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ABSTRACT
Theories and models are central to Human Factors/Ergonomics (HFE) 
sciences for producing new knowledge, pushing the boundaries of the 
field, and providing a basis for designing systems that can improve 
human performance. Despite the key role, there has been less attention 
to what constitutes a good theory/model and how to examine the relative 
worth of different theories/models. This study aims to bridge this gap by 
(1) proposing a set of criteria for evaluating models in HFE, (2) employing 
a methodological approach to utilize the proposed criteria, and (3) eval-
uating the existing models of trust in automation (TiA) according to the 
proposed criteria. The resulting work provides a reference guide for 
researchers to examine the existing models’ performance and to make 
meaningful comparisons between TiA models. The results also shed light 
on the differences among TiA models in satisfying the criteria. While con-
ceptual models offer valuable insights into identifying the causal factors, 
their limitation in operationalization poses a major challenge in terms of 
testability and empirical validity. On the other hand, although more read-
ily testable and possessing higher predictive power, computational mod-
els are confined to capturing only partial causal factors and have reduced 
explanatory power capacity. The study concludes with recommendations 
that in order to advance as a scientific discipline, HFE should adopt mod-
elling approaches that can help us understand the complexities of human 
performance in dynamic sociotechnical systems.

Relevance to human factors/ergonomics theory

For human factors and ergonomics (HFE) as a discipline to progress, it is necessary to produce 
and validate scientific theories and models. Testing and evaluating models are essential aspects 
of the theory/model development process, allowing for the recognition of advancements in 
the field. This study proposes a number of criteria for model evaluation in HFE and a meth-
odological procedure to apply these criteria to the models of trust in automation.

Introduction

A long-standing discussion in Human Factors/Ergonomics (HFE) is whether constructs and 
models are ‘folk models’; that is, whether they are credible and scientific (Dekker and Hollnagel 
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2004; Flach 1995; Sarter and Woods 1991; van Winsen and Dekker 2015). The term ‘folk 
psychology’ is referred to the ‘collection of psychological principles and generalizations which, 
… underlies our everyday explanation of behaviour’ (Stich and Nichols 1992, 37). People can 
make remarkably well-articulated naïve theories of motion based on their everyday experi-
ences. Such theories are sensible outcomes of interactions with the real world, which may not 
be consistent with the principles of physics but tend to continue as a common-sense and 
laypeople’s explanation of the physical world (McCloskey 1983). Similarly, psychology has 
been populated with folk models of human behaviour, which are not necessarily wrong but 
compared to more articulated models, they tend to focus on descriptions rather than explain-
ing phenomena, making them very hard to test and falsify (Corbett 2015).

Within the HFE discipline, Dekker and Hollnagel (2004) have raised concerns regarding 
the scientific credibility of several theoretical constructs (e.g. situation awareness and trust 
in automation) and their relation to human performance. Several researchers have presented 
claims that these constructs are theoretically unclear, unfalsifiable, excessively generalizable, 
and with generic descriptive labels rather than proper explanations for causal psychological 
mechanisms relevant to the performance (Cass 2011; Douglas, Aleva, and Havig 2007; Flach 
1995; Jodlowski 2008). Billings claims that HFE constructs have become too neat and too 
holistic (Billings 1995) relying on their face validity as intuitive concepts (Jones 2015). Yet, 
face validity is considered the weakest form of validity (Drost 2011).

In opposition to Dekker and Hollnagel (2004) some scholars (e.g. Endsley 2015; 
Parasuraman, Sheridan, and Wickens 2008; Wickens 2008) argue that a large body of 
research on situation awareness, mental workload, and trust in automation (TiA) indicates 
the credibility of these constructs and their practical usefulness. Parasuraman, Sheridan, 
and Wickens (2008) maintain that Popper’s (1972) notion of falsification has less relevance 
for theory development in cognitive engineering and ergonomics sciences because these 
constructs are not part of empirical reality or statement of fact and therefore, falsifiability 
of such constructs becomes a meaningless idea. According to Parasuraman, Sheridan, and 
Wickens (2008), HFE constructs are scientifically credible and should not be held account-
able for being proven as ‘right or wrong’ but instead, attempts should be directed to ‘estab-
lish contextual limitations in which a theory or principle successfully predicts performance 
and makes testable recommendations…’ (Parasuraman, Sheridan, and Wickens 2008, 155).

The divergent perspectives on the credibility of HFE constructs call for a critical review of 
the existing theories and models in the HFE discipline. We believe a viable solution to the folk-
model controversy is not to take a general ‘yes or no’ position but rather to promote a framework 
that will allow us to assess the scientific nature of theories by examining their epistemological 
assumptions, quality of propositions, and empirical adequacy. The purpose of this paper is then 
twofold. The first section sets forth a set of criteria for evaluating scientific theories in HFE, 
which can lead to cumulative scientific progress in the field. In the second part of the study, we 
review the existing Trust in Automation (TiA) models (which is one of the theories being accused 
of being a Folk Model construct) and probe these models against the proposed criteria to com-
pare the efficacy of the models for real-world use. By doing so we hope to be able to assess 
whether the TiA research programme (Lakatos 1978) is progressing or not.

Theory evaluation in HFE

One of the general aims of science is to produce and test theories (Kerlinger and Lee 1986). 
Theories are central to scientific understanding because they allow us to see relationships 
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between phenomena that might otherwise appear disconnected. Theories also illuminate 
the underlying causes or structure of a phenomenon and thus enable us to develop successful 
interventions to consolidate or prevent a particular effect (Risjord 2019).

Underlying any form of scientific inquiry is a philosophy of science that elucidates a 
researcher’s approach to the nature of the phenomenon being studied (ontology) and the 
methods for comprehending it (epistemology). Whether explicitly or implicitly, we rely on 
the philosophy of science to understand the meanings, logical relationships, and conse-
quences of our theoretical assertions and observations (Van de Ven 2007). Philosophers 
have endlessly debated these topics and developed a variety of research philosophies for 
what constitutes science and scientific progress. In a realistic view of science (Scientific 
Realism), the progress of science is furthered by empirical testing of theories that allow 
theories to encompass more and more of empirical phenomena, thereby improving the 
‘truthlikeness’ of the theory (Niiniluoto 1999). Not all agree with this goal for science, and 
some view science as a problem-solving activity where scientific progress is achieved when 
theories can help solve new problems (e.g. Azevedo 1997; Campbell 1988; Deutch 1998; 
Laudan 1978). Irrespective of the nuances of this long-standing disagreement between these 
two views of philosophy of science, truthlikeness and problem-solving ability are not mutu-
ally exclusive goals. A theory becomes useful the moment it describes and can predict how 
part(s) of the world work. A theory that has no relation to how the world works can only 
spuriously hope to improve the solution of problems as the use of the theory would actually 
be based upon wrong presuppositions, and if so – the problem-solving element of the theory 
would be pure luck – based upon coincidences and not upon a thorough understanding of 
how the world works. On the other hand, a theory that has truthlikeness and encompasses 
and explains observed data would probably be of more practical value than a theory that 
does not explain the observed data. Likewise, a theory that improves the problem-solving 
activity in the physical world probably also has a higher truthlikeness. Hence, we would 
claim – in accordance with Niiniluoto (2017) – that there is a correspondence between 
truthlikeness and problem-solving ability, thus pointing out that the practical consequences 
of the realistic- and pragmatic orientations to science are similar – theories allow us to 
understand, explain, and act on the world in order to do new things.

The likelihood that a theory will be rejected determines how credible the theory is (Van 
de Ven 2007). According to Popper (1972), a theory must be falsifiable or otherwise deemed 
as a pseudo-scientific theory. Although the idea of falsification by a single study (what 
Lakatos (1978) has called naïve falsification) has been met with heavy critique (e.g. Kuhn 
1962) and subsequently refined by pointing out that falsification requires multiple refuta-
tions and the presence of an alternative and superior theory (Lakatos 1978), the idea of 
theory evaluation is a cornerstone of the scientific methods (Carnap 1953; Lakatos 1970, 
1978; Popper 1972; Ngwenyama 2014). Scientists collect and report data to test and evaluate 
theories (Trafimow 2012), yet it is not easy to think of theories in social sciences and psy-
chology that are clearly falsified (Van Lange 2013). Whether one prefers hard falsification 
(Popper 1972), a softer version of falsification (Lakatos 1978), strong inference falsification 
(Platt 1964), or Bayesian inference (Edwards, Lindman, and Savage 1963; Howson and 
Urbach 1989), theories must be empirically testable (falsifiable) and closely correspond to 
the investigated phenomenon.

That said, empirical testability cannot be a single criterion as an unclear theory is able 
to accommodate any observation consistent with itself (Deutsch 2011). As Lakatos (1970, 
184) puts it: ‘Any theory … can be saved from refutation by some suitable adjustment in 
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the background knowledge’. Therefore, falsifiability and empirical evidence are necessary 
conditions but not sufficient criteria for assessing the credibility of a theory or at least the 
relative worth of alternative theories. Van de Ven (2007) advocates that theories cannot be 
justified only by testing their empirical fit with the real world but rather by rhetorical argu-
ments about the logical validity of a theory. A good theory is expected to offer clear oper-
ational definitions, internal logical consistency, verifiability (Bacharach 1989; Péli and 
Masuch 1997; Wacker 2004), and replicability of findings that are obtained from a precise-
ly-stated theory (Earp and Trafimow 2015).

Middle-range theories as models

Theories consist of constructs (abstract ideas or concepts) that are connected in a logical 
way (Baumeister and Bushman 2020), which is defined as ‘a set of abstract concepts (i.e. 
constructs) together with propositions about how those constructs are related to one 
another’ (Manstead and Livingstone 2008, 27). Theories are usually not open to direct 
examination, while models can make specific predictions of theory that can be tested (Van 
de Ven 2007). The high level of abstraction in theories often resists falsification (Weick 1974).

Models typically consist of symbols that specify the characteristics of a phenomenon, its 
components, and relationships among the components. Though there is no well-defined 
distinction between theories and models, a theory appears like a narrative description, while 
a model can be analogous to a map. Models enable researchers to formulate empirically 
testable propositions about aspects of a theory (Frankfort-Nachmias, Nachmias, and 
DeWaard 2014) and hence can be regarded as partial representations of theories. The empir-
ical investigation is commonly achieved via modelling. Social scientists do not directly 
observe and test theories; instead, they study and inspect models (McKelvey 2017). Models 
may also encompass procedures, assumptions, and manipulations that are used to apply 
the scientific methodology of observation and analysis. These assumptions and procedures 
are not typically embedded in the theory itself; therefore, a model is not just an operational 
version of a theory but rather acts as a mediator or intermediary between theory and 
empirical evidence (Morgan and Morrison 1999).

Theories can be classified based on their level of abstraction. Merton (1968) provides a 
distinction between ‘grand’ and ‘middle-range’ theories. Grand theories are the most 
abstract, normative, unbounded, and all-encompassing theories that address the nature, 
mission, and purpose of a phenomenon in a fairly general fashion (Peterson and Bredow 
2013). Compared to grand theories, middle-range theories are less abstract, narrower in 
scope and specificity, and more readily usable and testable in research projects. In other 
words, middle-range theories are abstract enough to allow for generalizations but specific 
enough for observed data to be incorporated into propositions that can be empirically 
tested. Based on this categorization, one can think of HFE’s theories as middle-range the-
ories, also frequently referred to as theoretical constructs. Theoretical constructs are 
invented terms that can neither be directly nor indirectly observed but may be entirely 
defined based on observable variables (Kaplan 1964).

Risjord (2019) argues that middle-range theories can be better understood when analysed 
as models. We usually differentiate theories by referring to specific models. This is partic-
ularly relevant in HFE studies as, for example, theories of trust in automation (TiA) are 
commonly discussed as Muir’s (1994) integrated model of trust in human-machine 
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relationships or Lee and See (2004) conceptual model of trust and reliance. By focusing on 
models, we shift our attention from the structure to the core content of the theory. Models 
emphasize causality and demonstrate how some events occur because of processes and 
interactions among the model elements.

Causal relationships in models can help HFE professionals to identify potential areas for 
improving human performance in sociotechnical systems. Furthermore, considering HFE 
theories as models forges a stronger link between the adequacy of the model and the moti-
vations/occasions for using them. That is, since models are analogous to maps, they ignore 
some aspects of reality to be simple and useful. A street map of Paris creates an abstraction 
of the world – ignoring many aspects not directly relevant to navigation – to simplify nav-
igation through the streets of Paris. Different models then represent different features of 
the same thing for different purposes. It means a model implicitly assumes some features 
to be more important than others. This is why multiple models based on different assump-
tions and background theories are often needed to comprehend complicated phenomena 
(Fried 2020; Risjord 2019). Lastly, models specify interactions and allow us to test whether 
changes in one element’s activity can change the others, as explained by the model. We then 
evaluate the model’s empirical support and highlight its accuracy for applications in real-
world settings. Model evaluation focuses on the phenomenon being modelled, its funda-
mental assumptions, the elements of the model, and the relationships between its elements 
(Degani and Heymann 2002).

It is also important to distinguish between theoretical models from statistical models. 
While theoretical models represent phenomena in the world and propose global conjectures 
about aspects of a phenomenon, statistical models are data models that represent data and 
are used for testing hypotheses locally, derived from theory and through the process of 
hypothetico-deductive framework (Borsboom et al. 2021; Robinaugh et al. 2021). Despite 
close correspondence, theoretical and statistical models should not be confused. The former 
deals with scientific epistemology and justification of knowledge, while the latter involves 
scientific methodology and justification of methods (Carter and Little 2007). Although 
questions about methodology are beyond the scope of this study, a review of empirical 
findings and statistical methods is necessary to investigate the empirical adequacy of the 
existing models.

Criteria development to evaluate HFE models

Theory evaluation is not possible without a set of criteria by which it is to be evaluated. 
The challenging parts of theory evaluation, however, are the appropriateness and use 
of epistemological criteria for evaluating theories (Howard 1985). While providing a 
list of criteria seems rather easy, scholars may disagree on how to apply these criteria, 
their relative significance, and the degree to which a theory/model is supported by a 
given criterion. Laudan (1986) reminds us that theoretical disagreements may happen 
at any level (substantive, content, or methodological levels), which are to some extent 
subject to the aim of science. Unfortunately, epistemological criteria cannot tell us what 
the aim of science - especially in social sciences - should be (Witkin and Gottschalk 
1988). The choice of criteria for theory evaluation is ultimately dependent on the eval-
uator’s view on ontology, epistemology, methodology, and purpose (Prochaska, Wright, 
and Velicer 2008).
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To develop a set of criteria for evaluating HFE models, a review of leading philosophers 
of science (e.g. Blalock 1969; Dubin 1970; Kuhn 1977; Meleis 2012; Popper 1969; Van de 
Ven, 2007), combined with Kivunja’s (2018) systematic literature review on the fundamental 
constituents of a scientific theory is performed. While most of these criteria are widely 
established principles for theory assessment, some are specific to the phenomenon under 
investigation (Here, TiA).

Criterion 1: testability/falsifiability

Testability or falsifiability (Popper 1969) is an essential part of science and is often regarded 
as the most rigorous criterion (Cramer 2013). If a model is not testable, we cannot assess 
its empirical value. Testability is typically considered an empirically-based criterion. While 
the relatively abstract and general nature of grand theories may hinder direct measurement 
and operationalization of the concepts, the relatively concrete and precise nature of mid-
dle-range theories means that they can have operational definitions, and their propositions 
must be open to direct empirical testing (Saunders, Lewis, and Thornhill 2007).

To assess the testability of the middle-range theories (i.e. HFE models) a classical empir-
icism approach would demand that the concepts of the theory are observable, and the 
propositions are quantifiable (Fawcett 2005). Concepts would be empirically observable 
when operational definitions provide empirical indicators that are used to identify the 
concepts. Propositions then can be examined when empirical indicators can be replaced 
with the concepts and when methods can adequately give proof for the assertions made 
(Fawcett 1988). A substantial advantage of representing HFE middle-range theories as 
models is that it highlights the ways that the models can be tested. If the chosen model is 
operationalized and relatively precise, the relevant test can signify whether the model’s 
components change in the way that the model predicts. Such tests are direct tests of the 
model and indicate the relationship between the construct of interest and the empirical 
observations.

Although nonempirical tests such as computer simulation can be beneficial when con-
textual details are well-incorporated in the model, often it is the empirical research that can 
give support (or lack of it) to the model. At the operational level, testability has also import-
ant implications for the methods that are available. For instance, recent developments in 
neuroscience and its techniques, such as fMRI, allow researchers to test assertions that 
previously could not be possible. When evaluating the testability of HFE models, we adapt 
Fawcett (1986, 2005) and Silva (1986) three main questions:

(1)	 Can the model be operationalized? Is there a way of measuring the components and 
constructs in the model?

(2)	 Does the model suggest a research design for testing its assumptions?
(3)	 Are the measurement tools and data analysis techniques adequate to measure the 

model propositions?

Criterion 2: predictive power

To employ the testability criterion, a model/theory must make some predictions. 
According to Popper (1969), the more specific predictions one can make, the better it is, 
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as specific predictions are riskier and therefore more likely to fail, and hence it is easier 
to falsify the theory. For example, a linear relationship between two variables stated as 
‘A is correlated with B’ rules out practically nothing except when the correlation is zero, 
while ‘A is positively correlated with B’ makes a more specific prediction by ruling out 
50% of possible outcomes. The latter statement is more falsifiable and would constitute 
a better form of theory than the former. Thus, a model is better the more precise predic-
tions it makes. As long as there is a pathway in a causal model which is testable, the model 
potentially has a degree of predictive power (Dienes 2008). Meehl (1978) points out a 
difference between point prediction (predicting a particular parameter value) and direc-
tional prediction (predicting the direction of an effect – e.g. positive or negative). Point 
prediction is typically common for ‘harder’ sciences such as physics and chemistry, which 
indicates the rigor of precision. This precision has been attributed to the neatly interre-
lated and tightly connected components and constructs in physical sciences. Theories 
in social sciences and psychology, on the other hand, tend to focus on directional 
prediction.

Prochaska, Wright, and Velicer (2008) promote predictions of effect sizes between con-
structs in order for theories to provide riskier predictions. Effect size estimates make tighter 
and more explicit quantitative predictions. This would also help researchers to go beyond 
pure reliance on null hypothesis testing and its limitations for the theory evaluation 
(Prochaska, Wright, and Velicer 2008). That said, we advocate a differentiation of quanti-
tative predictions in HFE models according to a simple-to-complex listing of predicted 
empirical/causal relations. The models that make the more complex predictions are deemed 
to have a higher scientific level (given that the model’s predictions are correct). The criteria 
for determining the scientific level of a model´s predictions are described from ‘simple’ to 
‘complex’ below.

(1)	 Predicting the Existence of an effect: Specifying the existence or non-existence of a 
relationship between constructs. In a path model, this would be akin to adding or 
removing an arrow connecting two constructs (Pearl 2009). This is the simplest pre-
diction and is similar to the standard null hypothesis test.

(2)	 Predicting the direction (or sign) of an effect: Specifying the direction of effects – 
e.g. construct A is positively correlated with construct B.

(3)	 Predicting the size and direction of the effect: Specifying the direction and size of 
the effect – e.g. constructs A and B will have a correlation r = 0.40. Even better would 
be adding a prediction for the variance of the observed effect. This could be shown by 
presenting a Confidence Interval (CI) for the effect.

(4)	 Mathematical specification of the form of the predicted effect: Another improve-
ment on points 1–3 is the specification of the mathematical form of relationships 
between variables. This is often forgotten in psychology as most mathematical/statis-
tical predictions use an assumption of linearity (Freedman 2010; McElreath 2018); 
however, we know that many (if not most) relationships are non-linear in nature 
(Guastello 2001, 2017; Thompson, Stewart, and Turner 1990). Hence, specifying not 
only the direction and size of a relationship but also the mathematical form of a rela-
tionship – so that we know if a relationship is assumed to be linear (e.g. y a bx= + ), 
curvilinear (e.g. y a bx bx= + + 2) or non-linear (e.g. y ax bx= +2 3) – would improve the 
testability of a theory.
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These four sub-criteria are directionally complimentary as any model whose predictions 
fulfil sub-criterion 3 will automatically also fulfil sub-criteria 1 and 2, while a model that 
only fulfils sub-criterion 1 will not satisfy sub-criteria 2–4.

Criterion 3: explanatory power

One problem of incomplete theories is that they often make some predictions but are unable 
to provide an adequate explanation of the phenomenon. Ancient astronomers were able to 
make accurate predictions without satisfactory explanation (Kaplan 1964). A model is useful 
when it can both predict and explain (Bacharach 1989). Indeed, prediction and explanation 
are two sides of the same coin and complementary characteristics of a good theory. 
Explanations that implore causal relationships always make predictions, particularly pre-
dictions on future events under causal intervention. Even if predictions are not declared 
explicitly, the language of causal explanation often implies a sequence of events as the ‘reason’ 
for some specific outcomes (Hofman, Sharma, and Watts 2017).

Cramer (2013) exemplifies explanatory power in the process of reckoning the next value 
in a series of numbers as 1 2 3 5 8 … Since there can be different ways to predict the next 
number by adding and subtracting various combinations, explanation provides logic and 
justification for the predicted outcome. Theories should therefore have a priori truthlikeness 
or verisimilitude; i.e. they must be viable and produce explananda before testing (Fried 
2020). ‘One needs theory first to know what is worth testing’ (Van Rooij and Baggio 2021, 
324). This criterion is greatly applicable to applied problems in the HFE domain. Applied 
problems require an understanding of the phenomenon by virtue of a complete explanation 
and particular predictions of the outcome (Athey 2017).

Appropriate explanations in science necessitate clear proof of causality (Prochaska, 
Wright, and Velicer 2008). One approach is to create experimental control, which is normally 
accomplished using an experiment where you control the presence of independent variables 
and measure the changes in a dependent variable. The changes in the dependent variable 
can then be explained by the manipulation of the independent variable. However, in real-
world contexts, experimental control is often not possible or is very hard to achieve, and 
this is particularly so for behaviours and phenomena that are critical to the HFE field.

Statistical control is an alternative when experimental control is not feasible or ethical 
to use. With statistical control, the association between an independent and a dependent 
variable is controlled for by removing the variation explained by other independent vari-
ables, like in a multiple regression model (Cohen et al. 1983). Theoretical models, controlled 
experiments, and statistical control are all means to acquire causal knowledge by inquiring 
about how changes in a set of causal factors change the outcome (Woodward 2005). Since 
different models may portray different causal factors for a particular phenomenon, the 
causal explanation can be regarded as ‘interest relative’ (Lipton 1990). This implies that a 
model should elucidate not only ‘why this’ but ‘why this rather than that’ for a set of causal 
factors. This view fits with the contrastive account of explanation (Garfinkel 1982; Lipton 
1990; Ylikoski 2007), which demonstrates how models are used to attain causal and explan-
atory knowledge. A contrastive perspective requires theoretical models to provide justifi-
cation for the choice of causal elements and argue why the chosen factors provide a better 
explanation (Pearl 2009). In order to evaluate the explanatory power of the HFE models, 
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we adopt Marchionni’s (2012) three dimensions of explanatory power: contrastive force, 
explanatory breadth, and explanatory depth.

(1)	 Contrastive force entails justification of causal background, assumptions, and contras-
tive explanation of a phenomenon. False models have fairly limited contrastive force, 
in the sense that they handle some contrastive questions but not others (Morton 1990).

(2)	 Explanatory breadth indicates the extent to which a model accounts for different phe-
nomena with the same or fewer explanatia. Explanatory breadth requires models’ 
explanatia to be abstract enough to encompass a wider range of phenomena. Simply 
put, a model must be effectively generalizable to problems and populations beyond a 
single observation and occasion. Explanatory breadth is the matter of the unifying 
power of a model and whether a model can explain more of the phenomenon by 
encompassing different classes and instantiations of the phenomenon. The side effect 
of a high degree of explanatory breadth is the limited ability of the model to answer 
fine-grained questions about specific problems. On the flip side, models that aim to 
incorporate abundant information specific to a phenomenon in a particular occasion 
have limited unifying power but are better at answering fine-grained questions. 
Ultimately, selecting the right model depends on the interest and purpose of the study.

(3)	 Explanatory depth refers to the layers of investigation for underlying causal mecha-
nisms. Achieving explanatory depth is typically a matter of describing mechanisms 
that component parts are at a lower level than the phenomenon to be explained 
(Hitchcock and Woodward 2003). However, the amount of information about the 
causal factors should not be confused with the depth of explanation. While deep expla-
nations are often more detailed than shallow ones, detailed explanations are not always 
deep. A deep explanation discusses how the explanatory factors are responsible for the 
explanandum. Therefore, deep explanation requires theoretical and computational 
models to decompose their constructs and elaborate causal processes that give rise to 
specific behavior. Whether such elaboration takes place at a lower biological level or 
higher abstract level is mainly concerned with ‘levels’ problem, pertinent to the prob-
lem at hand and the level of analysis (Eronen 2021; Shapiro 2019).

Criterion 4: empirical adequacy

Empirical adequacy of a theory (or model or set of scientific claims) can be achieved when 
the claims about empirical phenomena are correct (Van Fraassen 1980; Bhakthavatsalam 
and Cartwright 2017). This requires the theory’s assertions to be consistent with empirical 
evidence (Fawcett 2005). If the empirical findings corroborate the theoretical statements, 
it may be fair to tentatively accept the assertions as reasonable. If the empirical findings 
contradict the assumptions, it is reasonable to conclude that the assertions are incorrect. 
Empirical adequacy is different from the criterion of empirical testability as Empirical 
adequacy concerns the verisimilitude of a theorýs predictions, while empirical testability 
only refers to the extent to which a theory can be tested.

The propensity for circular reasoning should be noted while evaluating the model’s 
empirical adequacy. If evidence is always evaluated in the context of a single model, it may 
be difficult to notice results that contradict that model. Indeed, if researchers repeatedly 
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expose, explain, and interpret data via the lens of a single model, the end result may be 
limited to the expansion of that model and that model alone (Ray 1990). Circular reasoning 
can be avoided by carefully examining the empirical findings to evaluate their degree of 
congruence with the model’s ideas and propositions, as well as from the standpoint of 
competing models (Platt 1964). In other words, when interpreting evidence acquired con-
sidering a model, it is always necessary to take alternative models into consideration.

A single test of a model is unlikely to offer the conclusive evidence required to verify its 
empirical validity. As a result, all connected studies’ conclusions should be considered when 
making decisions about empirical adequacy. To integrate the results of related investigations, 
meta-analysis, and other formal approaches can be employed. The goal of evaluating empir-
ical adequacy is not to determine the absolute truth of the model but rather to identify the 
level of confidence received by the empirical evidence. The consequence of evaluating 
empirical adequacy is then a decision about whether one or more of the model’s concepts 
or propositions need to be modified, refined, or discarded (Fawcett 2005). More importantly, 
since studies with incongruent results have more weight than studies with compatible results, 
empirical adequacy may also indicate how well a model manages disconfirming evidence. 
A model should provide an explanation for any discomforting instances (Gould 1991; Van 
de Ven 2007). It is also equally important to point out that it is not sufficient that only some 
parts of a model are congruent with empirical data rather, the entirety of a model must be 
empirically adequate and valid.

To evaluate the empirical adequacy criterion, a comprehensive review of the empirical 
research guided by the model must be performed. In this regard, the criterion can be stated 
as the questions:

(1)	 Are theoretical assertions made by the model congruent with empirical evidence?
(2)	 Has the entire model been tested in different studies?

Criterion 5: pragmatic adequacy/applicability

An applied field such as HFE is particularly concerned with practice and identifying theories 
that are most useful. HFE strives to improve the efficacy and efficiency of work and other 
activities, as well as human standards, including enhanced safety, reduced fatigue and stress, 
and improved quality of life (Sanders and McCormick 1998). Many scholars have claimed 
that knowledge transfer and synergy between HFE research and practice are required to 
attain these goals (Caple 2008; Meister 2018; Salas 2008; Sind-Prunier 1996). Getty (1995) 
emphasized the importance of HFE principles being based on robust and validated research, 
as well as the fact that the appropriate science and practice of HFE have long-term conse-
quences for the discipline’s future. Karwowski (2005) expanded on the significance of theory 
in the HFE field by identifying three primary paradigms: (1) HFE theory, which involves 
the ability to recognize, explain, and appraise human-system interactions; (2) HFE abstrac-
tion, which deals with those interactions to make predictions about the real world; and (3) 
HFE design, which involves utilizing the understanding about those interactions in order 
to design systems that can fulfil consumer needs and other necessary requirements.

Pragmatic adequacy is the extent to which a theory/model can offer effective solutions 
to real-world problems, which is based on the idea that theories are created to ‘solve human 
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and technical problems and to improve practice’ (Kerlinger 1979, 280). The pragmatic 
adequacy criterion requires that the application of a model is generally feasible to implement. 
Thus, it is expected that a good HFE model:

(1)	 recognizes the domain(s) to which it can be applied to,
(2)	 provides recommendations on how to implement the proposed model in that domain, 

and
(3)	 clarifies specific areas in which the model can provide useful and tangible results.

Criterion 6: recognizing humans as active agents

Witkin and Gottschalk (1988) argue that traditional theory evaluation criteria are not nec-
essarily adequate to assess theories in social sciences and social work. They suggest theories 
should account for human beings as active agents. That is, humans are capable of reflecting 
on their own actions, overcoming distractions, making decisions, and adopting new prin-
ciples and beliefs (Harré 1984). Thus, assumptions of people as mechanically responding 
to stimuli are less favourable than recognizing people as agents with their beliefs and inten-
tions. People act, not simply behave. Such actions may impact the environment, change the 
course of events, and create new problem spaces (Øvergård, BjØrkli, and Hoff 2008). 
Viewing humans as active agents also shifts focus from exclusively identifying ‘causes’ of 
behaviour to the consequences of actions in a sociotechnical system. In this line, Gauch 
(2012) differentiates ‘inference’ and ‘decision’ problems. Despite a tight relationship, infer-
ence problems follow true beliefs, while decision problems follow ideal actions. Decision 
theory divides the causes of a situation into two distinct groups based on whether we have 
the power to control the cause or not (Gauch 2012). What we can control is the action or 
choice, and what we cannot control is the ‘state.’ Each combination of action and state 
provides an ‘outcome’ that has a specific utility or consequence that determines the value 
or benefit of the outcome. Since an uncontrollable situation (i.e. state) is usually unknown 
and changing, decision problems require Bayes inference to assess the probability of the 
state (based on prior and likelihood). Also, the response to the expected utility is not always 
linear. Decisions may have several criteria to be optimized simultaneously, possibly with 
some trade-offs and compromises. Therefore, inference and decision problems may have 
completely different solutions and outcomes.

Hence, a good HFE model recognizes humans as active agents and pursues modelling 
approaches that strive to explain the processes that give rise to human decisions, actions, 
and the meanings of future events (Kennedy 2012). So, the criterion for a good HFE 
model is:

(1)	 Does the model take human judgments, motivations, emotions, and socially driven 
behaviours into consideration?

Criterion 7: models of dynamic phenomena should be dynamic

Many problems in HFE cannot be reduced to a single static underlying cause but rather are 
emergent products of internal interactions in a complex socio-technical system (Guastello 
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2017). Complex systems constantly experience change as relationships and interconnections 
evolve and adapt to their dynamic environment (Dekker, Cilliers, and Hofmeyr 2011). 
Temporal patterns are the footprint of the dynamic environment. Time is also a fundamental 
element in modelling human-machine interaction (De Keyser, Decortis, and Van Daele 
1988; Hollnagel 2002). This is because in dealing with systems and automation, humans 
must evaluate events in the limited time available, plan actions and execute them. Information 
required for this process also needs to be updated and checked regularly. Therefore, not only 
do mental processes and actions take time, but different time frames also demand the pri-
oritization of concurrent activities (Hollnagel 2002). It is of interest to understand whether 
an HFE model can address the dynamic behaviour of a phenomenon or not. To evaluate 
this criterion, we seek to uncover whether the model explicitly indicates time as an essential 
component of a dynamic construct or not. The indicator of this criteria is as follows:

(1)	 If the phenomenon is dynamic, does the model acknowledge time as a variable?

Thus far, we have proposed seven different criteria with a number of indicators. Table 1 
provides a summary of the proposed criteria for model evaluation as well as the indicators 
for each criterion.

In the following sections, we examine some of the prominent models of Trust in 
Automation (TiA) according to the proposed criteria.

Assessing models of trust in automation

Trust is an abstract, complex, and multidimensional concept that can be attributed to 
wide-ranging entities such as humans, machines, organizations, institutions, and countries 
(Abbass et al. 2016). In the context of human-automation interaction (HAI), trust is acknowl-
edged to be an essential element in the use, misuse, or disuse of automation (Parasuraman 
and Riley 1997). Trust is not all or nothing but is a continuous phenomenon that can be 
attributed to an agent as a whole or to specific parts, capabilities, or functions of that agent 
(Hou, Ho, and Dunwoody 2021; Chiou and Lee 2023). Also, trust is situation and task-de-
pendent, which means it can vary even towards the same agent at different occasions and 
times. For instance, one may fully trust his/her partner, but not in specific tasks like cooking. 
Trust has been treated as both a relatively static and dynamic phenomenon. As a psychological 
construct, trust has a long-term propensity that is relatively stable until it is broken (Jarvenpaa, 
Knoll, and Leidner 1998; Mayer, Davis, and Schoorman 1995), but it can also change, evolve, 
and degrade over time (Desai et al. 2013; Schaefer 2013; Wilson, Straus, and McEvily 2006). 
Research also points out asymmetry between development and loss of trust over time, mean-
ing that the process of building trust is slow and steady while distrust can happen quickly 
by a single event or inconsistency in trustee’s behaviour (Burt and Knez 1996; Lewicki and 
Bunker 1996; Gambetta 1988). This asymmetry has made some scholars treat trust and 
distrust as two distinct constructs that can evolve or decline independently (Kramer, Brewer, 
and Hanna 1996; Lewicki, McAllister, and Bies 1998).

More than three decades of human-automation interaction research have resulted in the 
emergence of numerous theories and models, endeavouring to provide insight into human 
performance within complex sociotechnical systems. Modelling trust in automation has 
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undergone various modelling attempts ranging from regression models, time-series models, 
qualitative models, argument-based probabilistic models, and neural net models with each 
modelling approach having its pros and cons (Moray and Inagaki 1999). Regression-based 
models are useful in identifying the independent and dependent variables, as well as the 
relationships among them, hence providing rigid testability and predictive power. These 
models, however, are unable to capture the dynamic variances in trust formation and can 
only be used for factors that influence trust which do not significantly vary during inter-
action with automation. Time-series models are used to capture the dynamic relationship 
between trust and other independent variables, but they require prior knowledge about the 
causal factors and large enough data for validation (Moray and Inagaki 1999; Desai 2012). 
Argument-based probabilistic trust models are based on information value theory and 
utilize evidence to lower the degree of uncertainty in the model’s outputs. The output of 

Table 1. C riteria for model evaluation in HFE.
Criteria Indicator(s) Reference

(C1)
Testability/Falsifiability

(1)  �Can the model be operationalized? Is 
there a way of measuring the 
components and constructs in the 
theory?

(2)  �Does the model/theory propose 
research design for testing the 
model’s assumptions?

(3)  �Are the tools and data analysis 
techniques adequate to measure the 
model propositions?

Popper (1969), Cramer (2013), Fawcett 
(1988), Silva (1986)

(C2)
Predictive power

Can the model make predictions about:
(1)  Existence of effect?
(2)  Direction (or sign) of effect?
(3)  �Direction and interval estimate of 

effect?
(4)  �Mathematical specification of 

predicted effect?

Meehl (1967), Dienes (2008), Meehl 
(1978), Velicer et al. (2008), Freedman 
(2010), McElreath (2018)

(C3) 
Explanatory power

Does the model provide
(1)  Contrastive force?
(2)  Explanatory breadth?
(3)  Explanatory depth?

Cramer (2013), Prochaska, Wright, and 
Velicer (2008), Garfinkel (1982), 
Lipton (1990), Ylikoski (2007). 
Marchionni’s (2012), Morton (1990), 
Hitchcock and Woodward (2003)

(C4)
Empirical adequacy

Are theoretical assertions made by the 
model congruent with empirical 
evidence?

Has the entire model been tested in 
different studies?

Van Fraassen (1980), Bhakthavatsalam 
and Cartwright (2017), Fawcett 
(2005), Gould (1991), Van de Ven 
(2007)

(C5)
Pragmatic adequacy

Does the model:
(1)  �recognize the domain(s) to which it 

can be applied to?
(2)  �provides recommendations on how 

to implement the proposed model in 
that domain?

(3)  �clarify specific areas in which the 
model can provide useful and 
tangible results?

Getty (1995), Karwowski (2005), Caple 
(2008), Meister (2018), Salas (2008), 
Sind-Prunier (1996)

(C6)
Human as active agent

Does the model take human judgments, 
motivations, emotions, and socially 
driven behaviours into consideration?

Witkin and Gottschalk (1988), Gauch 
(2012), Kennedy (2012)

(C7) 
Dynamic properties

If the phenomenon is dynamic, does the 
model acknowledge time as a 
variable?

Guastello (2017), Dekker, Cilliers, and 
Hofmeyr (2011), De Keyser, Decortis, 
and Van Daele (1988), Hollnagel 
(2002)
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the model is the probability that a particular course of action will succeed, i.e. how much 
one can trust the decision aids suggestions (Cohen et al. 1997). Neural net models are data-
driven models. They can make accurate predictions about trust and control allocation 
strategies but due to the nature of such models (varying coefficients from one data set to 
another), it is not feasible to extract a meaningful explanation about how the model works. 
Neural nets are not models of psychological processes but rather predictive models applied 
in human-machine systems (Moray and Inagaki 1999).

Data collection

To identify the existing models of trust in automation, four databases were searched: Web 
of Science, Scopus, ScienceDirect, and Google Scholar. This led to several duplications but 
also ensured thorough indexing of academic databases. The search was restricted to the 
title, abstract, and keywords of the publications using the search string: (‘Trust in Automation’ 
OR ‘Trust in Automated’ OR ‘Trust in Autonomy’ OR ‘Trust in Autonomous’ OR ‘Trust in 
Robots’) AND (‘Model*’). Additionally, we examined the literature review articles on trust 
in automation models (e.g. French, Duenser, and Heathcote 2018; Abbass, Scholz, and Reid 
2018; Adams, Bruyn, and Houde 2003; Hussein, Elsawah, and Abbass 2020) and employed 
snowball approach to ensure inclusion of all relevant studies. The initial screening was 
performed to remove any duplicates. The second-stage screening of articles required ana-
lysing the abstracts to identify whether the study potentially proposes a model of trust in 
automation. At the second-stage screening, we made some scoping constraints to exclude 
works focused on just one component (e.g. the effect of culture on TiA) and/or studies that 
only peripherally mentioned trust in automation.

After a comprehensive review of the articles, thirty-six studies were selected for evalu-
ation. The studies are classified into two main clusters. The first cluster of models involves 
theoretical research intending to offer conceptual models of trust in automation which 
share many similarities. They often provide causal factors related to the automation, the 
individual, and to the environment’s characteristics and are generally presented in a network 
diagram. Conceptual models consider trust as a mediator of the operator’s reliance on 
automation. The second cluster of studies involves computational models, aimed at pro-
viding mathematical and/or probabilistic models that can predict trust by incorporating 
causal factors and relationships among them.

Criteria weighting

To evaluate the models of trust in automation, it is important to arrange the proposed 
criteria according to a ranking system. This is because different criteria have relative impor-
tance in model evaluation. A model can be portrayed as dynamic and suggest a pragmatic 
application, and yet unfalsifiable. Conversely, a testable model can lack temporal property 
and/or have limited predictive/explanatory power. Therefore, identifying the relative weight 
of each criterion seems necessary. The model evaluation can be seen as a Multi-criteria 
decision-making (MCDM) problem. For this purpose, this study utilized the Best Worst 
Method (BWM) as a branch of MCDM. The BWM uses ratios of the relative importance 
of criteria in pairwise comparisons specified by the decision-maker (Liang, Brunelli, and 
Rezaei 2020). Compared to other MCDM methods, such as Analytical Hierarchy Process 
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(AHP), BWM requires fewer comparison data for generating consistent pairwise compar-
isons (Rezaei 2015, 2016). The BWM starts with identifying the most and least important 
criteria, followed by ratings for the relative importance of other criteria in pairwise com-
parisons with the most and least important ones. To derive the weights of each criterion, 
two independent researchers followed the standard steps in BWM, as described below. The 
overall weighting is then calculated as the mean from the two evaluations.

Step 1 is to determine a set of decision criteria as C C C
n1 2

, , ,…{ }. The decision criteria in this 
study can be shown as:

	 Testability C Predictive Power C Dynamic Properties C( ), ( ), , (
1 2 7

… )){ }	

Step 2 is to define the most and least important criteria. In this study, testability and pragmatic 
adequacy are considered the most and least important criteria, respectively. This is because if a 
model is not testable, there is no practical way to examine many of the remaining criteria. 
However, a model can pass some essential criteria and is yet to be applied in real-world settings.

Step 3 is to decide the importance of the best criterion over all other criteria using a scale from 
1 to 9. The result would be a vector as:

	 A
B B B Bn
= …( )α α α

1 2
, , , 	

Where αBj denotes the importance of the best criterion B over criterion j.

Step 4 is to decide the importance of all the criteria over the worst criterion using a scale from 
1 to 9. The result would be a vector as:

	 A
w w w nw

T

= …( )α α α
1 2
, , , 	

Where α
jw

 denotes the importance of the criterion j over the worst criterion W.

Step 5 is to determine the optimal weights vector W W W
n1 2

* * *
, , ,…( ), where for each pair of 

W
W

B

j

 and 
W

W

j

w

, there is W
W

B

j
Bj=α  and 

W

W

j

w

jw
=α . To satisfy these conditions for all 

j, the below linear min-max problem must be solved according to the following formula:

	 minmax ,
W

W

W

W

B

j

Bj

j

w

jw
− −












α α 	

Subject to

	
j Wj

∑
=1

	

Using the BWM Excel solver (Rezaei 2022), the relative weight of each criterion is calculated as shown in 
Table 2.
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Model evaluation

After identifying the weight of each criterion, the evaluation is carried out for the degree 
to which a model can satisfy each criterion. The models are rated on a subjective scale 
from 1 to 9 for each criterion, normalized (X

norm i j( , )
), and computed the overall scores (OS

i
) as:

	 X

X

X
norm i j

i j

j

,

,

max
( )

( )= 	

	 OS X W
i norm i j j
=∑ ( )( )

,
* 	

Where X i j( , )
 is a degree to which model i can satisfy the criterion j, Xj is the jth column 

of matrix X, and Wj is the relative weight of criterion j.
Furthermore, a second assessment is conducted for a random 20% of the models (four 

conceptual and three computational) to realize the reliability of the evaluation. Subsequently, 
the inter-rater reliability as a measure of agreement among evaluations (Krippendorff 2011, 
2004) is calculated with Krippendorff ’s α

k
= 0 88.  which signifies an acceptable inter-

rater score.
To demonstrate the evaluation process, Muir’s (1987) conceptual model of trust is selected 

as an illustrative example. The model draws upon trust taxonomies proposed by Barber 
(1983) and Rempel, Holmes, and Zanna (1985), and encompasses the expectation of per-
sistence, technically competent performance, and fiduciary responsibility. Since the model 
does not specify the ways to operationalize and measure its components, the testability of 
the entire model becomes restricted. However, the linear regression-based formulation 
indicates a resealable predictive ability of the model. The model receives a low explanatory 
power score as it fails to provide sufficient explanatory depth/breadth despite its attempts 
to distinguish itself (i.e. contrastive force) from the previous interpersonal trust models. 
The empirical adequacy of the model is also fairly limited to the experimental studies of 
trust and human intervention in a process control simulation (Muir and Moray 1996). With 
regard to the pragmatic adequacy criterion, the model provides some generic recommen-
dations about the calibration of trust for decision support systems. However, it falls short 
in specifying the applicable domains and the practical benefits of using the model. 
Additionally, the model also does not adequately account for humans’ judgments, biases, 
and socially driven behaviours resulting in a low score in this area. Although Muir’s (1987) 
model discusses trust as a dynamic phenomenon, it cannot be considered as a dynamic 
model since it fails to explain the temporal characteristics of trust in automation.

Results

The evaluation of TiA models was conducted based on the proposed criteria to assess their 
adherence to each criterion. Prior to discussing the evaluation results, it is essential to 
examine the relationships between the criteria. As illustrated in Table 3, there exists a pos-
itive correlation between the testability and predictive power of the models. This is because 
in order to measure the predictive power, the model’s assumptions must be measurable and 
testable. Testability is also a meaningless idea without the model generating some predictions 
to be tested. Conversely, explanatory power and predictive power appear to be inversely 
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correlated. This can be understood from a perspective of modelling functionality and the 
trade-off between the explanation and prediction (Watts et al. 2018; Hofman, Sharma, and 
Watts 2017; Yarkoni and Westfall 2017). Conceptual causal models that aim to encompass 
a wide range of instances by incorporating ample causal factors may have limited predictive 
capabilities. On the other hand, predictive models (e.g. regression, time-series) may achieve 
higher accuracy by narrowing down the causal elements, resulting in less generalizable 
outcomes (i.e. reduced explanatory power).

Criterion 1, testability

With regards to the testability criterion, the components of early conceptual models are often 
expressed in generic terms such as ability, benevolence, integrity (Mayer, Davis, and Schoorman 
1995), faith, and personal attachments (Madsen and Gregor 2000). The generic terminology 
reduces the possibility of the models being operationalized and tested and therefore defies the 
testability criterion. A number of studies provide mathematical notations (Muir 1994) regres-
sion-based (Muir 1994; Lee and Moray 1992), and time series (Lee and Moray 1994), but these 
can be seen as partial representations of the original conceptual models. Computational mod-
els, on the other hand, offer more precise and quantifiable definitions for models’ variables in 
order to be validated with data, and hence perform better in this criterion.

Criterion 2, predictive power

With respect to predictive power, most conceptual models can provide the existence of effect 
(sub-criterion C2-1). Muir (1994) offers a linear regression formulation as a mathematical 
specification of predicted effect (sub-criterion C2-4). Similarly, Lee and Moray (1992) 
Autoregressive Moving Average Vector (ARMAV) model receives a higher score in the pre-
dictive power criterion. The computational models that are expressed using mathematical 
equations have normally a higher predictive ability. However, Sheridan’s (2019) three models 
of signal detection, statistical parameter estimation, and model-based control as well as the 
system dynamics model proposed by Hussein, Elsawah, and Abbass (2019) do not offer 
sufficient details for the variables and therefore generate less risky predictions.

Criterion 3, explanatory power

Explanatory power is evaluated for the degree to which a model can provide contrastive 
force, explanatory breadth, and explanatory depth. To do so, the theoretical assumptions 
of the models were reviewed to identify whether the model justifies the choices for its 
components/parameters, the relationships between the components, and the relative advan-
tage of the model compared to previous models. Moreover, we sought to consider whether 
the model attempted to decompose and elaborate its structural elements and answer ‘how’ 
questions (explanatory depth). The model’s assumptions are also examined for conceivable 
generalizability (explanatory breadth).

A higher level of abstraction in conceptual models allows for encompassing a wider 
range of phenomena. Models of Lee and See (2004), Hoff and Bashir (2015), and Hancock 
et al. (2011) received the highest scores in this criterion for providing an ample contrastive 
force and justification of assumptions while offering a broad explanatory breadth to 
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encompass a wider range of TiA instances. However, these models (and many other con-
ceptual models) have a relatively shallow explanatory depth in decomposing the underlying 
causal mechanisms and explaining the interactions that give rise to TiA. Among compu-
tational models, the extended decision field theory model (Gao and Lee 2006) provides a 
detailed explanation and highlights the inertia of trust, the nonlinear relationship between 
trust, self-confidence, and reliance on automation in a closed-loop dynamic model.

Criterion 4, empirical adequacy

The empirical adequacy of the models is examined to realize whether the model’s assertions 
are supported by empirical research. Several studies have acknowledged the role of different 
factors on TiA, such as age (Ho et al. 2005), personality traits (Merritt and Ilgen 2008; 
Szalma and Taylor 2011), culture (Huerta, Glandon, and Petrides 2012), gender (Nomura 
et al. 2008), self-confidence (de Vries, Midden, and Bouwhuis 2003), and automation reli-
ability (Parasuraman and Riley 1997; Dzindolet et al. 2003). Nonetheless, the empirical 
adequacy of the conceptual models remain somewhat limited. In our assessment, the 
meta-analysis model proposed by Hancock et al. (2011) receives a higher score for offering 
an evidence-based model of TiA, although the entirety of the model has yet to undergo 
comprehensive testing. Similarly, the empirical adequacy of the computational models is 
typically constrained to data fitting and model validation within a single study.

Criterion 5, pragmatic adequacy

Pragmatic adequacy pertains to the application of TiA models in real-world settings. This 
criterion requires the TiA models to explicitly specify the domain(s) to which they are appli-
cable. Models that are specifically tailored to a particular context excel in this criterion, as 
they are primarily designed for a specific setting. For instance, Kraus et al. (2020) model is 
mainly developed for automated driving (AD) vehicle systems and offers new insights into 
the processes involved in trust calibration prior to and during the take-over request (TOR). 
Argument-based Probabilistic Trust (APT) model (Cohen et al. 1997) explores its feasibility 
to be implemented in a military decision-aiding environment for Rotorcraft Pilot’s Associate 
(RPA). Among computational models, those that aimed to be utilized in real-world applica-
tions such as human-robot interactions (e.g. Xu and Dudek 2015, 2012), or automated driving 
systems (Azevedo-Sa et al. 2021) receive higher scores in terms of pragmatic adequacy.

Criterion 6, humans as active agents

Humans are self-reflecting actors that do not mechanically respond to stimuli but rather 
reflect, draw on previous experience, make choices, and anticipate the outcome of their deci-
sions. The ‘Humans as active agents’ criterion requires the TiA models to take human judg-
ment, biases, motivations, emotions, and socially driven behaviour into consideration. For 
example, Cohen et al. (1997) model incorporates different levels of operators’ understanding 
of automation trustworthiness by integrating an event tree model that represents various 
pathways denoting different scenarios in which an operator may need decision support.

Among computational models, Hoogendoorn et al. (2013) introduced an adaptive biased-
based trust model that is designed to perform in situations where humans have to make 
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decisions to trust one of the multiple heterogeneous trustees. The model considers human 
inclinations to an agent system based on available cues and previous interactions with the 
system. In another study, Akash et al. (2017) proposed a third-order linear trust model that 
can capture the cumulative perception of trust as well as bias in human’s expectation of a 
particular interaction with automation.

Criterion 7, dynamic criterion

Walker, Stanton, and Salmon (2016, 5) describe trust as ‘a dynamic phenomenon, moving 
along a continuum,…’. The dynamic criterion stipulates that if a phenomenon is dynamic, 
the models representing it should also be dynamic and capable of explaining the phenom-
enon in a dynamic manner. While computational models have the advantage of producing 
time-series and simulation models, conceptual models can provide a dynamic understand-
ing of evolution and degradation of trust by elucidating how time as a variable plays a role 
in the modelling process. In our evaluation, we assessed the extent to which existing models 
consider time as a parameter. This process takes a range of forms; from the inclusion of 
information feedback loops, describing temporal dynamics of trust, to the development of 
time-series and dynamic simulation models.

Lee and Moray (1992) time-series model represents an early attempt to highlight the 
temporal characteristics of trust. The dynamic model accounts for a greater amount of 
variance compared to a simple regression model (79.1% versus 53.3%), also indicating its 
improved predictive power. Lee and See (2004) and Hoff and Bashir (2015) models are also 
notable in reflecting the dynamics of trust through signifying closed feedback loops and 
the distinction between initial and dynamic learned trust during human-automation inter-
action. Building upon the assumptions of these two models, Kraus et al. (2020) proposed 
a theoretical model to capture the dynamics of trust calibration in highly automated driving 
settings. Another contribution is the introduction of a real-time computational model of 
trust for human-automation collaboration called trust-POMDP, which integrates measured 
trust in the automation decision-making (Chen et al. 2018). In a different approach, Gao 
and Lee (2006) proposed a model based on the extended decision field theory (EDFT) to 
capture the dynamics and nonlinear characteristics of trust.

Tables 4 and 5 summarize the results for theoretical and computational models in all the 
criteria.

Discussion

The model evaluation revealed key differences between TiA models. Three conceptual mod-
els particularly stood out in terms of their overall scores. Lee and See (2004) model is 
remarkable in providing a widely accepted definition of trust in automation and a closed-
loop dynamic framework that governs trust and its impact on reliance. The model considers 
various causal factors underlying trust in automation including information assimilation 
and belief formation, individual, organizational, cultural, and environmental context. 
Despite the limitation in operationalization and testability of the model’s assumptions, Lee 
and See (2004) model is notable in elucidating the dynamic evolution of trust and the 
dimensions that describe the basis of trust. Desai’s (2012) qualitative model of trust in 
autonomous robot teleoperation represents an important step in using the Area Under Trust 
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Curve (AUTC) measure to account for an individual’s long-term interaction experience 
with the robot. While the model was developed based on experimental data, it is not suitable 
for accurately predicting trust and human performance. Kraus’s (2020) three-stage trust 
framework integrates the key assumptions of Lee and See (2004) and Hoff and Bashir (2015) 
trust models, providing a more detailed specification of the psychological processes involved 
in the formation and calibration of trust. The model distinguishes between the factors 
influencing trust prior to and during interactions, enabling a clearer understanding of inter-
actions among various individual and situational processes. However, the model appears to 
overlook human agency and trusting behaviour for reliance on automation. Regarding com-
putational models, Gao and Lee (2006) model of extended decision field theory (EDFT) 
and dynamic model of human-machine trust (Hu et al. 2019) are noteworthy for providing 
a testable, predictive, and dynamic explanation of trust in automation. These models excel 
in identifying the significance of cumulative trust and expectation bias.

Assuming a model could perfectly fulfil all the proposed criteria would be irrational as dif-
ferent models can vary in their performance across the seven criteria. A model may excel in one 
criterion while performing poorly in another. That is why some prefer the term ‘ideals’ rather 
than criteria for model evaluation (Van Lange 2013). That said, computational models tend to 
perform better in terms of the overall model scores. This is due to their testability and inclusion 
of articulated equations that allow for the inclusion of dynamic properties thereby enhancing 
their predictive power. Nonetheless, computational models are constrained by the causal factors 
included in the model which can limit their explanatory breadth and generalizability. As Hu 
et al. (2019) report, factors such as demographics, false alarms, misses, and the effect of past 
experience on the future trust level are often overlooked in the computational models.

A nonparametric statistical test reveals the key differences between the conceptual and 
computational models in fulfilling the criteria. As shown in Table 6, computational models 
generally outperform conceptual models in all criteria except criterion 3 (explanatory power) 
and criterion 4 (empirical adequacy). This is not surprising since conceptual models are typ-
ically designed to be more generalizable for a wide range of instances, thereby providing a 
broader explanatory scope. The qualitative nature of the conceptual models also allows for the 
inclusion of more causal factors, extensive explanation, and justification of model parameters, 
resulting in a higher contrastive force. The greater explanatory breadth and contrastive force 
in the conceptual models provide a general framework for empirical studies. Though not 
always the entirety of the model, certain assumptions have undergone empirical testing and 
validation. That being said, empirical adequacy received the lowest score among both concep-
tual and computational models, indicating a lack of empirical validation beyond a single study.

To summarize, while conceptual models offer valuable insight into how trust, reliance, 
and other factors may interact, their heuristic nature hinders accurate predictions regarding 

Table 6. N onparametric tests of TiA models.
Test Statisticsa C1 C2 C3 C4 C5 C6 C7 Overall Score

Mann-Whitney U 25.500 19.000 120.000 147.500 39.500 43.500 17.000 13.000
Wilcoxon W 215.500 209.000 310.000 337.500 229.500 233.500 207.000 203.000
Z −4.400 −4.643 −1.341 −.564 −3.958 −3.964 −4.640 −4.706
Asymp. Sig. 

(2-tailed)
<.001 <.001 .180 .573 <.001 <.001 <.001 <.001

Exact Sig. 
[2*(1-tailed Sig.)]

<.001b <.001b .196b .661b <.001b <.001b <.001b <.001b

aGrouping Variable: Model Type.
bNot corrected for ties.
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trust and control allocation (Desai 2012). The use of general terminology in conceptual 
models poses a challenge for precise operationalization, limiting the testability and empirical 
validation of these models. This entails that there cannot be any observation that could 
possibly contradict the model’s assumptions and refute them. Despite some consensus on 
the key factors influencing trust in automation, there remains no agreement on ‘how’ various 
factors and attributes combine into a single vector within existing TiA models (Sheridan 
2019). This modelling challenge highlights the importance of the model’s structure (Hollnagel 
2002). Conceptual models tend to assume the interactions between various constructs and 
factors as unidirectional linear pathways. However, this stimulus-response logic, prevalent 
in both theories and experiments, greatly underestimates the complexity of the coupling 
effect between human agents, automation, and the environment (Kugler and Turvey 2015; 
Jagacinski and Flach 2018). Trust, as an outcome of prolonged interaction with automation 
on an infinite number of occasions, is far more complex to be modelled in a linear stimulus 
(cause) and response (effect) fashion. Failure in automation has a decaying reminiscence 
effect on future trust. On top of that, properties in dynamic systems can be induced by changes 
in other properties, resulting in simultaneous and reciprocal alterations (Van Gelder and Port 
1995). This implies that changes in trust, which can be influenced by factors like automation 
reliability, may indirectly impact automation reliability itself through reliance on automation 
and intervening behaviours. The intrinsic complexity of sociotechnical systems introduces 
new complications that require a comprehensive consideration of the direction of causality 
and temporal priority of the causal variables (Jagacinski and Flach 2018; Guastello 2017; Van 
de Ven 2007). Therefore, efforts should be directed towards refreshing our epistemological 
understanding of complex systems and adopting novel modelling techniques that can accom-
modate the ever-growing complexity of socio-technical systems.

On a related note, and to address the question raised in the introduction section, a 
regression analysis was performed for the thirty-six models of trust in automation. By doing 
so, we aimed to gain insights into the temporal evolution of TiA research and assess the 
TiA progress over time. Figure 1 illustrates that the TiA models exhibit an upward trend, 
indicating a gradual advancement in the field. However, when considering the model’s type 
as a covariate in the regression analysis (Table 7), it becomes evident that there is no 

Figure 1.  TiA model scores over time.
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significant change in TiA models over time. Thus, relying solely on a simple regression 
analysis with time as the covariate can be misleading. The observed reason for the upward 
trend can be attributed to the increased prevalence of computational models in recent years 
and not because of meaningful development in the TiA research programme.

Concluding remarks

For human factors and ergonomics (HFE) to progress as a scientific discipline, it is necessary 
to produce and validate scientific theories and models (Hancock and Diaz 2002; Meister 
2000). Testing and evaluating these models are essential aspects of theory/model develop-
ment process, allowing for the recognition of scientific advancements in the field. With this 
objective in mind, this study proposed a set of criteria for model evaluation in HFE and 
introduced a methodological procedure to apply these criteria to the case of trust in auto-
mation. The findings revealed differences between the two main classes of models. 
Conceptual models provide valuable insight into listings of variables that have or are 
assumed to have a direct causal effect on trust such as cultural variations, personality traits, 
and automation reliability. These models strive to consider all or the most significant ele-
ments that might have a causal impact on operators’ trust and reliance on automation. 
However, testability and empirical validation of these models remain the biggest challenge 
to tackle. On the other hand, computational models incorporate mathematical representa-
tions that aim to predict or estimate levels of trust and can often be tested against data. Yet, 
these models can encompass only a limited number of causal factors and hence are less 
generalizable to various trust scenarios.

The analysis also indicated that there has been limited progress in TiA models over the 
years. This suggests that despite the efforts, the HFE community has struggled to significantly 
expand the frontiers of TiA research. The challenge lies in the complexity of trust as a psy-
chological phenomenon and the inadequacy of the current modelling tools to effectively 
capture this complexity. The existing modelling approaches seem to be too simplistic and 
linear to effectively capture the intricate nature of trust in automation. Therefore, it is crucial 
for the HFE community to prioritize the adaptation of modelling approaches that can 
enhance our understanding of this phenomenon and, in turn, prove useful in real-world 
applications. Modelling approaches such as system dynamics, network dynamics, and agent-
based modelling offer promising avenues for effectively modelling trust in automation. By 
leveraging these approaches, we may better grasp the complexity of trust by capturing inter-
connections and interactions among various entities in sociotechnical systems, emergent 
properties from these interactions, and the dynamic patterns of trust propagation and 
diffusion.

With regards to proposing an approach to evaluate HFE constructs, this study paves the 
way for new avenues of research. Firstly, although the proposed criteria are based on the 
known principles of the philosophy of science, further adjustments can be made to suit 
specific HFE models in future studies. Secondly, the rankings of the criteria based on the 
Best-Worst Method (BWM) reflect subjective assessments by researchers. Collecting and 
analysing judgments from Subject Matter Experts (SMEs) in future research can help reduce 
subjectivity. Similarly, achieving consensus among individual researchers on model ratings 
can enhance consistency in evaluation. Future studies may also consider matching some of 
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the criteria to the application. There may be no universal objective criteria weights. Matching 
the criteria to the target situation would allow individuals to select the right model for a 
particular situation, such as theory development or design.
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