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A B S T R A C T   

We introduce benchmarking analysis based on state-of-the-art machine learning techniques applied to the 
measurement of efficiency to assess the performance of Higher Education Institutions (HEIs). We rely on Effi-
ciency Analysis Trees (EAT) and its Convexified frontier counterpart (CEAT) to assess the efficiency of 144 
private HEIs in Colombia and compare the results with those achieved with classical Data Envelopment Analysis 
(DEA). Both EAT and CEAT show a higher discriminatory power than DEA when determining efficiency scores. 
Our results identify the different splits of the production frontier, corresponding to each node of the efficiency 
tree, which groups HEIs according to specific management models. By identifying relevant peers for inefficient 
observations at the node level, we show which strategic guidelines can be adopted to improve the performance of 
each HEI. This process encourages mutual learning and suggests potential changes within each node leading to 
efficiency improvements.   

1. Introduction 

This study introduces benchmarking methods to analyze the per-
formance of Higher Education Institutions (HEIs) using state-of-the-art 
efficiency methods based on machine learning techniques, i.e., Effi-
ciency Analysis Trees. From an empirical perspective, the new methods 
focus on the analysis of the different managerial models characterizing 
the nodes generated by the efficiency tree, clustering Colombian HEIs 
according to similar input-output mixes and size. Subsequently, the 
analysis identifies the set of efficient observations within each node that 
may serve as benchmark peers for inefficient observations. The principle 
of least action (i.e., minimum distance) is adopted to determine the 
closest best performing peer to each observation within its node. Finally, 
the method involves the calculation of the output adjustments necessary 
to match the production levels of the peers, thereby identifying best 
practices within each node and the whole tree. Our goal is to assist de-
cision makers responsible for the management of HEIs in designing 
strategies aimed at solving productive inefficiencies, which results in the 

improvement of the overall performance of higher education systems. 
The literature has shown that one-size-fits-all models are not suitable 

for evaluating the performance of HEIs [1,2]. This is mainly due to the 
fact that HEIs tend to develop greater and better organizational capac-
ities in those activities that offer them competitive advantages over their 
counterparts [3–5]. Consequently, it is expected that HEIs with different 
educational models and levels of performance may coexist, and that the 
performance of a HEI may also vary depending on the functions that are 
considered in such an evaluation [6]. This has led to performance 
measurements being increasingly used to characterize HEIs and to 
classify them [7,8], defining strategic groups that facilitate 
decision-making due to the homogeneity of the clustered HEIs [9]. 
Accordingly, there is an increasing academic and practical interest in 
using methodologies that make it possible to identify the best practices 
and the HEIs that may represent benchmarks to learn from Ref. [10–12], 
with the purpose of establishing improvement plans with specific and 
achievable objectives [13,14]. 

Efficiency evaluations of HEIs have yielded empirical evidence with 
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important implications for improving the definition of higher education 
policies and strategies [7,15]. This is a result of the assistance these 
methodologies provide when defining better-targeted policy objectives, 
which are in turn adjusted to particular groups of HEIs with similar 
characteristics but dissimilar levels of performance. In this regard, the 
methodology that is proposed in this study is expected to contribute to 
the literature with new evidence on how to carry out such systematic 
evaluations of the performance of HEIs [16]. 

The most widely used methodology for evaluating the efficiency of 
HEIs is the envelopment approach generally identified as Data Envel-
opment Analysis (DEA), introduced by Charnes et. al [17] to, precisely, 
measure the performance of educational programs. Although these 
methods have proved themselves reliable, as shown in the many studies 
cited above, they suffer from overfitting, which may lead to situations 
where it is not possible to discriminate among observations when 
evaluating performance. This drawback is worsened when the number 
of observations is relatively small with respect to the number of inputs 
and outputs. Indeed, based on our results using both DEA and its 
non-convex counterpart known as Free Disposal Hull (FDH) in the 
context of Colombian private HEIs, we show that the number of efficient 
observations is very high. In particular, in the case of FDH this situation 
is extreme since all HEIs are deemed efficient with a score of one. This 
drawback, known as the “curse of dimensionality”, can be seen as the 
Achilles’s heel of envelopment methods. 

This lack of discernment emerges from the weight flexibility that 
FDH and DEA offer when evaluating the efficiency of a given Decision 
Making Unit (DMU), as it searches for the most favorable weights. To 
solve this weakness, several methods have been proposed in the litera-
ture to improve the discriminatory power of DEA. The simplest methods, 
also adopted in this study (see Section 4), rank efficient DMUs according 
to their relative importance to inefficient units; for instance, how often 
they serve as reference peers for inefficient units (see Ref. [18]). A 
second method resorts to the super-efficiency approach initiated by 
Andersen and Petersen [19], which removes the DMU under evaluation 
from the reference technology, thereby obtaining an efficiency score 
smaller than one, which allows breaking the tie among the scores. A 
third strand of literature develops cross-efficiency methods (see Refs. 
[20,21]), which uses the DEA weights of all other DMUs in the analysis 
to assess bilateral efficiency, and then calculates the average, offering a 
distinct ranking. The fourth possibility brings inefficient frontiers into 
the analysis by solving ‘inverted’ DEA models, which measure in-
efficiency with respect to reference hyperplanes defined by the 
worst-performing DMUs [22]. Within the so-called TOPSIS methods (i. 
e., Technique for Order of Preference by Similarity to Ideal Solutions), it 
is possible to rank observations identifying the best (ideal) and worst 
(anti-ideal) performance. The ranking in this fifth method takes into 
consideration both how close and how far the DMUs are from these two 
benchmarks, respectively (see Ref. [23,24]). Other solutions to the weak 
discriminatory power of DEA are also discussed by Aldamak and Zol-
faghari [25] and Balk et al [26]. 

A shortcoming shared by the above proposals is that the optimal 
weights, obtained by solving the DEA models, may not be unique. 
Indeed, applying the simplex method identifies a feasible solution, but 
there might be multiple solutions besides the first one obtained, which 
creates uncertainty in the evaluation process, and may lead to con-
flicting prescriptions from a managerial perspective (e.g., in the form of 
multiple rates of transformation between outputs or substitution be-
tween inputs). To address the challenges associated to effective ranking 
and multiplicity of benchmarks, several authors are increasingly 
resorting to machine learning methods to approximate the production 
technology as an alternative to envelopment techniques. One promising 
alternative are the so called Efficiency Analysis Trees (EAT) introduced 
by Esteve et al. [27] and Aparicio et al. [28]. EAT draws from the 
classification and regression trees methods proposed by Breiman et al. 
[29]. EAT estimates performance frontiers satisfying fundamental pos-
tulates of production theory such as free disposability, data envelopment 

and (if required) convexity, giving rise to Convexified Efficiency Anal-
ysis Trees (CEAT). Moreover, using cross-validation methods, the above 
authors have shown that these techniques are more accurate in pre-
dicting the actual production frontier. Therefore, machine learning 
methods like EAT and CEAT, provide a real alternative to perform 
benchmarking analysis for inefficient observations. However, the prac-
tice of benchmarking using these methods have not been developed in 
the literature. This study aims to solve this gap. What ultimately matters 
is the possibility of comparing an underperforming observation with 
some peer(s) that can realistically offer guidance to improve its 
performance. 

In this study we apply the EAT and CEAT methodological approaches 
to assess the performance of a set of 144 private HEIs in Colombia and 
show their advantage over envelopment methods, while providing an 
effective benchmarking environment, which is introduced in this study. 
The expansion that the private HEI sector is having in many countries 
represents an opportunity to diversify and meet market demands [30] 
and to provide alternatives to broaden the coverage of higher education 
[31]. However, currently, private HEIs are facing great difficulties 
related to the decrease in demand, global competition, and cross-border 
education, among others, thereby, showing evident signs of decline 
[32], which have led governments to question their sustainability over 
time. In this regard, the decision to focus on Colombia as a case study is 
twofold. First, Colombia has one of the largest degrees of privatization in 
higher education worldwide [33]. Indeed, Colombia’s private HEIs 
represent 70.1% of the higher education system, representing one of the 
systems with the highest degree of privatization [34]. Second, and in 
spite of the expansion of for-profit and private HEIs worldwide [35,36], 
so far there is limited evidence about the performance of these HEIs in 
terms of efficiency.1 

Section 2 reviews the literature by comparing standard envelop-
ments techniques, such as non-convex FDH and convex DEA, with newly 
proposed counterparts like EAT and its convexified version (CEAT). 
Section 3 presents the results achieved with the application of the pre-
vious methodologies in the context of Colombian private HEIs. It first 
shows the results of the EAT technique when growing the tree approx-
imating the benchmark technology and then compares these with those 
corresponding to their FDH and DEA counterparts. Section 4 illustrates 
how to practice benchmarking using EAT and CEAT. In it, we identify 
relevant benchmarks and the output adjustments that lead to efficiency 
enhancement strategies in each of the identified nodes of HEIs. Finally, 
Section 5 concludes the paper by emphasizing its contribution to 
benchmarking analysis as well as its implications for the management 
and governance of higher education. 

2. Standard envelopments techniques versus efficiency analysis 
trees 

In this section, we recall well-known concepts about standard 
envelopment techniques to approximate the technology like the non- 
convex Free Disposal Hull (FDH) and convex Data Envelopment Anal-
ysis (DEA), and compare them to newly proposed counterparts like non- 
convex Efficiency Analysis Trees (EAT) and Convexified Efficiency 
Analysis Trees (CEAT). 

2.1. Free Disposal Hull and Data Envelopment Analysis 

Envelopment methods, particularly DEA, is among the most popular 
techniques to analyze performance in education (for a recent review of 
the literature see Ref. [15]). It is a very flexible technique that does not 
require to explicitly specify the relationship between the (educational) 
outputs and inputs. Additionally, this methodology does not assume any 

1 Some excemptions worth stressing are Thursby and Kemp [62], Castano and 
Cabanda [63], Gwendolyn and Cabanda [64], Said [65] or Sav [66]. 
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probability distribution on the data generation process and allows to 
deal with the multi-output multi-input production technology in a nat-
ural way. Moreover, as another advantage in comparison with para-
metric alternatives (e.g., Stochastic Frontier Analysis), DEA also yields 
benchmarking information. In particular, it provides individual knowl-
edge about real peers that serve as targets to learn from in order to 
improve performance. 

Let us consider that we have observed n DMUs that make up the 
sample ℵ = {(xi, yi)}

n
i=1. Let we assume that DMUi consumes xi = (x1i,...,

xmi) ∈ Rm
+,i = 1,...,n, amounts of inputs to produce yi = (y1i, ..., ysi) ∈ Rs

+,

i = 1, ..., n, amounts of outputs. Hereinafter, we will use bold for 
denoting vectors, and non-bold for scalars. The relative efficiency of a 
given DMUo in the sample is assessed with reference to the production 
technology, which is defined as: ψ = {(x,y) ∈ Rm+s

+ : x can produce y}. As 
noted above DEA is one of the standard non-parametric methods to 
measure the efficiency of the DMUs (i.e., Colombian HEIs in the context 
of this paper). The technology generated with this method meets certain 
assumptions, such as: a) free disposability of inputs and outputs; 
meaning that if (x, y) ∈ ψ is a technically feasible combination, then (x’,
y’) ∈ ψ, with x′ ≥ x and y′ ≥ y, is also feasible technologically; b) data 
‘envelopment’, that is, (xi,yi) ∈ ψ , i = 1, ...,n; c) minimal extrapolation, 
which states that among all the possible subsets of Rm+s

+ that satisfy the 
previous postulates, the subset provided by DEA is the smallest one (see 
Ref. [37]) (this last condition can also be seen as the application of the 
principle of parsimony or Ockham’s razor); and, finally, d) convexity, 
which means that if (x,y),(x’,y’) ∈ ψ , then λ(x,y)+ (1 − λ)(x’,y’) ∈ ψ, for 
all λ ∈ [0,1]. 

Among all the technical efficiency measures in the literature, there is 
a family that stands out for its interpretability and fulfilment of inter-
esting properties. We are referring to the radial measures. In particular, 
the output-oriented radial measure evaluates each DMUo by equi- 
proportionally augmenting the outputs as much as possible while in-
puts remain constant. Many studies justify the adoption of an output 
orientation when evaluating the performance of educational organiza-
tions [38–43]. Taking advantage of the fact that the DEA technology 
corresponds to a polyhedral set, this measure can be determined through 
the following linear optimization model. 

φDEA(xo, yo) = max φ
s.t.

∑n

i=1
λixji ≤ φxjo, j = 1, ...,m,

∑n

i=1
λiyri ≥ yro, r = 1, ..., s,

∑n

i=1
λi = 1,

λi ≥ 0, i = 1, ..., n.

(1) 

Using this measure, DMUo is technically efficient—i.e., belongs to 
the performance (technological) frontier—if φDEA(xo, yo) = 1. Other-
wise, i.e., φDEA(xo, yo) > 1, DMUo is classified as technically inefficient. 
Additionally, model (1) provides benchmarking information. The output 
targets are calculated as φDEA(xo,yo)⋅yro, for r = 1, ...,s, and the reference 
benchmarks for DMUo are identified through the optimal values of the 
decision variables lambda. In particular, λ∗i ∕= 0 identifies DMUi as 
benchmark for the assessed unit DMUo. 

The flexibility of DEA can be further increased by removing the 
postulate of convexity (see Ref. [44] or [45]). In that case, the technique 
is known as Free Disposal Hull [46] and yields a stepwise efficient 
frontier in contrast to DEA, which produces a piece-wise linear border of 
the technology. The output-oriented radial measure can be also calcu-
lated under FDH by using model (1) but substituting the last constraint 
with λi ∈ {0, 1}, i = 1, ..., n, whose efficiency for DMUo is denoted by 
φFDH(xo,yo). 

Regarding envelopment methods, and from a statistical point of 

view, overfitting is a problem that happens when you have a perfect fit 
of your model on the data sample. When this occurs, the model unfor-
tunately cannot perform accurately against unseen data, which is usu-
ally related to a large generalization error. In words of Hastie et al. [47], 
p. 221), “… a model with zero training error is overfit to the training data 
and will typically generalize poorly.” Standard machine learning tech-
niques aim to identify the actual function that is behind the data 
generating process (see, e.g. Ref. [48]). If the precise equilibrium is 
struck between the ability of the model to learn any dataset without 
error and the accuracy achieved on a particular dataset (the observa-
tions), then an appropriate estimation of the underlying function being 
approximated will be attained. This ability to learn any possible dataset 
is linked to the notion of generalization error (also called out-of-sample 
error in the literature). The theoretical generalization error of a model 
cannot be calculated in general, but it may be approximated by resorting 
to test samples or cross-validation. In this context, envelopment tech-
niques like FDH and DEA, which put the efficient frontier as close as 
possible to the data sample due to the minimal extrapolation principle 
(particularly FDH that envelops the data more tightly), can correctly 
measure efficiency for a particular set of observations (DMUs) following 
a sample-specific-based evaluation, but, at the same time, suffer from 
overfitting. This last feature limits its inferential capability, at least for 
small data samples, a point that is important when one of the objectives 
of the study is saying something about the underlying function behind 
the data generating process that produced the observations. One direct 
impact of this overfitting problem on the results determined through 
FDH and DEA is that an important part of the DMUs under evaluation 
turn out to be technically efficient (see the discussion in the introduction 
and the results presented in the empirical section where all DMUs are 
deemed efficient under the FDH approach). A problem that can be 
aggravated if the relationship between the number of variables (inputs 
and outputs) and the sample size is inadequate (see, e.g. Ref. [49]). 
Some recent approaches have attempted to solve the overfitting problem 
in efficiency evaluation by tailoring machine learning techniques. One 
outstanding proposal is that known as Efficiency Analysis Trees which 
we describe in the next subsection. 

2.2. Non-convex and convex efficiency analysis trees 

A recent technique related to stepwise functions for estimating effi-
cient frontiers by machine learning techniques is Efficiency Analysis 
Trees (EAT) (see Ref. [27,28]). EAT is inspired in the Classification And 
Regression Trees proposed by Breiman et al. [29]. EAT builds technol-
ogies that satisfy desirable theoretical postulates as FDH except minimal 
extrapolation; that is, free disposability of inputs and outputs, ‘data 
envelopment’, i.e., contains all the observations, and, if demanded, 
convexity, giving raise to CEAT. Additionally, by abandoning minimum 
extrapolation, EAT provides a non-overfitted estimation of the under-
lying production possibility set. However, both EAT and FDH build 
stepwise surfaces as estimates of production functions. In Fig. 1, we 
show a graphical example of these two techniques in action. 

Next, we detail the main stages of the algorithm that allows deter-
mining the EAT estimate of the production possibility set. Given the data 
sample (considered learning sample) ℵ = {(xi, yi)}i=1,...,n, the first node 
of the tree, t1, contains all the observations and is divided into two child 
nodes, which will be also split in subsequent stages of a recursive al-
gorithm. In this regard, the general splitting step is as follows. Let t be 
the node to be split. Node t contains a data subset of ℵ. Then, the al-
gorithm chooses input j, j = 1...,m, and a threshold value for this input, 
sj ∈ Sj. The criterion employed for this choice is grounded on minimizing 
the sum of the Mean Square Error (MSE) linked to the data belonging to 
the left child node (the observations that satisfy xj < sj) and the MSE 
determined for the data that belongs to the right child node (the ob-
servations that meet xj ≥ sj). Mathematically speaking, the split consists 
in selecting the best combination (x∗

j , s∗j ) that minimizes the following 
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expression: 

min (R(tL)+R(tR))=
1
n

∑

(xi ,yi)∈tR

∑s

r=1
(yri − yr(tL))

2
+

1
n

∑

(xi ,yi)∈tR

∑s

r=1
(yri − yr(tR))

2

(2)  

where yr(t) denotes the estimation of the r-th output at node t. As for the 
number of nodes generated, every recursive algorithm needs a stopping 
rule. In the case of EAT, the stopping rule is n(t) ≤ nmin, where n(t) de-
notes the number of observations at node t. Regarding nmin, it is a 
parameter to be tuned and usually takes values among {5,10,15,20}. Put 
in words, a node is terminal and is no further split if the number of 
observations that belong to that node is less or equal than nmin. 

An important issue in EAT methods from a frontier perspective is the 
definition of yr(t) to ensure free disposability of inputs and outputs as 
well as the enveloping property. The satisfaction of the enveloping 
property, that is, the estimated technology contains all the observations 
(at least those belonging to the learning sample), may be easily fulfilled. 
To do that, the basic idea is to play with the notion of maximum rather 
than the mean of the output values (as standard classification and 
regression trees methods do). However, the satisfaction of free dispos-
ability while the tree structure is being created is challenging. In the EAT 
algorithm, the property is satisfied in streaming. After implementing 
each split, a region in the input space is identified: the “support” of node 
t, which is defined as Rt = {x∈ Rm

+ : ajt ≤ xj < bjt ,j = 1,...,m}. The values 
ajt and bjt come from the (optimal) thresholds chosen during the splitting 
method. Next, we state the notion of (input) Pareto-dominance linked 
to nodes. Let k = 1, ...,K be the splits completed at a certain point of 
the algorithm and Tk(ℵ) the tree created after the k-th split, with 
T̃k(ℵ) representing the set of terminal nodes in such tree structure Tk(ℵ). 
Furthermore, let t∗ ∈ T̃k(ℵ) be a specific node to be split at this moment. 
In this regard, let T(k|t∗ →tL, tR) be the tree associated with this 
step where node t∗ is split into nodes tL and tR. Then, given a 
generic node t, the set of (input) Pareto-dominant nodes is defined 
as ITk(ℵ)(t) = {t′∈ T̃k(ℵ)\t : ∃x∈ Rt , ∃x′∈ Rt′ such that x′≤ x}. This 
notion is the clue for satisfying the property of free disposability. This 
definition is linked to the output estimation process at each node to be 
split. Specifically, yr(tR) = yr(t∗), r = 1, ..., s. That is, the output 
estimation of the right child node coincides with the output estimation 
of its parent node. Regarding the output estimation of the left child node, 
it is stated as follows: 

yr(tL)=max
{

max
{

yrj :
(
xj, yj

)
∈ tL

}
, yr

(
IT(k|t∗→tL ,tR)(tL)

)}
, r= 1, ..., s, (3)  

where yr(IT(k|t∗→tL ,tR)(tL)) = max{yr(t′) : t′∈ IT(k|t∗→tL ,tR)(tL)}. 
Put in words, the output estimation of the left child node, yr(tL), 

depends on the maximum value observed for the r-th output over the 
sample data that belongs to the left child node and the maximum value 
determined over the output estimations corresponding to the nodes that 
Pareto-dominate node tL. 

After applying the EAT algorithm, we get a tree structure that may be 
too ‘deep’, using the terminology utilized in regression trees. Unfortu-
nately, deep trees usually suffer from the same problem as FDH, that is, 
overfitting. A priori, there is not a simple solution to overcome this 
drawback in the case of FDH. However, in the case of EAT, due to its tree 
structure, it is possible to implement a solution inspired in the pruning 
process introduced by Breiman et al. [29]. Accordingly, let T(ℵ) be the 
final tree structure after the application of the EAT algorithm and the 
pruning process. Also, let dT(ℵ)(x) be the multidimensional output esti-
mator defined from the tree T(ℵ), that is, dT(ℵ)

r (x) =
∑

t∈T(ℵ)
yr(t)I(x∈ t), for 

all r = 1, ...,s, with I( ⋅) being the indication function. From dT(ℵ)(x), the 
estimator of the production possibility set associated with EAT is defined 
as: 

Ψ̂T(ℵ) =
{
(x, y) ∈Rm+s

+ : y≤ dT(ℵ)
(x)

}
(4) 

As Esteve et al. [27] proved, Ψ̂T(ℵ) contains all the observations and 
meets free disposability in inputs and outputs. Additionally, Ψ̂T(ℵ) does 
not satisfy minimal extrapolation, what implies that Ψ̂T(ℵ) contains, as a 
subset, the technology generated by FDH. Moreover, the efficient fron-
tier provided by EAT has a staggered shape. All these features made the 
authors of the EAT technique to claim that Efficiency Analysis Trees can 
be seen as a ‘pruned’ version of FDH, which avoids overfitting, or as a 
FDH-type out-of-sample estimator of the underlying technology, using a 
terminology that belongs to the field of machine learning. 

In the case of EAT, if we want to determine the output-oriented radial 
measure—counterpart to the FDH model (1) with λi ∈ {0, 1}, i = 1, ...,
n—to gauge technical efficiency of input-output bundle (xo,yo), we must 
obtain an optimal solution of the following linear program: 

Fig. 1. Graphical illustration of EAT and FDH for a single input and a single output. 
Source: own elaboration. 
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φEAT(xo, yo) = max φ

s.t.
∑

t∈T̃(ℵ)

λtajt ≤ φxjo, j = 1, ...,m,

∑

t∈T̃(ℵ)

λtdT(ℵ)
r (at) ≥ yro, r = 1, ..., s,

∑

t∈T̃(ℵ)

λt = 1,

λt ∈ {0, 1}, t ∈ T̃(ℵ).

(5) 

The difference between model (5) and the typical optimization 
model linked to FDH (in its enveloping form) is the left-hand side of the 
first two groups of constraints. Instead of using the information of inputs 
and outputs of the data sample, the EAT model resorts to the points at 

associated with the support of each node t ∈ T̃(ℵ), that is, each terminal 
node of the final tree. To see the optimizations programs that must be 
solved in the case of other (non-radial) technical efficiency measures we 
refer the reader to Aparicio et al. [28]. 

Another advantage of EAT against FDH is that, as we show in the 
empirical application to Colombian private HEIs, the former is able to 
provide a graphical representation of the efficient frontier of the tech-
nology even for high dimensions (a large number of inputs and outputs). 
The reason is that EAT is linked to the building of a tree structure. The 
terminal nodes of that structure provide information on the shape of the 
efficient frontier regardless of the number of variables. Several examples 
can be found in Aparicio et al. [28] for different real-world applications. 

Additionally, to complete the modelling of the technology using EAT 
methods, we may use the stepwise frontier estimated by EAT as the base 
to determine a piece-wise linear estimation of the efficient frontier 
under the assumption of convexity of the production possibility set. To 
do that, it is enough to substitute the last constraint in (5) with the re-
striction λt ≥ 0, t ∈ T̃(ℵ) (see Ref. [28]). The same idea is behind the 
relationship between FDH and DEA. When the frontier linked to EAT is 
‘convexified’, the technique is known as CEAT (Convexified Efficiency 
Analysis Trees), which is represented by 

conv
(

Ψ̂T(ℵ)
)
=

{

(x, y) ∈Rm+s
+ : y≤ dT(ℵ)(x),

∑

t∈T̃
∗

λt = 1, λ≥ 0T(ℵ)

}

. (6)  

And the output-oriented radial score obtained through it, denoted as 
φCEAT(xo,yo), can be compared with the score determined by DEA —i.e., 
model (1), since both methods yield technologies that satisfy the same 
set of postulates, except, once again, minimal extrapolation, which is 
met only in the case of DEA. 

3. The performance of Colombian higher education institutions 
through efficiency analysis trees 

3.1. The Colombian HEI system, statistical sources and chosen input and 
output variables 

In terms of the scale proposed by Trow [50], it could be said that 
Colombia is in the process of massification of its higher education. From 
having an elite system in year 2000 (18.7% coverage rate), the country 
made a transition to having a system close to being massive in 2015 
(49% coverage rate) [51]. The privatization of higher education has 
been a key determinant in this process of massification [52]. As argued 
above, Colombia is the third country with the largest share of private 
spending on HEIs with respect to GDP, being only surpassed by the 
United States and Chile [53]. At the end of 2018, the Colombian higher 
education system was made up of 301 HEIs. 71.1% of these HEIs belong 
to the private sector. According to Uribe [54] and Pineda and Celis [34] 
the growth of private HEIs in Colombia is a result of the lack of public 
resources for higher education and the formulation of policies that 

encourage the growth and expansion of private institutions. 
To characterize private HEIs in Colombia and assess their perfor-

mance, we select those variables that are directly related to the mana-
gerial strategies applied by them and which represent sources of 
institutional differentiation [55,56], while also explaining the market 
share to which they are directed [57]. The database we have gathered 
combines two sources of data (see Table 1). On the one hand, we 
consider the publicly available data provided by the Ministry of Edu-
cation of Colombia [58] for year 2019. This includes the following input 
variables: (i) number of full professors (x1); (ii) number of full-time 
lecturers with PhD degree (x2); (iii) number of full-time lecturers per 
active program (x3); (iv) number of undergraduate programs (x4); (v) 
number of master and PhD programs (x5); (vi) number of students 
enrolled in undergraduate programs (x6); (vii) number of students 
enrolled in master and PhD programs (x7); and the following output 
variables: (i) number of students graduated in undergraduate programs 
(y1); and (ii) number of students graduated in master and PhD programs 
(y2). Year 2019 is chosen to avoid the impact that the Covid-19 
pandemic may have had on the performance of Colombian HEIs. The 
total population of Colombian private HEIs for which the data from the 
Ministry of Education were available for year 2018 amounts to 171. 

On the other hand, we consider the rankings provided by the 
Colombian consulting firm Sapiens, which has published reports and 
classifications derived from the analysis of the dynamics of HEIs in 
Colombia for more than 20 years.2 These include the following rankings 
which are added to the previous outputs: (iii) Ranking of Colombian 
HEIs according to their level of technological development and inno-
vation (y3); (iv) Ranking of Colombian HEIs according to their level of 
production of scientific articles (y4); (v) Ranking of Colombian HEIs 
according to their level of generation of new knowledge (y5); and (vi) 
Ranking of Colombian HEIs according to the level of social appropria-
tion of their knowledge, IPRs (y6).3 In these cases, the latest available 
year is chosen for each of these rankings, which range between 2018 and 
2021. The size of the final sample of Colombian private HEIs for which 
the total amount of all indicators could be gathered amounts to 144. As it 
can be observed in Table 1, our final model includes 7 input variables 
and 6 output variables. All input and output variables, xi, and yi, are 
normalized by the maximum observed value (i.e., zi

max(zi)
× 100), zi = xi, 

yi, so their value ranges in all cases between 0 and 100.4 

In the following subsections, we describe the results of the EAT 
technique when growing the tree approximating the benchmark tech-
nology and, once the efficiency scores of the Colombian HEIs are 
calculated under the non-convexity and convexity assumptions, 
compare the attained results with those corresponding to their FDH and 
DEA counterparts. 

3.2. Tree growth representing Colombian HEIs 

Here we report the results corresponding to the benchmark tech-
nology obtained when applying the EAT method. We follow the algo-
rithm described in section 2.2, predicting the maximum of the output 
vector by splitting the observed sample conditioned to the values of the 
observed inputs. Fig. 2 presents the complete tree that has been obtained 
by applying the algorithm previously described. When performing the 
node splitting, the algorithm follows the heuristic method such that the 
number of the (input) Pareto-dominants nodes is low, which is normally 

2 See: https://www.srg.com.co/conocenos/.  
3 To find the details on the indicators that are considered to elaborate these 

four rankings see, respectively: https://www.srg.com.co/dtisapiens/met 
odologia/; https://www.srg.com.co/artsapiens/metodologia/; https://www. 
srg.com.co/gncsapiens/metodologia/; and https://www.srg.com.co/noticias/ 
reporte-asc-sapiens-2018/.  

4 Appendix 1 provides the descriptive statistics of the variables considered 
without normalization. 
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associated with the left-branch (child) nodes. The tree, as well as the 
scores corresponding to the different EAT, CEAT and standard FDH and 
DEA efficiency measures have been obtained running the eat package 
implemented in R as described in Esteve et al. [59]. 

We start the description of the tree with the root node at the top. We 
observe that the key variable that minimizes the sum of the squared 
errors for the left and right branches (or children) according to expres-
sion (2), is the number of full-time lecturers with PhD degree (x2), with 
the right branch containing all HEIs (25) with x2 ≥ 9.63, which is the 

optimal threshold splitting the sample. Therefore, the left branch, t2, of 
the subtree T1 composed by {t1, t1, …, t25} includes the remaining 119 
HEIs with x2 < 9.63. We observe that the right node t3 (Id = 3), inherits 
the maximum observed values of the output vector of the root node: 
y(t0) = y(t3) = [100, 100, 100, 100, 100, 100], as presented in expres-
sion (3). On the contrary, the left branch t2 (Id = 2) shows the output 
estimation y(t2) = [46.1, 59.3, 48.2, 27.2, 78.8, 40], corresponding to 
(lower valued) inputs—once the split is performed, which constitute the 
‘support’ of node t2. Consequently, in each node, we find an 

Table 1 
Variables considered and descriptive statistics.    

Variable Average Median Max Min Stand. Dev. 

Inputs Lecturers x1 − # full professors 13.007 6.991 100.0 0.0 16.728 
x2 − # full-time lecturers with PhD degree 6.812 1.985 100.0 0.0 13.864 
x3 − # full-time lecturers per active program 22.055 18.607 100.0 0.0 17.022 

Diversity of programs x4 − # undergraduate programs 17.426 14.433 100.0 0.0 13.860 
x5 − # master and PhD programs 11.756 5.631 100.0 0.0 16.450 

Students x6 − # students enrolled in undergraduate programs 6.166 4.081 100.0 0.0 9.755 
x7 − # students enrolled in master and PhD programs 8.675 3.733 100.0 0.0 14.154 

Outputs Training y1 − # students graduated in undergraduate programs 5.947 3.475 100.0 0.0 9.820 
y2 − # students graduated in master and PhD programs 10.034 4.667 100.0 0.0 15.224 

Scientific – technological production y3 − Ranking DTI-Sapiens 8.224 4.268 100.0 0.0 13.312 
y4 − Ranking ART-Sapiens 7.761 2.469 100.0 0.0 14.914 
y5 − Ranking GNC-Sapiens 15.118 7.879 100.0 0.0 19.286 

Impact on the territory y6 − Ranking ASC-Sapiens 13.758 8.000 100.0 0.0 15.968 

Source: own elaboration. 

Fig. 2. Efficiency analysis tree.  
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identification number (Id), the mean squared error (R), the sample size, 
the split executed for input j and threshold, sj ∈ Sj, and, finally, the 
estimated output. Note that, as anticipated and from a data visualization 
perspective, it is possible to illustrate the whole production technology, 
as opposed to FDH and DEA, which are limited to no more than three 
dimensions. 

Following the algorithm, the tree is subsequently grown (or 
expanded) by way of consecutive k+1 splits under the Pareto- 
dominance condition, which yields successive nodes T̃k+1. In this 
empirical application as many as 24 nodes are calculated (excluding the 
root node). In Fig. 2 those nodes that are partitioned are represented as 
colored rectangles, while the 13 end nodes (leaves) are represented as 
black rectangles. In these 13 terminal nodes, normally located at the 
bottom or the sides of the tree, the final estimation of the response 
variable (the output) is also reported. In this way, we can visualize the 
stepwise frontier by visiting the different branches of the tree from top to 
bottom. For the case of terminal nodes, the splitting process ends 
because either the Pareto-dominance criteria cannot be observed, so no 
more partitions are possible, or the stopping rule is met (in our case, 
nmin = 10 after executing a test sample-based validation method), and 
then it is marked as a leaf node of the tree. We remark that the tree 
represented in Fig. 2 is the result of applying the process on the data 
described in section 2.2, yielding the ‘pruned’ (or optimal) version of the 
tree, T. The process prevents the overfitting of the data and allows 
identifying an accurate version of the performance frontier. 

3.2.1. Productive efficiency in Colombian HEIs: output-oriented EAT vs. 
FDH and CEAT vs. DEA 

We now compare the results obtained when calculating the radial 
output-oriented efficiency measure using the tree (EAT and CEAT) and 
envelopment frontiers (FDH and DEA). Once we have generated the 
optimal tree, inducing the production possibility set for each supporting 
vector of inputs, we first calculate the EAT efficiency scores and compare 
them to their FDH counterparts. As previously argued, and following 
common practice in efficiency studies in the educational sector, we 
adopt an output-oriented approach, by which HEIs aim at improving 
their academic results given the available resources. 

Therefore, we start comparing the models for the non-convex 
estimation of the technology. Table 2 presents the individual 
efficiency scores of the ten best and ten worst performing private HEIs in 
Colombia, as well as their descriptive statistics for the whole sample at 
the bottom of the table. HEIs are ordered from best performing (i.e., 
smallest scores equal one) to worst performing (i.e., largest scores), first 
according to their EAT scores, and then based on their CEAT values. The 
EAT output-oriented efficiency scores, φEAT(xo, yo) := max{φo ∈ R : (xo,

φoyo) ∈ Ψ̂T}, with λi ∈ {0,1}, i = 1, ...,n, empirically calculated through 
program (5) are reported in the second column, while their FDH 
counterparts, φFDH(xo,yo) := max{φo ∈ R : (xo,φoyo) ∈ Ψ̂FDH}, calculated 
through program (1) are presented in the third column. All ten best 
performing schools are EAT and FDH efficient with unitary efficiency 
scores, while the scores of the ten worst performing schools illustrate 
that FDH technology is enveloped by the EAT technology—see Propo-
sition 2 (iii) in Aparicio et al. [28]. Consequently, the efficiency scores of 
the former are either equal or smaller that the latter: φEAT(xo, yo) ≥

φFDH(xo, yo). Although not entirely surprising, we observed that all the 
considered HEIs are efficient under the FDH envelopment approach. 

This result illustrates the already discussed overfitting shortcomings 
of traditional envelopment techniques. Indeed, all Colombian private 
HEIs are efficient under the FDH approach because of the minimum 
extrapolation requirements of this approach and the many input and 
output dimensions involved in the evaluation of educational systems. 
This renders the ranking and benchmarking process driving any effi-
ciency analysis meaningless, providing further justification for tech-
niques like Efficiency Analysis Trees which do not endure this drawback. 
To further illustrate this limitation, we portray the pairwise box-plots 

and kernel density distributions of the calculated efficiency scores in 
the left-hand side of Fig. 3. 

We may now undertake the comparison between the 
convexified versions of EAT and FDH For this purpose, we 
calculate the output-oriented CEAT and DEA efficiency scores corre-
sponding to φCEAT(xo, yo) := max{φo ∈ R : (xo,φoyo) ∈ conv(Ψ̂T(ℵ))} and 
φDEA(xo,yo) := max{φo ∈ R : (xo,φoyo) ∈ Ψ̂DEA}, respectively. The fourth 
and fifth rows of Table 2 present the efficiency scores for both series. 
We observe once again that a large proportion of HEIs are efficient in 
the DEA approach: 97, representing 67.36% of the sample. 
We also find within convex models that the DEA efficiency 
scores are either equal or smaller than their CEAT counterparts: 
φCEAT(xo, yo) ≥ φDEA(xo,yo). The right-hand side of Fig. 3 compares the 
box-plots and kernel density functions of both distributions. We 
observe that both series are hardly comparable due to the large 
number of efficient observations in the traditional approach. On this 
occasion it is possible to calculate Spearman’s correlation, although 
the value is rather low at ρ(φCEAT ,φDEA) = 0.391 (p = 0.0000), showing 
that the rankings underlying both distributions are substantially 
different. This result is also observed even if only the values of inef-
ficient HEIs under DEA were compared to their CEAT counterparts. 
The conclusion is that DEA offers an optimistic assessment of the ef-
ficiency levels of the Colombian private HEIs, which portraits an 
incorrect picture of the systems’ performance, despite the obvious 
attractiveness to university managers and government officials. 

Given that the only efficiency measurement that can be meaningfully 
done is that offered by the tree methodology we now compare the scores 
between non-convex EAT and convex CEAT. It is observed that, indi-
vidually, φCEAT(xo, yo) ≥ φEAT(xo, yo), while the mean average in-
efficiency in the convex approach more than doubles that of its non- 
convex counterpart: φCEAT = 5.35 > φEAT = 2.35. Also, looking at the 
box-plots in Fig. 3, the dispersion of the distributions within the inter-
quartile ranges represented by the whiskers appears to be relatively 
high. As for the number of efficient observations, we see that under the 
CEAT approach it is substantially smaller than that corresponding to 

Table 2 
Comparing output-oriented efficiency scores: EAT vs. FDH, and CEAT vs. DEA. 
Selected observations.   

Non-Convex Convex 

Score φEAT(xo ,yo) φFDH(xo ,yo) φCEAT(xo, yo) φDEA(xo ,yo)

HEIs 

1 1.000 1.000 1.000 1.000 
5 1.000 1.000 1.000 1.000 
89 1.000 1.000 1.000 1.000 
90 1.000 1.000 1.000 1.000 
101 1.000 1.000 1.000 1.000 
131 1.000 1.000 1.000 1.000 
109 1.000 1.000 1.007 1.000 
104 1.000 1.000 1.130 1.000 
3 1.000 1.000 1.136 1.000 
43 1.000 1.000 1.141 1.000 
140 5.555 1.000 11.793 1.000 
7 5.831 1.000 11.874 1.679 
55 6.231 1.000 6.231 1.060 
82 7.000 1.000 9.502 1.000 
128 7.000 1.000 14.896 2.073 
135 7.309 1.000 7.763 1.000 
132 7.501 1.000 11.716 1.000 
129 8.327 1.000 18.015 1.000 
138 9.294 1.000 20.469 1.000 
120 13.256 1.000 23.948 1.362 
Average 2.394 1.000 5.349 1.082 
Median 1.932 1.000 4.383 1.000 
Max. 13.256 1.000 23.948 2.073 
Min. 1.000 1.000 1.000 1.000 
Stand. Dev. 1.814 0.000 4.055 0.166 

Source: own elaboration. 
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EAT, i.e., convex models allow for a better discrimination among ob-
servations. Indeed, while just 6 HEIs are efficient under CEAT (4.16% of 
the sample), 28 (19.4%) are efficient under EAT. Although the ranking 
compatibility of both distributions is relatively high at ρ(φEAT ,φCEAT) =

0.6223, these results show the advantage of using the new methods, 
particularly Convexified Efficiency Analysis Trees, CEAT, to identify 
production peers and ranking observations—in passing, we remark that 
the number of efficient observations under non-convex EAT (28) is 
smaller than for the convex DEA (97). 

The main conclusion from this section is that standard envelopment 
techniques like FDH and DEA are unable to discriminate Colombian 
private HEIs according to their performance. On the contrary, tree 
methods can unveil existing inefficiencies and provide relevant strategic 
and policy guidelines aimed at improving the performance of univer-
sities, colleges, business schools, etc. For this reason, in the next section 
we only focus on the results obtained from the tree methodology to 
identify relevant benchmarks and the input and output adjustments that 
can lead to efficiency enhancement strategies. 

4. Benchmarking: how can Colombian HEIs improve 
performance? 

In this section we show how to practice benchmarking using EAT and 
CEAT. We first identify the HEIs that can potentially serve as bench-
marks by defining the performance frontier at each node. The rela-
tionship between the levels of outputs produced and input usage at each 
node is also discussed, interpreting the size of operations in the different 
regions of the tree. Afterwards, for the least and most inefficient HEIs at 
each node, we show how individual observations can learn from their 
benchmark peers in order to reduce their inefficiency. The benchmark 
peer is identified as the one presenting the closest input-output structure 
of the HEI under evaluation, once it has been projected to the frontier 
radially (i.e., once the outputs have been increased proportionally ac-
cording to the HEI’s efficiency score). The criterion is that of the mini-
mum (Euclidian) distance. We then suggest individual managerial 
recommendations to improve HEI performance by exploiting not only 
the equiproportional gains in output production that can be achieved by 

solving radial inefficiencies, but also additional changes in the output 
mix. We end this section offering summary statistics of the HEIs defining 
the production frontier; namely their frequency when serving as 
benchmarks on the frontier in terms of their specific node and the whole 
tree. 

4.1. Identifying potential benchmarks and relevant inputs on the 
performance frontier 

Following the structure of the tree presented in Fig. 2, the first task is 
to identify, for each of the 13 leaf nodes, the HEIs that can serve as 
potential benchmarks. We denote by ŷ∗EAT

i = y∗i ⋅φEAT
i the vector of 

output values for the HEI’s identified as peers in the EAT analysis, and by 
ŷ∗CEAT

i = y∗i ⋅φCEAT
i those under CEAT. Obvious candidates to become 

actual peers are those observations that define the benchmark frontier in 
each node. These observations have an efficiency score of one under the 
EAT or CEAT approach, φEAT

i = 1 or φCEAT
i = 1, and therefore their 

observed values are also the optimal ones. However, as we discuss in 
what follows, there are nodes that do not harbor efficient observations, 
because the performance frontier across their inputs space is defined by 
units belonging to other nodes. In this case, the criterion for selecting the 
reference peer within the node is the one with the lowest inefficiency, 
whose efficient projection is defined as above, but with φEAT

i > 1 or 
φCEAT

i > 1. 

4.1.1. Non-convex EAT analysis 
Table 3 presents the collection of best performing peers per node in 

the EAT analysis. Next to the number identifying the node according to 
Fig. 2 (first column), we report the total number of HEIs included in the 
node (second column), and differentiate between inefficient and effi-
cient HEIs (third and fourth columns, respectively). Then, in the fifth 
column we show all HEI’s that are candidates to become peers for 
inefficient HEIs within the node. 

We now discuss the characteristic of the main nodes identified in the 
analysis in terms of the inputs responsible for their formation when 
growing the tree, and their output levels. 

Fig. 3. Box-plots and kernel distributions: EAT vs. FDH and CEAT vs. DEA. 
Source: own elaboration. 
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Node 3. Number of full-time lecturers with PhD degree, x2. Looking at 
the first identified node 3, obtained after the split of the root node, we 
see in Fig. 2 that it includes HEIs with x2 ≥ 9.63. A total of 25 HEIs 
belong to it, out of which 20 are inefficient and 5 efficient (25%). These 
efficient HEI are #1, #5, #89, #90 and #101, with an efficiency score 
φEAT

i = 1. Next, we report the optimal output values ̂y∗EAT
i for each one of 

these five HEIs. We observe that this node includes efficient observations 
that coincide with the maximum estimated output values: y(t) = 100.00. 
For instance, the first observation (HEI #1): “Pontificia Universidad 
Javeriana”, presents the highest value in the last two outputs; i.e., it is at 
the top of the GNC-Sapiens ranking related to the generation of new 
knowledge, and the ASC-Sapiens ranking related to the appropriation of 
own knowledge. The defining input for this node is the number full-time 
lecturers with PhD degree (x2). This identifies such staff as a key 
threshold characterizing the highest output achievements (effective-
ness) in the Colombian higher education system. This allows us to 
conclude that having many faculty members with PhDs characterizes 
this region of the frontier T obtaining the largest output levels, which 
provides reassurance for the current human resource policies in favor of 
recruiting faculty with the highest educational degree. Indeed, since 
only 25 HEIs have a proportion of faculty members larger than 9.63 
percentage points of the maximum observed value, the remaining 119 
should look at this input as the most defining one when attempting to 
‘climb up’ the tree towards larger output values. Naturally, achieving 
large output values is not the same as performing efficiently with the 
available resources, i.e., once inputs are considered. This can be seen as 
we move on to other regions of the tree characterizing the frontier. 

Node 5. Number of full professors, x1. The second node split, identified 
as node 5, includes 18 observations characterized (after the first split) by 
a lower number of full-time faculty with PhDs, x2 < 9.63, but exhibiting 
a large proportion of full professors in their staff, x1 ≥ 14.20. Although 
in this node the level of both the highest estimated output values y(t) and 

optimal projected values is significantly smaller than in the first node: 
[y1(t) = 46.06, y2(t) = 59.28, y3(t) = 48.17, y4(t) = 27.16, y5(t) = 8.48, 
y6(t) = 40.0], we still find a similar number of efficient HEIs, 4, and 
proportion, 22.2%, than in the first node. These potential peers are HEIs 
#34, #67, #77, and #79. This reflects that the size of the HEIs in terms 
of output levels gets smaller as we descend the tree, yet the method is 
capable of finding a relevant number of comparable HEIs in terms of 
their inputs and outputs sizes, while ensuring that the efficiency com-
parison is performed against benchmark peers that exhibit the same 
characteristics. This node shows that the educational level (PhD), jointly 
with a higher academic experice and remuneration (full professor), are 
key attributes when identifying the production frontier, and lead to high 
teaching and research levels. 

Node 7. Number of full-time lecturers per active program, x3. We pro-
ceed similarly by descending along the tree and find that the number of 
nodes with a relatively large number of HEIs continues, i.e., node 7 in-
cludes 25 observations, with 4 HEIs being efficient: #4, #18, #45 and 
#109. As before, this node has HEIs that are fully efficient and therefore 
efficient output coincide with observed outputs, ŷ∗EAT

i = y∗i . The key 
input value defining this node, number of full-time lecturers per active 
program, x3 ≥ 28.12, stresses once again the stability of faculty members 
over part-time hires, showing that less expensive pay-roll schemes, 
associated to part-time lectures, do not attain large output levels. 

Node 9. Number of students enrolled in master and PhD programs, x7. 
Similar reasoning can be applied to discuss the defining inputs for the 
ninth node. Specifically, this node includes 19 HEIs characterized, once 
again, by high quality education since the defining input is the number 
of students enrolled in master and PhD programs, x7 ≥ 3.95. Here we 
find 5 HEIs that are fully efficient (i.e., #52, #59, #69, #74, #102). 
However, the output levels are relatively lower than in the previous 
nodes, showing that these HEIs are characterized by being specialized in 
niche markets such as MBAs and other executive education (see also 

Table 3 
Efficiency analysis of Colombian HEIs by nodes. Identified peers. EAT.  

Node HEIs Inefficient HEIs Efficient HEIs Peer HEIs Efficient Output Peer statistics 

Nº Nº Nº Nº Nº Score 
φEAT 

ŷ∗EAT
1 ŷ∗EAT

2 ŷ∗EAT
3 ŷ∗EAT

4 ŷ∗EAT
5 ŷ∗EAT

6 
Nº Node 

% 
Tree 
% 

3 25 20 5 1 1.00 19.34 43.52 30.49 65.43 100.00 100.00 16 64.00 11.11 
5 1.00 5.01 100.00 3.05 8.64 72.12 27.60 4 16.00 2.78 
89 1.00 14.26 13.95 100.00 41.98 70.91 24.40 3 12.00 2.08 
90 1.00 8.92 13.31 76.22 100.00 21.21 24.40 1 4.00 0.69 
101 1.00 100.00 51.63 11.59 16.05 78.79 40.00 1 4.00 0.69 

5 18 14 4 34 1.00 8.54 8.10 48.17 14.81 23.64 9.60 2 11.11 1.39 
67 1.00 2.70 15.80 3.66 27.16 10.30 23.60 4 22.22 2.78 
77 1.00 46.06 29.92 4.88 6.17 8.48 16.80 6 33.33 4.17 
79 1.00 22.09 59.28 0.61 4.94 18.18 17.60 6 33.33 4.17 

7 25 21 4 4 1.00 4.71 10.46 13.41 4.94 9.09 40.00 7 28.00 4.86 
18 1.00 5.94 5.04 7.32 2.47 26.67 40.00 6 24.00 4.17 
45 1.00 5.39 19.70 1.83 1.43 1.82 14.40 10 40.00 6.94 
109 1.00 1.64 1.03 11.59 3.70 78.79 6.80 2 8.00 1.39 

9 19 14 5 52 1.00 2.79 7.09 3.05 6.17 20.61 34.00 7 36.84 4.86 
59 1.00 2.35 12.78 10.37 18.52 6.67 12.80 3 15.79 2.08 
69 1.00 2.78 6.71 23.46 2.47 10.91 8.40 3 15.79 2.08 
74 1.00 1.88 18.38 0.61 1.14 7.27 8.40 5 26.32 3.47 
102 1.00 13.94 8.73 0.06 1.43 3.64 5.60 1 5.26 0.69 

10 15 13 2 124 1.00 8.09 5.19 11.59 3.70 30.91 7.60 4 26.67 2.78 
126 1.00 0.53 2.79 3.05 4.94 2.42 14.00 11 73.33 7.64 

13 10 6 4 40 1.00 1.49 8.42 13.41 0.15 5.45 3.60 2 20.00 1.39 
61 1.00 2.70 2.30 18.90 4.94 23.03 6.00 1 10.00 0.69 
62 1.00 5.57 3.16 2.44 7.41 7.27 12.00 3 30.00 2.08 
97 1.00 12.26 0.59 4.88 3.70 23.03 8.00 4 40.00 2.78 

14 2 2 0 110 2.00 0.86 0.23 0.24 4.94 7.27 7.20 2 100.00 1.39 
16 1 1 0 141 3.29 0.78 5.19 10.03 0.49 5.98 1.32 1 100.00 0.69 
19 1 0 1 98 1.00 4.46 0.23 4.88 6.17 8.48 8.80 1 100.00 0.69 
20 2 1 1 131 1.00 0.35 0.02 0.18 0.69 47.27 1.20 2 100.00 1.39 
22 2 2 0 125 2.71 3.60 0.41 11.58 0.80 11.51 4.34 2 100.00 1.39 
24 2 1 1 113 1.00 2.34 3.02 6.71 4.94 2.42 4.80 2 100.00 1.39 
25 22 21 1 76 1.00 2.67 1.84 7.93 4.94 7.27 10.00 25 100.00 17.36 

Source: own elaboration. 
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[60]). 
Similar reasoning can be applied to discuss the defining inputs and 

efficient benchmarks for subsequent nodes, whose size in terms of both 
output values and number of HEIs diminishes as we move down the tree, 
except for the last sweeping node collecting those universities, colleges 
and business schools that have not previously classified in previous 
nodes. Also, there are two nodes, 16 and 19, whose characteristics are so 
singular in terms of their input values that the methodology splits in-
dividual nodes for both of them. In the case of node 16, we find a uni-
versity specialized in business and health sciences (CORSALUD) with a 
small number students enrolled in undergraduate programs, x6 < 0.31. 
For node 19, we find a small HEI (Corporación Universitaria Rafael 
Nuñez), 27.56 ≤ x3 < 28.12. In the first case, the university is inefficient, 
with a score equal to 3.29, showing that such specialization does not 
result in efficient outcomes from which the Colombian HEIs can learn 
best practices, while the second one is efficient. 

It is worth remarking that in the non-convex EAT approach, almost 
all nodes have efficient observations. The only exceptions are the pre-
viously commented node 16 and nodes 14 and 22 (shaded in grey in 
Table 3). In these latter two nodes the best performing observations have 
efficiency scores equal to 2.00 and 2.71. In the following subsection, 
these units are used as reference peers for the remaining observations 
included in these nodes. 

4.1.2. Convex EAT analysis 
We now turn to the efficiency analysis of the convexified frontier that 

is generated from the tree, whose results are reported in Table 4. The 
interpretation of the nodes in terms of the input and output levels, as 
well as the characteristics of the HEIs, does not differ from the ones 
commented above. However, as emphasized in section 3.3, only six 
observations are efficient. Table 4 shows that five out the six fully effi-
cient observations cluster in the first split, node 3, reinforcing the idea 
that the second input, ‘number of full-time lecturers with PhD degree, 
x2’ is key to achieve best performance. Indeed, the HEIs identified as 
efficient coincide with those of the non-convex DEA approach: #1, #5, 
#89, #90 and #101, with efficiency scores φCEAT

i = 1 — further dis-
cussion of this result is presented in what follows. Then, the next effi-
cient HEI can be found in node 20, which includes only two 
observations. 

The remaining nodes do not include efficient observations, which, on 
the one hand, shows the discriminatory power of the CEAT approach, 
but, on the other, renders the benchmarking analysis dependable on 
units that, even if they are high achievers within their nodes, may 

exhibit relatively large inefficiency values. Again, to identify efficient 
benchmark peers, we could ‘climb up’ the tree until an efficient peer can 
be found. For instance, it would be possible to compare all inefficient 
HEIs belonging to node 5, to the efficient peers of node 3. However, 
when the nodes are very far apart, e.g. node 19 from node 3, this would 
imply that observations are compared to completely dissimilar peers in 
terms of their inputs and output levels, questioning the validity of the 
benchmarking exercise from a practical perspective. For example, it is 
questionable to compare HEIs specialized in tertiary and executive ed-
ucation — node 9 — with general universities like those included in 
nodes 3 and 5. Here, as anticipated, we favor a homogeneity criterion 
when comparing HEIs and restrict the set of possible benchmarks to 
those included in the node. Among these, we choose the HEI that per-
forms better by exhibiting the lowest inefficiency score within the node. 
In Table 4, these observations are identified as peers, whose output 
projections on the frontier, also reported, serve as benchmark for the 
projection of the remaining inefficient observations. 

4.2. Individual benchmarking: identifying peers and output changes 

Once we have studied the features and characteristics of the nodes 
generated by the tree analysis and identified the set of potential peers in 
each of them, we show how to use this information to prescribe strategic 
managerial guidelines aimed at improving the efficiency of individual 
units. We start with the non-convex EAT analysis. Table 5 presents the 
least and most inefficient HEIs for each node and their reference peers. We 
see that in node 3, HEI #104 is the least inefficient observation with an 
efficiency score of φEAT(x104, y104) = 1.13, while HEI #55 is the most 
inefficient one with φEAT(x55,y55) = 6.23. In case there are several can-
didates for peers, as in this node, we adopt the principle of least action or 
minimum adjustment cost, represented by the minimum distance, to 
identify the corresponding peer. Hence, after calculating the Euclidean 
distance between the optimal — radially projected — output values of 
unit o under evaluation and its i = 1, …, I efficient candidates, we choose 

the closest one. That is, min {d(HEIo, HEI1), ..., d(HEIo, HEII)} =

min{
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑S

r=1(ŷ
∗EAT
r1 − ŷEAT

ro )
2

√

, ...,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑S

r=1(ŷ
∗EAT
rI − ŷEAT

ro )
2

√

}. Peer #5 is the 
closest efficient HEI for #104, with a minimum distance of d(HEI104,

HEI5) = 75.41, while the peer corresponding to #55 is #1 with d(HEI5,
HEI1) = 68.65. In this case, since both peers are efficient, the reference 
output values for benchmarking, ̂y∗EAT

r1 , coincide with the observed ones. 
The last six columns of Table 5 indicate the amount in which each 

radially projected individual output of HEIo must be adjusted to reach 

Table 4 
Efficiency analysis of Colombian HEIs by nodes. Identified peers. CEAT.  

Node HEIs Inefficient HEIs Efficient HEIs Peer HEIs Efficient Output Peer statistics 

Nº Nº Nº Nº Nº Score ŷ∗CEAT
1 ŷ∗CEAT

2 ŷ∗CEAT
3 ŷ∗CEAT

4 ŷ∗CEAT
5 ŷ∗CEAT

6 
Nº % 

Node 
% 
Tree     

1 1,00 19,34 43,52 30,49 65,43 100,00 100,00 16 64.00 11.11     
5 1.00 5.01 100.00 3.05 8.64 72.12 27.60 4 16.00 2.78 

3 25 20 5 89 1.00 14.26 13.95 100.00 41.98 70.91 24.40 3 12.00 2.08     
90 1.00 8.92 13.31 76.22 100.00 21.21 24.40 1 4.00 0.69     
101 1.00 100.00 51.63 11.59 16.05 78.79 40.00 1 4.00 0.69 

5 18 18 0 77 1.21 55.59 36.12 5.89 7.45 10.24 20.28 18 100.00 12.50 
7 25 25 0 109 1.01 1.65 1.03 11.67 3.73 79.34 6.85 25 100.00 17.36 
9 19 19 0 102 1.97 27.48 17.20 0.12 2.82 7.17 11.04 19 100.00 13.19 
10 15 15 0 116 2.49 4.20 0.05 12.15 0.49 36.22 30.88 15 100.00 10.42 
13 10 10 0 61 2.50 6.76 5.75 47.22 12.34 57.53 14.99 10 100.00 6.94 
14 2 2 0 110 6.58 2.82 0.75 0.80 16.25 23.93 23.69 2 100.00 1.39 
16 1 1 0 141 7.84 1.86 12.36 23.89 1.16 14.25 3.13 1 100.00 0.69 
19 1 1 0 98 6.24 27.81 1.42 30.41 38.49 52.90 54.87 1 100.00 0.69 
20 2 1 1 131 1.00 0.35 0.02 0.18 0.69 47.27 1.20 2 100.00 1.39 
22 2 2 0 125 5.34 7.09 0.81 22.79 1.58 22.65 8.54 2 100.00 1.39 
24 2 2 0 113 4.64 10.84 14.02 31.12 22.91 11.25 22.27 2 100.00 1.39 
25 22 22 0 32 4.00 7.93 17.26 31.70 3.75 31.51 23.99 22 100.00 15.28 

Source: own elaboration. 
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the optimal value of the selected benchmark. For the least inefficient 
unit #104, the number of students graduated in undergraduate pro-
grams, y1, should be reduced by 2.92 percentage points while that of 
students graduated in master and PhD programs must be about the same. 
Interestingly, we also see that there is a trade-off in the ranking positions 
with respect to the efficient benchmarks. While the GNC ranking y5 on 
generation of new knowledge should be increased substantially in 63.22 
percentage points, the positions in the other ranking are less relevant, 
with the reference peer performing at a lower level in technological 
development and innovation, y3, production of scientific articles, y4, and 
appropriation of knowledge (IPRs), y6. Similar analysis can be made for 
the most inefficient HEI #55, whose peer is HEI #1. In this case the first 
four outputs should be reduced to match the reference benchmark, while 
the last two rankings should be increased. We do not pursue any further 
individual benchmarking for the remaining nodes and inefficient units 
as they follow a similar pattern. 

As for the results concerning the convexified approach CEAT, Table 6 
reports the same fields as Table 5. We observe first that for the first node 
3, the information is equal in both tables. This shows that, for this 
dataset, the convexification of the frontier does not affect the support 
facets of the specific region of the frontier corresponding to this node. 

However, results largely change in the remaining nodes, with higher 
inefficiency scores as reported in Section 3.3. We see that, within each 
node, the least and most inefficient HEI are different from Table 5; e.g. 
for node 5 the least inefficient firm is HEI #79, while it was HEI #48 in 
the EAT approach. Similarly, the most inefficient HEI is now #7, while it 
was HEI #135 previously. For each of these HEIs, once the equi-
proportional inefficiency has been solved, it is possible to advise indi-
vidual output changes that would bring their performance closer to that 
of their peers. 

We can identify the most relevant peers by looking at their frequency 
when serving as benchmark for the remaining observations. Tables 7 
and 8 report these frequencies for EAT and CEAT, respectively. To ease 
understanding, we replicate the first columns of Tables 3 and 4 above, 
identifying for each node the number of inefficient and efficient peers, as 
well as the individual HEIs that serve as benchmark. Then, in the last 
three columns, we report the number of times that the peer is identified 
as benchmark for inefficient HEIs (including itself), and the percentage 
that it represents within the node and the whole tree. As before, we start 
with the non-convex EAT frontier and the first split corresponding to 
node 3. We see that HEI #1, “Pontificia Universidad Javeriana”, serves 
16 times as reference benchmark within this node, which represents 

Table 5 
Actual peers for inefficient HEIs. Selected HEIs. EAT.   

Ineffic. HEIs Peer HEIs Minimum 
Distance 

Output slacks 

Node Nº Score Nº Score ŷ∗

1 − ŷ1 ŷ∗

2 − ŷ2 ŷ∗

3 − ŷ3 ŷ∗

4 − ŷ4 ŷ∗

5 − ŷ5 ŷ∗

6 − ŷ6 

3 104 1.13 5 1.00 75.41 − 2.92 0.02 − 35.54 − 16.47 63.22 − 12.18 
55 6.23 1 1.00 68.65 − 10.32 − 43.43 − 22.70 − 34.57 24.47 20.24 

5 48 1.40 77 1.00 17.81 0.02 13.17 − 1.97 0.98 − 0.87 11.75 
135 7.31 77 1.00 35.92 0.00 29.79 0.42 − 8.26 − 0.37 − 18.28 

7 29 1.18 18 1.00 17.00 − 0.37 − 7.26 6.60 − 10.60 − 8.97 0.02 
132 7.50 45 1.00 27.92 2.81 17.13 − 1.83 − 17.09 − 7.27 11.40 

9 37 1.24 52 1.00 31.05 − 6.17 − 11.30 − 13.55 1.59 − 19.13 15.69 
65 3.37 74 1.00 14.50 − 3.50 0.00 0.38 − 12.69 2.75 5.41 

10 116 1.13 126 1.00 15.29 − 1.38 2.77 − 2.46 4.72 − 14.00 0.00 
129 8.33 126 1.00 6.29 − 2.95 2.64 1.02 0.00 − 2.62 4.01 

13 23 1.03 62 1.00 13.37 0.77 − 1.72 − 8.23 4.87 − 8.94 − 1.99 
21 2.06 97 1.00 11.32 7.57 − 5.67 − 1.40 − 0.57 0.57 − 6.00 

14 138 9.29 110 2.00 9.58 − 7.22 − 2.07 − 3.16 2.64 1.64 − 3.95 
20 120 13.26 131 1.00 40.61 − 7.73 − 3.26 − 4.67 − 0.62 39.24 − 4.10 
22 68 2.82 125 2.71 16.01 − 0.85 − 4.78 11.41 − 0.72 9.81 − 2.41 
24 134 4.33 113 1.00 46.25 − 2.70 1.95 4.07 4.30 − 44.84 − 9.07 
25 139 1.11 76 1.00 12.68 − 0.42 − 3.34 6.57 3.29 5.92 7.77 

128 7.00 76 1.00 7.18 − 2.82 0.51 3.66 2.17 3.03 − 4.00 

Source: own elaboration. 

Table 6 
Actual peers for inefficient HEIs. CEAT. Selected HEIs.   

Ineffic. HEIs Peer HEIs Minimum 
Distance 

Output slacks 

Node Nº Score Nº Score ŷ∗

1 − ŷ1 ŷ∗

2 − ŷ2 ŷ∗

3 − ŷ3 ŷ∗

4 − ŷ4 ŷ∗

5 − ŷ5 ŷ∗

6 − ŷ6 

3 104 1.13 5 1.00 75.41 − 2.92 0.02 − 35.54 − 16.47 63.22 − 12.18 
55 6.23 1 1.00 68.65 − 10.32 − 43.43 − 22.70 − 34.57 24.47 20.24 

5 79 1.26 77 1.21 49.54 27.74 − 38.63 5.12 1.22 − 12.69 − 1.92 
7 11.87 77 1.21 130.92 − 38.21 − 27.09 − 66.51 − 21.87 − 83.31 − 55.72 

7 18 1.47 109 1.01 66.27 − 7.05 − 6.35 0.95 0.11 40.27 − 51.75 
49 12.23 109 1.01 107.00 − 45.98 − 10.82 − 47.97 − 26.46 71.93 − 32.28 

9 52 2.50 102 1.97 90.01 20.49 − 0.56 − 7.51 − 12.63 − 44.43 − 74.10 
65 10.29 102 1.97 50.62 12.66 − 33.47 − 0.51 − 35.29 − 5.31 2.80 

10 124 2.51 116 2.49 51.24 − 16.05 − 12.95 − 16.88 − 8.79 − 41.21 11.84 
129 18.02 116 2.49 30.01 − 3.32 − 0.30 7.75 − 10.18 25.30 9.26 

13 111 2.56 61 2.50 56.35 − 9.98 − 8.77 0.35 6.01 54.42 0.64 
21 7.37 61 2.50 52.46 − 10.01 − 16.66 24.76 − 2.94 − 22.83 − 35.10 

14 138 20.48 110 6.58 23.37 − 14.98 − 4.31 − 6.69 11.19 11.52 − 0.87 
20 120 23.95 131 1.00 38.18 − 14.25 − 5.90 − 8.58 − 1.67 32.76 − 8.38 
22 68 16.02 125 5.34 52.42 − 18.25 − 28.74 21.82 − 7.12 12.94 − 29.91 
24 113 5.97 134 4.64 65.73 3.91 12.55 27.48 22.02 − 53.83 3.18 
25 94 4.14 32 4.00 29.47 3.93 7.73 16.55 2.32 − 3.63 − 22.39 

88 16.78 32 4.00 29.13 − 11.35 − 3.42 6.44 2.14 25.73 0.49 

Source: own elaboration. 
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64% of the 25 observations included in it, and 11.11% of the total 144 
observations in the tree. This HEI emerges as the most relevant uni-
versity within the Colombian higher education system, and therefore, 
the ideal peer for inefficient HEIs, offering an output-mix that includes 
the maximum values in several dimensions. This first observation is 
followed by HEI #5, with less importance in terms of practical 
benchmarking. 

Consequently, it is now possible to draw more general conclusions at 
the node level, highlighting the relevance of the HEI #1 regarding its 

inputs, outputs and its organizational settings. For example, taking the 
average of the output adjustments of the inefficient units that have this 
observation as peer we note that these HEIs have an excess in the 
number of undergraduate and graduate students, because y1 and y2 
should be reduced by − 3.3 and − 8.65 percentage points, respectively. 
As for the ranking positions, y3 thru y6, they need to improve their 
standings in most of them, with average values of − 0.20, 10.30, 22.14 
and 17.14 percentage points. Even if some individual HEIs may need to 
adjust their outputs in opposite directions, these recommendations hold 

Table 7 
Peers statistics. EAT.  

Node HEIs Inefficient HEIs Efficient HEIs Peer HEIs Peer statistics 

Nº Nº Nº Nº Nº Score Nº Node 
% 

Tree 
% 

3 25 20 5 1 1.00 16 64.00 11.11 
5 1.00 4 16.00 2.78 
89 1.00 3 12.00 2.08 
90 1.00 1 4.00 0.69 
101 1.00 1 4.00 0.69 

5 18 14 4 34 1.00 2 11.11 1.39 
67 1.00 4 22.22 2.78 
77 1.00 6 33.33 4.17 
79 1.00 6 33.33 4.17 

7 25 21 4 4 1.00 7 28.00 4.86 
18 1.00 6 24.00 4.17 
45 1.00 10 40.00 6.94 
109 1.00 2 8.00 1.39 

9 19 14 5 52 1.00 7 36.84 4.86 
59 1.00 3 15.79 2.08 
69 1.00 3 15.79 2.08 
74 1.00 5 26.32 3.47 
102 1.00 1 5.26 0.69 

10 15 13 2 124 1.00 4 26.67 2.78 
126 1.00 11 73.33 7.64 

13 10 6 4 40 1.00 2 20.00 1.39 
61 1.00 1 10.00 0.69 
62 1.00 3 30.00 2.08 
97 1.00 4 40.00 2.78 

14 2 2 0 110 2.00 2 100.00 1.39 
16 1 1 0 141 3.29 1 100.00 0.69 
19 1 0 1 98 1.00 1 100.00 0.69 
20 2 1 1 131 1.00 2 100.00 1.39 
22 2 2 0 125 2.71 2 100.00 1.39 
24 2 1 1 113 1.00 2 100.00 1.39 
25 22 21 1 76 1.00 22 100.00 17.36 

Source: own elaboration. 

Table 8 
Peers statistics. CEAT.  

Node HEIs Inefficient HEIs Efficient HEIs Peer HEIs Peer statistics 

Nº Nº Nº Nº Nº Score Nº % 
Node 

% 
Tree     

1 1,00 16 64.00 11.11     
5 1.00 4 16.00 2.78 

3 25 20 5 89 1.00 3 12.00 2.08     
90 1.00 1 4.00 0.69     
101 1.00 1 4.00 0.69 

5 18 18 0 77 1.21 18 100.00 12.50 
7 25 25 0 109 1.01 25 100.00 17.36 
9 19 19 0 102 1.97 19 100.00 13.19 
10 15 15 0 116 2.49 15 100.00 10.42 
13 10 10 0 61 2.50 10 100.00 6.94 
14 2 2 0 110 6.58 2 100.00 1.39 
16 1 1 0 141 7.84 1 100.00 0.69 
19 1 1 0 98 6.24 1 100.00 0.69 
20 2 1 1 131 1.00 2 100.00 1.39 
22 2 2 0 125 5.34 2 100.00 1.39 
24 2 2 0 113 4.64 2 100.00 1.39 
25 22 22 0 32 4.00 22 100.00 15.28 

Source: own elaboration. 
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for the majority of HEIs that identify the first observation as a reference. 
Note that the prescribed reduction in the number of students graduated 
in undergraduate programs - y1, and master and PhD programs - y2, to 
reach the levels of the benchmark peers, may be impractical or unde-
sirable for university administrators. However, as in this node the level 
of the values for these output variables are among the highest for the 
entire higher education system, their reduction is marginal. Moreover, 
enrolling less students with the same faculty, implies that the ratio of 
students/faculty reduces, leading, in principle to a higher educational 
quality, which should show up in an increase in the position in the 
rankings as prescribed by the benchmark analysis. In the mid-term, this 
strategy resulting in an increase in the reputation of universities, may 
open the possibility to implement price-revenue management strategies, 
increasing the tuition fees for some student segments, and resulting in 
higher profitability. In principle, this reallocation strategy, freeing up 
resources by having less students, may prompt university administrators 
to encourage faculty to engage in projects and contracts with third party 
stakeholders (e.g., joint ventures, industry consulting, technical advice), 
fostered by technology transfer offices, which may ultimately result in a 
further net profitability. Therefore, this HEI #1 should be considered as 
a case study, given its relevance from a managerial and policy 
perspective, and worth to pay a visit. This idea is reinforced by the re-
sults obtained under the convexified CEAT frontier, which are the same 
for node 3. 

Subsequently, looking at the highest frequencies in the remaining 
nodes, we observe that HEI #45 (Corporación Universidad Piloto de 
Colombia) in node 7 has frequency of 10, representing 40% of the ob-
servations included in this node and 6.94% of the whole sample. 
Nevertheless, the remaining peers in that node are not far from this 
value, e.g., HEI #4 and HEI #18 follow with a frequency of 7 and 6, 
respectively. Again, these observations are worth studying for the 21 
inefficient HEI included in node 7. Similar conclusions can be drawn for 
other nodes, although the relevance of the benchmarks is much lower in 
nodes including a limited number of observations, where the only effi-
cient peer normally serves as reference for its inefficient counterparts (i. 
e., thereby scoring a frequency of 100% within the node). Once again, 
the last node 25, represents a particular case, as all HEIs not previously 
classified in the preceding nodes are swept into this last part of the tree. 
Here, HEI #22 represents the benchmark for the remaining 21 HEIs, 
which are characterized by their small scale, making them peripheral 
within the system as a whole. In this last node it is difficult to draw 
general conclusions, given the diversity of managerial models included 
in it, even if HEI #22 is the most frequent peer in the whole tree (17.36% 
of observations). 

Finally, Table 8 presents the analysis of benchmarks for the con-
vexified frontier, CEAT. Besides the results corresponding to node 3, 
which are equal to the EAT results as explained above, we see that since 
most of the nodes do not harbor efficient observations, there is one 
single peer — the one with the least inefficiency — that serves as 
reference for all remaining observations. In this case, the benchmarking 
process simplifies because it does not require applying the least distance 
criterion, as is the case when there is a multiplicity of efficient obser-
vations. Then, individual adjustments can be clearly defined in the way 
already explained in Tables 5 and 6 

5. Conclusions 

The benchmarking analysis using machine learning techniques car-
ried out in this study is expected to contribute to the literature with new 
evidence on how to carry out systemic evaluations of the performance of 
HEIs. With its application to the Colombian higher education system, it 
evidences how these methods have the potential to provide insights to 
managers and policymakers in charge of the decision making of HEIs, 
thereby supporting the design of strategies aimed at improving effi-
ciency. In particular, the created tree and its nodes segment observations 
according to their input-output structural characteristics, to which we 

associate specific managerial models, and the different HEIs are 
grouped. In each node of the tree we identify specific benchmarks and 
define the output adjustments that are needed so inefficient HEIs can 
match the performance of their peers. 

From a methodological perspective, the results achieved in the 
application of EAT and CEAT in the context of Colombian private HEIs 
reveal how standard envelopment techniques like FDH and DEA are 
unable to discriminate HEIs according to their efficiency. In parallel, 
tree methods cannot only unveil the magnitude of existing inefficiencies, 
but are also instrumental in providing strategic managerial and policy 
guidelines aimed at improving performance. Hence, the paper offers a 
response to the challenges associated to effective ranking and bench-
marking. In this regard, machine learning methods represent a prom-
ising avenue for research, that can complement the path that has been 
undertaken in traditional efficiency studies, following FDH, DEA or 
other frontier-based analyses. 

Finally, we are aware that this paper presents some limitations. EAT, 
as happens with DEA, represent a non-parametric technique that does 
not require the assumption of a specific mathematical expression for the 
efficient frontier. However, just like DEA, EAT is a deterministic meth-
odology. Consequently, EAT assumes that the gap between any obser-
vation and the frontier of the technology is uniquely attributed to 
technical inefficiency, thus failing to capture stochastic variations 
affecting inputs and outputs (i.e., random noise). Also, from the box- 
plots associated with the empirical results, we can highlight that EAT 
signals some HEIs as outliers. In this regard, the treatment of this type of 
units with respect to the global results as well as data uncertainty could 
represent new lines of research to be addressed in the future. Addi-
tionally, we resorted to the radial models to measure technical effi-
ciency. These types of measures do not prevent the existence of slacks in 
inputs and outputs after projecting the assessed unit onto the efficient 
frontier. That is why we need to apply the principle of least action when 
identifying the closest benchmarks. Using other efficiency measures that 
prevent the existence of slacks (as the Russell measures or the weighted 
additive models, see Ref. [61]) could be seen as a fruitful line of research 
as it will help to solve this drawback. Finally, another relevant dimen-
sion of analysis would be to determine the scale efficiency of HEIs by 
comparing their EAT/CEAT efficiency scores calculated under the as-
sumptions of constant and variable returns to scale. 
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José Luis Zofío is Professor of Economics at the Universidad Autónoma de Madrid (Spain) 
and Visiting Professor at the Erasmus University Rotterdam (the Netherlands). His 
research interests are related to measurement theory, and in particular the use of index 
numbers for efficiency and productivity analysis. He is engaged in multidisciplinary 
research, related to environmental economics, transportation, innovation, and regional 
science. His most recent book is “Benchmarking Economic Efficiency”, published by 
Springer in 2022. He has made several contributions in the field of computational eco-
nomics, with multiple packages for MATLAB and Julia that focus on Data Envelopment 
Analysis and panel data methods. 

Juan Aparicio is Professor at the Department of Statistics, Mathematics and Information 
Technology at the Miguel Hernandez University (Spain), and head of the Center of 

Operations Research. His research interests include efficiency and productivity analysis 
combined with machine learning and data science. He has published and co-edited several 
books on performance evaluation and benchmarking using Data Envelopment Analysis, as 
well as more than 100 scientific papers in the most relevant international journals in the 
field. He is associate editor of Omega, the International Journal of Management Science; 
and Mathematics. 

Javier Barbero is Assistant Professor at the Universidad Autónoma de Madrid (Spain). He 
has served as an economic analyst at the European Commission’s Joint Research Center 
(JRC) in Seville and is a member of the Oviedo Efficiency Group of the University of 
Oviedo (Spain). His main research interests are regional economics, territorial develop-
ment, and spatial economics. He has made multiple contributions to the open-source 
scientific software community in the previous areas. 

Jon Mikel Zabala-Iturriagagoitia is Associate Professor at the University of Deusto in San 
Sebastian (Spain). His research skills and interests include innovation policy, innovation 
management, and the use of indicators to inform policy decisions and evaluations related 
to innovation. His research has received numerous recognitions and awards, having had a 
strong policy impact. Due to the impact of his research, he has been appointed as a member 
of the Basque Academy of Sciences, Arts and Letters (Jakiunde), the Spanish foundation for 
innovation (COTEC), the Science, Technology and Innovation Advisory Council (CACTI) of 
the Ministry of Science and Innovation of the Spanish Government, and the United Nations 
Economic Commission for Europe Task Force on Innovation Policy Principles. 

J.L. Zofio et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0038-0121(24)00044-2/sref63
http://refhub.elsevier.com/S0038-0121(24)00044-2/sref63
http://refhub.elsevier.com/S0038-0121(24)00044-2/sref63
http://refhub.elsevier.com/S0038-0121(24)00044-2/sref64
http://refhub.elsevier.com/S0038-0121(24)00044-2/sref64
http://refhub.elsevier.com/S0038-0121(24)00044-2/sref65
http://refhub.elsevier.com/S0038-0121(24)00044-2/sref65
http://refhub.elsevier.com/S0038-0121(24)00044-2/sref65
http://refhub.elsevier.com/S0038-0121(24)00044-2/sref66
http://refhub.elsevier.com/S0038-0121(24)00044-2/sref66

	Benchmarking performance through efficiency analysis trees: Improvement strategies for colombian higher education institutions
	1 Introduction
	2 Standard envelopments techniques versus efficiency analysis trees
	2.1 Free Disposal Hull and Data Envelopment Analysis
	2.2 Non-convex and convex efficiency analysis trees

	3 The performance of Colombian higher education institutions through efficiency analysis trees
	3.1 The Colombian HEI system, statistical sources and chosen input and output variables
	3.2 Tree growth representing Colombian HEIs
	3.2.1 Productive efficiency in Colombian HEIs: output-oriented EAT vs. FDH and CEAT vs. DEA


	4 Benchmarking: how can Colombian HEIs improve performance?
	4.1 Identifying potential benchmarks and relevant inputs on the performance frontier
	4.1.1 Non-convex EAT analysis
	4.1.2 Convex EAT analysis

	4.2 Individual benchmarking: identifying peers and output changes

	5 Conclusions
	CRediT authorship contribution statement
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


