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Abstract: Combining deep learning (DL) with nanotech-
nology holds promise for transforming key facets of
nanoscience and technology. This synergy could pave the
way for groundbreaking advancements in the creation of
novel materials, devices, and applications, unlocking unpar-
alleled capabilities. In addition, monitoring psychological,
emotional, and physical states is challenging, yet recent
advancements in the Internet of Nano Things (IoNT), nano
robot technology, and DL show promise in collecting and
processing such data within home environments. Using DL
techniques at the edge enables the processing of Internet of
Things device data locally, preserving privacy and low
latency. We present an edge IoNT system that integrates
nanorobots and DL to identify diseases, generating actionable
reports for medical decision-making. Explainable artificial
intelligence enhances model transparency, aiding clinicians
in understanding predictions. Intensive experiments have
been carried out on Kvasir dataset to validate the applic-
ability of the designed framework, where the accuracy of
results demonstrated its potential for in-home healthcare
management.

Keywords: deep learning, Internet of nano thing, XAI, dis-
ease detection, nanorobots

1 Introduction

The integration of deep learning (DL) with nanotechnology has
the potential to revolutionize various aspects of nanoscience
and nanotechnology, leading to the development of newmate-
rials, devices, and applications with unprecedented capabilities
[1]. In addition, development of sensing technologies has sig-
nificantly transformed various industries, enabling precise
measurements, real-time monitoring, enhanced data analysis,
and user-customized design [2–5]. Optical sensors, in parti-
cular, have played a crucial role in sensing applications due
to their high sensitivity, fast response, and non-invasive nature.
With recent advancements in artificial intelligence (AI) and
machine learning, the integration of these technologies with
optical sensors has paved the way for next-generation smart
sensors capable of intelligent and autonomous operation [6–8].
Optical sensors operate based on the interaction of light with
the target material, allowing for the detection and quantifica-
tion of physical, chemical, or biological parameters. These sen-
sors use a range of optical phenomena, including absorption,
fluorescence, scattering, and refractive index changes, to cap-
ture valuable information from the sensing environment. Tra-
ditionally, optical sensors relied on predefined algorithms for
data interpretation, limiting their adaptability and flexibility in
dynamic sensing scenarios [9]. However, the integration of AI
techniques, such as machine learning and DL, with optical
sensors has revolutionized their capabilities. Machine learning
algorithms empower optical sensors to learn from data, recog-
nize patterns, and make predictions or classifications. DL, a
subset of machine learning, uses neural networks to extract
intricate features and patterns from complex datasets. By com-
bining AI with optical sensor systems, a new era of intelligent
and autonomous sensing applications emerges. The applica-
tions of AI-based optical sensors span across various industries,
including biomedical and healthcare, environmental moni-
toring, manufacturing, and security. In the field of healthcare,
these sensors contribute to medical diagnostics, disease and
surgical monitoring, drug discovery, and personalized health-
care [10,11]. They enable non-invasivemeasurements, real-time
monitoring of vital signs, and precise detection of biomarkers,
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leading to improved patient care and early disease detection.
In this research, we will explore AI-based optical sensors in
healthcare applications, and more particularly, to improve AI
solutions for disease detection.

1.1 Motivation

The coronavirus disease 2019 (COVID-19) pandemic’s health
support has greatly benefited from recent advancements in
a number of fields, including AI and the health-related
Internet of Things [12]. Travel restrictions have left people
stranded, and a huge number of critically ill individuals
have overloaded healthcare services. The epidemic is parti-
cularly dangerous to the elderly. As a result, both regular
people and healthcare professionals are accustomed to in-
home healthcare monitoring. Recent Internet of Nano Things
(IoNT) devices use wearable and non-invasive off-the-shelf
electronics to monitor physiological, emotional, activity-
related, and vital states [13]. Additionally, it has been amazing
to see how accurately AI systems have been able to read IoNT
data [14]. DL algorithms, in particular, have developed as new
types of AI algorithms that have demonstrated incredible accu-
racy in analyzing health-related data [15]. Modern DL algo-
rithms can even instantly identify occurrences from Internet
of medical things sensory data or live video feeds. A new
generation of DL applications enabled by IoNT has been intro-
duced as a result. One development in IoNT hardware, known
as edge IoNT nodes, has made strides in the healthcare sector.
Wherever it is necessary to monitor health data, such as at a
hospital or at home, the current generation of IoNT nodes can
be independently deployed. These edge health nodes now
include a complete operating system with support for edge
central processing units (CPUs) and graphics processing units
(GPUs), enabling the node to carry out difficult DL computa-
tions at the edge. The edge learning and inferencing capabil-
ities of DL applications have also been enhanced in order to
take advantage of the development of advanced edge IoNT
nodes. It is not necessary for data coming from a subject or
hospital to leave the owner’s area or edge; rather, DL and
event monitoring can happen there. With the help of DL
and the IoNT, this enables data privacy, security, and low-
latency health apps to function on user premises. As a result,
the edge IoNT has brought in newDL paradigms like federated
learning, where learning occurs at the edge in a distributed
manner while only the model is disseminated [16–18]. IoNT
nodes that function as federated learning nodes can be sup-
ported by inexpensive GPU hardware.

Physical therapy [19], mobile-edge computing [20], and
pandemic management [21], to name a few, are only a few
of the health-related applications where IoNT has been

deployed. However, DL has been widely used to combat
COVID-19 in a variety of situations, including diagnosing
COVID-19 from X-rays [22], computerized tomography (CT)
scans [23], and diagnosing diabetic retinopathy [24]. Edge
inferencing has been proposed to secure the privacy and
security of IoNT data and to decrease the latency of IoNT
inferencing. Another advancement is the proposal to facil-
itate edge learning with federated learning. Finally, IoNT
and DL have been used to infer user emotional states and
feelings. For instance, the IoNT was used to collect user senti-
ments. A DL sentiment analysis system that could comprehend
a patient’s emotional condition was created. Although the
IoNT and DL have made significant strides, few have been
applied in a context that supports various in-home quality-
of-life monitoring situations within a single framework.

1.2 Contributions

To address the limitations of IoNT exploration in health-
care, we present the following contributions for our study:
1) We conducted research, implemented, and proposed

several edge learning IoNT tools that can be employed
to develop DL edge solutions.

2) We developed edge DL models for various IoNT devices,
enabling the creation of health applications locally, includ-
ing at home. Leveraging edge computing, our IoNT nodes
can accommodate multiple DL-based models.

3) eXplainable artificial intelligence (XAI) is used to offer
transparency and interpretability, enabling healthcare
professionals to comprehend the reasoning behind the
diagnostic decisions made by the designed model. This
enhances trust in the automated diagnostic process.

4) Using IoNT edge learning, we developed various appli-
cations for measuring quality of life. They can track
different phenomena and generate real-time notifica-
tions as well.

The rest of this article is divided into the following sec-
tions. We present a few closely comparable works in Section
2. We display the system’s architecture and modeling in Sec-
tion 3. The implementation details and the test results are
presented and discussed in Section 4. Future directions are
drawn in Section 5, and Section 6 concludes this article.

2 Related work

This section reviews the state-of-the-art solutions that are
divided into two areas: IoNT and DL for disease detection.
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2.1 IoNT

In order to increase the lifespan of wireless sensors net-
works in IoNT applications, a brand-new energy-efficient
distributed routing technique has been developed [25]. All
types of IoNT applications at the nanoscale can use the com-
munication backbone of wireless sensor network built by
choosing cluster head nodes in order to offer continuous
data flow in crucial domains like healthcare operating in
vivo. Chen et al. [26] pioneered the use of a novel feature
to transmit the direction information in which molecules
release themselves in IoNT environment. The performance
of molecular communication systems is improved by
releasing molecules in specific directions due to the reduc-
tion of multiuser interference. As a result, nearby transmit-
ters can transmit data concurrently in several directions.
For sensitive IoNT applications, such as those pertaining
to healthcare, it then suggested the binary direction shift
keying modulation system, in which the transmitter pumps
molecules in two separate directions. Mangalwedhekar et al.
[27] suggested a pulse position modulation-based energy-
neutral event recognition framework, in which the event
information is communicated by the sensors using the
energy captured from the event. To identify transmitting
nodes corresponding with a single receiver, it exploited
pulse position. However, when a single node communicates
with several receivers in IoNT networks without using an
addressing scheme, it is also possible to do so using this
strategy. In both situations, determining the event type is
aided by the energy observation of the received pulse. Kim
et al. [28] developed a computational formula and a prob-
abilistic particle-based simulator to mimic chemical interac-
tion with remarkable dynamical accuracy among dynamic
nanorobots in the blood capillary and the neighboring cells.
The transmitting bio-nanomachines produce data and are
modeled as a rotating sphere with a continuous environ-
mental pattern for a predetermined period of time. Blood
flow characteristics are modeled, and their impact on the
molecular received signal is investigated. An application of
biomedical IoNT is also shown. Yadav et al. [29] displayed
the designing of a protective circuit for electrocardiogram
and electroencephalogram biomedical signals in the nano
IoT. Any biomedical device must have a protection circuit,
which is created using the Cadence Virtuoso environment
in power supply. Defibrillator or electrostatic discharge-
related events, such as voltage spikes and current spikes,
are also analyzed. Owida et al. [30] evaluated the most
recent research on the creation of carbon-based nanomater-
ials for biosensing, drug delivery, and cancer therapy. They
also stressed the widely studied fundamental characteristics
of carbon-based nanoparticles that are used to gather data

on platforms for the IoNT. They noted that more thorough
research is necessary to evaluate the toxicity and bioavail-
ability of carbon-based nanomaterials because they still
have some toxicity.

2.2 DL for disease detection

Bianco et al. [31] went through computer-aided diagnosis of
hepatic lesions in light of localized and diffuse liver dis-
eases. Ultrasonography, CT, and magnetic resonance ima-
ging are the three main image capture modalities covered
by the authors. Bianco et al. also gave the thoughtful ana-
lysis with benefits and drawbacks for each preliminarily
phase, especially preprocessing, attribute analysis, and
classification methods to carry out clinical diagnostic tasks.
Their results revealed that convolutional neural networks
based on DL deliver the best results. In order to provide a
practical solution to this problem, Liu et al. [32] developed
the ground-breaking area DL model. They started using
shaped system with two paths while behind the final layer,
which provides the required signed distance map, while
another produces the target probability map. They then
concentrated on the border of the target lesions or organs
to be segmented with the aid of the signed distance map
and acquired multi-scale features. They finally combined
the region and boundary features in order to obtain the
global results. A DL model for multi-classification study on
infectious diseases is built based on actual hospital medical
records of infectious disorders [33]. More than 20,000 cases
of seven different infectious disease categories, including
both inpatients and outpatients, are included in the data.
Data normalization and sparse data processing are done
through the auto-encoder to enhance the model training
effect. For enhancing the learning process, a residual net-
work and an attentionmechanismare added. Lan [34] suggested
performer, a cutting-edge transformer-based architecture that
integrated the reconstructed ECG as various modalities for dis-
ease detection. They developed shifted patch-based attention
(SPA), a powerful technique for encoding and decoding biolo-
gical waveforms. The signal processing for both local features
and global contextual representations is maximized by SPA
through the retrieval of different sequence lengths and the cap-
ture of cross-patch linkages. In order to determine the statistical
significance of K-fold cross-validation using statistical power and
Type-I error rates, Jimenez-Mesa et al. [35] created a random-
effects inference based on a label permutation test. The resulting
framework made it possible to examine the generalizability of
feature extraction techniques used in DL models. In a case–
control study of Alzheimer’s disease with proven results, a
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hybrid feature extraction and classificationmodel using support
vector machines and autoencoders is assessed.

2.3 Discussion

This brief review of the literature highlights several limita-
tions in current developments within IoNT for medical
disease detection. One notable challenge is the critical issue
of learning time computing, particularly in biomedical
applications where nano hardware struggles to efficiently
train developed models. Furthermore, there is a notable
absence of an end-to-end framework for disease detection
using nanorobots. To address these gaps, this study delves
into the integration of nanorobots, DL, and edge computing
within a unified embedded IoNT protocol. The aim is to
tackle the challenges encountered in existing IoNT solu-
tions. An application of this newly designed protocol on
biomedical disease detection is also explored. The fol-
lowing section provides a comprehensive exploration of
the proposed framework, detailing its components and
functionality in depth.

3 Method design

3.1 Problem formulation

Let =X x x x, , …, n1 2
{ } denote a set of medical images, where

xi represents an individual image. The goal is to develop a
mathematical DL model that accurately detects the pre-
sence of diseases or abnormalities in these images. Let

=Y y y y, , …,
n1 2

{ } represent the set of the corresponding
disease labels, where ∈y 0, 1

i
{ } indicates the absence (0) or

presence (1) of a disease for image xi. The objective is to learn

a DL model that maps each image xi to its corresponding
disease label y

i
. This model should generalize well to unseen

images and accurately classify diseases based on the visual
patterns present in the images. Given a training dataset
X Y,

train train
( ), the problem can be formulated as follows:

θ X Ymin , , ,

θ
train train

�( )

where θ represents the model parameters, and � denotes
the loss function. The training objective is to minimize the
loss function � , which measures the discrepancy between
the predicted disease labels ŷ and the ground truth labels
y. The loss function can be defined as

∑= −

+ − −
=

θ X Y
N

y y

y y

, ,

1

log ˆ

1 log 1 ˆ ,

i
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i i

i i
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1
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( ) ( ))

where N
train

represents the number of samples in the
training dataset. The model parameters θ are learned
through an optimization algorithm, such as stochastic gra-
dient descent, which updates the parameters based on the
gradients of the loss function with respect to the parameters.

3.2 Principle

This section demonstrates the disease detection manage-
ment system’s intricate architecture. We exhibit the design
along the following three dimensions to demonstrate the
modular approach to the design (see Figure 1 for more
details). We begin by demonstrating high-level applications
that can be created using edge learning and the IoNT. The
IoNT edge hardware that will enable us to support the
applications is then determined. We then display the entire
end-to-end stack, followed by our developed model that
depicts the system’s flow.

Figure 1: IoNT framework.
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3.3 Nanorobot layer

Micro- and nanorobots may move individually or collec-
tively. The driving mode has an effect on the movement
speed, stability, and biocompatibility of micro/nanorobots,
which has an effect on their employment in biological
organisms. In order to overcome the challenges of low
Reynolds fluid, the active motion of micro/nanorobots pri-
marily relies on the conversion of a local chemical or mus-
cular endurance.
1) Chemical propulsion: Adenosine triphosphate (ATP) is

catalytically broken down in nature to provide intracel-
lular propulsion by protein biomotors like myosin. In
the past 10 years, a variety of micro/nanorobots that
obtained the highest propulsion with chemical pro-
cesses were inspired by them. The inert material is
used to create the asymmetrical structure, and the cat-
alyst’s role is to interact with fuel on the robot’s surface.
H O

2 2
is the initial and most thoroughly studied fuel. In

order to move, micro/nanorobots can generate their
unique self-electrophoresis mechanisms and use mate-
rials like their own platinum (Pt) to catalyze the oxida-
tion of H O

2 2
to make bubbles. High concentrations of

H O
2 2

are hazardous to living beings. It is essential to
create new in situ fuels besides H O

2 2
in order to accom-

plish practical applications, especially when chemical
drive is employed to drive micro/nanorobots in living
organisms. Organic elements that can be discovered in
biological fluids should serve as the source ingredients.
For instance, using biodegradable Zn or Mg, hydrogen
can be produced by interacting with the acidic environ-
ment of the stomach to create self-propulsion and leaving
left the same non-toxic result. Pt can also be substituted
for an enzyme to form a catalytic process.

2) Physical propulsion: The majority of exterior field-driven
micro- and nanorobots do not require fuel since these
fields – light, ultrasonic, or magnetic – serve as their
primary sources of propulsion. This offers them greater
control over their movement and renders them biocom-
patible and sustainable. It is not too difficult to create
stable conditions. Sonic waves can travel across solid,
liquid, and air media to deeply penetrate biological tissue
without endangering living things. They can use this to
turn on micro- or nanorobots from outside. The light-
driven micro/nanorobot is constructed mostly from photo-
catalytic, photorated, and photothermal materials. When
exposed to light, these photoactive materials have the
ability to absorb light energy and initiate photocatalytic,
photopolymerization, and photothermal conversion pro-
cesses. The magnetic field, along with other physical fields,
can control the motion of micro- and nanorobots. We

develop a reliable propulsion method that involves applying
ultrasonic waves to the ground to reduce excess lateral drift
during the entire motion so far as an electromagnetic field
system is constructed to drive the spiral robot. This is a fresh
and effective method for enhancing motion control.

3.4 Edge layer

We will create a collaborative training system with resource-
constrained network edge to optimize the training accelera-
tion offered by the dynamic task assignment. It focuses on
delivering the training with the least amount of effort using
only already-existing edge resources, whereas federated
learning training is typically implemented using the cloud
or a relatively centralized master node, which may result in
additional hardware costs or communication overhead. In a
cluster, the trade-off between compute power and commu-
nication capacity is carefully thought out and balanced.
Each cluster is in charge of independently managing one
DL task made up of many edge devices. Depending on the
practical situation, they may be the same or different. A
highly concentrated master node or the cloud’s decentrali-
zed–centralized architecture may result in higher hardware
costs or communication costs. In a cluster, there is careful
consideration and a good balance between the processing
resources and the communication constraints. The system ele-
ments in each cluster are described in the following manner:
1) Service parameters: Executors with a high communica-

tion requirement. They are in charge of maintaining
new model parameters, receiving local gradients from
worker, and storing model data. In order to engage, each
service parameter links to every worker; however, there is
no requirement for communication between service para-
meters. The service parameters used in this article differ
from the standard service parameter notion in that it can
be any device, including thosewith limited resources, as long
as it can meet the needs for model update.

2) Workers: They get the most recent model from service
parameters, train replicas of the model in parallel on
local data (either distributed from associated service
parameters or acquired locally), and submit intermediate
results to service parameters. Each worker establishes a
connection with every service parameter to upload gradi-
ents and download the most recent task. In asynchronous
mode, the training model processed by each worker may
differ slightly.

Because of the frequent exchanges between service para-
meters and workers, both parties need a lot of bandwidth.
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The communication congestion caused by the weak node
could prevent iteration update. In collaborative systems,
resource management is a constant issue that is hardly
ever addressed during edge-based training. The severe
constraint in real-world applications is the weak network’s
resource-constrained edge devices’ low computing, com-
munication, and reliability capacities. It has motivated us
to continue to demonstrate an effective solution to speed
up collaborative training that can best balance the capabil-
ities of different edge devices.

3.5 Learning layer

The field of medical image processing, as well as all other
areas of information technology, saw a significant revolu-
tion thanks to AI. Objects in medical images were analyzed
and identified using machine learning techniques. To recog-
nize and analyze the items in medical images, a variety of DL
approaches have become increasingly popular in recent
years. Using DL techniques, disease detection can be identi-
fied in its early stages, assisting doctors in determining the
best course of therapy. Although there is no cure for the illness,
early discovery might slow its fast development. For early
diagnosis, a variety of AI algorithms have been employed. DL
techniques are a useful tool for assistingmedical consultants in
early disease detection. Based on DL techniques, the proposed
learning system model accepts images retrieved from nanor-
obots that aid in the early detection and classification of dis-
eases that may be in different stages. The training data, which
comprised the data that were in raw form, were obtained from
the nanorobot layer. The trained model is maintained in the
edge-environment unless the learning requirements are satis-
fied, in which case the model should be retrained. The images
that aid in the early diagnosis and classification of diseases that
may be in their early stages are accepted by the proposed
system model. Images gathered from sources are sent to
the pre-processing worker during the validation phase. The
images’ dimensions are altered by the pre-processing worker.
The suggested system model imports data from the edge for
the intelligent classification after preprocessing is complete. If
a patient exhibits symptoms of the condition, this intelligent
system model detects and categorizes disease detection into
four classes; otherwise, there is no need to see a doctor for
disease detection treatment. In this research work, we will
propose a new visual transformer for disease detection.
Visual transformers have emerged as powerful models for
disease detection tasks, leveraging their ability to capture
long-range dependencies and contextual information in med-
ical images. Here, we provide a detailed description of visual

transformers for disease detection, including the model
design and complexity analysis. Our visual transformer for
disease detection consists of an encoder and a decoder. The
encoder processes the input medical images to extract infor-
mative representations, while the decoder generates disease
predictions based on these representations.

1. Encoder The encoder is composed of a stack of trans-
former encoder layers. Each encoder layer consists of mul-
tiple self-attention heads and feed-forward neural networks.
The self-attention mechanism allows capturing relationships
between different regions within the image. The encoder
processes the input image x and produces encoded image
representations.

=x xEncoder TransformerEncoderLayer LayerNorm ,( ) ( ( ))

where LayerNorm represents the layer normalization, and
TransformerEncoderLayer applies self-attention and feed-
forward networks. The self-attention mechanism involves
calculating attention weights between different positions
within the encoded image representations. Given an input
representation xi, the self-attention mechanism computes
attention weights by attending to all other positions in the
encoded image representation. The attention weights are
then used to compute a weighted sum, representing the
attended representation of xi. The formulas for self-atten-
tion can be described as follows:

⎟⎜=
⎛
⎝

⎞
⎠

Q K V
QK

d
VAttention , , softmax ,

T

k

( )

where Q, K , and V denote the queries, keys, and values,
respectively. dk represents the dimensionality of the keys.
The self-attention mechanism involves three linear trans-
formations to obtain the query Q, key K , and value V

matrices:

= = =Q xW K xW V xW, , ,Q K V

where WQ, WK , and WV denote the learnable weight
matrices.

2. Decoder The decoder takes the encoded image
representations and generates disease predictions. It typi-
cally consists of fully connected layers followed by a softmax
activation function. The decoder maps the encoded repre-
sentations to the disease label space.

=x xDecoder Softmax FC Encoder ,( ) ( ( ( )))

where FC denotes the fully connected layers.
3. Multi-scale attention mechanism In our novel

visual transformer, we introduce a multi-scale attention
mechanism that enables the model to attend to different
levels of detail in the medical images. This mechanism incor-
porates multiple self-attention layers, each focusing on a
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specific scale of features. By attending to both local and global
information, our model can effectively capture disease-related
patterns at various scales. Themulti-scale attentionmechanism
can be formulated as follows:

⎟⎜=
⎛
⎝

⎞
⎠

Q K V
Q K

d
VAttention , , softmax ,

l l l l

l l T

k

l( )
( )

( ) ( ) ( ) ( )
( ) ( )

( )

where l denotes the layer index; Q l( ), K l( ), and V l( ) repre-
sent the queries, keys, and values at layer l, respectively;
and dk represents the dimensionality of the keys.

4. Progressive refinement: To improve the model’s
discriminative ability, we introduce a progressive refine-
ment mechanism that iteratively refines the disease pre-
dictions. At each refinement step, the model leverages the
information from both the original image and the refined pre-
dictions from the previous step. This progressive refinement
allows the model to iteratively focus on disease-specific fea-
tures and enhance the final disease detection performance.

The progressive refinementmechanism can be defined as:

= −x

Refined_Prediction

Decoder Encoder , Refined_Prediction ,

t

t 1( ( ) )

( )

( )

where t represents the refinement step, Encoder and Decoder
refer to the encoder and decoder modules, respectively, and

−
Refined_Prediction

t 1( ) denotes the refined predictions.
5. Loss function: To train our novel visual transformer,

we employ a suitable loss function that encourages accu-
rate disease classification. In addition to the conventional
cross-entropy loss, we propose incorporating an auxiliary
loss that promotes attention stability and encourages the
model to focus on disease-specific regions. This auxiliary
loss can be defined based on attention stability measures,
such as the variance or entropy of the attention weights.

The overall loss function can be written as:

= + ⋅λ ,
main aux

� � �

where
main

� represents the main cross-entropy loss,
aux

�

denotes the auxiliary loss based on attention stability, and
λ is a weighting factor.

6. Complexity analysis. The complexity of visual trans-
formers for disease detection depends on the number of
layers, the size of each layer, and the number of self-atten-
tion heads. Let L represent the number of transformer
encoder layers, ×H W denote the image size, and D repre-
sent the dimensionality of the hidden representations.
a) Encoding complexity: The encoding step has a com-

plexity of ⋅ ⋅O L D HW2( ), as it involves self-attention
and feed-forward neural networks.

b) Decoding complexity: The decoding step has a com-
plexity of O D2( ), as it consists of fully connected layers.

c) Training complexity: The training complexity depends
on the number of parameters, which is influenced by
the model size and architecture.

d) Inference complexity: The inference complexity depends
on the number of layers, image size, and hidden repre-
sentation dimensionality.

3.6 Hyper-parameter selection

The network can be prepared for training using a variety
of elements, or other training options can be offered. Since
they are not required for transfer learning, the final two
layers of our visual transformer layers, SoftMax layers,
and output classification layers, are not extracted. The
learning rate, number of iterations, frequency of valida-
tion, and number of epochs can all be used as training
choices. The network is trained with 39 iterations per
epoch at a × −

1 10

4 learning rate. Several epochs, including
100, 200, 300, and 400, were used for training. The sto-
chastic gradient descent with momentum (SGDM) optimi-
zation technique is used for training. These training settings
enable newly updated layers to incorporate the disease detec-
tion dataset’s features. Different epochs, including 100, 200,
300, and 400, were evaluated for the training of the transfer
learning algorithm, and it was found that epoch 400 was the
best. The best learning rate was found to be × −

1 10

4 after
varying the learning rate between × −

1 10

1 and × −
1 10

5. To
reach the required level of precision, the algorithm was
repeatedly retrained to achieve maximum accuracy.

3.7 Interpretation

We utilized the XAI technique known as gradient-weighted
class activation mapping (Grad-CAM) to provide insights
into our DL model’s for disease detection. Grad-CAM helps
us understand which regions of the input image contribute
the most to the model’s prediction. To gain a better under-
standing of how our model is making predictions, we
generated activation maps using Grad-CAM. These maps
highlight the regions of the input image that the model
found most important in making its diagnosis. The Grad-
CAM score Sc for a particular class c at a given spatial
location can be calculated as follows:

∑=S x y α A x y, , ,c

k

c k k,
( ) ( ) (1)

where S x y,c( ) represents the Grad-CAM score at position
(x y, ), αc k, is the weight of the last convolutional layer’s
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feature map k for class c. A x y,k ( ) is the activation of fea-
ture map k at position x y,( ). The interpretation of these
Grad-CAM activation maps is invaluable for clinical practi-
tioners. It allows them to not only trust the model’s predic-
tions but also understand the basis for those predictions.
For example, in the case of lung disease detection, the
activation maps may reveal that the model is primarily
looking at specific lung nodules or abnormalities, which can
aid radiologists in confirming the diagnosis. Additionally, Grad-
CAM can help assess themodel’s confidence and uncertainty. If
the activation maps indicate that the model is focused on the
relevant disease markers, it can increase confidence in the
diagnosis. Conversely, if the model’s attention is scattered or
focused on irrelevant areas, this information can be used to
assess the uncertainty associated with the prediction. We can
express the model’s uncertainty U as a function of the Grad-
CAM scores:

= − ∑ ′ ′
U x y

S x y

S x y
, 1

,

,

,

c

c c

( )
( )

( )
(2)

whereU x y,( ) represents the uncertainty at position x y,( ),
and S x y,c( ) is the Grad-CAM score for class c at that posi-
tion. Incorporating XAI techniques like Grad-CAM into dis-
ease detection models not only enhances transparency but
also aids in clinical interpretation. It provides valuable
insights into the model’s decision-making process, highlighting
the regions of interest in medical images, and allows for the
quantification of uncertainty, ultimately improving trust and
utility in AI-assisted medical diagnostics.

4 Performance evaluation

4.1 Implementation details

NVIDIA (NVIDIA Corporation, USA) introduced the Jetson
Nano, a compact, potent computer for embedded AI appli-
cations including edge computing and robotics, in March
2019. With a Qued-core ARM Cortex-A57 CPU and a 128-core
GPU built on the MAXwell architecture, it can provide
enough processing power for AI applications like biome-
dical applications. Additionally, thanks to NVIDIA’s gen-
erous provision of DL interfaces, the Jetson Nano has
evolved into the perfect embedded platform for edge com-
puting. It supports several well-known AI frameworks and
algorithms, including PyTorch, Caffe, MXNet, and NVIDIA’s
CUDA, cuDNN, and TensorRT software libraries. The stan-
dard power supply that NVIDIA controls is 4A@5V, which
satisfies the trained model’s power supply needs. On the

Jetson Nano, computer vision tasks can be supported by
both CSI and USB cameras. Jetson Nano, however, is a
superb embedded developer kit that satisfies the hardware
requirements for model deployment. We used Jetson Nano
in our implementation for the developed system. To verify
the applicability of IoNR-DD in disease detection, we used
the Kvasir medical database [36]. The goal is to automati-
cally detect endoscopic findings in the rectum, esophagus,
stomach, and intestines. There are two versions of it.
Kvasir (v1), the original edition, has 4,000 available data
divided into eight classifications that represent anatomical
landmarks, diseased abnormalities, or endoscopic proce-
dures. The second called Kvasir (v2) builds upon the first
and has 8,000 available data and the same amount of
classes. This dataset is used to evaluate the edge layer and
the learning layer for the IoNR-DD framework. In order to
evaluate the nano robotics layer, we used practical health
readings obtained from the online MIMIC benchmark.1

The accuracy and F1 formulas are used to determine
the IoNR performance. They are described in the following:

=
× ×

+
F1

2 Precision Recall

Precision Recall

, (3)

=
+

+ + +
Accuracy

TP TN

TP TN FN FP

, (4)

=
+

Precision

TP

TP FP

, (5)

=
+

Recall

TP

TP FN

. (6)

The following are definitions of the notations used in
the aforementioned equations:
1) True positive (TP): The number of observations with

corrected positive results is counted to determine it. If
and only if an observation is an endoscopic discovery
that the running model also recognizes, it is referred to
as a correct positive.

2) True negative (TN): The number of rectified negative
observations is counted to determine it. If and only if
an observation is not an endoscopic discovery and is
regarded as such by the running model, it is said to be
correct negative.

3) False positive (FP): By counting the instances of falsely
positive observations, it is calculated. If and only if an
observation is an endoscopic discovery and the running
model classifies it as a non-endoscopic finding, it is
referred to as a false positive.



1 https://github.com/YerevaNN/mimic3-benchmarks
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4) False negative (FN): By counting the amount of false negative
observations, it can be calculated. If and only if an observa-
tion does not match the running model’s definition of an
endoscopic discovery, it is referred to as a false negative.

4.2 Nanorobot-layer performance

To evaluate the nanorobots layer, an intensive simulation
on MIMIC has been carried out. Figure 2 demonstrates the
energy consumption of nodes responsible for collecting med-
ical data, specifically focusing on the respiration rate within
the MIMIC dataset. It is assumed that each node operates
within an energy range set between 650 and 750 units.
Each measurement that is sent or collected uses 0.3 and 1
units, respectively. Over 24 periods, the values correspond
to a typical patient (40 min). We compared IoNR-DD with
nanorobot layer with local emergency detection (LED) [37]
and modified LED [38]. With alpha = 0.05, we allow all three
algorithms to adjust the node’s sampling rate to the dynamic
evolution of the respiration rate. Since the transmission is
optimized, the proposed solution consumes less energy com-
pared to both enhanced LED and LED technologies. Our algo-
rithm demonstrates energy savings of up to twice as much
when compared to LED and enhanced LED methods. These
results are attributed to the efficient nanorobot developed in
this research, using both chemical and physical propulsion
techniques.

4.3 Edge-layer performance

To evaluate the edge layer, the training runtime is deter-
mined using Kvasir data. Figure 3 presents the training

time for both Kvasir (V1) and Kvasir (V2) where duplicating
the size to 1 time, 10 times, 100 times, and 1,000 times. We
train the DL model proposed in IoNR-DD in a single com-
puter and also in edge computing hardware. The results
reveal the clear superiority of the edge-based solution com-
pared to the single computer-based configuration. Indeed,
using edge-based solution, 20 h is needed to train the eight
million images of 1,000 times of Kvasir dataset, where the
single computer needs more than 10 days to train the same
amount of data. This result clearly demonstrates the neces-
sity of using edge layer in IoNR-DD.

4.4 Learning-layer performance

Table 1 depicts the IoNR-DD results’ quality along with the
standard solutions including ALMOST [10], InceptionResNet

Figure 2: Runtime of data collection of IoNR-DD versus advanced medical
data collection-based solutions.

Figure 3: Runtime of training of IoNR-DD versus advanced edge-based
solutions.
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[39], and DenseNet [40] on Kvasir (V1) and Kvasir (V2). For
Kvasir (V1) and Kvasir (V2), we changed the percentage of
images used for training from 1,000 to 4,000 and from 1,000
to 8,000, respectively. The accuracy and quality of the out-
comes as represented by the F1 formulas are then calculated.
The outcomes demonstrate IoNR-DD’s superiority to the
baseline solutions in almost all cases. As a result, IoNR-
DD’s accuracy achieved 0.99 when all of the Kvasir (V2)
data are processed. This could be achieved by the other solu-
tions where the accuracy of the InceptionResNet, and Den-
seNet solutions is less than 0.80, and the accuracy of ALMOST
is 0.96 for the same data used in the training. These outcomes
are made possible by the efficient adaptation of the visual
transformers with the novel attention mechanism employed
in this research work, where the most relevant features of
all image channels are used in the learning phase.

4.5 XAI performance

Figure 4 presents the GradCam [41,42] of IoNR-DD solution
on Ksavir dataset. From this figure, we can conclude that
using Grad-CAM for disease detection is an exciting and
promising application of DL in the field of medical imaging
and diagnostics. It allows us to visualize and understand
which regions of an image are most influential in a neural
network’s decision-making process, making it valuable
for interpreting and improving the transparency of DL
models in medical contexts. It illustrates how the regions
highlighted by Grad-CAM fit very well to the mask of the
diseases in the images. In fact, it provides a level of interpret-
ability and transparency in IoNR-DD that is crucial in medical
applications. Doctors and healthcare professionals need to
understand why IoNR-DD makes a certain prediction, and

Grad-CAM helps by highlighting the regions in an image
that contribute the most to the IoNR-DD model’s decision.
This can help build trust in the IoNR-DD model’s predictions.
It is often essential to pinpoint the exact location of a disease
or anomaly within an image. Grad-CAM can be used to create
heatmaps that highlight the areas where the model believes
the disease is present. This assists radiologists and clinicians
in focusing their attention on these regions for further
analysis.

5 Potential research challenges

The majority of the biomedical-based applications we use
in our daily lives, including body sensors, are incorpor-
ating IoNT. These gadgets are connected to the Internet
and have digitalized control and monitoring processes,
which presents various security and privacy concerns. A com-
pletely new level of security-related difficulties is brought by
the incorporation of body area networks systems with body
devices and nano machineries. The security of data trans-
mitted over the internet is one of the most significant diffi-
culties brought on by the expansion of the market for the
IoNT. Additionally, a completely new level of security-related
difficulties are brought about by the integration of body area
networks systems with body devices and nano machineries.
The security of data transmitted over the Internet is one of
the most significant difficulties brought on by the expansion
of the market for the IoNT. Personal health information can
be stolen by a bio-cyber attack in the healthcare industry.
This knowledge can be used to develop new virus kinds
that can penetrate already-installed nanosensors in IoNT. In
order to avoid these issues, communication networks in the

Table 1: IoNR-DD vs disease detection baseline strategies

Data.∣Images∣ IoNR-DD ALMOST InceptionResNet DenseNet

F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy

Kvasir(V1).1000 0.55 0.58 0.53 0.57 0.48 0.51 0.47 0.49
Kvasir(V1).2000 0.56 0.60 0.56 0.59 0.50 0.53 0.50 0.51
Kvasir(V1).3000 0.59 0.64 0.58 0.63 0.52 0.55 0.52 0.53
Kvasir(V1).4000 0.64 0.66 0.63 0.66 0.55 0.58 0.54 0.54
Kvasir(V2).1000 0.56 0.63 0.57 0.62 0.56 0.56 0.53 0.54
Kvasir(V2).2000 0.66 0.69 0.64 0.66 0.59 0.60 0.54 0.57
Kvasir(V2).3000 0.71 0.75 0.69 0.73 0.60 0.60 0.58 0.61
Kvasir(V2).4000 0.76 0.78 0.75 0.77 0.65 0.69 0.63 0.64
Kvasir(V2).5000 0.81 0.88 0.80 0.84 0.68 0.72 0.65 0.67
Kvasir(V2).6000 0.86 0.88 0.83 0.86 0.72 0.74 0.66 0.69
Kvasir(V2).7000 0.85 0.92 0.87 0.91 0.75 0.77 0.71 0.72
Kvasir(V2).8000 0.94 0.99 0.92 0.96 0.77 0.79 0.72 0.75
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4G and 5G eras, particularly in IoNT, should employ security
assurance approaches while carefully taking into account the
nature of IoNT communications. Concerns about privacy and
security must be addressed since nanodevices collect signifi-
cant amounts of sensitive data. It is important for users of
IoNT infrastructure to be aware of who will have access to
their data and how it will be used. A secure site must be used
to keep the obtained data, and cutting-edge cyber-security
methods must be used. If left unattended, cybercriminals
may gain unauthorized access to this private information.
Users may be interested in finding out who might be held
accountable for a cyber-security assault and what mitigating
measures can be taken. Therefore, before IoNT devices are
mass produced and used, these difficulties need to be taken
into account by IoNT developers. A significant obstacle in the
development of biomedical nanosensors is compatibility. The

bodies of patients should not be adversely affected by these
microsensors, and theymust support continuous connectivity
with wearable technology, according to developers. Designers
and developers may need to look for and investigate a wide
variety of materials that can be suitable with the human body
for this purpose. However, locating such materials will neces-
sitate considerable testing, which will add time and risk of
error to the process. A high level of precision of the proposed
system in this research work is achieved by the efficient
fusion of intelligent technologies in the form of DL, edge
computing, and nanorobots. However, inference runtime per-
formance is still an issue for real-time disease detection. The
creation of hybrid systems that combine advanced DL [43,44],
decomposition [45], and optimization [46] to enhance the
performance of the developed system in this research work
could be a promising direction. Exploring efficient data

Figure 4: GradCam of IoNR-DD solution.
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representation to efficiently learn from multi-modalities might
also result in systems with high precision [47].

6 Conclusion

In this study, we show the fusion of DL and nanotech-
nology, which presents an exciting opportunity to revolu-
tionize crucial aspects of nanoscience and technology. This
partnership has the potential to catalyze significant break-
throughs in crafting innovative materials, devising cutting-
edge devices, and developing transformative applications,
unleashing unprecedented possibilities. In this sense, we
developed a framework for intelligent computing lever-
aging the IoNT deployed in user-edge environments. Using
edge nodes, we facilitated the collection and generation of
alerts for various disease detection issues by deploying cut-
ting-edge DL applications at the edge. This approach ensures
user data privacy, security, and low latency through an edge-
computing architecture. Additionally, XAI was employed to
enhance trust by offering transparent insights into our
model’s decision-making process, empowering clinicians to
comprehend and validate diagnostic outcomes effectively,
thereby enhancing patient care. The provision of in-home
healthcare and symptom management represents a crucial
advancement in healthcare support, particularly amidst
pandemics where access to specialist physicians is limited
and travel restrictions are imposed, especially impacting the
elderly population. The results on Kvasir dataset validated
the applicability of the proposed solution compared to the
state-of-the-art disease detection-based methods.
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