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COMPUTER SCIENCE | RESEARCH ARTICLE

Toward optimizing scientific workflow using 
multi-objective optimization in a cloud 
environment
Shabina Ghafir1, M. Afshar Alam1, Farheen Siddiqui1, Sameena Naaz1, Shahab Saquib Sohail1 

and Dag Øivind Madsen2*

Abstract:  Scientific workflows are a common and critical part of scientific com-
puting, involving complex computations and oversized and distributed computing 
resources. Efficient workflow execution requires scheduling algorithms considering 
task dependencies, resource requirements, and deadlines. Cloud computing pro-
vides an innovative architecture for extensive heterogeneous computing services. 
However, scheduling hybrid cloud resources with deadline restrictions while obser-
ving QoS standards is an NP-complete task. Mapping workflow tasks to virtual 
machines and determining the optimal schedule order is a challenging aspect of 
cloud computing. By executing task requests on the most advantageous virtual 
machine in the resource pool, energy consumption, overall execution time, and 
computing costs can be reduced. This research aims to identify the best location 
to process applications using user’s demand and priority. A multi-objective genetic 
algorithm is proposed to achieve this objective, which considers conflicting objec-
tives such as time, energy, cost, and deadline. The algorithm initializes an efficient 
ranking heuristic approach and predicts the earliest finish time (PEFT) using the 
Bayesian approach to improve the Pareto fronts. This approach enhances the VM 
migration of cloud-based tasks and optimizes the search space for conflicting 
objectives. Experimental findings show that the proposed approach reduces cost 
by 5–6% and time delay by 8% compared to existing approaches. The proposed 
approach offers an effective solution for scheduling scientific workflows on cloud 
computing resources while considering various QoS standards. The results demon-
strate the potential of multi-objective genetic algorithms for optimizing workflow 
scheduling in cloud computing environments.

Subjects: Algorithms & Complexity; Artificial Intelligence; Computer Science (General) 

Keywords: workflow scheduling; load balancing; Artificial Intelligence; optimization; 
ranking; ChatGPT; Pareto; PEFT

1. Introduction
Cloud computing is a method of providing users with resources via the Internet and centralized 
remote servers. It involves using a large number of shared heterogeneous resources to deliver 

Ghafir et al., Cogent Engineering (2024), 11: 2287303
https://doi.org/10.1080/23311916.2023.2287303

Page 1 of 27

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited. The terms on 
which this article has been published allow the posting of the Accepted Manuscript in 
a repository by the author(s) or with their consent.

Received: 13 August 2023 
Accepted: 18 November 2023

*Corresponding author: Dag Øivind 
Madsen, USN School of Business, 
University of South-Eastern Norway, 
Hønefoss, Norway  
E-mail: dag.oivind.madsen@usn.no

Reviewing editors:  
Jenhui Chen, Computer Science and 
Information Engineering, Chang 
Gung University, Taiwan
Ahmed Haj Darwish, Faculty of 
Informatics Engineering, University 
of Aleppo, Aleppo, Syrian Arab 
Republic

Additional information is available at 
the end of the article

http://crossmark.crossref.org/dialog/?doi=10.1080/23311916.2023.2287303&domain=pdf
http://creativecommons.org/licenses/by/4.0/


a wide range of benefits to its users, each with its own set of quality of service (QoS) needs (Farid 
et al., 2020; Ismayilov & Topcuoglu, 2020; S. Kaur et al., 2019; Krishan & Kumar, 2020; Masdari 
et al., 2016; Singh & Singh, 2013; Wu et al., 2015). The most popular cloud platforms include 
GoGrid, Amazon EC2, Microsoft Azure, and Google App Engine. Private, public, hybrid and commu-
nity clouds are the most common clouds. Any subscriber can use a public cloud; however, private 
clouds and their architecture are controlled and used by certain businesses. Some organizations 
share community clouds and can be administered by them or third-party service providers. Hybrid 
clouds make use of both private and public cloud resources. In addition, due to the unavailability of 
a single cloud, a trend towards multi-clouds has emerged, which involves the federation of multi-
ple clouds.

Furthermore, cloud-based services can be classified as infrastructure as a service (IaaS), plat-
form as a service (PaaS), or software as a service (SaaS) provider (Gupta et al., 2019; Nirmala & 
Bhanu, 2016). Customers lease enterprise software as a service from SaaS providers, whereas PaaS 
providers provide wide infrastructure resources such as storage, computing, and networks. 
Virtualization is often a critical enabler of cloud computing because it allows multiple virtual 
machines to coexist on a single physical computer. A virtual machine (VM) simulates a computer 
network and executes user-defined functions. By instantiating, clients can deploy the apps on 
several diversely performing and cost-effective resources (Alkhanak et al., 2015; Ghasemi & 
Hanani, 2019). Every physical server or machine is managed by a software layer known as the 
VM monitor, which allows for the production and operation of the Workflow scheduling (Bhasker & 
Murali, 2023; Gupta & Mangla, 2019; P. Kaur & Sachdeva, 2016; Kousalya et al., 2017; Sohail, Javed, 
et al., 2023). It is a crucial topic in cloud technology because it attempts to map workflow tasks to 
virtual machines based on various functional and non-functional needs. A workflow is a collection 
of interdependent actions linked by functional or data-based requirements; these connections 
must be considered while scheduling.

Additionally, workflow scheduling is an NP-hard optimization problem in cloud technology, 
making attaining an optimum schedule challenging (Afzal & Kavitha, 2019; E. A. Kaur, 2017; 
S.Nagadev et al., 2013; Patel & Bhoi, 2013; Zhao et al., 2013). Since a cloud contains many 
virtual machines and diverse user workloads, scheduling must consider various scheduling 
goals and scenarios. The common goal of a workflow is to reduce the time required to 
complete a task by allocating tasks to appropriate virtual resources.

Cloud computing has revolutionized the way businesses operate and manage their IT infra-
structure (Katyal & Mishra, 2014; Kumar & Kumar, 2019). One of the key benefits of cloud 
computing is the ability to provision computing resources on demand, enabling businesses to 
scale up or down their computing resources as needed. However, managing cloud resources can 
be challenging, particularly when optimizing scheduling workflows (Chawla & Bhonsle, 2012; Hariri 
et al., 2022; Shah et al., 2018).

Workflows are related tasks that must be executed to achieve a specific goal. In cloud comput-
ing, workflows can include provisioning virtual machines, launching applications, and processing 
data. Optimizing the scheduling of these workflows can help businesses reduce costs, improve 
performance, and enhance the overall efficiency of their IT operations (Areeb et al., 2023; S. Li 
et al., 2021). There are several critical motivations for optimizing workflows in the cloud. One of the 
most important is cost reduction. By optimizing workflows, businesses can minimize the time and 
resources required to execute tasks, thereby reducing costs. Particularly important for businesses 
with fluctuating workloads and the need to scale their computing resources up and down as 
needed.

Another motivation for optimizing workflows is performance improvement and security (B. Li 
et al., 2019; M. Li et al., 2023; Shishido et al., 2018; Wang et al., 2020). By scheduling workflows 
more efficiently, businesses can ensure that tasks are completed on time, reducing processing 
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time and improving overall performance. This is especially important for businesses that rely on 
real-time data processing or need to meet strict service level agreements. Optimizing workflows 
can enhance the overall efficiency of IT operations. Businesses can free up their IT staff to focus on 
more strategic initiatives by automating repetitive tasks and reducing manual intervention. This 
can help businesses become more agile and responsive to changing business needs while improv-
ing the quality of service they provide to their customers.

To that end, this work primarily fulfills the need of an optimize work scheduling procedure which 
is lacking in the literature, and it adds value to the literature by convincingly proposing a better 
approach with an optimized result. In this work, our main work is to focus on designing an 
optimization framework for scientific workflow. The study leverages the Bayesian framework and 
the maximum likelihood technique to enhance the accuracy of its results through optimal estima-
tions and predictions, while addressing the complexity of multi-objective optimization problems by 
incorporating a random distribution element that introduces variability into the optimization 
process, thus allowing the model to explore a broader solution space and potentially uncover 
more diverse and effective solutions; furthermore, the research adopts a synergistic approach by 
fusing multiple heuristic techniques, which are efficient and effective problem-solving strategies, 
to enhance the model’s ability to navigate complex optimization landscapes, and despite incorpor-
ating randomness, the study strategically reduces it to enhance the reliability of its outcomes, 
ensuring that they are not overly influenced by unpredictable factors. Precisely, the prime con-
tributions can be outlined as -

● Utilization of Bayesian framework and maximum likelihood technique.
● Incorporation of Random Distribution in Multi-Objective Optimization.
● Synergistic Fusion of Heuristic Techniques.
● Enhanced reliability through reduced randomness.

The rest of the paper is organized as follows: in the next section, we have reviewed the works that 
focus on optimization problem for scientific workflow. In Section 3, material and methods are 
discussed. In Section 4, the results are presented and have been discussed in details. We have 
concluded the article in Section 5, additionally, limitation and future directions are also stated.

2. Related work
Authors in Qin et al. (2023) emphasize a workflow scheduling issue with many objectives in multi- 
cloud systems (MOWSP-MCS). The time, cost, and dependability are regarded as the optimization 
goals from the user’s standpoint. In contrast to conventional multi-objective scheduling problems 
inside the cloud, MOWSP-MCS enables customers to implement the backup strategy to increase 
reliability. This research offers a reliability-aware multi-objective mimetic algorithm (RA MOMA) 
with an intensification approach and a diversification strategy to tackle the MOWSP-MCS. The 
diversification technique incorporates many problem-specific genetic algorithms to generate off-
spring with a wide range of characteristics. In the case of the intensification technique, four kinds 
of problem-specific neighbourhood operators are built upon the resource utilization rate and 
critical path in order to increase the archive set’s quality. A complete statistical experiment is 
performed to measure the efficacy of RA-MOMA. RA-MOMA is better than various comparable 
approaches to solving the MOWSP-MCS, as demonstrated by comparisons with these algorithms.

In Mangalampalli et al. (2023) the authors suggest a new workflow scheduling system that takes 
into account the order of importance of tasks and puts them on the right virtual resources. This 
algorithm was modelled using the whale optimization technique as the procedure. A workflow sim 
simulator was used to run a lot of simulations. It was tested against the CS, PSO, ACO, and GA 
algorithms that were already in use. Lastly, the simulation findings demonstrated that migration 
time, makespan, and energy use were all kept to a minimum.
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In their work authors in Zhou et al. (2022) suggest a security-aware and a makespan workflow 
scheduling scheme that utilizes a revised firefly optimizer with a novel solution initializing plan, 
a position-updating method for fireflies, two task-to-VM assessment strategies, and a firefly solution 
map-based operator. To prove that the researchers proposed workflow scheduling technique works, 
designers run many simulations of actual workflows. When contrasted with a base classifier and two 
cutting-edge methodologies, the results indicate that this strategy can reduce costs by up to 54.0%.

An approach based on time, cost, and average use is suggested in Pillareddy and Karri (2023). 
The authors recommend MONWS, which utilizes the min-max technique to minimize cycle time 
and optimize resource usage by determining the optimum time to run tasks on virtual machines 
and the corresponding adaptive threshold value for prioritizing tasks in workflow scheduling. 
Compared to state-of-the-art algorithms, MONWS reduced Makespan by35%, increased maximum 
cloud capacity by 8%, and reduced costs by 4%.

Authors in Arora and Banyal (2022) introduced the PSO–GWO hybrid meta-heuristic algorithm. 
The proposed methodology is a mixture of two optimization algorithms, GWO and PSO. For the 
scientific workflows Cybershake, Montage, SIPHT, and Spiral, the PSO–GWO algorithm is evaluated. 
The reason for this new approach is to decrease the total cost of execution. The PSO-GWO method 
speeds up typical total execution time while reducing overall operatingcost, in comparison to the 
standard PSO and GWO algorithms.

In their work Qin et al. (2022) proposed a new hybrid collaborative multi-objective fruit fly 
optimization algorithm (HCMFOA) to minimize the amount of cost and time spent on the execution. 
The recommended HCMFOA uses a cluster technique based on points of reference to split the swarm 
into smaller groups. In addition, a hybrid starting approach is developed by combining a non-linear 
weight vector with two principles for task allocation. Each fruit fly within the subspace has a starting 
position determined by using this method. In coordinated smell-based forage, three problem-solving 
operators living in the same neighborhood examine the global scope in collaboration. The sub- 
swarms-based crossover operator is made for local exploitation in multi-objective vision-based 
foraging. Lastly, a large-scale computational test is done to test how well HCMFOA works. The 
statistical findings indicate that HCMFOA does a lot better than the current top-of-the-line methods.

Authors in Mangalampalli, Swain, et al. (2022) assessed the task priority among all tasks 
entering the cloud interface, and effectively mapped tasks to VMs. Cat swarm optimization (CSO) 
was utilized by researchers to address the scheduling challenge, finally addressing the consump-
tion of resources and Makespan. Designers ran simulations on workflow sim and compared the 
effectiveness of the approach to that of known algorithms CS and PSO. Based on simulation 
findings, designers discovered that the approach outperforms existing algorithms for the variables 
specified.

In their work, authors in F. Li et al. (2022) employ a three-step scheduling scheme to combine 
the scheduling of container-based workflow processes and the execution of containers in a cloud- 
edge context. In the first phase, every container is assigned a virtual CPU (vCPU). This enables CPU 
sharing amongst containers. Then, a two-area deployment is used to place containers on virtual 
machines and virtual machines on physical equipment, either in the cloud or at the edge. From the 
point of view of cloud-edge resources and containerized workflows, numerous goals are taken into 
account. These include minimizing Makespan, energy use, and load imbalance (Naaz et al., 2012; 
Shafiq et al., 2022). Two different multi-objective algorithm architectures are used in conjunction 
with three different evolutionary approaches to generate a collection of non-dominated options. 
These are the basic non-co-evolution strategy (B-NCS), the co-evolution strategy (CES), and the 
hybrid non-co-evolution strategy (H-NCS). The results of the simulations show that H-NCS is more 
effective than other techniques, and the proposed approach yields better results as compared to 
the current two-step scheduling paradigm.
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A modified version of the Firefly method for addressing workflow scheduling issues in a cloud- 
edge scenario is proposed in Bacanin et al. (2022). By combining genetic operators and a quasi- 
reflection-based learning technique, the suggested model improves upon the traditional firefly 
meta heuristics’ errors. To start, the recommended improved approach was validated on 10 
recently released benchmark test instances, and its effectiveness was assessed in relation to the 
baseline and to other enhanced state-of-the-art meta-heuristics. Secondly, simulations were 
conducted to examine a workflow scheduling problem with dual primary goals and a timeline. 
The researchers conducted a comparison analysis with other cutting-edge methods tested under 
identical experimental circumstances. With respect to output clarity and fast convergence, the 
algorithm shown here greatly exceeds the classic Firefly method and other outstanding meta- 
heuristics. Results from simulations show that the revised firefly algorithm provides a significant 
improvement over existing solutions to the scheduling problem at the cloud’s edge, both in terms 
of cost a Makespan.

Authors in Belgacem and Beghdad-Bey (2022) look at the possible trade-off between virtual 
machine utilization cost and Makespan. Using the ant colony algorithm (ACO) and the hetero-
geneous earliest end time (HEFT) to minimize them, researchers present a HEFT-ACO strategy. 
Considering the features of Amazon EC2 cloud service, three distinct kinds of genuine scientific 
workflows are simulated experimentally while taking into account the Amazon EC2 cloud infra-
structure. The test findings demonstrate that the suggested method outperforms ant colony 
algorithm (ACO), Fuzzy resource utilization with multi-objective scheduling (FR-MOS), and Predict 
the Earliest Finish Time-Ant Colony Algorithm (PEFT-ACO).

The research articles which are discussed above offer diverse perspectives on the optimiza-
tion of task scheduling in cloud computing environments. To further extending the work, 
Bezdan et al. (2022). introduced a hybridized bat optimization algorithm, aiming for efficient 
multi-objective task scheduling with superior results compared to similar methods. Following 
a different approach, Mirmohseni et al. (2022) developed a hybrid Fuzzy Particle Swarm 
Optimization Genetic Algorithm (FPSO-GA) specifically for load balancing in cloud networks, 
combining fuzzy particle swarm optimization and genetic algorithm techniques. Aktan and 
Bulut (2022) contributed to the field by discussing the challenges inherent in scheduling 
applications in cloud computing. They underscored the critical need for capturing and dissemi-
nating scientific information within a collaborative context, recognizing the broader implica-
tions of scheduling in this domain. Addressing the dynamic nature of cloud resources and 
workload demands, Mangalampalli, Karri, et al. (2022) presented a multi-objective task sche-
duling Grey Wolf Optimization (MOTSGWO) algorithm. Zivkovic et al. (2022) proposed an 
improved Harris Hawks Optimization algorithm for workflow scheduling in a cloud-edge envir-
onment, outperforming existing approaches by reducing cost and improving makespan perfor-
mance metrics (Miftakhov et al., 2021; Thammarak et al., 2022).

2.1. Research gap
Task scheduling is one of the critical issues in cloud computing due to the heterogeneous nature of 
cloud resources. Many algorithms in a real-time scenario have been put forward to solve the task 
scheduling problem in the cloud computing domain. So far, many task scheduling techniques have 
been discovered to solve the scheduling problem, and each scheduling technique has its advan-
tages and limitations due to considering different QoS parameters. In general scheduling-based 
techniques are classified into two major categories: heuristic, and meta-heuristic (Hariri et al.,  
2022; R. Kaur & Singh Dhindsa, 2018; Kumar & Kumar, 2019; B. H. Malik et al., 2018; Naz et al.,  
2023; Rodriguez & Buyya, 2014; Shah et al., 2018; Shameer & Subhajini, 2017; Sohail et al., 2023; 
Sreenu & Sreelatha, 2019).

Prior research focused on task mapping. On VM, single, hybrid, or multi-objective optimiza-
tion can be used. However, during this process, the initiation of optimization can be random, 
or some researchers use other heuristics such as HEFT. In random processes, the maximum 

Ghafir et al., Cogent Engineering (2024), 11: 2287303                                                                                                                                                     
https://doi.org/10.1080/23311916.2023.2287303                                                                                                                                                       

Page 5 of 27



Ta
bl

e 
1.

 R
ev

ie
w

 o
f l

at
es

t 
ap

pr
ao

ch
es

Re
f

Ai
m

Ap
pr

oa
ch

Da
ta

se
t/

To
ol

In
fe

re
nc

e
Li

m
ita

tio
n

Pi
lla

re
dd

y 
an

d 
Ka

rr
i (

20
23

)
Pl

an
ni

ng
 C

lo
ud

-B
as

ed
 

W
or

kf
lo

w
s 

w
ith

 M
ul

ti-
 

O
bj

ec
tiv

es
 N

or
m

al
iz

at
io

n

M
ul

ti-
O

bj
ec

tiv
e 

N
or

m
al

iz
at

io
n 

W
or

kf
lo

w
 

Sc
he

du
lin

g 
(M

O
N

W
S)

: M
on

ta
ge

, 
Cy

be
rs

ha
ke

, L
IG

O
, a

nd
 

Ep
ig

en
om

ic
s.

Cl
ou

ds
im

 t
oo

l
Ac

co
rd

in
g 

to
 th

e 
fin

di
ng

s,
 th

e 
su

gg
es

te
d 

al
go

rit
hm

 
ac

hi
ev

ed
 b

et
te

r 
re

su
lts

 t
ha

n 
th

e 
st

at
e-

of
-t

he
-a

rt
 

al
go

rit
hm

 w
he

n 
us

ed
 in

 r
ea

l- 
w

or
ld

 s
ci

en
tif

ic
 c

om
pu

tin
g 

ap
pl

ic
at

io
ns

.

W
he

n 
it 

co
m

es
 t

o 
ha

nd
lin

g 
VM

 f
ai

lu
re

 a
nd

 m
on

ito
rin

g 
en

er
gy

 u
se

, t
he

 p
ro

po
se

d 
al

go
rit

hm
 r

eq
ui

re
s 

so
m

e 
w

or
k.

Ar
or

a 
an

d 
Ba

ny
al

 (
20

22
)

Th
e 

m
et

ah
eu

ris
tic

 
m

et
ho

do
lo

gi
es

 u
til

iz
ed

 t
o 

de
te

rm
in

e 
op

tim
al

 
w

or
kf

lo
w

 s
ch

ed
ul

in
g.

Pa
rt

ic
le

 G
re

y 
W

ol
f 

H
yb

rid
 

Al
go

rit
hm

 f
or

 W
or

kf
lo

w
 

Sc
he

du
lin

g 
(P

SO
-G

W
O

)

W
or

kf
lo

w
Si

m
- 

1.
1 

to
ol

ki
t

Th
e 

PS
O

–G
W

O
 a

lg
or

ith
m

 
re

du
ce

s 
th

e 
av

er
ag

e 
ov

er
al

l 
ex

ec
ut

io
n 

co
st

 a
nd

 t
im

e 
co

m
pa

re
d 

to
 P

SO
 a

nd
 G

W
O

.

N
o 

ov
er

la
pp

in
g 

in
te

re
st

s

Ba
ca

ni
n 

et
 a

l. 
(2

02
2)

To
 a

da
pt

 f
ire

fly
 a

lg
or

ith
m

 f
or

 
cl

ou
d-

ed
ge

 w
or

kf
lo

w
 

sc
he

du
lin

g

Ge
ne

tic
 o

pe
ra

to
rs

 q
ua

si
- 

re
fle

ct
ed

 
FA

 (
GO

Q
RF

A)
.

W
or

kf
lo

w
 m

od
el

s 
da

ta
se

t
Th

e 
GO

Q
RF

A 
sc

he
du

le
r 

is
 

ab
le

 t
o 

sa
tis

fy
 t

he
 r

ea
l-t

im
e 

re
qu

ire
m

en
t 

w
hi

le
 s

im
ul

ta
- 

ne
ou

sl
y 

at
te

m
pt

in
g 

to
 f

in
d 

th
e 

co
rr

e-
 s

po
nd

in
g 

ba
la

nc
e 

be
- t

w
ee

n 
th

e 
m

ak
es

pa
n 

an
d 

co
st

 c
rit

er
io

n.

Th
e 

pr
op

os
ed

 G
O

Q
RF

A 
ha

s 
th

e 
dr

aw
ba

ck
 o

f h
av

in
g 

m
or

e 
co

nt
ro

l p
ar

am
et

er
s 

w
hi

ch
 

sh
ou

ld
 b

e 
ad

ju
st

ed
 b

y 
th

e 
re

se
ar

ch
er

, a
s 

an
y 

ot
he

r 
hy

br
id

iz
ed

 o
r 

up
gr

ad
ed

 
m

et
ah

eu
ris

tic
 a

pp
ro

ac
h.

Bh
as

ke
r 

an
d 

M
ur

al
i (

20
23

)
Sm

ar
t 

Ir
rig

at
io

n 
Sy

st
em

 
W

or
kf

lo
w

 S
ch

ed
ul

in
g 

U
si

ng
 

FM
M

EH
O

 in
 a

 C
lo

ud
-B

as
ed

 
Vi

rt
ua

liz
at

io
n 

En
vi

ro
nm

en
t

M
em

be
rs

hi
p 

M
ut

at
io

n 
El

ep
ha

nt
 H

er
di

ng
 

O
pt

im
iz

at
io

n 
(F

M
M

EH
O

), 
O

pt
im

um
 E

ne
rg

y 
an

d 
Re

so
ur

ce
 A

w
ar

e 
W

or
k-

 f
lo

w
 

Sc
he

du
lin

g 
(O

ER
ES

) 
sc

he
m

e

Pu
bl

ic
ly

 A
va

ila
bl

e 
da

ta
se

t 
An

ek
a 

Pl
at

fo
rm

 (
5.

0)
Th

e 
fin

di
ng

s 
sh

ow
 h

ow
 

su
cc

es
sf

ul
 o

f 
th

e 
pr

op
os

ed
 

O
ER

ES
 

al
go

rit
hm

 
is

 c
om

pa
re

d 
cu

rr
en

t 
ap

pr
oa

ch
es

 e
xt

re
m

el
y 

w
el

l.

Th
e 

dr
aw

ba
ck

s 
of

 ir
rig

at
io

n 
sy

st
em

s 
in

cl
ud

e 
th

e 
ris

k 
of

 
di

se
as

es
 f

ro
m

 f
lu

id
 o

ve
r-

 
flo

w
, t

he
ir 

hi
gh

 in
iti

al
 c

os
t, 

an
d 

th
e 

fa
ct

 t
ha

t 
th

ey

Ghafir et al., Cogent Engineering (2024), 11: 2287303                                                                                                                                                     
https://doi.org/10.1080/23311916.2023.2287303

Page 6 of 27



probability of a false positive threshold does not enhance resource usage, and the heuristic 
approach only works for a single target. It only works for small workflows or jobs. Thus, the 
approach proposed in this research addresses these drawbacks and demonstrates the 
improvement over prior approaches in various workflows. Heuristic approaches use the pre-
diction to reach the near-optimal solution with low time complexity and high scheduling 
length. At the same time, meta-heuristics directly find the solution with more efficient results 
than the heuristic technique. Heuristic-based solutions are unsuitable for task scheduling 
problems for independent tasks due to the higher cost and energy consumption for proces-
sing the submitted jobs.Meta-heuristic-based techniques are the most suitable options for 
such problems by generating a cost and energy-efficient solution without pre-information of 
tasks and resources.

3. Material and methods

3.1. Problem formulation
Scheduling algorithms provide a mapping solution for workflow tasks to the resources like 
virtual machines in cloud computing that obeys the user’s specified QoS constraints like 
a deadline and budget. The proposed method focused on scheduling the workflow tasks 
onto the virtual machines using the Pareto-PEFT ranking with a multi-objective genetic 
algorithm approach to reduce the total execution time and cost. We focus on finding 
a schedule = (AV M, MAP, TIME, COST) consisting of resources VMs, a mapping, total execution 
time, and total lease cost for a workflow application. The equation determines the total lease 
cost and execution time 

The scheduled cost is computed by adding the cost of every VM leased based on time interval µ. 
The lease cost of VM is calculated by multiplying cost per unit time Z(V Mk) with 214 the time for 
which the VM type V Mk is allocated to the task using equation 2. Every VM has its start time ST 
(V Mk) and finish time FT (V Mk) for which it is leased for executing the task. 

The scheduling problem can be formulated as: to generate workflow schedule WS with minimum 
COST and TIME is within the specified deadline constraint as depicted in Equation (3) 

3.2. Adopted methodologies
The flow chart of the adopted methodologies is shown in Figure 1. The proposed approach makes 
use of the number of user workflows, physical hosts, and virtual machines (VMs) on each physical 
host. We can perceive the architecture into four parts:

3.2.1. Parsing workflows
The parent-child connection is referred to in the DAG workflow architecture. If there is an edge 
from Parent I to Child J within the DAG, we can conclude that the Child J task is a successor to 
a Parent I task. Due to the task precedence limitation, it can begin its execution only once the 
predecessor Parent I completes its activity and sends the message to its successor, Child J. Hence, 
even though multiple jobs will appear in the series, parse the workflows according to the parent- 
child connection and the stated order. We proceed to the following phase and assign an optimal 
ranking on the same level.
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Fitness function 

3.2.2. Optimization of the ranking
There are three components in this section, the first of which is the optimized space, where tasks are 
ranked in the optimized space. It is determined by our three research objectives: time, cost, and 
energy. As a result, the first stage determines the Pareto front, followed by a PEFT-based ranking of 
that region in the second phase. Determine the probability distribution correlation between these task 
ranks behind ranking the whole process, and optimize using a Bayesian approach.

3.2.2.1. Pareto Front. In this part, discuss formal definitions of multi-objective optimization pro-
blems, Pareto frontier, and Pareto dominance to facilitate comprehension of this work. Since 
a minimization problem may describe each maximizing problem, we assume that minimizing is 

Figure 1. Flow chart of the  
proposed methodologies.
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the goal for all objectives. Pareto’s set of trade-off options is a collection of non-dominant 
solutions. The value of a Pareto set’s solutions is called the Pareto frontier. A Pareto frontier is 
a helpful tool for discovering preferences and decision support.

3.2.2.2. PEFT Ranking. Predict the Earliest Finish Time (PEFT) is a scheduling method that works 
with a limited number of heterogeneous processors. This algorithm works in two steps: Task 
Prioritizing (for computing job prioritizing) and Processor Selection (for choosing the most suitable 
processor for processing the current task). The task mapping is set up for optimization in this step.

3.2.2.3. Bayesian Optimization (BO). BO is indeed a black-box optimization technique with no gradi-
ents. BO has been demonstrated to be effective in optimizing complicated real-world systems that are 
frequently non-convex and noisy (Chawla & Bhonsle, 2012; N. Malik et al., 2021; Verma & Kaushal,  
2017; Vijayalakshmi & Vasudevan, 2015). Algorithm 3 describes the BO algorithm. We first utilized the 
Gaussian Process (GP) approach to fit a surrogate model. The target function is assumed to be a series 
of jointly Gaussian random variables with covariance among arbitrary locations determined by 
a covariance kernel function k(xi). Using the Gaussian assumption, we may anticipate the mean (x|D 
of a point. The predicted uncertainty is expressed as prediction variance σ2 (x|D). For estimating the 
covariance, we have used a Squared-Exponential Co variance Kernel.

Algorithm-1 Pareto Front
Input: Define Objective

Output: Optimize Pareto front

1. D <- find Dependency in tasks on the Basis of Time and Energy

2. If ti > tl

dominate ti by eq(1) > domination (t1) (2) Run step2

If Converge

Stop

3. Front according to Converge

4. run according to eq(2)

Algorithm-2 PEFT RANKING
Input: Pareto Front

Output: Optimize Efficient ranking of tasks

1. D<- Find Dependency in Tasks by Pareto front

2. Compute Task ranking according to Pareto front and make list

3. While (List >0)

4. Compute EFTi 5. EFTi = Pareto f ront (Ti) + Resource time 6. Ranking <MAX(EFT)
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3.2.3. Task optimize scheduling: NSGAII
In this step, we use the data from the previous steps to create an efficient task map. As a result, NSGA I is 
used to learn through multi-objective optimization using Equation 2, monitor resource usage, and 
provide an optimal task scheduling threshold for virtual machines. One of the most often used EMO 
algorithms is NSGAII. The NSGAII algorithm generates a set of fronts solutions that are non-dominated. 
The Pareto front uses an elitist approach to maintain non-dominated solutions from every generation. 
The NSGAII algorithm works as follows, as shown in the diagram: The initialization process begins by 
producing a population of N possible solutions in this manner. After assessing the objective functions of 
each solution, mainly in newly created populations, the sorting operation would then execute. 
Individuals would be ranked into a set of fronts depending on their level of non-domination. 
Individuals with the same rank (but not necessarily on the same front) will also be sorted using the 
crowding distance values. A packed tournament selection is frequently used to identify a generation of 
parental individuals over whom genetic actions will be performed to establish an offspring population. As 
a result, the crossover procedure is carried out with a crossover probability of two parents. The children 
would then be modified using a mutation operator and a mutation probability. A similar process will be 
performed on various parents until a population of 2N population. Moreover, as with the previous 
population, this will be sorted and truncated to create a new community of N people. Finally, these 
steps would be repeated until a stop condition was met or maximum iterations were reached.

3.2.3.4. Roulette Selection. The Roulette approach is often used to select parents from the existing 
population according to their ranking and crowding distance. Whenever two parental chromo-
somes with equal rank are assessed in Roulette selection, the crowding distance has a significant 
influence. The crowding distance quantifies an individual’s proximity to its neighbors. When 
a chromosome has a long crowding distance, this would increase population diversity. 

In addition to this, workflow scheduling involves determining the order and allocation of tasks 
that make up a workflow to resources so as to optimize multiple objectives. In a cloud computing 
context, this might mean distributing tasks among available servers, VMs, or containers. The 
solution can be represented as:

Each chromosome in the population represents a potential scheduling solution. And each gene 
in the chromosome represents a task in the workflow. The value of each gene specifies the 
resource (like a specific VM or server) to which the task is assigned.

Example: If we have 4 tasks and 3 resources, a chromosome might look like this: [R1, R3, R2, R1]. 
This means Task 1 is assigned to Resource 1, Task 2 to Resource 3, and so forth.

Algorithm-23: Bayesian Optimize (BO)
Input: DAG WORK FLOW WITH PEFT RANKING

Output: Optimize Ranking

1. While

(Task > mean µ(x|D)*N)µ

Start

TC <-Calculate Task Time and Energy

TU <-Compared Upward

2. If TU > TC

3. Rank <Bayes(TU)

4. Stop
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We should create a population of such chromosomes, typically initialized randomly while ensuring 
feasibility. To evaluate, for each scheduling solution (chromosome) in the population, you’ll calculate its 
fitness by evaluating it based on multiple objectives. Common objectives in cloud workflow scheduling 
include minimizing execution time, minimizing cost, maximizing reliability, etc. Since it is multi-objective, 
you will often rank solutions using methods like non-dominated sorting, where solutions are categorized 
into different fronts based on how many other solutions they dominate or are dominated by.

Based on their fitness, select chromosomes to be parents for crossover. Techniques like tourna-
ment selection can be useful where a subset of chromosomes is chosen, and the best among them 
(based on non-domination rank and crowding distance) is selected as a parent.

Furthermore, crossover (recombination) combines two parent chromosomes to produce offspring. 
This might involve swapping genes (task-resource assignments) between parents. However, mutation 
introduces small random changes in the offspring. In this context, it might mean changing the resource 
assignment for a task in a chromosome. After generating offspring, decide which solutions should 
continue to the next generation. This could involve selecting the best solutions from the combined set 
of parents and offspring, or other replacement strategies. Moreover, the algorithm continues iterating 
through the selection, crossover, mutation, and replacement steps for a pre-defined number of genera-
tions or until a convergence criterion is met. The final set of non-dominated solutions provides a trade- 
off between the objectives and can be presented to the decision-maker.

3.2.4. Parameter evaluation
● U number of users = user1; user2; . . . ::; usernf g

● Each user submits n tasks of Workflows = W1;W2;W3 . . . ::;Wnf g

● Length l(n)
● Total Number of VM = V1;V2;V3 . . . ::;Vnf g

Algorithm 4: PPBMGA
INPUT: DAG Work-Flows 
Output: Optimize Scheduling 
1. T<- Parse-task (DAG) 
2. TP <-Pareto Front(T) 
3. TPF <-PEFT(TP) 
4. TOR <-BO (TPF) 
5. VMmapping<-TOR 
6. Population <-Crossover (VMmapping) 
7. Mutation <-Roulette selection (Population) 
8. If Mutation optimize and converge 
9. Threshold <-Roulette (mutation) else go to step5 
10. Apply threshold on VM and VM migration 
11. Analysis performance metrics

Algorithm 5: Roulette Selection
Input: Crossover or mutation Population 
Output: Select an efficient candidate 
1. Apply Fitness Equation 1 for Selection 
2. Find average of All population according to fitness value 
3. If average (candidate) < average (candidate-previous) 
4. else go to step2
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ET <- Execution Time
EC <-Execution Cost
E <- Energy

● Ep<- energy of Process or 
EM<- energy of Memory  
Rp<- Resource use of processor  
RMResource use of Memory

4. Result and analysis
In this section, the proposed method is used to calculate the performance of different workflows 
on virtual machines based on average cost, time, and energy.

Experimental parameter-based values are shown in Table 2. Review of latest approaches are shown 
in Table 1. VM here has values ranging from 20 to 200. The experiment involves four different types of 
procedures and two types of hosts. The performance metrics are based on cost, time, and energy. The 
highest achieved VM frequency is 1.6 GHz. The MIPS rate is 2500, and the memory capacity is 200 MB.

4.1. Dataset
The Pegasus project has described and made public the methodology for several real-world applications, 
including LIGO, CyberShake, GENOMIC, and LIGO SIPHT. The information presented includes the DAG, the 
quantity of transmitted data, and the reference execution time based on Xeon@2.3 GHz Processors. Each 
process has a set of these parameters. Here are the descriptions of pegasus workflow used in the article.

4.1.1. LIGO
The Laser Interferometer Gravitational Wave Observatory (LIGO) is a network of gravitational 
wave detectors with observatories located in Livingston, LA and Hanford, WA (Figure 2a). The 
mission of the observatories is to detect and measure gravitational waves predicted by the 
theory of general relativity—Einstein’s theory of gravity—where gravity is described as arising 
from the curvature of the fabric of time and space. One well-studied phenomenon expected 
to be the source of gravitational waves is the inspiration and merger of dense, massive 
astrophysical objects such as neutron stars and black holes. Such binary inspiral signals are 
the most promising sources of LIGO. Gravitational waves interact very weakly with matter, 
and when they pass through ground instruments, the measurable effects are small. A large 
amount of data, including a stress signal measuring the passage of gravitational waves, must 
be acquired and analyzed to increase the probability of detection. LIGO applications often 
require terabytes of data to produce meaningful results.

Table 2. Experiment setup

PARAMETERS VALUES

Number of VM 20–200

Number of Host 2

Type of Workflows 4

Performance Metrics Cost, Time and Energy

Maximum VM Frequency 1.6 GHz

MIPS Rate 2500 MIPS

Memory 200MB
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4.1.2. Cybershake
The Southern California Earthquake Center uses the CyberShake workflow to characterize earth-
quake hazards in the region. These workflows are from 2011 productions that contain high 
frequency codes (Figure 2b).

4.1.3. Epigenomics
An epigenomics workflow is used to automate various functions of genome sequence processing. 
The epigenomics workflow also has a pipeline structure and eight levels. The total input to the 
workflow is sequential data obtained from the genetic analysis process in multiple “lanes” 
(Figure 2c).

4.1.4. SIPHT
The Harvard Bioinformatics Project’s SIPHT workflow is used to automate the search for bacterial 
replicon untranslated RNAs (sRNA) in the NCBI database (Figure 2d).

Figure 2a. DAG for LIGO. 

Figure 2b. DAG for Cybershake. 
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4.2. CYBERSHAKE workflows performance parameter analysis
Figures 3-5 compare the proposed approach to the existing approach in Cybershake Workflows 
with respect to cost, time, and energy usage. The approaches used are Artificial bee colony (ABC) 
search, Ant Colony Optimization (ACO), Grey Wolves Optimization (GWO), Tabu-GWO-ACO and the 
proposed method. In Figure 4, the execution cost results for 20, 40, 80, 100, 120, and 200 number 
of VMs is compared using the above-mentioned techniques. We find the optimum cost optimizer. 
The methodologies are compared. Compared to all other alternatives, the proposed approach 
achieves a lower execution cost for each task. In other words, the proposed method is less 

Figure 2c. DAG for Epigenomics. 

Figure 2d. DAG for SIPHT. 
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expensive than the alternatives for creating a schedule. ACO had the highest execution cost 
among the other techniques, while ABC search, and GWO were virtually identical. In contrast, 
the Tabu-GWO-ACO (Hybrid) approach has the second lowest execution cost

Figure 3. Comparison of Energy 
parameter of Proposed and 
Existing Approach in Cyber 
shake Workflows.

Figure 4. Comparison of Time 
delay parameter of Proposed 
and Existing approach in 
Cybershake Workflows.
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In contrast, Figure 5 compares the time delay outcomes for different approaches. The proposed 
approach has a minor time delay compared to the other methods, with Tabu-GWO-ACO (Hybrid), 
ABC, GWO, and ACO having the most delay. The proposed method for shake uses the least amount 
of energy, followed by Tabu-GWO-ACO (Hybrid), ABC, GWO, and ACO.

4.3. LIGO Workflows Performance Parameter Analysis
Figures 6-8 illustrate how the proposed approach compares cost, time, and energy to the existing 
approach in LIGO Workflows. The approaches employed are ABC search, ACO, GWO, Tabu-GWO- 
ACO (cost), and the proposed method.

In Figure 7, the execution cost results for 25, 40, 80, 100, 120, and 200 are compared using the 
above-mentioned techniques. We find the optimum cost optimizer, and the approaches are 

Figure 5. Comparison of Cost 
parameter of Proposed and 
Existing approach in 
Cybershake Workflows.

Figure 6. Comparison of Time 
Delay parameter of Proposed 
and Existing approach in LIGO 
Workflows.
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contrasted. Compared to all other alternatives, the proposed method achieves lower per-task execu-
tion costs. ACO had the highest execution cost among the other approaches, followed by GWO, ABC, 
search, and Tabu-GWO-ACO. Hence, Tabu-GWO-ACO (Hybrid) has the second lowest execution cost. 
On the other hand, Figure 5 also compares the time delay results for various LIGO. The proposed 
approach has less time delay than the other approaches followed by Tabu-GWO-ACO (Hybrid), GWO, 
ABC, and ACO, and possesses the highest delay among all. The proposed approach for LIGO has 
a lower energy usage, followed by Tabu-GWO-ACO (Hybrid), GWO, ABC, and ACO, with the highest 
energy usage.

Figure 7. Comparison of Cost 
parameter of Proposed and 
Existing approach in LIGO 
Workflows.

Figure 8. Comparison of Energy 
parameter of Proposed and 
Existing approach in LIGO 
Workflows.
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4.4. GENOME workflows performance parameter analysis
Figures 9-11 show how the proposed method compares to the existing approach regarding cost, 
time, and energy in GENOME Workflows. In comparison to all other alternatives, the proposed 
approach achieves a lower execution cost for each task, followed by Tabu-GWO-ACO, search, ABC, 
ACO, and GWO having the highest execution cost among all. On the other hand, Figure 8 also 
compares the time delay results for various GENOME. The proposed approach has less time delay 
than the other approaches, followed by Tabu-GWO-ACO (Hybrid), ABC, search, GWO, and ACO 
possessing the highest delay among all. The proposed approach for GENOME has a lower energy 
usage, followed by Tabu-GWO-ACO (Hybrid), search and ABC possessing almost the same values, 
GWO, and ACO, having the highest energy usage.

Figure 9. Comparison of Time 
delay parameter of Proposed 
and Existing approach in 
GENOME Workflows.

Figure 10. Comparison of Cost 
parameter of Proposed and 
Existing approach in GENOME 
Workflows.
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4.5. SIPHT workflows performance parameter analysis
Figures 12-14 show how the proposed approach compares to the existing approach in SIPHT 
Workflows regarding cost, time, and energy. Compared to all other alternatives, the proposed 
approach achieves a lower execution cost for each task, followed by Tabu-GWO-ACO, search, 
ACO, ABC and GWO, almost overlapping each other, and ACO having the highest execution cost 
among all. On the other hand, Figure 12 also compares the time delay results for various SIPHTs. 
The proposed approach has less time delay than the other approaches, followed by Tabu-GWO- 
ACO (Hybrid), ABC, GWO, ACO, and 367 search possessing the highest delay among all. The 

Figure 11. Comparison of 
Energy parameter of Proposed 
and Existing approach in 
GENOME Workflows.

Figure 12. Comparison of Time 
Delay parameter of Proposed 
and Existing approach in SIPHT 
Workflows.
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proposed approach for SIPHT has a 368 lower energy usage, followed by Tabu-GWO-ACO 
(Hybrid), GWO and ABC (overlapping 369 each other), with ACO having the highest energy usage.

4.6. Average performance analysis of CYBER SHAKE workflow
Figure 15 compares the average performance parameter of the proposed and existing methodol-
ogies in shake Workflows. Regarding cost analysis, the proposed solution has a significantly lower 
average execution cost than competing alternatives. ACO has the highest execution cost when 

Figure 13. Comparison of Cost 
parameter of Proposed and 
Existing approach in SIPHT 
Workflows.

Figure 14. Comparison of 
Energy parameter of Proposed 
and Existing approach in SIPHT 
Workflows.
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compared to the other methods. The proposed approach performs well in time delay analysis 
compared to existing methodologies. In this case, ACO and GWO yielded highly similar results. 
Regarding energy usage, the proposed approach for shaking consumes less than others, although 
the other results are relatively similar. Overall, the proposed method outperforms the other cost, 
time, and energy alternatives.

4.7. Average performance analysis of LIGO Workflow
Figure 16 compares the average performance parameter of the proposed and existing methodol-
ogies in LIGO Workflows. Regarding cost analysis, the proposed solution has a significantly lower 
average execution cost than competing alternatives. ACO has the highest execution cost when 
compared to the other methods. The proposed approach performs well in time delay analysis 
compared to existing methodologies. Regarding energy consumption, the proposed approach for 
LIGO uses less energy than others. Overall, the proposed method outperforms the other cost, time, 
and energy alternatives.

4.8. Average performance analysis of GENOME Workflow
In GENOME Workflows, Figure 17 compares the average performance parameter of the proposed 
and existing approaches. Regarding cost analysis, the proposed solution has a significantly lower 
average execution cost than competing alternatives. Compared to the other approaches, GWO has 
the highest execution cost, which is very close to ACO. In terms of time delay analysis, the 
proposed strategy outperforms existing methodologies. The GWO and ACO all had pretty similar 
results in this case. Regarding energy consumption, the proposed approach for GENOME uses less 
energy than others, although the other results are relatively similar. The proposed solution out-
performs the alternatives in terms of cost, time, and energy.

4.9. Average performance analysis of SIPHT Workflow
In SIPHT Workflows, Figure 18 compares the average performance parameter of the proposed and 
existing approaches. Regarding cost analysis, the proposed solution has a significantly lower 
average execution cost than competing alternatives. When compared to the other approaches, 
ACO has the highest execution cost. In terms of time delay analysis, the proposed strategy 
outperforms existing methodologies. The Tabu search, GWO, and ACO all yielded reasonably 

Figure 15. Comparison of aver-
age Performance parameter of 
Proposed and Existing approach 
in CYBERSHAKE Workflows.
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similar results in this case. The proposed approach for SIPHT requires less energy than others in 
terms of energy usage, although the other results are relatively similar. The proposed solution 
outperforms the alternatives in terms of cost, time, and energy.

4.10. Observation from experiment results
● This paper optimizes workflow scheduling to maximize resource utilization while reducing cost, time, 

and energy. The proposed method provides an efficient ranking and finds the optimal Pareto front in 
multi-objective conditions.

Figure 16. Comparison of aver-
age Performance parameter of 
Proposed and Existing approach 
in LIGO Workflows.

Figure 17. Comparison of aver-
age Performance parameter of 
Proposed and Existing approach 
in GENOME Workflows.
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● There are four distinct types of scientific workflows. Each workflow complexity is unique, providing 
efficient validation of the proposed approach.

● Figures 3-5 show cyber shake a comparison of existing methods (Artificial bee colony (ABC), Tabu 
Search, Ant colony optimization (ACO), Grey Wolves optimization (GWO), and TABU-GWO-ACO 
(HYBRID)). PPBNG stands for Pareto-based PEFT ranking with a multi-objective genetic algorithm.

● Figures 6-8 compare costs, delays, and energy associated with LIGO Workflows. The comparison 
shows that PPBNG’s proposed approach improves cost, time, and energy in a significant way. It may 
not improve every time, but it does get better eventually, and 378, the main observation, is that it 
improves significantly when VM increases. Checking the average performance analysis depicted in 
Figure 15 reveals a significant improvement in cost (5–6%), time (7–8%), and energy (10–12%).

● In Figures 6-8, a comparison is made between cost, time delay, and energy in LIGO. The comparison 
demonstrates that the PPBNG-proposed strategy significantly improves cost, time and energy, but 
not every time; it improves the most when VM increases, which is the critical observation. Checking 
the average performance analysis depicted in Figure 16 reveals a 3 to 5% improvement in cost, a 7– 
10% improvement in time, and an 8–9% improvement in energy.

● In Figures 9-11, GENOME Workflows, a comparison is made between cost, time delay, and energy in 
SIPHT. The comparison demonstrates that the PPBNG-proposed strategy significantly improves cost, 
time, and energy, but not every time; it improves the most when 390 VM increases, which is the 
critical observation. Checking the average performance analysis depicted in Figure 17 reveals 
a considerable improvement in cost (by 2–3%), time (by 5–6%), and energy (by 8–9%).

● In Figures 12-14, SIPHT Workflows, a comparison of cost, time delay, and energy in GENOME is 
presented. The comparison shows that the PPBNG-proposed strategy 395 improves cost, time, and 
energy significantly, but not every time; it improves the most when VM increases, which is the critical 
observation. If you examine the average performance analysis depicted in Figure 18, one can see 
a considerable improvement in cost of 2 to 4%, time of 9–10%, and energy of 8–12%. In the PEFT 
approach, tasks are ranked efficiently based on their budgets and dead-lines, but PEFT depends on 
Objectives such as cost, time, and energy, shown in Equation 1 of the fitness function. Therefore, 
previous research ignored object-based ranking, but the proposed approach considers objective in 
PEFT ranking by utilizing PARETO front output.

● The ranking effect provides us with an approximate polynomial search space, and we anticipate 
relationships using a Bayesian technique to reduce complexity to O(n^2). This facilitates time and 
space management.

● Following ranking, optimize the conflict objectively and find the optimum threshold to enable 
efficient VM migration while minimizing cost, time, and energy.

Figure 18. Comparison of aver-
age Performance parameter of 
Proposed and Existing approach 
in SIPHT Workflows.
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4.11. Comparison with existing approaches
Table 3 analyses several approaches using the existing and proposed methods. The current work 
includes studies by various authors utilizing cost, time delay, and energy-based methods. Pillareddy 
and Karri (2023) opted for the MONWS approach, which yielded a cost value of 213, a time delay of 
230, and an energy value of 234.23. Arora and Banyal (2022) selected the PSO-GWO approach, which 
produced findings with 110 cost values, a time delay of 200, and 204.5 energy values. Similarly, 
Bacanin et al. (2022) opted for the GOQRFA method, which produced results with a cost value of 278, 
a time delay of 190, and an energy value of 134.45. Similarly, Bhasker and Murali (2023) used the 
FMMEHO approach, resulting in a cost value of 208, a time delay of 240, and an energy value of 
180.34. In contrast, the proposed framework adopted the MPPNSG approach, which generated 
outcomes with 100 cost values, a time delay of 140, and 110.23 as the energy value. As indicated 
by the test results performances, the proposed framework achieved the lowest cost, time delay, and 
energy consumption compared to all other approaches, indicating improved analysis.

5. Conclusion
This approach improves upon the conventional genetic algorithm by optimizing the Pareto front 
through Bayesian optimization techniques. The scheduling method that has been proposed is hybrid 
and is divided into two stages. In the first phase, an optimized Pareto front by Bayesian approach and 
PEFT ranking of tasks using to generate a list of solutions with low time complexity. In the second 
phase, an NSG-II was applied to overcome the premature convergence problem of a standard genetic 
algorithm and work on conflicting objectives. The algorithmic representations and flow charts lay forth 
the specifics of the activity in an organized fashion. In the methodology, CloudSim simulation tools 
were used to establish a cloud environment, and then simulation-based experiments were carried out 
to analyze the planned task. The trials have utilized various workflows and virtual machines, each with 
its unique combination of performance factors. According to the findings of the experiments, the 
suggested algorithm can produce optimal solutions while simultaneously reducing execution time, 
cost, and makespan. The methodology developed by PPBMG results in a 5–6% reduction in costs and 
an 8% reduction in time delays, respectively. To that end, our approach contributes significantly to the 
existing literature and we posit that this work shall inspire many works in the future.

Developing new multi objective optimization algorithms that can handle the workflow scheduling 
problem efficiently and effectively, considering more objectives and constraints, such as security and 
reliability, and we are integrating machine learning techniques to improve the performance of the algo-
rithms. Overall, the proposed multi objective optimization approach provides a promising framework for 
addressing the workflow scheduling problem in the cloud and has the potential to benefit various scientific 
and industrial applications. However, metaheuristic approach to adequately optimize, and further enhan-
cing load optimization in cloud environment is having a great opportunity to be explored, where this work 
needs further exploration and yet to be identified the best optimization in case of different scenario.

In addition to the advancement in the state-of-the-art algorithm, it would be intriguing how 
large language models, especially ChatGPT can be productive in optimization problems. As there 
are many area where researchers are incorporating ChatGPT and related AI tool to solve the 
problem (Farhat et al., 2023; Rajak, 2022).

Table 3. Comparison with existing approaches
Authors Approaches Time Cost Energy
Pillareddy and Karri (2023) MONWS 213 230 234.23

Arora and Banyal (2022) PSO-GWO 200 134.45

Bhasker and Murali (2023) FMMEHO 208 240 180.34

PROPOSED MPPNSG 100 140 110.23
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