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Abstract. Modelling of oil well systems is important for a wide range of petroleum scientific and oil 

industrial processes. Considering the uncertainty of the measurements and the demand for empirical 

knowledge, a purely first-principle model and a black-box model based on data are not sufficient for 

accurately describing an oil well system. Thus, there is a growing body of literature that recognizes 

the importance of data-driven methods combined with physical knowledge. However, the application 

of combination methods for dynamic nonlinear systems is still challenging. In this work, we demon-

strate the application of a physics-informed neural network to a gas lifting oil well system. The neural 

ordinary differential equation is the main tool for the modeling and the simulation is examined in 

Julia programming language. The advantage and drawbacks of the physics-informed data-driven 

method are analyzed. 

Introduction 

Accurate estimation of outputs and states in engineering systems plays a vital role in model-based 

control, optimization and maintenance. Due to model mismatch, random errors and gross errors, most 

first-principles models cannot precisely describe the system behavior in real life (Knopt 2011). For 

some complex systems, it might be difficult to describe part of the system due to a lack of physics 

knowledge. On the other hand, it is difficult for most black-box models to extract interpretable infor-

mation by learning from observational data (Karniadakis et al. 2021). Therefore, the grey-box model 

combining physics knowledge and the information from data has been thought of as a crucial solution 

in the modelling of engineering systems. 

There is a growing body of literature that provides a large variety of approaches for different tasks in 

terms of merging scientific knowledge and machine learning (Bikmukhametov and J ̈aschke 2020, 

Gross et al. 2021, Franklin et al. 2022). In most applications of physics-informed machine learning 

in oil and gas production systems, the learning algorithms were improved using either physics-in-

formed data or physics-informed models. Thanks to the development of scientific machine learning, 

it is possible to incorporate more physical knowledge by considering dynamics which are differenti-

able. In physics-informed machine learning algorithms, physical constraints can be added to the loss 

function. Prior information can be integrated by designing architecture when the mechanistic model 

and machine learning were hybridized.  

Among the scientific machine learning methods, neural ordinary different equation (Chen et al. 2018) 

was designed for solving ordinary differential equations (ODEs) by parameterizing the derivative of 

the hidden states using a continuous depth neural network. A differential equation solver was utilized 

to calculate the output of the continuous depth network. The adjoint sensitivity method is commonly 
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adopted to compute gradients, which lowers the memory and computational cost. By substituting 

ODEs for residual networks, time-dependent dynamics is described continuously. Meanwhile, neural 

ODEs also allow scalable backpropagation through ODE solvers. 

SciML (Christopher Rackauckas, Y. Ma, et al. 2020) was the first differential equation library that 

generalized packages for various training problems and allowed the application of universal differ-

ential equations, including neural ODE, partial differential equations, differential-algebraic equa-

tions, stochastic differential equations, delay differential equations and stiff equations. Some pack-

ages related to neural ODE in Julia (Bezanson et al. 2017) were chosen in this work. For example, 

OrdinaryDiffEq.jl in DifferentialEquations.jl (Christopher Rackauckas and Nie 2017) was used for 

providing the ordinary differential equation solvers. DiffEqFlux.jl (Chris Rackauckas et al. 2019) 

and Flux.jl (Inneset al. 2018) were utilized for integrating the first-principle model and neural net-

work, as well as optimization of the neural network.  

The rest of this paper is organized as follows. In the next section, the gas lifting oil well system and 

its first-principle model are introduced. Following that, in Section 3, the physics-informed modelling 

structure, data preparation and the method were explained for improving training results. In Section 

4, the performance of the trained model is tested with the dataset collected from the gas lifting oil 

well simulator. Finally, in Section 5, we drew conclusions and discussed the advantage and draw-

backs of the modelling, as well as the future research direction. 

Gas Lifting Oil Well Simulator 

The gas lifting oil well model used in this work is based on a single oil well system, which is inspired 

by a modelling work by Sharma (Sharma et al. 2011). Details of the oil well model can be checked 

in a previous work (Ban et al. 2022). A schematic diagram of a gas lifting oil well is shown in Fig.1. 

 

Figure 1. A Single Gas Lifting Oil Well System 

During the process of oil and gas production, valves are utilized to control the flow rates, which 

generate inputs to the oil well system. The input of the gas lifting oil well simulator is the valve 

opening of the gas lift choke valve, 𝑢.  

The oil well has some parameters which change during the process. The water cut, WC, is the volume 

of water produced compared to the volume of total liquids produced from an oil well. The produc-

tivity index, PI [
𝑘𝑔/ℎ𝑟

𝑏𝑎𝑟
], is a mathematical means of expressing the ability of a reservoir to deliver 

fluids to the wellbore. GOR is the mass ratio of produced gas to produced liquid (oil and water).  



 

In this study, we focus on state estimation of the gas lifting oil well. These states are the mass of gas 

in the annulus 𝑚𝑔𝑎, in the tubing above the injection point 𝑚𝑔𝑡 and the mass of liquid in the tubing 

above injection 𝑚𝑙𝑡. According to the mass balance, these states can be calculated based on three 

ODEs, which are mainly present in Eq. (1):  

�̇�𝑔𝑎 = 𝑤𝑔𝑎 − 𝑤𝑔𝑖𝑛𝑗, 

�̇�𝑔𝑡 = 𝑤𝑔𝑖𝑛𝑗 + 𝑤𝑔𝑟 − 𝑤𝑔𝑝, 

�̇�𝑙𝑡 = 𝑤𝑙𝑟 − 𝑤𝑙𝑝 

 

(1) 

where 𝑤𝑔𝑎 is the flow rate of the gas through the gas lift choke valve which is injected into the an-

nulus. The flow rates of the lift gas from the annulus and reservoir to the tubing are 𝑤𝑔𝑖𝑛𝑗 and 𝑤𝑔𝑟 

respectively. The flow rate of produced gas through the production choke valve is presented as 𝑤𝑔𝑝. 

𝑤𝑙𝑟 and 𝑤𝑙𝑝 are the liquid phase flow from the reservoir into the well and through the production 

choke valve, respectively. Some of these flow rates are the measurements in the gas and lifting oil 

well. The rest of the flow rates can be calculated by auxiliary algebra equations which are assembled 

in the simulator. In this work, we used the simulator to generate datasets. The states, 𝑚𝑔𝑎, 𝑚𝑔𝑡, 𝑚𝑙𝑡, 

are the features for the physics-informed neural network (PINN) model. The PINN model will be 

introduced in the methodology section. The initial states are the input and the time series data corre-

sponding to the state dynamics are the observation.   

Methodology 

In this work, the PINN model plays an important role in the modeling and prediction of the oil well 

dynamics. This section begins by explaining the design of the PINN model and it will then go on to 

examine the PINN model using data collected from the aforementioned simulator.  

PINN model. The PINN model contains certain layers including a physics model and a multi-layer 

perceptron. By using Flux. Chian (Inneset al. 2018), a physics model is integrated as the first layer 

in the PINN model and is written as Eq. (2). 𝑥 is the state vector to be estimated. The subscript 𝑘 

denotes the time step. The input of the physics model is the current state vector and control input 𝑢. 

The output of the physics model is the derivatives of the state vector, which is then broadcasted to 

multiple dense layers. The physics model and multiple layers were called in sequence with the given 

states, followed by an ODE solver differentiating the output of the MLP as the prediction of the states 

at the next time step.  

�̇� = 𝑓(𝑥, 𝑢) (3) 

𝑃𝐼𝑁𝑁(𝑥𝑘, 𝑡𝑘+1) = ∫
𝑑�̂�𝑘+1

𝑑𝑡
 = ∫ 𝑁𝑁(𝑓(𝑥𝑘, 𝑡𝑘), 𝑡𝑘+1) 

 

After calculating the estimation for the whole time series, the outputs of PINN and the samples were 

used in the loss function for training. Figure 3 illustrates the outline of the PINN model. The upper 

loop ① indicates the process where the PINN model predicts the time series data based on the pre-

vious time step and parameters of multilayer perceptron (MLP) (Noriega 2005). The state of the next 

time step was calculated in each loop and the iteration stop until data for all time steps is calculated. 

The loop ② illustrates the epoch during training. 



 

 
Figure 2. The Outline of the PINN.  

A physics model. As a part of the PINN, an ODE model including physical knowledge is expected 

to generate better performance than the one from a pure neural network. In Fig. 2, the physics model 

is presented as the purple block to provide input to the MLP. The physics model provides not only 

the state estimation at the next time step by solving the ODEs, but also the constraints including prior 

knowledge of the initial states and input, 𝑢. The physical model used here is not necessary to be 

accurate to describe the whole system. The unknown part and uncertainty can be learnt during the 

training of the PINN model using training data.  

The physics model was designed based on part of the physical knowledge of the gas lifting oil well 

system but lacks some information. For example, we assumed that we did not know the true value of 

the three parameters, WC, PI, and GOR, in the oil well simulator. Because the neural network pro-

poses training weights randomly during the training process and it is impossible to apply physics 

constraints for the raining weights of the neural network, the root square parts in the simulator were 

ignored to avoid calculation error. Compared with the simulator, the physics model is lack of some 

physics knowledge and does not contain any noise. The different between the output of the physics 

model and the simulator is presented as residual between the output of the neural network and the 

training data. A neural network is designed to learn the difference.  

Neural Network design. A MLP with dense layers was used in PINN, denoted as Eq. (3). The PINN 

approximates the solution of the gas lifting oil well system by updating the parameters of the neural 

network to minimize a loss function using optimizer ADAM and BFGS.  

𝑁𝑁(𝑥) =  𝑊𝑛 … 𝜎2(𝑊2𝜎1(𝑊1𝑥 + 𝑏1) + 𝑏2) … + 𝑏𝑛 (3) 

, where 𝑊𝑖 are the weight matrices, 𝑏𝑖 are the bias vector and 𝜎𝑖 are activation functions. The input 

of the neural network includes 𝑢 and state at current time step.  

When a neural network is trained using time series data, the neural network needs to be run through 

the sequence data, which leads to a deep network. Exploding gradients problem (Geron 2017, Glorot 

et al. 2021) is one of the most frequently stated challenges during training machine learning models 

over time steps. The problem was alleviated by modification of sample size, employing feature scal-

ing during data preprocessing and using a nonsaturating activation function for dense layer design in 

this work, which will be explained in the validation subsection. 

A loss function is designed to include the model information and constraints based on mean squared 

error between the output of the neural network and the dataset. Inspired by the previous neural ODE 

work (Christopher Rackauckas 2022), the loss function for each sample can be designed as Eq. (4). 

𝑝 is the parameter vector of MLP. The first term, 𝑁𝑁(0) − 𝑥0, is for satisfying the initial constraint. 



 

The rest part of the loss function is for learning the outputs with the physics model. The residual of 

the physics model was combined within the mismatch in the training data on the state variables.  

𝐿(𝑝) = (𝑁𝑁(0) − 𝑥0)2 + ∑(𝑃𝐼𝑁𝑁(𝑡𝑘+1) − 𝑥𝑘+1)2

𝑘

 
(4) 

ADAM is a widely used method for machine learning in the last decade. In this optimization algo-

rithm, every parameter is provided with an individual learning rate. The gradient of loss functions 

can be accurately and efficiently computed, even with noisy and sparse data. BFGS (Liu and Nocedal 

1989) is a local search optimization algorithm using the second-order derivative of a loss function. 

In this work, the loss function is minimized iteratively using the ADAM algorithm and BFGS algo-

rithm. To avoid the local minimum and find the optimum solution rapidly, the ADAM algorithm was 

run first and then the BFGS algorithm was used to precisely search around the minimum area within 

a small range.  

System architecture. The process of examining the PINN model is presented as system architecture 

here. The outline of the system architecture is shown in Fig. 3. The first step in this process is data 

collection for training the PINN model. To begin the process, the gas lifting oil well simulator was 

run to collect data. The collected dataset was noted as  𝐷𝑖. The blue, pink and purple blocks present 

the training, validation and test dataset respectively. The physics model is designed for providing 

physical information to followed dense layers. The output of the physics model generates important 

insight into the trajectory of the dataset in terms of the trend and shape. The residual between the 

output of the physics model and the training data is learnt by the rest of the PINN model. Meanwhile, 

the physics model is adopted here to demonstrate the PINN model is able to learn and predict in the 

case lack of physics information. Following the preparation of the structure of the PINN model, the 

activation functions were chosen for each dense layers the numbers of the layers and nodes were 

tuned. The bias of each layer is trainable.  

Once the data and the PINN are ready, the training process starts. During the training process, The 

PINN model generates outputs in every epoch using initial states and proposed parameters. Once the 

outputs are generated, the loss function is calculated based on the outputs of the neural network and 

data. Parameters of the PINN are updated using optimization algorithms at every epoch. When the 

model is trained, the test data set is used for model evaluation.  

 
Figure 3. System Architecture 

Data collection. In this work, datasets were collected from a gas lifting oil well simulator in different 

scenarios. In every scenario, the simulator run with random initial states within the prior range and 

the states were collected as a dataset every time when the simulation finished. Scenarios were run 



 

independently, and the corresponding time series datasets were independent. The collected data con-

tain white noise which follows the normal distribution with zero mean. A 3D tensor was used to store 

these datasets. Features, timesteps and samples are the axes of the tensor. The dataset for one scenario 

is noted as one sample and presented as a 2D matrix with observations for every feature at every 

timestep.  

The states in the gas lifting oil well are time-dependent. The trajectories of the observations contain 

transients and steady states. Trajectories in one of the scenarios are shown as blue lines in Fig. 1. As 

the transient contains more information about the system performance, the sampling time for the 

transient is smaller than the sampling time for the steady state. The simulator was run with variant 

sampling time for choosing the dataset size. The dataset size can be varied from different systems or 

experiments, but it is expected to be small to lower the computational cost during training. Mean-

while, the observations should also illustrate the state dynamics, namely the shape of the trajectory. 

Feature scaling was adopted to preprocess data before training.  The range of the observation was 

normalized from rang [3000, 20000] to [0, 1] by as Eq. (5). 

𝑥𝑘 = (𝑧𝑘 − min (𝑧))/(max(𝑧) − min (𝑧)) (5) 

, where 𝑧 is observation and 𝑘 is related to the number of the time step of the outputs.  

One of reasons for feature scaling is that the optimization algorithm adopted in this work, ADAM 

(Kingma and Ba 2014), uses gradient descent. Values of features influence the step size of the gradi-

ent descent. Besides, due to the difference in the feature ranges, the step sizes for the gradient descent 

of features are updated at different paces. Therefore, feature scaling has a dramatic impact on the 

speed of gradient descent convergence. Feature scaling improves convergence significantly. Both 

normalization and standardization methods were tested in this work and unit range normalization was 

chosen to transform data. Compared with training with the original dataset, the accuracy of the train-

ing results was greatly improved with normalized data. Meanwhile, the speed of convergence was 

faster.  

After data preprocessing, dataset for scenario 𝑖, 𝐷𝑖 = (𝑥0
𝑖 , 𝑥𝑘

𝑖 ) was saved. 𝑥0
𝑖  and 𝑥𝑘

𝑖  are correspond-

ing to the initial state and the state output, where 𝑖 is the number of the scenario. As the gas lifting 

oil well system has three states and the time steps of each simulation is N, each initial state is a 3 × 

1 array and each sample is a 3 × N matrix. These samples were split into 60%, 20% and 20% for 

training, validation and testing. The loss function was calculated using all training samples. Hyperpa-

rameters were tuned using validation dataset by calculating the scoring function. The test samples 

were then used to evaluate the performance of the PINN.  

Validation. A scoring function was designed for comparing the performance of the PINN model 

with different hyperparameters, 𝜃, including the number of epochs, the number of layers, the learning 

rate, the number of nodes in each layer and the activation function for each layer. The scoring func-

tion is calculated based on negative mean squared error (NMSE) and is denoted as Eq. (6). 𝑚 is the 

number of samples. 

𝑆(𝜃) = −
1

𝑚
∑(𝑃𝐼𝑁𝑁(𝑥0

𝑖 , 𝑡) − 𝑥𝑖)2

𝑚

𝑖=1

 (6) 

The number of epochs was designed by running the training with a relatively large training set size, 

1000 epochs. The scoring function of the training dataset and validation dataset were checked and 

compared. The epoch which is corresponding to the divergence of the scoring function of training 

validation is chosen, namely stop training as soon as the scoring function of the validation shows a 

slower increase than the one of training. By implementing early stopping, the overfitting problem is 

mitigated and a nice generalization to the data which is outside of the training set is provided.  



 

Activities functions in the MLP need to make sure that the dynamics are continuously differentiable 

and satisfy the Lipshitz condition(Kim 2021). ReLU and Tanh meet these conditions. In this work, 

ReLU is used for each layer as an activation function. The primary reason to use ReLU is that the 

functions do not saturate when the input values are large. Meanwhile, the computation of ReLU is 

quicker than other activation functions (Geron 2017).  

The learning rate of the ADAM algorithm is another hyperparameter to tune. The PINN models with 

various learning rates were trained several times during a fixed epoch. After comparing the learning 

curves, a proper learning rate is chosen to provide a fast optimized solution. BFGS is set as default.  

The number of layers and nodes were selected after training the PINN model with various layers and 

nodes. A simple MLP with one single layer is enough to achieve a reasonable result (Geron 2017). 

Meanwhile, shallow nets and fewer nodes demand less computational cost. During the validation, 

the number of layers is increased until overfitting occurs. Random number generation within a range 

is used to set the number of nodes per layer. The value of the scoring function was calculated at the 

final epoch during each training of the model with various layers and nodes. These hyperparameters 

were chosen after comparing the value of the scoring function.  

Results 

The result of scenarios with different initial states was presented to test the performance of the afore-

mentioned method. The range of the initial states were 𝑚𝑔𝑎 𝜖 [8000, 9000](𝑘𝑔), 𝑚𝑔𝑡 𝜖 [2500,4000 

] (𝑘𝑔), 𝑚𝑙𝑡𝜖 [15000, 20000](𝑘𝑔). These states reach their steady states within 0.2 hr. After com-

paring the shape of the trajectory with different sampling time, 5 samples were collected in a time 

span [0, 0.05] with the same interval. Another 5 samples and 20 samples were collected in time span 

[0.05, 0.2] and [0.2, 2] respectively. There are 200 samples collected. 120 samples were used for 

training. 40 samples were for evaluation and the rest of 40 samples were for testing. 

The aforementioned method was tested using the dataset from the oil well simulator. Firstly, the 

designed PINN model was trained and a black box model was used to compare their training result. 

Then, the performance of the PINN model is shown by presenting training loss and validation loss 

during training. Validation results for training set size, learning rate and the number of layers and 

nodes were shown. The training results of three random training samples were chosen and compared 

with the training data. Finally, test results were presented and analyzed. Two random test samples 

and an additional sample which is out of the training range were utilized to evaluate the model.  

Comparation between PINN and a black box model. The designed PINN model and a pure neural 

network as a black box model were trained with the same data set. The pure neural network has the 

same structure as the MLP used in the PINN model. After 200 epochs of training, a random training 

result was presented to compare the training performance between a pure neural network and a PINN 

in Fig. 4. To distinguish the training result and the training data, the training data are plotted as line 

charts and training data are plotted as scatters. The orange and green scatter plot shows the output of 

the PINN model and the black box model respectively. 

Both PINN and the pure neural network can learn the data for steady states and smooth transients, 

though PINN shows a notable advantage in learning from training data in terms of learning speed 

and accuracy. The training loss of PINN decreased faster than the one of the pure neural network. 

PINN shows better performance on learning details, such as for the transient part of the mass of the 

gas in the tubing at time 0.1 hr to 0.3 hr shown in the middle plot in Fig. 4. The data is zoomed in 

and presented as blue scatters to show the detail of the transient part. The PINN learnt the shape of 

two continuous oscillations, while the pure neural network simplified the oscillation by fitting with 

a smooth curve. It is worthwhile to note that increasing the number of layers and nodes (the layer 

size was increased from 5 to 9 and the node size was increased from [5, 30] to [10, 70]) in the black 

box model does not significantly contribute to the fitting result. This problem is addressed in the 



 

previous literature (Turan et al. 2021). Multiple shooting is a potential solution to improve perfor-

mance. 

 
Figure 4. Comparation of Training Results of a PINN and a Pure Neural Network  

Training loss and validation loss. The following results will focus on the performance of the PINN 

model. Training data corresponding to 120 different initial states was used for training. The training 

began with ADAM optimizer until 50 epochs and switched to BFGS for the rest of the training. 

During the parameters of the PINN model updated, the value of the loss function was recorded in 

each epoch. Training data and the training result of PINN were used in the loss function for calculat-

ing the training loss. Meanwhile, validation data and the prediction of PINN were utilized for vali-

dation loss to check if the model is overtrained and overfitted. The training loss and validation loss 

during 200 epochs are shown in Fig. 5.  

 
Figure 5. Training Loss and Validation Loss During Training Process 

It took around 3 hours to train with 200 epochs at a workstation with Intel(R) Core (TM) i7-10750H 

CPU @ 2.60GHz 2.59 GHz, 64-bit operating system, x64-based processor and 32.0 GB installed 

RAM. Both training loss and validation loss reached plateaus around 80 epochs. The training 

achieved the performance with a training loss less than 1 after about 80 epochs and continued de-

creased after that. Both losses reduced fast during using the ADAM optimizer and slowed down after 

changed to BFGS. The training loss is bigger than the validation loss because the size of the training 

data is three times than the size of the validation data. The training loss decreases from 3644.0083 to 



 

2.4291277 within 200 epochs and the validation loss generally decreased from 887.6681 to 

0.52164114.  

Validation. Figure 6 illustrates the change in scoring function during 1000 training epochs using 

training data and validation data. The black and orange lines show the score of training and validation 

respectively. NMSE for both starts from -120 and increases to -0.27 and -0.29 at 1000 epochs. To 

show more details of these plots, the trajectories are zoomed in and are only presented in the small 

window within the range, [-0.5, 0], of the y axis. These trajectories increased at a similar pace before 

approximately 350 epochs. The score of training increased faster than the one for validation. The 

divergence of the two trajectories is likely because of the overtraining of the model. Therefore, the 

training set size is chosen as 350. 

 
Figure 6. Learning Curves for Choosing Training Set Size 

With 350 epochs, the learning rate between 0.0001 and 0.05 was validated and presented in Fig. 7. 

The scoring function of validation data was calculated and recorded during training. The large learn-

ing rate is related to the large optimal step and vice versa. The scoring function of the model with the 

learning rate 0.0001 increases more slowly than the scoring functions corresponding to other learning 

rates, namely it takes more than 350 epochs to converge to the optimum. Learning rate 0.05 to 0.005 

provide the best NMSE among all validation results. However, their scoring functions increase rap-

idly at the beginning of the first 100 epochs, namely the step is too big and the optimizer hardly 

precisely searches around the optimum. The learning rate 0.001 was selected. 

 
Figure 7. Learning Curves for Choosing Learning Rate 



 

The number of layers was set from 3 and increased to 7 when the model started to overfit the training 

dataset within 350 epochs. With the same number of layers, 5 models were trained after randomly 

setting node size per layer. The range of the node size was set within [10, 70]. NMSE was calculated 

and recorded to present the performance of each model. The model with the structure shown in Table 

1 has the biggest NMSE. The model with corresponding hyperparameters and trained parameters are 

saved for testing. Incorporating the aforementioned parameter tuning, the PINN model has three input 

states as the input layer and three vectors as the output layer. The model contains 6 layers including 

4 hidden layers, an input layer and an output layer. ReLU was used as activities functions for each 

hidden layer. 

Table 1: The Number of The Hidden Layers and the Number of the Nodes in Each Hidden Layer 

Hidden layers Nodes in layer 2 Nodes in layer 3 Nodes in layer 4 Nodes in layer 5 

4 16 23 36 16 

Training result. Three random sets of training results were randomly chosen and shown in Fig. 8.  

 
Figure8. Training Result from Three Training Data Set. The Scatter Plots Show Outputs of the 

PINN Model and the Dash Lines are the Training Data. 

The left column plots illustrate the training result of the mass of gas in the annulus. The middle and 

right column plots show the training result of the mass of gas in the annulus and the mass of liquid 

in the tubing above injection correspondingly. The training data were generated from the simulator 



 

with different initial states. According to the prior knowledge, the ranges of these initial states are 

[8000, 9000](kg) for the mass of gas in the annulus, [2500, 4000] (kg)  for the mass of gas in the 

tubing above the injection point and [15000, 20000] (kg)  for the mass of liquid in the tubing above 

injection. 

The results demonstrate that the PINN model is able to learn the oil well dynamics using dataset with 

uncertainty. There are small distinct biases in the transient parts between the learning result and the 

training data. These biases decreased in the steady-state part.  

Test result. Figure 9 provides some test results of the trained PINN model. Two prediction results, 

prediction 1 and 2, were tested using two test samples. The initial states of these test data are within 

the training range. Meanwhile, a test data, data 3, was tested. The initial states of data 3 are [10000, 

2006, 16000], which is outside of the training range. The data set and prediction result corresponding 

to the same initial states are presented with the same color. Grey shadows present the training dataset 

ranges. The transients of each prediction were zoomed in to clearly show the comparison between 

test dataset and the prediction.  

 
Figure 9. Test Result of Trained Neural Network 

The PINN model is able to make accurate predictions within the training ranges. The prediction result 

maintains a relatively negligible bias. In contrast, the prediction for the initial states outside of train-

ing ranges, as expected, cannot provide reliable information, especially the prediction of the transient 

part. 

Discussion 

A physics model was used in this work for helping train the neural network model. However, the 

design of the physics model is subject to certain limitations due to the connection between the physics 



 

model and the neural network in PINN. The parameters of the neural network in PINN do not have 

physical meanings. During training, the neural network might generate some outputs which are out-

side of the prior range. When the physics model is differentiated using these outputs, errors might 

occur. Besides, the output of the neural network might trigger negative values in a square root and 

some other problems. Therefore, some part of the physical model is not possible to be included in the 

reduced model. One of the solutions to include all parts of the physics model can be integrating a 

condition module, which rejects the proposed parameters of the neural network when these parame-

ters lead to a computational crash. However, the computational time will increase due to the rejection. 

A further study could improve the solution and assess the tradeoff between the prediction accuracy 

and the computational cost.  

Compared with some traditional neural networks, neural ODE shows advantages in time-related 

training problems using an ODE solver. The bias between the prediction and the real result is within 

an acceptable range with the NMSE increasing to -1.4662051. Data preprocessing was employed to 

avoid the uneven bias of the transient part and the steady state part for both training results and test 

results.  

In the validation process, models with different hyperparameters were trained and compared. This 

manual method roughly provides a solution for hyperparameter selection. The model with better per-

formance can be found after trying more combinations of the hyperparameters. In the validation part, 

this study was limited by the absence of a broad range of hyperparameters due to practical constraints. 

Grid search using cross-validation can be an alternative for automatically seeking optimum hyperpa-

rameters if the programming environment allows so.  

In the case where the initial states are unknown, the prediction of the PINN model diverges dramat-

ically. To solve this problem, the physics model can be used to estimate the initial states as the first 

step. Filtering technique and Markov chain Monte Carlo can be used for the estimation with consid-

ering uncertainty.   

MLP was used for the neural network part of the PINN model. The differential equations in the 

physics model and an ODE solver are vital for building the connection inside the time series data. 

Other neural network structures, such as convolutional neural networks, can be tried to substitute 

MLP for more complex time series prediction. Further research could also be conducted to compare 

the proposed PINN model with other time series prediction approaches, such as the LSTM model 

using recurrent neural networks. 

Conclusion 

This research study set out to propose a physics-informed data-driven method for modelling a gas 

lifting oil well. The method can be generalized for systems which partly lack physics information. 

Compared with a black box model, the PINN model is observed with faster training time with 350 

epochs and better performance with less than 0.522 of training loss. The results of this study present 

the training, validation, and test result, which show that the trained PINN model is able to predict the 

outputs of states with initial states which is within the training range for both steady-state and transi-

ent. The findings of this study provide insights for combining physics models and data. The scope of 

this study was limited in terms of the prediction of the states with dynamic input. The potential ap-

plication of the PINN model is an auxiliary model based on data and prior physical knowledge of the 

oil production process, which might help provide information for model-based control. 
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