
1

Ensemble Learning and Pruning for Image

Classification in Maritime Management Systems

Candidate name: Niusha Mesgaribarzi

University of South-Eastern Norway
Faculty of Technology, Natural Sciences and Maritime Sciences

MASTER THESIS

May 2024

2

Abstract

In this thesis, the exploration of how maritime management systems can be optimized is

considered, and it also revisits cutting-edge deep learning architectures based on ensemble

learning techniques. Within the analysis and application of deep learning approaches, the study

aims to fill gaps in maritime system methodologies. Those are: 1) Customizing more deep

learning models for different maritime operations; and 2) Innovative ensemble learning can

improve model performance and accuracy. A novel framework combining ensemble learning with

pruning techniques is presented in this study. The goal of the framework is to improve efficient

model selection while minimizing computational resource needs. Following diverse testing

environments, for methodological assessment and considering various deep learning architectures

within marine and maritime datasets, Kaggle’s public datasets platform is used. In this study, the

consideration is given to enhancing ensemble models through strategic pruning. To create a more

efficient predictive system, this involves carefully selecting and combining individual models

within the ensemble. This approach proves effective across various marine and maritime

situations, demonstrating its adaptability to different requirements. By offering innovative AI-

based solutions for decision support and operational optimization, this study also contributes to

maritime management systems, while the findings and methodologies proposed open avenues for

future research and development in this area.

Several contributions offered by this thesis. First, covering topics from machine learning to deep

learning, focusing on convolutional neural networks, and progressing towards ensemble learning

and pruning techniques as a literature review. Secondly, the “Maritime mAnaGement eNsemble

leArning sysTem (MAGNAT)” and the “Maritime mAnaGement eNsemble prUrning sysTem

(MAGNUT) are proposed as two novel frameworks and strategies for enhancing model selection

and performance optimization in maritime management systems. MAGNAT uses an ensemble

aggregation strategy by assigning weighted factors based on their historical performance.

MAGNUT is also an intelligent aggregation strategy that combines ensemble and pruning

techniques to identify the minimal subset of nonredundant models within the ensemble. Thirdly,

a diverse range of maritime datasets, including jellyfish datasets relevant to marine science and

ship datasets related to maritime technology, is utilized for practical evaluation and calculation of

the efficiency results presented in the thesis, along with hands-on Python programming.

3

Keywords

Deep Learning (DL)

Convolution Neural Networks (CCN)

Artificial Intelligence (AI)

Image Classification

Aggregating Models

Ensemble Learning

Ensemble Pruning

4

Acknowledgment

I would like to express my sincere gratitude to Associate Professor Djenouri, my

supervisor, for his support, guidance, and availability throughout the entirety of my master’s thesis

journey. Special appreciation is extended to Nabil Belbachir, my co-supervisor at NORCE

(Norwegian Research Center), who is sharing his feedback for improving the quality of my work.

I am grateful to all members of the “SMAUG: Smart Maritime And Underwater Guardian”

project available at https://smaug-horizon.eu/ for providing me with the opportunity to collaborate

and work alongside them on this project, supporting my research activities throughout my

master’s thesis period. The shared experiences and collective effort have greatly enriched my

academic and research endeavours. Additionally, I am thankful to SMAUG for offering me the

opportunity to begin my career in academia as a student research assistant at USN.

I extend my heartfelt thanks to my family, including my father, mother, and especially my

sister, who has always been my rock, for their unwavering support and love throughout my

master’s studies and during the writing process of my master’s thesis. Special appreciation goes

to my husband for his motivation and encouragement throughout my studies and thesis writing.

Lastly, I am grateful to my dear friend, Mahtab, for her continuous support throughout this study

and my master’s thesis activities.

 I am thankful to all who have directly and indirectly supported me, playing an integral

role in this academic endeavour and contributing to the successful completion of my master’s

thesis. Last but not least, to mention that I utilized ChatGPT and Grammarly for grammar

correction and further improvement of my writing.

https://smaug-horizon.eu/

5

Table of Contents

Abstract ………………………………………………………………………………………….2

Acknowledgment ... 4

Chapter 1: Introduction .. 12

1.1. Research Background And Motivation ... 13

1.2. Research Questions .. 14

1.3. Research Purpose ... 14

1.4. Research Scope .. 15

1.5. Research Structure and Contents ... 15

Chapter 2: Literature Review (PART I), Machine Learning For Image Classification 17

2.1. Introduction... 17

2.2. Difference Between Conventional Machine Learning And Deep Learning

Approach .. 18

2.3. Conventional Machine Learning ... 19

2.3.1. Feature Extraction ... 19

2.3.2. Classifier .. 23

2.4. Deep Learning .. 27

2.4.1. Type Of Layer: ... 30

2.4.2. Filter Hyperparameters .. 31

2.4.3. Dimensions of a Filter ... 32

2.4.4. Stride ... 32

2.4.5. Zero-Padding ... 33

2.4.6. Architectural Design In CNN .. 33

2.5. Image Classification In Maritime Applications ... 37

2.6. Conclusion .. 38

Chapter 3: Literature review (PART II), Ensemble Learning and Pruning 40

3.1 Introduction... 40

3.2 Problem Definitions ... 40

3.3 Ensemble Learning Techniques ... 42

3.3.1 Bootstrap Aggregating (Bagging) .. 43

3.3.2 Boosting ... 44

3.3.3 Stacking.. 46

6

3.3.4 Gradient Boosting .. 48

3.4 Ensemble Pruning Techniques ... 49

3.4.1 Dynamic Model Selection.. 50

3.4.2 Model Pruning By Diversity .. 52

3.4.3 Ensemble Learning .. 56

3.4.4 Ensemble Pruning .. 57

3.5 Conclusion .. 57

Chapter 4: Methodology Design (MAGNAT and MAGNUT) .. 59

4.1 Introduction... 59

4.2 Explanation of Research Questions ... 59

4.3 Data Preprocessing .. 60

4.3.1 Resizing Images ... 61

4.3.2 Normalization .. 62

4.3.3 Image Conversion to Grayscale ... 62

4.4 Single-based Solution .. 63

4.5 Maritime mAnaGement eNsemble leArning sysTem (MAGNAT) 70

4.5.1 Ensemble Aggregation ... 71

4.6 Maritime mAnaGement eNsemble prUrning sysTem (MAGNUT) 72

4.6.1 Knowledge Base Creation.. 73

4.6.2 Intelligent Aggregation: ... 73

4.7 Challenges And Discussions .. 77

4.8 Conclusion .. 78

Chapter 5: Experiments ... 80

5.1 Introduction... 80

5.2 Dataset Description .. 80

5.2.1 Jellyfish Dataset ... 80

5.2.2 Ship Dataset ... 81

5.3 Model Visualizations ... 82

5.4 Performance Evaluation .. 83

5.4.1 Evaluation of the models on the Jellyfish dataset. 84

5.4.2 Evaluation of the models on the ship dataset ... 87

5.5 Further Results ... 88

7

5.5.1 Advanced Model Architecture ... 88

5.5.2 Result Of Using Advanced Models On The Jellyfish Dataset 92

5.5.3 Result Of Using Advanced Models On The Ship Dataset 92

5.6 Conclusion .. 93

Chapter 6: Conclusion and Future Perspective .. 94

6.1 Master Thesis Summary And Conclusions ... 94

6.2 Answering Research Questions ... 97

6.3 Related Scientific Publications .. 98

References .. 99

8

List of Figures

Figure 1. Training of a model in ML ... 19

Figure 2. Decision-making for test data ... 19

Figure 3. Scaling and blurring in SIFT .. 21

Figure 4. Keypoints detected by the ORB ... 22

Figure 5. SVM binary classification .. 24

Figure 6. Decision boundaries in k-NN algorithm... 25

Figure 7. Matrices Illustrating L1 Distance Calculation for k-NN Classification 26

Figure 8. Artificial Neural Network (ANN) consists of three layers 27

Figure 9. General ANN architecture .. 28

Figure 10. General CNN architecture .. 29

Figure 11. General RNN architecture .. 29

Figure 12. CNN Illustration ... 30

Figure 13. Using the kernel to feature the input data ... 31

Figure 14. K filters with size F * F redrawn from ... 32

Figure 15. Stride movement ... 32

Figure 16. AlexNet Architecture .. 34

Figure 17. ResNet Blocks .. 35

Figure 18. Architecture of ResNet34 ... 35

Figure 19. ResNet’s Shortcut Connections for Information Flow 35

Figure 20. DenseNet block feature concatenation ... 36

Figure 21. DenseNet architecture with three Dense blocks and transition layers 37

Figure 22. Bagging... 43

Figure 23. bagging technique, ensemble models are trained on bootstrap 44

Figure 24. Boosting technique ... 45

Figure 25. Sequential training of weak learners in Boosting with Weighted Voting 45

Figure 26. Stacking technique: Meta-model trained on Base Models’ predictions 47

Figure 27. Gradient Boosting: Each new model predicts Residual Errors of previous

model.. 49

Figure 28. Adaptive weighting in ensemble pruning for dense neural network 51

Figure 29. Model pruning by diverse ... 53

9

Figure 30. Illustration of Resizing Process .. 61

Figure 31. Python code of the normalization process .. 62

Figure 32. RGB image with its greyscale .. 63

Figure 33. Architecture Design of the first CNN model .. 65

Figure 34. Source Code of the first CNN model ... 66

Figure 35.Source Code of the second CNN model .. 67

Figure 36.Source Code of the third CNN model ... 68

Figure 37.Source Code of the fourth CNN model ... 69

Figure 38.Source Code of the fifth CNN model .. 70

Figure 39. Ensemble model Framework .. 71

Figure 40.Ensemble Pruning Framework .. 72

Figure 41.Knowledge Base Created for the Five Models .. 73

Figure 42. Knowledge base creation for the search of tree exploration 76

Figure 43. Example of search of tree exploration .. 77

Figure 44. Dataset illustration on different fish classes ... 81

Figure 45. Ship dataset ... 82

Figure 46. Netron Software (Roeder, n.d.) .. 83

Figure 47. Model visualization using Netron (from the left to right, Model-1, Model-2,

Model-3, Model-4, Model-5) ... 83

Figure 48. Illustration of test in MNIST dataset .. 87

Figure 49. Advanced models architecture, drawn by Netron (Roeder, n.d.) 91

10

List Of Tables

Table 1. Accuracy performance with different shape sizes of jellyfish images 84

Table 2. Accuracy of models on jellyfish dataset with epoch 50 with 128x128 image

size, and 132 batch size .. 85

Table 3. Accuracy of the VGG16 Model on the Jellyfish Dataset (Epoch: 50, Image Size:

224x224, Batch Size: 132) ... 85

Table 4. Accuracy Comparison of Five Models on the MNIST Dataset (Fixed

Parameters: Epoch: 100, Batch Size: 32, Image Size: 28x28) .. 86

Table 5. Accuracy of the models with the ship dataset .. 88

Table 6. Comparison of advanced and old model accuracy on jellyfish dataset. 92

Table 7. Comparison of advanced and old model accuracy on ship dataset 93

11

List Of Abbreviations

1. Two Dimensional (2D)

2. Artificial Intelligence (AI)

3. Artificial Neural Network (ANN)

4. Artificial Neural Networks (ANNs)

5. Convolutional Neural Network (CNN)

6. Convolutional Neural Networks (CNNs)

7. Bootstrap Aggregating (Bagging)

8. Deep Learning (DL)

9. Fully Connected Layer (FCL)

10. Fully Connected Layers (FCLs)

11. Global Average Pooling (GAP)

12. Machine Learning (ML)

13. Maritime Management Ensemble Learning System (MAGNAT)

14. Maritime Management Ensemble Pruning System (MAGNUT)

15. Rotated BRIEF (ORB)

16. Research Question 1 (RQ1)

17. Research Question 2 (RQ2)

18. Red, Green and Blue (RGB)

19. Scale-Invariant Feature Transform (SIFT)

20. Smart Maritime And Underwater Guardian (SMAUG)

21. Support Vector Machine (SVM)

22. SURF (Speeded-Up Robust Features)

23. Visible Maritime Image (VMI)

12

Chapter 1: Introduction

The maritime industry usually sticks to its traditional ways. These days by using new

digital tools such as Artificial Intelligence (AI) and Machine Learning (ML), this field has taken

a big step to make itself more digitalized. AI is changing how the ship works and it shows why it

is important (Chin & Venkateshkumar, 2022).

Despite big advances, there is still a big gap in fully using AI and machine learning in

many maritime tasks. With most of our planet covered by water and most goods transported by

sea, it is crucial to come up with new tech solutions. For example, as self-operating technology

gets better, projects like self-driving ferries show the urgent need for systems that can

understand sea environments well, where deep learning can be very helpful.

AI is important for managing the complex issues of eco-friendly shipping and overall

digital changes in the shipping industry. However, challenges remain, like the need for skilled

data experts and the intense computer work needed for tasks such as data labelling in machine

learning. It is also important that everyone can see how these AI systems make predictions, which

calls for a team skilled in both tech and legal issues.

Deep learning, a key development in machine learning, is crucial for creating smart

maritime systems. It is used in many parts of maritime science and tech, like detecting objects

and avoiding collisions. Deep learning uses remote sensing, which is very important for keeping

an eye on the environment, securing marine areas, and for business (Chin & Venkateshkumar,

2022; LI et al., 2021). But, the variety in ship designs and environmental conditions brings many

challenges.

Ensemble learning, which utilizes multiple methods together to enhance accuracy, seems

like an interesting solution for overcoming these issues. By combining strengths and reducing

weaknesses of various methods, ensemble learning tries to work well with different types of data.

However, these methods can be demanding in terms of time and memory.

This study focuses on ensemble pruning, a technique to make multiple models work better

together by removing fewer effective parts. This helps make better decisions and use resources

more efficiently in managing maritime activities. This research aims to show how AI and machine

13

learning, especially deep learning and ensemble methods, are changing the shipping industry. It

looks to address technical problems and find new ways to improve the efficiency, accuracy, and

flexibility of maritime operations and technologies. The findings could also be useful in other

academic areas and industries.

1.1. Research Background And Motivation

Across vast oceans, the maritime industry relies on ships as primary transportation tools.

For strategic decision-making and real-time battlefield awareness in various operational

environments, Ship detection and classification are crucial. Advancements in remote sensing

imaging technology have led to increased interest in marine target detection and classification,

making monitoring the wide sea surface feasible. In both military and civilian domains, these

techniques hold significant application value. They are used for supervising marine resources,

military patrols, and territorial rights protection. In observing dynamic surface changes, optical

remote sensing images play a vital role. They are essential for future research and development

in ship detection and classification (LI et al., 2021).

AI research has changed. It used to copy human decisions. Now, it does things that were

thought impossible before. Since 2012, people have been studying big data and AI more.

Especially for autonomous ships, they are using AI to change how maritime operations work

(Munim et al., 2020). Also, a transition towards innovative solutions in maritime transportation

is because of the rise of autonomous ships, ferries, and vehicles. This transition is facilitated by

improvement in sensing technologies such as lidars, radars, and cameras (Viken Grini, 2019).

One of the main reasons for the improvements in image classification and object detection

in recent years is the advancement of deep learning algorithms. This improvement has made more

people interested in using data from a distance to classify ships. This is important for monitoring

the environment, ensuring maritime security, and for commercial purposes (Chávez et al., 2024;

Chin & Venkateshkumar, 2022). However, ships come in many different types, which can be

challenging. Ensemble learning helps by combining many classifiers to improve accuracy and

performance. Even though ensemble learning requires a lot of computational demands, it can

really improve decision-making and operational efficiency in maritime management (Yan et al.,

2022),(Wang et al., 2021),(Salem et al., 2023).

14

Using an ensemble approach provides a potential solution to exceed the predictive

capabilities of any single model. This is done by using the combined strengths of various methods.

This strategy enhances the stability and adaptability of the ensemble to different data types. It

balances out individual weaknesses of the methods involved (Yan et al., 2022),(Wang et al.,

2021),(Salem et al., 2023). Each method within the ensemble uses a unique strategy. This

contributes to a robust and reliable predictive model. The computational complexity of ensemble

classifiers increases linearly with the number of base models. This means that the cost of

computation goes up as the number of models used goes up. Choosing the right base models is

really important. It affects how complicated the computations are. So, ensemble learning has two

main challenges. These challenges are explained in the research question. This research ultimately

aims to optimize model selection in maritime management. This will make decisions better and

work faster in a field where making good decisions is very important.

1.2. Research Questions

Research Question 1 (RQ1)

 How can demanding resource requirements, leading to substantial computational time

and memory consumption in loading and executing individual models during the inference

phase of ensemble learning, be effectively addressed?

Research Question 2 (RQ2)

 How can ensemble learning models effectively address the challenge of potential

detrimental effects caused by specific models within the ensemble, ensuring cooperative

dynamics enhance rather than obstruct overall learning outcomes and performance

improvements in their intended applications?

1.3. Research Purpose

The author’s purpose is to explore ensemble pruning to remove the models that are not

necessary in the group. The author is interested in designing an intelligent solution to make

multiple models work together better in the ensemble. This is done by selectively pruning those

components that contribute less effectively to the overall task. This ensemble pruning

methodology works to make the decision-making process more efficient. It also helps improve

15

resource allocation in maritime management scenarios. This new model combines the strengths

of ensemble learning with a strategic pruning mechanism. It finds and keeps the most important

parts. It also gets rid of or reduces the effect of less important ones. The model seeks to achieve

a higher level of precision by this action. It also works to achieve greater efficiency and

adaptability in dealing with the complexities of maritime management tasks. This innovation

represents a significant advancement in the field of maritime management. It provides a better

and faster way to make decisions and improve operations in maritime settings.

1.4. Research Scope

This study is in support of the SMAUG project (https://smaug-horizon.eu/) and the

DARWIN group (https://www.norceresearch.no/en/research-group/darwin) at NORCE. SMAUG

is a project funded by Horizon Europe that focuses on maritime safety and security. It comprises

several work packages. The author works as a student research assistant at the University of

Southeastern Norway (USN), primarily involved in work package 5. The goal is to develop an

intelligent solution based on advanced deep-learning architectures for detecting abnormal objects

in the sea. The author will utilize a novel framework explained in this study within the SMAUG

project, employing ensemble pruning techniques to enhance model efficiency and performance.

1.5. Research Structure and Contents

The next chapter’s structure is as follows: Chapters 2 and 3 explore the current state of

research in ML and DL with a focus on ensemble learning and pruning. They highlight the

research need and identify gaps through a literature review. Chapter 4 details the MAGNAT and

MAGNUT solutions proposed in this master’s thesis, which are among the main contributions.

Chapter 5 presents experimental results on the proposed solutions using various maritime

datasets, including fish as an example of marine and maritime science and ships as examples of

maritime technology. Chapter 6 summarizes the findings and proposes future research directions,

as well as presenting the scientific publication of the author related to this thesis.

The following chapters’ contents include: Firstly, each chapter provides a chapter

conclusion to offer a brief overview and summary, as well as an introduction at the beginning of

each chapter. Secondly, all figures, tables, and equations in this thesis indicate their sources,

whether directly or indirectly used, using terms such as “taken from,” “redrawn from,” and

https://smaug-horizon.eu/
https://www.norceresearch.no/en/research-group/darwin

16

“extracted from,” in adherence to authorship rules. Lastly, the Python programming codes used

for generating results and evaluations in the paper are not mentioned in this report, as per the

expectations of the supervisor and project requirements.

17

Chapter 2: Literature Review (PART I), Machine Learning For

Image Classification

The chapter first introduces the main concepts focused on ML and advanced ML which is

called DL for image classification. It starts with the main difference between them. Then the ML

approaches from scratch by dividing them into two main steps, feature extraction and classifiers

are reviewed. For each of the steps, popular algorithms are explained. After ML, Special analysis

has been done on DL. Convolutional Neural Networks (CNNs) which are the main objective of

the paper related to Image Classification are summarized in detail. Then popular architectures

that are based on CNN are described. Some research papers that have been conducted on the

classification of ships with different algorithms are conducted. The last part of the chapter is a

summary.

2.1. Introduction

The AI study in the scope of maritime management systems has become an important

topic for several research studies. Notably, the application of DL, a subset of AI, has increased its

position as a means of addressing many challenges within the context of the marine area. In this

chapter, we will discover significant studies on ML and deep DL which are the subsets of AI, with

specific attention on image classification. Image classification is a key task in computer vision

where images are arranged into predefined categories. It places the source for other tasks similar

to localization, detection, and classifier in computer vision (Li et al., 2015). While humans

understand this task quite upfront, it creates substantial challenges for automated systems. By

studying previous ML algorithms and considering their challenges, we develop an understanding

of the signs of progress in the DL domain, particularly as they are used for image recognition.

This review goal is to put together studies that demonstrate the growth of these technologies in

image classification, presenting how learning from previous algorithmic challenges has directed

an important advancement in this particular domain and how researchers used a subset of AI in

image recognition, particularly in marine applications.

18

2.2. Difference Between Conventional Machine Learning And Deep Learning

Approach

Conventional machine learning and DL methods are two famous subfields of AI with

different methodologies and capabilities.

In conventional machine learning, human specialists are accountable for choosing and

curating the features of data that the machine studies. This process needs human involvement to

recognize the related pieces of data for training the machine (Munoz, 2017). On the contrary, in

DL, the computer autonomously distinguishes which parts of the data are important for learning,

removing the necessity for understandable feature selection by humans (L.Hosch, 2023). This

autonomous feature extraction ability builds DL mostly proficient at handling complicated and

massive datasets (L.Hosch, 2023).

DL is a sophisticated ML method that empowers machines to automatically extract

understandable insights from raw data. In contrast to traditional ML methods, DL frequently

provides greater outcomes due to its capability to capture complex patterns and relationships in

data (Setiowati et al., 2017). The essential tool in DL is the deep neural network, which contains

numerous layers capable of learning complicated mappings between input and output data

(LeCun et al., 2015).

Both conventional machine learning and DL work with supervised and unsupervised

learning techniques. In supervised learning, the machine studies from labelled training data to

forecast results or answer certain problems (Setiowati et al., 2017). On the contrary, in

unsupervised learning, the machine must distinguish patterns or structures within unlabelled data

without the direction of predefined labels (Chauhan & Singh, 2018a; Setiowati et al., 2017).

The difference between conventional machine learning and DL methods falls into one of

the famous benefits of DL: its capability to avoid the necessity for manual feature engineering, a

labour-intensive task common in conventional machine learning. Unlike conventional machine

learning, DL models can autonomously recognize related features from raw data, process them,

and make decisions based on learned illustrations (LeCun et al., 2015; M. Geetha & Neena

Aloysius, 2017, p. 7). Also, DL achieves fine when handling complicated and massive data

(L.Hosch, 2023).

19

2.3. Conventional Machine Learning

ML, as described by Arthur L (1959) and extended by Chauhan and Singh (2018), is a

domain of AI that works without explicit programming (Chauhan & Singh, 2018a; L. Samuel,

1959). It is based on the computational concept of learning within AI, creating the groundwork

for its methodologies. Within ML, algorithms are trained to utilize raw data. These algorithms

employ training utilizing the provided data, empowering them to create predictions based on the

learned patterns and relationships, as mentioned by Kohavi (1998) and more emphasized by

Chauhan and Singh (Chauhan & Singh, 2018b; Kohavi, 1998).

Conventional machine learning algorithms conform to a process where they are trained

utilizing existing data, resulting in the making of a trained model, shown in Figure 1. This model,

having been pre-trained, is then used to distinguish and classify test data, as shown in Figure 2

(Chauhan & Singh, 2018c).

Figure 1. Training of a model in ML redrawn from (Chauhan & Singh, 2018c)

Figure 2. Decision-making for test data redrawn from (Chauhan & Singh, 2018c)

In the next, we will revisit some of the ML algorithms included with two steps: “Feature

Extraction,” and “Classifier.”

2.3.1. Feature Extraction

Feature extraction is a computing process that analyses image data to recognize particular

patterns, edges, textures, or additional characteristics that are valuable at each point in the image

(Subasi, 2019). This process is critical in computer vision, with its importance increasing across

numerous fields. An operative feature detection method should be qualified to deal with image

transformations such as rotation, scaling, changes in lighting, noise, and affine transformations

20

(Karami et al., 2017). In the next, we will discover the three famous methods for feature extraction

from images: “Scale-Invariant Feature Transform (SIFT),” “Oriented FAST and Rotated BRIEF

(ORB),” and “Speeded-Up Robust Features (SURF).”

a. Scale-Invariant Feature Transform

The SIFT algorithm is one of the solid computer vision techniques. This algorithm is used

for detecting and describing features within images. It works by identifying the main points in an

image that leftovers specific despite changes in scale, rotation, or transformation (Lorencin et al.,

2021). These main points are detected based on their brightness and are categorized by brief

descriptors, including information about nearby image details. This competence empowers

several applications such as image matching, object recognition, and image retrieval.

In computer vision, a mutual problem is recognizing objects in images that exhibit rotation

or are taken from diverse angles and scales. The SIFT algorithm relates to the challenges by

pinpointing precise points, identified as “key points,” within an image. These key points hold

their individuality even under resizing or rotation, making them priceless for a multitude of

computer vision responsibilities. SIFT features help as descriptors during model training with

images. A substantial benefit of SIFT features, compared to others, is their consistency across

diverse image sizes and orientations (Lowe, 2004).

To demonstrate the SIFT process, consider a set of images showing an object from

numerous angles and sizes, each image blurred to different extents utilizing Gaussian blur. Figure

3 shows the four-time scales of the image, and for each scale, the image has to be blurred five

times. These blurred images are then subtracted, resulting in a stack of images where extreme

points, highlighting of key points, and stand out. This process is presented not only for a single

image resolution but also for an image pyramid, containing of images scaled dissimilarly to

recognize key points across various scales.

The subsequent step includes making descriptors by analyzing the local neighborhoods of

the key points. Gradients within these neighborhoods are computed, building robustness against

rich changes and individual viewpoint modifications. By aggregating these gradients into

histograms and perceiving their incidence and magnitude within local regions, a descriptor vector

is shaped around each key point in a four-by-four region. This descriptor vector successfully

21

categorizes the local key points. However, one substantial downside of the SIFT algorithm is its

high computational cost, which requires considerable computing power and resources to function

efficiently. Accordingly, researchers are continuously discovering other methods that propose

similar performance while demanding less computational resources (Bay et al., 2008).

Figure 3. Scaling and blurring in SIFT extracted idea from (Lowe, 2004)

b. Oriented FAST And Rotated BRIEF

The Oriented FAST and ORB algorithm established in the OpenCV labs. This algorithm

offers as an effective option to SIFT, offering comparable feature detection while surpassing it in

speed and robustness to noise. Also, ORB presents a cost-effective solution, particularly

considering patent considerations, serving as a viable substitute for both SIFT and SURF (Rublee

et al., 2011).

Combining the FAST key point detector and BRIEF descriptor, ORB incorporates several

enhancements to enhance its performance. Initially, it employs the FAST algorithm to identify

key points. FAST evaluates the brightness of a given pixel “p” in comparison to its surrounding

pixels arranged in a small circle, categorizing them as lighter, darker, or similar to “p.” If more

than 9 pixels fall into the darker or brighter categories, “p” is selected as a key point. Figure 4

shows an example of some key points that the ORB detects. ORB also adopts a pyramid structure

First Octave

Second Octave

Third Octave

Fourth Octave

22

to generate multi-scale features, where each level in the pyramid represents the image at different

resolutions. After constructing the pyramid, ORB utilizes the FAST algorithm to detect key points

at each level, enabling the identification of key points at various scales and imparting partial scale

invariance to the algorithm. However, a limitation arises as FAST does not compute orientation.

To address this issue, ORB utilizes the intensity centroid to detect intensity changes. This

approach assumes that the intensity of a corner is offset from its center, and the resultant vector

is employed to infer the orientation of key points (Rublee et al., 2011).

Figure 4. Keypoints detected by the ORB extracted idea from (Rublee et al., 2011)

c. Speeded-Up Robust Features

SURF proposes a feature extraction algorithm in computer vision and image processing.

This algorithm suggests an alternative option to methods like SIFT in terms of speed and

repeatability of detector and descriptor. Advanced for real-time applications and resource-

constrained situations, SURF reaches computational efficiency through the operation of integral

images and box filters. Similar to SIFT, SURF keeps scale and rotation invariance. SURF

empowers it to recognize and match features despite variations in object size or orientation. SURF

uses a descriptor that mixes information about image intensity and gradient orientation

distribution. This descriptor, more computationally resourceful than SIFT descriptors,

collaborates with the whole effectiveness of the algorithm. In the detection of interest points,

23

SURF works with the Hessian matrix. SURF operates the identification of regions with

substantial intensity variations that possibly correspond to distinguished features. Furthermore,

the practice of SURF may be focused on patents, and compliance with licensing attention might

be needed for commercial applications. The computer vision area is frequently growing, and there

may be fresher advances or replacements in feature extraction algorithms (Bay et al., 2008).

2.3.2. Classifier

Classifiers are algorithms that works on assigning labels or categories to input data based

on the patterns they study from the training data. In the subsequent discussion, we will discover

three of the most popular methods for classifiers used with images: “Support Vector Machine

(SVM),” “k-Nearest Neighbors (k-NN),” and “Artificial Neural Networks (ANNs).”

a. Support Vector Machine

SVM is considered a supervised learning system used for both regression and classification

responsibilities (Cortes & Vapnik, 1995, pp. 273–297). Renowned for its ability to provide clear

boundaries between different groups, SVM was originally designed for binary classifications,

separating data into two groups. Over time, scientists developed SVMs to incorporate further than

two groups, a methodology acknowledged as multiclass classification (Crammer & Singer, 2001).

An operative approach for multiclass challenges contains building a set of binary classifiers, each

understanding between one label and the remaining classes (Y.-C. Wu et al., 2008).

As shown in Figure 5, the SVM algorithm is described in a graphical format, where each point

describes a set of features cast off for classifying into two separate groups. Those groups are

labeled as Class-1 (blue) and Class-2 (red). The figure illustrates an “Optimal Hyper Plane”—the

green line, which successfully separates the two classes through the training phase. The margin

is specified by the space between the hyperplane and the nearest data points from both classes.

The margin plays a vital role in SVM’s training by confirming the maximum distance between

the plane and the data points, so minimizing classification errors. Through the test phase, this

optimal hyperplane is utilized to categorize new data points. That demonstrates the robustness of

SVM in dealing with binary classifications.

24

Figure 5. SVM binary classification extracted idea from (Cortes & Vapnik, 1995, pp. 273–297)

b. k-Nearest Neighbors

k-Nearest Neighbors (k-NN) is an upfront algorithm classified under supervised ML. It

requires learning from a labeled training dataset, where both the input data (X) and their

corresponding labels (Y) are visible. Through this circumstance, the algorithm studies to associate

input data with their respective demanded outputs (Y). In this model, the whole trained dataset

works as a critical component, as the model understands the nuances of the training data. Through

prediction, the algorithm outputs a class based on the majority among the "K" nearest neighbors.

Once the model has assimilated the training dataset for prediction, it starts by calculating the

distance between the test image and all the images kept in the training dataset. This distance

measurement helps in finding the training images that closely resemble the test image (Damastuti

et al., 2019).

Based on the distance calculation, the model chooses the “K” training images that closely

resemble the test image, and the most similar one is selected for prediction. Each of the nearby

data points has a class label associated with it. As an example, if the classifying image is a ship,

each of these “K” neighbors might have labels such as “Cargo Ship,” “Carrier Ship,” or “Tanker

Ship” based on their illustration. Subsequently, the model counts the frequency of each class label

among the “K” neighbors, and the label with the uppermost frequency is assumed as the prediction

for the test image (M. Zhang et al., n.d.). Error! Reference source not found. indicates a 3-class c

25

lassification applying the K-NN algorithm with the k = 15 and uniform weights. Each point of

the plot defines a data point in the dataset, colored points concerning to their class. For example,

red points are considered into one category, blue points including to another category, and green

points are into the third category. The background color in the plot area is shaded presenting to

the k-NN prediction for that region. This offers how new data points would be classified based

on their location. The borders between these colors show where the k-NN algorithm changes its

prediction from one class to another proving the decision boundaries created based on the

closeness of the 15 nearest neighbors.

 The distance between the test data point and the trained data point is named the distance

metric. This distance calculation allows k-NN to specify which training data points are in nearness

to the test data point (M. Zhang et al., n.d.). The election of distance metric is critical. This election

may affect the performance of the k-NN algorithm and how it clusters data points into

"neighborhoods" (Bir, 2019; Cunningham & Delany, 2021; Z. Zhang, 2016). Figure 7

demonstrates how the L1 distance metric is utilized within the k-NN algorithm. The figure

displays three matrices introducing diverse points in a two-dimensional space. The figure shows

each matrix demonstrating values that correspond to features of distinct data points. The L1

distance between these points is measured by adding the differences of their corresponding

features. For example, to measure the L1 distance between the first and second data points, the

absolute differences between corresponding entries of the matrices are computed and added. In

this figure, the goal is to visualize how closer feature values specify closeness between points in

feature space, which k-NN uses to find the “neighborhood” of a data point for classification.

Figure 6. Decision boundaries in k-NN algorithm taken form (Bir, 2019)

3-Class classification (k = 15, weights = uniform)

26

Figure 7. Matrices Illustrating L1 Distance Calculation for k-NN Classification taken from (H. Zhang & Fan, 2020)

c. Artificial Neural Networks

 ANNs introduce another family of ML models broadly applied in image classification. That

might often be considered under the umbrella of DL technologies. Modelled after the operations

of the human brain, ANNs encompass three main sets of units or layers. Those are input, hidden,

and output, as shown in Figure 8. In this model, the input layer is located at the highest of the

network to obtain incoming data. Although the output layer exists at the top level. That layer

generates results such as probability distributions including all possible classes. The hidden layer

shows between the input and output layers, where information is processed through

interconnected layers of nodes or neurons, as depicted in Figure 9. Training ANNs usually contain

backpropagation, a technique that regulates the connection weights between neurons to diminish

a loss function, calculating the inequality between predicted and accurate outputs. The

backpropagation algorithm computes gradients of the loss function based on the weights and uses

them to update the weights. Though, ANNs face troubles in image classification tasks. One

important challenge is that ANNs assume each pixel as an independent feature, possibly

overlooking spatial associations between pixels and regions within an image. Accordingly, ANNs

may struggle with identifying complicated patterns or objects. As they may fail to recognise the

interconnection of several parts considering to the same object. To fall into these restrictions,

CNNs have arisen as improvements in the field of neural networks and ML, as depicted in Figure

10. CNNs incorporate particular layers and mechanisms, such as convolutional layers, qualifying

them to capture spatial patterns crucial for image classification (Qamar & Zardari, 2023; P.

Sharma, 2023).

56 23 20

Training Image Pixel-wise absolute value differencesTest Image

27

Figure 8. Artificial Neural Network (ANN) consists of three layers extracted idea from (Shiruru, 2016)

2.4. Deep Learning

DL has lately increased consideration in the field of AI. One of the key downsides of

conventional machine learning is a struggle with the selectivity invariance issue. It is hard to

figure out which features in the data encompass respected information and which ones are less

significant. Nominated data should be well-defined from each other, and traditional ML methods

occasionally struggle with it. This trouble inspires scientists to discover DL as an advancement in

ML. DL is branded as representation learning. DL is considered with various layers. Utilizing

nonlinear models that convert the raw data into higher-level abstractions for the process of

creating decisions. DL can make the process of finding the solution easier for complicated and

non-linear functions (Ramachandran et al., 2015). This model efforts on feature learning

automatically which proposes modularity and transfer learning capability. As the name presents

DL regularly includes architectures with deep layers. Opposite to conventional machine learning,

DL wants a huge volume of data to efficiently train a neural network.

The most famous DL is the Convolutional Neural Network (CNN) and Recurrent Neural

Network (RNN) (Sherstinsky, 2020). CNN is usually used for imagery classification, while RNN

is used for time-variant difficulties such as speed recognition as depicted in Figure 11 (Hoffmann

et al., 2017). As CNN is used for image classification, it will be studied in the upcoming section.

CNN model can also be considered for object recognition, text recognition, object detection

Hidden LayerInput Output

28

(Jaderberg et al., 2014), sense labelling (Farabet et al., 2012), and numerous other applications

(Nithin & Sivakumar, 2015). This model is comparable to ANNs. In both CNNs and ANNs, the

hidden layers of neurons are mainly connected to the previous layers. However, CNNs are mostly

considered and used for tasks associated with pattern recognition within images. They shine at

capturing image-specific features. On the other hand, ANNs are more general-purpose and not

inherently focused on image-focused tasks. They can be useful for a broader range of data types

and tasks (O’Shea & Nash, 2015). It provides an opportunity to involve learning of features. Each

part of the CNN layer encompasses two or more dimensional Filters which are convoluted along

with the input of the layer. Deep Convolutional Networks are suited to finding both simple and

complicated data patterns (Munoz, 2014). These layers cooperate to learn from input data

operating CNNs more efficiently in tasks such as Image classification. Figure 12 presents an

instance of the CNN sequence to classify a ship, which starts with an image as input. This image

is proposed through diverse layers. As indicated in Figure 12, those layers include “a

convolutional layer,” “a pooling layer,” and “a fully connected layer (FCL).” Also, the output of

this system would be a label.

In the upcoming subsections, we will explain the components of CNNs in more detail.

Those include the “Type of Layer,” “Filter Hyperparameters,” and “Dimensions of a Filter,”

“Stride,” “Zero-padding,” and “Architectural Design in CNN.”

Figure 9. General ANN architecture taken from (Khruschev et al., 2022)

Hidden Layer n

Hidden Layer 1

Vector- like Input

Output

29

Figure 10. General CNN architecture taken from (Khruschev et al., 2022)

Figure 11. General RNN architecture taken from (Khruschev et al., 2022)

 u u

Fu e e er

 u er

 u er1

 rr i e i u

Array Like Input

Convolutional Layer 1

Convolutional Layer

Fully Connected Layer

Output

Vector- like Input

Hidden Layer 1

Hidden Layer

Output Layer

Output

30

Figure 12. CNN Illustration redrawn from (Reimers & Requena-Mesa, 2020)

2.4.1. Type Of Layer:

CNN contains diverse layers (Shi et al., 2019). Below, the three main layers are described:

“Convolutional Layer, “Pooling Layer,” and “Fully Connected Layer.”

a. Convolutional Layer

The Convolutional Layer is considered one of the key components within the CNN. This

layer performs the majority of computations. These layers, along with kernels (filters), perform

convolutions with input features. This results in the generation of a clear two-dimensional (2D)

activation map. This process provides a reduced number of features, gained through weight

sharing among neurons. The result supports the simplification of the network’s complexity.

(Fronzetti, 2019; Hinton et al., 2012). Training the CNN includes adjusting the weights of the

filters within the convolutional layer (O’Shea & Nash, 2015).

b. Pooling Layer

The Pooling Layer is one of the important components in CNNs. These layers are

frequently organised in a sequence along with convolutional layers. Pooling layers contribute to

reducing the spatial dimensions of image activation maps and simplifying the identification of

features without losing information. This results in an overall reduction of computational

complexity (Ren et al., 2019). Additionally, this layer addresses overfitting concerns and issues.

Notably, there exist numerous pooling operations. Average pooling and max pooling are among

the most common (Gallego et al., 2018). Maximum pooling returns the maximum value from the

Input Image Convolutional Layers Pooling layers Fully Connected layers

 rg
 i

 rrier
 i

 er
 i

 i i r
 i

Classes

31

portion of the image covered by the kernel. However, the average pooling returns the average of

all the values.

c. Fully Connected Layer

The FCL in CNN is a layer that every neuron in the layer is linked to every neuron in the

previous layer as depicted in Figure 12. It finds the output from the previous layers and operates

them to classify the input into different classes based on the training dataset. These layers work

on the flattened output from previous layers. Each input feature is connected to all neurons,

similar to traditional neural networks. This operation takes complex patterns and simplifies them.

These outputs help determine a pattern’s possibility of fitting into a precise category (Basha et al.,

2020).

2.4.2. Filter Hyperparameters

Filters are small matrixes that operate in extracting features from input data. Filters have

associated hyperparameters. These hyperparameters determine their behavior during the training

process. Filters are employed in the convolutional layer to illustrate how the filter can be applied

to the convolutional layer, as shown in Figure 13 (Hristov et al., 2019; O’Shea & Nash, 2015).

The process of applying a convolutional kernel with a size of (3,3) to input data to generate

convolved features is also depicted in Figure 13. By the corresponding numbers in the kernel

matrix, the input pixels in the matrix are multiplied. These products are accumulated together.

This produces a single output value for each position the kernel covers in the input matrix. As the

kernel slides over the entire input, this operation is repeated. This processes a feature map.

Figure 13. Using the kernel to feature the input data redrawn from (Panchal et al., 2023)

00111

01110

11100

01100

00110

101

010

101

434

Input Data Kernel Convolved Features

32

2.4.3. Dimensions of a Filter

The dimensions of each filter in a CNN are “𝐹×𝐹.” They are designed to process input

with C channels. An output volume with the dimensions “𝐹×𝐹×C” is generated when a filter of

this size is applied to the input volume. The depicted filters, denoted as “Filter 1,” “Filter 2,”

through “Filter K,” each conduct convolution operations. This is done on an input of size “𝐼×𝐼×C,”

as shown in Figure 14. The result of these operations from all the filters forms an output feature

map. It is commonly known as an activation map. The dimensions of this activation map are

“O×O×K.” Here, “K” represents the number of filters applied (Sert, 2020).

Figure 14. K filters with size F * F redrawn from (Sert, 2020)

2.4.4. Stride

CNNs propose several options to enhance performance and alleviate side effects. One

such option is the adjustment of the “stride” parameter (Albawi et al., 2017). Stride is symbolised

as “S” in Figure 15. This determines the number of pixels the convolutional or pooling window

moves after each operation (O’Shea & Nash, 2015). With this development governed by the stride

setting, it improvements pixel by pixel while applying a filter to an input (Zaniolo & Marques,

2020). Stride values can differ. That suggests flexibility in controlling the movement of the filter.

Figure 15 determines the result of setting the stride to 2. It showcases how the array shifts towards

the right side.

Figure 15. Stride movement redrawn from (Sert, 2020)

33

2.4.5. Zero-Padding

The potential loss of information located at the edges of the image is considered one of

the disadvantages of the convolution step. Such information is frequently lost due to it being only

captured as the filter slides across the image. A straightforward approach is to employ zero-

padding to indicate this issue efficiently. Zero-padding raises the process of adding extra rows

and columns of zeros to the edge of the input to extend the input size. The original content remains

unchanged. This technique is mutual in CNNs. The input image size has to be matched with the

filter size. (Albawi et al., 2017; Nguyen et al., 2019).

2.4.6. Architectural Design In CNN

For resolving the image classification issues, CNN-based architectures are important.

Alongside discussing CNN components, three popular architectures in this domain will be

discussed below: “AlexNet,” “ResNet,” and “DenseNet.”

a. AlexNet

AlexNet is one of the CNNs architectures. In 2012 in the ImageNet challenge, this

architecture gained the best performance. This architecture can learn features from data

automatically. For computer vision tasks, it does not involve designing features manually. The

other difference is that AlexNet is much deeper than LeNet. LeNet is a pioneering 7-level

convolutional network. It cannot process higher-resolution images due to the low number of

layers (Kuo, 2016). AlexNet architecture consists of five convolutional layers, as shown in Figure

16. It also includes three max-pooling layers, two normalization layers, two fully connected layers

(FCLs), and one softmax layer. AlexNet used ReLU, which is an activation function, for each of

these layers excluding the output layer. ReLU aims to speed up the training process by almost six

times. The dropout model within this architecture aims to prevent the overfitting of the

architecture. In addition, the ImageNet dataset is used to train the model. This dataset contains

almost 14 million images spanning a thousand classes (Anwar, 2022; Leonidas & Jie, 2021;

Saxena, 2021; Varshney, 2020).

34

Figure 16. AlexNet Architecture taken from (Varshney, 2020)

b. ResNet

In 2015, a Residual Network, or ResNet architecture, was proposed by researchers at

Microsoft Research introduced. Deep neural networks, when more layers are added, face the

Vanishing/Exploding gradient issue. This results in increased error rates. ResNet fights this

problem with skip connections. These links connect one layer’s activations to later layers,

skipping some layers in between, as shown in Figure 19. As shown in Figure 17, this method

makes residual blocks. ResNets are constructed by tapping these blocks on top of each other. Skip

connections help training by letting the network learn residual mappings instead of underlying

mappings as layers increase. This avoids gradient-related issues. ResNet-34 has 34 layers, and

this architecture was outlined in the paper (He et al., 2016). Its structure includes various types of

layers, as displayed in Figure 18. Initial convolutional layers capture low-level features. Residual

blocks introduce skip connections, allowing the addition of layer outputs to subsequent layers.

Intermediate layers between the blocks contribute to hierarchical feature learning. Towards the

network’s end, global average pooling (GAP) is applied to reduce spatial dimensions. This is

followed by a final FCL with softmax activation, commonly used for classification (He et al.,

2016). ResNet is suited at capturing different levels of features and dealing with gradient issues

during training. However, it becomes more complex and require more computing power because

of the skip connections. Also, the accuracy might stop improving and even start getting worse as

the network gets deeper (He et al., 2016; Leonidas & Jie, 2021; C. Zhang et al., 2021).

35

Figure 17. ResNet Blocks redrawn from (H. Wu et al., 2022)

Figure 18. Architecture of ResNet34 redrawn from (He et al., 2016)

Figure 19. ResNet’s Shortcut Connections for Information Flow extracted idea from (Huang et al., 2016)

c. DenseNet

DenseNet architecture was highlighted (Huang et al., 2016). This architecture is a DL

framework. This architecture allocates Dense Blocks. In these blocks, each layer’s output is

connected to every other layer in the same block. This enhances information flow and encourages

feature reuse, leading to better gradient flow, improved feature propagation, and more efficient

parameter usage (Huang et al., 2016). In other words, in a DenseNet, each layer gets input from

not only the layer before it but also directly from all the previous layers in the network, as shown

 7

2

g

Im
ag

e

 e e i e i

36

in Figure 20. Transition layers are important in DenseNet. They are placed between dense blocks,

as seen in Figure 21. These layers help control how many features are created and decrease the

number of parameters. Transition layers have a batch normalization layer, then a 1x1 convolution

layer, and finally a 2x2 average pooling layer. These layers work together to compress information

and decrease the size of the data. As the network goes on, it uses GAP when it finishes. This

process makes the size of the feature maps smaller. It ends up with just one value for each feature

map. This gives a condensed version of the whole input. This pooling step helps to summarize

the extracted features and get them ready for the final parts of the network. Bottleneck layers are

important parts of DenseNet architectures. These layers use 1x1 convolutions to make fewer

channels before using the 3x3 convolutions. This helps make the calculations less complex while

still keeping the capacity to represent things. Using bottleneck layers makes DenseNet models

work better for different computer vision tasks. This includes jobs like image classification and

object detection. In the picture of DenseNet architecture, there is a five-layer dense block depicted

in Figure 20. The process begins by taking input and doing convolution, batch normalization, and

convolution operations. All of these together make a feature map, which we call x2. Importantly,

this convolutional operation, combined with batch normalization, helps create x2. As the network

moves from x2 to x3, it is important to note that DenseNet’s dense connectivity plays a role. In

this transition, the model doesn t just use information from x2. It also brings together features

from earlier layers like x1, x0, and more. This connection happens through concatenation,

forming a strong link within the block (Huang et al., 2016).

Figure 20. DenseNet block feature concatenation taken from (Pradhan et al., 2024)

37

Figure 21. DenseNet architecture with three Dense blocks and transition layers redrawn from (Kumar et al., 2022)

2.5. Image Classification In Maritime Applications

There are a variety of maritime applications for image classification. In this section, some

research papers that have been conducted on the classification of ships using different algorithms

will be described, sorted by the proposal date of the algorithms as specified by the authors.

Solmaz et al. (2017) introduced an algorithm (Solmaz et al., 2017). It is used to classify

diverse ships and gather various information about each ship. The research used a large-scale

image dataset known as MARVEL. This dataset consists of 2 million user-uploaded images and

their various attributes. The tasks performed encompassed vessel type classification, verification

retrieval, recognition, and prediction and classification of vessel attributes like length, summer

deadweight, draught, and gross tonnage. The paper used CNNs for feature extraction from the

images. Two CNN architectures, AlexNet and VGG-F, were worked for extracting features from

images. The author did not utilize the classification ability of CNNs. Multi-class SVM is used for

the classification tasks after feature extraction. Also, the paper used a Siamese neural network,

similar to the AlexNet architecture, for the verification process. In other words, it verified whether

the SVM classification is classified correctly or not. This comparison revealed that the

combination of CNN and SVM was more effective for their specific task. Using CNN alone for

both feature extraction and classification was less effective.

Zhao et al. (2020) used several visible maritime image (VMI) datasets (Zhao et al., 2020).

The categories involve various types of maritime vessels such as passenger ships, sailing vessels,

yachts, tankers, and more. The authors presented an algorithm for classifying the vessel. It is a

combination of one type of CNN suited for image classification tasks. Those are known as

EfficientNet and fine-tuning. EfficientNet was used for the lower layers. These layers have been

pre-trained on a large dataset like ImageNet. This part is used to extract features at the beginning.

Dense Block 1 Dense Block 1 Dense Block 1

 u

 u

 u

 i

g

 i

g

 u

 i
e
 r

Prediction

Input

Container

ship

38

The upper layers of the network were fine-tuned on the VMI datasets. This adjustment made these

layers more specific to the task of classifying maritime images.

Salem et al. (2023) presented another algorithm for ship classification (Salem et al., 2023).

It includes five types of ships such as cargo, military, carrier, cruise, and tanker. They used

different datasets such as Kaggle’s public “Game of Deep Learning Ship” dataset and the

“MARVEL” dataset. The MARVEL dataset includes 10,000 image samples for each class and 26

types of ships. This helps in generalizing the classification system across a wide range of ship

types. The paper mentioned two techniques used in this research work: the Transfer learning

technique and the ensemble learning technique. In the Transfer learning technique, the lower

layers of the pre-trained models were used in this paper. They were sourced from ImageNet

because of their ability to detect generic features. The top layers, specific to the tasks they were

originally trained for, were adjusted with 8 CNN models. These models contain Xception, VGG-

16, ResNet-50, Inception V3, InceptionResNetV2, DenseNet121, MobileNet, MobileNetV2, and

EfficientNetB0. This guaranteed that the network functions correctly for the precise task of ship

classification. Also, another fine-tuning is done by adding 3 CNN layers to each model. These

layers comprise a FCL, a dropout layer, and a ReLU layer. Then, ensemble learning technique

was used to make predictions better overall.

Emre Gulsoylu et al. (2024) did the vessel classification as well as classified the ship’s

information (Gülsoylu et al., 2024). The system was trained with images of ships. Additional data

like the ship type, size, and destination from the Automatic Identification System (AIS) was used

to improve accuracy. The system becomes more effective by training the model with this extra

information. This is true even in challenging weather conditions. This enhanced accuracy is

particularly useful. It helps reduce port congestion, manage waterway traffic, and improve

maritime surveillance. Basically, the system is better equipped to recognize and monitor sea

activities. This is because it combines visual data with detailed ship information.

2.6. Conclusion

In this chapter, many ways that ML techniques can be used to classify images were

studied. Special attention was given to how these techniques are applied in maritime applications.

The literature review has clarified the key differences between conventional machine learning

39

and DL. How each method is suited for different parts of the image classification task is

demonstrated.

The study began by examining conventional machine learning techniques. The role of

feature extraction and classification through algorithms was presented. Those are like SIFT, ORB,

and SURF. These methods have been foundational in improving systems. They could interpret

and analyze images. However, they depend on feature selection and engineering manually.

The DL importance and its profound impact on the field were discussed. That leads to the

ability to autonomously learn from data. Also, it avoids the hard work of manually designing

features needed in traditional methods. The world of image classification has been advanced by

the learning skills of CNNs and other deep network setups. Particularly, in recognizing and

categorizing images, CNNs are effective. Recognizing complex patterns and relations

automatically can be achieved through. That might often be hidden from conventional algorithms.

In maritime applications, the necessity of implementing these learning technologies was

mentioned. Various studies were reviewed that employed ML algorithms to address challenges

specific to maritime environments. These contain ship classification and the detection of maritime

vessels under diverse conditions. The adaptability and robustness of ML in use-case scenarios are

highlighted through these applications. Diverse conditions and requirements necessitate robust

and flexible solutions.

40

Chapter 3: Literature review (PART II), Ensemble Learning and

Pruning

3.1 Introduction

In this chapter, ensemble learning techniques will be presented as a powerful approach to

ML. Ensemble learning improves predictions by merging multiple models. This chapter also

looks at how ensemble learning increases accuracy as well as its significance in the field of

learning. This chapter will focus on different ensemble methods. These contain bagging, boosting,

stacking, and gradient boosting. This chapter also breaks down their workings for easier

comprehension and demonstrates their practical applications in real-world scenarios.

Importantly, ensemble pruning will also be presented. This simplifies ensemble learning,

making it easier and faster without compromising accuracy. The goal is to find a balanced solution

between diverse model selection, computational efficiency, and precise results within ensemble

learning strategies and their applied pruning techniques.

3.2 Problem Definitions

Ensemble learning is an advanced ML technique. It includes joining predictions from

numerous individual models, often called base or weak learners.

The main goal of ensemble learning is to generate a stronger, more accurate model, called the

ensemble or meta-model. This is accomplished by leveraging the variety and complementary

strengths of base models (Sagi & Rokach, 2018).

• Problem Definition 1 [Ensemble Learning]

Consider a set of base models {M1, M2, ..., Mn}. Here, n signifies the total number of base

models. Also, assume the set of training samples {(x1, y1), (x2, y2), ..., (xm, ym)}. Here, m

presents the number of training samples, xi is the i-th input sample, and yi is the corresponding

target label. An ensemble prediction function is defined, denoted as “E(x).” This function

mixes the predictions of the base models to generate a final prediction for a given input sample

x.

41

E(x) = MergeFunction(M1(x), M2(x), ..., Mn(x))

 (Equation 1. Extracted idea from (R 2019 . 19))

“Mi(x)” is the prediction made by the i-th base model for input sample x. MergeFunction

aggregates these predictions, using methods like averaging, voting, or weighted combination.

Each base model, “Mi”, learns a mapping from input samples “(x)” to predictions “Mi(x)” on

the training dataset. The training process may include optimizing a loss function, “Li”, for

each model.

Mi = argmin(Li(Mi(x), y))

(Equation 2. Extracted idea from (R 2019))

“Li” represents the loss function associated with the i-th base model, and y is the target label.

• Problem Definition 2 [Objective Function]

The goal of ensemble learning is to minimize prediction error. It achieves this by finding the

best combination of base models and their prediction functions. This is typically measured

using a loss function, “(L(E(x), y))”, which quantifies the difference between the ensemble’s

prediction and the true target label (Rokach, 2019, p. 4).

E* = argmin(L(E(x), y))

(Equation 3. Extracted idea from (R 2019))

“E*” is the optimal ensemble prediction function that minimizes prediction error.

The ensemble learning process encompasses choosing suitable base models, training them,

and defining the ensemble prediction function. This makes a final model with enhanced

predictive performance compared to individual base models (Rincy & Gupta, 2020). From a

theoretical perspective, the complexity of an ensemble classifier can be analyzed in terms of

both computational and data complexities (Kuruvayil & Palaniswamy, 2022). The complexity

of an ensemble classifier depends on the number and complexity of base models. The

computational complexity scales linearly with the number of base models O(n). Considering

that each base model requires training and evaluation during both phases. So, with “n” base

models, the computational cost is “n” times that of a single base model. The selection of base

models considerably influences the computational complexity. Complex models such as deep

42

neural networks or large ensembles require extensive computational resources and time.

However, simpler models, such as linear models, are less computationally intensive (Dong et

al., 2020). Ensemble learning faces two primary challenges. The first is demanding resource

requirements, consuming substantial computational time and memory. This stems from

loading and executing all individual models during inference, potentially causing significant

delays. The second challenge relates to detrimental effects introduced by one or more models.

Cooperative dynamics can lead to specific models exerting a counterproductive influence,

hindering performance improvements intended by ensemble methods. To overcome these

challenges, ensemble pruning has been developed. (Roḳaḥ, 2010, p. 119). Ensemble pruning

improves the efficiency and simplicity of an ensemble classifier. It selects a subset of its base

models while maintaining or enhancing predictive performance (Fu et al., 2013; Roḳaḥ, 2010,

p. 119). Later, this thesis will introduce the ensemble pruning paradigm.

• Problem Definition 3 [Ensemble Pruning]

Consider an original ensemble classifier with n base models: M= {M1, M2, ..., Mn}. Ensemble

pruning aims to return a subset of pertinent models: M*= {Mi1, Mi2, ..., Mik}, where k is less

than or equal to n. This is based on a pruning criterion, denoted as “P(Mi),” quantifying the

effectiveness or utility of each base model “Mi.”

A decision rule, “D(P(Mi)),” determines whether a base model Mi should be included in the

pruned ensemble. If “D(P(Mi))” evaluates to “retain,” the model is kept; otherwise, it is

pruned (Rokach, 2019, p. 121).

3.3 Ensemble Learning Techniques

Ensemble learning is one of the potent techniques used in the ML domains. It leverages

the collective wisdom of numerous learning models to advance the accuracy and robustness of a

single base model. It combines the predictions of these models to generate a more reliable and

powerful predictor. Ensemble learning techniques are priceless tools in the ML practitioner’s

toolkit. They can be categorized into four core techniques: “Bagging,” “Boosting,” “Stacking,”

and “Gradient Boosting,” as described below.

43

3.3.1 Bootstrap Aggregating (Bagging)

The bagging technique includes training several copies of a single base model on different

subsets of the training data. The subsets are regularly found through random sampling with

replacement. Each model learns from a slightly different view of the data, reducing overfitting,

particularly in high-variance models (Breiman, 1996). The ultimate prediction is gained by

averaging or voting on the predictions of all individual models, as shown in Figure 22. Bagging

is particularly useful for enhancing model robustness, especially when the base model is prone to

overfitting. For each bootstrap sample, a copy of the base model is trained independently. These

models learn from different views of the data due to the variations presented by bootstrap

sampling. This diversity is critical for reducing overfitting in models with high variance. After

training, all individual models make predictions on new, hidden data points. The ultimate

prediction is gained by aggregating the outputs of all individual models as shown in Figure 23.

The most common aggregation methods are: “Averaging” and “Voting.” Averaging includes

averaging predictions from each model to extract the final prediction. Voting involves treating

each model’s prediction as a vote. Then, the class with the most votes is selected as the final

prediction, known as majority voting (Breiman, 1996; Mohammed & Kora, 2023).

Bagging helps mitigate overfitting by decreasing the variance of the final prediction,

particularly in complex models. Training on various subsets makes the model more robust to noise

and outliers in the data. Additionally, bagging frequently leads to better generalization

performance, resulting in a more accurate model for hidden data (Mohammed & Kora, 2023).

Figure 22. Bagging redrawn from (Di Ciaccio & Giorgi, 2016)

 1

g

g

g1

R

Original

learning data

Derived learning

data sets

Learning

algorithm

Majority

voting

Composite

classification

44

Figure 23. bagging technique, ensemble models are trained on bootstrap redrawn from (Zuchniak, 2023)

Example:

In a binary classification task, the goal is to classify emails as either spam or not spam.

Considering there is a dataset with 1,000 email samples. Bagging can be applied to these email

sample scenarios as follows: It creates multiple bootstrap samples, each containing a random

subset of the original data. For example, one sample might contain [Email1, Email5, Email7,

Email10, ...], while another could contain [Email2, Email3, Email6, Email9, ...], and so forth.

These subsets are usually the same size as the original dataset but with some instances repeated

and others omitted. During training, each bootstrap sample is used to train a copy of the base

model (e.g., a decision tree). Each model learns to classify emails as spam or not spam based on

its individual data subset. During prediction, when a new email receives, all individual models

forecast whether it is spam or not. To make the final decision, the predictions from all models are

aggregated. For example, if you have 10 models and 7 predict “spam” while 3 predict “not spam,”

the email is classified as “spam” based on the majority vote prediction.

3.3.2 Boosting

Boosting is a technique designed to enhance the predictive accuracy of weak learners. The

weak learner turns into a strong learner, as shown in Figure 24. This process executes slightly

better than random guessing. Unlike bagging, boosting trains models in sequence. Each new

model focuses on the samples that were wrongly classified by the previous ones (Freund &

Schapire, 1996). Boosting algorithms broadly work for tasks related to classification and

 i er i er i er

45

regression, such as AdaBoost (Schapire, 2013) and Gradient Boosting (Konstantinov & Utkin,

2021).

Boosting begins with a base model, frequently considered as a weak learner. These weak

learners’ models perform slightly better than random guessing and can be simple linear models

or other models with less complexities but better than chance. During training, each weak learner

emphases on the samples that were mistakenly classified by the previous models. This adaptive

learning process decreases bias and leads to improved accuracy over time. In each iteration, the

training data is given different weights. Primarily, all data points have equivalent weights.

Though, as boosting progresses, the misclassified data points are assigned higher weights, making

them more significant in the subsequent model’s training. After training all the weak learners,

their predictions are combined to form the final prediction. Boosting usually combines predictions

by weighted voting, where each model’s contribution to the final prediction is weighted based on

its performance during training, as depicted in Figure 25. Boosting regularly yields extremely

accurate models, even when using weak learners. It can also manage noisy data and outliers

efficiently by concentrating on the most challenging samples. It typically outcomes in models that

generalize well to unseen data (Mohammed & Kora, 2023).

Figure 24. Boosting technique extracted idea from (Freund & Schapire, 1996)

Figure 25. Sequential training of weak learners in Boosting with Weighted Voting redrawn from (Tiu et al., 2022)

Strong learner

Output 1

Output 2

Output 3

Output 4

Weak learner 1

Weak learner 2

Weak learner 3

Weak learner 4

 re

 i er i er i er

46

Example:

Consider boosting in a binary classification task: identifying whether a bank loan

application will be approved (1) or denied (0). The first weak learner is trained on the original

dataset, where all samples have equivalent weights. It may misclassify some loan applications.

After the first model’s training, the misclassified loan applications are assigned higher weights,

making them more significant in the subsequent training iterations. The second weak learner

emphases on the misclassified loan applications from the first round. It attempts to correct the

errors built by the first model and, in turn, may generate some new errors. After the second

model’s training, the next iteration assigns higher weights to the recently misclassified samples.

This process repeats for a predefined number of iterations or until a desired performance threshold

is reached. Each new model pays more consideration to the samples that previous models

struggled with, successfully “boosting” their performance. While all the weak learners are trained,

their predictions are combined. The final prediction is usually determined through weighted

voting. This means that more accurate models have more influence in making decisions.

3.3.3 Stacking

Stacking is also known as stacked generalization and is a more sophisticated ensemble

learning approach. It encompasses training various diverse models, often of diverse types or with

different hyperparameters, on a similar dataset (Smyth & Wolpert, 1997). Instead of directly

combining their predictions, a meta-model is trained to learn how to best combine the outputs of

the base models, usually considering a simple linear regression or another ML model. Stacking

can capture the strengths of each base model and provide a more robust and accurate prediction.

It begins with a set of diverse base models. These base models can be of diverse types, such as

decision trees, neural networks, or SVMs, or they can have different hyperparameters. The main

concept is to ensure diversity among the base models to capture diverse data aspects. The original

training data is operated on to train each of the base models separately. Each base model learns to

predict based on its unique perspective of the data. After training, the base models are utilized to

predict a validation set or a hold-out subset of the training data. These predictions are considered

as the input features for the meta-model. The meta-model is then trained on the predictions made

by the base models in the previous step. This meta-model takes the base models’ predictions as

input features. It also learns how to combine them optimally to make the ultimate prediction.

47

Once the meta-model is trained, it can be used to predict new, unseen data. Leveraging the learned

relations between the base models’ predictions, the meta-model produces the final output, as

shown in Figure 26. Stacking regularly outperforms individual base models. This leads to

advanced predictive accuracy. Stacking allows for harnessing the strengths of different models.

This makes it operative for complicated tasks. It can also manage diverse types of base models.

This makes it more robust to different data patterns (Mohammed & Kora, 2023).

Figure 26. Stacking technique: Meta-model trained on Base Models’ predictions redrawn from (Siswantining & Parlindungan,
2021)

Example:

Assuming stacking is used in a binary classification task for sentiment analysis.

In a dataset of movie reviews, the objective is to predict whether a review is positive (1) or

negative (0). Three diverse base models are chosen: “a decision tree,” “a SVM,” and “a neural

network.” The decision tree will learn patterns in the text data. SVM will capture linear relations

between words, and the neural network will capture complex, nonlinear relationships in the data.

Each base model is trained on the original movie review dataset, learning from diverse data

aspects. They create individual predictions on a validation set or a subset of the training data.

Below are the sets of predictions defined as an example:

• The decision tree might predict [1, 0, 1, 0, ...]

• The SVM might predict [0.8, 0.1, 0.9, 0.2, ...]

• The neural network might predict [0.9, 0.3, 0.95, 0.1, ...]

A meta-model, such as logistic regression, is then trained using the predictions from the

base models as input features. The meta-model learns how to consider and combine these

Base learner1

Base learner2

Base learner3

Base learner4

Meta learner

Final Prediction

Data

48

predictions optimally to make the final sentiment prediction. Once trained, the meta-model can

take a new movie review, pass it through the base models, and combine their predictions to

produce the final prediction (Smyth & Wolpert, 1997),(Mohammed & Kora, 2023). In this

example, the meta-model will learn from the set of predictions which are [1, 0, 1, 0, ...], [0.8, 0.1,

0.9, 0.2, ...], and [0.9, 0.3, 0.95, 0.1, ...] to find the final prediction.

3.3.4 Gradient Boosting

Gradient Boosting is one of the robust techniques in ensemble learning. This technique

combines boosting with gradient descent optimization. As shown in Figure 27, weak learners are

trained sequentially. Also, each learner goals to decrease the residual error of the previous one

(Konstantinov & Utkin, 2021). This process emphasizes areas where the previous models

struggled. This leads to making the ensemble increasingly accurate with each iteration. In various

ML tasks, particularly in computer vision, the most popular gradient-boosting implementations

that have achieved state-of-the-art performance are XGBoost (T. Chen & Guestrin, 2016),

LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018). Gradient Boosting

usually uses decision trees as weak learners. These trees are often shallow, referred to as “stumps”

or “shallow trees,” to avoid overfitting.

Gradient Boosting begins with a preliminary prediction. This is usually set as the average

value of the target variable for regression tasks or as the most common class for classification

tasks. This initial prediction acts as a baseline. A decision tree is trained to predict the residuals

from the initial prediction, which are the distinct between the real target values and the current

model’s predictions. This tree is suited to decrease the residual error. After the first iteration,

another decision tree is trained to predict the residuals, concentrating on the errors built by the

first tree. The process stays with additional iterations, each new tree targeting to decrease the

remaining residuals. The final prediction is found by adding the predictions from all the trees in

the sequence. The cumulative result of these trees is to correct the errors built by previous models

and generate a more accurate overall prediction. Gradient Boosting often generates highly

accurate models, mainly when combined with shallow trees, which are less prone to overfitting.

Similar to other ensemble learning techniques, gradient boosting can manage noisy data and

outliers efficiently by concentrating on decreasing residuals. It can also provide insights into

49

feature importance, helping recognize which features are most influential in making predictions

(Guillen et al., 2023; Konstantinov & Utkin, 2021).

Figure 27. Gradient Boosting: Each new model predicts Residual Errors of previous model redrawn from (Aouadi et al., 2023)

Example:

Consider a regression task where the target is to predict the price of a house based on its

features. The process begins with a simple initial prediction, such as the average house price. For

example, in this case, the average house price in the dataset is assumed to be NOK 3,000,000.

The first decision tree is trained to predict the differences between actual prices and NOK

3,000,000 from the initial prediction. This tree recognizes patterns in the data that define the

differences. A second decision tree is trained to predict the residuals from the first iteration. It

focuses on capturing the remaining errors not described by the first tree. This process continues

with additional trees and iterations. Each new tree is planned to correct the residuals left by the

previous ones, gradually decreasing the prediction error. The final prediction is the sum of the

initial prediction and the predictions from all the following trees. It precisely estimates the house

price by considering a series of corrections to the initial estimate.

3.4 Ensemble Pruning Techniques

Ensemble pruning techniques include choosing a subset of base models from an existing

ensemble of models. This differs from building an ensemble of models from scratch. The

objective of ensemble pruning is to simplify and improve the efficiency of an existing ensemble

while maintaining or even increasing predictive performance. This goal can be accomplished

Fi Re u

 e 1 e 2

50

through two main techniques: “Dynamic Model Selection” and “Model Pruning By Diversity,”

each of which is explained below in detail.

3.4.1 Dynamic Model Selection

Dynamic model selection encompasses various techniques that adapt model ensembles

based on performance and changes in the data. These techniques contain adaptive weighting,

which adjusts the effect of each model within the ensemble based on its recent performance.

Another technique is the windowed ensemble, which regularly updates the ensemble by

incorporating new models and excluding the least-performing ones within a particular time frame

(Roḳaḥ, 2010, p. 121).

a. Adaptive Weighting

Adaptive Weighting is a dynamic model selection technique. It adjusts the weights of

distinct models within an ensemble based on their performance over time. Models that operate

well on recent data receive higher weights, while underachieving models are assigned minor

weights, as shown in Figure 28. This permits the ensemble to adapt to changes in the data

distribution. It gives more effect to models that are presently more precise (Gale et al., 2013;

Hagiwara, 1993; Zhou et al., 2002).

Consider “w(i, t)” representing the weight assigned to model “i” at time “t.” The adaptive

weighting can be stated as follows: Initially, all models might have the same weights:

The initial weights are set as follows: “w(i, 0) = 1/N” for “I” in “[1, N],” where “N” is the

number of models. At each time step “t,” the weights are updated based on the model’s

performance on the most recent data:

w(i, t+1) = f(w(i, t), performance(i, t))

(Equation 4. Extracted idea from (G e e . 2013))

Where performance (i, t) is a measure of the model “i” performance on the data at time

“t,” and “f” is a function that updates the weights. This function can be designed based on specific

criteria, such as a weighted moving average or an adaptive learning rate.

51

Figure 28. Adaptive weighting in ensemble pruning for dense neural network redrawn from (Ziv et al., 2021)

Example:

Consider an ensemble of three classifiers for a sentiment analysis task: “Model A,”

“Model B,” and “Model C.” Initially, all models have equal weights: “w(A, 0) = w(B, 0) = w(C,

0) = 1/3.” After analyzing data from a new time period, the models’ performance is assessed, and

it is found that Model B performed exceptionally well, Model A performed adequately, and Model

C underperformed. The adaptive weighting can be updated based on their performance scores, as

indicated below.

• w (A, 1) = f (w (A, 0), performance (A, 1))

• w (B, 1) = f (w (B, 0), performance (B, 1))

• w (C, 1) = f (w (C, 0), performance (C, 1))

The update function f might increase the weight of Model B, decrease the weight of Model

C, and leave Model A’s weight relatively unchanged based on their performance.

b. Windowed Ensemble

The windowed ensemble is a dynamic model selection technique. It maintains a sliding

window of models and data. At each time step, the least-performing model within the window is

substituted with a new model. This ensures the ensemble always has the most suited models for

the present data distribution (Gupta & Jha, 2020).

In a windowed ensemble technique, denote the ensemble at a time “𝑡” as “𝐸(𝑡)” and the

size of the sliding window as “𝑊.” At each time step “𝑡,” a new model, denoted as “𝑀(𝑡),” is

trained on the newest data. The ensemble “𝐸(𝑡)” includes the best-performing models from the

52

last “𝑊” time steps, and the least-performing model within “𝐸(𝑡)” is substituted with the recently

trained model “𝑀(𝑡).”

Example:

Consider an ensemble of decision trees for a fraud detection task, with a sliding window

size “𝑊” set to 5. At time step “𝑡=1,” the ensemble comprises Decision Trees 1, 2, 3, 4, and 5,

trained on the data from time steps 1 to 5. At time step “𝑡=6,” a new decision tree, Decision Tree

6, is trained on the data from time step 6. The ensemble at time step 𝑡=6t=6 will contain Decision

Trees 2, 3, 4, 5, and 6. Decision Tree 1, which was the least-performing model in the former

ensemble, is changed by Decision Tree 6.

3.4.2 Model Pruning By Diversity

The success of ensemble methods often depends on the diversity of constituent models.

Diversity stands from variations in model architectures, training data subsets, hyperparameters,

or other factors. Models that are diverse in their predictions can suggest complementary insights,

leading to enhanced total performance. Model pruning by diversity depends on measuring how

similar or different individual models are (Fu et al., 2013). To achieve this, similarity metrics are

used to compare the predictions or behaviors of models. As shown in Figure 29, the process starts

with individual models including M1, M2, M3, and M4. Each process is also evaluated separately

at the highest layer. Subsequent layers define blends of these models. Thus, pairs are evaluated

first, followed by triples, and eventually all four models together. This hierarchical structure is

used for a systematic evaluation of diversity within the ensemble. Models are combined and

pruned based on their performance and the diversity they contribute. This is evaluated by the

following common similarity metrics: “Correlation,” “Distance,” and “Overlap of Predicted

Classes.”

1. Correlation: This measures the linear relationship between the predictions of different

models. A high correlation indicates that models tend to produce similar outputs (Mana &

Sasipraba, 2021).

2. Distance: Euclidean distance and other distance-based metrics assess the proximity of

models in a multi-dimensional space defined by their predictions. Models that are close

to this space are more similar (Peters, 2017).

53

3. Overlap of Predicted Classes: Another approach is to evaluate how often models agree

on the predicted classes or outcomes. The high agreement indicates a similarity (Ren et

al., 2020).

Figure 29. Model pruning by diverse redrawn from (Partalas et al., 2008)

Based on the computed similarity metrics, models that are extremely similar to others are

pruned or downweighted. Different approaches to pruning include “Hard Pruning,” “Soft

Pruning,” and “Threshold-based Pruning,” each described below with an example.

1. Hard Pruning: Hard pruning includes eliminating models from an ensemble if their

similarity to other models exceeds a predefined threshold. The threshold is typically

determined based on a similarity metric such as correlation or distance. This method

simplifies the ensemble by removing redundant models (Ding et al., 2021; Valerio et al.,

2022).

Consider “sim(i, j)” to represent the similarity between models “i" and “j,” computed

using a specific similarity metric. The hard pruning condition can be expressed as follows:

“If sim(i, j) > threshold,” then model “j” is removed from the ensemble.

54

Example:

Consider an ensemble comprising three neural networks (A, B, and C) for image

classification. If the cosine similarity between neural networks A and B exceeds a

predefined threshold of 0.9, one of the two similar networks (for example, B) is removed

from the ensemble.

2. Soft Pruning: Soft pruning is also known as model weighting. The soft pruning technique

retains all models in the ensemble. It allocates lower weights to similar models. This leads

to diminishing the impact of similar models while keeping them in the ensemble (Ding et

al., 2021).

Consider “𝑤(𝑖)” representing the weight assigned to model “𝑖.” The soft pruning condition

can be expressed as: “If 𝑠𝑖𝑚(𝑖,𝑗)>threshold,” then set “𝑤(𝑗)=𝑤(𝑗)×factor,” where the

factor is typically a value between 0 and 1.

Example:

Consider an ensemble of five regression models: M1, M2, M3, M4, and M5, for predicting

housing prices. If the Pearson correlation between models M2 and M4 is high (e.g., 0.95),

you may decrease the weight of M4 to 80% of its original weight by setting factor = 0.8.

3. Threshold-based Pruning: -- Threshold-based pruning involves setting a threshold for

the similarity metric. Models exceeding this threshold are considered for pruning. This

technique provides flexibility to control the degree of pruning (Azarian et al., 2021).

Consider “T” to be the threshold for similarity. Consider “P(i, j)” to be a binary variable

indicating whether model “i” and model “j” are pruned (1 for pruned, 0 for retained). The

threshold-based pruning condition can be expressed as:

If sim(i, j) > T, then set P(i, j) = 1

(Equation 5. Extracted idea from (z ri e . 2021))

Example:

In an ensemble of four clustering algorithms: C1, C2, C3, and C4, you set a threshold of

0.85 for the Jaccard similarity. If the Jaccard similarity between C3 and C4 exceeds the

threshold, you would mark them for potential pruning (e.g., P(C3, C4) = 1).

55

After pruning, the remaining models are integrated to make the final prediction.

Integration methods can vary and may include weighted averaging, voting, or more

advanced techniques like stacking. The weights allocated to models regularly represent

their degree of diversity or confidence in their predictions.

Here, the main advantages of model pruning by diversity are listed below, including

“improved generalization,” “reduced redundancy,” “interpretability,” and “robustness.”

1. Improved Generalization: Pruning by diversity helps ensemble models. They suggest

diverse views and ways to resolve problems. This variety can make the model better at

learning many data patterns and types and making strong predictions (X. Chen et al.,

2021).

2. Reduced Redundancy: Having too many redundant models, that do the same thing, can

make it more expensive to run without improving much. Pruning by diversity can help

eliminate these redundant models, making the group work better and saving time and

money (Augasta & Kathirvalavakumar, 2013).

3. Interpretability: Keeping only diverse models can make the ensemble easier to

understand. When the models are different from each other, it is simpler to see what each

one does and how they help (Augasta & Kathirvalavakumar, 2013).

4. Robustness: When ensembles are pruned by diversity, they typically handle outliers and

changes in data better. If some models are very sensitive to certain data points, having

others that are not as sensitive can keep predictions accurate.

Below, the main disadvantages of model pruning by diversity are listed, including

“selecting the right diversity metric,” “threshold selection,” and “balancing diversity and

performance.”

1. Selecting the Right Diversity Metric: Deciding on the right diversity metric can be tricky

because it must really show how models are different. The metric you pick depends on

what problem you are solving and what the models are like.

2. Threshold Selection: Figuring out the best threshold for pruning models based on their

differences can be challenging. That may need various methods such as experimentation,

cross-validation, or domain expertise.

56

3. Balancing Diversity and Performance: Pruning should find a balance between keeping

things diverse and keeping predictions accurate. If you prune too much, you might lose

important information.

Model pruning by diversity is a fancy technique that makes ensemble models better by

focusing on how different and useful each model is. It is really helpful when you have a bunch of

different base models and when you care a lot about understanding the models and saving time.

Below, two different subsections mention the main discussions and limitations of

“Ensemble Learning” and “Ensemble Pruning” in separate subsections. Each subsection’s first

paragraph presents the discussions, and the next paragraph indicates the limitations.

3.4.3 Ensemble Learning

Ensemble learning is beneficial in image classification for several reasons. By combining

the predictions of various models, ensemble methods regularly gain higher accuracy. This is

mainly valuable in image classification, where diverse patterns and features are required to be

captured for enhanced overall performance. Ensembles prove their robustness in managing

variations and noise in image data. This effectively leads to mitigating the impact of outliers and

inconsistencies within the dataset. Additionally, ensemble methods assist in reducing the bias that

individual models inherently possess. If a single model shows bias towards specific image

characteristics, other models within the ensemble can compensate. This results in more balanced

predictions. Moreover, ensembles suggest a suitable level of interpretability. By looking at how

each model in the ensemble contributes to the final decision, users or stakeholders can understand

what factors are affecting the image classifications.

However, ensemble methods also present certain limitations. They can be computationally

expensive, especially with large datasets and complex base models. This complexity usually

means it takes longer to train and make predictions. Furthermore, having many models in an

ensemble uses up more memory. This can be difficult in places where there is not a lot of memory

available, which is a problem in resource-constrained settings. Creating and improving ensemble

models requires skill and knowledge. This involves picking the right base models, adjusting

settings called hyperparameters, and coming up with strategies that work specifically for

ensembles. This process might be time-consuming. Moreover, ensembles need regular

57

maintenance and updates, mainly when new data becomes available. Keeping an ensemble that

can change with the data is tough work. It adds another challenge to the ensemble learning

process, which is already complex and ongoing.

3.4.4 Ensemble Pruning

Ensemble pruning methods suggest diverse advantages. These advantages are often

obvious when applied to ensembles in image classification. Pruning has the potential to decrease

the size and complexity of ensembles. This develops their efficiency for real-time or embedded

applications. This is mostly important in scenarios where computational resources are inadequate.

It allows for streamlined processing without compromising accuracy. The pruning process

shortens ensemble models. It makes them easier to interpret. This is appreciated when discovering

the reasons behind classification decisions is essential. Also, pruning can help mitigate overfitting

by concentrating on the most relevant models within the ensemble. By ranking these models,

ensemble pruning enables better generalization when classifying new, unseen data, thus

enhancing the total robustness of the classification system.

However, ensemble pruning may present challenges. Aggressive pruning strategies may

lead to the loss of valuable information. That may potentially diminish the ensemble’s ability to

accurately classify data. Removing models that could contribute under specific conditions might

unpleasantly affect classification accuracy, especially in complex or dynamic environments. Also,

picking the right pruning thresholds can be a challenging task. The ideal thresholds are often

related to the precise characteristics of the problem at hand. They require domain expertise or

experimentation for actual implementation. In addition, pruning methods may not operate fine in

scenarios characterized by extremely dynamic data distributions. In those cases, where data

patterns change over time, traditional pruning techniques may attempt to maintain classification

accuracy. Dynamic ensemble adaptation methods might be better suited for ensuring consistent

performance as the data landscape shifts.

3.5 Conclusion

This study has explored the multifaceted domain of ensemble learning. This chapter

specifically looks at ensemble pruning. This method proposes to make ensemble models work

better without making them worse at predicting things. Throughout this investigation, various

58

ensemble learning techniques were studied. These include bagging, boosting, stacking, and

gradient boosting. Each method influences the variety of multiple learning models. This helps

develop predictive accuracy and robustness beyond what separate models can achieve. Also,

ensemble pruning has been offered as a key strategy. It helps report the complexities and resource

supplies of traditional ensemble methods.

Ensemble pruning shortens ensemble systems and is an efficient approach. Pruning

techniques validate that only the most effective models are retained by carefully selecting a subset

of base models. Commonly employed techniques for this purpose include dynamic model

selection and diversity-based pruning. On one hand, this selection not only diminishes the

computational load and memory supplies. On the other hand, removing redundant or less

operative models, also possibly enhances the ensemble’s performance.

This chapter shows how helpful ensemble methods are in solving tough prediction

difficulties. They are more appropriate practices in several different areas where predicting things

is hard. These techniques deliver a powerful toolkit for tackling the challenges of modern data-

driven spaces. This is particularly correct when they are combined with effective pruning

strategies. They suggest a balanced approach to reaching high accuracy and robustness. This is

while managing the computational costs related to large-scale data analysis.

59

Chapter 4: Methodology Design (MAGNAT and MAGNUT)

4.1 Introduction

This chapter conducted a study on the methodologies of MAGNAT and MAGNUT in

advanced maritime management systems. This chapter explains the proposed solutions based on

using ensemble learning approaches. While ensemble learning is being developed, several issues

arise. High computational resources and the negative contribution of the models are addressed as

two main challenges. In the proposed solution, an accurate selection of the ensemble learning

models has been developed. This selection focuses on those that bring positive contributions and

eliminating those that do not. The discussion also covers how the author has designed strategies

for pruning non-contributory elements to improve efficiency. Finally, this chapter overview sets

the groundwork for future research directions. Additionally, the proposed methods can be applied

in existing systems and highlight possible areas for reform.

4.2 Explanation of Research Questions

Following the research questions available in Section 1 under Subsection 1.2, which are

available on page 15, this section provides a more detailed and clear explanation about the

research questions in the following sentences.

Researchers are focusing on using AI, especially DL, in maritime management systems.

DL trying to address the different challenges in this field. But still, the efficacy of different

architectures varies, and some models work better than others with specific data.

To come up with the uncertainties in model behavior, researchers have explored ensemble

learning. Ensemble learning by developing multiple models whose outputs are aggregated can

enhance overall performance. Nevertheless, two prominent challenges remain unaddressed in

ensemble learning:

1. Computational Resource Intensity: Ensemble models demand significant time and

memory resources during the inference phase. This is because they have to run all models, which

slows things down.

2. Negative Contribution of Models: Another challenge is existing models that have a

negative impact within the ensemble which can influence the overall learning process.

60

In response to these challenges, this chapter proposes intelligent strategies. The main aim

of this proposed intelligence is resolving two following issues: aimed at resolving the two

following issues:

• Model Selection: Given a bunch of models that are made for the particular maritime

task (classification in our context), the aim is to define the one that works best. This

needs to see which of the models contribute positively and negatively to the learning

process.

• Performance Optimization: Once the best models are defined, the subsequent

challenge is how to use them to get the best overall performance. The focus is on

developing efficient strategies to influence effectively.

The vision is to present innovative strategies for selecting the best model or models from

the ensemble. This needs to address the main challenges such as computational challenges and

also navigate the intricacies of model contributions. By doing so the overall effectiveness would

be enhanced.

4.3 Data Preprocessing

Data preprocessing consists of a series of steps. The main purpose of these steps is to

improve the quality of raw data before being fed into an algorithm for further processing. In the

perspective of marine remote sensing images, effective feature extraction is critical. Specifically,

to correctly identify marine targets (Q. Chen et al., 2018). Preprocessing includes several methods

and techniques, dependent on the specific application or dataset. Nonetheless, the common

preprocessing steps include resizing the image, normalizing pixels, and converting the colorful

images into grayscale (Meena & Velmurugan, 2023). These steps improve the standardization of

the data and make it more suitable for further analysis (Saponara & Elhanashi, 2022). The input

data for image classification is a set of images. In this research, the input data is related to

maritime scenarios.

The data preprocessing steps, as mentioned above, including “Resizing Images,”

“Normalization,” and “Image Conversion to Grayscale,” are discussed below:

61

4.3.1 Resizing Images

Resizing involves rescaling the width and height of an image to a specific size. That makes

ensuring the input images are uniform. This consistency is crucial in neural networks to prevent

variations in input sizes during model training. This consistency is really important in neural

networks. During model training, this helps prevent variations in input sizes. Also, to maintain

consistency and computational efficiency in model design, resizing images is important.

According to the model’s input size requirements, keeping the aspect ratio and resizing seem to

be the main considerations (Al-Barazanchi et al., 2018; Hashemi, 2020). Figure 30 depicts a visual

representation of the resizing process.

Figure 30. Illustration of Resizing Process

62

4.3.2 Normalization

One of the vital steps is normalizing the pixel value for faster model convergence during

training. By scaling pixel values to a common range, such as [0, 1], stability is assured and features

with larger scales would be prevented. Channel-wise normalization is applied independently to

each color channel in red, green and blue (RGB) images, and standardization involves subtracting

the mean and dividing by the standard deviation (z-score normalization) (Tipu et al., 2024). The

code in Figure 31 is a Python function that normalizes and preprocesses data for a machine. As

shown in the figure this function takes in several parameters where x is input data, y is the targets

belongs to the input data. Height and width are the dimensions to which each input sample will

be reshaped. Number_channels are the number of channels in the input data. The num_classes are

the number of corresponding classes in the target data. The input data x is change over to a NumPy

array (Van Der Walt et al., 2011). With the reshape command we reshape our image to the specific

size (Joseph et al., 2021). we covert it to the “float32” to ensure that the division operation in

normalization is carried out in floating-point arithmetic (Jacob et al., 2018). We divide each pixel

value by 255 to bring all the pixel values into the range [0,1], to make it normalized. The last part

is converting one hot encoding of the target data by using Keras’s utility function (Chollet, 2015).

Keras is an open-source software library that provides a Python interface for ANNs. One-hot

encoding transforms the integer class labels into a binary matrix representation (Chollet, 2015;

Joseph et al., 2021).

Figure 31. Python code of the normalization process

4.3.3 Image Conversion to Grayscale

Converting colorful images to grayscale simplifies the learning task and reduces

computational requirements. Grayscale images do not have color information. This makes them

computationally more effective for training. However, this process may result in the loss of color-

63

related features that could be beneficial for some complicated maritime tasks (Saravanan, 2010).

The decision to use grayscale or color images depends on each specific maritime scenario

according to the complexity of the task. Figure 32 describes an example RGB image with its

corresponding grey scale.

Figure 32. RGB image with its greyscale

4.4 Single-based Solution

After preprocessing, the images are ready to be injected into the network. CNNs are a type

of DL model commonly used for various tasks, such as image classification. They consist of

different layers that enable them to efficiently address such problems by extracting features and

classifying images. The effectiveness of feature extraction depends on the architecture of each

CNN model. In this section, we have developed five single simple models based on different CNN

64

architectures. In the subsequent descriptions, we will detail each model’s architecture. For Model

One, although it has a significantly large number of weights, to avoid redundancy, the weight

calculations will not be repeated for the other four models.

1. First model

The first model, as shown in Figure 33, consists of various layers including two

convolutional layers, and a max-pooling layer. That is subsequently flattened from two

dimensions into one, followed by two FCLs. Figure 34 presents the Python code for Model

One. The model starts with two convolutional layers. Each applies filters to capture

features from the images. ReLU activation is used for introducing non-linearity (Agarap,

2018). The model then uses a max-pooling layer to reduce the spatial dimensions of the

feature maps. It helps simplify the network’s complexity. A flattening step follows,

converting the two-dimensional feature maps into a one-dimensional vector. By doing so,

it makes ready for the subsequent dense layers. High-level reasoning within the network

is handled by two dense layers. The first is used as a FCL with the RELU activation and

the second one uses softmax to categorize images into classes (Liu et al., 2016). The

learning process of the model is managed by the categorical crossentropy loss function

(Z. Zhang & Sabuncu, 2018). The next parameter is an optimizer which adadelta is used

(Zeiler, 2012). The primary focus is on maximizing the accuracy metric. In the following,

the weights for the first model are calculated.

The first CNN model’s weights are 18 720 + 524 288 x (W-4)- x (H-4) + 256 x n to be

optimized, where W and H are the resolution of the input image, and n is the number of

classes. For proofing the number of weights of the first CNN model, the below

computation was done:

• First Convolution Layer: The number of weights of the first convolution layer is

32 x 3 x 3 since we have 32 filters, each of which contains 3 x 3 weights to be

optimized. After the first convolution layer, 32 feature maps are generated each of

which has (W-2) x (H-2) pixels.

• Second Convolution Layer: The number of weights of the second convolution

layer is 32 x 64 x 3 x 3 since we have 32 feature maps, and 64 filters, each of which

65

contains 3 x 3 weights to be optimized. After the second convolution layer, 64 x

32 feature maps are generated each of which has (W-4) x (H-4) pixels.

• Maxpooling Layer: There is no weight to be optimized in this layer.

• Flatten Layer: The 64 x 32 feature maps created by the second convolution layer

are transformed into a set of neurons. Since each feature map contains (W-4) x (H-

4) pixels, the number of neurons generated is 64 x 32 x (W-4) x (H-4).

• First FCL: 64 x 32 x (W-4) x (H-4) neurons already generated by the flatten layer

will be connected to 256 neurons. Therefore, the number of weights in the first

FCL is 64 x 32 x (W-4) x (H-4) x 256 weights to be optimized.

• Second FCL: 256 neurons will be connected to n neurons. Therefore, the number

of neurons in the second FCL is 256 x n weights to be optimized.

Consequently, the number of weights in the first CNN model is:

(32 x 3 x 3) + (64 x 32 x 3 x 3) + (64 x 32 x (W-4) x (H-4) x 256) + (256 x n) =

18720 + 524 288 x (W-4)- x (H-4) + 256 x n weights to be optimized.

Figure 33. Architecture Design of the first CNN model

66

Figure 34. Source Code of the first CNN model

2. Second Model

 As shown in Figure 35, the Python code describes the CNN architecture. It begins with a

max pooling layer applied directly to the input for initial spatial reduction. It follows a

pattern of alternating between convolutional layers with 64 filters of 3x3 size using ReLU

activation for feature extraction and max pooling layers for downsampling (Agarap,

2018). After passing through these layers, the data is flattened into a single vector, which

is then processed by a dense layer with 64 units and ReLU activation before reaching the

final dense layer that determines the class probabilities for the given number of classes

using softmax activation (Liu et al., 2016). The model is compiled with categorical

crossentropy to measure loss, an Adadelta optimizer to adjust weights during learning, and

tracks accuracy as the performance metric(Zeiler, 2012; Z. Zhang & Sabuncu, 2018). This

architecture is structured to efficiently handle image data, progressively reducing

dimensionality while capturing and refining features essential for classification.

67

Figure 35.Source Code of the second CNN model

3. Third Model

The third model is a DL model which is coded in Figure 36. It put together several

convolutional layers that progressively double the number of 3x3 filters from 32 up to

1024. Each layer enhances the model’s ability to recognize complex patterns through

ReLU activation (Agarap, 2018). Following the extraction of detailed features, a single

max pooling operation condenses the data, which is then linearised by a flatten operation.

Subsequently, a 256-unit dense layer upgrades the data further. Finally, the output layer

maps these refined features to the number of classes using a softmax function (Liu et al.,

2016). The model is compiled with categorical crossentropy to measure loss. It uses an

Adadelta optimizer to adjust weights during learning. It also tracks accuracy as the

performance metric (Zeiler, 2012; Z. Zhang & Sabuncu, 2018). The targeting accuracy as

the measure of its predictive power is used. Unlike previous models, this one emphasizes

depth and feature scaling, potentially capturing more intricate image details.

68

Figure 36.Source Code of the third CNN model

4. Fourth Model

Model four is a CNN architected in which the Python code is written in Figure 36.

Initiating with a 32-filter convolutional layer, it applies ReLU to introduce non-linear

processing right at the outset (Agarap, 2018). Unique to this model is a series of four max

pooling layers with increasing window sizes, from 1x1 to 4x4, each progressively

diminishing the output dimensions in a distinctive manner. Post-pooling, the flattened data

passes through two dense layers, with 128 and 256 nodes respectively, each continuing

the use of ReLU activation to further refine the data. The sequence culminates in a

softmax-activated layer that maps the output to the number of classes (Liu et al., 2016).

Compiled to minimize categorical crossentropy loss and optimize with Adadelta, the

model sets its sights on optimizing for accuracy, marking its readiness to classify images

with a nuanced understanding of their features(Zeiler, 2012; Z. Zhang & Sabuncu, 2018).

69

Figure 37.Source Code of the fourth CNN model

5. Fifth Model

As shown in Figure 37, model five is a CNN model which consists of different layers.

initial layer that applies 32 distinct 3x3 filters to the input images using ReLU activation

for added depth in feature detection (Agarap, 2018). What follows is a quartet of max

pooling layers with progressively larger windows, each methodically reducing the feature

map size to streamline the data. The model then transitions this streamlined data through

a flattening process, making it ready for a series of three dense layers. These dense layers

increase in capacity, from 128 to 512 neurons, each layer applying ReLU to ensure

complex feature interactions are captured. Culminating in a softmax layer, the model

assigns probabilities to various class outcomes (Liu et al., 2016). The entire network is

tuned with a categorical crossentropy loss function and the Adadelta optimizer, all the

while homing in on accuracy as the key performance indicator (Zeiler, 2012; Z. Zhang &

Sabuncu, 2018).

70

Figure 38.Source Code of the fifth CNN model

4.5 Maritime mAnaGement eNsemble leArning sysTem (MAGNAT)

A comprehensive depiction of the Maritime mAnaGement eNsemble leArning sysTem

(MAGNAT) is shown in Error! Reference source not found.. This is an innovative system

designed for maritime management. To initiate this process, the maritime authority collects

historical ship operation images. These images form the basis of a robust ship image database.

The database provides the training ground for five CNN models, as detailed earlier. These models

are trained by using the ship image database. This can improve the model’s ability to recognize

and analyze maritime patterns.

Within the aggregation process, CNN models work together. The local output of each

model comes together to create a single global output. Then, a drone is used across the port.

Diverse ship images from multiple angles can be captured with the drone. Using the pre-trained

ensemble model, these images undertake dedicated analysis.

Within a detailed report, the analytical findings are compiled. This report is quickly sent

to a nominated analyzer. The analyzer is really important. It processes this information and creates

71

situation reports. If any abnormal maritime behaviors are identified, alerts are generated. These

alerts inform the relevant authorities.

In the following, the detailed components of the developed aggregation function are

explored. This illuminates the methodology employed to merge the local outputs from each

model. This not only improves the overall efficacy of the MAGNAT system. It also ensures a

proactive response to potential abnormalities in maritime activities.

Figure 39. Ensemble model Framework

4.5.1 Ensemble Aggregation

Each CNN model from the five models already described will independently process the

input ship image. It captures unique features and patterns present in the image. The probability

distribution output by each model is normalized to make comparable outputs, ensuring each

model’s contribution is proportionate. Weight factors are assigned to normalized probabilities

based on historical performance or reliability. In this context, we will give more influence on

models with higher accuracy or reliability in the past, improving overall ensemble performance.

then we calculate the weighted average of normalized probabilities for each class across all

models to aggregate predictions, considering the relative importance of each model, producing a

more robust decision. We will then establish a threshold value for the final decision to control

decision-making, ensuring only confident predictions contribute to the final classification.

Afterward, we select the class with the highest weighted average probability (or surpassing the

threshold) as the final decision. This allows to provide a clear and definitive output based on the

ensemble’s collective prediction. Optionally calculates a confidence score by summing weighted

72

average probabilities across all classes. We will also consider periodically updating weights

assigned to each model based on recent performance. This allows the ensemble to adapt to

changes in models’ effectiveness over time, ensuring continued optimal performance.

4.6 Maritime mAnaGement eNsemble prUrning sysTem (MAGNUT)

A complete overview of Maritime mAnaGement eNsemble prUning sysTem (MAGNUT)

is depicted on Figure 40. It is an innovative system designed for effective maritime management.

Similar to MAGNAT, the process starts with the maritime authority collecting and archiving

historical ship operation images. As mentioned earlier, his database serves as the training platform

for five CNN models. These models get better at detecting and analyzing maritime patterns

through training with the ship image database. The collaboration of these CNN models is achieved

through an ensemble pruning process, where the local output of each model is combined to

produce a cohesive global output. The configuration of each model is saved to a knowledge base

containing model specifications. The ensemble pruner uses the information in the knowledge to

select the most relevant models in this context, we should keep the most general models and

remove the redundant ones. In the following, we will provide a detailed explanation of the

MAGNUT framework, as illustrated in Figure 40.

Figure 40.Ensemble Pruning Framework

73

4.6.1 Knowledge Base Creation

In this subsection, the characteristics of each model in a knowledge base will be saved.

These characteristics include the convolution layers with their filters, the maxpoling layers with

their strides, and the FCLs with their connected neurons. For instance, the first model consists of

two convolution layers with 32, and 64 filters, respectively, one maxpooling layer with (2x2)

stride, and two FCLs with 256, and n neurons, respectively. With 28 x 28 image resolution as

input, and n set to 10, the knowledge base should contain the following row describing the

characteristics of the first model:

1, 28, 28, conv, 32, conv, 64, max, 2, fcl, 256, fcl ,10, 27

1 is used to describe that we are talking about the first model, conv for the convolution

layer, max for maxpooling layer, and fcl for the FCL. The last item describes the model cost in

terms of memory size. The knowledge base for the five models is illustrated in Figure 41.

Figure 41.Knowledge Base Created for the Five Models

4.6.2 Intelligent Aggregation:

This subsection aims to introduce a novel approach for intelligent aggregation of the five

CNN models previously designed. Unlike existing solutions, MAGNUT proposes a set of non-

redundant models within the ensemble for intelligent aggregation. The proposed intelligent

aggregation method leverages a knowledge-driven pruning process as indicated in Figure 40. This

process aims to discover a minimal subset of non-redundant models. Then the voting mechanism

to determine the final output is applied. This approach enhances the efficiency and effectiveness

modelID,width,height,model_features,memory_cost

1,28,28,conv,32,conv,64,max,2,fcl,256,fcl,10,27

2,28,28,max,2,conv,64,max,2,conv,64,fcl,64,fcl,10,1

3,28,28,conv,32,conv,64,conv,128,conv,256,conv,512,conv,1024,max,2,fcl,256,fcl,10.,264

4,28,28,conv,32,max,1,max,2,max,3,max,4,fcl,128,fcl,256,fcl,10,0.5,

5,28,28,conv,32,max,1,max,2,max,3,max,4,fcl,128,fcl,256,fcl,512,fcl,10,2

74

of ensemble learning for CNN models. Further details of this method will be explained in the

following subsections, including “model selection and redundancy elimination,” “greedy search

algorithm and model search tree,” “minimal subset determination,” and “voting mechanism and

final output.” An illustrative example will also be presented below.

a) Model Selection And Redundancy Elimination

The set of five CNN models is denoted as “M = {CNN1, CNN2, CNN3, CNN4, CNN5}.”

A subset, “M*” is created to identify non-redundant models. It comprises representative models

from each unique configuration in “M.” This process involves leveraging the established

knowledge base to prune irrelevant models. Specifically, the specifications of all models in “M”

are explored, and “M*” is defined as the minimal subset that maximizes the inclusion of specified

layers with identical parameter characteristics. For example, if the specified layer is a

convolutional layer, “M*” will be determined by the minimal subset containing convolutional

layers with the same number of filters. The objective is to pinpoint this subset M* that captures

the essence of the ensemble.

b) Greedy Search Algorithm And Model Search Tree

The described approach employs a greedy search algorithm to construct a model search

tree. This algorithm iteratively explores a knowledge base to gather specifications for all models

in the set “M.” During the tree-building process, models with identical specifications to others

but fewer instances of specific layers are eliminated, streamlining the search space. The algorithm

operates iteratively, considering all possible subsets of models in “M.” This strategy aims to

efficiently navigate the space of model configurations, identifying optimal or satisfactory

solutions by iterative refining and exploring different combinations of models (de França, 2018).

c) Minimal Subset Determination

Following the application of the greedy search algorithm, the result is a collection of

potential subsets, each denoted as a candidate “M*.” The objective is to identify the minimal

subset, designated as “M*,” from these candidates. The selection of “M*” is determined by

considering the subset with the fewest number of models while still retaining the maximum

number of specified layers that share identical parameters. In essence, the algorithm aims to find

the most compact subset, “M*”, that encapsulates the essential layer specifications common

75

across multiple models. The criteria for selection involve minimizing the number of individual

models in the subset while maximizing the inclusion of layers that have identical parameters. This

approach is likely geared towards promoting simplicity and efficiency in the resulting subset,

focusing on the most representative and efficient model configurations for the given task.

d) Voting Mechanism And Final Output

Upon identification of the minimal subset “M*,” a subsequent step involves applying a

voting mechanism, reminiscent of the MAGNAT approach. This mechanism serves the purpose

of determining the ultimate output. In this context, each model within the minimal subset actively

contributes to the final decision. The aggregation process that follows is designed to enhance both

the robustness and accuracy of the outcome. The voting mechanism involves soliciting input from

each model in the minimal subset, allowing them to express their opinion or predictions regarding

the task at hand. This collective decision-making process helps mitigate the impact of potential

abnormal model behavior or models that might exhibit less reliability in certain scenarios. By

aggregating the contributions from multiple models, the approach aims to achieve a more robust

and accurate final output. This aggregation process is crucial for leveraging the diverse insights

provided by each model in the minimal subset. It enhances the overall reliability and performance

of the final decision, contributing to a more comprehensive and dependable outcome in the

context of the given task or problem.

• Illustrative Example

In Error! Reference source not found., provides a detailed portrayal of the intelligent

aggregation process. It sheds light on the intensive exploration of four models and the deliberate

consideration of convolutional layers during the pruning procedure. This illustrative example

improves comprehension of the complexities involved in our pruning methodology. The process

begins by exploring individual models as potential candidates. Subsequently, models are

iteratively added to the candidate pool using a recursive strategy. For instance, as shown in Error!

Reference source not found., Model 2 (M2) has 64 feature maps in its convolution layer, whereas

Model 1 (M1) has 32 feature maps from a convolutional layer and an additional 64 feature maps

from another convolution layer. This shows that “M1,” in terms of its convolution layer, is not

similar to “M2,” and thus both need to be kept. However, when comparing Model 1 (M1) and

Model 3 (M3), we observe that M1 has 32 and 64 feature maps from convolution layers, while

76

“M3” includes 32 and 64, as well as 128, 256, 512, and 1024 feature maps from its convolution

layers. This suggests that in terms of convolutional features, “M1” is included within “M3”

because the 32 and 64 feature maps present in “M1” also exist in “M3.” Therefore, we can remove

“M1.” This procedure is replicated for all possible combinations of models, ensuring the

exclusion of redundant candidates. The resulting model candidates are then evaluated based on

their total cost based on memory usage. The calculated costs initiate a ranking process, organizing

the model candidates based on their respective costs. The outcome of this ranking manifests as

follows:

• M2 and M3 both share a cost of 19.5

• M1 and M2 both share a cost of 20.5

• M2a and M4 both share a cost of 26.9

Instead of exploring all 24 = 16 model candidates, this research focuses on just three non-

redundant ones. This reduction strategy greatly simplifies the learning process. These three

candidates are explored in detail to identify the optimal subset based on accuracy while observing

memory size constraints. This intelligent selection process ensures an efficient model aggregation

that meets performance criteria.

Figure 42. Knowledge base creation for the search of tree exploration

modelID,width,height,model_features,memory_cost

1,28,28,conv,32,conv,64,max,2,fcl,256,fcl,10,7.1

2,28,28,max,2,conv,64,max,2,conv,64,fcl,10,13.4

3,28,28,conv,32,conv,64,conv,128,conv,256,conv,512,conv,1024,max,2,fcl,10, 6.1

4,28,28,conv,32,max,1,max,2,max,3,max,4,fcl,128,fcl,256,fcl,10,13.5

77

Figure 43. Example of search of tree exploration

4.7 Challenges And Discussions

The designed MAGNAT and MAGNUT systems will bring several benefits to maritime

management applications. MAGNAT and MAGNUT will promote innovation in autonomous

surveillance technology by investing in research and development to enhance the capabilities of

surveillance drones and integrate them into maritime infrastructure that can contribute to

sustainable development. MAGNAT and MAGNUT can enhance maritime security, promote the

rule of law at sea, and facilitate the prosecution of illegal activities.

It can also help in protecting coastal communities by ensuring the safety of ships entering

and leaving ports. These designed systems will help in a transformative era in maritime

operations. It promises substantial advantages, including expanded coverage, real-time data

acquisition, and a notable reduction in human risk. However, this innovative approach also

introduces a distinct set of safety and security concerns that necessitate careful consideration and

the development of effective mitigation strategies. Safety-wise, the risk of collisions, be it due to

technical problems, navigation errors, or unexpected obstacles, comes up as a serious issue.

Adverse weather conditions can impact flight stability and sensor performance. On the

security front, the interconnected nature of autonomous drones exposes them to cybersecurity

vulnerabilities and potential data breaches, especially as they handle sensitive information.

Unauthorized access or interference by malicious actors is another concern, as is safeguarding the

physical security of these drones. Navigating these safety and security challenges is essential to

78

harness the full potential of the designed system while ensuring the safety and confidentiality of

maritime operations.

Even MAGNUT provides an intelligent strategy to prune the models of the MAGNAT

system, determining the specific model features to be stored in the knowledge base for the

MAGNUT system is a nuanced task that lacks straightforwardness. Taking the convolution layer

case as an example, the consideration of the number of filters alone may not suffice for a

comprehensive exploration of the model. It prompts the question of whether more granular

features, such as the kernel size or activation function, are indispensable for thorough exploration.

To make informed decisions about which model features are relevant to retain in the knowledge

base, a careful and detailed analysis becomes important. It necessitates an in-depth investigation

into the intricacies of various features associated with the model. For instance, understanding the

impact of factors beyond just the number of filters, such as the specific characteristics of each

filter like kernel size and activation function, becomes crucial. The complexity of model

architectures requires thoughtful consideration of not only the broad characteristics but also the

fine-grained details that contribute to the model’s behaviour. Hence, a comprehensive exploration

of model features is essential to discern and subsequently store the relevant information in the

knowledge base of the MAGNUT system. This approach ensures that the knowledge base

captures the nuanced details critical for optimizing the system’s performance and decision-

making processes.

4.8 Conclusion

In this chapter, the MAGNAT and MAGNUT frameworks are proposed as advanced

solutions for maritime management system. The first solution of this research, MAGNAT,

addresses challenges in ensemble learning by enhancing model selection and performance

optimization. MAGNAT utilizes ensemble learning to propose intelligent aggregation by

assigning weight factors based on the historical performance of the models. With this strategy,

models that positively contribute can assign more weight, influencing the overall performance

through aggregation. MAGNUT focuses on pruning non-contributory elements of the ensemble

models, thereby enhancing model performance, improving computational efficiency, and

enabling real-time scalability. These strategies highlight the potential of AI and DL in

79

modernizing maritime management, emphasizing the importance of smart and adaptable systems.

In the last part, each challenge of each proposed strategy was discussed.

80

Chapter 5: Experiments

5.1 Introduction

This chapter explores the performance evaluation of proposed strategies like MAGNAT

and MAGNUT. It examines their effectiveness with specialized datasets such as fish and ship

classification. The first part provides comprehensive information about our datasets. Furthermore,

the chapter also goes deeper into model visualization using Netron as a tool for this purpose. It is

not just a technical presentation but also it has insights about why we visualize DL models as a

way of understanding and optimizing them better. The heart of this chapter focuses on evaluating

model performance that includes a detailed assessment of proposed strategies. Different

challenges that the author faced due to the dataset are explained as well. In the further results part

of this chapter, five advanced models of architecture are proposed to add robustness to the

experimentation. By demonstrating the feasibility of employing an advanced model, the research

shows the potential applications of this methodology across various model architectures. To

visualize the situation more realistically, after evaluating each advanced model on existing

datasets, the summary is conducted.

5.2 Dataset Description

To demonstrate the success of proposed strategies, such as MAGNAT and MAGNUT,

applicable across various domains, two datasets are selected: jellyfish and ships. The jellyfish

dataset demonstrates the possibility of using this idea in marine science. The ship dataset is

selected to show that this concept can be applied in maritime technology as well.

5.2.1 Jellyfish Dataset

A jellyfish dataset is selected to classify different types of fish. This dataset is extracted

from the Kaggle website, which consists of nine classes (Marine Animal Images, n.d.). This

dataset has been divided into two subsets: training and testing datasets. The training dataset has

been used for training our models, and the testing dataset was useful for evaluating our models.

The training dataset consists of 621 images, and the testing dataset includes 185 images (Marine

Animal Images, n.d.). Figure 44 represents the jellyfish classes. These classes are as follows: Fish,

Goldfish, Harbor Seal, Jellyfish, Lobster, Oyster, Sea Turtle, Squid, and Starfish. Each class

81

contributes to the overall richness and complexity of the dataset, ensuring that the models can

distinguish between different fish categories.

Figure 44. Dataset illustration on different fish classes taken from (ri e i I ge , n.d.)

5.2.2 Ship Dataset

Another dataset, the ship dataset, is chosen from the Kaggle website to validate the results

with an additional dataset (JAIN, 2019; Kaggle, n.d.). As shown in Figure 45, the dataset includes

five different classes of ships: “Cargo ship,” “Military ship,” “Carrier ship,” “Cruise ship,” and

“Tanker ship.” It is downloaded from the Kaggle website and contains 6252 images in the training

set and 2680 images in the test set (JAIN, 2019).

82

Figure 45. Ship dataset

5.3 Model Visualizations

Netron tool is used to visualize and explore how neural networks are made up (Roeder,

n.d.). Netron is a user-friendly open-source alternative for displaying DL models (Figure 46). This

tool functions with different frameworks such as TensorFlow, Keras, and PyTorch (Chollet, 2015;

Paszke et al., 2019). With this interactive interface of Netron, we can study the layers,

connections, and parameters that make up a neural network leading to a better understanding of

its operations. Additionally, Netron is accessible from various platforms which makes it flexible

enough to help both researchers and practitioners in the ML field. Among other issues, Netron

distinguishes itself by having a wide variety of users across different operating systems like

Windows, macOS, or Linux. It also has an added advantage on local deployment where sensitive

models can be visualized offline without access to the internet or exposure to external servers.

After installation, Netron is available offline making it very convenient for individuals who have

slow internet connections. Lastly, Netron provides detailed descriptions for each layer of a neural

network containing information about input shapes/output shapes including parameter details plus

the number of parameters for every layer. This profound exploration enables one to understand

more about the setup and operation mechanism behind the model as well as why it behaves in a

certain manner. In our pipeline for saving models after training them, we use “h5”. In Figure 47,

architectures of the five proposed models were visualized using Netron.

83

Figure 46. Netron Software (Roeder, n.d.)

Figure 47. Model visualization using Netron (from the left to right, Model-1, Model-2, Model-3, Model-4, Model-5)

5.4 Performance Evaluation

In this section, the jellyfish dataset was evaluated by our proposed models to demonstrate

how these models can be applied in maritime science. After obtaining results from this dataset,

due to the contextual problem of the dataset, we not only replaced the five proposed models with

the VGG16 model to evaluate the issue of low accuracy in the model s architecture, but we also

replaced our dataset with the MNIST dataset and ship dataset. Through this strategy, we validated

84

our claim regarding the challenging nature of the jellyfish dataset, and we also demonstrated how

these strategies can be applied to other marine applications such as maritime technology.

The results in this section are presented in tables. Each table includes the accuracy of

individual models after 50 epochs of training. It also shows each model s accuracy with unseen

images in the testing dataset. Additionally, tables show the memory cost consumed by the models.

In the last 2 columns of the tables except for the VGG16 result table, the result of the proposed

strategies such as MAGNAT and MAGNUT is attached.

5.4.1 Evaluation of the models on the Jellyfish dataset.

After experimenting with various image sizes from the jellyfish dataset, the image size of

128x128 was chosen due to its higher accuracy compared to other sizes (Table 1). The overall

accuracy of models using an image size of 28x28 is 25%. For 32x32, it is 48%, for 64x64, it is

65%, and for 128x128, it is 72%, the highest among all tested sizes.

Table 1.Accuracy performance with different shape sizes of jellyfish images

Shape size Accuracy

(28, 28) 25.0

(32, 32) 48.0

(64, 64) 65.0

(128, 128) 72.0

Five model architectures were proposed, and the jellyfish dataset was used to train 5

models. However, upon testing with the unseen test dataset, the achieved accuracies were found

to be unsatisfactory. For instance, in Table 1, Model 1 was trained with an accuracy of 53%, and

the accuracy achieved in tests with the test dataset was 36%. Model 2 learned with an accuracy

of 14% from the dataset, and the test accuracy was 19%. Model 3, due to its architecture’s high

computational complexity, was challenging and could not be computed on a conventional

computer. The model has been used in this research to demonstrate how the complexity of a

model’s architecture can impact outcomes and to emphasize the importance of designing models

that have not only lower computational complexity but also the ability to achieve good accuracy.

During training, Model 4 was able to reach an accuracy of 23% but managed only 13% accuracy

in the tests. Model 5 attained an accuracy of 24% during training and similarly could only achieve

13% accuracy in the tests. The ensemble method resulted in an accuracy of 26%. This accuracy

85

is expected due to the negative contribution of models that had lower accuracy; they decreased

the ensemble learning accuracy. For pruning with the proposed strategy, the first step was to keep

the more general models according to their architectural design and prune the redundant ones.

Four subsets remained: (M2, M4), (M2, M5), (M1, M2), and (M2, M3). Then, the memory cost

for each subset was calculated, and the models were prioritized based on it (Table 2). After

calculation, (M2, M4) with a size of 41 MB had the lowest memory cost and became our first

priority. Next, (M2, M5) with a size of 43 MB became our second priority. The third priority was

(M1, M2) with a size of 778 MB. Due to the high memory cost of model 3, the fourth one was

impossible to calculate. The overall low accuracies across models and strategies suggested

potential issues with model architectures or dataset suitability.

Table 2. Accuracy of models on jellyfish dataset with epoch 50 with 128x128 image size, and 132 batch size

• Replacing models with VGG16 model

To find the reason for low accuracy, the models were first examined. The 5 designed

models were replaced with the VGG16 model, which is one of the popular models in image

classification (Luu & Anh, 2023). As shown in Table 2, the results were not satisfactory.

According to the table, the accuracy of the model in training was 53%, and the test accuracy was

36%. The results remained low even with the VGG16 model. Thus, it was understood that the

problem was not due to the architecture of our models.

Table 3. Accuracy of the VGG16 Model on the Jellyfish Dataset (Epoch: 50, Image Size: 224x224, Batch Size: 132)

• Replacing jellyfish dataset with MNIST dataset

To validate our dataset, the MNIST dataset was replaced with the jellyfish dataset. This

dataset is widely used for image classification (Cohen et al., 2017). MNIST dataset consists of

86

60,000 examples in its training set and 10,000 in its test set, all containing handwritten digits

(Cohen et al., 2017). Table 4 shows models designed that are trained on the MNIST dataset. Model

1 demonstrated the highest accuracy, achieving 94% accuracy with a memory cost of 27 MB for

both training and test sets. Conversely, model 4 showed the lowest accuracy across both sets,

achieving only 28% accuracy in the test set, with a memory consumption of 0.5 MB. Model 3 did

not succeed in training on both the jellyfish and MNIST datasets because it had a high memory

cost which was not able to be computed by a normal computer. Keeping this model is a good

example to show how the memory cost and model architecture are important. Despite its lower

accuracy, the ensemble s overall accuracy of 47% exceeds that of individual models other than

model 1. The presence of high-accuracy models like Model 1 in the ensemble had a positive

impact, though it s countered by the presence of models with lower accuracy.

In ensemble pruning, following the MAGNUT strategy, four subsets remained as non-

redundant and general subsets in terms of architectural design: (M2, M4), (M2, M5), (M1, M2),

and (M2, M3). The subset (M2, M4) has the lowest memory cost and was selected as our first

priority. (M2, M5) ranks second, with a memory cost of 27%. (M1, M2) follows as the third

priority, with a memory cost of 28 MB and an accuracy of 74%, the highest after Model 1. Due

to its high memory cost, (M2, M3) could not be calculated. Despite its slight difference in memory

cost, (M1, M2) prove to be more robust and non-redundant, aligning with our strategy.

As a result, we got good accuracy compared to the jellyfish dataset which can support our

claim about a challenging dataset that jellyfish have. This dataset has different contextual details.

As shown in Figure 44, as an example, the image that shows the Harbor seal and the image that

shows the picture of fish do not have the same such as clarity, background elements, lighting, or

even angle. This result could be a good result for showing how much the dataset can affect training

models.

Table 4. Accuracy Comparison of Five Models on the MNIST Dataset (Fixed Parameters: Epoch: 100, Batch Size: 32, Image Size:
28x28)

87

• Illustration of test from MNIST dataset

To illustrate the quality of models, we conducted a test using a random selection of digits

from the MNIST dataset. As shown in Error! Reference source not found., there is an

illustration of one of the model’s predictions (in this example we use model 1) for a random digit.

For example, in the image with the illustration of the number 4, the actual label is 4, and the

predicted model is also 4, indicating that the predicted model is classified correctly. However, for

the image depicting the number 8, the actual label is 8, but the model incorrectly identifies it as

5. In this instance, our model did not correctly recognize the number. Similar analyses are

conducted for other randomly selected digits to assess the model’s accuracy.

Figure 48. Illustration of test in MNIST dataset

5.4.2 Evaluation of the models on the ship dataset

Not only did we evaluate our models on the MNIST dataset to confirm its validity as a

dummy dataset, but we also tested them on the ship dataset (Cohen et al., 2017; JAIN, 2019).

Table, illustrates that among the single models, Model 1 achieved the highest accuracy, not only

88

in the testing set at 37% but also in the training set at 34%. Conversely, Model 5 exhibited the

lowest accuracy, in the training set at 17% and in the testing set at 11%.

Even though using ensemble learning was better than using just one model, its accuracy

was still not great because each model’s accuracy was low but, in the pruning, the problem of

memory cost would be solved. In the pruning strategy, instead of using all models, just non-

redundant models would be chosen. The non-redundant subsets were defined based on their

architecture and the memory costs were calculated. The first priority, due to low memory cost,

would be (M2, M4) with a memory cost of 41 MB and an accuracy of 37%. The second priority

is (M2, M5) with the same accuracy and a memory size of 43 MB. The third priority achieved

39% accuracy with a memory cost of 778. However, the accuracy of pruning could not increase

significantly because the accuracy of each single model was low and within the same range. Even

after pruning out negatively contributing models, the overall accuracy could not reach higher

levels due to the similar accuracy range of the remaining models. Overall, the result verifies our

strategy due to lower memory cost usage and fewer models in the MAGNUT.

Table 5. Accuracy of the models with the ship dataset

5.5 Further Results

5.5.1 Advanced Model Architecture

We designed advanced CNN model architectures to show the adaptability of our strategy

on other strong models. Through designing models, pre-trained networks and custom

configurations were used. The aim of designing the models was to enhance performance,

especially for memory-constrained devices like drones. Pre-trained models were trained on a

general dataset like ImageNet and further training on the specific dataset (Deng et al., 2009;

Russakovsky et al., 2015). This strategy can improve model performance. ImageNet is a large-

scale visual database utilized for training DL models in computer vision tasks (Deng et al., 2009).

1. Advanced Model 1

89

Model 1 used MobileNet as the base model due to its high memory efficiency. It integrated

a pre-trained MobileNet from ImageNet. The top layer was excluded to adapt to the

custom classification (Deng et al., 2009; Howard et al., 2017). Additional layers include

a convolutional layer, GAP, and a dense output layer conducted to our specific number of

classes. It was designed to be compact enough for simple devices. For compiling the

model, “Adam” as an optimizer was used which is suitable for training deep neural

networks (Kingma & Ba, 2017). “Categorical_crossentropy” was chosen as a loss function

which is common in multi-classification tasks (Z. Zhang & Sabuncu, 2018). “Sigmoid”

activation was used in the convolutional layers to make the output between 0 and 1 (S.

Sharma et al., 2017). The “Softmax” function was used in the output layer of the

classification model (Liu et al., 2016). It converts raw scores into probabilities which helps

to define the predictions.

2. Advanced Model 2

Model 2 is a simplified variant of the ResNet architecture. It was designed to be smaller

and more memory efficient. It used residual connections to prevent vanishing gradients

(He et al., 2016). It featured multiple convolutional layers with L1L2 regularization to

prevent overfitting (Bidaran & Sharifian, 2021). Batch normalization was applied to

maintain effective learning rates throughout training, followed by “ReLU” as an activation

function (Agarap, 2018). The “Softmax” function was used in the output layer of the

classification model (Liu et al., 2016). For compiling, the same structure was used for all

5 models. This design aimed to reduce its memory usage and computational requirements,

making it suitable for drones.

3. Advanced Model 3

Model 3 utilizes VGG19, a well-known architecture (Simonyan & Zisserman, 2014). We

fine-tuned the last five layers while freezing the earlier layers. This approach used the pre-

trained weights on ImageNet. It enables the model to benefit from previously learned

features. Moreover, it helps in adapting to the new classification task. The same activation

function was used for the output layer of the classification model. However, the learning

weight was not set by default, and it was set to 0.001. This model consumed more memory

compared to the previous models because of the sensitivity in feature extraction.

90

4. Advanced Model 4

 Model 4, designed without fine-tuning any pre-trained network, was built from scratch

and includes several layers of convolution with batch normalization (Ioffe & Szegedy,

2015). The activation function was “RELU” and the same function was used in the output

layer of the classification model (Agarap, 2018). The compiler of this model was the same

as the model_3 which means the learning rate is set to 0.001. This model focused on

learning features directly from the training dataset, making it fully customizable and

adaptable to specific features of the dataset.

5. Advanced Model 5

Model 5 uses ResNet50 for its base, leveraging the strong feature extraction capabilities

of ResNet50 with partial fine-tuning (He et al., 2016). The last five layers are trainable,

which allows the model to adjust more extensively to the new dataset while still benefiting

from ImageNet. The “Softmax” function is used in the output layer of the classification

model (Liu et al., 2016). For compiling the model, the same function is used except for

the learning weight that is set to 0.0001. This model consumes more memory. As shown

in Figure 49, For visualization of all proposed models, the Netron website which is an

open source is used (Roeder, n.d.).

91

Figure 49. Advanced models architecture, drawn by Netron (Roeder, n.d.)

Model-2Model-3Model-5 Model-4 Model-1

92

5.5.2 Result Of Using Advanced Models On The Jellyfish Dataset

The jellyfish dataset was used to train five advanced models. Table , demonstrates their

effective performance. Using the previous architecture achieved 36% accuracy in the test set.

However, the advanced version gained remarkable improvement, reaching 99% accuracy. For

Model 2, the previous architecture achieved 19% accuracy, while the new architecture improved

it to 27%. Model 3 encountered challenges with computation due to high demands in the previous

architecture. However, the advanced model classed test images with 10% accuracy and trained

itself with 39% accuracy. Model 4, was trained with the previous architecture and achieved 23%

accuracy, however, the advanced model 4 reached a training accuracy of 41% and maintained the

same testing accuracy of 13%. Model 5, with the previous architecture, achieved accuracies in

the train and 13% in the test. Conversely, the advanced model 5 provides considerable

enhancement. It achieves a training accuracy of 71% and a testing accuracy of 15%. The ensemble

results also showed improvement compared to the previous models, with an accuracy of 37%.

The accuracy of pruning was not calculated due to the high number of layers and complexity of

architecture in each model.

Table 6. Comparison of advanced and old model accuracy on jellyfish dataset.

5.5.3 Result Of Using Advanced Models On The Ship Dataset

The same ship dataset was chosen to train our advanced models, and the results, as shown

in Table , improved significantly. The architecture of the previous Model 1 had an accuracy of

34% in training and 37% in testing. However, with the advanced Model 1, the training accuracy

reached 100%, and the testing accuracy increased to 82%. Model 2 improved from 31% to 77%

in training and 30% to 11% in testing with the advanced architecture. Model 3 achieved 100%

training and 71% testing accuracy with the advanced architecture. The training accuracy of Model

93

4 increased to 33% with the advanced model, but testing accuracy decreased to 15%. Model 5

with the advanced architecture showed improvements in both training and testing accuracy

compared to the old model. Its training accuracy reached 66%. In testing, it achieved 37%

accuracy. The advanced models in the ensemble also outperformed the previous ensemble models.

The ensemble of advanced models achieved an accuracy of 44%, exceeding the accuracy of the

previous ensemble models, which was 39%.

Table 7. Comparison of advanced and old model accuracy on ship dataset

5.6 Conclusion

In this chapter, an analysis of experiments was conducted to evaluate proposed strategies

such as MAGNAT and MAGNUT within the maritime management framework. It begins with

the selection of two datasets, Jellyfish and Ship from Kaggle. The jellyfish dataset had a

significant challenge, that allowed utilizing the VGG16 model and the MNIST dataset to define

the problem. After extensive evaluation, it became evident that the datasets were challenging. The

results of our models with the MNIST dataset were satisfactory and proved the effectiveness of

our strategies. However, the ship dataset did not present such challenges and served to validate

our strategy. After training on the ship dataset, the research proposed five advanced CNN models

to improve efficiency. With these advanced models, both datasets were used and demonstrated

the possibility of using proposals on diverse architecture.

94

Chapter 6: Conclusion and Future Perspective

As detailed below, this section aims to first present the summary and conclusion of the

master’s thesis. It will then address the research questions introduced in Section 1 and subsection

1.2, available on page 15, entitled “Research Questions.” Finally, the related publications of this

thesis study will be presented.

6.1 Master Thesis Summary And Conclusions

Using AI in maritime management plays an important role in marine and maritime safety

and security issues. Ports are the main gateways for international trade. There are billions of

dollars of goods handled in ports. That makes the port vulnerable to illegal activities such as

smuggling, piracy, and terrorism. Safety and environmental protection are the main concerns,

given the presence of heavy machinery, hazardous materials, and significant human activity, all

of which can endanger the area. Security protocols help prevent accidents. AI, especially DL is

one solution for enhancing the ports’ security.

The thesis focuses on using DL to classify different maritime objects. Maritime objects

such as ships vary in size and shape, making them difficult to distinguish. Ensemble learning is a

powerful ML technique, that can improve performance and accuracy. In ensemble learning, local

predictions are combined to make a meta-model. However, using ensemble learning in maritime

management brings different challenges. Two main challenges in ensemble learning are the

consumption of significant computational time and the memory resources required. This is

because multiple models need to be loaded and executed individually. Also, the performance of

models is not the same and some models may have a negative impact on the overall learning

process especially when models are aggregated. In this thesis, the author proposes intelligent

strategies focused on model selection and performance optimization to address these challenges.

MAGNAT is one of the main proposed strategies in this thesis that uses ensemble learning for

maritime management. With its specialized algorithm, this strategy tries to decrease the effect of

models that contribute negatively and enhance the effect of positive models by assigning weight

factors based on their historical performance. In the MAGNAT strategy, collecting datasets from

maritime authorities and preprocessing the data is the first step. Preprocessing, especially in CNN

models is a significant step. Each CNN model is trained based on prepared data and makes their

95

local predictions. In the aggregation process, a weight factor is consumed to do the global

prediction. Ensemble learning with an explained strategy is more accurate compared to the

prediction of every single model. In weighted voting, the influence of each model on the overall

global prediction is based on its performance over time. Models with better performance receive

higher weight probabilities and would have more influence. Using a threshold value for the final

prediction can ensure that only confident predictions participate in the final classification. Each

model’s weight based on its performance is updated periodically. To improve the overall

performance of this strategy, MAGNUT as an intelligence aggregation is proposed. It differs only

in the aggregation method of the previously explained CNN models. Unlike existing solutions,

MAGNUT aggregation focuses on a set of non-redundant models within the ensemble. This

intelligent aggregation of the MAGNUT method utilizes knowledge-driven pruning to define a

minimum subset of non-redundant models and then the voting mechanism for the final output is

applied. With this approach, the efficiency of the ensemble learning for the CNN models is

improved.

These two innovative techniques, MAGNAT and MAGNUT, are not just theoretical.

Various experiments have been conducted to evaluate their performance using Python

programming codes. The experimentation began by choosing two datasets from the Kaggle

website, such as the jellyfish dataset related to marine science, and the ship dataset relevant to

maritime technology. The reason for choosing these two datasets was to demonstrate that the

proposed strategies can be applied in different domains such as marine science and maritime

technology. The Jellyfish dataset consists of nine classes of fish, and the ship dataset consists of

five classes of ships. Both datasets consist of training and testing samples. This split helps us train

our models with the training dataset and test models’ accuracy with the test dataset. For model

visualization, Netron as a user-friendly tool for DL models was used. This helps to better

understand the components of each model architecture. First, CNN models were trained using the

jellyfish dataset. Different image sizes were tested, and the size of 28 x 28 pixels was selected

due to its high accuracy. The training was set to 50 epochs with a batch size of 132. However, the

accuracy of correctly classified images in the test from individual models and ensemble learning

with pruning was not satisfactory. The reason could be due to model robustness or an

inappropriate dataset. Models were replaced with the popular VGG16 model. Even with the

VGG16 model, significant improvement in accuracy was not achieved. The next step was

96

checking the dataset by replacing it with another dataset. A popular dataset in image classification

which is called MNIST was used to replace with the jellyfish dataset. Images were fixed at 28x28

pixels with a batch size set to 128 and a fixed epoch of 100. The results were satisfactory.

MAGNAT achieved 47% accuracy with a memory cost of 294 MB. MANUT strategy solved not

only the problem of memory cost but also reduced the number of the models of the ensemble.

Instead of having a large number of models, three non-redundant subsets were defined in

MAGNUT. Each subset based on their memory cost was prioritized. The first subset with a

memory cost of 1.5 was the first priority. The second subset with the memory cost of 3 MB was

the second priority and the third one with the memory cost of 28 MB got the higher accuracy with

74%. The reason for the low accuracy with the jellyfish dataset was determined to be the dataset

itself. The dataset had contextual issues such as clarity and consistency in lighting. It was evident

that harbor seals represented a different species of animal depicted in varied contexts. The models

were also trained on the ship dataset, demonstrating the effectiveness of our strategy on maritime

technology. The ensemble achieved an accuracy of 39%, indicating the success of the MAGNAT

strategy. For MAGNUT, instead of using a large number of models, we defined three subsets that

are both general and non-redundant. We, then calculated the memory costs for each subset,

prioritizing the one with the lowest memory requirement. The first subset had a memory cost of

41 and an accuracy of 37%. The second subset had a memory cost of 43 and an accuracy of 37%,

while the last one had a memory cost of 778 and an accuracy of 39%. After evaluating each single

model on different datasets, we realized that the models’ architecture needs improvement.

Therefore, we proposed 5 advanced model architectures. Three of the models used fine-tuning

techniques, allowing them to be trained not only on general datasets such as ImageNet but also

on specific datasets such as jellyfish or ship datasets. The other two models were designed from

scratch. Various techniques were employed on each model’s architecture to enhance the accuracy

of each model. Five advanced models were trained and tested using the same datasets such as the

jellyfish dataset and the ship dataset. The results with the advanced model were conducted to

show how these proposed strategies can be used in a variety of architectures

The author learned about the significance and methodologies of employing ensemble

learning and pruning techniques in maritime management systems. The thesis emphasizes the

optimization of maritime management through advanced DL architectures, particularly ensemble

learning, to enhance the performance and accuracy of models in maritime operations. It

97

introduced a novel framework that combines ensemble learning with innovative pruning

techniques to efficiently manage computational resources while achieving high precision in tasks

like ship classification and abnormal detection. The research evaluates various DL architectures,

showing their applicability across diverse maritime datasets and optimizing ensemble models

through strategic pruning for better decision support and operational optimization in maritime

applications.

The proposed solution in this research is the use of AI-driven solutions, such as

surveillance drones equipped with advanced detection algorithms, to enhance port security. These

drones aim to recognize different classes of ships with high accuracy and send their reports to an

analyzer, which, based on the level of threats, decides whether to forward them to maritime

authorities. The future work of this research encompasses a wide array of ideas. The two novel

solutions proposed, MAGNAT and MAGNUT, could be applied to popular models. This means

that instead of using our five CNN models, we could utilize well-known models such as VGG16

or DenseNet. Another possibility involves applying MAGNAT and MAGNUT to other datasets

for other applications. Top of Form We did not consider different weather conditions in our

scenario, which exist in real-world scenarios. Capturing different pictures from various angles in

poor weather conditions could pose a challenge for drones, especially in Norway, where summer

and winter differ a lot. On one hand, capturing images from different angles could be difficult for

the drone if the weather is windy or rainy. On the other hand, analyzing and recognizing unclear

pictures could be challenging for algorithms to accurately classify images with high accuracy.

The classification of different marine objects was done but one of the interesting future works

could be detection and classification together.

6.2 Answering Research Questions

For the first research question (RQ1) on addressing demanding resource requirements and

substantial computational time in ensemble learning:

Section 4 describes a novel ensemble learning system, “MAGNAT” and “MAGNUT,”

which are designed to address the issue of demanding resource requirements in ensemble learning.

Specifically, MAGNUT focuses on ensemble pruning to reduce computational and memory

demands by selecting and combining the most effective models, ensuring that only those

98

contributing significantly to performance are utilized. This strategy effectively addresses the

problem of computational overhead during the inference phase of ensemble learning.

For the second research question (RQ2) regarding handling detrimental effects of specific

models in ensemble learning to enhance overall performance:

Sections 5 and 6 discuss the implementation and results of the proposed systems

(MAGNAT and MAGNUT) that utilize ensemble pruning and intelligent aggregation techniques.

These sections highlight that by carefully selecting models that contribute positively and pruning

those that do not, the ensemble’s overall effectiveness is enhanced. This not only improves the

performance but also ensures that cooperative dynamics within the ensemble contribute

constructively to the learning outcomes, avoiding any potential detrimental effects from less

effective individual models.

The thesis employs innovative approaches to pruning and intelligent model aggregation

to enhance both computational efficiency and cooperative dynamics in ensemble learning

systems. It demonstrates significant improvements in maritime image classification tasks,

showcasing applications such as identifying fish in marine and maritime science and ships in

maritime technology. These techniques could potentially be extended to other business domains

requiring image classification and innovative techniques.

6.3 Related Scientific Publications

As of today, May 14, 2024, one scientific conference paper has been published in the “12th

World Conference on Information Systems and Technologies (WorldCIST’24),” which is related

to the MAGNUT proposal, one of the main contributions of this paper (Mesgaribarzi,

2024).Additionally, other publications are being considered for future publication related to this

master’s thesis study and will be cited accordingly in the future. It is also worth noting that some

figures and results of this master’s thesis study have already been published in the aforementioned

publication.

99

References

 g r . F. (2018). ee e r i g u i g re fie i e r u i (re u). arXiv Preprint arXiv:1803.08375.

 B r z i H. Ver . & W g . X. (2018). I e ige i ge ifi i ee

 e r i g. International Journal of Computational Vision and Robotics 8(6) 561–571.

 b i . e . . & Z i . (2017). U er i g u eur e r .

2017 International Conference on Engineering and Technology (ICET) 1–6.

 tt : i. rg 10.1109 I g e .2017.8308186

 r . (2022 J u r 22). Difference between AlexNet, VGGNet, ResNet and Inception. e iu .

 tt : r ie e. e 3 ex e gg e re e i e

7b e 96

 u i . r e . ru Y. r . Ri . H u R. & H i N. (2023).

I e g r i i ee u eur e r r e r g i

gr i g. Biomedical Physics & Engineering Express 9(3) 035020.

 ug . G. & K ir u r . (2013). ru i g g ri eur e r — r e

 u . Central European Journal of Computer Science 3(3) 105–115.

 tt : i. rg 10.2478 13537 013 0109 x

 z ri K. B g Y. ee J. & B e r . (2021). Learned Threshold Pruning (rXi :2003.00075).

 rXi . tt : i. rg 10.48550 rXi .2003.00075

B g r . (2022 Ju 5). Re e r i e ure x i e . Medium.

 tt : e iu . @ i e b008 re e r i e ure ex i e 47309e 9283

B . . ube . R. u b ig ri V. & u erjee . (2020). I u e e er

 er r e u eur e r r i ge ifi . Neurocomputing 378

112–119.

100

B H. . u e r . & V G . (2008). ee e U R bu Fe ure (URF). Similarity

Matching in Computer Vision and Multimedia 110(3) 346–359.

 tt : i. rg 10.1016 j. iu.2007.09.014

Bi r . & rifi . (2021). Designing an AI-assisted toolbox for fitness activity recognition based

on deep CNN (. 34). tt : i. rg 10.1109 IK 54664.2021.9685153

Bir . (2019). Image Classification with K Nearest Neighbours. tt : e iu . i ge

 ifi i e re eig b ur 51b3 289280

Brei . (1996). B ggi g re i r . Machine Learning 24 123–140.

 u N. K. & i g K. (2018). re ie e i e e r i g ee e r i g. 2018

International Conference on Computing, Power and Communication Technologies (GUCON)

347–352.

 u N. K. & i g K. (2018b). re ie e i e e r i g ee e r i g. 2018

International Conference on Computing, Power and Communication Technologies (GUCON)

347–352.

 u N. K. & i g K. (2018). re ie e i e e r i g ee e r i g. 2018

International Conference on Computing, Power and Communication Technologies (GUCON)

347–352.

 á ez . . G. Br . e ei e . J B. Rö bä . Ö. Rö er J. & re J. (2024).

 i g u i bi i r ug igi er i z : ex r r u i e ri e

 i i g i u r . Journal of Cleaner Production 436 140401.

 e Q. Hu g . W g H. Z g Y. Fe g W. W g X. Wu . & B tti U. . (2018). e ure

 re r e i g r e r re e e i g i ge r ri e rge re g i . 2018

OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO) 1–5.

101

 e . & Gue ri . (2016). Xgb : b e ree b g e . Proceedings of the 22nd Acm

Sigkdd International Conference on Knowledge Discovery and Data Mining 785–794.

 e X. J. & Xie J. (2021). ri i r ru i g g ri Neur Ne r . 2021

2nd International Conference on Computer Engineering and Intelligent Control (ICCEIC) 50–56.

 tt : i. rg 10.1109 I I 54227.2021.00018

 i . . & Ve e u r . (2022). r fi i I e ige e r ri e r r . IEEE

Transportation Electrification Community (TEC) eNewsletter. tt : e ri . . .u

 e F. (2015). Keras. tt : gi ub. e er

 e G. r . J. & i . (2017). EMNIST: An extension of MNIST to handwritten

letters (rXi :1702.05373). rXi . tt : i. rg 10.48550 rXi .1702.05373

 r e . & V i V. (1995). Support-Vector Networks | SpringerLink.

 tt : i. rg 10.1023 :1022627411411

 r er K. & i ger Y. (2001). On the Algorithmic Implementation of Multiclass Kernel-based Vector

Machines. tt : i. e r. rg r u I :10151608

 u i g . & e . J. (2021). K Ne re eig b ur ifier u ri . ACM Computing

Surveys (CSUR) 54(6) 1–25.

 u N. i i j . & r eri . . (2019). ifi i B e u

I e fi e U i g K Ne re Neig b r . 2019 International Seminar on Application

for Technology of Information and Communication (iSemantic) 331–335.

 tt : i. rg 10.1109 I N I .2019.8884328

 e Fr ç F. . (2018). gree e r ree euri r b i regre i . Information Sciences

442 18–32.

102

 e g J. g W. er R. i . J. i K. & i F. F. (2009). I geNe : rge e Hier r i I ge

 b e. I IEEE Conference on Computer Vision and Pattern Recognition (. 255).

 tt : i. rg 10.1109 V R.2009.5206848

 i i i . & Gi rgi G. (2016). ee e r i g r u er i e ifi . Rivista Italiana Di

Economia, Demografia e Statistica Vol. LXVIV.

 i g G. Z g . Ji Z. Z g J. & H J. (2021). W ere ru e: U i g Gui e

 e e e ft ru i g. IEEE Transactions on Image Processing 30 293–304.

 tt : i. rg 10.1109 I .2020.3035028

 g X. Yu Z. W. i Y. & Q. (2020). ur e e e b e e r i g. Frontiers of Computer

Science 14 241–258.

F r be . u rie . N j . & e u Y. (2012). e r i g ier r i e ure r e e be i g.

IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8) 1915–1929.

Freu Y. & ire R. . (1996). x eri e i e b g g ri . Icml 96 148–156.

Fr zetti N. (2019). Predictive Neural Network Applications for Insurance Processes.

Fu B. W g Z. R. Xu G. & g . (2013). I egr e ru i g ri eri r e b e

 e r i g B e ifi ur i er i . I . U e F. Herrer J. B j érez & J.

 . r R ríguez (.) 7th International Conference on Knowledge Management in

Organizations: Service and Cloud Computing (V . 172 . 47–58). ri ger Ber i Hei e berg.

 tt : i. rg 10.1007 978 3 642 30867 3_5

G e . Ve ei . Gr J. . Fjer i ge . & j berg I. (2013). RBF e r ru i g

 e ique r e e r i g r er . 9th International Workshop on Robot Motion and

Control 246–251. tt : i. rg 10.1109 R .2013.6614616

G eg . J. er u . & Gi . (2018). u i ifi r eri i ge i

 u eur e r . Remote Sensing 10(4) 511.

103

Gui e . . ri i J. & e e . (2023). Gr ie ree b g e e r u

 r er . Expert Systems with Applications 214 119134.

Gü u . K . Yi iz . e . & Ke . . (2024). I ge I Fu i

 e ique r ri e u er Vi i i . Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision 859–868.

Gu R. & J N. (2020). Re i e u u ig gu ge ifi u i g e b e

Wi . 2020 6th International Conference on Advanced Computing and Communication

Systems (ICACCS) 73–78. tt : i. rg 10.1109 I 48705.2020.9074319

H gi r . (1993). Re i e u i eig r b r g e r . Proceedings

of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan) 1 351–354

 .1. tt : i. rg 10.1109 IJ NN.1993.713929

H e i . (2020). Web ge ifi : ur e er e e g u ure ire .

Multimedia Tools and Applications 79(17) 11921–11945. tt : i. rg 10.1007 11042 019

08373 8

He K. Z g X. Re . & u J. (2016). ee Re i u e r i g r I ge Re g i . 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) 770–778.

 tt : i. rg 10.1109 V R.2016.90

Hi G. . ri N. Kriz e . u e er I. & u i R. R. (2012). I r i g eur

 e r b re e g e ure e e r . arXiv Preprint arXiv:1207.0580.

H ff J. N rr . K er F. J ße B. & Hub er . (2017). A Survey on CNN and RNN

Implementations.

H r . G. Z u . e B. K e i e . W g W. We . reett . & H.

(2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

(rXi :1704.04861). rXi . tt : rxi . rg b 1704.04861

104

Hri . Ni e . & i . (2019). Filters in Convolutional Neural Networks as

Independent Detectors of Visual Concepts (. 117). tt : i. rg 10.1145 3345252.3345294

Hu g G. iu Z. & Wei berger K. (2016). Densely Connected Convolutional Networks. 12.

I ffe . & zege . (2015). B r iz : e er g ee e r r i i g b re u i g

i er ri e ift. International Conference on Machine Learning 448–456.

J b B. K ig . e B. Z u . g . H r . H. & K e i e . (2018).

Qu z r i i g eur e r r effi ie i eger ri e i ere e.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2704–2713.

J erberg . Ve i . & Zi er . (2014). ee e ure r ex tti g. Computer Vision–

ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,

Part IV 13 512–528.

J IN . (2019). Game of Deep Learning: Ship datasets.

 tt : . gg e. e r i j i 007 g e ee e r i g i e

J e F. J. J. N iri . & u . (2021). Ker e rF : ex erie e.

Advanced Deep Learning for Engineers and Scientists: A Practical Approach 85–111.

Kaggle. (. .). K gg e: Y ur H e r ie e. Re rie e 11 2024 r

 tt : . gg e.

K r i . r . & e . (2017). I ge i g u i g IF URF BRI F RB:

 er r e ri r i r e i ge . arXiv Preprint arXiv:1710.02726.

Ke G. e g Q. Fi e . W g . e W. W. Ye Q. & iu . Y. (2017). ig gb : ig

effi ie gr ie b g e i i ree. Advances in Neural Information Processing Systems

30.

K ru e . . u i . Yu. . K. g . I. Riz i e G. Yu. & Rubi . B. (2022).

 i e e r i g e r e i g e i : ir e i ri g

105

 i . Biophysical Reviews 14(4) 821–842. tt : i. rg 10.1007 12551 022 00982

2

Ki g . . & B J. (2017). Adam: A Method for Stochastic Optimization (rXi :1412.6980). rXi .

 tt : i. rg 10.48550 rXi .1412.6980

K i R. (1998). G r er . Machine Learning 30 271–274.

K . V. & U i . V. (2021). I er re b e i e e r i g i e e b e gr ie

b g i e . Knowledge-Based Systems 222 106993.

Ku r Y. Gu . & i g W. (2022). e ee r er e r i g e r re g i bir

 u i iffere e ir e . Soft Computing 26(3) 1003–1023.

 tt : i. rg 10.1007 00500 021 06640 1

Ku . . J. (2016). U er i g u eur e r i e e . Journal

of Visual Communication and Image Representation 41 406–413.

 tt : i. rg 10.1016 j.j ir.2016.11.003

Kuru i . & i . (2022). re g i r i i ge i i u e u

 u i e i u i ri u i g e e r i g. Journal of King Saud University

- Computer and Information Sciences 34(9) 7271–7282.

 tt : i. rg 10.1016 j.j u i.2021.06.012

 . ue . (1959). Some Studies in Machine Learning Using the Game of Checkers | IBM Journals &

Magazine |. tt : ieeex re ieee rg.ez r x 2.u . b r u e 5392560

 e u Y. Be gi Y. & Hi G. (2015). ee e r i g. Nature 521(7553) r e 7553.

 tt : i. rg 10.1038 ure14539

 e i . . & Jie Y. (2021). i ifi b e i r e u eur e r

 r i e ure r i e ige r r e . Information 12(8) 302.

106

 .H W. (2023 e e ber 23). Machine learning | Data Science, Algorithms & Automation |

Britannica. tt : .bri i . e g i e e r i g

 I B. XI X. W I X. & NG W. (2021). i e e ifi r re e e i g

i ge : ur e . Chinese Journal of Aeronautics 34(3) 145–163.

 tt : i. rg 10.1016 j. j .2020.09.022

 i F. F. K r . & J J. (2015). u eur e r r i u re g i .

Available in Http://Cs231n. Github. Io/Convolutional-Networks.

 iu W. We Y. Yu Z. & Y g . (2016). rge rgi ft x r u eur e r .

arXiv Preprint arXiv:1612.02295.

 re i I. eš rić H. & r Z. (2021). I e ige u e r Ve e Re g i :

 ri IF URF e . Tehnički Vjesnik 28(4) 1221–1226.

 e . G. (2004). i e I ge Fe ure r e I ri Ke i . International Journal of

Computer Vision 60(2) 91–110. tt : i. rg 10.1023 B:VI I.0000029664.99615.94

 uu N. . & V. . (2023). i i r r er e Re rie e i

 i I ge . International Conference on Intelligent Systems and Data Science 161–173.

 . Gee & Nee iu . (2017). A review on deep convolutional neural networks | IEEE

Conference Publication | IEEE Xplore. tt : ieeex re ieee

 rg.ez r x 2.u . u e 8286426

 . . & i r b . (2021). Re e r i e i i ri e r rre B e

Re e e . Journal of Physics: Conference Series 1770(1) 012014.

 tt : i. rg 10.1088 1742 6596 1770 1 012014

Marine Animal Images. (. .). Re rie e 13 2024 r

 tt : . gg e. e i jfi 99 ri e i i ge

107

 ee . & Ve urug . (2023). izi g F i x re i Re g i r ug ffe e

 re r e i g e ique . Journal of Computer and Communications 11(12) 86–101.

 e g rib rzi N. (2024). GN : ri e ge e e b e e r i g e . I Á. R H.

 e i G. ze F. reir & . i ze r ń (.) Good Practices and New

Perspectives in Information Systems and Technologies (. 3–12). ri ger N ure i zer .

 tt : i. rg 10.1007 978 3 031 60218 4_1

 e . & K r R. (2023). re e i e re ie e e b e ee e r i g: r u i e

 e ge . Journal of King Saud University - Computer and Information Sciences 35(2)

757–774. tt : i. rg 10.1016 j.j u i.2023.01.014

 u i Z. H. u e . Ji e ez V. J. i . H. & I e . (2020). Big r fi i

i e ige e i e ri e i u r : bib i e ri re ie u ure re e r ire .

Maritime Policy & Management 47(5) 577–597.

 u z . (2014). i e e r i g iz . Courant Institute of Mathematical Sciences 1–2.

 u z . (2017). Machine Learning and Optimization.

 tt : . i . u.e u ~ u z fi e _ iz .

Ngu e . . i . Ki W. . Ki J. & ee . (2019). i ribu i g i u

 eur e r . 2019 IEEE International Conference on Image Processing (ICIP) 4275–4279.

Ni i . K. & i u r . B. (2015). Ge eri e ure e r i g i u er i i . Procedia Computer

Science 58 202–209.

 ’ e K. & N R. (2015). i r u u eur e r . arXiv Preprint

arXiv:1511.08458.

 V. H. r . Nee V. . & u . . (2023). F G

i e e r e u ber e iz g ri b e Y 2 (Y u

108

 e). Microsystem Technologies 29(10) 1501–1513. tt : i. rg 10.1007 00542

023 05506

 r I. u G. H zi . V. & V I. (2008). Gree regre i e e b e e e :

 e r i er qu i re i . Information Sciences 178(20) 3867–

3879.

 z e . Gr . F. erer . Br bur J. G. Ki ee . i Z. Gi e ei N.

 g . e i . Kö . Y g . eVi Z. R i . ej i . i ur .

 ei er B. F g . … i . (2019). PyTorch: An Imperative Style, High-Performance Deep

Learning Library (rXi :1912.01703). rXi . tt : i. rg 10.48550 rXi .1912.01703

 e er . (2017). Re g i i g u i e i u i e re ere e . Proceedings of the AAAI

Conference on Artificial Intelligence 31(1).

 r N. g r . & J g e . (2024). e u Ne r r i e ure r RI

I e g r z ei er’ i e e r i g i . SN Computer Science 5(1) 167.

 tt : i. rg 10.1007 42979 023 02560 z

 r re . Gu e G. V r be . r gu . V. & Gu i . (2018). B : U bi e

b g i eg ri e ure . Advances in Neural Information Processing Systems 31.

Q r R. & Z r ri B. (2023). r fi i Neur Ne r : er ie . Mesopotamian Journal of

Computer Science 2023 130–139. tt : i. rg 10.58496 J 2023 015

R r R. R jee . . Kri . G. & ub r . (2015). ee e r i g er ie .

International Journal of Applied Engineering Research 10(10) 25433–25448.

Rei er . & Reque e . (2020). ee e r i g– r u i e ge r ge

 r i . I Knowledge discovery in big data from astronomy and earth observation (.

251–265). e ier.

109

Re Y. Gu Z. . & iu . (2020). e er e r e g e e

B e e b e e r i g. 2020 IEEE Fifth International Conference on Data Science in

Cyberspace (DSC) 369–374.

Re Y. Y g J. Z g Q. & Gu Z. (2019). u e ure u i i u eur e r r

 i ifi i i ge . Applied Sciences 9(20) 4209.

Ri . N. & Gu R. (2020). e b e e r i g e ique i effi ie i i e e r i g:

 ur e . 2nd International Conference on Data, Engineering and Applications (IDEA) 1–6.

R e er . (. .). Netron. Re rie e 11 2024 r tt : e r .

R . (2019). Ensemble learning: Pattern classification using ensemble methods. W r ie fi .

R ḳ ḥ . (2010). Pattern classification using ensemble methods. W r ie fi .

R u e u F. ru e z . & F b e R. (2020). Re i u e r fl iffe r i . Journal of

Mathematical Imaging and Vision 62 365–375.

Rub ee . R b u V. K ige K. & Br i G. (2011). RB: effi ie er e IF r URF. I

Proceedings of the IEEE International Conference on Computer Vision (. 2571).

 tt : i. rg 10.1109 I V.2011.6126544

Ru . e g J. u H. Kr u e J. ee . . Hu g Z. K r . K .

Ber ei . Berg . . & Fei Fei . (2015). ImageNet Large Scale Visual Recognition

Challenge (rXi :1409.0575). rXi . tt : i. rg 10.48550 rXi .1409.0575

 gi . & R . (2018). e b e e r i g: ur e . WIREs Data Mining and Knowledge

Discovery 8(4) e1249. tt : i. rg 10.1002 i .1249

 e . H. i Y. iu Z. & b e b . . (2023). r er e r i g ize NN B e

 ri e Ve e ifi e . Applied Sciences 13(3) 1912.

 r . & i . (2022). I I ge Re izi g ee e r i g e e r r r i i g

 i e e er r e. I . r & . e G ri (.) Applications in Electronics

110

Pervading Industry, Environment and Society (. 10–17). ri ger I er ub i i g.

 tt : i. rg 10.1007 978 3 030 95498 7_2

 r . (2010). r I ge Gr e I ge er i . 2010 Second International

Conference on Computer Engineering and Applications 2 196–199.

 tt : i. rg 10.1109 I .2010.192

 xe . (2021 r 19). I r u e r i e ure ex e . Analytics Vidhya.

 tt : . i . b g 2021 03 i r u e r i e ure ex e

 ire R. . (2013). x i i g b . I Empirical Inference: Festschrift in Honor of Vladimir N.

Vapnik (. 37–52). ri ger.

 er Z. (2020 e e ber 27). (u Neur Ne r). Medium.

 tt : ze er . e iu . e e ri% 5%9Fi e i ir % 4%9F r% 4%B1 87 9b 986579

 e . Zu ri Fr i . . & r i I. (2017). re ie iz e i e

re g i : ri ee e r i g ee e r i g e . 2017 9th International

Conference on Information Technology and Electrical Engineering (ICITEE) 1–6.

 tt : i. rg 10.1109 I I .2017.8250484

 r . (2023). CNN vs ANN for Image Classification. tt : . u ri i .

 r i ge ifi

 r . r . & i . (2017). u i eur e r . Towards Data Sci

6(12) 310–316.

 er . (2020). Fu e re urre eur e r (RNN) g r er e r

() e r . Physica D: Nonlinear Phenomena 404 132306.

 i Q. i W. R. u X. & G . (2019). i ifi b e u e ure e e b e i

 u eur e r . Remote Sensing 11(4) 419.

111

 iruru K. (2016). N IN R U I N R IFI I N UR N W RK. International Journal of

Advance Research and Innovative Ideas in Education 1 27–30.

 i K. & Zi er . (2014). Ver ee u e r r rge e i ge

re g i . arXiv Preprint arXiv:1409.1556.

 i i g . & r i u g R. (2021). i 19 ifi u i g X R i gi g i e e b e

 e r i g. Journal of Physics: Conference Series 1722 012072. tt : i. rg 10.1088 1742

6596 1722 1 012072

 . & W er . (1997). e e i e . Advances in Neural Information Processing

Systems 10.

 z B. Gu g u . Yu e V. & K . (2017). Ge eri ttribu e e ifi ee

re re e r ri e e e . IPSJ Transactions on Computer Vision and Applications

9(1) 22. tt : i. rg 10.1186 41074 017 0033 4

 ub i . (2019). Feature Extraction. tt : ie e ire

 .ez r x 2.u . i bi e i r ge e e u r bi g e ure ex r

 i u R. K. B r V. u V. R. & K. . (2024). re i e e i g ur e

 ri e e r i ri e re e ru ure : r e i i e

 e r i g r e . Asian Journal of Civil Engineering 25(2) 1443–1465.

 iu . Hu g Y. Ng J. . u N. i N j e . . & fie . (2022). e u

 ri u re r e i g e ique i i e e r i g e r er e e

 re i . Natural Hazards 110. tt : i. rg 10.1007 11069 021 04939 8

V eri . N r i i F. . re . & ereg R. (2022). i r ru i g Neur Ne r

 e e ge e i er e . Journal of Network and Computer Applications 200 103330.

 tt : i. rg 10.1016 j.j .2021.103330

112

V er W . ber . . & V r qu ux G. (2011). e Nu rr : ru ure r effi ie

 u eri u . Computing in Science & Engineering 13(2) 22–30.

 tt : i. rg 10.1109 .2011.37

V r e . (2020). AlexNet Architecture: A Complete Guide.

 tt : gg e. e b urre i e ex e r i e ure e e gui e

Vi e Gri i . (2019). Object Detection in Maritime Environments [N r egi U i er i ie e

 e g]. tt : . u. e u 2019 2020 gri i_ i e _ _re u e .

W g Y. Y g . g X. e Q. & Y Z. (2021). u Fe ure e b e e r i g ifi

 e r i ifi i e B e I . Applied Sciences 11(21) 10336.

Wu H. iu Q. iu X. Z g Y. & Y g Z. (2022). e ge i e u r e r u i g re i u

 e e F N r be rre i e i er e e er r r . World Wide

Web 25(5) 1923–1949. tt : i. rg 10.1007 11280 021 00988

Wu Y. . ee Y. . & Y g J. . (2008). R bu effi ie u V e r r e tter

re g i . Pattern Recognition 41(9) 2874–2889.

 tt : i. rg 10.1016 j. g.2008.02.010

Y Z. g X. Y g . & W g Y. (2022). i ifi i e er ure R r I ge

B e u e ifier e b e e r i g u I e fi e

 r er e r i g. Remote Sensing 14(21) 5288.

Z i . & rque . (2020). e u e ri b e ri e i u eur e r .

Multimedia Tools and Applications 79(19) 13581–13598. tt : i. rg 10.1007 11042 019

08385 4

Zei er . . (2012). e : e e r i g r e e . arXiv Preprint arXiv:1212.5701.

Z g . Be z . rg . . ee . Ki J. R e u F. B zi J. . & K e I. . (2021). Re Ne r

 e eNe ? I r u i g e e r u Re Ne . 2021 IEEE Winter Conference on

113

Applications of Computer Vision (WACV) 3549–3558.

 tt : i. rg 10.1109 W V48630.2021.00359

Z g H. & F Y. (2020). i e e e ritte u ber re g i . IOP

Conference Series: Materials Science and Engineering 768 072054.

 tt : i. rg 10.1088 1757 899X 768 7 072054

Z g . Y g Y. ei H. & iu W. (. .). Target Planning for UAV Merchant Ship Recognition Based

on KNN Nearest Neighbor Algorithm.

Z g Z. (2016). I r u i e e r i g: K e re eig b r . Annals of Translational

Medicine 4(11) r e 11. tt : i. rg 10.21037 .2016.03.37

Z g Z. & bu u . (2018). Ge er ize r e r r r i i g ee eur e r i

 i be . Advances in Neural Information Processing Systems 31.

Z R. W g J. Z e g X. We J. R . & Z J. (2020). ri e Vi ib e I ge ifi

B e ub e r er e . IEEE Access 8 166335–166346.

 tt : i. rg 10.1109 .2020.3022883

Z u Z. H. Wu J. & g W. (2002). e b i g eur e r : u be better .

Artificial Intelligence 137(1) 239–263. tt : i. rg 10.1016 0004 3702(02)00190 X

Zi Y. G berger J. & R i . R. (2021). eig ru i g e r e regu riz i

 i g e r ru ure. Neurocomputing 462 555–567.

Zu i K. (2023). Multi-teacher knowledge distillation as an effective method for compressing

ensembles of neural networks.

114

