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Abstract: AlN is a piezoelectric material used in telecommunication applications due to its high
surface acoustic wave (SAW) velocity, stability, and mechanical strength. Its performance is linked to
film quality, and one method to achieve high-quality films goes through the process of annealing.
Consequently, c-orientated AlN film with a thickness of 1.1 µm deposited on sapphire was annealed
at temperatures of 1100 ◦C and 1150 ◦C in a N2 controlled atmosphere. This was compared to
annealing at 1100 ◦C, 1450 ◦C, and 1700 ◦C with N2 flow in an open atmosphere environment.
Sample rotation studies revealed a significant impact on the ω-2θ X-ray rocking curve. A slight
variation in the film crystallinity across the wafer was observed. After the annealing, it was found
that the lattice parameter c was increased by up to 2%, whereas the screw dislocation density dropped
from 3.31 × 1010 to 0.478 × 1010 cm−2, and the full width at half maximum (FWHM) of reflection
(0002) was reduced from 1.16◦ to 0.41◦ at 1450 ◦C. It was shown that annealing in a N2-controlled
atmosphere plays a major role in reducing the oxidation of the AlN film, which is important for
acoustic wave devices where the electrodes are placed directly on the piezoelectric substrate. The
face-to-face arrangement of the samples could further reduce this oxidation effect.

Keywords: AlN; annealing; crystallinity

1. Introduction

Aluminum nitride (AlN) is a piezoelectric material that possesses a wide bandgap
(6.2 eV), high thermal conductivity [1], one of the highest surface acoustic wave (SAW)
velocities of 5760 m/s [2], low electromechanical conversion energy loss, high mechanical
strength, ultraviolet transmittance, and high-temperature stability [3–5]. These attributes
make AlN a great material for use in deep-ultraviolet light-emitting diodes (UV-LEDs),
laser diodes (LDs), ultraviolet detectors, high-performance SAW devices [4,6], and signal fil-
ters [7,8]. The challenge in using AlN films for SAW device applications is the requirement
of good crystallinity [9,10] which results in a better electromechanical coupling. Film depo-
sition is performed with different tools of which reactive magnetron sputtering represents
the most cost-effective option. This comes at the expense of poor crystal quality [11,12],
but the crystallinity can be improved by post-deposition annealing [13]. This reduces the
internal stresses of the crystal films by annihilating thread dislocations, forming dislocation
loops in the crystal lattice, and merging AlN columnar structures [13–16].

The AlN films are normally grown on sapphire (common for the growth of III-V
nitrides) due to its great temperature stability, mechanical strength, and low cost [17].
Sapphire has been found to be one of the best choices to minimize the formation of thread
dislocations, which plays a major role in producing AlN films with good crystallinity, since
there is a similarity in the respective crystal lattices and other material properties, such as
the thermal expansion coefficient [6,14,18].
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It was observed, from the literature review, that there was a higher focus on samples
with an FWHM of the (0002) AlN rocking curve (RC) of 0.2◦ or lower prior to annealing,
and only a few papers investigated films with a higher FWHM than 0.2◦ [11,19,20]. In
piezoelectric films, the XRD rocking curves indicate the range of crystal orientation and
dislocation density; hence it indicates the crystallinity of the film [21]. With sapphire
as the substrate material, AlN is also a promising candidate for use in high-frequency
telecommunication applications at elevated temperatures. The literature reports film
stability up to 1200 ◦C in an N2/H2 atmosphere [22], although oxidation occurs already at
800 ◦C if kept in air [23].

Hence, this study investigates the impact of annealing AlN films at temperatures
ranging from 1100 to 1700 ◦C in both a tube furnace offering a closed chamber with a N2-
protected atmosphere and in an oven furnace equipped with a nitrogen stream that purges
the chamber but without offering any atmospheric control (open atmosphere). The effect of
the annealing on the change in crystallinity and the composition (oxidation) is recorded.
The influence of the sample arranged face to face (protected by the other sample) or left with
the surface facing up (unprotected) during the annealing process has also been investigated.
The aim is to find ways to improve the crystallinity of AlN thin films deposited on sapphire
with common laboratory equipment such as reactive magnetron sputtering.

2. Materials and Methods

An AlN thin film with a thickness of around 1.1 µm was deposited onto a 4-inch
(0001) single-crystal sapphire substrate using a reactive magnetron sputtering with 500 W
sputtering power at a temperature of 400 ◦C. The N2/Ar gas ratio was 60/40 and the
deposition pressure was 1.6 mTorr. The wafer was cut into 15 mm × 15 mm squares to
facilitate the subsequent characterization and annealing process. The annealing of the
samples was performed in a tube furnace under a protected atmosphere (maintained by
a constant N2 flow of 2 L/min), at 1100 ◦C and 1150 ◦C. The annealing under a N2 flow
in an open atmosphere was performed in a high-temperature furnace with a N2 flow of
15 L/min, at 1100 ◦C, 1450 ◦C, and 1700 ◦C. The temperature was ramped up and down at
a rate of 5.5 ◦C/min, and the annealing temperatures were kept for 1 h, 3 h, 15 h, and 30 h,
respectively, for different samples. Three different arrangements for the samples were used:
face-to-face with AlN facing AlN (FtF), face-to-face with AlN facing sapphire (FtS), and
an unprotected sample (FO) as shown in Figure 1, adapted from [24]. These setups were
implemented to investigate the oxidation process of AlN film during annealing.
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Figure 1. Annealing sample arrangements (a) face-to-face (FtF), (b) face-to-sapphire (FtS), and
(c) face-opened (FO).

The AlN samples were characterized before and after annealing by three different tech-
niques: (i)ω-2θ X-ray diffractometry (ARL Equinox 1000-XRD, Thermo Fisher, Waltham,
MA, USA), equipped with a Cu-Kα X-ray source, activation voltage of 40 kV, and current of
30 mA; (ii) the rocking curve of the (0002) AlN peek was characterized at 2θ = 36.2◦ and the
omega angles used were between 15.5◦ and 19.5◦, with a step size of 0.025◦ and acquisition
time of 60 s; and (iii) scanning electron microscopy and energy dispersive X-ray (Hitachi
SU3500-SEM and EDX, Tokyo, Japan) at a pressure of 30 Pa and acceleration potentials of 3,
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5, and 10 kV. The choice of acceleration potentials was used to estimate the composition of
the AlN film at different depths. The mapping of the samples, before and after annealing,
was conducted with 25 measurement points in a 5 × 5 matrix pattern at 30 Pa and 5 kV.
Ellipsometry (Alpha-SE, Wollam Co., Lincoln, NE, USA) was used to estimate the thickness
of the AlN films. The cross-section imaging of the samples was performed using an SU8230
Hitachi SEM, Tokyo, Japan.

3. Results
3.1. Characterisation of the As-Deposited Wafer

After an extensive analysis of the whole wafer, a significant variation in the FWHMs
can be observed (Figure 2). A region of lower FWHM is seen at the two centerlines of the
wafer with variations close to 0.1◦; this phenomenon could be caused by the sputtering pro-
cess since AlN is not homogeneously deposited. The standard deviation seen in Figure 3a
represents the error margin of each sample in Figure 2. The values of samples that have not
been measured are left blank.
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Figure 2. Three-dimensional histogram of the FWHM measured at different locations of the as-
deposited wafer.

The mapped rocking curve, Figure 3a from the as-deposited sample, illustrates the
dependency of the (0002) peak on the rotation of the sample relative to the X-ray source.
This effect could be caused by some small tilt at the vertical AlN axis, slightly deflecting
the X-rays and thus shifting the RC depending on the direction and angle of the tilt relative
to the X-ray source. The tilt can be partially caused by the deposition setup, where during
the growth process, the target is placed slightly off-center relative to the sapphire substrate.
Therefore, AlN grows with slightly tilted columnar grains with respect to the sapphire’s
normal axis. The FWHMs extracted from Figure 3a were 1.021◦, 1.094◦, 1.090◦, and 1.116◦

for the angles 0◦, 90◦, 180◦, and 270◦, respectively, giving a standard deviation of 0.04◦. The
values of FWHM for 45◦ and 315◦ were comparable to the averages between both closest
π/2 angles as shown in Figure 3b. Considering this variation, all the samples were marked
to have the same reference position when they were analyzed before and after annealing.
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3.2. Annealling of AlN/Sapphire Substrates

Comparing the rocking curves obtained with XRD (Figure 4), a strong correlation was
found between the annealing temperature and the observed improvement in crystallinity.
The FWHM of the (0002) plane changed from 1.158◦ to 0.410◦, and the intensity increased
by nearly 500% at 1450 ◦C in the high-temperature furnace. Similar results were found
at 1150 ◦C (Figure 4) in the tube furnace. These reductions in the FWHM suggest both
a decrease in the tilt of the AlN columns and an increase in the overall grain size [25,26].
As listed in Table 1, it is inferred that a controlled atmosphere can heavily impact the
crystallinity improvement as well. FO samples annealed in the high-temperature furnace
became completely oxidized above 1450 ◦C; thus, the (0002) AlN reflection vanished, and
at 1100 ◦C, the intensity was reduced by half. A further notable correlation was found
between the sample arrangement and the FWHM enhancement: FO samples that preserved
the (0002) AlN peak had a greater improvement in comparison to the FtF and FtS samples.
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Table 1. Annealing impact on the rocking curve from the test samples.

Arrangement
Furnace

Type

Annealing
Conditions FWHM (002), ◦

Change in
FWHM,
∆f/f0, %

Change in
Intensity
∆I/I0, %

T, ◦C t, h As-Deposited Annealed

FO

TF a

1100 15 1.044 0.928 −11.1% −67.1%

FtF 1100
15 1.017 1.001 −1.5% −8.0%
45 1.017 0.975 −4.2% −14.5%

FtF 1150 15 1.060 0.602 −43.2% +280.5%

FtF

HTF b

1100 1 1.144 1.034 −9.6% −54.2%

FtF 1450 1 1.158 0.410 −64.6% +486.5%

FtS 1700 1 1.125 0.535 −52.5% +250.7%

FtF 1700 1 1.107 0.598 −46.0% +208.3%

FO 1700 3 1.055 - - -
a Tube furnace. b High-temperature furnace.

From Table 1, it can be observed that the intensity increased for all annealing ex-
periments except for 1100 ◦C where the intensity decreased. This may be attributed to
the physical processes happening at the interface between the AlN film and the Sapphire
substrate, as it was observed by Solonenko et al. (2020) for AlN on a Si substrate in the
transition temperature region 800–1000 ◦C, and was pinned to effects such as oxidation
and dewetting [27].

EDX analysis of the different samples before and after annealing indicates a correlation
between the temperature and the oxidation process. Diffusion is enhanced by the annealing
temperature, leading to a higher degree of oxidation as the temperature is increased.
Thus, reducing the partial pressure of oxygen is a prerequisite, and this can be obtained
by increasing the partial pressure (concentration) of nitrogen relative to oxygen. Other
gases that serve as oxygen traps, such as CO or H2, can be added to further reduce the
partial pressure of oxygen [14,22]. Additionally, the arrangement of the samples during
annealing will have an effect. Although the FO samples appeared to be highly oxidized,
the FtF samples offered greater protection. Still, the experiments performed in the high-
temperature furnace had an overall higher degree of oxidation than those annealed in the
tube furnace. This may have been caused by the lack of adequate control of the atmospheric
composition in the high-temperature furnace.

The mapping of the atomic concentration of oxygen in the as-deposited sample and
those annealed in the FtF arrangement at 1150 ◦C for 15 h are compared in Figure 5. The
oxidation suppression is clearly stronger for the FtF-arranged samples, where the center
surface of the film has been protected, leaving only the edges exposed to oxidation. Hence,
the oxygen diffusion towards the center of the sample in the FtF arrangement depends on
the pressure and composition of the protective atmosphere, the annealing temperature and
time, as well as the original crystal quality as deposited. Variations could be due to the
mechanisms of diffusion relative to the density of grain boundaries and imperfections in
the AlN material [14,19,23,28].

Comparing samples arranged as FtF and FtS during annealing at 1700 ◦C (Figure 6),
it is clear that FtF arrangement had a more enhanced effect on the oxidation suppression
than FtS arrangement at this high temperature.
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at 1700 ◦C for 1 h in a high-temperature furnace. The axis units in (a,c) refer to the position on the
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The cross-section analysis of the as-deposited AlN film shows the presence of columnar
grains in the sputtered AlN film (Figure 7a). These grains increase in size (width) after
annealing as shown in Figure 7b. Such phenomena is also observed in the literature where
annealed AlN films exhibited improved FWHM as discussed in the beginning of Section 3.2.
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Figure 7. Cross-sectional SEM images of AlN films on sapphire shown (a) as-deposited, and (b) after
annealing at 1150 ◦C in a tube furnace for 15 h.

4. Discussion

From the obtained experimental data, the estimated lattice parameter c for the as-
deposited AlN samples was 4.9443 Å. Table 2 shows the values of the lattice parameter c for
each annealing and sample arrangement. Hence, from Table 2, there is a tendency that the c
lattice constant of the AlN film increased as a result of annealing. This was probably caused
by a relaxation of the compressive stresses that existed in the as-deposited sample [12] and
where the addition of thermal energy shifted the atomic bonds to a lower energy state, thus
increasing the c lattice parameter and the film thickness [5].

Table 2. Lattice parameter c as a function of different annealing parameters.

Sample Arrangement Annealing Time, (h) Instrument Lattice Parameter
c (Å) SDD (cm−2)

as-deposited 4.9443 3.31 × 1010

1100 ◦C FtF 1 HTF 4.9559 3.06 × 1010

FO 15
TF

4.9559 2.56 × 1010

FtF 15 4.9519 2.25 × 1010

FtF 45 4.9519 2.38 × 1010

1150 ◦C FtF 15 TF 4.9559 1.03 × 1010

1450 ◦C FtF 1 HTF 4.9599 4.78 × 109

1700 ◦C FtS 1 HTF 4.9483 8.13 × 109

FtF 1 HTF 4.9599 1.02 × 1010

As-deposited AlN films are known to possess various types of defects such as thread-
ing dislocations, dislocation loops, basal stacking faults, and inversion domains [29–31].
Some of these defects can be visualized using SEM and TEM imaging, but others such as
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dislocation densities can also be estimated from the rocking curve. Screw edge and mixed
dislocation can be estimated from (0002) and

(
1012

)
RC (1) (2) [32]:

ρs =
β2
(0002)

2π ln(2)|bc|2
(1)

ρe =
β2
(1012)

2π ln(2)|ba|2
(2)

where |bc| and |ba| are the burgers vectors of each dislocation, and (0002) and β (1012)
are the FWHM values, in radians, for the (0002) and

(
1012

)
RC, respectively. Equation (2)

relates the FWHM of the (0002) RC with the screw-type dislocation since the screw disloca-
tions density (ρs) affects the out-of-plane rotation; this is seen in the symmetric reflections
from (0002), (0004), and (0006). Equation (2), on the other hand, relates the FWHM of skew-
symmetric reflections,

(
1012

)
RC for example, with edge dislocation density (ρe) as a result

of the tilt and twist of the change in the lattice laying in-plane rotation [32,33]. The screw
dislocation density found for the as-deposited samples was 3.22·1010 ± 3.60 × 109 cm−2,
the values for the ρs after the annealing of the samples arranged in the FtF position are
stated in Table 2.

Previous work related to the annealing of AlN films is summarized in Table 3. The
selection is based on the deposition method used, film thickness, annealing parameters, and
the corresponding FWHM. This gives us a comparative analysis of the different methods
used and how they impact the crystallinity, as well as visualizing the as-deposited quality
of the AlN film used.

Table 3. Literature review on the annealing of AlN films.

Deposition
Method

(Substrate)

AlN
Thickness

(nm)

Annealing
Temperature

(◦C)
Annealing
Time (h)

Sample
Arrangement

Annealing
Atmosphere

(0002)
FWHM Ref

LPMOCV
(Al2O3) 50 As-dep.

1070 0.25 - - 0.47◦→
0.32◦ [34]

Sputtering
(Al2O3)

170
As-dep.

1600
1650
1700

1 FtF N2

0.148◦→
0.014◦
0.017◦
0.013◦

[24]

340
As-dep.

1600
1650
1700

0.653◦→
0.039◦
0.042◦
0.014◦

Sputtering
(Al2O3)

1000
As-dep.

1500
1600
1650

1 FtF
Low-

pressure
N2

0.200◦→
0.112◦
0.115◦
0.121◦

[11]

200
As-dep.

1500
1600
1650

0.045◦→
0.034◦
0.031◦
0.031◦

Sputtering
(Al2O3)

1300

1000 As-dep.
3
6

12
21

- Air

0.5◦→
0.438◦
0.407◦
0.297◦
0.267◦ [23]

900
800
700

Unchanged:
0.52◦–0.48◦
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Table 3. Cont.

Deposition
Method

(Substrate)

AlN
Thickness

(nm)

Annealing
Temperature

(◦C)
Annealing
Time (h)

Sample
Arrangement

Annealing
Atmosphere

(0002)
FWHM Ref

MOVPE
(Al2O3) 300

As-dep.
1500
1550
1600
1650
1700
1750

2 - N2-CO

0.051◦→
0.018◦
0.018◦
0.019◦
0.019◦
0.038◦
0.127◦

[14]

MOVOP
(Al2O3) 300 1700

As-dep.
0.5
1
2
4

- N2-CO

0.019◦→
0.008◦
0.008◦
0.012◦
0.010◦

[35]

MOCVD
(Al2O3) 540

As-dep.
1550
1600
1650
1700
1750

1 FtF N2

0.034◦→
0.032◦
0.025◦
0.021◦
0.016◦
0.018◦

[36]

Sputtering
(Al2O3) 1100

As-dep.
1150 15

FtF

N2
(Tube

furnace)
1.060◦→

0.602◦

This work
As-dep.

1450 1
N2

(High-temp
furnace)

1.158◦→
0.410◦

“→” indicates FWHM after annealing.

5. Conclusions

Annealing at temperatures above 1100 ◦C has been found to improve the crystallinity
of AlN thin films that have been deposited on sapphire substrates using RF magnetron
sputtering. An evident correlation between the increase in the annealing temperature and
the improvement of the FWHM has been found. The danger of sample oxidation can be
reduced by maintaining an adequate protective atmospheric composition and by having a
good arrangement of the annealed samples. Arranging the samples as FtF and FtS has been
shown to heavily suppress the oxidation of the AlN films at high temperatures compared to
FO. This will permit an increase in the maximum temperature and time that the film can be
subject to during the annealing process, which is important to improve the crystal quality
of the AlN film. The samples studied in this work are comparably small (15 mm × 15 mm),
and even the optimal FTF arrangement showed signs of oxidation penetrating from the
edges during annealing. Besides considering the FtF arrangement, the oxidation could
be further reduced by using ovens with a protective inert atmosphere. This would be of
high interest when the annealing process is implemented for larger sample sizes (such
as 3- or 4-inch wafers). Even if oxidation occurs around the edge of these wafers, the
central region will still be protected. Hence, the results presented show the significance
of applying high-temperature annealing in order to gain improved crystallinity. Further
studies should be carried out to optimize the annealing processes of sputtered AlN films
in order to achieve comparable quality to that obtained with deposition tools designed
explicitly for AlN film deposition.
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