. ................................... 53 

Figure 4.19:Vessel's position in NED coordinate system. ....................................................... 54 

Figure 4.20: Vessel's position in surge direction using LQ optimal control with integral 

action. ....................................................................................................................................... 55 

Figure 4.21: Vessel's position in sway direction using LQ optimal control with integral 

action. ....................................................................................................................................... 56 

Figure 4.22: Vessel's heading in yaw direction using LQ optimal control with integral action.

.................................................................................................................................................. 57 

file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627895
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627896
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627896
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627897
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627898
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627899
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627900
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627901
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627902
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627903
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627904
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627905
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627906
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627907
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627908
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627909
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627910
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627911
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627911
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627912
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627912
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627913
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627913
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627914
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627915
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627916
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627917
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627918
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627919
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627919
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627920
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627920
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627921
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627921


 

 

  List of Figures 

 9 

Figure 4.23: Vessel's position in NED coordinate system. ...................................................... 57 

Figure 4.24: Vessel's position in surge direction using LQ optimal control with constrained 

input. ........................................................................................................................................ 59 

Figure 4.25: Vessel's position in sway direction using LQ optimal control with constrained 

input. ........................................................................................................................................ 59 

Figure 4.26: Vessel's position in NED coordinate system. ...................................................... 60 

Figure 4.27: Vessel's heading in yaw direction using LQ optimal control with constrained 

input. ........................................................................................................................................ 60 

Figure 4.28: Simulation output in surge direction for Simple MPC ........................................ 61 

Figure 4.29: Simulation output in surge direction for Simple MPC for investigating wind 

effects. ...................................................................................................................................... 62 

Figure 4.30: Simulation output in sway direction for Simple MPC. ....................................... 63 

Figure 4.31: Vessel heading in yaw direction for Simple MPC. ............................................. 63 

Figure 4.32: Vessel's position in NED coordinate system. ...................................................... 64 

Figure 4.33: Simulation output in surge direction for Simple MPC. ....................................... 65 

Figure 4.34: Vessel's position in NED coordinate system. ...................................................... 66 

Figure 4.35: Comparison between Simple MPC with integral action and LQ optimal control 

with integral action in sway direction. ..................................................................................... 67 

Figure 4.36: Comparison between Simple MPC with integral action and LQ optimal control 

with integral action in surge direction. .................................................................................... 67 

Figure 4.37: Comparison between Simple MPC with integral action and LQ optimal control 

with integral action in yaw direction. ...................................................................................... 68 

 

  

file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627922
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627923
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627923
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627924
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627924
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627925
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627926
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627926
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627927
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627928
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627928
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627929
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627930
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627931
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627932
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627933
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627934
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627934
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627935
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627935
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627936
file:///F:/USN%20IT%20&%20AUTO/4th%20Semester%20Thesis/REPORT/Dynamic%20Positioning,%20system%20identification%20and%20control%20system%20of%20marine%20vessels%20–.docx%23_Toc166627936


 

 

  List of Tables 

 10 

List of Tables 
Table 2.1: Vessel parameters ................................................................................................... 22 

Table 4.1: IAE and TV index for Standard MPC. ................................................................... 69 

Table 4.2: IAE and TV index for Reduced size MPC. ............................................................ 70 

Table 4.3: IAE and TV index for LQ optimal control with integral action. ............................ 70 

Table 4.4: IAE and TV index for Simple MPC. ...................................................................... 70 

Table 4.5: IAE and TV index for Simple MPC with integral action. ...................................... 70 

Table 4.6: Performance of the Controllers. .............................................................................. 71 

 

 



 

 

  Introduction 

 11 

1 Introduction 
It is easy to imagine that the ocean is flat with a ship navigating its surface in a straightforward 

manner, capable of moving forward, backward, turning right, and turning left. However, a 

closer look shows just how dynamic the surface of the ocean can be. It is a bumpy, turbulent 

and ever-changing plane where a ship truly moves not just up and down also rolling to port and 

starboard and swiveling on the axis. The ship’s motion is impacted by various factors such as 

the main engine, wind, waves and the current. It is important to understand these motions, even 

if they are small, so that it is clear exactly where the ship is when it is mapping, diving, 

recovering ROVS, operating offshore oil rigs, and other things. Nowadays, vessels use 

dynamic positioning systems to navigate in the oceans.  

1.1 Dynamic positioning systems  

A dynamic positioning system is a computer-based system that manipulates a vessel's thruster 

and propulsion system to maintain a desired location during environmental disturbances [1]. 

The system collects data from a variety of sensors, including wind sensors and location sensors. 

Wind sensors are used to measure both the velocity and direction of wind. Position sensors, 

such as GPS and gyro-compass, provide information about the precise location and direction 

of a vessel. The dynamic positioning system utilizes the gathered data to calculate a control 

signal that controls the propulsion system [2]. 

The DP system is a MIMO system. The system inputs consist of the forces produced by the 

thrusters in the surge and sway directions, as well as the moment given by the thrusters around 

the vertical axis. The system provides the vessel's position in surge and sway, as well as the 

vessel's heading in yaw.  Figure 1.1 illustrates the inputs, outputs, states, and disturbances 

typically encountered by a vessel integrated with a Dynamic Positioning (DP) system. 

 

Figure 1.1: Block diagram of a vessel with DP systems. 
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The dynamic positioning system includes three components. The power subsystem is the first 

component of the DP system and supplies the necessary electrical power. The thruster 

subsystem provides the dynamic positioning (DP) system with the ability of adjusting both the 

power and direction of the propulsion force. The DP control subsystem works in combination 

with other subsystems to carefully regulate the position of the vessel [2].  

1.2 Previous research on DP system of marine vessel  

The research on dynamic positioning systems began in the early 1960s in the United States, 

which resulted in the development of a manual DP system [3]. The most notable improvement 

happened in the mid-1970s when Kalman filters and linear quadratic optimal controllers were 

implemented. The approach used in this study was based on a mathematical model, which was 

employed to predict and evaluate the vessel's movements. These systems required significant 

processing power in comparison to the computer resources that were accessible at that time. 

However, the standard was established, and it is accurate to state that the current leading 

manufacturers continue to benefit from the advantages of the outcomes and experiences gained 

all through that time. In 1977 a study was conducted for  testing a newly developed control 

system for dynamic placement on the vessel 'Seaway Eagle' by Balchen and his team of 

researchers [4] [5]. Balchen's proposal involves removing the conventional PID control 

technique and rather utilizing present-day control theory principles, such as the Kalman filter 

and optimum control. Another British team, led by M. Grimble in 1980, has created a novel 

adaptive filtering algorithm designed for systems with unknown disturbances [6]. The 

estimator integrates both an adaptive filter and a Kalman filter. The state estimations are 

employed in a closed-loop feedback control system that is developed using the standard linear 

quadratic strategy.  

Sørensen and Fossen (1996) propose a dynamic positioning (DP) system for marine vessels, 

demonstrating its ability to automatically position and guide the vessel using thruster and 

propeller operations. The study describes control functions that enable both station-keeping 

and tracking. The primary component of the DP system is a control architecture based on 

models, which includes an updated Linear Quadratic Gaussian (LQG) feedback controller and 

a model reference feedforward controller [7]. Another paper from Fossen and Sørensen present 

a novel approach to detect the dynamic characteristics of ships that are controlled by Dynamic 

Positioning systems [8]. The authors have developed an off-line parallel extended Kalman filter 

algorithm to address the challenging problem, which involves nonlinear and multivariable 

processes. The algorithm is confirmed by conducting comprehensive full-scale testing on a 

supply vessel, which utilizes dual sets of measurement data. This testing confirms the durability 

of the estimator and its capacity to converge. The study indicates that their approach can 

accurately forecast ship dynamics, hence improving control of DP systems using parameters 

that align with real-world data.  

There was also a lot of effort given to develop nonlinear control. Vessel DP systems are 

typically constructed with the assumption that the equations of motion can be linearized around 

a fixed yaw angle. This allows for the application of linear and gain scheduling approaches. 
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Fossen and Grøvlen in 1998 presents a globally exponentially stable (GES) nonlinear control 

approach that removes the need for this assumption. A non-linear observer has been integrated 

into the design, hence requiring just position measurements [9]. Aarset also  performed almost 

similar studies in 1998 [10]. One notable benefit of the nonlinear ideas is the significant 

reduction in the time needed for tuning and calibration during the installation of a new system. 

This is due to the decreased complexity of the model and controller. The nonlinear approaches 

developed by Fossen have been successfully applied in a full-scale turret-anchored Floating 

Production, Storage, and Offloading (FPSO) system [11]. Aamo and Fossen (1999) proposed 

a technique for effectively managing both the thruster and line tension in oil exploration and 

production activities conducted in deeper waters [12]. Fossen also created a Marine Systems 

Simulation Toolbox, known as MSS, using MATLAB [13]. This toolbox is designed to model 

DP systems [14]. At the lower end of the spectrum, a number of vendors now provide manual 

joystick control systems that have restricted DP capabilities based on the studies conducted by 

Källström and Theorén in 1994 [15]. 

1.3 Objective of this research 

One of the earliest mathematical models for vessel Dynamic Positioning (DP) was developed 

by Balchen [4]. This model was implemented to create a DP system using Kalman filtering and 

optimal control. This report presents the reconstruction of the DP system, along with the 

development of a modified and simplified model. The model is based on three double 

integrators, with the drag and momentum coefficients set to zero in the surge, sway, and yaw 

directions. As the control subsystem is the key component of the dynamic positioning system, 

this study will mainly focus on the control system.  

A linear version of the reduced Balchen model is developed, which is then implemented in 

MATLAB to analyze and compare its behavior with the reduced model. Different controllers 

are used for the experiment. First, the Standard MPC controller is implemented to assess the 

system's performance. The Standard MPC uses excessive calculations in solving the 

optimization problem. Therefore, a Reduced-size MPC controller is also implemented for 

evaluating the system's performance. The study also includes a Simple MPC, developed by 

David Di Ruscio [16], to see the model's performance. Finally, using system dynamics, a LQ 

optimal controller with integral action is created and tested. The performance analysis of the 

controller is also done using the Integrated Absolute Error (IAE) and Total Variation (TV) 

index. Figure 1.2 shows the simple block diagram of the DP system developed for this report. 
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1.4 Report structure 

This report has six chapters. The first chapter serves as an introductory section that provides a 

comprehensive outline of a dynamic positioning system, prior research conducted on it, and 

the primary objectives of this paper.  

The second chapter includes a description of the Balchen mathematical model. Additionally, 

this chapter provides the simplified Balchen model, which is later used for analysis. In addition, 

the text also discusses the forces acting on the marine vessel and the coordinate systems used 

in the ocean. 

The third chapter outlines controlling methods such as: MPC, LQ controller and Simple MPC 

which are employed in creating a effective DP system, whereas the fourth chapter presents the 

simulations conducted on the model and analyzes the outcomes drom the experiments.The 

performance analsysis of the different controllers also done in this chapter. 

The fifth chapter discusses the key findings obtained from the experiment, as well as proposing 

some ideas for further research. The final section provides a conclusion to the findings of this 

paper. 

Figure 1.2: Basic block diagram of the DP control system with reduced Balchen model as 

process, different controllers and state estimator. 
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2 Theory 
This chapter presents an introduction to the fundamental concepts associated with Balchen's 

mathematical model of DP system of marine vessel. Also, the simplified Balchen model, which 

is developed without considering drag and momentum coefficients is discussed. Furthermore, 

the coordinate system employed by the marine vessel, as well as the forces that affect the vessel 

movement in the ocean are documented in this chapter. 

2.1 Vessel coordinate system 

In the design of feedback control systems for marine vessels, it is common to utilize reduced-

order models due to the absence of all degrees of freedom (DOFs) in most vehicles. One  DOF 

models are applicable for designing controllers for forward speed (surge), autopilots for 

heading (yaw), and devices for damping roll motion [17]. 

Three DOF models are typically employed for ships, semi-submersibles, and undersea vehicles 

in horizontal-plane configurations. These models uses surge, sway, and yaw motions. They 

have uses in dynamic positioning (DP) systems, trajectory-tracking control systems, and path-

following systems.  

Six DOF models, which include surge, sway, heave, roll, pitch, and yaw, are a set of 

interconnected equations of motion that are utilized for simulating and predicting the combined 

movements of a vessel. These models can also be utilized in sophisticated control systems for 

underwater vehicles, which are operated in all degrees of freedom [17]. Figure 2.1: Six degrees 

of freedom of a marine vessel shows the six DOF of a vessel. 

Figure 2.1: Six degrees of freedom of a marine vessel. [18] 
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Degrees of freedom refer to the vessel's capacity to navigate in different directions while at 

ocean. Three of them related to axial movements along the x, y, and z axes, while the other 

three correspond to rotational motions around those axes. The motions that occur along the x, 

y, and z axes are known as surge, sway, and heave movements. Pitch, roll, and yaw are the 

terms used to describe the rotational movements around the x, y, and z axes.  

Two separate kinds of coordinate systems are used for vessel navigation. The NED coordinate 

system in a DP vessel provides directions with respect to the Earth's surface, mainly North, 

East, and Down.  In a DP vessel, the body frame coordinate system is fixed to the vessel and 

its origin located at the center of mass of the vessel. The utilization of coordinate systems is 

essential for achieving accurate control and navigation. These systems perform a critical role 

in allowing DP systems to effectively maintain the precise position and heading of a vessel, 

particularly under challenging conditions. Each coordinate system is shown in Figure 2.2. 

Equation 2.1 shows the transformation matrix R(ψ) which converts coordinates from the NED 

frame to the body frame [17]. 

 

𝑅(𝜓) = [
𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜓 0

𝑠𝑖𝑛𝜓
0

 
𝑐𝑜𝑠𝜓 0

 0       1

] 
2.1 

 

 

Figure 2.2: NED and Body coordinate system. [19] 



 

 

  Theory 

 17 

2.2 Forces acting on the vessel 

The forces exerted on the vessel can be divided into two categories: external influences, such 

as wind, water current, and sea wave forces, and internal forces, which include the vessel's 

thrusters and propulsion forces [17]. 

2.2.1 Wind force 

The wind forces and moment experienced by a moving vessel are directly related to the square 

of the relative wind speed (𝑉𝑤𝑟) ,wind angle of attack  (𝛾) and the windage area [17]. The 

windage area indicates the specific area of a vessel that is directly exposed to the impact of the 

wind. The overall size of this region is defined by the vessel's shape. It is necessary to calculate 

and integrate wind forces in surge and sway, as well as wind moment in yaw and send this 

information into the control system of dynamic positioning systems in order to minimize their 

effect on the vessel's movement. The calculation of wind forces and moments for symmetric 

vessels can be conducted using equation 2.2 [17] [18]. 

 

𝐹𝑤 = [

𝐹𝑤𝑠𝑢
𝐹𝑤𝑠𝑤
𝑁𝑤

]  =  
1

2
 𝜌𝑉2𝑤𝑟 [

𝐶𝑥𝑐𝑜𝑠(𝛾)𝐴𝐹
𝐶𝑦𝑠𝑖𝑛(𝛾)𝐴𝐿
𝐶𝑁𝑠𝑖𝑛(2𝛾)𝐴𝐿𝐿

]  

2.2 

Where, 

𝐹𝑤𝑠𝑢:  wind force in surge [N] 

𝐹𝑤𝑠𝑤:  wind force in sway [N] 

𝑁𝑤:  wind moment in yaw [N.m] 

𝜌: density of the wind [𝑘𝑔/𝑚3] 

𝑉𝑤𝑟: relative wind speed [m/s] 

𝐶𝑥 , 𝐶𝑦, 𝐶𝑁 : wind coefficients 

𝐴𝐹 , 𝐴𝐿 ∶ windage area of the head wind, windage area of the beam  

𝐿: vessel length [m] 
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2.2.2 Water Current force 

Forces which are exerted on a vessel by water currents are directly equal to the square of the 

difference between the velocity of the vessel and the velocity of the water current. In order to 

incorporate the current speed impact into the vessel motion equations proposed by Balchen [4], 

it is necessary to convert them to the Body-frame coordinate system. Balchen employed 

equations  2.3 to 2.5 for showing the water current speed with parameters which vary slowly.  

𝑣̇𝑐𝑁 = 𝜂𝑐𝑁  2.3 

𝑣̇𝑐𝐸 = 𝜂𝑐𝐸  2.4  

𝑁̇𝑐𝜓 = 𝜂𝑐𝜓  2.5 

𝑣𝐶𝑁: water current velocity in North direction in the NED coordinate system. 

𝑣𝐶𝐸: water current velocity in East direction in the NED coordinate system. 

𝑁𝐶𝜓: water current moment in yaw in the NED coordinate system. 

𝜂𝑐𝑁 , 𝜂𝑐𝐸 ,  𝜂𝑐𝜓: zero mean white noise process. 

[

𝑣𝑐𝑠𝑢
𝑣𝑐𝑠𝑤
𝑁𝑐

]  =  𝑅(𝜓)𝑇  [

𝑣𝑐𝑁
𝑣𝑐𝐸
𝑁𝑐𝜓

] 
2.6 

 

Where: 

𝑣𝑐𝑠𝑢: water current velocity in surge direction in Body coordinate system.  

𝑣𝑐𝑠𝑤: water current velocity in sway direction in Body coordinate system. 

𝑁𝑐: water current moment in yaw in Body coordinate system. 
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2.2.3 Wave force 

To simulate a dynamic positioning system, one can divide and analyze the wave-induced forces 

into their first and second-order effects [17]. First-order waves are oscillatory motions that have 

a zero mean. Second-order waves are forces that are generated by the slowly varying parts of 

wave drift forces and are not equal to zero. When constructing DP systems, it is essential to 

evaluate the effectiveness in the presence of wave [17]. Wave forces can be divided into two 

components: a gradually varying component and an oscillating component. The feedback 

control system has to compensate for oscillatory components [17].   

To reduce the mean component, the integral action can be used. The oscillatory component can 

be frequently removed by simply applying a low-pass filter [17]. Multiple wave force models 

are available for the purpose of prediction. One of the most used model is the State-Space 

Model for Wave Responses. This model offers a straightforward and effective depiction of 

wave forces, making it appropriate for modeling and assessing feedback control systems.Wave 

forces are excluded and not incorporated into the control system in this report. However, 

readers who are interested in more comprehensive information can see to reference [17]. 

2.2.4 Thruster and propulsion force 

Multiple kinds of thrusters exist. The most popular types are primary propellers, tunnel 

thrusters, and azimuth thrusters. The primary propellers influence the vessel's movement in the 

surge direction. Tunnel thrusters influence the sideways position of a vessel, while azimuth 

thrusters can rotate the vessel around the z-axis and impact its heading [17]. Figure 2.3 shows 

the different thrusters in a DP marine vessel. 

Equation 2.7 provides the generalized thruster forces in surge, sway, and yaw showed in 

Body-frame coordinate system [17]. 

Figure 2.3: Different thrusters in a DP marine vessel [17]. 
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𝜏 =  [

𝐹𝑥
𝐹𝑦

𝑙𝑥𝐹𝑦  −  𝑙𝑦𝐹𝑥

] 
2.7 

Where 𝑙𝑥, 𝑙𝑦 are thrusters lever arms with respect to the center of the vessel. 

The thruster configuration matrix 𝑇can be used to find out the magnitude of the force produced 

by each thruster in all directions. The T matrix has a column number equal to the number of 

thrusters and a row count equal to the degrees of freedom, which is typically three in dynamic 

positioning systems. The initial row of the T matrix indicates the forces generated by the 

thrusters in the forward direction. The second row presents the forces applied in the sideways 

direction, while the third row indicates the torques produced by the thrusters in the rotational 

direction.The generalized force can be described as the force that acts on a system as shown in 

equation 2.8 [17]. 

 

𝜏 =  𝑇𝐹 2.8 

𝐹 =  𝐾𝑢 2.9 

Where, 

𝐾: Thruster coefficient diagonal matrix. 

𝑢: control input vector. 

For example, The thruster force 𝜏 is calculated by equation 2.10 and 2.11, which takes into 

account two main propellers, two azimuth thruster, and two tunnel thrusters as shown in Figure 

2.3 [17]. 

 

𝜏 =  𝑇𝐾𝑢 2.10 

[
𝜏1
𝜏2
𝜏6
]

⏞
𝜏

=  [
1 0 0 1 0 0 1 1
0 1 1 0 1 1 0 0
0 𝑙1 𝑙2 0 𝑙3 𝑙4 −𝑙5 −6

]

⏞                      
𝑇

[
 
 
 
 
 
 
 
𝐾1 0 0 0 0 0 0 0
0 𝐾1 0 0 0 0 0 0
0 0 𝐾2 0 0 0 0 0
0 0 0 𝐾3 0 0 0 0
0 0 0 0 𝐾3 0 0 0
0 0 0 0 0 𝐾4 0 0
0 0 0 0 0 0 𝐾5 0
0 0 0 0 0 0 0 𝐾6]

 
 
 
 
 
 
 

⏞                        
𝐾

[
 
 
 
 
 
 
 
𝑢1𝑥
𝑢1𝑦
𝑢2
𝑢3𝑥
𝑢3𝑦
𝑢4
𝑢5
𝑢6 ]
 
 
 
 
 
 
 

⏞  
𝑢

 
2.11 

Where,  

𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6 are thruster lever arms.  

𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝐾5, 𝐾6 are thruster coefficients.  

𝑢2, 𝑢4 are the control inputs for tunnel thrusters. 
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𝑢5, 𝑢6 are the control input for the first and second main propeller. 

𝑢1𝑥, 𝑢1𝑦 , 𝑢3𝑥, 𝑢3𝑦 are the components in x and y of the azimuth thruster control inputs. 

2.3  Mathematical Model  

The Balchen model is used for studying maritime vessel dynamics. Balchen divided the model 

for vessel dynamics into two parts. Two models were developed: a low frequency model for 

wind, water current, and thruster forces, and a high-frequency model for sea wave forces [4].  

2.3.1 Balchen’s low frequency model 

This model is developed by using the Newton’s second law which states that, at any given point 

in time, the net force on a body is equal to its acceleration multiplied by its mass, as well as 

similarly, the rate at which the body's momentum changes over time.  

𝑚𝑎 =∑𝐹 2.12 

Where, 

m: mass of a body [kg] 

a: acceleration of the body [𝑚/𝑠2] 

F: forces action on the body [N] 

The low frequency model from Balchen [4] is given bellow from equation   2.13 to equation 

2.18 [18]. 

𝑑𝑥𝑠𝑢
𝑑𝑡

= 𝑣𝑠𝑢   2.13 

𝑑𝑣𝑠𝑢
𝑑𝑡

= − 
𝑑1
𝑚1
 |𝑣𝑠𝑢 − 𝑣𝑐𝑠𝑢|(𝑣𝑠𝑢 − 𝑣𝑐𝑠𝑢)  + 

1

𝑚1
 (𝐹𝑤𝑠𝑢  +  𝐹𝑡𝑠𝑢)  +  𝜂1  2.14 

 

𝑑𝑥𝑠𝑤
𝑑𝑡

= 𝑣𝑠𝑢  2.15 

 

𝑑𝑣𝑠𝑤
𝑑𝑡

= − 
𝑑2
𝑚2
 |𝑣𝑠𝑤 − 𝑣𝑐𝑠𝑤|(𝑣𝑠𝑤 − 𝑣𝑐𝑠𝑤)  +  

1

𝑚2
 (𝐹𝑤𝑠𝑤  +  𝐹𝑡𝑠𝑤)  +  𝜂2   2.16 

 

𝑑𝜓

𝑑𝑡
= 𝑣𝜓 2.17 

𝑑𝑣𝜓

𝑑𝑡
= −

𝑑3
𝑚3
|𝑣𝜓|𝑣𝜓 −

𝑑4
𝑚3
|𝑣𝑠𝑤 − 𝑣𝑐𝑠𝑤|(𝑣𝑠𝑤 − 𝑣𝑐𝑠𝑤) +

1

𝑚3
 (𝑁𝑐 + 𝑁𝑤 + 𝑁𝑡) + 𝜂3 2.18 
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Where; 

𝑥𝑠𝑢: position in surge [m]. 

𝑥𝑠𝑤: position in sway [m]. 

𝜓: heading in yaw [rad]. 

𝑣𝑠𝑢: 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛𝑠 𝑢𝑟𝑔𝑒[𝑚/𝑠]. 

𝑣𝑠𝑤: 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑠𝑤𝑎𝑦[𝑚/𝑠]. 

𝑣𝜓: heading rate [rad/s] 

𝑚1, 𝑚2, 𝑚3: internal coefficient which are constants. 

𝐹𝑡𝑠𝑢 , 𝐹𝑡𝑠𝑤 , 𝑁𝑡: thrust force in surge, sway and thrust moment in yaw. 

𝐹𝑤𝑠𝑢 , 𝐹𝑤𝑠𝑤 , 𝑁𝑤: wind force in surge, sway and wind moment in yaw.  

𝜂1, 𝜂2, 𝜂3: are assumed zero mean gaussian white noise process. 

𝑑𝑖 , 𝑖 =  1,2,3,4 are drag and momentum coefficients. 

Parameter values for 𝑚1, 𝑚2, 𝑎𝑛𝑑 𝑚3 can be found in Table 2.1 and taken from Balchen paper 

[4]. Also, windage area of head wind (𝐴𝐹)and beam wind (𝐴𝐿), overall length (L) of the vessel 

is necessary to calculate the wind forces in surge, sway direction and wind moment in yaw. All 

of this information also taken from the same source and listed in the table below. 

Table 2.1: Vessel parameters 

Parameter value 

𝑚1 2.4 × 107[𝑘𝑔] 

𝑚2 4 × 107[𝑘𝑔] 

𝑚3 4.5 × 1010[𝑘𝑔.𝑚2] 

𝐴𝐹 500[𝑚2] 

𝐴𝐹 1100[𝑚2] 

          L 73.2[𝑚] 

𝑑1 
5 × 10−5 [𝑁

(𝑚 𝑠)⁄
2⁄ ] 

𝑑2 
22 × 10−5 [𝑁

(𝑚 𝑠)⁄
2⁄ ] 
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𝑑3 
12 × 1011 [𝑁.𝑚

(𝑚 𝑟𝑎𝑑)⁄ 2⁄ ] 

𝑑4 
225 × 10−15 [𝑁.𝑚

(𝑚 𝑠)⁄
2⁄ ] 

2.3.2 Reduced model 

For this study, eliminating the drag and momentum coefficient from the non-linear low 

frequency model the equations   2.13 to 2.18 is used to find the reduced model. 

 

𝑑𝑥𝑠𝑢
𝑑𝑡

= 𝑣𝑠𝑢 2.19 

𝑑𝑣𝑠𝑢
𝑑𝑡

=
1

𝑚1
(𝐹𝑤𝑠𝑢 + 𝐹𝑡𝑠𝑢) + 𝜂1 2.20 

𝑑𝑥𝑠𝑤
𝑑𝑡

= 𝑣𝑠𝑢 2.21 

𝑑𝑣𝑠𝑤
𝑑𝑡

=
1

𝑚2
(𝐹𝑤𝑠𝑤 + 𝐹𝑡𝑠𝑤) + 𝜂2 2.22 

𝑑𝜓

𝑑𝑡
= 𝑣𝜓 2.23 

𝑑𝑣𝜓

𝑑𝑡
= (𝑁𝑤 + 𝑁𝑡) + 𝜂3 2.24 

 

After modifying the equations, the model no longer includes drag and momentum coefficients. 

The drag and momentum coefficients include additional nonlinearities and coupling factors 

that impact the overall behavior of the system. The model's behavior now resembles that of a 

three double integrator. It is a fundamental property of an integrator that if the input to a system 

is constant or changes slowly, the state variables will increase over time if they are not 

constrained or controlled. Furthermore, while this simplified model incorporates the 

fundamental kinematics of the system, it fails to compensate for the dynamic effects of water 

that are present in the original model. Afterwards, the reduced non-linear model is linearized 

and different controls are implemented to observe the model's behavior. Appendix B shows the 

MATLAB code for the reduced model. Appendix C shows the MATLAB code for the non-

linear Balchen model. 
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3 Methods 
This chapter provides a study of the methods employed in the experiment for controlling the 

vessel. To begin with, the chapter presents the linearized model of the reduced Balchen model. 

It is beneficial for implementing the linearized model to various control systems. Finally, this 

chapter covers several control algorithms, including standard Model Predictive Control (MPC), 

Reduced-size MPC, Simple MPC with integral action, and LQ optimum control with integral 

action.  

3.1 Linearization of the mathematical model  

Linearizing a nonlinear model helps to facilitate the understanding of the complex system more 

easily because it simulates a process within limited operating ranges. To make the nonlinear 

model linear Taylor series expansion was used [18] [19]. Equation 2.19 to 2.24 used to 

linearized the model. Linear model equation of the system is, 

𝛿𝑥̇  =  𝐴𝑐𝛿𝑥 + 𝐵𝑐𝛿𝑢 3.1 

𝛿𝑦 = 𝐷𝑐𝛿𝑥 
3.2 

Where,  

𝛿𝑥 = 𝑥 − 𝑥𝑜𝑝 
3.3 

𝛿𝑢 = 𝑢 − 𝑢𝑜𝑝 
3.4 

𝛿𝑦 = 𝑦 − 𝑦𝑜𝑝 
3.5 

 𝐴𝐶 =
𝜕𝑓

𝜕𝑥𝑇
|
𝑥𝑜𝑝,𝑢𝑜𝑝

 3.6 

𝐵𝐶 =
𝜕𝑓

𝜕𝑢𝑇
|
𝑥𝑜𝑝,𝑢𝑜𝑝

 3.7 

𝐷𝐶 =
𝜕𝑔

𝜕𝑥𝑇
|
𝑥𝑜𝑝,𝑢𝑜𝑝

 3.8 

For this system MIMO system, there is three inputs, three outputs and six states. Input, output 

and state vectors are given below. 
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𝑥 =  

[
 
 
 
 
 
𝑥𝑠𝑢
𝑥𝑠𝑤
𝜓
𝑣𝑠𝑢
𝑣𝑠𝑤
𝑣𝜓 ]
 
 
 
 
 

 
3.9 

𝑢 =  [

𝐹𝑡𝑠𝑢
𝐹𝑡𝑠𝑤
𝑁𝑡

] 
3.10 

𝑦 =  [

𝑥𝑠𝑢
𝑥𝑠𝑤
𝜓
] 

3.11 

After applying the Taylor series, the six different states are specified by equations 3.12 to 3.17. 

𝑓1 =
𝑑𝑥𝑠𝑢
𝑑𝑡

= 𝑣𝑠𝑢 3.12 

𝑓2 =
𝑑𝑣𝑠𝑢
𝑑𝑡

=
1

𝑚1
(𝐹𝑤𝑠𝑢 + 𝐹𝑡𝑠𝑢) + 𝜂1 3.13 

𝑓3 =
𝑑𝑥𝑠𝑤
𝑑𝑡

= 𝑣𝑠𝑢 3.14 

𝑓4 =
𝑑𝑣𝑠𝑤
𝑑𝑡

=
1

𝑚2
(𝐹𝑤𝑠𝑤 + 𝐹𝑡𝑠𝑤) + 𝜂2 3.15 

𝑓5 =
𝑑𝜓

𝑑𝑡
= 𝑣𝜓 3.16 

𝑓6 =
𝑑𝑣𝜓

𝑑𝑡
= (𝑁𝑤 +𝑁𝑡) + 𝜂3 3.17 
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The matrices 𝐴𝐶 , 𝐵𝐶 , 𝐷𝐶 calculated as shown in equation 3.18 to 3.20. The results after solving 

the matrices 𝐴𝐶 , 𝐵𝐶  given in section 4.1.2. 

𝐴𝐶   =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

𝜕𝐹1
𝜕𝑥𝑠𝑢

𝜕𝐹1
𝜕𝑥𝑠𝑤

𝜕𝐹2
𝜕𝑥𝑠𝑢

𝜕𝐹2
𝜕𝑥𝑠𝑤

𝜕𝐹3
𝜕𝑥𝑠𝑢

𝜕𝐹3
𝜕𝑥𝑠𝑤

𝜕𝐹1
𝜕𝜓

𝜕𝐹1
𝜕𝑣𝑠𝑢

𝜕𝐹1
𝜕𝑣𝑠𝑤

𝜕𝐹1
𝜕𝑣𝜓

𝜕𝐹2
𝜕𝜓

𝜕𝐹2
𝜕𝑣𝑠𝑢

𝜕𝐹2
𝜕𝑣𝑠𝑤

𝜕𝐹2
𝜕𝑣𝜓

𝜕𝐹3
𝜕𝜓

𝜕𝐹3
𝜕𝑣𝑠𝑢

𝜕𝐹3
𝜕𝑣𝑠𝑤

𝜕𝐹3
𝜕𝑣𝜓

𝜕𝐹4
𝜕𝑥𝑠𝑢

𝜕𝐹4
𝜕𝑥𝑠𝑤

𝜕𝐹5
𝜕𝑥𝑠𝑢

𝜕𝐹5
𝜕𝑥𝑠𝑤

𝜕𝐹6
𝜕𝑥𝑠𝑢

𝜕𝐹6
𝜕𝑥𝑠𝑤

𝜕𝐹4
𝜕𝜓

𝜕𝐹4
𝜕𝑣𝑠𝑢

𝜕𝐹4
𝜕𝑣𝑠𝑤

𝜕𝐹4
𝜕𝑣𝜓

𝜕𝐹5
𝜕𝜓

𝜕𝐹5
𝜕𝑣𝑠𝑢

𝜕𝐹5
𝜕𝑣𝑠𝑤

𝜕𝐹5
𝜕𝑣𝜓

𝜕𝐹6
𝜕𝜓

𝜕𝐹6
𝜕𝑣𝑠𝑢

𝜕𝐹6
𝜕𝑣𝑠𝑤

𝜕𝐹6
𝜕𝑣𝜓]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥𝑜𝑝,𝑢𝑜𝑝 

 
3.18 

𝐵𝑐 =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

𝜕𝐹1
𝜕𝐹𝑡𝑠𝑢

𝜕𝐹1
𝜕𝐹𝑡𝑠𝑤

𝜕𝐹1
𝜕𝑁𝑡

𝜕𝐹2
𝜕𝐹𝑡𝑠𝑢

𝜕𝐹2
𝜕𝐹𝑡𝑠𝑤

𝜕𝐹2
𝜕𝑁𝑡

𝜕𝐹3
𝜕𝐹𝑡𝑠𝑢

𝜕𝐹3
𝜕𝐹𝑡𝑠𝑤

𝜕𝐹3
𝜕𝑁𝑡

𝜕𝐹4
𝜕𝐹𝑡𝑠𝑢

𝜕𝐹4
𝜕𝐹𝑡𝑠𝑤

𝜕𝐹4
𝜕𝑁𝑡

𝜕𝐹5
𝜕𝐹𝑡𝑠𝑢

𝜕𝐹5
𝜕𝐹𝑡𝑠𝑤

𝜕𝐹5
𝜕𝑁𝑡

𝜕𝐹6
𝜕𝐹𝑡𝑠𝑢

𝜕𝐹6
𝜕𝐹𝑡𝑠𝑤

𝜕𝐹6
𝜕𝑁𝑡]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥𝑜𝑝,𝑢𝑜𝑝 

 3.19 

 

𝐷𝑐  =  [
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

] 
3.20 

 

The operation point 𝑥𝑜𝑝, 𝑢𝑜𝑝 is chosen to be same as the vessel’s center of gravity in the body 

coordinate system. The state space model in equation 3.1 and 3.2 is discretized as shown below. 

𝑥𝑘+1  =  𝐴𝑥𝑘  +  𝐵𝑢𝑘 + 𝐵𝐹𝑤𝑘 
3.21 

𝑦𝑘  = 𝐷𝑥𝑘 
3.22 
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3.2 Model Predictive Control (MPC) 

Two types of MPC are used for this experiment. First one is a Standard MPC and later one is 

reduced size MPC. Reduced-size MPC elements most of the unnecessary calculations (mostly 

matrices with zero elements) that may present in the Standard MPC. This helps the optimization 

problem less complex. 

3.2.1 Standard MPC 

The main objective of Model Predictive Control (MPC) is to reduce the variation between the 

system's output and the intended reference point. The objective function that used to reduce the 

system error is given below in equation 3.23 [19]. 

𝑚𝑖𝑛 𝐽 =  
1

2
 ∑𝑒𝑘

𝑇

𝑁

𝑘=1

𝑄𝑘𝑒𝑘 + 𝑢𝑘−1
𝑇 𝑃𝑘−1 𝑢𝑘−1            

3.23 

Subjected to,  

 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐵𝐹𝑤𝑘 
3.24 

𝑦𝑘 = 𝐷𝑥𝑘 
3.25 

𝑒𝑘 = 𝑟𝑘 - 𝑦𝑘 
3.26 

 

𝑄𝑘: Weighting matrix for 𝑒𝑘 . It is a diagonal matrix with 𝑛𝑦 number of weighting elements on 

the diagonal corresponding to each output. 

𝑝𝑘: Weighting matrix for 𝑢𝑘 . It is a diagonal matrix with 𝑛𝑢 number of weighting elements on 

the diagonal corresponding to each input. 

In order to solve the MPC problem, the equation 3.23 is re-formulated to a standard equation 

using the Kronecker products. 

𝐽 =
1

2
 𝑧𝑇𝐻𝑧 + 𝑐𝑇𝑧 3.27 

Subjected to,  

𝐴𝑒𝑧 = 𝑏𝑒 is an equality constraint 

𝐴𝑖𝑧 ≤  𝑏𝑖 is an inequality constraint 

The bounds are 𝑧𝐿 ≤  𝑧 ≤  𝑧𝑢  

z = [𝑛𝑢, 𝑛𝑥 , 𝑛𝑒 , 𝑛𝑦]
𝑇 , where z is the vector of unknowns 

the total number of the unknows (𝑛𝑧 ) in vector z for the whole prediction length (N) is,  
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𝑛𝑧 = 𝑁(𝑛𝑢 + 𝑛𝑥 + 𝑛𝑦 + 𝑛𝑦)                                                      

Now expending the objective function from K =1 to K =N for the equation 3.23,  

𝐽 =  
1

2
 [𝑒1

𝑇𝑄1𝑒1 + 𝑒2
𝑇𝑄2𝑒2 +⋯+ 𝑒𝑁

𝑇𝑄𝑁𝑒𝑁 

+ 𝑢0
𝑇𝑃0 𝑢0+𝑢1

𝑇𝑃1 𝑢1 +⋯+ 𝑢𝑁−1
𝑇 𝑃𝑁−1 𝑢𝑁−1] 

3.28 

Now comparing this equation to 3.27,  

J = 
1

2
   [ 

𝑢
𝑥
𝑒
𝑦

 ]

𝑇⏞  
𝑧𝑇

 [

𝐻11 0 0 0
0 𝐻22 0 0
0 0 𝐻33 0
0 0 0 𝐻44

]

⏞              
𝐻

 [ 

𝑢
𝑥
𝑒
𝑦

 ]

⏞
𝑍

+ [ 

𝐶1
𝐶2
𝐶3
𝐶4

 ]

𝑇⏞    
𝑐𝑇

 [ 

𝑢
𝑥
𝑒
𝑦

 ]

⏞
𝑍

 

3.29 

 

By multiplying matrices from 3.29, 

𝐽 =  
1

2
 [𝑢𝑇𝐻11𝑢 + 𝑥

𝑇𝐻22𝑥 + 𝑒
𝑇𝐻33𝑒 + 𝑦

𝑇𝐻44𝑦 + 𝐶1
𝑇𝑢 + 𝐶2

𝑇𝑥 + 𝐶3
𝑇𝑦

+ 𝐶4
𝑇𝑢] 

3.30 

 

Comparing equation  3.28 and 3.30, 

𝑢𝑇𝐻11𝑢 = 𝑢0
𝑇𝑃0 𝑢0+𝑢1

𝑇𝑃1 𝑢1 +⋯+ 𝑢𝑁−1
𝑇 𝑃𝑁−1 𝑢𝑁−1 

3.31 

𝑒𝑇𝐻33𝑒 = 𝑒1
𝑇𝑄1𝑒1 + 𝑒2

𝑇𝑄2𝑒2 +⋯+ 𝑒𝑁
𝑇𝑄𝑁𝛿𝑒𝑁  3.32 

From the equation 3.31 and 3.32 the H matrices (Hessian matrix) now can be calculated. 

 

𝐻11 = 

[
 
 
 
 
𝑃1 0 ⋯ 0
0 𝑃2 ⋯ 0
0 ⋯ 𝑃3 0
⋮ ⋱ ⋮ ⋮
0 ⋯ 0 𝑃𝑁]

 
 
 
 

=  𝐼𝑁⊗𝑃 3.33 

 

𝐻33 = 

[
 
 
 
 
𝑄0 0 ⋯ 0
0 𝑄1 ⋯ 0
0 ⋯ 𝑄2 0
⋮ ⋱ ⋮ ⋮
0 ⋯ 0 𝑄𝑁]

 
 
 
 

=  𝐼𝑁⊗ Q 3.34 

 

Where, ⊗ is the Kronecker product and 𝐼𝑁 is the identity matrix with the size of ‘N’. 

𝐻22 = 𝐼𝑁  ⊗ 0𝑛𝑥 .  𝑛𝑥 
3.35 

𝐻44 = 𝐼𝑁  ⊗ 0𝑛𝑦 .  𝑛𝑦 
3.36 
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From the equation 3.30, it’s clearly seen that there is no linear item, so all the matrices for C is 

zero. 

𝐶 = [ 

𝐶1
𝐶2
𝐶3
𝐶4

 ]  = 

[
 
 
 
 

 

0𝑁.𝑛𝑢
0𝑁.𝑛𝑥
0𝑁.𝑛𝑦
0𝑁.𝑛𝑦

 

]
 
 
 
 

  = 0(𝑛𝑧 ×1) 
3.37 

 

Now, the equality constrains needs to be expressed from the equation 3.27. The matrix 𝐴𝑒 

and vector 𝑏𝑒 can be written as follows, 

[

𝐴𝑒,1𝑢 𝐴𝑒,1𝑥 𝐴𝑒,1𝑒 𝐴𝑒,1𝑦
𝐴𝑒,2𝑢 𝐴𝑒,2𝑥 𝐴𝑒,2𝑒 𝐴𝑒,2𝑦
𝐴𝑒,3𝑢 𝐴𝑒,3𝑥 𝐴𝑒,3𝑒 𝐴𝑒,3𝑦

]

⏞                  
𝐴𝑒

 [ 

𝑢
𝑥
𝑒
𝑦

 ]

⏞
𝑍

  = [

𝑏𝑒,1
𝑏𝑒,2
𝑏𝑒,3

]

⏞  
𝑏𝑒

                                                                     3.38 

Each row of  𝐴𝑒 in equation 3.38 corresponding to each equality constraint from equation 3.24 

to 3.26.  

After solving each row for the equality constrains, the following equations are formed,  

𝐴𝑒,1𝑢 = 

[
 
 
 
 
−𝐵 0 ⋯ 0
0 −𝐵 ⋯ 0
0 ⋯ −𝐵 0
⋮ ⋱ ⋮ ⋮
0 ⋯ 0 −𝐵]

 
 
 
 

 = −𝐼𝑁⊗𝐵 3.39 

𝐴𝑒,1𝑥 = 

[
 
 
 
 
𝐼 0 ⋯ 0 0
−𝐴 𝐼 ⋯ 0 0
0 −𝐴 𝐼 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 −𝐴 𝐼]

 
 
 
 

 = 𝐼𝑁.𝑛𝑥 − (𝐼𝑁−1⊗𝐴) 3.40 

𝐴𝑒,1𝑒 = 0𝑁.𝑛𝑥× 𝑁.𝑛𝑦  3.41 

𝐴𝑒,1𝑦= 0𝑁.𝑛𝑥× 𝑁.𝑛𝑦    
3.42 

 

𝑏𝑒,1 = 

[
 
 
 
 

 

𝐴𝑥0  +  𝐵𝐹𝑤1 
𝐵𝐹𝑤2
⋮
⋮

𝐵𝐹𝑤𝑛

 

]
 
 
 
 

𝑁.𝑛𝑥×1 

 
3.43 
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For the next row,  

𝐴𝑒,2𝑢 = 0𝑁.𝑛𝑦× 𝑁.𝑛𝑢  3.44 

𝐴𝑒,2𝑥 = 

[
 
 
 
 
𝐶 0 ⋯ 0
0 𝐶 ⋯ 0
0 ⋯ 𝐶 0
⋮ ⋱ ⋮ ⋮
0 ⋯ 0 𝐶]

 
 
 
 

 = 𝐼𝑁⊗𝐶 3.45 

 

𝐴𝑒,2𝑒 = 0𝑁.𝑛𝑦× 𝑁.𝑛𝑦  3.46 

𝐴𝑒,2𝑦 = 

[
 
 
 
 
𝐼 0 ⋯ 0
0 𝐼 ⋯ 0
0 ⋯ 𝐼 0
⋮ ⋱ ⋮ ⋮
0 ⋯ 0 𝐼]

 
 
 
 

 = 𝐼𝑁.𝑛𝑦 3.47 

 

𝑏𝑒,2 = [ 

0
⋮
⋮
0

 ]

𝑁.𝑛𝑦 ×1 

= 0 𝑁.𝑛𝑦×1  
3.48 

The final row,  

 

𝐴𝑒,3𝑢 = 0𝑁.𝑛𝑦× 𝑁.𝑛𝑢  3.49 

𝐴𝑒,3𝑥 = 0𝑁.𝑛𝑦× 𝑁.𝑛𝑥  3.50 

𝐴𝑒,3𝑒 = 

[
 
 
 
 
𝐼 0 ⋯ 0
0 𝐼 ⋯ 0
0 ⋯ 𝐼 0
⋮ ⋱ ⋮ ⋮
0 ⋯ 0 𝐼]

 
 
 
 

 = 𝐼𝑁.𝑛𝑦 3.51 

 

𝐴𝑒,3𝛿𝑦 = 

[
 
 
 
 
𝐼 0 ⋯ 0
0 𝐼 ⋯ 0
0 ⋯ 𝐼 0
⋮ ⋱ ⋮ ⋮
0 ⋯ 0 𝐼]

 
 
 
 

 = 𝐼𝑁.𝑛𝑦   3.52 
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𝑏𝑒,3 = [ 

𝑟1
⋮
⋮
𝑟𝑁

 ]

𝑁.𝑛𝑦 ×1

 3.53 

 

So now putting all the solved matrices to the question 3.38, 

[

−𝐼𝑁⊗𝐵  𝐼𝑁.𝑛𝑥 − (𝐼𝑁−1⊗𝐴) 0𝑁.𝑛𝑥× 𝑁.𝑛𝑦 0𝑁.𝑛𝑥× 𝑁.𝑛𝑦 

0𝑁.𝑛𝑦× 𝑁.𝑛𝑢 𝐼𝑁⊗𝐶  0𝑁.𝑛𝑦× 𝑁.𝑛𝑦  𝐼𝑁.𝑛𝑦
0𝑁.𝑛𝑦× 𝑁.𝑛𝑢 0𝑁.𝑛𝑦× 𝑁.𝑛𝑥 𝐼𝑁.𝑛𝑦 𝐼𝑁.𝑛𝑦

] 

⏞                                        
𝐴𝑒

[ 

𝑢
𝑥
𝑒
𝑦

 ]

⏞
𝑧

  

=   

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐴𝑥0  +  𝐵𝐹𝑤1

⋮
⋮

𝐵𝐹𝑤𝑁
⋯
0
⋮
⋮
0
⋯
𝑟1
⋮
⋮
𝑟𝑁

⏞        
𝑏𝑒

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.54 

 

After getting the values for 𝐻, 𝐶, 𝐴𝑒 , 𝑏𝑒 matrices the standard formulation is completed for the 

purpose of the analysis. These values are fundamental components for designing of the linear 

MPC control system. The quadprog.m solver in MATLAB is used to solve the MPC problem. 

The algoritm for the Standard MPC included in Appendix F. The results of the simulation are 

documented in section 4.2.1.  

3.2.2 Reduced size MPC 

The objective function of the Reduced-size MPC is formulated by substituting 𝑒𝑘 = 𝑟𝑘 - 𝑦𝑘 to 

the equation 3.23 gives [18] [19],  

𝑚𝑖𝑛 𝐽 =  
1

2
 ∑ (𝑟𝑘  −  𝑦𝑘)

𝑇𝑁
𝑘=1 𝑄𝑘(𝑟𝑘 - 𝑦𝑘) + 𝑢𝑘−1

𝑇 𝑃𝑘−1 𝑢𝑘−1       3.55 

𝑚𝑖𝑛 𝐽 =  
1

2
 ∑  (𝑦𝑘

𝑇𝑁
𝑘=1 𝑄𝑘 𝑦𝑘 + 𝑢𝑘−1

𝑇 𝑃𝑘 𝑢𝑘−1  ) – 2(𝑄𝑘𝑟𝑘)
𝑇) 𝑦𝑘 + 𝑟𝑘

𝑇𝑄𝑘𝑟𝑘 3.56 

As 𝑄 is a symmetric matrix, so  𝑄𝑘  =  𝑄𝑘
𝑇 . Also, 𝑟𝑘

𝑇𝑄𝑘𝑟𝑘 is a constant, so the modified 

objective function is formulated in equation  3.57. 
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𝑚𝑖𝑛 𝐽 =  
1

2
 ∑  (𝑦𝑘

𝑇𝑁
𝑘=1 𝑄𝑘 𝑦𝑘 + 𝑢𝑘−1

𝑇 𝑃𝑘 𝑢𝑘−1  ) – 2(𝑄𝑘𝑟𝑘)
𝑇) 𝑦𝑘 + 𝑟𝑘

𝑇𝑄𝑘𝑟𝑘 3.57 

Now, 𝑦𝑘 = 𝐷𝑥𝑘 and substituting it to the above equation,  

𝑚𝑖𝑛 𝐽 =  
1

2
 ∑  (𝑥𝑘

𝑇𝑁
𝑘=1 𝑄̃𝑘 𝑥𝑘 + 𝑢𝑘−1

𝑇 𝑃𝑘 𝑢𝑘−1  ) – 2(𝐷𝑇𝑄𝑘 𝑟𝑘)
𝑇 𝑥𝑘  3.58 

Where, 𝑄̃  =  𝐷𝑇 𝑄𝐷  

By writing the equation to the standard form 𝑧𝑇𝐻𝑧 + 𝑐𝑇𝑧,  

J = [
𝑢𝑘−1
𝑥𝑘

]
𝑇⏞    

𝑧𝑇

[
𝐻11 0
0 𝐻22

]
⏞      

𝐻

 [
𝑢𝑘−1
𝑥𝑘

]
⏞  
𝑍

+[
𝑐1
𝑐2
]
𝑇⏞

𝑐𝑇

[
𝑢𝑘−1
𝑥𝑘

]
⏞  
𝑧

 3.59 

Now to find the H and C matrices,  

𝐻11 = 

[
 
 
 
 
𝑃1 0 ⋯ 0
0 𝑃2 ⋯ 0
0 ⋯ 𝑃3 0
⋮ ⋱ ⋮ ⋮
0 ⋯ 0 𝑃𝑁]

 
 
 
 

=  𝐼𝑁⊗𝑃 3.60 

𝐻22 = 

[
 
 
 
 
𝑄0 0 ⋯ 0
0 𝑄1 ⋯ 0
0 ⋯ 𝑄2 0
⋮ ⋱ ⋮ ⋮
0 ⋯ 0 𝑄𝑁]

 
 
 
 

=  𝐼𝑁⊗ Q  
 3.61 

 

𝐶1 = [ 

0
⋮
⋮
0

 ]

𝑁.𝑛𝑢 ×1

 
3.62 

 

𝐶1 = 

[
 
 
 
 

𝐷𝑇 𝑄1𝑟1
𝐷𝑇 𝑄2𝑟2

⋮
𝐷𝑇 𝑄𝑁𝑟𝑁

 

]
 
 
 

𝑁 ×1

 3.63 

 

Now for the equality constrains,  

[𝐴𝑒𝑞𝑢 𝐴𝑒𝑞𝑥] [
𝑢𝑘−1
𝑥𝑘

] =  𝐵𝑒𝑞 3.64 
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Comparing with equation 3.24,  

𝐴𝑒𝑞𝑢 = 

[
 
 
 
 
−𝐵 0 ⋯ 0
0 −𝐵 ⋯ 0
0 ⋯ −𝐵 0
⋮ ⋱ ⋮ ⋮
0 ⋯ 0 −𝐵]

 
 
 
 

 = −𝐼𝑁⊗𝐵 

3.65 

 

𝐴𝑒𝑞𝑥 = 

[
 
 
 
 
𝐼 0 ⋯ 0 0
−𝐴 𝐼 ⋯ 0 0
0 −𝐴 𝐼 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 −𝐴 𝐼]

 
 
 
 

 = 𝐼𝑁.𝑛𝑥 − (𝐼𝑁−1⊗𝐴) 

3.66 

 

𝑏𝑒𝑞 = 

[
 
 
 
 

 

𝐴𝑥0  +  𝐵𝐹𝑤1 
𝐵𝐹𝑤2
⋮
⋮

𝐵𝐹𝑤𝑛

 

]
 
 
 
 

𝑁.𝑛𝑥×1 

 
3.67 

 

Now putting all the matrices together,  

[−𝐼𝑁⊗𝐵  𝐼𝑁.𝑛𝑥 − (𝐼𝑁−1⊗𝐴)]⏞                    
𝐴𝑒

[
𝑢𝑘−1
𝑥𝑘

]
⏞  
𝑍

 = 

[
 
 
 
 

 

𝐴𝑥0  +  𝐵𝐹𝑤1 
𝐵𝐹𝑤2
⋮
⋮

𝐵𝐹𝑤𝑛

 

]
 
 
 
 

𝑁.𝑛𝑥×1 

⏞              
𝑏𝑒

 3.68 

 

Now the size of 𝐻, 𝐶, 𝐴𝑒 , 𝑏𝑒are being reduced. With the help of quadprog.m solver in 

MATLAB Reduced-size MPC is simulated and the results are documented in section 4.2.2.  

3.3 LQ optimal control with integral action 

LQ optimal control stands for Linear Quadratic optimal control. It's a method employed in 

control theory for creating feedback controllers for linear systems that are affected by quadratic 

cost functions. In LQ optimal control, the aim is to minimize a quadratic cost function that 

accurately represents the balance between control effort and system performance. LQ 

controller with integral action has similar attributes as a standard PID controller [20]. The 

discrete model comes with the model disturbances as shown in equation 3.69 and 3.70. 

  

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 3.69 

𝑦𝑘 = 𝐷𝑥𝑘 +  𝑣𝑘 3.70 
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The LQ problem of a discrete model for infinite time horizon and with integral action given by 

equation 3.71, 

Where, r: is the reference point 

Q and P: Weighting matrices  

For solving the quadratic problem, it must be independent from the disturbances 𝑤𝑘 and 

measurement noise 𝑣𝑘 . So, the new state space model can be written as, 

From [20], it shows that the state space model can be written as a augmented model as like 

the equation 3.74 and 3.75,  

Using the augmented model, the new model equations are formed in  3.76 and 3.77. 

By minimizing the objective function with respect to the deviation ∆𝑢𝑘 the quadratic problem 

can be solved. The optimal control deviation of ∆𝑢𝑘 is given in equation 3.78. 

The control input at time K can be calculated from the previous control signal. 𝐺1∆𝑥𝑘 is related 

to the state deviation and 𝐺2(𝑦𝑘−1 − 𝑟𝑘) deviation between output and the setpoint. 

 The optimal feedback matrix G is calculated using the dlqdu_pi MATLAB function [20], and 

documented in Appendix H. Next this function used to develop the code that shows the LQ 

optimal controller performance in surge, sway and yaw direction. Also, the input signal is 

clipped to see the performance of the controller with limited control signal. All the results are 

𝐽 𝑖 = 
1

2
 ∑(𝑦𝑘  −  𝑟)

𝑇

∞

𝑘=1

𝑄𝑘 (𝑦𝑘  −  𝑟) + ∆𝑢𝑘
𝑇𝑃𝑘𝑢𝑘 3.71 

∆𝑥𝑘+1 = 𝐴∆𝑥𝑘 + 𝐵∆𝑢𝑘 3.72 

𝑦𝑘 = 𝑦𝑘−1 + 𝐷∆𝑥𝑘 3.73 

 [
∆𝑥𝑘+1 
𝑦𝑘  −  𝑟

] = [
𝐴 0𝑛×𝑚
𝐷 𝐼𝑚×𝑚

] [
∆𝑥𝑘

𝑦𝑘−1 −  𝑟
]+[

𝐵
0𝑚×𝑟

] ∆𝑢𝑘 3.74 

𝑦𝑘−1 −  𝑟 =  [𝐷 𝐼𝑚×𝑚] [
∆𝑥𝑘

𝑦𝑘−1 −  𝑟
] 3.75 

𝑥̃𝑘+1 = 𝐴̃𝑥̃𝑘  +  𝐵̃∆𝑢𝑘 3.76 

𝑦̃𝑘 = 𝐷̃𝑥̃𝑘 3.77 

∆𝑢𝑘 = [𝐺1 𝐺2]  [
∆𝑥𝑘

𝑦𝑘−1 −  𝑟
] 3.78 

𝑢𝑘 = 𝑢𝑘−1  +  𝐺1∆𝑥𝑘  +  𝐺2(𝑦𝑘−1 − 𝑟𝑘)  3.79 
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documented in section 4.3. The MATLAB code that uses to control the reduce model given in 

Appendix I.  

3.4 Simple MPC 

Simple MPC is developed by David Di Ruscio [16] is a controller that is usefully to a slow 

varying system and measurement trends. The MPC algorithm also can use integral action to 

reduce the control error faster. The state space model for this model is given below,  

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 3.80 

𝑦𝑘 = 𝐷𝑥𝑘 3.81 

𝑦𝑘+1 𝐿⁄ = 𝐹𝐿𝑢𝑘 𝐿⁄ + 𝑝𝐿 3.82 

Where: 

L is the prediction horizon. 

𝐹𝐿 is a constant matrix (𝐹𝐿  =  [𝑂𝐿𝐵 𝐻𝐿
𝑑] ).  

𝑂𝐿: The observability matrix of the pair A, D. 

𝐻𝐿
𝑑: is the Toeplitz matrix of the impulse response matrices 𝐷𝐴𝑖−1𝐵. 

𝑂𝐿 , 𝑂𝐿𝐵 𝑎𝑛𝑑 𝐻𝐿
𝑑 is calculated using ss2h.m function in MATLAB. The function is 

documented in Appendix L and developed by David Di Ruscio.  

𝑝𝐿  =  𝑂𝐿𝐴𝑥𝑘 3.83 

So, the modified objective function to be minimized is given by equation  

𝐽 𝑘 = 
1

2
 (𝑦𝑘+1 𝐿⁄  −  𝑟𝑘+1 𝐿⁄ )

𝑇𝑄𝑘 (𝑦𝑘+1 𝐿⁄  − 𝑟𝑘+1 𝐿⁄ ) + ∆𝑢𝑘 𝐿⁄
𝑇 𝑃𝑢𝑘 𝐿⁄  

3.84 

By substituting the 𝑦𝑘+1 𝐿⁄  from equation 3.82 to the objective function equation 3.85. 

𝐽 𝑘 = 
1

2
 𝑢𝑘 𝐿⁄

𝑇(𝐹𝐿
𝑇𝑄 𝐹𝐿  +  𝑃) 𝑢𝑘 𝐿⁄  +  2 ( 𝐹𝐿

𝑇𝑄(𝑝𝐿  −  𝑟𝑘+1 𝐿⁄ )) 𝑢𝑘 𝐿⁄  
3.85 

The objective function can be compared with the standard objective function given in equation 

3.86. 

 

 

 

𝐽 𝑘 = 
1

2
 𝑢𝑘 𝐿⁄

𝑇𝐻𝑢𝑘 𝐿⁄  + 𝐶
𝑇 𝑢𝑘 𝐿⁄  3.86 
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So, the value of H and C is,  

The quadprog.m function in MATLAB is used to solve the optimization problem. The results 

are documented in 4.4.1. The MATLAB code for Simple MPC to control the vessel is given in 

Appendix J. 

For the Simple MPC with integral action 𝑥̃𝑘  =  [
∆𝑥𝑘
𝑦𝑘−1

] is used to calculate the 𝑝𝐿. The control 

inputs are thruster forces and moments.  The input thruster values can be assumed as inequality 

constrains as shown from equation 3.89 to 3.91.  

Now from [16], 𝑢𝑘 can be written in a relationship with ∆𝑢𝑘 in equation 3.92 

Where 𝑆𝜖ℝ𝑛𝑢.𝐿× 𝑛𝑢.𝐿 and 𝐶𝜖ℝ𝑛𝑢.𝐿× 𝑛𝑢 . These are the matrices that contains ones and zeros. 

This matrices are calculated by scmat.m function developed by David Di Ruscio given in 

Appendix M.  

The main purpose is to optimize the control increment ∆𝑢. So, substituting it to the inequality 

constrains gives,  

From the inequality constrains from above, the standard from is written in equation  

Where, 𝐴𝑖  =  [
𝑆
−𝑆
] and 𝐵𝑖  =  [

𝑢𝑚𝑎𝑥  −   c𝑢𝑘−1
−𝑢𝑚𝑖𝑛  +  c𝑢𝑘−1

]  . Both of this used directly to the 

quadprog.m function. The MATLAB code for Simple MPC with integral action to control the 

vessel is given in Appendix K. The results of Simple MPC with integral action is documented 

in 4.4.2. 

 

H = 𝐹𝐿
𝑇𝑄 𝐹𝐿  +  𝑃 3.87 

C = 2 ( 𝐹𝐿
𝑇𝑄(𝑝𝐿  − 𝑟𝑘+1 𝐿⁄ )) 3.88 

𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 3.89 

𝑢 ≤ 𝑢𝑚𝑎𝑥 3.90 

−𝑢 ≤ −𝑢𝑚𝑖𝑛 3.91 

𝑢𝑘  =  𝑆∆𝑢𝑘 + c𝑢𝑘−1 3.92 

𝑆∆𝑢 ≤ 𝑢𝑚𝑎𝑥  −  c𝑢𝑘−1 3.93 

−𝑆∆𝑢 ≤ −𝑢𝑚𝑖𝑛  +  c𝑢𝑘−1 3.94 

𝐴𝑖∆𝑢 ≤ 𝐵𝑖    3.95 
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3.5 Kalman Filter as a state estimator 

A common method for estimating the values of unknown state variables in dynamic systems is 

the Kalman Filter. The Kalman Filter technique was initially designed for systems that are 

expected to be represented by a linear state space model. However, the system model is often 

nonlinear in numerous applications. Furthermore, the linear model can be regarded as a specific 

case of a nonlinear model [21]. In this report the discrete time Kalman filter is used. This 

Kalman filter corrects the predictions, So, it has a predictor part and a corrector part. The 

Kalman filter equation is given in equation 3.96. 𝑥̅𝑘+1 predicts the states using the vessel linear 

model as given in equation 3.97[17] [18].  

 

For the experiment Kalman Filter gain is calculated using the dlqe.m MATLAB function from 

the discrete time system given in equations 3.98 to 3.99 [18]. 

This function takes A,G,D,Q,R as inputs and gives K,P,Z,E as outputs. 

Where, 𝑤𝑘 𝑎𝑛𝑑 𝑣𝑘: Process and Measurement noise. 

𝑄 =  𝐸(𝑤𝑤′): process noise covariance. 

𝑅 =  𝐸(𝑣𝑣′): measurement noise covariance. 

K: Kalman gain. 

P: Riccati solution. 

Z: Error covariance. 

E: Estimator poles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑥̂𝑘+1  =  𝑥̅𝑘+1  +  𝐾 (𝑦𝑘  − 𝑦̂𝑘 ) 3.96 

𝑥̅𝑘+1  =  𝐴𝑥̅𝑘  +  𝐵𝑢𝑘 + 𝐵𝐹𝑤 3.97 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘  + 𝐺𝑤𝑘 3.98 

𝑦𝑘 = 𝐷𝑥𝑘  +  𝑣𝑘 3.99 
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4 Results 
In this chapter the behavior of the reduced model and comparison of the model to the original 

model is presented. This chapter also gives the detailed discussion of the findings after testing 

the simplified Balchen model with different controllers, such as the LQ optimum controller, 

the MPC controller, and the Simple MPC controller. Finally, this chapter documents and 

evaluates the performance of the controllers using the integral of absolute error (IAE) and the 

total variation (TV) index. 

4.1 Model behavior 

The behavior of the simplified model is discussed in this section.   

4.1.1 Reduced model 

The reduced model is developed in MATLB using the equation from 2.19 to 2.24. This 

experiment is conducted without taking into account any wind force acting on the vessel. Also, 

no thruster forces are given on the vessel. Figure 4.1 shows the behavior of the reduced Balchen 

model. The updated model removes the drag and momentum coefficient, resulting in a 

simplified version consisting of three double integrators. Also, from the figure it is clearly 

understandable that if the model is left uncontrolled, state variables will gradually rise without 

any limitations.  

 

Figure 4.1: Behavior of the reduced Balchen model. 
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4.1.2 Linearization 

The Balchen reduced model has been simplified and transformed into a linear model. Then the 

two models are simulated in MATLAB to observe their behavior in the presence of 

environmental disturbances. 

The Taylor series expansion is used to find the model matrices 𝐴𝑐, 𝐵𝑐, 𝐷𝑐 as shown in equations 

4.1 to 4.3. 

 

𝐴𝑐 = 

[
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

 4.1 

𝐵𝑐 = 

[
 
 
 
 
 
 
 
 
 
0 0 0
0 0 0
0 0 0
1

𝑚1
0 0

0
1

𝑚2
0

0 0
1

𝑚3]
 
 
 
 
 
 
 
 
 

 
4.2 

 

𝐷𝑐 = [
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

] 

4.3 

 

 

For the environmental effect the wind disturbances are generated randomly where wind speed 

has a value from 0 to 20 m/s and the direction of the wind has a value between 0 to 360 deg.  

Figure 4.2 shows the vessel position in surge under the wind force. The initial subplot indicates 

that both the linearized and reduce model have identical behavior. The model is not receiving 

any control signal as shown in the next subplot. The third subplot shows the amount of the 

wind force acting on the vessel. The wind's velocity and direction are displayed in the fourth 

and fifth subplots. 

The wind velocity remains constant at 18 m/s for the first 4 minutes of the simulation, while 

the wind direction shifts from approximately 380° to 250°. Both wind velocity and direction 

continue to decrease until 15 minutes. For this reason, the wind force decreases in the surge 

position from 6 × 104 N to −1 × 104 𝑁 after 2 minutes of the simulation. As a result, the 

surge vessel position increases from 0 m to 2000 m after 20 minutes of the simulation. 
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Figure 4.4 shows the vessel's movement in the sway direction under wind disturbances. The 

first plot shows that behavior of both models the same under wind forces. In the figure, the 

wind velocity is constant for the first quarter of the simulation. After that, it gradually declines 

until it reaches a value of 9 m/s at the 10-minute mark, then continues with the same velocity 

until 15 minutes. Additionally, the wind direction shifts from 380° to 200°. As a result, the 

wind force increases between −0.2 × 105 𝑁 to 0 𝑁 during the first 15 minutes of the 

simulation. During the final 4 minutes of the simulation, both the velocity and the force increase 

to 20 m/s and 2 × 105 𝑁. The gradually increasing wind force is causing a decrease in sway 

direction from 0 m to approximately  −1100 m. 

Figure 4.3 shows model behavior under the wind moment in yaw. The first subplot shows that 

the both of the models do not have any behavioral differences. The third subplot shows that the 

wind moment started at − 1 × 106 𝑁𝑚, and after 3 minutes, it started to increase and stay 

approximately 0.5 × 106 𝑁𝑚 𝑡𝑜 0 × 106 𝑁𝑚  until 15 minutes. That causes the deviation in 

the yaw direction to go from 0° to -100°. For the last 4 minutes of the simulation, the wind 

direction is changed from 180° to approximately 20°, and the wind moment is increased to 

0 × 106 𝑁𝑚. As a result, there is a slight increase of 20° in the yaw direction in the last minute 

of the simulation. 

 

 

 

 

Figure 4.2: Reduced model behavior under wind disturbances in surge direction. 
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Figure 4.4: Reduced model behavior under wind disturbances in sway direction. 

Figure 4.3: Reduced model behavior under wind disturbances in yaw direction. 
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4.1.3 Comparison between Balchen non-linear low frequency model and 
reduced model 

By eliminating the drag and momentum coefficient, the original model basically functioned as 

a three double integrator model. The behavior of the original model and the reduce model is 

simulated in the presence of wind disturbances and without any external input force. Figure 4.5 

shows that the Balchen model and the reduced model is behaving exacltly same under 

disturbances in surge direction. That is also same for in sway and yaw direction as shown in 

Figure 4.7 and Figure 4.6. This comparison is interesting since the Balchen low-frequency 

nonlinear model can be referred to as a linear model when the drag and momentum coefficient 

are removed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Comparison between Balchen and Reduced Balchen model in surge direction. 



 

 

  Results 

 43 

 

 

Figure 4.7: Comparison between Balchen and reduced Balchen model in sway direction. 

Figure 4.6: Comparison between Balchen and reduced Balchen model in yaw direction. 
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The reduced model's behavior is almost identical to that of the original model. The experiment's 

model parameters are based on the 'Seaway Eagle', where drag and momentum coefficients are 

very small. So, the coefficient reduction did not affect the overall results.  

4.1.4 Stability, Controllability and Observability analysis 

Control theory is the study of controlling the behavior of dynamic systems. Three fundamental 

concepts in the field are stability, controllability, and observability. For finding the stability of 

the system, eigenvalues of the system matrix A of the discrete time model should be located 

inside the unity circle. Equation 4.4 shows the eigenvalue of the matrix A calculated by using 

eig.m function in MATLAB. 

𝑒𝑖𝑔(𝐴) =

[
 
 
 
 
 
1
1
1
1
1
1]
 
 
 
 
 

 4.4 

In the system matrix 𝐴, each of its eigenvalues equals 1. The system is stable if the eigenvalues 

have magnitudes that are smaller than 1. However, this system is unstable since at least one 

eigenvalue is outside the unity circle. This implies that instead of settling down after a 

disturbance occur, the system's behavior may diverge or oscillate. 

The MATLAB ctrb.m function is used to determine the system's controllability, and the rank.m 

function is used to determine the rank of the controllability matrix (A,B). According to the 

findings, the matrix's rank is 6, which corresponds to the order of the system. This indicates 

that there are enough control inputs in the system to guide it from any starting condition to any 

desired end state in a specific period of time. Even with the instability of the system, the 

simplified model can regulate the behavior of the system using control input. 

Using the MATLAB function obsv.m, the observability matrix pair (A,D) is obtained. The rank 

is also found applying the rank.m. The rank is 6, as indicated by the system is observable. So, 

the system can accurately monitor its states and behavior, regardless of a situation that it shows 

unstable behavior. 
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4.2 MPC 

This section displays the experimental results from the Standard MPC and Reduced-size MPC. 

4.2.1 Standard MPC 

Initially, it was assumed that the states were measurable. This means that the system variables 

may be directly observed or measured, allowing accurate information on their values. The 

second type of experiment was done by predicting the immeasurable states using Kalman filter. 

Experiments with assuming the measurable states 

In this experiment, the setpoint of the vessel changes twice in the surge direction. The total 

duration of the simulation is 20 minutes. During the initial 5 minutes, the set point is at 0 m. 

For the next 5 minutes, the set point shifts to 15 m. The second shift in the setpoint occurs at 

the 10-minute mark, when the position decreases to 3 m.  

In Figure 4.8 , the wind force began to decrease around 2.3 minutes. The greatest variation 

happens when it declines from −0.1 × 104 𝑁 𝑡𝑜 − 2. .5 × 104 𝑁 between 11 and 16 minutes. 

In both cases, controlling the surge results in an increase in the thrust forces to maintain the 

vessel's position at the aimed set point.  

The control input began to increase to 1 × 105 𝑁 at 4 minutes, initially to compensate for the 

wind decrease, and later to reflect changes in the setpoint. This leads to an increase in the 

vessel's position in the surge by approximately 17 m. After that controller noticed the overshoot 

and thruster force decreases to −0.8 × 105 𝑁 . It takes almost 2 minutes for the controller to 

reach the steady state. For the second setpoint change the thruster output decrease again to 

−0.5 × 105 𝑁 . From 11 to 20 minutes, the thruster output is increased again to compensate 

for wind disturbances and keep the vessel's position at 3 m. 

For the sway direction, as shown in Figure 4.10, the controller increases the thruster force 

approximately 4.8 × 105 𝑁 at 4 minutes to adjust the setpoint change from 0 m to 23 m. In 

order to counteract the overshoot, the controller reduces the thruster force once more. It took 3 

minutes to reach a stable position. For the second setpoint change, the position shifts from 23 

m to 9 m. So, the controller decreases the thruster output again. Between 10 and 17 minutes, 

the wind is decreased to −3 × 104 𝑁. The controller also addressed this change by increasing 

the thruster force to maintain the vessel position in sway at 8 m. 
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The vessel is heading in a yaw direction, as shown in Figure 4.9, there is one setpoint change 

from 0° to 14° at 5 minutes. To stabilize the vessel's yaw heading, the MPC controller generates 

thruster moment of 2.2 × 107 𝑁𝑚. To counter the reducing wind and the overshot of 3°, it 

reduces the thruster moment again. It takes the controller approximately 2.2 minutes to stabilize 

the heading at 15°. 

Figure 4.11 shows the vessel position in the NED coordinate system. At first vessel position is 

in the origin. After 5 minutes the new setpoint in body coordinate system is (15, 23) m and the 

heading is changed to 14°, which in NED coordinate system is (8.9, 25.9) m. The MPC 

controller correctly move the vessel to the desired location. For the second setpoint change, the 

heading was same but the position in body coordinate moved to (3,8) m. The new North-East 

Figure 4.8: Simulation output in surge direction for standard MPC. 
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position is (0.9, 8.4) m and the controller again successfully moved the vessel into the desired 

position. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Simulation output in sway direction for standard MPC. 

Figure 4.9: Simulation output in yaw direction for standard MPC. 
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Experiments using Kalman filter to estimate the immeasurable states 

For this experiment the prediction of immeasurable states is done by the Kalman filter. Figure 

4.12 shows that the MPC controller neatly handles the set point change in 5 and 10 minutes of 

the simulation by providing sufficient proportional force to increase and decrease the vessel's 

surge position. Throughout the simulation period, the wind gradually decreases. The controller 

notices this change and takes appropriate action by steadily increasing the control signal from 

11 to 20 minutes to keep the vessel in the desired 3 m position. 

Comparing Figure 4.8 and Figure 4.12 shows that using Kalman filter decreases the overshoot 

of the vessel. But the noticeable thing is that it takes slightly more time to come to the stable 

position. 

Figure 4.13 shows that the vessel is effectively adapting to changes in the setpoint. The main 

difference from Figure 4.10 is that though the overshoot is less, the time to get to the stable 

position is increased. It took almost 4 minutes when the Kalman filter was used for predicting 

the states, compared to one minute less when the states were assumed to be known. 

Additionally, the MPC controller is performing well in steady state, as evidenced by the sudden 

change in wind force from 16 to 20 minutes into the simulation. The controller increases the 

control input to keep the vessel in the desired position.  

Figure 4.11: Vessel's position in NED coordinate system. 
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Figure 4.14 demonstrates that, when utilizing the Kalman filter to predict an immeasurable 

state, the overshoot is almost the same to Figure 4.9 where the states are assumed. 

Figure 4.13: Output in sway direction when Kalman filter is used for estimating 

immeasurable states. 

Figure 4.12: Output in surge direction when Kalman filter is used for estimating 

immeasurable states. 
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Figure 4.15 shows the vessel’s position in the NED coordinate system. The vessel is at the 

origin for the first 5 minutes; after that, its position in the body coordinate system is (14,24) m, 

and at 10 minutes, it is (3,9) m. The heading in body position is 14°. Therefore, in the NED 

coordinate system, the vessel will first move to (7.7, 26.7) m. Then again, move to (0.7, 9.4) 

m. When compared with Figure 4.11, it becomes evident that the vessel motion is smoother 

and the deviation from the setpoint is less when using the Kalman filter. 

4.2.2 Reduced size MPC  

Reduced-size MPC reduces unnecessary calculations by directly substituting equality 

constraints into the objective function. This simplification decreases the amount of 

computational work required.  

For this experiment, the setpoint change occurs twice in the 30-minute simulation. Figure 4.16 

shows that, for the first 7.5 minutes, the set point is set to 0 m. During the following 7.5 minutes, 

the surge position changes to 43 m. At the 15-minute mark, there is a second change in the 

setpoint, with the position decreasing to 3 m. At 7.5 minute the MPC controller first produces 

a thrust of 3 × 105 𝑁 to move the vessel position in 43 m. However, when it encounters an 

overshoot, it decreases the control input in order to tackle it. The vessel reached the steady 

position in under 1 minute which gives better than the Standard MPC. In the next set point 

change, the MPC controller first decreased the proportional force due to the position being 

shifted to 3 m. Also, as the wind started to decrease a small input force of 0.1 × 105 𝑁 is 

applied to keep the vessel in desired position.  

Figure 4.17 shows the performance of the MPC controller in the sway direction. The vessel 

position is in origin before the first setpoint change. The vessel’s new position at 7.5 minute is 

36 m and the controller provided a force of 0.8 × 105 𝑁 to reach the positive sway direction. 

The overshoot also compensated for the both set point change at 7.5 and 15 minutes of the 

simulation. 

The vessel is heading in a yaw direction, as shown in Figure 4.18, there is one setpoint change 

from 0° to 14° at 7.5 minutes. To stabilize the vessel's yaw heading, the Reduced-size MPC 

controller generates thruster moment of 1.2 × 107 𝑁𝑚. To counter the reducing wind and the 

overshot of 2°, it reduces the thruster moment again. It takes the controller approximately 3 

minutes to stabilize the heading at 15°. 

Figure 4.19 shows the vessel position in the NED coordinate system. At first vessel position is 

in the origin. After 7.5 minutes the new setpoint in body coordinate system is (43, 36) m and 

the heading is changed to 14°, which in NED coordinate system is (33.1, 45.3) m. The MPC 

controller correctly move the vessel to the desired location. For the second setpoint change, the 

heading was same but the position in body coordinate moved to (3,8) m. 
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Figure 4.14: Vessel heading in yaw direction when Kalman filter is used for estimating 

immeasurable states. 

Figure 4.15: Vessel's position in NED coordinate system. 
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Figure 4.16: Simulation output in surge direction for Reduced-size MPC. 

Figure 4.17: Simulation output in sway direction for Reduced-size MPC. 
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The new position at 15 minutes in NED coordinate system is (0.9, 8.5) m. From the figure it is 

clear that the was able to move to the desired place. 

The Reduced-size MPC controller is used for evaluating the performance of the vessel, while 

the Kalman filter is used for measuring the immeasurable states. The results indicate that the 

amount of overshooting is reduced when there is a change in the setpoint in the surge, sway, or 

yaw direction. Furthermore, when observing the vessel movement from the NED coordinate 

system, it is noticeable that the motion appears smoother and faster. The simulation results are 

given in Appendix D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Vessel heading in yaw direction for Reduced-size MPC. 
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4.3 LQ optimal control with integral action 

An LQ optimal control system with integral action used for this experiment to use the additional 

element in the cost function that penalizes the integral of the error over time, with the goal of 

eliminating steady-state errors. The integral action enhances performance by constantly 

adjusting the control signal according to the accumulated error, guaranteeing accurate tracking 

of desired reference signals even in the presence of disruptions or uncertainties in the model. 

For this experiment dlqdu_pi.m function is used which is developed by David Di Ruscio [20] 

[22].  

Optimal control without any input constrains  

In this experiment, the setpoint of the vessel changes twice in the surge direction. The 

simulation will last for a total of 20 minutes. During the first 5 minutes, the set point is set to 0 

m. During the following 5 minutes, the target value changes to 15 m. At the 10-minute mark, 

there is a second change in the setpoint, with the position decreasing to 8 m.  

Figure 4.19:Vessel's position in NED coordinate system. 
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Figure 4.20 shows that the control input began to increase to 0.1 × 105 𝑁 at 2.5 minutes, 

initially to compensate for the wind decrease, and later to reflect changes in the setpoint at 5 

minutes. A thruster force of  7 × 105 𝑁  is applied to increase vessel's position in the surge by 

15 m. After that controller noticed the overshoot and thruster force decreases to −5 × 105 𝑁 . 

It takes almost 1.5 minutes for the controller to reach the steady state. For the second setpoint 

change the thruster output decrease again to −3 × 105 𝑁. After that the overshoot is 

encountered with a control input of 2 × 105 𝑁 to keep the vessel position at 8 m. 

For the sway direction, as shown in Figure 4.21, the controller increases the thruster force 

approximately 5 × 105 𝑁 at 5 minutes to adjust the setpoint change from 0 m to 20 m. In order 

to counteract the overshoot, the controller reduces the thruster force once more. It took almost 

3 minutes to reach a stable position. For the second setpoint change, the position shifts from 

20 m to 6 m. So, the controller decreases the thruster output again.  The wind started to 

decreased at 2.3 minute from 20 × 104 𝑁 to −1 × 104 𝑁 at 5 minutes. The controller also 

addressed this change by increasing the thruster force. Also, at 13 minute a slight increase of 

wind also encountered perfectly by the LQ controller to maintain the vessel position in sway 

at 6 m. 

Figure 4.20: Vessel's position in surge direction using LQ optimal control with integral 

action. 



 

 

  Results 

 56 

 

 

 

The vessel is heading in a yaw direction, as shown in Figure 4.22, there is one setpoint change 

from 0° to 14° at 5 minutes and another at 10 minutes from 14° to 6°. To stabilize the vessel's 

yaw heading, the LQ controller generates thruster moment of 7 × 106 𝑁𝑚 at 5 minute and later 

decreases to −3 × 106 𝑁𝑚 for encountering the overshoot. For the second heading change also 

successfully performed by the controller. For both setpoint change it took almost 3 minutes to 

go to the stable position. To counter the reducing and increasing wind throughout the whole 20 

minutes of the simulation the controller produced appropriate thruster moment to stabilize the 

heading of the vessel. 

 

Figure 4.23 shows the vessel position in the NED coordinate system. At first vessel position is 

in the origin. After 5 minutes the new setpoint in body coordinate system is (15, 20) m and the 

heading is changed to 14°, which in NED coordinate system is (9.7, 23.03) m. The MPC 

controller correctly move the vessel to the desired location. For the second setpoint change, the 

heading is 6° and the position in body coordinate moved to (3,8) m. The new North-East 

position is (7.3, 6.8) m and the controller again successfully moved the vessel into the desired 

position. 

 

 

 

 

 

Figure 4.21: Vessel's position in sway direction using LQ optimal control with integral 

action. 
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Figure 4.23: Vessel's position in NED coordinate system. 

Figure 4.22: Vessel's heading in yaw direction using LQ optimal control with 

integral action. 
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Optimal control with input constrains 

An additional experiment is conducted to test the LQ controller with integral action, with the 

input control signal being restricted. The control force is constrained from −1 × 105 𝑁 to 

1 × 105 𝑁.  

As shown in Figure 4.24, when the setpoint is changed to 15 m, the controller successfully 

moves the vessel to the desired location in 1 minute. At the 10-minute mark in the simulation, 

there are several factors influencing the vessel. The setpoint was adjusted again from 15 m to 

8 m, and the wind decreased to a minimum of −6 × 104 𝑁. Both of these factors contributed 

to a significant overshoot in the output. The vessel moved almost 6 m away from the desired 

position. Without the constrained input it took the vessel approximately 20 seconds to 

stabilized as described before in Figure 4.20. By comparing with the Figure 4.24 it takes more 

than1.5 minutes. 

Figure 4.25 shows that when the first setpoint change occurred at the 5-minute mark, the vessel 

took a considerable amount of time to reach the desired setpoint of 20 m from its initial position 

of 0 m, due to its limited control input. After the overshoot, the controller attempts to decrease 

the input in order to address it. However, before reaching a stable state, a second setpoint 

change occurs at the 10-minute mark. The controller required 4 minutes to attain the stable 

position. It is evident that the first deviation from the desired value is smaller than the later 

deviation, which can be related to the influence of wind force. At 7.5 minutes, the wind force 

decreases to −6 × 104 𝑁, indirectly aiding the controller in reducing overshoot. However, on 

the second occasion, the controller was faced with a rising wind and a change in the setpoint, 

resulting in a relatively longer period for the controller to effectively manage the situation. 

For the heading of the vessel the applied is torque limited from −6 × 105 𝑁𝑚 to 6 × 105 𝑁𝑚 

as shown in Figure 4.27. The overall response of the controller is slow comparing to the Figure 

4.22.  

Figure 4.26 shows the vessel motion in NED coordinate system. It shows the vessel is able to 

move to the desired position first at (9.7, 23.03) m and later at (7.3, 6.8) m. When comparing it 

with Figure 4.23 it shows with constrained control input, the vessel took two large deviations 

in the NED coordinate plane. That describes the overshoot of the vessel position in surge, sway 

and yaw. So, with constrained input the vessel can move to the desired position but the 

controller takes more time to perform the task.  
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Figure 4.24: Vessel's position in surge direction using LQ optimal control with 

constrained input. 

Figure 4.25: Vessel's position in sway direction using LQ optimal control with 

constrained input. 
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Figure 4.26: Vessel's position in NED coordinate system. 

Figure 4.27: Vessel's heading in yaw direction using LQ optimal control with 

constrained input. 
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4.4 Simple MPC 

This section illustrates an experiment that was conducted using the Balchen reduced 

model and the Simple MPC to control the position of the vessel.  

4.4.1 Simple MPC without integral action 

The overall duration of the simulation is 20 minutes. There are two separate instances of 

setpoint change throughout the entire simulation duration.  

Figure 4.28 vessel's motion in the surge direction. Before reaching the initial setpoint change, 

the vessel deviates from its original position of 0 m due to a declining wind. The wind force 

decreases gradually over 10 minutes. Despite the controller's attempt to provide a sufficient 

response by boosting the control output to 15 × 104 𝑁, it was unable to move the vessel to the 

desired 3 m location. There is always a lag before reaching the next setpoint change. The wind 

provided assistance to the controller by giving a force of 1 × 104 𝑁 to bring the vessel to the 

1 m mark. However, the force continued to increase and the vessel once again deviated from 

its intended position by the end of the simulation time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So, it shows the Simple MPC without the integral action is very sensitive to the wind force 

change in surge direction. For further investigation, the simulation time has been increased to 

40 minutes. Figure 4.29 indicates the wind force applied to the vessel in the surge direction is 

nearly negligible, equivalent to 0 N. The controller's performance is excellent, as it effectively 

Figure 4.28: Simulation output in surge direction for Simple MPC 
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handles setpoint changes with minimal overshoot and quickly reaches a stable position. 

However, when the wind force reaches 4 × 104 𝑁, the controller attempted to counteract it by 

decreasing the control input. Despite this effort, there is still an error in the vessel's location at 

the end of the simulation. So, without effect of integral action controller was not able to fix 

error for the wind disturbances. 

 

For the sway direction, as shown in Figure 4.30 the controller increases the thruster force 

approximately 2 × 106 𝑁 at 4 minutes to adjust the setpoint change from 0 m to 5 m. In order 

to counteract the overshoot, the controller reduces the thruster force once more. It took 1 minute 

to reach a stable position. For the second setpoint change, the position shifts from 5 m to 8 m. 

So, the controller decreases the thruster output again. Between 5 and 16 minutes, the wind is 

increased to 5 × 104 𝑁. The controller seems counter this force to maintain the vessel position 

in sway at 8 m. 

The vessel is heading in yaw direction, as shown in Figure 4.31, there is one setpoint change 

from 0° to 3° at 5 minutes. To stabilize the vessel's yaw heading, the MPC controller generates 

thruster moment of 2.5 × 107 𝑁𝑚. To counter the reducing wind and the overshot, it reduces 

the thruster moment again. It takes the controller approximately 1.5 minutes to stabilize the  

Figure 4.29: Simulation output in surge direction for Simple MPC for investigating wind 

effects. 
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Figure 4.30: Simulation output in sway direction for Simple MPC. 

Figure 4.31: Vessel heading in yaw direction for Simple MPC. 
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heading at 15°. For the next heading change from 3° to 9°, the controller produces a larger 

thrust to reach the desired heading. 

Figure 4.32 shows the vessel position in the NED coordinate system. At first vessel position is 

in the origin. After 5 minutes the new setpoint in body coordinate system is (3, 5) m and the 

heading is changed to 3°, which in NED coordinate system is (2.7, 5.1) m. The MPC controller 

correctly move the vessel to the desired location. For the second setpoint change, the heading 

is now 3° and the position in body coordinate moved to (1,8) m. The new North-East position 

is (−0.26, 8.05) m and the controller again successfully moved the vessel into the desired 

position. 

4.4.2 Simple MPC with integral action 

The integral action is added with Simple MPC to simulates the next experiments. Figure 4.33  

points out the controller's effective response to the change in setpoints and the overshoot. The 

vessel is stabilized to its intended position within 1.5 minutes for both setpoint changes. The 

variation in wind force decreases from 1 × 104 𝑁 to −3 × 104 𝑁 after 10 minutes. In 

response, the controller slightly increases the thruster force to maintain the vessel's location. 

The most noticeable observation is that the inclusion of integral action effectively rectifies the 

error induced by the wind force. 

 

 

Figure 4.32: Vessel's position in NED coordinate system. 
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Simple MPC with integral action in both the sway and yaw directions demonstrates that the 

controller is capable of exhibiting great performances. The rapid and accurate changing of 

position in sway and heading in yaw was achieved with a small overshoot from the desired 

trajectory. However, there is no significant difference in results between the controllers that 

did not use the integral action to correct the error. The Appendix E documents the simulation 

results. 

The vessel’s position in NED coordinate system is shown in Figure 4.34. Initially, the vessel 

remained in its original position. After 5 minutes, the vessel moved 3 m in surge and 5 m in 

sway. The vessel is heading in the yaw direction by 3°. So, the vessel's position is 2.7 m in the 

north and 5.1 m in the east. For the next positional shift, the vessel moved (1,8) m in the body 

coordinate system. The position, when converted to NED, is (-0.2, 8.05) m. When using the 

integral action, it becomes obvious that the vessel motion is smoother and the deviation from 

the setpoint is less. 

 

Figure 4.33: Simulation output in surge direction for Simple MPC. 
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4.5 Comparison between Simple MPC and LQ optimal control 

The comparison of two controllers is conducted by limiting the control input within the range 

of −5 × 105 𝑁  to 5×105 N. The objective was to evaluate the performance of the controller 

in maneuvering the vessel to a desired position while limiting the power of the thruster force.  

Figure 4.36 shows that the implementation of the Simple MPC required a reduced amount of 

thruster force to effectively maneuver the vessel. Additionally, when compared to the LQ 

optimum controller, the performance is slightly better while reaching the setpoint. 

Figure 4.35 demonstrates that the LQ controller displayed much better performance in the sway 

direction. The amount of control force required and the time taken to reach the setpoint were 

lower in LQ controller. In the case of the Simple MPC, the setpoint was reached within 4 

minutes, however it is important to note that there was oscillation before achieving the setpoint, 

which is known as integral windup. The control system's integral term accumulates error as a 

result of significant changes in the setpoint. But the controller is unable to adequately correct 

for this due to limitations in the control input. 

 

Figure 4.34: Vessel's position in NED coordinate system. 
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Figure 4.36: Comparison between Simple MPC with integral action and LQ optimal control 

with integral action in surge direction. 

Figure 4.35: Comparison between Simple MPC with integral action and LQ optimal control 

with integral action in sway direction. 
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Figure 4.37 displays the comparison in the yaw direction. The LQ controller exhibits poor 

performance due to oscillations and lack of stability during the entire simulation period. The 

performance of the Simple MPC was better, effectively maintaining control over the vessel's 

heading in yaw direction.  

While controlling the vessel's position with a limited input thruster force, the Simple MPC's 

overall performance is better than that of the LQ controller. 

 

 

 

 

 

 

 

Figure 4.37: Comparison between Simple MPC with integral action and LQ optimal control 

with integral action in yaw direction. 
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4.6 Controller performance analysis using IAE and TV index 

The Integrated Absolute Error (IAE) is a metric used in control systems to evaluate the overall 

efficacy of a controller by measuring the magnitude of error over a given time period. The 

IAE is determined by integrating the absolute value of the error function 𝑒(𝑡) throughout the 

time interval 𝑡 [23]. Mathematically it can be shown,  

 

𝐼𝐴𝐸 =  ∫ |𝑒(𝑡)| 𝑑𝑡
𝑇

0

 
4.5 

In equation 4.5 𝑇 represents the sampling time and the 𝑒(𝑡) is the absolute value of error at any 

given time. 

The Total Variation (TV) index is a performance metric used to evaluate the efficiency of the 

controller's actions. In particular, it provides a numerical value for the total amount of time that 

control actions have changed [23]. It can be calculated using the equation 4.6, 

𝑇𝑉 =  ∫ |∆𝑢𝐾| 
𝑁

𝐾=1

 4.6 

 

Both the IAE and TV indexes are essential to assessing the efficiency of a control system. The 

IAE helps in evaluating the controller's ability to reduce error over time, which directly affects 

the stability and accuracy of the system. The TV index offers an insight on the mobility and 

efficiency of the control actions, which might affect the longevity of actuators and their 

probability of producing oscillations. 

The simulation time is set at a fixed duration of 15 minutes to evaluate the performance of 

multiple controllers in three different directions. During the simulation, there is a single 

setpoint change that occurs at the midpoint of the simulation. The following tables show the 

IAE and TV index values of different controllers. 

 

Table 4.1: IAE and TV index for Standard MPC. 

Direction IAE Index TV index 

Surge 120.2 15.85 × 104 

Sway 175.5 55.39 × 104 

Yaw 1.4 2482.9 ×  104 
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Table 4.2: IAE and TV index for Reduced size MPC. 

Direction IAE Index TV index 

Surge 115.4 14.34 × 104 

Sway 164.60 45.41 × 104 

Yaw 1.6 1085.6 ×  104 

 

Table 4.3: IAE and TV index for LQ optimal control with integral action. 

Direction IAE Index TV index 

Surge 268.9 25.62 × 104 

Sway 886.6 14.7 × 104 

Yaw 9.5 134.7 × 104 

 

Table 4.4: IAE and TV index for Simple MPC. 

Direction IAE Index TV index 

Surge 199.1 47.9 × 104 

Sway 125.7 452.2 × 104 

Yaw 1.1 823.8 × 104 

 

Table 4.5: IAE and TV index for Simple MPC with integral action. 

Direction IAE Index TV index 

Surge 151.2 36 ×  104 

Sway 146.2 354.7 × 104 

Yaw 1.8 654.8 × 104 
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Based on the results, Table 4.6 is created that shows the performance of the controllers.  

Table 4.6: Performance of the Controllers. 

Controller Direction IAE 

Performance 

TV 

Performance 

Combined 

Assessment 

Standard MPC Surge  Moderate Low Low 

Sway  Moderate Low Low 

Yaw Good Moderate Moderate 

Reduced Size 

MPC 

Surge  Moderate Moderate Moderate 

Sway  Moderate Moderate Moderate 

Yaw Good Moderate Moderate 

LQ Optimal 

Controller with 

integral action 

Surge  Low Good Moderate 

Sway  Low Moderate Low 

Yaw Good Moderate Moderate 

Simple MPC Surge  Low Low Low 

Sway  Moderate Moderate Moderate 

Yaw Good Moderate Moderate 

Simple MPC 

with integral 

action 

Surge  Moderate Good Moderate 

Sway  Moderate Good Moderate 

Yaw Good Moderate Moderate 

 

Based on the summary table and considering the overall performance in managing both Integral 

Absolute Error (IAE) and Total Variation (TV) in all directions, the performance of the 

Standard MPC is rather low in the surge and sway directions because of its high TV indexes. 

However, it performs pretty well in the yaw direction. The reduced size MPC exhibits overall 

good performance in each direction, successfully achieving a good score for IAE and TV.  

The LQ optimal control with integral action gives mixed results, demonstrating effective 

control in the surge direction for TV, but not as effective in sway and the performance in yaw 

is moderate.  The simple MPC gives poor performance in the surge direction, but moderate 

performance in the sway and yaw directions. The simple MPC with integral demonstrates a 

satisfactory stability in every aspect, possibly offering the most stable performance among the 

all controllers.  
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The LQ optimal control with integral action is the most preferable choice among the evaluated 

controllers. It displays stable control capabilities and efficiently minimizes errors and control 

variations. The strong performance across multiple measures indicates the effectiveness for 

maintaining system stability and accuracy. The reduced size MPC can also be a suitable option, 

as it requires less computational power and shows balanced performance for both indexes in 

all directions.  
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5 Discussion 
The thesis's primary goal is to reconstruct the Balchen model and experiment with the new 

model. The Balchen model, developed in 1980, was one of the earliest mathematical models 

used for Dynamic Positioning (DP) of ships. The new model is a reduced version developed 

by removing the drag and momentum coefficient from the original model. 

The reduced model displays the characteristics of a three double integrator model. When 

comparing between the simplified model and the original model in the presence of wind 

disturbances and without any input thruster force, it can be observed that both models exhibit 

nearly identical behavior. The parameter values of the drag and momentum coefficients are 

really small, which were used to simulate the original model. So, eliminating these did not 

cause any significant differences in the reduced model. 

The reduced model has been evaluated with various control systems. The performance of the 

controllers is tested using Integrated Absolute Error (IAE) and Total Variation (TV) index. 

Standard MPC performed good with the use of Kalman filter. Reduced-size MPC is developed 

by simplifying the objective function. The results of Reduced-size MPC is much better than 

the Standard MPC as it has lower IAE and TV index. 

Simple MPC controller performed well when there were no environmental disturbances. The 

results indicate that the disturbances cause the vessel position to deviate from the setpoint in 

the surge direction. However, using the Simple MPC with integral action can effectively solve 

this problem. The controller gives balanced performance in all three directions (surge, sway, 

and yaw). The IAE index shows that the Simple MPC with integral action has very good 

performance overall. The TV index in Simple MPC is quite high. But this algorithm can reduce 

this large control input by adjusting the corresponding weight. Simple MPC with integral action 

delivers the most efficient results among all controllers, ensuring perfect vessel control. 

The LQ optimal controller with integral action showed poor performance in the IAE index 

compared to the other controllers. In the event of a setpoint change, the controller took longer 

to adjust the vessel's position in surge and sway. Aslo, the experiment result showed that when 

the input thruster forces are limited, the controller response is very slow and performance is 

not that good. The tuning of P and Q matrices in the LQ optimal controller can be used to find 

better performance. It is a trial-and-error process to find the optimal control input for the vessel.  

It can be said that the MPC is simply the implementation of the LQ optimal controller in each 

iteration of the control loop along with the sliding horizon. Because a MPC controller uses 

inequality and equality constraints to find an optimized response, which gives an advantage 

over the LQ controller. However, this increases the computational costs.  

In real life scenario, more than one control method is used for the control of a complex system 

like marine vessel. For Standard MPC, it will create a challenge for the high computational 

costs when more constrains will be added or the prediction horizon length is increased. So 

Reduced size MPC and Simple MPC with integral action can be used to conduct high-level 
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control. This will help to create the optimal operational window for the vessel. On the other 

hand, the LQ optimal control with integral action can be used for set point tracking. 

The future work can be suggested as: 

- Use System Identification to develop adaptive control algorithms that can adjust to 

different weather conditions, utilizing data-driven models derived from input-output 

data. 

- Applying matrices for determining each of the forces and torques generated by each 

thruster, compared to only calculating the total forces and torques from all thrusters. 

- Proposed simplified model can be tested on a real vessel. 
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6 Conclusion 
This report gives a theoretical explanation of the coordinate system a vessel uses for navigation, 

along with the external and internal factors that affect the vessel's movement. The Balchen low-

frequency model is simplified by eliminating the drag and momentum coefficients in this 

report. The reduced model was tested with different control methods, such as Standard MPC, 

Reduced-size MPC, Simple MPC, Simple MPC with integral action, and LQ-optimal control 

with integral action.  

The behavior of the simplified model and the original Balchen model is almost same due to 

low value of drag and momentum coefficient. Among all the control methods tested on the 

model, the Simple MPC with integral action shows the best performance under wind 

disturbances and various positional changes. Also, Reduced-size MPC controller gives a good 

performance while using less computational power. 
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Appendices 

Appendix A  

Task Description 
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Appendix B  

Reduced Balchen model 
% Reduced low-frequency model without drag and momentam coefficient 
 
function x_dot = nonlinear_model(x, F_t, F_w, M, neu) 
    % x:The state vector contains the vessel's position and velocity. 
    % F_t: thruster forces in surge, sway, and moment in yaw 
    % F_w: wind forces in surge, sway, wind moment in yaw 
    % M: initial coefficients from Balchen paper 
    % neu: zero mean gaussian white noise 
    % parameters 
    m1 = M(1); 
    m2 = M(2); 
    m3 = M(3); 
    % state equations 
    dx_su_dt = x(4); 
    dx_sw_dt = x(5); 
    dpsi_dt = x(6); 
    dv_su_dt = 1/m1 * (F_w(1) + F_t(1)) + neu(1); 
    dv_sw_dt = 1/m2 * (F_w(2) + F_t(2)) + neu(2); 
    dv_psi_dt = 1/m3 * (F_w(3) + F_t(3)) + neu(3); 
 
    % Output state derivative 
    x_dot = [dx_su_dt; dx_sw_dt; dpsi_dt; dv_su_dt; dv_sw_dt; dv_psi_dt]; 
 
end 
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Appendix C  

Balchen low frequency non-linear model 

 
%%  Balchen non-linear low frequrncy model  
function x_dot = Balchen(x, F_t, F_w, F_c, M, D, neu) 
%% definitions: 
% x = [x_su, x_sw, psi, v_su, v_sw, v_psi]' vessel position and vessel velocities 
in surge, sway and yaw 
% F_t = [F_t_su, F_t_sw, N_t] thruste forces in surge and sway and and the 
thruster moment in yaw 
% F_w = [F_w_su, F_w_sw, N_w]' wind forces in surge and sway and wind moment in 
yaw (Body frame) 
% F_c = [v_c_su, v_c_sw, N_c]' water current velocities in surge and sway and 
water current moment in yaw (Body frame) 
%D = [d1, d2, d3, d4] drag and moment coefficients 
% M = [m1, m2, m3] initial coefficients 
 
%% equations: 
dx_su_dt = x(4); 
dx_sw_dt = x(5); 
dpsi_dt = x(6); 
dv_su_dt = - D(1)/M(1)*abs(x(4) - F_c(1))*(x(4) - F_c(1)) + 1/M(1)*(F_w(1)  + 
F_t(1)) + neu(1);  
dv_sw_dt = - D(2)/M(2) * abs(x(5) - F_c(2))*(x(5) - F_c(2)) + 1/M(2)*(F_w(2) + 
F_t(2)) + neu(2); 
dv_psi_dt = -D(3)/M(3)*abs(x(6))*x(6) - D(4)/M(3)*abs(x(5) - F_c(2))*(x(5) - 
F_c(2)) + 1/M(3)*(F_w(3) + F_t(3) + F_c(3)) + neu(3) ; 
x_dot = [dx_su_dt, dx_sw_dt, dpsi_dt, dv_su_dt, dv_sw_dt, dv_psi_dt]'; 
r = [cos(x(3)) -sin(x(3)) 0; sin(x(3))  cos(x(3)) 0; 0 0 1]; % Matrix to transform 
from body frame to NED frame 
end 
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Appendix D  

Simulation results of Reduced-size MPC where Kalman filter is used for 

measuring the immeasurable states.  

Figure D.1: Output in surge direction when Kalman filter is used for estimating immeasurable 

states. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.2: Output in sway direction when Kalman filter is used for estimating immeasurable 

states. 
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Figure D.3: Vessel heading in yaw direction when Kalman filter is used for estimating 

immeasurable states. 

Figure D.4: Vessel's position in NED coordinate system. 
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Appendix E  

Simulation results of Simple MPC with integral action in sway and yaw 

direction.  

                  Figure E.1: Vessel direction in sway for Simple MPC with integral action. 

              Figure E.2: Vessel heading in yaw direction for Simple MPC with integral action. 
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Appendix F  

Standard MPC algorithm [19]  
%Standard MPC Algorithm  
function [u_opt, x_opt,e_opt, y_opt] = standard_algorithm(A,B,D,r,W,x0,N) 
%number of states,system outputs and system inputs: 
nx = 6; ny = 3; nu = 3; 
%size of the unknow vector z 
nz = N*(nx + nu + 2*ny);% N*15 
% transformation matrix to tansform from body to NED coordinate system 
R = [cos(x0(3)) -sin(x0(3)) 0; sin(x0(3))  cos(x0(3)) 0; 0 0 1]; 
% weighting matrices 
Q = [1e4 0 0; 0 1e4 0; 0 0 1e8]; %tuning weight for errors 
P = [1e-5 0 0; 0 1e-6 0; 0 0 1e-15];%tuning weight for inputs 
 
%% Hessian Matrices in the standard form 
H11 = kron(eye(N),P); 
H22 = zeros(N*nx,N*nx); 
H33 = kron(eye(N),Q); 
H44 = zeros(N*ny,N*ny); 
H = blkdiag(H11,H22,H33,H44); 
c = zeros(nz,1); 
%% equality constraints 
Ae1u = -kron(eye(N),B); 
Ae1x = eye(N*nx)-kron(diag(ones(N-abs(-1),1),-1),A); 
Ae1e = zeros(N*nx,N*ny);  
Ae1y = zeros(N*nx,N*ny); 
Fw = W(:,2:N); 
Fw = Fw(:); 
be1 = [A*x0 + B*W(:,1);kron(eye(N-1),B)*Fw]; 
Ae2u = zeros(N*ny,N*nu);  
Ae2x = -kron(eye(N),D); 
Ae2e = zeros(N*ny,N*ny); 
Ae2y = eye(N*ny); 
be2 = zeros(N*ny,1); 
Ae3u = zeros(N*ny,N*nu);  
Ae3x = zeros(N*ny,N*nx); 
Ae3e = eye(N*ny); 
Ae3y = eye(N*ny); 
be3 = r(:); 
Ae=[Ae1u Ae1x Ae1e Ae1y; 
     Ae2u Ae2x Ae2e Ae2y; 
     Ae3u Ae3x Ae3e Ae3y]; 
be=[be1;be2;be3]; 
%% bounds  
ZL=(-Inf*ones(nz,1)); 
ZU=(Inf*ones(nz,1)); 
%% solving the QP 
options = optimoptions('quadprog','Display','off'); 
z_opt = quadprog(H,c,[],[],Ae,be,ZL,ZU,x0,options); 
%% extract results 
Ua = z_opt(1+N*(0) :N*(nu),1); %control inputs 
Xa = z_opt (1+N*(nu) :N*(nu+nx),:); %states 
Ea = z_opt (1+N*(nu+nx) :N*(nu+nx+ny),:); %error in tracking 
Ya = z_opt (1+N*(nu+nx+ny) :N*(nu+nx+ny+ny),:); %outputs 
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%Rearrenging the results 
u_opt = reshape(Ua,nu,N); %control inputs 
x_opt = reshape(Xa,nx,N); %states 
e_opt = reshape(Ea,ny,N); %errors 
y_opt = reshape(Ya,ny,N); %outputs 
end 
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Appendix G  

Standard MPC to control the reduce Balchen model 
% Using standard MPC to control reduced Balchen model 
clc; 
clear all; 
close all; 
 
% Load parameters 
parameters; 
%% simulation setting 
dt = 10; % time step [sec] 
t_start = 0; starting time [ min] 
t_stop = 15; % stopping time [min]  
N = ceil(60*(t_stop - t_start)/ dt ); % steps 
L = 10; % prediction horizon 
 
%% setpoint 
sp = zeros(3, (N+L)); 
for m = 1:N+L 
   if m <= N/2 
        sp(:,m) = [0; 0 ; 0*pi/180];  
        sp(:,m) = [6; 6 ; 4*pi/180];   
   end 
end 
% Initialization 
x_mod = [sp(:, 1); 0; 0; 0]; % Initial state 
x_est = x_mod; 
 
% Disturbances 
V_w = slowly(N+L)*20; % Wind speed  
gamma = slowly(N+L)*360; % Wind direction  
F_w = wind_force(V_w(1), gamma(1), x_mod(3), x_mod(4), x_mod(5), A_F, A_L, L); 
u = -F_w; 
% Preallocation of arrays  
position = zeros(3, N); 
position_NED = zeros(3, N); 
u_array = zeros(3, N); 
W = zeros(3, N); 
time = linspace(0, N*dt, N)'; 
IAE = zeros(3, 1); % Initialize IAE for surge, sway, yaw 
TV = zeros(3, 1); % Initialize TV for surge, sway, yaw 
%% linear State space model 
[A, B, D] = linear_SSM(M, dt); 
%% kalman filter gain: 
G=0.01*eye(6); 
Q_k = diag([0.09, 0.11, 0.09,0.8,0.5,1.5]); 
R_k = diag([1e2,1e2,1e2]); 
K=dlqe(A,G,D,Q_k,R_k); 
% Simulation loop 
for k = 1:N 
    R = [cos(x_mod(3)) -sin(x_mod(3)) 0; sin(x_mod(3)) cos(x_mod(3)) 0; 0 0 1]; 
    y = D*x_mod; 
    r = sp(:, k+1:min(k+L, N+L)); 
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    % wind disturbances 
    for n = 1:L 
        if (k+n-1) <= N 
            Fw(:, n) = wind_force(V_w(n+k-1), gamma(n+k-1), x_mod(3), x_mod(4), 
x_mod(5), A_F, A_L, L); 
        end 
    end 
 
    position(:, k) = y; 
    position_NED(:, k) = R*y; 
    u_array(:, k) = u; 
    W(:, k) = wind_force(V_w(k), gamma(k), x_mod(3), x_mod(4), x_mod(5), A_F, A_L, 
L); 
    [u_opt, x_opt] = optimal_standard(A,B,D,r,Fw,x_est,L);% using Kalman filter to 
estimate immeasurable states 
    u = u_opt(:, 1); 
    dx = nonlinear_model(x_mod, u, W(:, k), M, neu); 
    x_mod = x_mod + dt * dx; 
    % Updating IAE and TV 
    errors = abs(sp(:, k) - y);  
    IAE = IAE + errors * dt;  
    if k > 1 
        TV = TV + abs(u - u_old);   
    end 
    u_old = u; 
    x_est = A * x_est + B * u + B * W(:, k) + K * (y - D * x_est); 
end 
 
% Display IAE results 
disp('Integrated Absolute Errors (IAE) for Surge, Sway, and Yaw:'); 
disp(['Surge: ', num2str(IAE(1))]); 
disp(['Sway : ', num2str(IAE(2))]); 
disp(['Yaw  : ', num2str(IAE(3))]); 
 
disp('Total Value (TV) index for Surge, Sway, and Yaw:'); 
disp(['Surge TV: ', num2str(TV(1))]); 
disp(['Sway TV : ', num2str(TV(2))]); 
disp(['Yaw TV  : ', num2str(TV(3))]); 
 
%% plotting results 
figure(1), 
subplot(311);plot(time/60,sp(1,1:N),time/60,position(1,:),'g-');ylabel('position 
in surge [m]'); 
legend('set point', 'surge position');grid 
title('Surge direction'); 
subplot(312);plot(time/60,u_array(1,:),'r-'); ylabel('control in surge [N]');grid 
subplot(313);plot(time/60,W(1,:),'b-');xlabel('time [min]'); ylabel('Wind force in 
surge [N]');grid 
figure(2), 
subplot(311);plot(time/60,sp(2,1:N),time/60,position(2,:),'g-');ylabel('position 
in sway [m]'); 
legend('set point', 'sway position');grid 
title('Sway direction'); 
subplot(312);plot(time/60,u_array(2,:),'r-'); ylabel('control in sway [N]');grid 
subplot(313);plot(time/60,W(2,:),'b-');xlabel('time [min]'); ylabel('Wind force in 
sway [N]');grid 
figure(3), 
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subplot(311);plot(time/60,sp(3,1:N)*180/pi,time/60,position(3,:)*180/pi,'g-
');ylabel('position in yaw [deg]'); 
legend('set point', 'yaw position');grid 
title('Yaw direction'); 
subplot(312);plot(time/60,u_array(3,:),'r-'); ylabel('control in yaw [Nm]');grid 
subplot(313);plot(time/60,W(3,:),'b-');xlabel('time [min]'); ylabel('Wind moment 
in yaw [Nm]');grid 
figure(4); 
plot_dir(position_NED(2,:)', position_NED(1,:)'); 
xlabel('Position in East [m]'); 
ylabel('Position in North [m]'); 
title('Position in NED coordinate system'); 
hold on;  
plot(position_NED(2,1), position_NED(1,1), 'go', 'MarkerSize', 10, 
'MarkerFaceColor', 'g'); 
plot(position_NED(2,end), position_NED(1,end), 'ro', 'MarkerSize', 10, 
'MarkerFaceColor', 'r'); 
quiver(position_NED(2,end-1), position_NED(1,end-1), position_NED(2,end)-
position_NED(2,end-1), position_NED(1,end)-position_NED(1,end-1), 0, 'Color', 'r', 
'LineWidth', 2) 
plot(position_NED(2,:), position_NED(1,:), 'b-'); 
hold off;  
legend('Ship Travel Distance', 'Ship Direction', 'Ship Start', 'Ship End'); 
grid on; 
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Appendix H  

The optimal feedback matrix G is calculated using the dlqdu_pi  

 
function [G1,G2]= dlqdu_pi(A,B,D,Q,Rw); 
% DLQDU_PI syntax 
% [G1,G2,At,Bt,Dt]=dlqdu_pi(A,B,D,Q,R); 
% Purpose 
% Compute LQ-optimal feedback matrices 
% G1 and G2 in the controller 
% u=u+G1*(x-x_old)+G2*(y_old-r); 
% On input 
% A,B,D- discrete state space model matrices. 
% Q - Weighting matrix for the output y_k. 
% R - Weighting matrix for the control 
% increment, Delta u_k=u_k-u_(k-1). 
% On output 
% G1 and G2 - Matrices in LQ controller 
% At, Bt, Dt - Matrices in augmented model 
% Make augmented state space model 
% matrices. 
nx=size(A,1); nu=size(B,2); ny=size(D,1); 
At=[A,zeros(nx,ny);D,eye(ny,ny)]; 
Bt=[B;zeros(ny,nu)]; 
Dt=[D,eye(ny,ny)]; 
Qt=Dt'*Q*Dt; 
% Solve Riccati-equation and feedback matrices 
[K,Rr]=dlqr(At,Bt,Qt,Rw); 
G=-K; 
G1=G(:,1:nx); G2=G(:,nx+1:nx+ny); 
% END dlqdu_pi 
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Appendix I  

LQ Optimal control with integral action to control reduce 

Balchen model 
%LQ optimal control with integral action  
clc 
clear all 
close all 
parameters; 
 
%% simulation settings 
dt = 10; % time step [sec] 
t_start = 0; % starting time [ min] 
t_stop = 15; %  stopping time [min] 
N = ceil(60*(t_stop - t_start)/ dt ); %  steps 
L = 10; % prediction horizon length 
 
%% setpoint 
sp = zeros(3, (N)); 
for m = 1:N 
   if m <= N/2 
        sp(:,m) = [0; 0 ; 0*pi/180];  
   else 
        sp(:,m) = [6; 6 ; 4*pi/180];  
   end 
end 
%% Disturbances: 
V_w = slowly(N)*20;% wind speed as a random number 
gamma = slowly(N)*360;% wind direction as a random number 
 
%% initialization: 
x0 = [sp(1,1) sp(2,1) sp(3,1) 0 0 0]'; 
x = x0; 
F_w = wind_force(V_w(1,1), gamma(1,1), x(3),x(4), x(5), A_F, A_L, L); 
u = -F_w; 
%% Preallocation of arrays for plotting: 
y_array = zeros(3,N); 
u_array= zeros(3,N); 
Fw = zeros(3,N); 
time = linspace(0, N*dt, N)'; 
position = zeros(3,N); 
position_NED = zeros(3,N); 
IAE = zeros(3, 1); % Initialize IAE for surge, sway, yaw 
TV = zeros(3, 1); % Initialize TV for surge, sway, yaw 
%% state space model  
[ A, B, D] = linear_SSM(M, dt); 
%% calculating control gaing 
Q = [1e2 0 0; 0 1e0 0; 0 0 1e3]; %tuning weight for errors 
P = [1e-7 0 0; 0 1e-7 0; 0 0 1e-10] ;%tuning weight for inputs 
[G1,G2]= dlqdu_pi(A,B,D,Q,P); 
%% kalman filter gain 
G=0.01*eye(6); 
Q_k = diag([0.09, 0.11, 0.09,0.8,0.5,1.5]); 
R_k = diag([1e3,1e3,1e3]); 
K=dlqe(A,G,D,Q_k,R_k); 
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%% simulation loop: 
x_est = x; 
y = D*x; 
x_old = x; 
y_old = y; 
for i = 1:N 
    R = [cos(x(3)) -sin(x(3)) 0; sin(x(3))  cos(x(3)) 0; 0 0 1]; 
    % wind disturbances 
    F_w = wind_force(V_w(i,1), gamma(i,1), x(3),x(4), x(5), A_F, A_L, L); 
    y = D*x; 
    y_array(:,i) = y; 
    y_NED(:,i)= R*y; 
    position(:,i) = y; 
    position_NED(:,i) = R*y; 
    u_array(:,i) = u; 
    Fw(:,i) = F_w; 
    u = u + G1*(x_est-x_old) + G2*(y_old - sp(:,i)); 
    x_old = x_est; 
    y_old = y; 
    dx = nonlinear_model(x, u, F_w, M, neu); 
    x = x + dt*dx; % updating 
    x_est = A*x_est + B*u + B*F_w+ K*(y- D*x_est); % predicting next state 
     IAE = IAE + abs(sp(:, i) - y) * dt; 
         if i > 1 
        TV = TV + abs(u - u_old); % sum of absolute changes in control signals 
    end 
    u_old = u; 
end 
%% Display IAE and TV results 
disp('Integrated Absolute Errors (IAE) for Surge, Sway, and Yaw:'); 
disp(['Surge IAE: ', num2str(IAE(1))]); 
disp(['Sway IAE: ', num2str(IAE(2))]); 
disp(['Yaw IAE: ', num2str(IAE(3))]); 
disp('Total Value (TV) index for Surge, Sway, and Yaw:'); 
disp(['Surge TV: ', num2str(TV(1))]); 
disp(['Sway TV : ', num2str(TV(2))]); 
disp(['Yaw TV  : ', num2str(TV(3))]); 
%% plotting 
figure(1), 
subplot(311);plot(time/60,sp(1,:),time/60,y_array(1,:),'g-');ylabel('position in 
surge [m]'); 
title('Surge direction');legend('set point','surge position');grid 
subplot(312);plot(time/60,u_array(1,:),'r-'); ylabel('control in surge [N]');grid 
subplot(313);plot(time/60,Fw(1,:),'b-');xlabel('time [min]'); ylabel('Wind force 
in surge [N]');grid 
figure(2), 
subplot(311);plot(time/60,sp(2,:),time/60,y_array(2,:),'g-');ylabel('position in 
sway [m]'); 
title('Sway direction');legend('set point','sway position');grid 
subplot(312);plot(time/60,u_array(2,:),'r-');xlabel('time [min]'); ylabel('control 
in sway [N]');grid 
subplot(313);plot(time/60,Fw(2,:),'b-');xlabel('time [min]'); ylabel('Wind force 
in sway [N]');grid 
figure(3), 
subplot(311);plot(time/60,sp(3,:)*180/pi,time/60,y_array(3,:)*180/pi,'g-
');ylabel('position in yaw [deg]'); 
title('Yaw direction');legend('set point','Yaw position');grid 
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subplot(312);plot(time/60,u_array(3,:),'r-');xlabel('time [min]'); ylabel('control 
in yaw [Nm]');grid 
subplot(313);plot(time/60,Fw(3,:),'b-');xlabel('time [min]'); ylabel('Wind moment 
in yaw [Nm]');grid 
figure(4); 
plot_dir(position_NED(2,:)', position_NED(1,:)'); 
xlabel('Position in East [m]'); 
ylabel('Position in North [m]'); 
title('Position in NED coordinate system'); 
hold on;  
plot(position_NED(2,1), position_NED(1,1), 'go', 'MarkerSize', 10, 
'MarkerFaceColor', 'g'); 
plot(position_NED(2,end), position_NED(1,end), 'ro', 'MarkerSize', 10, 
'MarkerFaceColor', 'r'); 
quiver(position_NED(2,end-1), position_NED(1,end-1), position_NED(2,end)-
position_NED(2,end-1), position_NED(1,end)-position_NED(1,end-1), 0, 'Color', 'r', 
'LineWidth', 2) 
plot(position_NED(2,:), position_NED(1,:), 'b-'); 
hold off;  
legend('Ship Travel Distance', 'Ship Direction', 'Ship Start', 'Ship End'); 
grid on; 
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Appendix J 

MATLAB code of simple MPC to control the vessel   
%% implementing simple MPC developed by David Di Ruscio in a DP system 
clc 
clear all 
close all 
parameters; 
 
%% simulation settings 
dt = 1; % time step [s] 
t_start = 0; % simulating starting time [ min] 
t_stop = 40; %simulating stopping time[ min] 
N = ceil(60*(t_stop - t_start)/ dt ); % simulating steps 
L =10;% prediction horizon 
%% setpoint 
sp = zeros(3, (N+L)); 
for m = 1:N+L 
   if m<=N/4  
        sp(:,m) = [0; 0 ; 0*pi/180];% north, east, yaw setpoint 
   elseif m> N/4 && m<=N/2 
        sp(:,m)= [3 ; 5 ; 3*pi/180]; 
   elseif m>N/2 
        sp(:,m)= [1 ; 8; 9*pi/180]; 
   end 
end 
%% Disturbances: 
V_w = slowly(N)* 20;% wind speed in NED coordinate system as a random number 
gamma = slowly(N)*360;% wind direction in NED coordinate system as a random number 
%% initialization: 
x0 = [sp(1,1) sp(1,2) sp(1,3) 0 0 0]'; 
x = x0; 
F_w = wind_force(V_w(1), gamma(1), x(3),x(4), x(5), A_F, A_L, L); 
u = -F_w; 
%% Preallocation of arrays for plotting: 
y_pos = zeros(3,N); 
u_array= zeros(3,N); 
Fw = zeros(3,N); 
y_NED= zeros(3,N); 
time = linspace(0, N*dt, N)'; 
position = zeros(3,N); 
position_NED = zeros(3,N); 
%% calculating linear SSM matrices 
[ A, B, D] = linear_SSM ( M, dt); 
%% calculating kalman filter gain: 
G=0.01*eye(6); 
Q_k = diag([0.09, 0.11, 0.09,0.8,0.5,1.5]); 
R_k = diag([1e2,1e2,1e2]); 
K=dlqe(A,G,D,Q_k,R_k); 
%% 
Q = [1e4 0 0; 0 1e5 0; 0 0 1e9]; %tuning weight for errors 
P = [1e-6 0 0; 0 1e-7 0; 0 0 1e-15] ;%tuning weight for inputs 
[HdL,OL,OLB]=ss2h(A,B,D,zeros(3,3),L,0);  
FL=[OLB HdL]; 
Qt=q2qt(Q,L); 
Rt=q2qt(P,L); 
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H=FL'*Qt*FL+Rt; 
%% 
x_est = x; 
%% simulation loop: 
for k = 1:N 
    % transformation matrix to tansform from body to NED coordinate system 
    R = [cos(x(3)) -sin(x(3)) 0; sin(x(3))  cos(x(3)) 0; 0 0 1]; 
    F_w = wind_force(V_w(k), gamma(k), x(3),x(4), x(5), A_F, A_L, L); 
    y = D*x; 
    y_pos(:,k) = y; 
    y_NED(:,k) = R*y; 
    position(:,k) = y; 
    position_NED(:,k) = R*y; 
    u_array(:,k) = u(:,1); 
    Fw(:,k) = F_w; 
    pL=OL*A*x_est; 
    r = sp(:,k+1:L+k); 
    r = r(:); 
    f=FL'*Qt*(pL-r); 
    u = quadprog(H,f); 
    u = reshape(u,3,L); %arranged control inputs 
    dx = nonlinear_model(x, u(:,1), F_w, M ,neu);% update the system by using 
first calculated optimal control 
    x= x+ dt*dx; 
    % using current time output to estimate states by kalman filter 
     x_est = A*x_est + B*u(:,1)+B*F_w+ K*(y - D*x_est); 
end 
%% plotting 
figure(1), 
subplot(311);plot(time/60,sp(1,1:N),time/60,y_pos(1,:),'g-');ylabel('position in 
surge [m]'); 
title('Surge direction');legend('set point','surge position');grid 
subplot(312);plot(time/60,u_array(1,:),'r-'); ylabel('control in surge [N]');grid 
subplot(313);plot(time/60,Fw(1,:),'b-');xlabel('time [min]'); ylabel('Wind force 
in surge [N]');grid 
figure(2), 
subplot(311);plot(time/60,sp(2,1:N),time/60,y_pos(2,:),'g-');ylabel('position in 
sway [m]'); 
title('Sway direction');legend('set point','sway position');grid 
subplot(312);plot(time/60,u_array(2,:),'r-'); ylabel('control in sway [N]');grid 
subplot(313);plot(time/60,Fw(2,:),'b-');xlabel('time [min]'); ylabel('Wind force 
in sway [N]');grid 
figure(3), 
subplot(311);plot(time/60,sp(3,1:N)*180/pi,time/60,y_pos(3,:)*180/pi,'g-
');ylabel('position in yaw [deg]'); 
title('Yaw direction');legend('set point','Yaw position');grid 
subplot(312);plot(time/60,u_array(3,:),'r-'); ylabel('control in yaw [Nm]');grid 
subplot(313);plot(time/60,Fw(3,:),'b-');xlabel('time [min]'); ylabel('Wind moment 
in yaw [Nm]');grid 
figure(4); 
plot_dir(position_NED(2,:)', position_NED(1,:)'); 
xlabel('Position in East [m]'); 
ylabel('Position in North [m]'); 
title('Position in NED coordinate system'); 
hold on;  
plot(position_NED(2,1), position_NED(1,1), 'go', 'MarkerSize', 10, 
'MarkerFaceColor', 'g'); 
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plot(position_NED(2,end), position_NED(1,end), 'ro', 'MarkerSize', 10, 
'MarkerFaceColor', 'r'); 
quiver(position_NED(2,end-1), position_NED(1,end-1), position_NED(2,end)-
position_NED(2,end-1), position_NED(1,end)-position_NED(1,end-1), 0, 'Color', 'r', 
'LineWidth', 2) 
plot(position_NED(2,:), position_NED(1,:), 'b-'); 
hold off;  
legend('Ship Travel Distance', 'Ship Direction', 'Ship Start', 'Ship End'); 
grid on; 
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Appendix K  

MATLAB code of simple MPC with integarl action to control the 

vessel . 
%% implementing simple MPC with integral action developed by David Di Ruscio in a 
DP control system 
clc 
clear all 
close all 
parameters; 
%% simulation settings 
dt = 1; % time step [s] 
t_start = 0; % simulating starting time [ min] 
t_stop = 20; %simulating stopping time[ min] 
N = ceil(60*(t_stop - t_start)/ dt ); % simulating steps 
L =10;% prediction horizon 
%% setpoint 
sp = zeros(3, (N+L)); 
for m = 1:N+L 
   if m<=N/4  
        sp(:,m) = [0; 0 ; 0*pi/180];% north, east, yaw setpoint 
   elseif m> N/4 && m<=N/2 
        sp(:,m)= [3 ; 5 ; 3*pi/180]; 
   elseif m>N/2 
        sp(:,m)= [1 ; 8; 9*pi/180]; 
   end 
end 
%% Disturbances: 
V_w = slowly(N)* 20;% wind speed in NED coordinate system as a random number 
gamma = slowly(N)*360;% wind direction in NED coordinate system as a random number 
%% initialization: 
x0 = [sp(1,1) sp(1,2) sp(1,3) 0 0 0]'; 
x = x0; 
F_w = wind_force(V_w(1), gamma(1), x(3),x(4), x(5), A_F, A_L, L); 
u = -F_w; 
%% Preallocation of arrays for plotting: 
x_pos = zeros(6,N); 
u_array= zeros(3,N); 
Fw = zeros(3,N); 
y_array = zeros(3,N); 
time = linspace(0, N*dt, N)'; 
position = zeros(3,N); 
position_NED = zeros(3,N); 
%% Calculating linear SSM matrices 
[ A, B, D] = linear_SSM ( M, dt); 
nx = size(A,1); % number of system states 
nu = size(B,2);% number of system inputs 
ny = size(D,1); % number of system outputs 
%% calculating kalman filter gain: 
G=0.01*eye(6); 
Q_k = diag([0.09, 0.11, 0.09,0.8,0.5,1.5]); 
R_k = diag([1e2,1e2,1e2]); 
K=dlqe(A,G,D,Q_k,R_k); 
Q = [1e4 0 0; 0 1e5 0; 0 0 1e9]; %tuning weight for errors 
P = [1e-6 0 0; 0 1e-7 0; 0 0 1e-15];%tuning weight for inputs 
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%% augmented system matrices: 
At = [A zeros(nx,ny); D eye(ny,ny)]; 
Bt= [B ; zeros(ny,nu)]; 
Dt = [D eye(ny,ny)]; 
[HdL,OL,OLB]=ss2h(At,Bt,Dt,zeros(ny,nu),L,0);  
FL=[OLB HdL]; 
Qt=q2qt(Q,L); 
Rt=q2qt(P,L); 
H=FL'*Qt*FL+Rt; 
%% 
y = D*x; 
x_est = x; 
x_old = x_est; 
y_old = y; 
xt = [x-x_old;y_old]; 
%% simulation loop: 
for k = 1:N 
    % transformation matrix to tansform from body to NED coordinate system 
    R = [cos(x(3)) -sin(x(3)) 0; sin(x(3))  cos(x(3)) 0; 0 0 1]; 
    F_w = wind_force(V_w(k), gamma(k), x(3),x(4), x(5), A_F, A_L, L); 
    y = D*x; 
    x_pos(:,k) = x; 
    position(:,k) = y; 
    position_NED(:,k) = R*y; 
    u_array(:,k) = u(:,1); 
    y_array(:,k) = R*y; 
    Fw(:,k) = F_w; 
    pL=OL*At*xt; 
    r = sp(:,k+1:L+k); 
    r = r(:); 
    f=FL'*Qt*(pL-r); 
    du = quadprog(H,f); 
    du = reshape(du,3,L); %arranged control inputs 
    u = u + du(:,1); 
    x_old = x_est; 
    y_old = y; 
    
    dx = nonlinear_model(x, u, F_w, M, neu); 
    x= x+ dt*dx; 
    % using current time output to estimate states by kalman filter 
    x_est = A*x_est + B*u(:,1)+B*F_w+ K*(y - D*x_est); 
    xt = [x_est-x_old;y_old]; 
end 
%% plotting 
figure(1), 
subplot(311);plot(time/60,sp(1,1:N),time/60,x_pos(1,:),'g-');ylabel('position in 
surge [m]'); 
title('Surge direction'); 
legend('set point','surge position'); 
grid 
subplot(312);plot(time/60,u_array(1,:),'r-');xlabel('time [min]'); ylabel('control 
in surge [N]'); 
title('control in Surge direction'); 
grid 
subplot(313);plot(time/60,Fw(1,:),'b-');xlabel('time [min]'); ylabel('Wind force 
in surge [N]');grid 
figure(2), 
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subplot(311);plot(time/60,sp(2,1:N),time/60,x_pos(2,:),'g-');ylabel('position in 
sway [m]'); 
title('Sway direction'); 
legend('set point','sway position'); 
grid 
subplot(312);plot(time/60,u_array(2,:),'r-');xlabel('time [min]'); ylabel('control 
in sway [N]'); 
title('control in Sway direction'); 
grid 
subplot(313);plot(time/60,Fw(2,:),'b-');xlabel('time [min]'); ylabel('Wind force 
in sway [N]');grid 
figure(3), 
subplot(311);plot(time/60,sp(3,1:N)*180/pi,time/60,x_pos(3,:)*180/pi,'g-
');ylabel('position in yaw [deg]'); 
title('Yaw direction'); 
legend('set point','Yaw position'); 
grid 
subplot(312);plot(time/60,u_array(3,:),'r-');xlabel('time [min]'); ylabel('control 
in yaw [N]'); 
title('control in Yaw direction'); 
grid 
subplot(313);plot(time/60,Fw(3,:),'b-');xlabel('time [min]'); ylabel('Wind moment 
in yaw [Nm]');grid 
figure(4); 
plot_dir(position_NED(2,:)', position_NED(1,:)'); 
xlabel('Position in East [m]'); 
ylabel('Position in North [m]'); 
title('Position in NED coordinate system'); 
hold on;  
plot(position_NED(2,1), position_NED(1,1), 'go', 'MarkerSize', 10, 
'MarkerFaceColor', 'g'); 
plot(position_NED(2,end), position_NED(1,end), 'ro', 'MarkerSize', 10, 
'MarkerFaceColor', 'r'); 
quiver(position_NED(2,end-1), position_NED(1,end-1), position_NED(2,end)-
position_NED(2,end-1), position_NED(1,end)-position_NED(1,end-1), 0, 'Color', 'r', 
'LineWidth', 2) 
plot(position_NED(2,:), position_NED(1,:), 'b-'); 
hold off;  
legend('Ship Travel Distance', 'Ship Direction', 'Ship Start', 'Ship End'); 
grid on; 
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