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Summary

¢ The Mediterranean alpine is one of the most vulnerable ecosystems under future environ-
mental change. Yet, patterns, timing and environmental controls of plant growth are poorly
investigated. We aimed at an improved understanding of growth processes, as well as stem
swelling and shrinking patterns, by examining two common coexisting green-stemmed shrub
species.

¢ Using dendrometers to measure daily stem diameter changes, we separated these changes
into water-related shrinking and swelling and irreversible growth. Implementing correlation
analysis, linear mixed effects models, and partial least squares regression on time series of
stem diameter changes, with corresponding soil temperature and moisture data as environ-
mental predictors, we found species-specific growth patterns related to different drought-
adaptive strategies.

¢ We show that the winter-cold-adapted species Cytisus galianoi uses a drought tolerance
strategy combined with a high ecological plasticity, and is, thus, able to gain competitive
advantages under future climate warming. In contrast, Genista versicolor is restricted to a
narrower ecological niche using a winter-cold escape and drought avoidance strategy, which
might be of disadvantage in a changing climate.

® Pregrowth environmental conditions were more relevant than conditions during growth,
controlling the species’ resource availability. Thus, studies focusing on current driver con-
stellations of growth may fail to predict a species’ ecological niche and its potential future

performance.

Introduction

The Mediterranean alpine is considered one of the most vulner-
able ecosystems under future global warming (Nogués-Bravo
et al., 2008; Benito et al, 2011; Lamprecht ez al, 2021).
However, little is known about the drivers of plant growth and
productivity within this ecosystem (Tumajer et al, 2021a;
Blanco-Sanchez er al., 2023) and the overarching question of
when, how, and why woody plants grow (Jevsenak et al, 2022) is
still unanswered (Tumajer ez al., 2021a; Dobbert er al., 2022a;
Buchwal er 4/, 2023). In general, climatic variability has a direct
effect on xylem cell production in woody plants with cambial
activity controlled by temperature and moisture (Vaganov
et al., 2006; Rossi ez al., 2016; Huang ez al., 2020). Yet, the tem-
poral and spatial patterns in cambium dynamics, as well as seaso-
nal growth dynamics and underlying physiological processes,
remain poorly understood (Gamm ez al, 2018; Myers-Smith
et al., 2020). Here, identifying underlying mechanisms control-
ling water and carbon balance and, ultimately, long-term patterns
in cambial phenology of Mediterranean woody plants (Steppe
et al., 2015) is crucial for predicting how species will perform

114 New Phytologist (2024) 241: 114-130
www.newphytologist.com

under current and future climate variability (Cotto ez al., 2017;
Tumajer ez al., 2021a; JevSenak ez al., 2022) and how their bio-
geographic ranges will evolve.

The ecophysiological processes controlling the responses
of plant growth to abiotic drivers are well-studied (Unger
et al., 2009; Gordo & Sanz, 2010; Sharma ez /., 2020). How-
ever, assessing the temporal dynamics of secondary growth
remains challenging since traditional methods (Pacheco
et al., 2018; Tumajer et al., 2021b; Jevsenak et al., 2022; Valeri-
ano et al., 2023) are incapable of capturing the timing of cam-
bium activity and thus the seasonal dynamics and long-term
trends in stem growth (Steppe ¢t al., 2015; Jevsenak ez al., 2022).
Here, the use of dendrometers, which resolve annual radial
growth at finer functional and temporal scales, may be key for
bridging the gap between short-term environmental influences
(such as frost and drought) on hydrological status and xylogenesis
(Drew et al., 2010). Fine-scale dendrometer data, combined with
on-site measurements of environmental variables, generates
insight into growth responses of shrubs at unprecedented tem-
poral resolution and recently advanced our understanding of
widespread phenomena such as greening and browning trends
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across biomes (Dobbert ez al., 2021a, 2022a,b). Here, we applied
this novel approach to study ecophysiological processes by infer-
ring plant growth responses to abiotic drivers from patterns of
stem diameter change as an indicator for relevant physiological
processes.

In the Mediterranean climate with its warm, dry summers and
cool, humid winters cambium activity in woody plants is maxi-
mized during spring and autumn, but reduced during unfavor-
able conditions in summer and winter (Gutiérrez et al., 2011;
Touchan et al., 2012; Pacheco ez al., 2018). Such a bimodality in
growth processes can be interpreted as an adaptation enabling
shrub species to withstand the dual climatic stressors of winter
cold and summer drought by maximizing growth during the
favorable seasons (Mitrakos, 1980; Camarero ez al., 2010). In this
context, spring growth initiation in the Mediterranean has been
identified as controlled by temperatures (Deslauriers ez a/., 2008;
Vieira ez al., 2014; Zhang et al., 2018) as well as increasing moist-
ure availability from spring precipitation (Camarero ez al., 2010;
Pellizzari et al., 2017). Furthermore, resumption of radial growth
after the dry summer period has been linked to autumn rains (de
Luis et al., 2007; Touchan ez al, 2012). Still, few studies address
the influence of water availability on the onset of xylogenesis in
cold semiarid climates (Ren ez af., 2018), while water scarcity due
to summer droughts is considered the most limiting abiotic factor
for plant growth and productivity in the Mediterranean (Battipa-
glia et al., 2014; Szymczak er al., 2020), with alpine areas addi-
tionally affected by water shortage during periods with frozen
ground (Dobbert er al.,, 2022a). To adapt, plants employ three
common strategies: escape, tolerance, and avoidance (Chaves
et al., 2003). Escape involves successful reproduction before the
onset of severe stress, while avoidance relies on delayed initiation
of water scarcity in plant tissues, and tolerance is a result of coor-
dinated physiological and biochemical alterations at the cellular
and molecular level (Chaves ez 4/, 2003; Chen & Wang, 2009).
These strategies are not mutually exclusive, and plants might use
combined strategies (Guo ez al., 2017). However, little is known
about the adaptive capacity necessary to use such strategies in
alpine environments.

These prerequisites for plant growth in the Mediterranean
have implications on carbon reserves (Galiano er al, 2012;
d’Andrea et al., 2020), in particular for alpine plant species with
short time frames for growth (Giménez-Benavides ez 4/, 2018).
In order to use these brief growth opportunities effectively, car-
bon reserves and their remobilization during the active growth
phase are crucial (Palacio ez 4/, 2007). In evergreen trees in the
Mediterranean lowlands, studies have shown that winter assimi-
lates are retained in the plant, with leaves and branches acting as
carbon storage crucial for spring growth (Cerasoli ez al., 2004).
Storage and remobilization of carbon, however, presupposes that
alpine plant species, are able to photosynthesize at subzero tem-
peratures (Pisek ez al, 1967; Semikhatova er al., 1992; Lundell
et al., 2008; Korner, 2021) and even during severe droughts
(Attia ez al., 2015). Thus, we assume that pregrowth conditions
at least partially dictate growth during active growth phases and
that photosynthetically active green stems play a crucial role for
the species’ carbon reserves (Bossard & Rejmanek, 1992).
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Common functional traits (Fyllas ez al, 2020) such as green
stems can be useful proxies for identifying life-history strategies
(Reich ez al., 2003; Adler et al., 2014), providing a basis for re-
expressing fundamental ecological processes from first principles
(McGill et al, 2006). Common leaf, wood, and seed traits are
thought to indicate how plants acquire resources, reproduce, and
compete with other plants (Westoby ez al., 2002). This implies
that the mechanisms determining growth are similar in species
with common traits, which in turn implies congruencies in their
biogeographic range.

Here, we aimed at a better understanding of alpine shrub
growth in the Mediterranean by monitoring growth patterns in
two coexisting green-stemmed species with similar traits but con-
trasting biogeographic patterns, coexisting on slope sites only
(Loffler er al., 2022). According to the general assumption that
species with common traits exhibit similar growth strategies
(Westoby et al., 2002), we expected to find (a) congruencies in
intra- and interannual growth patterns, (b) synchronicity of
growth timing, and (c) similar environmental drivers of growth,
despite differences in their biogeographical patterns. Thus, we
expected that our two coexisting species evolved common strate-
gies to cope with frost and drought and that underlying mech-
anisms are trait-based rather than species-specific. Based on
anticipated common strategies, we further expected to identify
synchronicity in patterns of water-related stem swelling and
shrinking, irreversible growth, and the associated environmental
drivers by mounting dendrometers on the shrubs’ stems to moni-
tor stem diameter changes in combination with high-resolution
environmental data.

Materials and Methods

Shrub species

Here, we focused on two coexisting green-stemmed dwarf shrubs,
namely Cytisus galianoi Talavera & Gibbs and Genista versicolor
Boiss. (Fig. 1), abundant in the Sierra Nevada mountains (Spain)
(Melendo et al., 2003; Giménez et al., 2004; Macek ez al., 2016)
and overall, of similar habit with slight distinctions. Both shrubs
produce a few small leaves only (up to 0.5 mm) during anthesis
in May/June (Talavera & Gibbs, 1997). Their xylem anatomy
and hydraulic architecture is similar, with both species showing
semiring porous wood with clusters of vessels accompanied by
small parenchyma cells (Supporting Information Fig. S1). How-
ever, the elasticity of the above ground biomass and the greenness
of their photosynthetic stems vary (Bossard & Rejmanek, 1992),
with C. galianoi having more elastic and greener stems than G.
versicolor, whose branches are comparatively rigid and unbending
and appear grayish. Both, differences in stem elasticity and stem
greenness may cause different assimilation patterns and alter spe-
cies response to drought, as differences in chlorophyll or chloro-
plast (Nilsen
et al, 1993), and an elastic cell wall tends to react more
strongly to water loss (Bowman & Roberts, 1985; Patakas &
Noitsakis, 1997; Patakas & Nortsakis, 1999). In addition,
C. galianoi has an extensive, highly branched root system that
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Fig. 1 Study regions in the Sierra Nevada (Spain) and location of the study sites (a). Photographs show our two focal species Cytisus galianoi Talavera &
Gibbs and Genista versicolor Boiss. (b) as well as our monitoring setup with a mounted dendrometer, soil moisture probe, and soil temperatures probe (c).

extends ¢. 30 cm into the soil, with most fine roots distributed
within 10 cm of soil depth and forming lateral ramets just below
the soil surface (Fernindez-Santos et al, 2004), while G. versi-
color forms a main taproot (up to 50 cm) combined with fine
roots also distributed in the upper soil layers (Fig. S1).

Density and surface cover of the two focal species differ with
elevation, aspect, slope, and curvature. Cytisus galianoi shows a
relatively wide biogeographical and ecophysiological range,
occurring at elevations up to 2700 m above sea level (asl) at a
variety of sites ranging from exposed ridges with severe frosts dur-
ing winter to early snowbeds. Genista versicolor diminishes with
elevation (Lorite, 2001) and is restricted to the more protected
early snowbeds and slopes (Loffler ez a/., 2022). Both species pre-
sumably create their own microhabitat (Piston ez al, 2016). In
this study, nomenclature and taxonomy of the focal species fol-
low Blanca et /. (2009).

Study sites and monitoring design

This study was conducted along two alpine transects above the
local treeline in the Spanish Sierra Nevada, reaching from 2400
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to 2700 m asl in the west, and from 2100 to 2600 m asl in the
east, respectively (Fig. 1). Here, our focal species dominate the
vegetation cover and coexist at the middle-alpine slopes (Loffler
et al., 2022). The overall climate is characterized by a stable
high-pressure inversion layer in summer with autochthonous
weather associated with continental easterly currents, resulting
in hot and dry conditions (Roberts ez al, 2011; Jiménez-
Moreno & Anderson, 2012). In autumn, winter, and spring,
cyclonic activity of Atlantic low-pressure systems results in cool
and humid conditions (Roberts ez al., 2011). Additionally, con-
ditions are strongly influenced by the typical high mountain cli-
mate (Herrero & Polo, 2016; Gémez-Ortiz et al, 2019), with
plants exposed to cold winters, high solar radiation, strong
winds, and snowfall, resulting in comparatively short growing
seasons (Valle, 2003).

In this study, we focused on slope positions, which were
stratified-randomly selected from the treeline upwards at ¢. 100-
m intervals, following the framework of our long-term alpine
ecosystem research project (LTAER-ES; Loffler er al., 2022). At
these positions, our species experience periodic snow cover caused
by wind drift and lee-side effects in the complex alpine
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topography, representing a fine-scaled mosaic of scattered shrub
patches, grasses, open rock, and debris.

Dendrometer data, monitoring setup, and environmental
data collection

To monitor radial stem diameter variations, we equipped the
main stem of 29 randomly selected specimens of C. galianoi and
G. versicolor, respectively, with high-precision point dendrome-
ters (type DD-RO; Ecomatik, Dachau, Germany, temperature
coefficient< 0.2 pum K1), which recorded data at 1-min inter-
vals. The dendrometers were attached to the selected stems hori-
zontally above the ground surface (¢. 1 cm above ground) as close
as possible to the root collar, integrating growth of all plant parts
(Bér ez al., 2007; Ropars e al., 2017; Fig. 1). To minimize the
influence of hygroscopic swelling and shrinking of the bark
(Zweifel & Hasler, 2001), we removed the outermost layers of
dead periderm (0.5 mm) at the contact point of the dendrometer
(Dobbert et al., 2022b). To account for the variation within indi-
vidual specimens and between multiple stems of the same speci-
men, we monitored a large number of specimens, representative
of the conditions observed at each site. This also accounts for var-
iations between the individual shrubs that are expected to exhibit
pronounced temporal plasticity due the high climatic variability
common in the Mediterranean biome, where the rate of second-
ary growth must be adapted to a wide range of climatic condi-
tions (Camarero er al, 2010). We then obtained daily
mean values from our raw dataset (Deslauriers ez 2/, 2007) and
normalized the annual stem diameter curves by removing the
initial stem diameter (ranging from 3970.98 to 8779.10 pum for
C. galianoi and from 4453.43 to 13307.36 um for G. versicolor)
from the annual curves since dendrometers measure changes in
stem diameter relative to the start of the measurement cycle.
Finally, we checked the data for outliers (25" percentile/75"
percentile = 1.5 X interquartile range as cutoff range). Since
we did not find any oudiers, all daily values per curve were
retained. These processing steps resulted in time series compris-
ing six full consecutive years (January 1, 2015 to December 31,
2020; Fig. 52).

Micro-environmental conditions

To assess environmental drivers of radial stem diameter varia-
tions, we measured a set of variables at each site, namely soil tem-
peratures (°C, Trz) and volumetric soil water content (m*>m™3,
SMRrz). Thermistors (type S-TMB-002, %+ 0.2°C accuracy) and
soil moisture probes (type S-SMD-MO005, + 3% accuracy) were
installed at 10 cm soil depth, that is within the root zone of each
specimen (Loffler & Pape, 2020; Dobbert ez 4l., 2021a,b). Both
were recorded at 1-min intervals and stored as hourly averages
using ONSET’s HOBO Loggers (type H21-002). This design
assumes that in the generally shallow alpine soils, where deeper
roots invade the source rock, lateral root growth at shallow depths
is most important for accessing surface moisture and nutrients
and thus a major influence on plant health (Muktadir
et al., 2020). Most of the lateral and fine roots of our focal species
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are distributed at these shallow depths (Fig. S1), allowing us to
capture a large part of the relevant soil conditions. The noninva-
sive design generates comparable data across large elevational and
topographic gradients. Complementary, we recorded the follow-
ing environmental variables at 2692 m asl, reflecting the climatic
conditions in our study area: Relative air humidity (tH, %) and
air temperature (AT, °C) at 2 m above ground using Skye rht
sensors (SKH 2065) with & 2% accuracy for rH and £ 0.2°C for
T, global radiation (GRsz, W m™?) at 1 cm above ground in the
shoot zone of one specimen using a silicon pyranometer (type
S-LIB-M003) with 4+ 10 Wm > accuracy, air pressure (AP,
hPA) at 2 m above ground using a barometric air pressure sensor
(type Meier-NT-MNT10025) with £ 0.01 hPA accuracy, and
precipitation (mm, P) at 100 cm above ground using a precipita-
tion sensor (type LAMBRECHT-meteo-15189) with 4+ 2%
accuracy. Sensors were mounted to an ADL-MX data logger that
recorded data at hourly intervals. All environmental data were
collected for the period January 1, 2015 to December 31, 2020,
with additional data from 2014. There were no missing data.

Regional climate and micro-environmental conditions

Consistent with the bimodality of the Mediterranean climate
(Mitrakos, 1980; Camarero et al., 2012), our sites were character-
ized by mild and humid spring and autumn conditions, dry sum-
mer periods, and cold winters with periodic snow cover (Fig. S3;
Table S1; Loffler er al., 2022). A pronounced variability between
years (Fig. S4), reflected the Mediterranean climate (Camarero
et al., 2010). Measured TRy at all monitored sites correspond to
the AT regime in 2 m above ground (Fig. S5a) with Try gener-
ally higher than AT and no indication for ground frost. Tem-
peratures begin to rise in March/April (Fig. S6), with a time lag
to the increase in GRgz (Fig. S5a). Precipitation peaks in spring
and autumn with high interannual variability and in close accor-
dance with SMy (Fig. S5). P is also reflected in the rH pattern
(Fig. S6; Mitrakos, 1980). Usually, SMgz is high-throughout
winter and if low increases in March/April and peaks in May,
(>0.20m’m™3; Figs S3, S5b). Overall, both, Trz and SMgy,
were slightly higher for C. galianoi than for G. versicolor.

Analysis of growth patterns

From the measured dendrometer curves, we defined two growth
phases during the first and second half of the year, which are
intermitted by a phase of stem contraction during summer and a
second contraction phase during winter. This subdivision of
intra-annual growth reflects the species’ seasonal growth patterns
and accounts for the bimodal rhythm of the Mediterranean cli-
mate (Mitrakos, 1980), which is known to induce bimodal
growth patterns in several Mediterranean lowland tree species
(Camarero et al., 2010) and potentially also in Mediterranean
alpine species (Olano et al., 2013).

Here, growth-induced irreversible stem expansion (growth)
was calculated as the cumulative maximum, or current half-year
stem diameter maximum minus the most recent maximum of the
previous study period. Thus, growth is equivalent to an increase
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in stem diameter when the measured diameter is greater than at
any point in the past (Zweifel, 2016; Zweifel ez al., 2021). This
approach is inspired by the ‘zero-growth approach’ proposed by
Zweifel (2016), which we applied to semiannual rather than daily
data as originally suggested by Zweifel (2016). Accordingly,
growth can only take on positive values and does not necessarily
occur during every growth phase. We refer to years in which there
was no growth as dormant years. Whenever growth occurred, we
calculated both the change in stem diameter and the temporal
duration of the respective phase for all specimens and years. Since
both growth phases represent irreversible stem growth, it can be
assumed that both phases are also visible in the anatomical struc-
ture of the species and should therefore be directly comparable
with classical measurement methods of radial stem growth,
including ring width (Fig. S1). Additionally, we calculated stem
water deficit, defined as periods of stem contraction, by subtract-
ing the measured stem diameter changes from a cumulative
growth curve (Zweifel, 2016). All growth data were scaled and
centered before further analysis, dividing the dataset by its stan-
dard deviation and subtracting the overall mean.

Correlation analysis and linear mixed effects models

To uncover climate—growth relations, we utilized Pearson’s corre-
lation coefficients, calculated in the statistical software R (R Core
Team, 2023) for semi-annual irreversible stem growth and daily
mean values of Trz and SMgz. To account for potential lagged
effects of previous-year conditions on current-year growth, we
included environmental data from the respective previous year in
our correlation (Bar et al., 2008; Weijers ez al., 2018), including
additional environmental measurements from before the start of
our study period (2014). To account for variation between the
individual sites, we additionally fitted linear mixed-effects models
to our data, using the LME4 R package (Bates ez al., 2015). For
these models, semi-annual irreversible stem growth entered as
response variable, and monthly mean values for all environmental
variables as fixed effect. The individual specimens were included
as random effect. Specimens entered separately into the analysis,
to avoid generalizations that might result from averaging the
data. Averages were calculated for visualization purposes only.

Partial least squares regression

Finally, we applied partial least squares regression (PLSR;
Wold, 1975; Abdi, 2010) to our dataset to identify crucial envir-
onmental thresholds promoting or impeding growth (Carrascal
et al., 2009; Frindte ez al., 2019; Loffler & Pape, 2020). Here, we
used variable selection methods to define a subset of relevant con-
ditions and to assess their relative importance. We aggregated our
environmental data and rounded them to 0.5°C for Ty, and
0.01 m* m 2 for SMy, values. We then counted and summed
the frequency of each value occurring within the rounded time
series (Loffler & Pape, 2020; Dobbert ¢z al., 2021a) for each
meteorological season, that is winter, spring, summer, and
autumn (for definition see Trenberth, 1983), creating sets of
predictor variables. The associated response values were the
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semi-annual growth values calculated before (Fig. S7). For the
final estimation of the single-response model, we used the
SIMPLS algorithm (de Jong, 1993) implemented in the R pack-
age MDATOOLS (Kucheryavskiy, 2020). We determined the opti-
mal number of variables in the PLSR model using Wold’s R
criterion (Wold, 1978), and assessed the explained variance dur-
ing model calibration and validation by tenfold cross-validation.
From these models, we then derived the relevance of each inde-
pendent variable using the selectivity ratio (SR; Mehmood
et al., 2012), defined as the ratio of explained to remaining (unex-
plained) variance for each variable in the target projection vector
(Farrés et al., 2015; Frindte et al., 2019). In order to achieve bet-
ter contrastable results, the explained variance (SR/abs (SR + 1))
was derived from the SR (Rajalahti ez 4/, 2009). By multiplying
the SR of each variable by the sign of the corresponding regres-
sion coefficient, we determined which variables are positively or
negatively associated with the dependent variable (Rajalahti
et al., 2009; Loffler & Pape, 2020; Dobbert et 4l., 2021a,b). In
this way, we clearly identified the environmental conditions that
were significantly related to annual growth.

Results

Patterns of stem diameter change and growth

Opverall, annual stem diameter change in our focal species was of
bimodal character, yet we observed pronounced intra- and inter-
annual variability, as well as species-specific patterns (Fig. 2).
Cytisus galianoi showed a more pronounced bimodal pattern than
G. versicolor (Figs 3a, S8), most apparent during the meteorologi-
cal summer, when C. galianoi showed much stronger stem con-
traction than G. versicolor (Figs 2, 3a). Subsequently, stem water
deficit was much higher in C. galianoi during summer. It then
rapidly decreased in G. versicolor in early autumn, whereas in C.
galianoi, first autumn rains caused only initial rehydration, with
the main reduction in stem water deficit occurring in late
autumn/winter (Fig. 3a,b). The diurnal pattern of stem diameter
change also varied between species (Fig. 3d). While maximum
stem swelling during the dry season occurred at ¢. 09:00 h in both
species, in C. galianoi, the shrinking peak occurred with a time
lag of ¢. 2h at ¢ 17:00 h. During the wet seasons, C. galianoi
showed a similar pattern, but with markedly less pronounced
amplitude, while in G. versicolor the pattern turned into a con-
cave curve, with the shrinking peak occurring at midday. Simi-
larly, growth patterns were contrasting between our two species,
with G. versicolor achieving highest growth rates in autumn, when
growth coincided with the most pronounced stem diameter
increase, while C. galianoi achieved its highest growth rates in
spring (Figs 3¢, S9, §10).

Timing of growth

The timing of growth is shown in Fig. 4 and Table S2. For both
species, the onset and cessation of the first growth phase was
usually in February/March and May/June, respectively, occurring
slightly earlier for G. versicolor compared with C. galianoi.
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Growth resumption after summer drought, that is the onset of
the second growth phase, usually took place in August/September
for C. galianoi, several weeks after G. versicolor (July/August).
Growth cessation, however, was similar in both species (Novem-
ber/December). The interannual variability of the duration of the
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two growth phases was high, and growth rates in both species
were decoupled from this duration (Fig. S10; Table S2).

Environmental drivers of growth

Opverall, we found complex, species-specific environmental con-
trols of stem diameter change, strongly differing between the
growth phases, with growth significantly linked to the environ-
mental conditions before the onset of growth in both species
(pregrowth conditions; Figs 5, S11).

During the first growth phase, C. galianoi was promoted by
high Trz during the previous year (March—November), while
there was no strong preyear Trz control in G. versicolor (Figs 5,
S11) and previous year’s SMpz conditions were not relevant for
the first growth phase in both species. Yet, winter conditions
before growth onset showed contrasting relations to spring
growth in both species, affecting C. galianoi slightly negatively
(Fig. 5), with growth promoted by relatively low Try but
impeded by Trz reaching 3.5°C during the pregrowth winter
(Fig. 6). At the same time, growth in G. versicolor was positively
linked to winter Trz (Figs 5, S11), with Trz of 5°C promoting
and Trz of 1.0°C hindering growth during pregrowth winter
and spring (Fig. 6). Growth in both species was promoted by
SMgyz values indicating unfrozen ground (0.19-0.24 m®m™>;
Fig. 6). However, our results also indicate a positive effect of
comparatively dry winter conditions in both species (Figs 5,
S11). Thus, we found high spring growth rates in C. galianoi fol-
lowing a cold, snow-free winter (2015), but low spring growth
rates following a mild, snow-rich winter (2017; Fig. S8;
Table S1). In contrast, we found high spring growth rates in G.
versicolor following a warm snow-free winter (2016), moderate
growth rates after a snow-rich winter (2017), and low spring
growth rates following a cold winter (2015; Fig. S8; Table S1).

During the second growth phase, growth was similarly linked
to pregrowth conditions, and both species performed best after a
warm, dry winter, with winter conditions being particularly sig-
nificant in G. versicolor (Figs 5, S11), promoting growth at Tryz
of 5.0°C but impeding growth at a Trz below 1.0°C (Fig. 5).
Both species benefitted from low SMy7 during early spring and
C. galianoi performed best under high SMyry before the begin-
ning of the dry period, whereas moisture supply during the dry
period was detrimental (July), while G. versicolor was promoted
by an earlier onset of the drought period (June) (Figs 5, S11).
Again, the PLSR analysis showed no thermal nor hydric growth
control from pregrowth spring conditions (Fig. 6), indicating a
high temporal complexity of these relations. However, autumn
growth in C. galianoi was promoted when summer conditions
were mild (10.0-16.5°C) and dry (c. 0.05 m’> m ), with Trz of
20.0°C having a negative influence on species performance. After
the summer drought, only C. galianoi showed a positive moisture
control, while autumn growth in G. versicolor was positively
linked to high Trz in late August (Figs 5, S11). Furthermore,
both species were promoted by high September Trz followed by
cool and humid conditions during October/November (Figs 5,
S11). The PLSR confirmed these results (Fig. 6). Thus, low

growth rates observed in autumn during the years 2017 and
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2019 can be attributed to repeated drought spells in late autumn.
By contrast, highest growth rates were achieved when the first
autumn rains were followed by a warm, moderately humid
autumn (Fig. S3; Table S2).

Opverall, our main findings highlight the importance of pre-
growth conditions for growth compared to the environmental
conditions during the actual growth phases. Growth during the
major growth phases in C. galianoi (spring) and in G. versicolor
(autumn) was superiorly driven by pregrowth winter conditions.

Discussion

Growth patterns

We observed bimodal patterns of annual stem diameter change
in two coexisting alpine shrub species, leading to pronounced
but contrasting bimodal patterns in annual growth. While the
observed stem diameter changes showed strong similarities
between the two species, they did not necessarily correspond to
their growth patterns but rather reflected differences in rehydra-
tion patterns. In general, it is assumed that major growth pro-
cesses in Mediterranean woody plants occur during spring, with a
minor second growth phase in autumn (Pasho ez al., 2012; Pelliz-
zari et al., 2017; Alday et al., 2020; Camarero et al., 2021). This
assumption does not hold true for our species. The observed
growth patterns rather imply that the seasonality of xylogenesis is
highly species-specific. Distinguishing between growth defined as
irreversible stem expansion caused by dividing and enlarging cells
in the cambium, and reversible shrinking and swelling of the
stem caused by imbalances between transpiration and root water

uptake (Zweifel ez al., 2005; Zweifel, 2016) helped to deduce the
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species’ water use strategies and understand their contrasting
growth patterns. Summer stem contractions and dehydration,
that is strong increase of stem water deficit, in C. galianoi suggest
drought tolerance at the cost of reduced performance during
autumn (Bacelar ez al.,, 2012), when rehydration is prioritized to
increase the water potential before growth resumption, but with
the advantage of benefiting from carbon fixation in winter and to
maximize growth at high water potendial in spring (Bossard &
Rejmanek, 1992). This is supported by contrasting patterns in
diurnal stem diameter during the wet and dry seasons, with a
high amplitude during the wet season, suggesting an overall
higher water potential when major growth processes occur. Over-
night replenishment allows cell turgor, cell expansion, and thus
stem growth to resume as the rising water potential of the stem
allows water to flow from the xylem conduits into the living cells
of the stem (Steppe ¢t al., 2015). In contrast, during the dry sea-
son, when the soil is no longer fully hydrated, water stores in the
phloem and xylem are not fully replenished overnight (Steppe
et al., 2015), which inhibits growth because water potential in
the xylem decreases when transpiration exceeds root water uptake
(Sevanto ez al., 2011), causing water to flow from the living cells
into the xylem conduits, with cell turgor following the same
downward trend as water potential in the stem, resulting in stem
shrinkage rather than cell expansion and growth (Steppe
et al., 2015). Despite the similarities in the diurnal pattern of
stem diameter change during the dry season, the marginal
increase in stem water deficit and the less pronounced summer
stem contraction suggest high water potential throughout sum-
mer in G. versicolor. This, in turn, suggests drought avoidance
without compromising performance while maintaining physio-
logical functionality for carbon fixation at high tissue water
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potential throughout summer (Chaves ¢t al, 2003; Bacelar
et al., 2012), allowing the species to maximize growth with
autumn rains when marginal diurnal changes in stem diameter
indicate high water potential, likely significantly increasing the
time period for growth (major autumn growth).

Timing of growth

Our results confirm that the duration of rehydration processes
depends on the duration and intensity of drought connected to
the risk of embolism (Cochard & Delzon, 2013) and on the spe-
cies” ability to withstand negative water potentials before cavita-
tion occurs (Ennajeh ¢f al., 2008), that is air is aspirated into the
vessels, disrupting the cohesion of the water column (Sperry &
Tyree, 1988; Lens e al., 2013). Thus, the discrepancy in the tim-
ing of growth resumption between our two species is probably
linked to differences in the species’ strategy to cope with drought.
Their photosynthetically active stems might be key in achieving
positive net photosynthetic rates in contrasting ways (Bossard &

New Phytologist (2024) 241: 114-130
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Rejmanek, 1992; Nilsen ez al., 1993). The intensely green stems
of C. galianoi indicate a higher chlorophyll content and the spe-
cies might achieve higher photosynthetic rates at the expense of a
higher stem water deficit (stem contraction). Cytisus galianoi tol-
erates higher fluctuations in plant water potential, possibly
related to stomata limitation during water stress (Nilsen
et al., 1993), with weak stem stomata control indicating pro-
nounced anisohydric behavior (Jones, 1998; Tardieu & Simon-
neau, 1998; Leuschner er al, 2022). Despite water limitation
causing a decrease in carbon gain due to stomatal limitation (Nil-
sen et al., 1993), there is evidence that anisohydric plants can
keep high assimilation rates while leaf water potential declines,
allowing for higher productivity (Attia er al., 2015). The species
is, thus, able to still achieve high photosynthetic rates even under
increasing water stress (Attia ez al, 2015). However, because
positive stem assimilation depends on stem water potential (Nil-
sen et al., 1993), photosynthetic rates are likely to be lower dur-
ing the dry season when stem water-deficit increases. Unlike
species that maintain carbon gain and water potential throughout
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the year (Nilsen ez al., 1993), catbon gain in C. galianoi likely
decreases during the dry season. However, this decrease might be
partially mitigated by assimilation in the morning hours when
high water potential promotes photosynthetic activity. Thus, car-
bon uptake likely continues throughout summer, albeit at lower
levels, allowing the species to benefit from high radiation input
on the one hand, but making it more susceptible to damage from
prolonged drought stress on the other hand (Attia ez al, 2015),
which ultimately may reduce photosynthetic rates, and may lead
to decelerated rehydration and, consequently, to delayed growth
resumption. By contrast, G. versicolor, whose photosynthetically
active stems are more grayish-green, retains high water potential
throughout summer, which likely related to reduced hydraulic
and stomatal conductance to maintain a consistent water poten-
tial. This rather isohydric behavior comes at the cost of lower net
photosynthesis, as it reduces the species’ ability to fix carbon for
growth when the soil dries out (Attia ez 4/, 2015). Ultimately,
the species experiences faster rehydration and, consequently, ear-
lier growth resumption. Overall, we conclude that even slight var-
iations in morphological traits in our alpine shrub species result
in distinct variations of the species’ hydraulic behavior and thus
in the timing of growth resumption.

At the same time, the timing of growth in our species proved
independent of the length of the growing season, confirming that
plant performance under variable season lengths largely depends
on the specific environmental drivers during and before the
growth period (Hollesen ez al., 2015; Weijers ez al., 2018; Dob-
bert ez al., 2021a). The strong influence of pregrowth conditions
on species performance has been linked to the critical timescale
relevant to plant growth (L6ffler & Pape, 2020) and is often still
a missing dimension (Choler, 2018; Niittynen & Luoto, 2018).
As such, we argue that the impact of intensity and duration of
the environmental driver constellations on plant performance is
relative to the species’ traits and ecophysiological strategies.

Environmental drivers of growth

Observed growth responses to the alpine environment are in line
with earlier studies of Mediterranean tree growth, showing the
importance of late autumn to winter conditions before spring
growth (Bogino & Bravo, 2008; Camarero ¢t al., 2013). Both of
our species were promoted by dry winter conditions, while winter
Trz had contrasting effects, with C. galianoi showing a negative
and G. versicolor a positive growth response. These contrasts in
controlling winter conditions suggest that C. galianoi can cope
with relatively low (but > 0) Trz, possibly due its potential to tol-
erate dehydration by active stem contraction, similar to mecha-
nisms shown in arctic-alpine shrubs (Dobbert ez al, 2021b,
2022b). Using its intensely green stems, C. galianoi may capita-
lize from additional photosynthetic opportunities (Bossard &
Rejmanek, 1992; Wyka & Oleksyn, 2014), which allow carbon
fixation throughout winter, if snow cover does not hinder photo-
synthetic activity. Moreover, our findings confirm physiologically
activity of winter-green species at low temperatures (Oribe &
Kubo, 1997), which was shown to increase at temperatures just
<0°C (Lundell ez al., 2008), and in some high latitude vascular
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<—4.0°C  (Semikhatova
et al., 1992). Cytisus galianoi may benefit from increased synthesis

plants even at temperatures
of carbohydrates during the period of reduced respiration
(Gimeno et al., 2012; Camarero et al., 2013), when low Ty pro-
mote the storage of carbohydrates in root parenchyma (Sperling
et al., 2017). Thus, the major role of spring growth is most likely
explained by continued carbon gain throughout the winter, with
N-fixation likely playing an additional role (Wheeler et al., 1979;
Larsen ez al., 2012). By contrast, our findings regarding G. versi-
color indicate that it is sensitive to winter frosts and may therefore
better perform under snow cover at lower alpine elevations,
where south-facing slopes experience periodic snow cover with
moderate snow depth (up to 2 m) that persists over weeks, re-
establishes after warmer winter periods, and may last into spring
after a long, cold, and snow-rich winter (Loffler ez al., 2022). As
such, our results explain the biogeographical patterns of the
species (Loffler ez al., 2022).

Cytisus galianoi’s preference of humid and cool spring condi-
tions suggests that the species can capitalize from early defrost
water and meltwater even during short windows of photosyn-
thetic opportunities (Starr & Oberbauer, 2003), and is able to
increase photosynthetic capacity even when snow is present
to raise nonstructural and storage carbohydrate content in the
stems before snowmelt (Starr & Oberbauer, 2003; Lundell
et al., 2008). By contrast, G. versicolor’s preference of warm
and dry spring conditions suggests that solid precipitation, that
is snow in the alpine, may hinder photosynthesis, possibly
due to limited stomata conductance (Starr, 2001; Starr & Ober-
bauer, 2003) and the less green stems, preventing the species to
exploit the light passing the physical structure of snow (Liston
et al., 1999) and thus to increase the level of carbohydrates before
snowmelt. Both species showed a positive correlation to April
Trz, corresponding to findings in other Mediterranean alpine
species, (Olano
et al., 2013). However, since we found growth onset in our spe-

related to early cambium reactivation
cies significantly earlier than April, April Try conversely affect
the species’ performance later during the first growth phase. This
is consistent with studies in arctic-alpine evergreen shrubs, which
were promoted by mid-growing season temperatures (Bir
et al., 2008; Franklin, 2012). At the end of the first growth phase,
C. galianoi preferred cold, humid conditions, while G. versicolor
preferred continued drought and high Trz, suggesting that C.
galianoi benefits from early summer rains, which provide sus-
tained water supply well into the summer, essential for the spe-
cies’ tolerance to desiccate. By contrast, G. versicolor adjusts its
hydraulic mode to drought avoidance, and early summer rains
might disrupt the species’ water-use efficiency.

During the second growth phase, we found winter, spring, and
early summer conditions still highly relevant, with only C. galia-
noi additionally impeded by water supply in July. Such occa-
sional summer rains may enforce the species’ stomata activity and
disrupt water-use efficiency. Overall, both of our species are well-
adapted to summer drought (Dobbert ¢z al., 2022a), albeit using
different strategies. These differences are related to morphological
variations in the species’ stems and roots with C. galianoi’s
drought tolerance potentially based on elastic stems, which may
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shrink upon water loss while maintaining high turgor (Patakas &
Nortsakis, 1999), probably through osmotic adjustment that
allows maintenance of turgor in living cells (Kozlowski & Pal-
lardy, 2002). This rather prodigal water use strategy (Bacelar
et al., 2009) requires a highly branched root system (Fernandez-
Santos et al., 2004), allowing to absorb water from a large volume
of soil (Arndt, 2000) with the adjustment of its allocation pattern
to the roots (Jackson ez al., 2000). However, despite its extensive
root system, C. galianoi is unable to draw water from the deep
soil, leading to moisture stress when the topsoil dries (Muktadir
et al., 2020), resulting in stem shrinking. By contrast, G. versi-
color's drought avoidance strategy is likely based on rigid stems,
which may increase water uptake from dry soil (Schulte, 1993).
Therefore, a conservative water use strategy (Bacelar ez al., 2009)
presupposes access to sufficient water during drought, which the
species likely has due to its long taproot that permits a sustainable
water supply (Passioura, 1983; Bacelar ez al., 2012), avoiding sea-
sonal fluctuations in water availability (de Micco &
Aronne, 2012).

At the end of summer drought, only C. galianoi showed a
positive SMyy signal, while G. versicolor was promoted by high
Trz. The abrupt increase in stem diameter is therefore prob-
ably based on the extensive root system, which enables the spe-
cies to benefit from pregrowing season water supply (Bossard
& Rejmanek, 1992) by absorbing surface water with its lateral
fine roots at shallow depths. This promotes rapid replenish-
ment of water resources, leading to an increase in stem water
potential and cell turgor required for growth (Lockhart, 1965;
Cabon et al, 2020; Zweifel et al, 2021). To achieve and
maintain cell turgor in autumn, stomata adjustment may play
an additional role, as patterns of stem diameter change
observed suggest a shift from anisohydric stomata behavior
during summer, to partial isohydry during autumn, which has
been shown to be effective after prolonged droughts when pre-
dictable seasonal rainfall occurs (Guo e 4/, 2020). By contrast,
we assume that G. versicolor uses its taproot to absorb water
from the deeper ground and maintains a high water potential
throughout the summer. However, the taproot is unlikely to
obtain water for growth (Muktadir ez al, 2020) and more
likely to act as a long-term water reservoir. Thus, autumn rains
are more likely to be absorbed by lateral fine roots at shallow
depths, which, due to the overall high water potential, rapidly
leads to adequate cell turgor and thus growth resumption
at still high temperatures. Here, maintaining a high water
potential could involve an isohydric mode until sufficient
autumn precipitation has occurred (Reynolds er al, 1999;
Ogle & Reynolds, 2004), at the cost of productivity (Attia
et al., 2015). Growth preference of sustained heat lasted until
September, while cool and moist conditions became promotive
in October and November and autumn droughts were growth
limiting in both our focal species. During autumn, growth
conditions in the Mediterranean alpine are overall favorable,
and species-specific ecophysiological adaptation might not be
necessary, which is in agreement with previous studies showing
strong precipitation drivers of growth across different species
(de Luis et al., 2007; Valeriano et al., 2023).
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Collectively, our findings highlight contrasting patterns of
carbon gain resulting from different strategies for coping with
frost and drought, and at the same time underscore the critical
importance of resource accumulation before growth in both spe-
cies, albeit with seasonal variation. Pronounced frost and
drought tolerance allows C. galianoi to benefit from additional
carbon gain during winter and summer, with assimilation before
growth leading to carry-over effects that allow it to perform
even under adverse conditions during the active growth phase,
which is facilitated by the ability to store and mobilize carbohy-
drates (Palacio er al, 2007) in order to decouple growth from
carbon uptake (Iwasa & Kubo, 1997; Wyka, 1999; Meloche &
Diggle, 2003). Although G. wersicolor also benefits from such
carry-over-effects, the extent is likely much lower with an avoid-
ance strategy slowing its activity during these periods. There-
fore, the major amount of carbon reserves in this species is
likely attained during the active growth phases, with surplus
assimilates being stored whenever available and remobilized
whenever needed.

These unexpected contrasting patterns leave no doubt that
mechanisms underlying growth are species-specific and deter-
mined by covariation in traits (Fyllas ez /., 2020), that is in stem
greenness and root morphology. Along with differences in the
species” distribution (Loffler er al, 2022), this suggests overall
high growth plasticity (Pacheco er al, 2018; Tumajer
et al., 2021b; Valeriano ez al., 2023). As such, we agree that com-
mon trait-by-trait scaling relationships should be treated with
caution (Fyllas e al., 2020) as these relationships may not be
robust at local scales (Messier et al., 2017).

Opverall, the contrasting relation to winter temperatures prob-
ably determine the species’ distributional range, with G. versi-
color being limited to the slopes where there is no risk of soil
freezing, while C. galianoi is able to occupy a widespread ecolo-
gical niche all over the Mediterranean alpine (Dobbert
et al., 2022a; Loffler et al., 2022). Since both species were able
to benefit from additional photosynthetic opportunities during
snow-free winters, warmer winters will most likely enhance spe-
cies performance as they shorten periods of snow cover and con-
sequently lengthen the period of resource acquisition (Dobbert
et al., 2022a). In addition, reduced temperature constraints
likely allow xylem differentiation to continue during winter (de
Luis et al, 2007; Vieira et al., 2014). Likewise, an expected
decrease in precipitation and extension of summer drought
(Giorgi & Lionello, 2008) may affect the species less than
expected, as both were well-adapted to severe summer drought,
with their cambial rhythm closely linked to seasonal water
dynamics (Dobbert ez al., 2022a). However, differences in the
species’ drought resistance strategies may make C. galianoi a
better competitor under increased droughts, using drought tol-
erance as the ‘ultimate drought strategy’ (Connor, 2005), with
the disadvantage of risking a drop of the plant water potential
under continued carbon fixation (Arndt, 2000). The ability to
postpone or avoid tissue water deficits allows for short-term sur-
vival, but may threaten the species’ long-term survival, if it fails
to prevent dehydration of tissues, which are relatively sensitive
to desiccation (Ludlow, 1980).
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Conclusions

Here, we compare radial stem diameter changes of two coexisting
green-stemmed Mediterranean alpine shrub species. By using
fine-scale dendrometer data, combined with on-site measure-
ments of environmental variables directly within the root zone of
the respective specimens, we succeeded in detecting complex pro-
cesses across elevational and topographic gradients, including
clear differences in growth patterns, timing of growth, and the
environmental drivers controlling growth processes, linked to
contrasting winter freezing and summer-drought adaptation stra-
tegies. Nevertheless, there are some physiological processes,
which are not reflected in the patterns of stem diameter change
but might be indirectly coupled to it, such as photosynthesis,
respiration and biomass partitioning, as well as leaf and growth
phenology. We propose an integrative approach that, by combin-
ing methods from different scientific fields (anatomy, ecophysiol-
ogy, dendrochronology, ecology; Steppe et al., 2015), would help
to fill our knowledge gaps and bring us even closer to answering
the question of when, how, and why plants grow.

Here, we show that C. galianoi uses winter-cold tolerance and
summer-drought tolerance, whereas G. versicolor uses winter-cold
escape and summer-drought avoidance strategies. As such, G. ver-
sicolor has a far narrower ecological niche than C. galianoi, yet
might profit from warmer winters. However, the species might
suffer from severe summer droughts and might be threatened by
extreme winter cold, when a protective snow cover is missing/
shortened. Both species were driven by pregrowth conditions,
albeit with differences depending on the season, and, pregrowth
environmental conditions were more relevant than conditions
during actual growth, controlling species’ resource availability
and performance. This suggests that studies focusing on the cur-
rent driver constellations of growth may fail to predict the spe-
cies” ecological niche and thus their potential future performance.
As a winter-cold-adapted species, C. galianoi has the higher eco-
logical plasticity, and thus might be the winner under future cli-
mate warming.
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Fig. S1 Illustration of the focal species and their traits.

Fig. S2 Example time series for two specimens at 2100 m above
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Fig. 83 Illustration of micro-environmental data.

Fig. S4 Ridgeline plot of root zone temperature and root zone
soil moisture.

Fig. S5 Illustration of the overall climate regime.
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Fig. 87 Histogram for growth in Cytisus galianoi and Genista ver-
sicolor.

Fig. S8 Stem diameter change for all Cytisus galianoi and Genista
versicolor specimens.

Fig. S9 Boxplots illustrating growth during both growth phases
and in both species.

Fig. S10 Boxplots illustrating growth rates in Cyzisus galianoi and
Genista versicolor.

Fig. S11 Pearson’s correlation coefficients calculated between
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