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ABSTRACT This paper presents a study on temperature control with a heater in a building using Model
Predictive Control (MPC) with a focus on addressing two uncertainties: in model and the weather forecast.
In previous works, a grey-box model of the building system was developed, and the values of parameters
were estimated by the estimation techniques. In this work, based on the model, simulations are conducted
comparing four types of MPC controllers: Deterministic MPC, Multistage MPC, Chance-constrained MPC,
and hybrid MPC. The hybrid framework integrates the strengths of the multistage and chance-constrained
MPCs to achieve conservative performance and increased robustness in constraint satisfaction. The sim-
ulations demonstrate that while deterministic MPC may not always guarantee constraint satisfaction, the
hybrid framework offers improved robustness by considering uncertainties in model mismatch and uncertain
weather forecasts. The 95% confidence region of model uncertainty is used to assess the robustness of
simulations. The results show that the hybrid MPC approach is effective in maintaining temperature in the
desired range and ensuring constraint satisfaction in controlling the temperature in a building.

INDEX TERMS Chance-constrained MPC, HVAC system, model predictive control, multistage MPC,
optimal control, optimization, stochastic MPC, temperature control, uncertain parameter, uncertainty.

I. INTRODUCTION
Commercial and residential buildings account for approxi-
mately 30% of the global energy consumption, with a major
portion attributed to heating and cooling utilities [1].

While modern construction techniques and insulation
materials have significantly reduced energy consumption for
heating and cooling purposes, the rate of building renewal
remains considerably low. For instance, in France, the annual
renewal rate is estimated to be around 1% [2]. Consequently,
the importance of effective building energy management sys-
tems (BEMS) has increased, as they offer a more feasible
solution compared to modifying the building structure using
modern construction techniques. Among the various solu-
tions available, model predictive control (MPC) has garnered
attention. At each time step, the control input for heating
in a building is determined by solving an optimal control
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problem (OCP). The OCP consists of a predictive model
used to forecast future behavior and constraints that must
be satisfied during operation. Solving the OCP yields the
optimal control input based on the current knowledge.
The first control input from the sequence is then applied to
the system, and this process is repeated at the next time step
[3], [4]. In the context of BEMS, the utilization of MPC pro-
vides benefits in terms of both temperature set point tracking
and energy consumption minimization [2].

The research focused on employing MPC in BEMS has
witnessed substantial activity [5], [6]. The application of
MPC for regulating indoor tempeature using both active
heating systems and passive solar blinds were investigated
[7]. In [8], a comprehensive building model composed of
layered models, which they utilized in conjunction with
MPC, was developed. Notably, their four-month experimen-
tal evaluation demonstrated remarkable energy savings, with
thermal energy consumption reduced by 63% and HVAC
electric energy consumption reduced by 29%. These findings
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highlight the significant potential benefits associated with the
integration of MPC into BEMS.

The presence of a reliable prediction model is essential for
maximizing the benefits derived from MPC. Various mod-
eling approaches have been proposed to capture the thermal
behavior of buildings [9]. For instance, a white-box model
based on mass and energy balance was developed, incorpo-
rating a system of ordinary and partial differential equations
specific to a particular building [10]. However, when dealing
with complex models, it becomes challenging to identify a
large number of required parameters accurately.

An alternative approach for constructing thermal behavior
models is the black box approach, which relies solely on
measurement data without prior knowledge of the building.
Black box models tend to exhibit high prediction accuracy.
However, the drawback lies in the difficulty of generalizing
such models, as they do not incorporate physical knowl-
edge to define the model structure. Numerous studies have
employed the black box approach, utilizing methods such as
ARMAX [11], [12] and PLS-R method [13], [14].
Another modeling approach commonly employed is the

grey-box modeling method, which combines aspects of both
white-box and black-box models [2], [15], [16], [17], [18].
Grey-box models leverage the cognitive understanding of the
underlying physics of the system. In the context of building
heating, the structure of the model can be represented using
thermal networks. Notably, resistor-capacitor circuit models
serve as exemplary thermal network models [19]. The grey-
box modeling approach offers certain advantages over the
white-box approach, such as reduced-order models. How-
ever, a notable characteristic of grey-box models is that their
parameters are lumped, meaning each parameter represents
a combination of multiple physical properties. Consequently,
the estimation of these parametersmust be based onmeasured
data [20].
Hence, the formulation of grey-box models offers a

more streamlined and comprehensive approach to modeling
BEMS. Notably, previous research, in [21] and [22], focused
on parameter estimation for grey-box models in the context
of BEMS. The outcomes of these study yielded a model
characterized by low parameter dispersion. Consequently, the
developed model exhibited good agreement with measured
data, displaying small deviations, approximately 0.5-1.5◦C
for the most case.

To address the inherent uncertainties and mismatches in
system dynamics, stochastic approaches prove to be valu-
able. Stochastic MPC leverages probabilistic descriptions of
uncertainties to establish chance constraints. These chance
constraints require that state and output constraints are sat-
isfied with a predefined level of probability. By incorporat-
ing chance constraints, stochastic MPC enables systematic
utilization of stochastic uncertainty characterization, allow-
ing for permissible levels of probabilistic violation of con-
straints. This approach facilitates the systematic exploration
of trade-offs between achieving control objectives and ensur-
ing probabilistic constraint satisfaction in the presence of

uncertainty [23]. Stochastic MPC has found wide-ranging
applications in various domains, including building cli-
mate control [7], [24], power generation and distribu-
tion [25], chemical processes [26], [27], and vehicle
path planning [28], [29]. These applications highlight the
versatility and effectiveness of stochastic approaches in
addressing uncertainty-related challenges across diverse
fields.

However, the epistemic error, which is the mismatch
between the model and reality, is not the sole source of uncer-
tainty. Various other uncertainties exist, including exogenous
disturbances such as external temperature variations from
the forecast information. In order to address this uncertainty
in the forecast, multistage MPC has emerged as a viable
solution [30].

In multistage MPC, the uncertainty is captured through a
discrete-time scenario tree that incorporates the future evo-
lution of uncertainty. By considering multiple control trajec-
tories over the scenario tree, multistage MPC accounts for
the uncertainty in a robust and proactive manner [32], [33].
The effectiveness and performance of the multistage MPC
approach have been demonstrated in various industrial appli-
cations, highlighting its applicability and value in practice
[30], [31], [33], [34].

Hence, this paper proposes a hybrid MPC framework
which incorporates both stochasticMPC andmultistageMPC
approaches to address two distinct sources of uncertainty:
the model uncertainty and the uncertain weather forecast
information.

This paper aims to implement the proposed hybrid
MPC framework, utilizing a grey box model of the build-
ing, to effectively control and regulate indoor tempera-
ture. By integrating both stochastic MPC and multistage
MPC strategies, this framework provides a comprehensive
solution to counteract the uncertainties arising from model
mismatch and weather forecast discrepancies. The objec-
tive is to achieve robust and reliable temperature control
inside the building, considering both sources of uncertainty
simultaneously.

The paper is organized as follows: Section II provides
brief introductions to several key concepts, including MPC,
chance-constrained MPC, multistage MPC, and the param-
eter estimation method for a grey-box model. Section III
presents the proposed hybrid MPC approach. In Section IV,
the system description, system model, the parameter esti-
mation process, and the formulation of OCPs for the four
types of MPC are discussed. Section V covers the simula-
tion setup conditions and presents the corresponding results.
Finally, Sections VI and VII offer discussion and conclusion,
respectively.

II. PRELIMINARY
In this section, three types of MPC approaches and the
parameter estimation technique are briefly described. The
description in this section is for general use.More specific use
of these approaches for the indoor temperature management
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of the building is described later in Section IV-C. The state
variable is denoted as x, the control input as u, the exoge-
nous disturbance as wE, and the model uncertainty as wM.
The notation (·)(j)k represents the state, control input, and
uncertainty at time sample k and on the jth scenario. The
notation E [·] denotes an expected value. The systemmatrices
are denoted as A and B. The system matrices for model
uncertainty and exogenous disturbance are denoted as GM
and GE, respectively.

A. MODEL PREDICTIVE CONTROL
MPC, also known as receding-horizon control, is widely
employed for advanced control of multi-variable systems
with state and control input constraints [3], [4]. Consider a
time-invariant linear system in the discrete-time form:

xk+1 = Axk + Buk (1)

When perfect knowledge of the system is available, MPC
involves solving the following OCP at each sampling time k:

minimize
N∑
k=0

Jk (2a)

subject to xk+1 = Axk + Buk (2b)

Hxk+1 ≤ h (2c)

Duk ≤ d (2d)

x0 = x̂ (2e)

In OCP (2), N represents the length of the prediction
horizon. The system model is written in (2b). The state and
control inputs are posed in (2c) and (2d). The matrices H
and D correspond to the state and input constraint matrices,
respectively, with h and d representing the corresponding
constraint values. The initial state is given frommeasurement
or estimation as posed in (2e). In the cost function (2a), Jk is
commonly chosen as a regularization cost to drive the state
and input to zero:

Jk = (x⊤

k+1Qxxk+1 + u⊤
k Ruuk ) (3)

here, u := {u0, u1, . . . , uN } is a sequence of control inputs,
and the matrices Qx ≥ 0, and Ru ≥ 0 are weight matrices.

B. CHANCE-CONSTRAINED MPC
Chance-constrained MPC is a well-known stochastic MPC
approach that accounts for uncertainties in system dynamics.
While the nominal MPC assumes a deterministic evolution of
the state xk , real systems often exhibit uncertainties in model
structure and parameters. To incorporate these uncertainties,
the system model (1) is modified as follows:

xk+1 = Axk + Buk + GMwM,k (4)

here, the disturbances wM,k is assumed to be sequences of
independent and identically distributed variables with known
probability distribution pw. Additionally, it is assumed that
E[wM,k · w⊤

M,k ] = Qw.

Chance-constrained MPC leverages the knowledge of the
mean and variance of the predicted state to ensure that
state constraint violations remain within acceptable bounds.
Given the available system information at time k , chance-
constrained MPC aims to minimize the expected value of
the cost function (3) while considering a stochastic predic-
tion model for the state, input constraints, and state chance
constraints [26], [35]. The Chance-constrained OCP can be
formulated as follows [23]:

minimize
u

E

[
N∑
k=0

Jk

]
(5a)

subject to xk+1 = Axk + Buk + GMwM,k (5b)

Pr[Hcxk+1 ≤ hc] ≥ 1 − βj (5c)

Duk ≤ d (5d)

E[x0] = x̂, wk ∼ pw (5e)

In this OCP formulation, (5c) represents the state chance
constraints, where the probability of violating constraint hc
is set by a predefined threshold βj ∈ (0, 0.5]. Notably, the
inclusion of the stochastic variable wM,k in the model (5b)
does not imply using specific realizations or sequences of
disturbance values for prediction. Instead, it involves prop-
agating the mean and variance of the stochastic state through
the model equations (5b), which are necessary for evaluating
the cost function (5a) and chance constraints (5d).
When the model is linear and the uncertainty follows a

Gaussian distribution, the stochastic OCP can be transformed
into a similar form to the deterministic MPC. The modified
OCP takes the following form [36]:

minimize
v

N∑
k=0

JSMPC
k (6a)

subject to zk+1 = Azk + Bvk (6b)

Hzk+1 ≤ ηk+1 (6c)

Dvk ≤ d (6d)

z0 = x̂ (6e)

where JSMPC
k in Equation (6a) is expressed as:

JSMPC
k = (z⊤k+1Qxzk+1 + v⊤k Ruvk ) (7)

here, z and v represent the deterministic term of the state and
perturbations to a static feedback law, respectively. They can
be expressed as xk = zk + ek and uk = Kpek + vk , where
ek represents the error at time k and Kp is the feedback law
constant. In (6c), ηk+1 is defined as Hjzk+1 ≤ F−1

j,k+1(1−β),
where F−1

j,k+1 is the inverse cumulative density function
(CDF). The difference hj − ηk+1 represents the constraint
back-off magnitude, indicating howmuch the predicted value
Hjzk+1 needs to back off from the original bound hc to satisfy
the chance constraint (5c). When wM,k is Gaussian, comput-
ing ηk+1 is straightforward. Given xk ∼ N (zk , 6k ), the state
covariance can be propagated over the prediction horizon
as 6k+1 = A6kA⊤

+ GQwG⊤ for k = 0, 1, . . . ,N − 1.
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Consequently, the predicted state xk+1 and error ek+1 follow
Gaussian distributions xk+1 ∼ N (zk+1, 6k+1) and ek+1 ∼

N (0, 6k+1), respectively. Since He − h is a linear transfor-
mation of the Gaussian random variable e, the CDFs Fj,k+1
and their inverses can be computed from the probability
distribution function of Hek+1 − h. For further details, refer
to [36].

FIGURE 1. The structure of the scenario tree [33].

C. MULTISTAGE MPC
Multistage MPC employs a form of scenario tree, as shown
in Figure 1, to describe the uncertainty. The control inputs
are optimized to counteract uncertainties in the tree. When
implementing multistage MPC, all control inputs branching
at the same node must be equal. These equal control inputs
are imposed by non-anticipativity constraints [33].
The time-invariant linear system model with exogenous

disturbance can be written as:

xk+1 = Axk + Buk + GEwE,k (8)

The OCP of multistageMPC can be formulated as follows:

minimize
u

S∑
j=1

ωj

N∑
k=0

J jk (9a)

subject to x jk+1 = Axp(j)k + Bujk + GEw
r(j)
E,k (9b)

Hx jk+1 ≤ h (9c)

Dujk ≤ d (9d)

ujk = ulk , if xp(j)k = xp(l)k (9e)

x j0 = x̂ (9f)

In this formulation, ωj represents the weight or importance
of the jth scenario. The system model is given in (9b). Here,

xp(j)k means the parent node state where the scenario is branch-
ing out, andwr(j)E,k is the realization of the uncertainty scenarios
on current time. The state and the control bounds are posed in
(9c) and (9d), respectively. The non-anticipativity constraint
is given in (9e). Here, j and l denote different scenarios. The
initial condition is set in (9f).
In multistage MPC, the size of the optimization problem

can grow exponentially with the length of the prediction
horizon, the number of uncertainties, and the number of
branches from each parent node. To address this challenge,
a technique called robust horizon is often employed, which
limits the branching of scenarios up to a certain stage while
assuming the later uncertainties to be constant. This approach
provides a compromise between handling uncertainties and
computational efficiency [33].

D. GREY-BOX MODEL AND PARAMETER ESTIMATION
The process of parameter identification through numeri-
cal optimization has been extensively studied in the litera-
tures [2], [18], [37]. Optimization algorithms are commonly
employed to minimize an objective function, which in the
context of parameter estimation, typically represents the dis-
crepancy between model predictions and reference data. The
objective function is based on the simulation error computed
over the entire calibration period, as opposed to the traditional
one-step-ahead prediction errors commonly used in statistical
approaches [12], [38]. This approach can be seen as a least
squares curve fitting procedure. Consequently, the objective
function is defined as the mean square error (MSE) between
simulated and measured states over the entire dataset. The
chosen error function is a standard quadratic norm [39],
expressed as:

J =

N∑
i=1

nx∑
k=1

e2k =

N∑
i=1

nx∑
k=1

(x ik − x i,refk )2 (10)

where nx denotes the number of states and N is the number
of samples in the dataset. The sum of squared errors for
each temperature state is accumulated, with equal weight-
ing assigned to all states. Alternatively, it is possible to
assign weights based on the uncertainties associated with the
measurements, such as the covariance of the measurements,
as commonly practiced in statistical approaches to parameter
estimation [38].

III. HYBRID MPC
The hybrid MPC approach is developed to address two
sources of uncertainties separately: model mismatch and
exogenous disturbance. The model mismatch is quantified
during the validation step by comparing the model predic-
tions with experimental data, allowing for the character-
ization of deviations in probabilistic terms. On the other
hand, exogenous information is incorporated into the control
framework through a scenario tree, which can be constructed
based on expert opinions or provided prediction information.
The model mismatch is handled using a chance-constrained
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framework, which relaxes the associated state constraints
by specifying an acceptable level of constraint violation.
The scenario tree, on the other hand, is integrated into the
optimization problem using the multistage MPC framework
to counteract the influence of the exogenous disturbance.
By combining these two frameworks, the following OCP for
the hybrid MPC is formulated:

minimize
u

S∑
j=1

ωjE

[
N∑
k=0

Jk

]
(11a)

subject to x jk+1 = Axp(j)k + Bujk + Gwr(j)k (11b)

Pr[Hcx
j
k+1 ≤ hc] ≥ 1 − βj (11c)

Dujk ≤ d (11d)

ujk = ulk if xp(j)k = xp(l)k (11e)

E[x j0] = x̂, wk ∼ pw (11f)

In this formulation, the system dynamics are captured by
the state equation (11b), where Gwr(j)k describes the uncer-
tainty at time step k on jth scenario as Gwr(j)k = GMw

r(j)
M,k +

GEw
r(j)
E,k . The chance constraint (11c) ensures that the state sat-

isfies the hard constraint Hcxk + 1j ≤ hc with a probability
of at least 1−βj. The control bounds are given by (11d). The
non-anticipativity constraint (11e) ensures that the control
inputs are equal if the corresponding states are equal. The
initial state is specified by (11f), where x̂ represents the mea-
sured or estimated initial state and wM,k is a random variable
following the distribution pw. The objective is tominimize the
expected cost over the entire scenario

∑S
j=1 ωjE

[∑N
i=0 Jk

]
by selecting appropriate control inputs ujk .
Overall, the hybrid MPC approach counteracts both model

mismatch and exogenous disturbance effectively, providing
an ability to handle uncertainties in real-world systems.

If the model uncertainty is expressed in the form of a
Gaussian distribution and the model is linear, the OCP for
hybrid MPC can be written as:

minimize
u

S∑
j=1

ωj

N∑
k=0

J j,SMPC
k (12a)

subject to zjk+1 = Azjk + Bvjk + Gwr(j)k (12b)

Hzjk+1 ≤ ηk+1 (12c)

Dvjk ≤ d (12d)

vjk = vlk if zp(j)k = zp(l)k (12e)

zj0 = x̂ (12f)

IV. SYSTEM DESCRIPTION
The building in this study is an experimental setup con-
structed in 2014 at the Porsgrunn campus of the University
of South-eastern Norway [40]. The exterior and floor plan
of the test building is depicted in Figure 2. The building is
designed with concrete support structures, ensuring that it

remains detached from the ground. The internal volume of the
building is approximately 9.4m3, and it is sealedwithout both
natural and mechanical ventilation systems. To limit solar
irradiation, three small windows measuring 60 × 90 cm2 are
positioned in the south, east, and west directions, while a
90 × 120 cm2 door is located in the north direction. Addi-
tionally, the presence of three surrounding buildings further
restricts the amount of solar radiation entering through the
windows.

The building envelope is constructed using a combination
of differentmaterials, includingwooden cladding, glass wool,
air-fill, polyethylene vapor barriers, wood, cement chipboard,
particleboard, and cardboard. Each type of wall exhibits a
unique construction, resulting from the combination of these
materials. Similarly, the roof and floor of the building have
distinct compositions.

The experimental building features an electrical heater
with a power rating of 375 W, comprising a thermostat
controller, a measurement system, and a logging computer
consuming approximately 100 W. The measurement system
incorporates various sensors to monitor parameters such as
indoor and outdoor temperatures and humidity, air pressures,
rainfall, wind speed, wind direction, and total power usage.

Overall, the experimental building serves as a controlled
environment for studying and analyzing the thermal dynam-
ics and energy performance of buildings under different
operating conditions.

A. SYSTEM MODEL
The chosen system model in this study offers a simplified
representation of the experimental building, serving as the
source of calibration data. Illustrated in Figure 3, the model
is founded on the R3C2 model employed in a previous study
[2]. Notably, the ventilation resistance component is omitted
from this model due to the absence of a ventilation system in
the test building.

The model encompasses two state variables: Tb, repre-
senting the interior temperature of the building, and Tw,
signifying the temperature of the wall’s inner surface. The
control input, denoted as Q̇, accounts for the heat flow source
(e.g., an electric heater). Two sources of uncertainty are inher-
ent in this model. Firstly, model uncertainty, characterized
by wb and ww, arises from the stochastic mismatch between
model predictions and actual observations. The model mis-
match can occur due to various factors such as wind, sunlight
and so on. Secondly, external temperature variations and
weather forecast scenarios are denoted as T∞.
To capture the building’s thermal properties, capacitors Cb

and Cw are integrated into the model, representing thermal
energy storage capacities within the interior and the building
envelope (comprising walls, floor, and ceiling). Furthermore,
themodel incorporates three resistance components:Rb, sym-
bolizing the thermal resistance between the building interior
and the wall; Rw, representing the resistance to heat flow
through the wall, connecting state Tw with the outside tem-
perature; and Rg, characterizing heat flow resistance through
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FIGURE 2. The picture of the experimental facility in USN [40].

FIGURE 3. RC circuit model of the building [22].

unaccounted components of the building envelope, such as
windows and doors.

To derive equations from this thermal network model,
Kirchhoff’s node potential law is employed. In this approach,
each state (Tb and Tw) is assigned to a circuit node, ensuring
a balanced flow into and out of each node. Consequently,
the stochastic model can be expressed as a set of following
ordinary differential equations (ODEs): [21], [22], [39].

dTb
dt

= −

(
1

CbRb
+

1
CbRg

)
Tb +

(
1

CbRb

)
Tw

+

(
1
Cb

)
Q̇+

(
1

CbRg

)
T∞ + wb (13)

dTw
dt

=

(
1

CwRb

)
Tb −

(
1

CwRw

)
Tw +

(
1

CwRw

)
T∞ + ww

(14)

In the context of this analysis, an assumption emerges
regarding the determinism of the model under specific
conditions. Specifically, assuming constant and unchanging
model uncertainties, denoted as wb and ww, and further
presuming perfect knowledge and precision in the external
temperature variable T∞ as applied in equations (13) and
(14), the model takes on a deterministic form.

The deterministic model operates without the presence of
randomness or variability associated with the model uncer-
tainties and external temperature fluctuations. This simplifi-
cation enables a more predictable and precise analysis, which
can be advantageous when these assumptions align with the
specific research or practical context in question. However,
it is crucial to acknowledge that the deterministic model relies
on these stringent assumptions and may not fully capture the
real-world complexities inherent in many practical scenarios.

B. PARAMETER ESTIMATION
The parameter estimation in this building is previously done
in [21] and [22]. The process of parameter estimation involves
determining the values of model parameters based on experi-
mental data. In this case study, a nominal parameter vector
is employed as an initial approximation for the estimation
methods. These nominal values are obtained through trial
and error experiments and prior knowledge of the expected
parameter range. The physical insight required for these ini-
tial approximations is limited to the approximate order of
magnitude of the parameters, which can typically be obtained
for most practical buildings. The nominal values themselves
do not necessarily yield an accurate prediction model for the
building, but they serve as normalization constants, allow-
ing parameter estimation to be performed on a unit scale.
Moreover, they restrict the search space to a region of interest
where reasonable parameter values can be obtained [21], [22].
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Table 1 presents a set of nominal parameters obtained
through experimental measurements. These values are used
as initial guesses for model calibration, and the corresponding
minimum and maximum limits define the constrained
parameter space [10].

The noise covariance matrix W = diag(w2
b,w

2
w) are

estimated from the data and assumed to be diagonal. The
parameter vector is defined as follows:

θ = [Rg,Rb,Rw,Cb,Cw,wb,ww] (15)

TABLE 1. Nominal parameter values and min./max. range.

To prevent over-parameterization, one degree of freedom
is removed by fixing the value of Rg to a constant. Rg repre-
sents the thermal resistance of windows and doors, which are
exposed to both interior and exterior temperatures, and their
UA values are specified in [10]. The UA values are calculated
as the product of U (the reciprocal of thermal resistance per
area) and A (the area). Therefore, knowing R or U for all
windows and doors, as well as their areas A, allows for the
computation of Rg = 1/(UgAg). The specifications forU and
A are presented in Table 2, and the value of Rg is set to 0.24
[10], [22].

TABLE 2. Specification of Rg.

Using the R3C2 model from Fig. 3, a prior distribution
is assigned to the parameter Rg as N (0.24, 0.012), while
all other parameters have uniform priors p(θ ) = 1. These
distributions are employed in optimization calculations with
optimization equation (10) [21].

TABLE 3. Values and standard deviations of estimated parameters.

The posterior distribution of the parameters is estimated
using the Markov Chain Monte Carlo (MCMC) method.
Three independent sets of data were collected from the
experimental building, including temperature measurements
Tb, Tw, and T∞, as well as one measurement of the input

electrical power Q̇ supplied to an electric heater. The tem-
peratures Tb and Tw serve as reference data for the model
outputs, while T∞ and Q̇ act as the model inputs. Two of the
data sets are utilized as training data for parameter estimation
and analysis, while the remaining data set is used as a test
set solely for evaluating the posterior predictive distribution
and assessing the calibrated model’s ability to predict future
system behaviors. The estimated parameters are presented
in Table 3, along with their corresponding standard devia-
tions. The standard deviations are normalized with respect to
themaximum a posteriori (MAP) estimates of the parameters,
enabling a comparison of different parameters [21], [22].
For a more comprehensive analysis of the parameter

estimation in this case study, please refer to [21] and [22].

C. OPTIMAL CONTROL PROBLEM
In this section, the OCPs related to the case study of build-
ing temperature control is introduced. The state at time
sampling k is denoted as xk = [Tb,k ,Tw,k ]. u includes
both control input, Q̇, and exogenous disturbance, T∞, as
uk = [Q̇k ,T∞,k ]. The model mismatch is described in wk .

1) DETERMINISTIC MPC WITHOUT CONSIDERING
UNCERTAINTIES
In this subsection, the OCP for implementing deterministic
MPC is introduced, assuming nomodel mismatch and perfect
forecast in outside temperature. The OCP for deterministic
MPC is formulated as follows:

minimize
N∑
k=0

Jk (16a)

subject to xk+1 = Axk + Buk (16b)

20◦C ≤ Tb,k + Zk ≤ 22◦C (16c)

100W ≤ Q̇k ≤ 475W (16d)

x0 = x̂ (16e)

In Equation (16a), the cost function is defined, while
Equation (16b) represents the system model in determin-
istic form. The model parameters used are specified in
Table 3. The bounds for the building’s interior temperature
(Tb,k ) and the electricity consumption (Q̇k ) are given by
Equations (16c) and (16d), respectively. Zk in (16c) is a
slack variable. The minimum electricity consumption in the
building is set to 100W due to the use of a computer for data
logging. Therefore, when 100W is used, the heater is turned
off.

The cost function (16a) is designed in a quadratic form as
follows:

Jk = TkWxT⊤
k +

(
Q̇k
Q̇max

)
WuPk

(
Q̇k

Q̇max

)⊤

+ ZkWvZ⊤
k

(17)

In Equation (17), the first term, TkWxT⊤
k , represents the

target temperature term. Tk is the difference between the
target temperature and the temperature inside the building at
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sampling time k , denoted as Tb,k . The target temperature is
set to 22◦C in this work. Tk is mathematically expressed as
Tk = Tb,k − 22◦C.
The second term in Equation (17) represents the power

consumption term. Q̇k denotes the power consumption at time
sampling k , and Q̇k/Q̇max normalizes the energy usage. Pk is
the normalized electricity price over the prediction horizon,
expressed as the ratio of the electricity price at sampling time
k to the mean price over the prediction horizon.

The last term in Equation (17), ZkWvZ⊤
k , is a penalty term

that allows violations of the constraint (16c) when it cannot
be satisfied. Zk is a slack variable and it is decided by solving
optimization. It is encouraged to be zero in most cases.

The parameters Wx , Wu, and Wv are weight parameters
for the target temperature term, power consumption term,
and penalty for constraint violations, respectively. They are
assumed to be positive-definite. By adjusting these parame-
ters, theMPC can control the system differently. For example,
ifWx is significantly higher thanWu, the MPC will prioritize
controlling the heater to maintain the temperature at the target
value with maximum effort. In the opposite case, the MPC
will minimize the use of the heater as long as the temperature
remains within the constraint (16c). Wv must always be kept
significantly higher than the other two parameters for the
satisfaction of the constraints.

2) HYBRID MPC: COMBINATION OF MULTISTAGE MPC AND
CHANCE-CONSTRAINED MPC
There are two types of uncertainties in the system: exogenous
disturbances and model uncertainty. Exogenous disturbances
represent uncertainties in weather forecast information.
Despite the high accuracy of weather forecasts, deviations
between the forecast temperature and the actual temperature
are inevitable. Model uncertainty arises from the mismatch
between the model and reality, as it is nearly impossible to
build a model that precisely represents reality. The uncer-
tainty data can be estimated through experiments, and in this
study, the mismatch is shown as wb and ww (refer to Table 3).
The uncertainty in weather forecast information can be

mitigated using the multistage MPC framework or scenario-
basedMPC. TheOCP of themultistageMPC frameworkwith
the robust horizon set as 1 is formulated as follows:

minimize
S∑
j=1

wj
N∑
k=0

J (j)k (18a)

subject to x(j)k+1 = Ax(j)k + Bu(j)k (18b)

20◦C ≤ T (j)
b,k + Z (j)

k ≤ 22◦C (18c)

100W ≤ Q̇(j)
k ≤ 475W (18d)

x(j)0 = x̂ (18e)

Q̇(0)
0 = Q̇(1)

0 = · · · = Q̇(S)
0 (18f)

However, in multistage MPC, the uncertainty from model
mismatch is not considered. This model uncertainty can
be addressed by incorporating the chance-constrained MPC

framework. To implement chance constraints, the constraint
(16c) can be modified in the OCP (16a) as follows:

20◦C + ek ≤ Tb,k + Zk ≤ 22◦C − ek (19)

To implement the hybridMPC framework which addresses
both uncertainty in model and forecast information, the
constraint (18c) can be modified in the OCP (18) as follows:

20◦C + ek ≤ T (j)
b,k + Z (j)

k ≤ 22◦C − ek (20)

In the newly proposed constraints (19) and (20), ek rep-
resents the constrained back-off obtained from the inverse
cumulative distribution function with the propagated covari-
ance throughout the prediction horizon and pre-defined β.
Based on the given wb and ww in Table 3 and β ∈ (0, 0.5],
the constrained back-off e is defined as shown in Figure 4.

FIGURE 4. The constrained back-off obtained from the inverse CDF for
the distribution of N(0, wb), plotted as a function of the permitted
probability of state constraint violation β ∈ (0, 0.5].

V. SIMULATION
A. SIMULATION SETUP
In Norway, the electricity price is determined in advance for
the next 24 hours in a deterministic manner and published
on the website: nordpool.no. Therefore, there is no uncer-
tainty in the electricity price. Figure 5 presents the historical
temperature forecast and electricity price.

In simulations, a prediction horizon length is set as 5 hours
and a time step is set as 2 minutes. The optimization problem
for running MPC is solved using CasADi in Python [41].
In this work, four MPCs are compared, as outlined in Table 4.

TABLE 4. MPCs used in the simulations.

The simulations are conducted with various sets of weight
parameters to demonstrate the effectiveness of each con-
troller. The parameter sets are presented in Table 5 and are
selected with trial and error.

To consider the uncertain weather forecast for the imple-
mentation of multistage MPC and hybrid MPC, A scenario
tree must be built. There are two ways to build a scenario tree.
One is to purchase forecast data from third-party companies.
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FIGURE 5. Forecast of outside temperature and electricity price.

TABLE 5. Weight parameter sets used in the simulations.

FIGURE 6. The addition and subtraction amounts through the prediction
horizon to generate the possible prediction scenarios of the outside
temperature.

FIGURE 7. The prediction scenario tree of the temperature outside.

The other method is to utilize publicly available weather
forecast data and to add or subtract reasonable ranges of
temperatures for each time step over the prediction horizon.
In this study, the latter method is used in this paper. To gen-
erate 2 more possible scenarios from the original forecast
data by adding and subtracting the temperature change over

the prediction horizon as shown in Figure 6. As a result,
three scenario tree of the outside temperature is generated as
illustrated in Figure 7 and employed to solve the OCP for
multistage MPC.

B. SIMULATION RESULT
This section presents the simulation results through figures
comparing and explaining the performance of the four types
of MPCs listed in Table 4.

FIGURE 8. Temperature inside of the building (Tb) changes during the
simulations of four types of MPCs: Deterministic MPC, Multistage MPC,
Chance-constrained MPC, and Hybrid MPC with weight parameters as A
in Table. 5, denoted as D(A), MS(A), CC(A), and Hybrid(A) respectively.

FIGURE 9. Electricity consumption by each type of MPC during the
simulation period: Deterministic MPC, Multistage MPC,
Chance-constrained MPC, and Hybrid MPC with weight parameters as A
in Table. 5, denoted as D(A), MS(A), CC(A), and Hybrid(A) respectively.

Figure 8 and Figure 9 depict the change in the tempera-
ture inside the building Tb and the electricity consumption
Q̇ during the simulations of the Deterministic MPC, Mul-
tistage MPC, Chance-Constrained MPC, and Hybrid MPC
with weight parameters set as A in Table 5, denoted as
D(A), MS(A), CC(A), and Hybrid(A), respectively. Both
figures show that all MPCs begin by actively heating the
building from the initial temperature until it reaches a certain
level. Accordingly, the electricity consumption is at its peak
initially and then drops to a certain level to maintain the
desired temperature inside the building. D(A) and MS(A)
demonstrate similar performance. CC(A) and Hybrid(A)
exhibit similar performance as well. However, due to the
constrained back-off from model uncertainty, CC(A) and
Hybrid(A) show more conservative performance than D(A)
and MS(A). Also, upon closer inspection in Figure 10, the
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differences, between D(A) and MS(A) or between CC(A)
and Hybrid(A), become more apparent.

FIGURE 10. Detailed plots of the changes of the temperature inside of
the building (Tb) and the electricity consumption in the building between
6 and 8 hours of simulations period: Deterministic MPC(D(A)), Multistage
MPC(MS(A)), Chance-constrained MPC(CC(A)), and Hybrid
MPC(Hybrid(A)) with weight parameters as A in Table. 5.

FIGURE 11. Prediction trajectories of Tb with the different realization of
the weather forecast scenarios at 4 hours of the simulation period: (Left)
Deterministic MPC, (Right) Multistage MPC with weight parameters as A
in Table. 5.

Figure 10 provides detailed plots of the temperature
changes and electricity consumption between 6 and 8 hours of
the simulation period. TheMS(A) shows a slightly more con-
servative performance compared to D(A), as it considers the
uncertainty of the outside temperature. Similarly,Hybrid(A)
shows a more conservative performance compared toCC(A).
Figure 11 depicts the trajectories of the predicited temper-
ature inside of the building based on three scenarios of the
external temperature and control sequences from solving the
OCPs during the middle of the simulation. The left plot in
Figure 11 is simulated by D(A). When the different scenario

of the external temperature is realized, it shows the potential
of the violation in the constraint. However, MS(A), in the
right plot, mitigate the violations. Upon closer inspection,
it shows subtle violations, but it is a numerical error from
solving the OCP iteratively. Figure 11 demonstrates the role
ofmultistageMPC framework in bothMS(A) andHybrid(A)
with the robustness of the satisfaction of the constraint against
the influence of the uncertainty in the weather forecast
information.

FIGURE 12. Comparison between the 95% confidence regions of
Determisitic MPC(D), Hybrid MPC with β = 0.05, and Hybrid MPC with
β = 0.01. The weight parameters of both MPCs are set as A in Table. 5.

Figure 12 presents a comparison of the 95% confi-
dence regions of the model uncertainty between D(A) and
Hybrid(A) with different values of β. In Figure 12, D(A)
shows 50% of the 95% confidence region is out of the desired
temperature bound. However, in Figure 12, bfHybrid(A) with
β = 0.05 shows some robustness since the constraint is
backed-off. When beta is set smaller as β = 0.01, the
constraint is more backed off and it shows better robustness
in the satisfaction of the constraint.

Table 6 reports the computational time required for solv-
ing the optimization problem on each MPC throughout sim-
ulations. The Deterministic MPC is the fastest, followed
by the Chance-Constrained MPC, the Multistage MPC, and
finally, the Hybrid MPC. However, all MPCs demonstrate
similar computation times without significant differences in
the matter of seconds.
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TABLE 6. Computational time [s].

By setting the weight parameters differently, the operation
can be performed based on a preferred balance between set-
ting the temperature at the set point and considering the elec-
tricity price. Figure 13 shows the simulations of the Hybrid
MPC over a 5-day period with β = 0.05 and different sets
of weight parameters (B, C, D, and E) from Table 5. As the
weight parameter for temperature targeting (Wx) becomes
relatively smaller compared to the electricity consumption
weight (Wu), the temperature control becomes more influ-
enced by the electricity price. For example, the Hybrid MPC
withweight parameter set E (Hybrid(E)) displays an increase
in temperature at around 40, 60, and 80 hours during the sim-
ulation period when the electricity price is relatively lower,
as shown in Figure 5.

FIGURE 13. Simulations of the Hybrid MPC on the temperature inside of
the building (Tb) with β = 0.05 and different sets of weight parameters:
B, C, D, and E in Table.5.

Table.7 shows the total power consumptions and energy
costs for the 5 days simulations on hybrid MPCs with dif-
ferent settings as shown in Figure 13. When the weight
parameter Wu is relatively larger, less energy is used, and
since the objective function (17) reflects the electricity price,

TABLE 7. Power consumption and its cost throughout the 5 days
simulations of Hybrid MPCs with different sets of weight parameters: B,
C, D, and E in Table.5.

it shows even less cost of the energy relatively compared to
the reduction of the energy use.

VI. DISCUSSION
This paper implemented the simulation of various MPCs
including the proposed hybrid MPC on a grey-box model of a
building system for temperature control. Due to the mismatch
between the model and the reality and the uncertainty in
weather forecasts, it is not easy to keep the temperature inside
the desired range. This may not be a significant concern in a
small residential building over short periods, as human may
not feel the difference of the temperature by 0.5◦C. However,
it may become more critical when considering long-term
periods or different places such as large public buildings or
important laboratories where constraint satisfaction is crucial.
The hybrid MPC framework demonstrated a more conserva-
tive performance and exhibited higher robustness in satisfy-
ing the constraints by considering both uncertainties in the
model and the weather forecast.

VII. CONCLUSION
In conclusion, the hybrid MPC, which is the combination
of the multistage MPC and chance-constrained MPC frame-
works, provides an effective robust approach for temper-
ature control in buildings, particularly in scenarios where
constraint satisfaction and robustness are of utmost impor-
tance. Further research can explore a method to improve the
accuracy of the model by adaptive methods over the running
time or additional variations of the hybrid framework and
investigate its applicability in different building types and
operational contexts.
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