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Abstract: Identifying areas with high groundwater spring potential is crucial as it enables better
decision-making concerning water supply, sustainable development, and the protection of sensitive
ecosystems; therefore, it is necessary to predict the groundwater spring potential with highly accurate
models. This study aims to assess and compare the effectiveness of deep neural networks (DeepNNs)
and swarm-optimized random forests (SwarmRFs) in predicting groundwater spring potential. This
study focuses on a case study conducted in the Gia Lai province, located in the Central Highland
of Vietnam. To accomplish this objective, a comprehensive groundwater database was compiled,
comprising 938 groundwater spring locations and 12 influential variables, namely land use and land
cover (LULC), geology, distance to fault, distance to river, rainfall, normalized difference vegetation
index (NDVI), normalized difference moisture index (NDMI), normalized difference water index
(NDWI), slope, aspect, elevation, and curvature. The DeepNN model was trained and fine-tuned
using the Adaptive Moment Estimation (ADAM) optimizer, while the SwarmRF model employed
the Harris Hawks Optimizer (HHO) to search for optimal parameters. The results indicate that both
the DeepNN model (accuracy = 77.9%, F-score = 0.783, kappa = 0.559, and AUC = 0.820) and the
SwarmRF model (accuracy = 80.2%, F-score = 0.798, kappa = 0.605, and AUC = 0.854) exhibit robust
predictive capabilities. The SwarmRF model displays a slight advantage over the DeepNN model
in terms of performance. Among the 12 influential factors, geology emerges as the most significant
determinant of groundwater spring potential. The groundwater spring potential maps generated
through this research can offer valuable information for local authorities to facilitate effective water
resource management and support sustainable development planning.

Keywords: groundwater spring; random forest; Harris Hawks Optimizer; deep neural networks;
GIS; Vietnam

1. Introduction

Groundwater represents one of the most significant freshwater resources on Earth,
comprising approximately 33% of total global water withdrawals, and it has been the
primary water source for more than two billion people [1]. In addition, groundwater
is a vital component of the regional ecological environment, providing water resources,
maintaining aquatic ecosystems, supporting biodiversity, and offering resilience in the
face of environmental challenges [2,3]. Due to climate changes, economic development,
population growth, and rapid urbanization [2,4–8], the depletion of groundwater due to
increased demand has reached an alarming rate in various countries across the globe [9,10].
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According to recent projections [11,12], over 80% of the global population is anticipated
to face substantial water security risks in the coming decades. Consequently, studying
groundwater potential assessment and prediction is significant in improving groundwater
management and promoting its rational utilization. This is crucial as it equips stakeholders
with the essential knowledge and tools needed to make well-informed decisions, mitigate
risks, and ensure the long-term sustainability of this vital water resource.

A range of methods and techniques have been proposed for studying groundwater
potential, encompassing various approaches such as numerical methods [13,14], bivari-
ate statistics [15,16] and multivariate statistics [17,18], multicriteria analysis [19,20], and
machine learning [21,22], ensemble learning [23–25], and deep learning [26,27]. Basically,
numerical methods, which employ mathematical equations, i.e., in MODFLOW or FEFLOW
to simulate groundwater flows and propagations, exhibit a high capability in providing
accurate predictions for groundwater assessment. However, numerical methods often
require extensive and accurate input data [28], including hydrogeological parameters,
groundwater levels, hydraulic conductivity values, and precipitation data. Thus, limited
or unreliable data availability can hamper the accuracy and reliability of the groundwater
potential results [29]. Bivariate and multivariate statistics have demonstrated promising
outcomes in certain scenarios [30]; nonetheless, it is essential to acknowledge that ground-
water systems in numerous regions showcase intricate nonlinear dynamics, which these
approaches cannot sufficiently capture. Nonlinear associations and interdependencies
among variables can result in inaccuracies or incomplete portrayals of the groundwater
system [31].

Multicriteria analysis for groundwater modeling is the potential subjectivity in assign-
ing weights and priorities to different criteria [32]. This is because different stakeholders
or experts may have varying opinions on the importance of different criteria, leading to
inconsistencies and potential disagreements in the final results. Therefore, machine learning
has been explored and proven its powerful capabilities for groundwater modeling [33] by
capturing complex relationships, handling large and diverse datasets, adapting to changing
conditions, integrating multiple geospatial data sources, and quantifying uncertainties.
These advantages contribute to more accurate and comprehensive modeling, enabling
improved understanding and management of groundwater resources [34].

Within the realm of machine-learning algorithms, ensemble-learning and deep-learning
techniques have demonstrated their proficiency in delivering exceptional predictive model-
ing outcomes for groundwater modeling and prediction [33]. Among ensemble-learning
algorithms, random forests (RFs) have shown better performance compared to other single
machine learning in various works [35–39]. At the same time, deep learning is a hot topic
in groundwater studies with impressive predictive power [27,40,41]. Nevertheless, the
comparative assessment of RFs and deep learning for the spatial prediction of groundwater
potential has seldom been carried out, except in very few cases, i.e., Wang et al. [42] consid-
ered 17 factors for groundwater modeling using an RF, deep neural network (DeepNN),
and convolutional neural network (CNN), with a conclusion that both a DeepNN and CNN
perform better than an RF. Therefore, the inquiry into whether deep learning can function
as an innovative and alternative methodology for modeling and predicting groundwater
potential persists as an active area of research.

The objective of this study is to partially address the above gap in the literature
by conducting an evaluation and comparison of random forests (RFs) and deep neural
networks (DeepNNs) for groundwater spring potential identification in the tropical area of
the Gia Lai province, located in the Central Highlands of Vietnam. This study employed
a customized approach to optimize the RF model using the Harris Hawks Optimizer
proposed by Heidari et al. [43] to ensure the best performance. Additionally, the DeepNN
model consisted of 3 hidden layers with 96 hidden neurons, and its parameters were
optimized using the Adaptive Moment Estimation (ADAM) optimization algorithm, which
has demonstrated its effectiveness in recent studies [44,45], and finally, the discussion and
conclusion are given.
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2. Background of the Methods Used
2.1. Deep Neural Networks

Deep learning (DL) is a subfield of artificial intelligence that focuses on developing
and applying algorithms and models based on interconnected networks of simple neu-
rons [46,47]. Deep learning has a long history, but its practical applications and remarkable
impact on various fields have been most prominent in the past decade, especially from the
2010s onward, primarily due to advancements in computational power and especially the
development of graphics processing units (GPUs) [48]. In addition to breakthroughs in
deep-learning architectures and techniques, the use of rectified linear unit (ReLU) and the
ADAM optimization significantly improved performance [49].

Within the scope of this study, the utilization of deep neural networks (DeepNNs) is
being explored for the purpose of groundwater spring potential modeling. The objective is
to infer the 12 input variables, referred to as groundwater spring influencing factors, and
map them to groundwater spring potential indices. These indices are represented on a
scale of 0.0 to 1.0, signifying the range of groundwater spring potential from 0% to 100%.

Let us consider a groundwater spring dataset, denoted as GSD, which comprises n
samples represented as GSD ∈ (X, y). Here, X is a matrix with m rows and 12 columns,
representing the 12 influencing factors, while y is a matrix with m rows and 1 column, indi-
cating the locations of groundwater spring potential (coded as 1) and nonspring potential
(coded as 0). The objective is to construct an inference model, DeepNN (X)→ [0, 1], utilizing
the deep neural networks’ algorithms. Consequently, the output of the DeepNN model is
referred to as groundwater spring potential indices, which are subsequently employed to
compile the groundwater spring potential map.

2.2. Random Forest

Random forest (RF), proposed by Breiman [50], is a robust machine-learning algorithm
that belongs to the ensemble-learning family. It combines multiple decision trees to create a
powerful predictive model. Due to their robustness, accuracy, and interpretability, random
forests have proven to be successful in applications across various spatial domains [51–53].

For groundwater spring potential modeling in this context, using the GSD dataset men-
tioned above, the random forest (RF) algorithm generates n subsets through a process known
as bootstrap aggregating or “bagging”. Then, each subset is used to build a decision tree
independently. Eventually, all the decision trees are aggregated to form an ensemble model.

The performance of the RF model is strongly dependent on three parameters: the
number of trees in the random forest (nTree), the maximum depth of the tree (dTree),
and the number of randomly chosen features (fTree); therefore, they must be carefully
picked up. In this study, these parameters were searched and optimized by a swarm-based
optimization algorithm, namely the Harris Hawks Optimizer, which is presented in the
below section.

2.3. Swarm-Based Optimization Algorithm

As mentioned above, the Harris Hawks Optimizer (HHO) proposed by Heidari,
Mirjalili, Faris, Aljarah, Mafarja, and Chen [43] was employed to optimize the RF model for
the spatial prediction of groundwater spring potential. This is a recently developed nature-
inspired optimization algorithm based on the hunting behavior of Harris’s hawks, a bird
species known for its cooperative hunting strategy. Herein, the HHO algorithm simulates
the collaboration and coordination among hawks during hunting to solve optimization
problems [54]. The HHO was selected for this analysis due to its capacity for rapid
convergence and enhanced accuracy in various domains [55].

Within the scope of this study, the HHO algorithm was utilized to search for and
optimize three parameters of the RF model, namely nTree, dTree, and fTree. The following
steps were employed for this purpose:

� Step 1: This step involves determining the population size (N) and creating a three-
dimensional search space for the parameters. In the searching space, the position
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of each hawk is defined by its coordinates (nTree, dTree, and fTree), representing a
solution within the RF model. Subsequently, a cost function is defined to evaluate and
measure the fitness of each solution.

� Step 2: In this step, the fitness of each hawk in the swarm is calculated. Following
that, the search phase is executed, wherein the position of the hawks is updated using
Equation (1) [43]:

Pt+1 =

{
Pt

Rd − r1
∣∣Pt

Rd − 2r2Pt∣∣; q ≥ 0.5∣∣Pt
Best − Pt

m
∣∣− r3(LB + r4(UB− LB)); q < 0.5

}
(1)

where Pt+1 and Pt represent the position of the hawks at iteration t + 1 and iteration t, respec-
tively; Pt

Rd is the random hawk; Pt
Best denotes the individual position with the best fitness,

also referred to as the prey’s location at iteration t; the five parameters, r1, r2, r3, r4, and q,
are randomly generated numbers ranging from 0 to 1. UB and LB are the upper bound and
the lower bound of the searching space. Pt

m is the average position of individuals and can
be computed using Equation (2):

Pt
m =

1
N∑ Pt (2)

� Step 3: Compute the escape energy (E) using Equation (3) as follows:

E = 2E0(1−
t
T
) (3)

where E0 is the initial energy of the prey, and it is assigned a random value within the range
of [−1, 1]; E represents the escape energy of the prey at iteration t; T denotes the maximum
number of iterations.

If |E| ≥ 1, the position of each hawk is updated using Equation (1) above, whereas if
|E| < 1, the position of the hawks is updated using Equations (4)–(6) [56,57], as below:

Pt+1 =

{
∆Pt − E

∣∣JPt
Best − Pt∣∣; 0.5 ≤ |E| < 1 & r ≥ 0.5

Pt
Best − E

∣∣∆Pt∣∣; |E| < 0.5 & r ≥ 0.5

}
(4)

Pt+1 =

{
Pt

Best − E
∣∣JPt

Best − Pt∣∣; 0.5 ≤ |E| < 1 & r < 0.5; F1
Pt

Best − E
∣∣JPt

Best − Pt∣∣+ S + Levy; 0.5 ≤ |E| < 1 & r < 0.5; F2

}
(5)

Pt+1 =

{
Pt

Best − E
∣∣JPt

Best − Pt
m
∣∣; |E| < 0.5 & r < 0.5; F1

Pt
Best − E

∣∣JPt
Best − Pt

m
∣∣+ S + Levy; |E| < 0.5 & r < 0.5; F2

}
(6)

where J is a randomly generated number between 0 and 2; r is a randomly generated
number between 0 and 1; F1 and F2 denote the fitness conditions; S is a random vector; and
Levy refers to the Levy’s flight function. ∆Pt is the the difference between the best position
Pt

Best and the current hawk location Pt.

� Step 4: Termination: the algorithm halts when a termination criterion is satisfied,
which can be defined as reaching the maximum number of iterations or attaining the
desired fitness level.

3. Study Area and Data
3.1. Study Area

The designated research area pertains to the Gia Lai province, which is positioned in
the Central Highlands of Vietnam (Figure 1). It spans across the longitudes of 107◦26′E and
108◦51′E, and the latitudes of 12◦59′N and 14◦36′N, with a total land area encompassing
15,512.8 km2 [58]. The province exhibits varying elevations and slopes throughout its
terrain. The elevation within the province ranges from 80 m to 1740 m above sea level.
Additionally, the region exhibits slopes varying from gentle inclines to steeper angles, with
a range spanning from 0.0 to 79.9 degrees. In the province, slopes less than 12.8 degrees
play an essential role in forming the largest groundwater springs, constituting over 90% of
all spring locations. Specifically, within the slope range of 0–2.5 degrees, approximately
41% of the total spring locations are found, with a flow ranging from 0.01 to 61.27 L per s.
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Figure 1. Location of the Gia Lai province and groundwater spring locations.

The province is located in the tropical monsoon climate, characterized by distinct wet
and dry seasons [59]. Typically, the rainy season extends for approximately seven months,
spanning from May to November, while the remaining months constitute the dry season.
Our statistical analysis of the climate data POWER project, National Aeronautics and Space
Administration (NASA) (www.firms.modaps.eosdis.nasa.gov, accessed on 10 March 2023)
in the Gia Lai province from 1981 to 2020 shows that the total rainfall in the rainy season
exhibited an enormous variation from 44.83 mm in 1987 to 3114.54 mm in 2020. The highest
average monthly temperature ranges from 23.7◦ in December 1999 to 43.4◦ in April 2007.

The Gia Lai province is significantly influenced by high temperatures and El Niño [60].
During El Niño events, alterations in precipitation patterns, temperatures, and other
meteorological variables have been observed in the province. These alterations have led to
increased aridity, decreased rainfall, and higher temperatures, resulting in water shortages,
including the depletion of groundwater reserves within the region [61].

The region has experienced robust economic development, marked by significant
expansion in coffee and pepper cultivation areas [62]; however, this growth has led to
the unsustainable overuse of groundwater resources for irrigation purposes within the
region [63]. The region has experienced population growth due to migration, as well
as ongoing deforestation carried out by specific ethnic minority groups for agricultural
purposes, and consequently, these factors have contributed to a significant depletion of
groundwater resources within the region [64].

www.firms.modaps.eosdis.nasa.gov
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From a geological perspective, the province exhibits the outcropping of over 40 distinct
geological units. Among them, eight units are dominant, which account for 79.64% of the
total study area and cover 85.3% of the total groundwater spring locations. They are Tuc
Trung formation (25.77%), Van Canh complex (20.02%), BG-QS complex (14.63%), Mang
Yang formation (6.48%), Dai Nga formation (4.93%), Lower-Middle Holocene (3.34%), Xa
Lam Co formation (2.4%), and Tac Po formation (2.07%) (Table 1). Herein, the primary
lithologies encompass tholeiitic olivine basalt, granodiorite, granosyenite, diorite, granite,
conglomerate, cobble, and plagioclase. The groundwater spring locations are concentrated
in the Tuc Trung formation (68.87%) and Van Canh complex (8.21%). Notably, the Xuan
Loc formation (refer to Figure 2 and Table 1) occupies merely 1.55% of the overall study
area; however, it contributes to 9.58% of the total groundwater spring locations. The
impact of tectonic faults on groundwater springs is not fully discernible, as the majority of
springs (83% of the total) are situated more than 2400 m away from the fault zones (refer to
Figure 2).

Table 1. The geological units recognized in the Gia Lai province. BS-QS: Ben Giang-Que Son.

No Geological Units Area (%) Spring
Location (%) Main Lithologies

1 Tuc Trung formation 25.77 68.87 Tholeiitic, olivine basalt
2 Van Canh complex 20.02 8.21 Granite, granociorite, granosyenite
3 BG-QS complex 14.63 2.24 Granite, gabbrodiorite, diorite
4 Mang Yang formation 6.48 1.17 Conglomerate, sandstone, shale, and tuffs
5 Dai Nga formation 4.93 1.71 Tholeiitic, olivine, subalkaline basalt
6 Lower-Middle Holocene 3.34 1.71 Cobble, sand, silty sand, clay
7 Xa Lam Co formation 2.4 0.75 Plagioclase, biotite, hypersthene schist
8 Tac Po formation 2.07 0.64 Gneiss, plagiogneiss, schist
9 Kon Cot formation 1.95 1.17 Plagiogneiss, granulite, garnetgneiss, charnokits

10 Chu Prong formation 1.61 0 Andesite, dacite, rhyolite, and tuffs
11 Xuan Loc formation 1.55 9.58 Olivine basalt, volcanic ash, and tuffs
12 Upper Pleistocene 1.53 0.32 Grit, granule, sand, silt
13 Dray Linh formation 1.52 0.32 Siltstone, shale, limestone
14 Song Ba formation 1.41 0.11 Conglomerate, gritstone, sandstone, siltstone
15 Dak Long complex 1.34 0.32 Quartzite, schist, shale, marble
16 Upper Holocene 1.22 0.32 Sand, cobble, pebble, silty sand
17 Lower Pleistocene 1.21 0.21 Cobble, granule, sand, silty sand
18 Dak Lo formation 1.06 0.11 Gneiss, schist, marble, caliphate, quartzite
19 Deo Ca complex 1.03 0.11 Granite, granosyenite, siltstone
20 Middle-Upper Pleistocene 0.94 0.21 Sand, cobble, granule, grif, clay
21 Others 3.99 1.92 Dacite, rhyodacite, conglomerate, sand, silt

3.2. Groundwater Spring Locations

In the spatial prediction of groundwater springs, an underlying assumption is made
that the geo-environmental characteristics of existing springs play a vital role in predicting
the potential distribution of groundwater springs within the areas under consideration.
Therefore, the initial step involves collecting and compiling inventories of groundwater
springs. It is noted that groundwater is typically stored within aquifers and can be accessed
through wells or extracted naturally through springs. Herein, spring denotes geographical
locations on the land surface where groundwater is discharged from an aquifer, resulting in
a discernible and observable flow [65]. Although in mountainous regions, springs are also
commonly found within Quaternary sediments. However, groundwater springs primarily
occur in locations where the bedrock is fractured, and the overburden is thin [66].

In order to create the groundwater spring inventory map, fieldwork was carried
out in the stated fund project B2021-MDA-12 previously [67–69]. To identify the spring
locations, handheld GPS devices and national topographic maps at a scale of 1:50,000
were utilized. As a result, a total of 938 groundwater spring locations were surveyed and
measured (Figures 1 and 2). The measured water flow at these spring locations varies from
0.01 to 118.35 L per s (L/s), with an average of 2.79 L/s. Moreover, the degree of water
mineralization at these sites falls within the range of 0.01 to 0.980 g per L (g/L), which
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complies with the permissible standards for domestic water supply. There are 66 locations
where the water flow exceeds 10 L/s, while 352 locations display a water flow ranging
between 1.0 and 10.0 L/s.
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3.3. Groundwater Spring Influencing Factors

The occurrence and movement of groundwater are interconnected with various geo-
environmental factors [70], encompassing geology, hydrology, topography, vegetation, and
climate [71]. Thus, understanding their influence is crucial for comprehending the behavior
of groundwater systems. Based on our analysis of the spring inventory and characteristics
of the Gia Lai province, we considered 12 factors: land use and land cover (LULC), geology,
distance to fault, distance to river, rainfall, normalized difference vegetation index (NDVI),
normalized difference moisture index (NDMI), normalized difference water index (NDWI),
slope, aspect, elevation, and curvature.

LULC refers to the activities and vegetation covering the Earth’s surface. Land use
refers to human activities and the purpose for which land is utilized, i.e., agriculture, urban
development, forestry, or transportation infrastructure [72]. In contrast, land cover, on the
other hand, refers to the physical coverage of the Earth’s surface, i.e., vegetation, water
bodies, bare soil, and artificial surfaces [73]. LULC is a crucial factor for modeling ground-
water spring potential because the types of LULC areas directly influence groundwater
recharge, infiltration rates, and the overall hydrological balance [74]. In this analysis, the
LULC map with eight groups of the Gia Lai province (Figure 3a) was compiled using the
30 m resolution LULC dataset produced in 2020. This dataset was obtained from the Japan
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Aerospace Exploration Agency (JAXA) and can be accessed at www.eorc.jaxa.jp. The data
retrieval was conducted on 10 March 2023.
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Geology plays a crucial role in determining the properties of aquifers, which are
underground rock formations that hold and transmit groundwater [65]. Herein, different
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rock types have varying permeability and porosity, affecting the ability of water to flow
through and be stored within the subsurface. Faults should also be considered because they
can serve as preferential pathways, enabling water to flow more easily through fractured
zones [75]. Moreover, faults can act as barriers, potentially obstructing or diverting the
natural flow of groundwater. In this study, the geology map (Figure 3b) for the study area
was prepared with 32 classes, whereas the distance-to-fault map with 8 categories (Figure 3c)
was constructed by buffering the fault networks of the province. The geological and fault
data utilized in this study were obtained from the Geological and Mineral Resources Map
at a scale of 1:200,000, which was provided by the Ministry of Natural Resources and
Environment of Vietnam.

Distance to river was used in this study because rivers are a significant source of
groundwater recharge. Herein, the distance to river relates to the hydraulic connection
between the river networks and the groundwater system [76]. Thus, springs that are closer
to rivers may have a stronger hydraulic connection. In this study, distance to river with
eight classes (Figure 3d) was constructed by buffering the river network using the Multiple
Ring Buffer tool in ArcGIS Pro. The river network data used in this study were obtained
from OpenStreetMap (www.openstreetmap.org), accessed on 10 March 2023.

Regarding rainfall, this factor is vital for modeling groundwater spring potential due
to its direct impact on groundwater recharge, including quantity, distribution, and seasonal
variations [77]. Thus, when rainfall occurs, a portion of the water infiltrates into the ground,
replenishing the groundwater reservoirs. In this study, the total rainfall data covering the
period from 1981 to 2020 in the Gia Lai province were utilized to generate the rainfall map
(refer to Figure 3e). The rainfall data were obtained from the POWER project of NASA, as
mentioned above.

Remote sensing indices, i.e., NDVI, NDMI, NDWI, have been considered for ground-
water studies [78]. NDVI provides information about the presence and vigor of vegetation,
which is directly linked to groundwater availability. Higher NDVI values indicate denser
vegetation cover, which suggests a higher likelihood of groundwater recharge and sustained
spring activity [79]. NDMI is a spectral index that quantifies the moisture content in vegeta-
tion and soil. Thus, higher NDMI values indicate a higher soil moisture content [80], which
may contribute to groundwater recharge and the presence of springs. NDWI provides an
assessment of the moisture availability in the topsoil, indicating potential groundwater
recharge zones and areas favorable for spring occurrence [81]. In this analysis, the compu-
tation of the remote sensing index maps, NDVI (Figure 3f), NDMI (Figure 3g), and NDWI
(Figure 3h) for the Gia Lai province, was performed using the reflectance values obtained
from bands 3, 4, 5, and 6 of Landsat 8 OLI imagery at a resolution of 30 m. The calculations
were carried out using Equation (7) [82], Equation (8) [83], and Equation (9) [84]. The
Landsat 8 OLI imagery can be accessed through the website www.earthexplorer.usgs.gov
(accessed on 13 April 2023).

NDVI = (Band 5 − Band 4)/(Band 5 + Band 4) (7)

NDMI = (Band 3 − Band 5)/(Band 3 + Band 5) (8)

NDWI = (Band 5 − Band 6)/(Band 5 + Band 6) (9)

Topographic factors, i.e., slope, aspect, elevation, and curvature, should be considered
for groundwater modeling because they influence the movement and distribution of
groundwater. Thus, steeper slopes may result in faster runoff and reduced infiltration,
potentially affecting groundwater recharge [85], whereas gentle slopes facilitate slower
water movement, increasing the likelihood of groundwater retention and the formation of
springs. For the case of the aspect, different slope directions may experience varying rates
of evapotranspiration [86], affecting the overall water balance and groundwater availability.
Elevation relates to a corresponding variation in gravity [71], which significantly influences
the potential energy of water and subsequently affects groundwater flow patterns. Herein,

www.openstreetmap.org
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changes in elevation may create gradients that drive groundwater movement, including
the emergence of springs in lower elevation areas.

In the case of the curvature, this factor quantifies the shape of the land surface that relates
to the convergent or divergent flow of water. Herein, areas with concave curvature may
accumulate water [87], potentially promoting groundwater recharge and spring formation.
Conversely, convex curvature indicates areas where water tends to drain or flow away [88],
potentially impacting the occurrence of springs. For this study, the slope map (refer to
Figure 3i), aspect map (refer to Figure 3j), elevation map (refer to Figure 3k), and curvature
map (refer to Figure 3l) of the Gia Lai province were generated using an ALOS DEM (digital
elevation model) at a resolution of 30 m. The ALOS DEM dataset was provided by the Earth
Observation Research Center (EORC) of the Japan Aerospace Exploration Agency (JAXA)
and can be accessed at www.eorc.jaxa.jp (accessed on 14 April 2023).

4. Proposed Methodology for Comparative Analysis of Deep Learning and
Swarm-Optimized Random Forest for Groundwater Spring Potential Identification

The proposed methodology for predicting the potential locations of groundwater
springs using swarm-optimized random forest and deep learning is shown in Figure 4. It is
noted that ArcGIS Pro 3.0 with the spatial analysis tool was used to process the multisource
geospatial data and build the groundwater database. The Python code for the deep-
learning model can be obtained from the official TensorFlow website at www.tensorflow.org
(accessed on 10 March 2023). The Matlab code for the Harris Hawks optimization algorithm
is available from the work of Heidari, Mirjalili, Faris, Aljarah, Mafarja, and Chen [43]. The
author developed the swarm-optimized random forest model (SwarmRF) in the Matlab
platform using the Matlab Weka Classifiers tool provided by Dunham (2023). Additionally,
a Python script was developed to convert the output of the deep-learning and SwarmRF
models into raster format, facilitating the generation of the final groundwater spring
potential maps.

Step 1. Construction of the groundwater spring database.

In this study, the groundwater spring database for the Gia Lai province was created
utilizing the ESRI file geodatabase format. Subsequently, the coordinate system chosen
for the study area was WGS 1984 UTM Zone 48N. This coordinate system employs the
Transverse Mercator projection with a central meridian of 105◦, a scale factor of 0.9996,
latitude of origin of 0.0, and a unit of measurement in meters. Next, the groundwater spring
inventory map with 938 spring locations and 12 influencing factors were incorporated into
the database to ensure uniformity in the coordinate system. Because these factors were
generated from multisource geospatial data, this step is crucial for maintaining consistency
across the dataset and facilitating modeling during subsequent phases. Then, all factors
were converted to a raster format with a spatial resolution of 30 m. Subsequently, all
influencing factors were normalized within the range of 0.01 to 0.99 [89]. This normaliza-
tion process was implemented to mitigate any dominant impact from variations in the
magnitude of factor values on the groundwater spring modeling result.

Given that the groundwater spring modeling in this study is framed as a binary
pattern recognition problem, a set of 938 nonspring locations were generated outside
the groundwater spring areas. Consequently, a total of 1876 locations were obtained.
In order to establish training and validation datasets for the study area, these locations
were randomly sampled in a 70:30 ratio, resulting in the construction of a training dataset
(1314 samples) and a validation dataset (562 samples). Herein, the training and validation
datasets were designed to ensure an equal representation of spring and nonspring locations.
This approach was adopted to prevent any potential bias in the datasets. The spring
locations were assigned “1”, whereas the nonspring locations were assigned “0”. Finally,
the value of the 12 influencing factors was extracted for the 2 datasets using the sample
tool in ArcGIS Pro.

www.eorc.jaxa.jp
www.tensorflow.org
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Step 2. Feature selection with the wrapper method.

Selecting appropriate spring influencing factors is vital in groundwater spring model-
ing and prediction, as it allows for the identification of the most relevant and informative
factors. By including only the pertinent spring factors in the model, the performance and
accuracy of the model can be significantly enhanced. It helps mitigate the introduction of
noise or unnecessary complexity that may arise from irrelevant or redundant spring factors,
thereby preventing overfitting and maintaining the overall performance of the models at a
higher level.

In this analysis, the wrapper method, which was introduced by Kohavi and John [90],
was used due to its efficiency in various prediction domains [91]. Herein, the wrapper
method offers a significant advantage by considering the dependencies among input
factors, which encompass interactions and redundancies. Given that the wrapper method’s
effectiveness is contingent upon the choice of classifier and evaluation metrics, we have
opted to utilize the random forest algorithm as the classifier in this study. Furthermore, we
have selected mean absolute error (MAE) as the evaluation metric, following the suggestion
of Liu and Wang [92].

MAE =
1
n ∑n

i=1|Opi − Tgi| (10)

where Opi is the output value of the groundwater spring model, whereas Tgi is the target
value of the groundwater spring in the groundwater spring database; n represents the total
number of samples utilized.

Step 3. Groundwater spring potential modeling with deep learning.

The architecture of the deep neural network (DNN) model employed in this study
comprised 12 input neurons, 3 hidden layers, each containing 32 neurons, and 2 output
neurons (refer to Figure 4). The rectified linear unit (ReLU) activation function was chosen,
while the sigmoid transfer function was utilized, whereas the Adaptive Moment Estimation
(ADAM) optimizer [93], known for its efficiency, was employed, as it has demonstrated
effectiveness in recent studies (Bui et al., 2020 [44]). As a result, a total of 2561 parameters
were identified for the training process. Mean squared error (MSE) (Equation (11)) was
used as an objective function to measure the overall performance of each combination.

MSE =
1
n ∑n

i=1(Opi − Tgi)
2 (11)

where Opi is the output value of the DNN model, whereas Tgi is the target value of the
groundwater spring in the groundwater spring database; n represents the total number of
samples utilized.

Step 4. Groundwater spring potential modeling with swarm-optimized random forest.

In this work, the swarm-optimized random forest (SwarmRF) was employed, where
three parameters, the maximum depth of the tree (dTree), the number of randomly chosen
features (fTree), and the number of trees in the random forest (nTree), were searched and
optimized using the Harris Hawks Optimizer (HHO) algorithm. For this task, the mean
squared error (MSE) from Equation (4) was chosen as the cost function to evaluate the
model’s performance across various combinations of the three parameters. In this context,
a lower MSE value indicates a higher level of model performance.

The configuration parameters for the HHO algorithm in this study were set as follows: a
population size of 30 hawks and a total of 1000 iterations. The searching space was defined as
follows: for the maximum depth of the tree (dTree), the range was set as [1–100], indicating a
maximum tree depth of 100; for the number of trees (nTree) used in the random forest (RF),
the range was set as [1–1000], allowing for a maximum of 1000 trees in the RF; and for the
number of randomly chosen factors in each tree, the range was set as [1–12], signifying that
the algorithm considered a selection from 1 to 12 factors in each individual tree.

Step 5. Performance assessment.
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In evaluating the performance of the groundwater spring models, widely used statisti-
cal metrics for binary classification were employed. These metrics consisted of classification
accuracy (Acc), receiver operating characteristic (ROC) curve analysis, area under the curve
(AUC), and kappa coefficient. In addition, the positive predictive value (PPV), the negative
predictive value (NPV), F-score, sensitivity, and specificity were also included. Detailed
explanations of these metrics can be found abundantly in the literature, such as in the work,
i.e., of Msaddek et al. [94]. Hence, to prevent redundancy, we have chosen not to delve into
a detailed explanation of these metrics in this context. Interested readers are kindly referred
to relevant articles for a more comprehensive description of these evaluation metrics.

5. Results and Analysis
5.1. Variable Importance

The outcomes of the feature selection process, conducted using the wrapper method
with 5-fold cross-validation, are presented in Table 2. The results highlight the significant
role of geology in influencing groundwater spring occurrence within the Gia Lai province,
as it achieved the highest-ranking score of 0.250. Following geology, elevation (0.181),
NDVI (0.179), NDMI (0.169), LULC (0.153), rainfall (0.151), distance to fault (0.120), and
NDWI (0.115) were observed to contribute to the groundwater spring potential. Conversely,
curvature exhibited the lowest contribution, with a ranking score of 0.049. Notably, all
factors demonstrated relevance and informative value for groundwater spring analysis.
Thus, none of them were excluded from this investigation.

Table 2. The role of 12 groundwater spring influencing factors using the wrapper method.

No. Groundwater Spring Influencing Factor Ranking Score

1 Geology 0.250
2 Elevation (m) 0.181
3 NDVI 0.179
4 NDMI 0.169
5 LULC 0.153
6 Rainfall (mm) 0.151
7 Distance to fault (m) 0.120
8 NDWI 0.115
9 Slope (◦) 0.087
10 Aspect 0.073
11 Distance to river (m) 0.062
12 Curvature 0.049

5.2. Model Training and Validation

Using the training dataset with 1314 samples, the DeepNN model was trained in the
training phase, where the ADAM algorithm optimized 2561 parameters. The findings
are presented in Table 3 and Figure 5, which demonstrate a strong alignment between
the DeepNN model and the training dataset. Specifically, the accuracy (Acc) is 80.7%, the
F-score is 0.819, the kappa value is 0.615, and the area under the curve (AUC) is 0.872.
Furthermore, the positive predictive value (PPV) of 86.9% indicates that the DeepNN
model accurately classifies groundwater spring locations in 86.9% of cases. Conversely, the
negative predictive value (NPV) of 74.6% signifies the model’s ability to identify nonspring
locations in 74.6% of instances correctly. The validation dataset, consisting of 562 samples,
was utilized to validate the DeepNN model. The performance of the DeepNN model is
displayed in Table 3, revealing commendable results. The recorded metrics for the DeepNN
model are as follows: an accuracy (Acc) of 77.9%, an F-score of 0.783, a kappa value of 0.559,
and an area under the curve (AUC) of 0.820. Moreover, the positive predictive value (PPV)
is 79.7%, signifying the model’s ability to accurately classify groundwater spring locations,
while the negative predictive value (NPV) is 76.2%, indicating its proficiency in correctly
identifying nonspring locations.
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Table 3. Performance of the DeepNN model, the SwarmRF model, and the RF model in the training
phase and the validation phase.

Groundwater Spring Model
with 10-Fold Cross-Validation

Measured Metrics
TP TN FP FN PPV NPV Sens Spec Acc F-Score Kappa AUC

Training phase
DeepNN 571 490 86 167 86.9 74.6 77.4 85.1 80.7 0.819 0.615 0.872
SwarmRF 507 516 150 141 77.2 78.5 78.2 77.5 77.9 0.777 0.557 0.848
RF 514 514 143 143 78.2 78.2 78.2 78.2 78.2 0.782 0.565 0.843

Validating phase
DeepNN 224 214 57 67 79.7 76.2 77.0 79.0 77.9 0.783 0.559 0.820
SwarmRF 219 232 62 49 77.9 82.6 81.7 78.9 80.2 0.798 0.605 0.854
RF 208 229 73 52 74.0 81.5 80.0 75.8 77.8 0.769 0.555 0.840
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In the case of the SwarmRF model, the parameters dTree, fTree, and nTree underwent
optimization using the HHO algorithm with 1000 iterations. The optimal values obtained
for these parameters were found to be dTree = 21, fTree = 4, and nTree = 91. By using these
parameters, the model was run again using the training dataset with 10-fold cross-validation.
The outcomes are presented in Table 3, demonstrating a substantial fit between the model
and the training data. Specifically, the accuracy (Acc) achieved a value of 77.9%, the F-score
attained 0.777, the kappa coefficient reached 0.557, and the area under the curve (AUC) was
measured at 0.839. Additionally, the PPV of 77.2% signifies the DeepNN model’s accurate
classification of groundwater spring locations, while the NPV of 78.5% highlights its precise
classification of nonspring locations. The validation results indicate that the SwarmRF model
demonstrates a high prediction power when applied to the new dataset. The Acc is recorded
at 80.2%, the F-score reaches 0.798, the kappa coefficient attains 0.605, and the area under
the curve (AUC) is measured as 0.854. Moreover, the PPV of 77.9% confirms the SwarmRF
model’s accurate classification of new groundwater spring locations, while the NPV of 82.6%
underscores its precise classification of newly nonspring locations.

For the purpose of comparison, the random forest (RF) model was utilized with default
parameters. The parameter values were set as follows: dTree was set to unlimited, fTree was
randomly selected, and nTree was set to 100. The results presented in Table 3 demonstrate a
strong alignment between the model and the training data, with an accuracy (Acc) of 78.2%,
an F-score of 0.782, a kappa coefficient of 0.565, and an area under the curve (AUC) of 0.843.
Furthermore, the validation results indicate that the RF model yields a favorable prediction
performance, with an accuracy (Acc) of 77.8%, an F-score of 0.769, a kappa coefficient of
0.555, and an AUC of 0.840. It could be seen that the prediction performance of the RF
model is slightly lower than that of the SwarmRF model.
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5.3. Statistical Test

Based on the training and validation results described earlier, it was observed that
the SwarmRF model exhibits marginally superior predictive capabilities compared to the
DeepNN model, as indicated in Table 3. In order to determine the statistical significance of
this difference, a further analysis was conducted. The Wilcoxon signed-rank test [95] was
chosen for this purpose, as it takes into account both the direction and magnitude of the
differences between paired observations.

Herein, at a significance level (α) of 5%, the null hypothesis states that there is no
notable distinction between the groundwater spring models. In order to evaluate the
significance of any disparities, the p-value and z-value are computed. If the p-value is
below the predetermined significance level of 0.05 and the z-value surpasses the critical
values of −1.96 and +1.96, the null hypothesis must be rejected. In such a scenario, it can be
concluded that a significant difference exists in the performance of the groundwater spring
models. Table 4 shows that the DeepNN model’s performance is statistically significantly
lower than the SwarmRF model. The obtained p-values = 0.011 and the z-value (2.553)
exceeded the critical values of ±1.96.

Table 4. Pairwise comparison of the groundwater spring models using Wilcoxon signed-rank test.

No. Pairwise Model z-Value p-Value Significance

1 DeepNN vs.
SwarmRF 2.553 0.011 Yes

2 DeepNN vs. RF 2.199 0.028 Yes

5.4. Compile the Forest Fire Danger Map

In order to compile the groundwater potential maps, the groundwater spring potential
(GSP) index for each pixel of the study area was computed using the trained DeepNN
model and the trained SwarmRF model. With a resolution of 30 m, the study area was
formed by a matrix of 5112 columns × 5934 rows, and as a result, the GSP index for
30,334,608 pixels was computed. The result shows that the potential index value ranges
from 0.00 to 0.97 for the DeepNN model (Figure 6a) and from 0.00 to 1.00 for the SwarmRF
model (Figure 6b). These indices were reclassified into five classes, very low, low, moderate,
high, and very high, using the natural break method available in ArcGIS.

Based on the aerial interpretation of the two maps (Figure 5a,b), it is evident that
areas exhibiting high groundwater spring potential are identified within the Pleiku city,
the Chu Se district, the Chu Pah district, and the Ia Grai district. These specific regions are
situated within the Tuc Trung formation, which is known to harbor a significant number of
groundwater spring locations. Conversely, regions such as the Chu Prong district, the Phu
Thien district, the Ia Pa district, and the Kong Chro exhibit a relatively low groundwater
spring potential.
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6. Discussions

The identification of areas with high groundwater spring potential holds paramount
importance as it provides invaluable insights for multiple purposes, such as groundwater
resource management, land-use planning, and environmental conservation. This signif-
icance is particularly pronounced in the context of the Gia Lai province, located in the
Central Highlands of Vietnam, which frequently experiences drought crises [96]. Conse-
quently, there is a pressing need to identify the groundwater spring potential using the most
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accurate prediction model available to address the challenges the region faces effectively.
Thus, the comparison between random forest and deep neural networks (DeepNNs), as
they are among the most powerful machine-learning techniques for groundwater potential
modeling in this study, allows for a comprehensive evaluation of model performance,
suitability, generalization, interpretability, and practical considerations. It helps advance
the field by identifying the most effective techniques for accurate and reliable predictions,
leading to improved decision-making in groundwater management.

The findings of this study indicate that the DeepNN has exhibited remarkable perfor-
mance. This implies that the DeepNN model has captured complex nonlinear relationships
between 12 groundwater spring influencing factors, making them suitable for modeling
intricate patterns in groundwater spring data. Thus, with the ADAM optimization, a total
of 2561 parameters of the DeepNN model were searched and optimized properly. Even so,
the fact that the DeepNN model is still a black-box model makes it challenging to interpret
the learned representations of the groundwater spring data. Moreover, it is not easy to
understand the reasoning behind the prediction of the groundwater spring potential indices.
Unlike the RF, where the decision tree ensemble defines the model structure, deep-learning
models have a more flexible and complex architecture. Nevertheless, further work is still
required regarding the optimization of the DeepNN model structure.

Concerning the random forest (RF) model, the research findings demonstrate its
high predictive capability for groundwater spring potential, showcasing its robustness
when applied to multisource geospatial maps. Additionally, the RF model offers ease
of interpretation through the utilization of decision trees, which provide clear rules and
feature interactions contributing to the final predictions. Furthermore, when combined
with the wrapper method, the RF model effectively quantifies the importance of influencing
factors on groundwater spring potential. However, it is important to note that the RF
model’s performance is sensitive to its parameters, including the number of trees in the
random forest (nTree), the maximum depth of the tree (dTree), and the number of randomly
chosen features (fTree). The research findings indicate that using the default parameters
does not yield the best model prediction, emphasizing the need for parameter optimization
to achieve optimal results.

Consequently, through the utilization of the Harris Hawks Optimizer (HHO), the
performance of the RF model has been improved and demonstrated a slight superiority
compared to the DeepNN model. This is because the SwarmRF facilitates the extraction
of feature importance scores, aiding in identifying the most influential variables driving
groundwater potential. This interpretable feature analysis is challenging to achieve with
DeepNN, making the former more insightful for groundwater prediction tasks. The finding
in this study contrasts with the results documented by Wang, Wang, and Han [42], where
the RF model’s performance was reported to be lower than that of deep-learning models.
However, it is worth noting that there is no clarity regarding the optimization of RF
parameters in their study.

Geology is the most important factor among the 12 groundwater spring influencing
factors. This is a reasonable result because, in the Gia Lai province, the groundwater
springs are mainly located in the Tuc Trung formation. The main lithologies are tholeiitic
basalt and subalkaline olivine basalt, with a 30–350 m thickness. They are types of basaltic
magma rocks that favor groundwater spring occurrence due to their specific characteristics,
i.e., porosity, permeability, and fracture networks [97]. Herein, porosity refers to the
presence of void spaces within the rock, while permeability refers to the ability of the
rock to transmit water [98]. The interconnected pores and fractures in these basaltic
rocks provide pathways for water to flow and accumulate, facilitating the formation of
groundwater springs. According to Wu et al. [99], basaltic magma rocks often possess
well-developed fracture networks due to the cooling and solidification processes during
volcanic activity. The fractures in tholeiitic basalt and subalkaline olivine basalt serve
as preferential pathways for groundwater to percolate through the rock and eventually
discharge as springs.
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Elevation and NDVI are other important factors in this study area. This is primarily
due to the fact that the majority of spring locations are concentrated within an elevation
range of 300 m to 800 m, comprising 88.3% of the total number of spring locations. Ele-
vation significantly influences the formation of springs by affecting the potential energy
of groundwater. Notably, this elevation range also corresponds to the concentration of
tholeiitic basalt and subalkaline olivine basalt, as previously mentioned. As for NDVI,
87.8% of the spring locations fall within the NDVI range of 0.30 to 0.8, indicating a strong
connection between vegetation distribution and groundwater in this study area.

7. Concluding Remarks

Based on the findings presented, we have reached the following conclusions:

� Both deep neural networks and random forests have been identified as powerful
methods for the spatial prediction of groundwater spring potential.

� The random forests model optimized by the HHO algorithm (referred to as SwarmRF)
exhibits a slight superiority in terms of prediction capability compared to the deep
neural network (DeepNN) model.

� Geology stands out as the most influential factor contributing to groundwater potential
mapping.

Author Contributions: Conceptualization: V.-H.N., P.V.H. and D.T.B.; methodology: V.-H.N., P.V.H.,
L.M.-G. and D.T.B.; validation, V.-H.N. and D.T.B.; writing—original draft preparation: V.-H.N.,
P.V.H., L.M.-G. and D.T.B.; writing—review and editing: V.-H.N., P.V.H., L.M.-G. and D.T.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Ministry of Education and Training (MoET) in
Vietnam under grant number B2021-MDA-12.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [CrossRef]
2. Wang, T.; Wu, Z.; Wang, P.; Wu, T.; Zhang, Y.; Yin, J.; Yu, J.; Wang, H.; Guan, X.; Xu, H.; et al. Plant-groundwater interactions in

drylands: A review of current research and future perspectives. Agric. For. Meteorol. 2023, 341, 109636. [CrossRef]
3. Fan, Y.; Miguez-Macho, G.; Jobbágy, E.G.; Jackson, R.B.; Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl.

Acad. Sci. USA 2017, 114, 10572–10577. [CrossRef] [PubMed]
4. Bierkens, M.F.; Wada, Y. Non-renewable groundwater use and groundwater depletion: A review. Environ. Res. Lett. 2019,

14, 63002. [CrossRef]
5. Avila Velasquez, D.I.; Pulido-Velazquez, M.; Hector, M.-S. Improvement of water management for irrigation in Mediterranean

basins combining remote sensing, weather forecasting, and artificial intelligence. In Proceedings of the Online Youth Water
Congress: “Emerging Water Challenges since COVID-19”, Online, 6–8 April 2022; p. 58.

6. Amadori, M.; Zamparelli, V.; De Carolis, G.; Fornaro, G.; Toffolon, M.; Bresciani, M.; Giardino, C.; De Santi, F. Monitoring Lakes
Surface Water Velocity with SAR: A Feasibility Study on Lake Garda, Italy. Remote Sens. 2021, 13, 2293. [CrossRef]

7. Sentas, A.; Karamoutsou, L.; Charizopoulos, N.; Psilovikos, T.; Psilovikos, A.; Loukas, A. The use of stochastic models for
short-term prediction of water parameters of the Thesaurus dam, River Nestos, Greece. Proceedings 2018, 2, 634.

8. Jasechko, S.; Seybold, H.; Perrone, D.; Fan, Y.; Kirchner, J.W. Widespread potential loss of streamflow into underlying aquifers
across the USA. Nature 2021, 591, 391–395. [CrossRef] [PubMed]

9. Dalin, C.; Wada, Y.; Kastner, T.; Puma, M.J. Groundwater depletion embedded in international food trade. Nature 2017, 543,
700–704. [CrossRef]

10. Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu,
S.R. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 2023, 4, 87–101.
[CrossRef]

11. Baghban, S.; Bozorg-Haddad, O.; Berndtsson, R. Water security. In Water Resources: Future Perspectives, Challenges, Concepts and
Necessities; IWA Publishing: London, UK, 2021; p. 205.

12. He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future global urban water scarcity and potential solutions. Nat.
Commun. 2021, 12, 4667. [CrossRef]

https://doi.org/10.1038/nclimate2425
https://doi.org/10.1016/j.agrformet.2023.109636
https://doi.org/10.1073/pnas.1712381114
https://www.ncbi.nlm.nih.gov/pubmed/28923923
https://doi.org/10.1088/1748-9326/ab1a5f
https://doi.org/10.3390/rs13122293
https://doi.org/10.1038/s41586-021-03311-x
https://www.ncbi.nlm.nih.gov/pubmed/33731949
https://doi.org/10.1038/nature21403
https://doi.org/10.1038/s43017-022-00378-6
https://doi.org/10.1038/s41467-021-25026-3


Remote Sens. 2023, 15, 4761 20 of 23

13. Chenini, I.; Mammou, A.B. Groundwater recharge study in arid region: An approach using GIS techniques and numerical
modeling. Comput. Geosci. 2010, 36, 801–817. [CrossRef]

14. Saravanan, R.; Balamurugan, R.; Karthikeyan, M.S.; Rajkumar, R.; Anuthaman, N.G.; Navaneetha Gopalakrishnan, A. Groundwa-
ter modeling and demarcation of groundwater protection zones for Tirupur Basin—A case study. J. Hydro-Environ. Res. 2011, 5,
197–212. [CrossRef]

15. Corsini, A.; Cervi, F.; Ronchetti, F. Weight of evidence and artificial neural networks for potential groundwater spring mapping:
An application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology 2009, 111, 79–87. [CrossRef]

16. Mogaji, K.; Omosuyi, G.; Adelusi, A.; Lim, H. Application of GIS-based evidential belief function model to regional groundwater
recharge potential zones mapping in hardrock geologic terrain. Environ. Process. 2016, 3, 93–123. [CrossRef]

17. Ozdemir, A. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in
the Sultan Mountains (Aksehir, Turkey). J. Hydrol. 2011, 405, 123–136. [CrossRef]

18. Golkarian, A.; Naghibi, S.A.; Kalantar, B.; Pradhan, B. Groundwater potential mapping using C5.0, random forest, and multivariate
adaptive regression spline models in GIS. Environ. Monit. Assess. 2018, 190, 149. [CrossRef] [PubMed]

19. Machiwal, D.; Jha, M.K.; Mal, B.C. Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS
and MCDM techniques. Water Resour. Manag. 2011, 25, 1359–1386. [CrossRef]

20. Arulbalaji, P.; Padmalal, D.; Sreelash, K. GIS and AHP techniques based delineation of groundwater potential zones: A case study
from southern Western Ghats, India. Sci. Rep. 2019, 9, 2082. [CrossRef] [PubMed]

21. Pham, Q.B.; Tran, D.A.; Ha, N.T.; Islam, A.R.M.T.; Salam, R. Random forest and nature-inspired algorithms for mapping
groundwater nitrate concentration in a coastal multi-layer aquifer system. J. Clean. Prod. 2022, 343, 130900. [CrossRef]

22. Bien, T.X.; Jaafari, A.; Van Phong, T.; Trinh, P.T.; Pham, B.T. Groundwater potential mapping in the Central Highlands of Vietnam
using spatially explicit machine learning. Earth Sci. Inform. 2023, 16, 131–146. [CrossRef]

23. Bai, Z.; Liu, Q.; Liu, Y. Groundwater potential mapping in hubei region of china using machine learning, ensemble learning, deep
learning and automl methods. Nat. Resour. Res. 2022, 31, 2549–2569. [CrossRef]

24. Das, R.; Saha, S. Spatial mapping of groundwater potentiality applying ensemble of computational intelligence and machine
learning approaches. Groundw. Sustain. Dev. 2022, 18, 100778. [CrossRef]

25. Ijlil, S.; Essahlaoui, A.; Mohajane, M.; Essahlaoui, N.; Mili, E.M.; Van Rompaey, A. Machine learning algorithms for modeling
and mapping of groundwater pollution risk: A study to reach water security and sustainable development (Sdg) goals in a
mediterranean aquifer system. Remote Sens. 2022, 14, 2379. [CrossRef]

26. Chen, Y.; Chen, W.; Chandra Pal, S.; Saha, A.; Chowdhuri, I.; Adeli, B.; Janizadeh, S.; Dineva, A.A.; Wang, X.; Mosavi, A.
Evaluation efficiency of hybrid deep learning algorithms with neural network decision tree and boosting methods for predicting
groundwater potential. Geocarto Int. 2022, 37, 5564–5584. [CrossRef]

27. Hakim, W.L.; Nur, A.S.; Rezaie, F.; Panahi, M.; Lee, C.-W.; Lee, S. Convolutional neural network and long short-term memory
algorithms for groundwater potential mapping in Anseong, South Korea. J. Hydrol. Reg. Stud. 2022, 39, 100990. [CrossRef]

28. Sashikkumar, M.; Selvam, S.; Kalyanasundaram, V.L.; Johnny, J.C. GIS based groundwater modeling study to assess the effect of
artificial recharge: A case study from Kodaganar river basin, Dindigul district, Tamil Nadu. J. Geol. Soc. India 2017, 89, 57–64.
[CrossRef]

29. Goyal, D.; Haritash, A.; Singh, S. A comprehensive review of groundwater vulnerability assessment using index-based, modelling,
and coupling methods. J. Environ. Manag. 2021, 296, 113161. [CrossRef] [PubMed]

30. Jaafarzadeh, M.S.; Tahmasebipour, N.; Haghizadeh, A.; Pourghasemi, H.R.; Rouhani, H. Groundwater recharge potential zonation
using an ensemble of machine learning and bivariate statistical models. Sci. Rep. 2021, 11, 5587. [CrossRef]

31. Deng, C.; Zhang, Y.; Bailey, R.T. Evaluating crop-soil-water dynamics in waterlogged areas using a coupled groundwater-
agronomic model. Environ. Model. Softw. 2021, 143, 105130. [CrossRef]

32. Farhat, B.; Souissi, D.; Mahfoudhi, R.; Chrigui, R.; Sebei, A.; Ben Mammou, A. GIS-based multi-criteria decision-making
techniques and analytical hierarchical process for delineation of groundwater potential. Environ. Monit. Assess. 2023, 195, 285.
[CrossRef]

33. Tao, H.; Hameed, M.M.; Marhoon, H.A.; Zounemat-Kermani, M.; Salim, H.; Sungwon, K.; Sulaiman, S.O.; Tan, M.L.; Sa’adi, Z.;
Mehr, A.D.; et al. Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing 2022,
489, 271–308. [CrossRef]

34. Zaresefat, M.; Derakhshani, R. Revolutionizing groundwater management with hybrid AI models: A practical review. Water
2023, 15, 1750. [CrossRef]

35. Naghibi, S.A.; Ahmadi, K.; Daneshi, A. Application of support vector machine, random forest, and genetic algorithm optimized
random forest models in groundwater potential mapping. Water Resour. Manag. 2017, 31, 2761–2775. [CrossRef]

36. Knoll, L.; Breuer, L.; Bach, M. Large scale prediction of groundwater nitrate concentrations from spatial data using machine
learning. Sci. Total Environ. 2019, 668, 1317–1327. [CrossRef] [PubMed]

37. Kumar, S.; Pati, J. Assessment of groundwater arsenic contamination level in Jharkhand, India using machine learning. J. Comput.
Sci. 2022, 63, 101779. [CrossRef]

38. Chen, W.; Li, Y.; Tsangaratos, P.; Shahabi, H.; Ilia, I.; Xue, W.; Bian, H. Groundwater Spring Potential Mapping Using Artificial
Intelligence Approach Based on Kernel Logistic Regression, Random Forest, and Alternating Decision Tree Models. Appl. Sci.
2020, 10, 425. [CrossRef]

https://doi.org/10.1016/j.cageo.2009.06.014
https://doi.org/10.1016/j.jher.2011.02.003
https://doi.org/10.1016/j.geomorph.2008.03.015
https://doi.org/10.1007/s40710-016-0126-6
https://doi.org/10.1016/j.jhydrol.2011.05.015
https://doi.org/10.1007/s10661-018-6507-8
https://www.ncbi.nlm.nih.gov/pubmed/29455381
https://doi.org/10.1007/s11269-010-9749-y
https://doi.org/10.1038/s41598-019-38567-x
https://www.ncbi.nlm.nih.gov/pubmed/30765790
https://doi.org/10.1016/j.jclepro.2022.130900
https://doi.org/10.1007/s12145-022-00925-1
https://doi.org/10.1007/s11053-022-10100-4
https://doi.org/10.1016/j.gsd.2022.100778
https://doi.org/10.3390/rs14102379
https://doi.org/10.1080/10106049.2021.1920635
https://doi.org/10.1016/j.ejrh.2022.100990
https://doi.org/10.1007/s12594-017-0558-2
https://doi.org/10.1016/j.jenvman.2021.113161
https://www.ncbi.nlm.nih.gov/pubmed/34246907
https://doi.org/10.1038/s41598-021-85205-6
https://doi.org/10.1016/j.envsoft.2021.105130
https://doi.org/10.1007/s10661-022-10845-8
https://doi.org/10.1016/j.neucom.2022.03.014
https://doi.org/10.3390/w15091750
https://doi.org/10.1007/s11269-017-1660-3
https://doi.org/10.1016/j.scitotenv.2019.03.045
https://www.ncbi.nlm.nih.gov/pubmed/31018471
https://doi.org/10.1016/j.jocs.2022.101779
https://doi.org/10.3390/app10020425


Remote Sens. 2023, 15, 4761 21 of 23

39. Kumari, S.; Kumar, D.; Kumar, M.; Pande, C.B. Modeling of standardized groundwater index of Bihar using machine learning
techniques. Phys. Chem. Earth Parts A/B/C 2023, 130, 103395. [CrossRef]

40. Panahi, M.; Sadhasivam, N.; Pourghasemi, H.R.; Rezaie, F.; Lee, S. Spatial prediction of groundwater potential mapping based on
convolutional neural network (CNN) and support vector regression (SVR). J. Hydrol. 2020, 588, 125033. [CrossRef]

41. Moughani, S.K.; Osmani, A.; Nohani, E.; Khoshtinat, S.; Jalilian, T.; Askari, Z.; Heddam, S.; Tiefenbacher, J.P.; Hatamiafkoueieh, J.
Groundwater spring potential prediction using a deep-learning algorithm. Acta Geophys. 2023. [CrossRef]

42. Wang, Z.; Wang, J.; Han, J. Spatial prediction of groundwater potential and driving factor analysis based on deep learning and
geographical detector in an arid endorheic basin. Ecol. Indic. 2022, 142, 109256. [CrossRef]

43. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.
Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

44. Tien Bui, D.; Hoang, N.-D.; Martínez-Álvarez, F.; Ngo, P.-T.T.; Hoa, P.V.; Pham, T.D.; Samui, P.; Costache, R. A novel deep learning
neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Sci. Total
Environ. 2020, 701, 134413. [CrossRef] [PubMed]

45. Truong, T.X.; Nhu, V.-H.; Phuong, D.T.N.; Nghi, L.T.; Hung, N.N.; Hoa, P.V.; Bui, D.T. A New Approach Based on TensorFlow
Deep Neural Networks with ADAM Optimizer and GIS for Spatial Prediction of Forest Fire Danger in Tropical Areas. Remote
Sens. 2023, 15, 3458. [CrossRef]

46. Mazurowski, M.A.; Buda, M.; Saha, A.; Bashir, M.R. Deep learning in radiology: An overview of the concepts and a survey of the
state of the art with focus on MRI. J. Magn. Reson. Imaging 2019, 49, 939–954. [CrossRef] [PubMed]

47. Karamoutsou, L.; Psilovikos, A. Deep Learning in Water Resources Management: The Case Study of Kastoria Lake in Greece.
Water 2021, 13, 3364. [CrossRef]

48. Cano, A. A survey on graphic processing unit computing for large-scale data mining. Wiley Interdiscip. Rev. Data Min. Knowl.
Discov. 2018, 8, e1232. [CrossRef]

49. Liu, M.; Wu, W.; Gu, Z.; Yu, Z.; Qi, F.; Li, Y. Deep learning based on batch normalization for P300 signal detection. Neurocomputing
2018, 275, 288–297. [CrossRef]

50. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
51. Santos, K.; Dias, J.P.; Amado, C. A literature review of machine learning algorithms for crash injury severity prediction. J. Saf. Res.

2022, 80, 254–269. [CrossRef]
52. Tyralis, H.; Papacharalampous, G.; Langousis, A. A brief review of random forests for water scientists and practitioners and their

recent history in water resources. Water 2019, 11, 910. [CrossRef]
53. Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction

modeling. Expert Syst. Appl. 2019, 134, 93–101. [CrossRef] [PubMed]
54. Wang, X.; Dong, X.; Zhang, Y.; Chen, H. Crisscross Harris hawks optimizer for global tasks and feature selection. J. Bionic Eng.

2023, 20, 1153–1174. [CrossRef] [PubMed]
55. Alabool, H.M.; Alarabiat, D.; Abualigah, L.; Heidari, A.A. Harris hawks optimization: A comprehensive review of recent variants

and applications. Neural Comput. Appl. 2021, 33, 8939–8980. [CrossRef]
56. Peng, L.; Cai, Z.; Heidari, A.A.; Zhang, L.; Chen, H. Hierarchical Harris hawks optimizer for feature selection. J. Adv. Res. 2023, in

press. [CrossRef] [PubMed]
57. Truong, T.X.; Phuong, N.D.T.; Nghi, L.T.; Nhu, V.-H. A novel HHO-RSCDT ensemble learning approach for forest fire danger

mapping using GIS. Vietnam. J. Earth Sci. 2023, 45, 338–356.
58. Le, H.; Bui, Q.; Bui, D.T.; Tran, H.H.; Hoang, N. A Hybrid Intelligence System Based on Relevance Vector Machines and Imperialist

Competitive Optimization for Modelling Forest Fire Danger Using GIS. J. Environ. Inform. 2020, 36, 43–57. [CrossRef]
59. Van, N.K.; Ly, P.T.; Hong, N.T. Bioclimatic map of Tay Nguyen at scale 1: 250,000 for setting up sustainable ecological economic

models. Vietnam. J. Earth Sci. 2014, 36, 504–514. [CrossRef]
60. Tum, K.; Lai, G.; Lak, D. The Drought Crisis in the Central Highlands of Vietnam; CGIAR Research Program on Climate Change,

Agriculture and Food Security (CCAFS): Hanoi, Vietnam, 2016.
61. Tran, T.V.; Bruce, D.; Huang, C.-Y.; Tran, D.X.; Myint, S.W.; Nguyen, D.B. Decadal assessment of agricultural drought in the

context of land use land cover change using MODIS multivariate spectral index time-series data. GIScience Remote Sens. 2023,
60, 2163070. [CrossRef]

62. Hiep, N.V.; Ha, N.T.; Thuy, T.T.T.; Van Toan, P. Isolation and selection of Arthrobotrys nematophagous fungi to control the
nematodes on coffee and black pepper plants in Vietnam. Arch. Phytopathol. Plant Prot. 2019, 52, 825–843. [CrossRef]

63. Viossanges, M.; Pavelic, P.; Hoanh, C.T.; Vinh, B.; Chung, D.; D’haeze, D.; Dat, L. Linkages between Irrigation Practices and
Groundwater Availability: Evidence from the Krong Buk Micro-Catchment, Dak Lak-Vietnam. Final Technical Report. [Contribution to WLE
project-Sustainable Groundwater]; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2019.

64. Tam, H.T.; Linh, D.P. How minor immigrants became the dominants: The case of the Kinh people migrating to the Central
Highlands, Vietnam in the twentieth century. Soc. Identities 2022, 28, 608–627. [CrossRef]

65. Kresic, N. Chapter 2—Types and classifications of springs. In Groundwater Hydrology of Springs; Kresic, N., Stevanovic, Z., Eds.;
Butterworth-Heinemann: Boston, MA, USA, 2010; pp. 31–85. [CrossRef]

66. Haldorsen, S.; Englund, J.-O.; Kirkhusmo, L.A. Groundwater springs in the Hedmarksvidda mountains related to the deglaciation
history. Nor. Geol. Tidsskr. 1993, 73, 234–242.

https://doi.org/10.1016/j.pce.2023.103395
https://doi.org/10.1016/j.jhydrol.2020.125033
https://doi.org/10.1007/s11600-023-01053-0
https://doi.org/10.1016/j.ecolind.2022.109256
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.scitotenv.2019.134413
https://www.ncbi.nlm.nih.gov/pubmed/31706212
https://doi.org/10.3390/rs15143458
https://doi.org/10.1002/jmri.26534
https://www.ncbi.nlm.nih.gov/pubmed/30575178
https://doi.org/10.3390/w13233364
https://doi.org/10.1002/widm.1232
https://doi.org/10.1016/j.neucom.2017.08.039
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.jsr.2021.12.007
https://doi.org/10.3390/w11050910
https://doi.org/10.1016/j.eswa.2019.05.028
https://www.ncbi.nlm.nih.gov/pubmed/32968335
https://doi.org/10.1007/s42235-022-00298-7
https://www.ncbi.nlm.nih.gov/pubmed/36466727
https://doi.org/10.1007/s00521-021-05720-5
https://doi.org/10.1016/j.jare.2023.01.014
https://www.ncbi.nlm.nih.gov/pubmed/36690206
https://doi.org/10.3808/jei.201800404
https://doi.org/10.15625/0866-7187/36/4/6439
https://doi.org/10.1080/15481603.2022.2163070
https://doi.org/10.1080/03235408.2019.1647694
https://doi.org/10.1080/13504630.2022.2131512
https://doi.org/10.1016/B978-1-85617-502-9.00002-5


Remote Sens. 2023, 15, 4761 22 of 23

67. Canh, D.V.; Thuy, N.T.T.; Xuan, N.T.; Luat, N.Q.; Nhan, P.Q.; Binh, D.V.; Hue, T.T.; Nhan, D.D.; Tu, N.T.; Long, D.D.; et al. Research
on Scientific Basis and Develop Solutions to Store Rainwater into the Ground for Drought Prevention and Protection of Underground Water
Resources in the Central Highlands. No. DTDL.2007G/44; Hanoi University of Mining and Geology: Ha Noi, Vietnam, 2010.

68. Duong, H.H.; Lam, N.X.; Tu, N.T.; Tho, H.M.; Phong, N.T.; Tang, N.X.; Thuan, H.L.; Long, N.L.; Hoan, H.V.; Trinh, T.D.;
et al. Research and Propose Models and Technological Solutions to Exploit and Protect Water Sources in Basalt Formations in High-
Mountainous and Water-Scarcity Areas in the Central Highlands. No. DTDL.CN-65/15; Vietnam Academy for Water Resources: Ha
Noi, Vietnam, 2018.

69. Vinh, P.T.; Hai, D.D.; Thanh, T.T.; Huan, K.V.; Giang, V.N.H.; Huyen, T.D.; Chan, N.D.; Nam, P.C.; Tu, N.T.; Luu, N. Research
and Propose Models of Collection and Sustainable Exploitation of Spring Groundwater for High-Mountain and Water-Scarces Areas in the
Central Highlands. No. DTDL.CN-64/15; Vietnam Academy for Water Resources: Hanoi, Vietnam, 2018.

70. Ozdemir, A. GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio,
weights of evidence and logistic regression methods and their comparison. J. Hydrol. 2011, 411, 290–308. [CrossRef]

71. Tóth, J. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. Hydrogeol. J. 1999, 7, 1–14.
[CrossRef]

72. Lambin, E.F.; Rounsevell, M.D.; Geist, H.J. Are agricultural land-use models able to predict changes in land-use intensity? Agric.
Ecosyst. Environ. 2000, 82, 321–331. [CrossRef]

73. Lazzarini, M.; Molini, A.; Marpu, P.R.; Ouarda, T.B.; Ghedira, H. Urban climate modifications in hot desert cities: The role of land
cover, local climate, and seasonality. Geophys. Res. Lett. 2015, 42, 9980–9989. [CrossRef]

74. Jyrkama, M.I.; Sykes, J.F. The impact of climate change on spatially varying groundwater recharge in the grand river watershed
(Ontario). J. Hydrol. 2007, 338, 237–250. [CrossRef]

75. Myers, T. Potential contaminant pathways from hydraulically fractured shale to aquifers. Groundwater 2012, 50, 872–882.
[CrossRef]

76. Sear, D.; Armitage, P.; Dawson, F. Groundwater dominated rivers. Hydrol. Process. 1999, 13, 255–276. [CrossRef]
77. Scibek, J.; Allen, D. Modeled impacts of predicted climate change on recharge and groundwater levels. Water Resour. Res. 2006,

42, W11405. [CrossRef]
78. Liao, F.; Wang, G.; Yang, N.; Shi, Z.; Li, B.; Chen, X. Groundwater discharge tracing for a large Ice-Covered lake in the Tibetan

Plateau: Integrated satellite remote sensing data, chemical components and isotopes (D, 18O, and 222Rn). J. Hydrol. 2022, 609,
127741. [CrossRef]

79. Mandal, U.; Sahoo, S.; Munusamy, S.B.; Dhar, A.; Panda, S.N.; Kar, A.; Mishra, P.K. Delineation of groundwater potential zones of
coastal groundwater basin using multi-criteria decision making technique. Water Resour. Manag. 2016, 30, 4293–4310. [CrossRef]

80. Mallick, J.; Talukdar, S.; Ahmed, M. Combining high resolution input and stacking ensemble machine learning algorithms for
developing robust groundwater potentiality models in Bisha watershed, Saudi Arabia. Appl. Water Sci. 2022, 12, 77. [CrossRef]

81. Mahato, S.; Pal, S. Groundwater Potential Mapping in a Rural River Basin by Union (OR) and Intersection (AND) of Four
Multi-criteria Decision-Making Models. Nat. Resour. Res. 2019, 28, 523–545. [CrossRef]

82. Defries, R.S.; Townshend, J.R.G. NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens. 1994, 15, 3567–3586.
[CrossRef]

83. Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens.
Environ. 1996, 58, 257–266. [CrossRef]

84. Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery.
Int. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]

85. Fauzia; Surinaidu, L.; Rahman, A.; Ahmed, S. Distributed groundwater recharge potentials assessment based on GIS model and
its dynamics in the crystalline rocks of South India. Sci. Rep. 2021, 11, 11772. [CrossRef]

86. McVicar, T.R.; Van Niel, T.G.; Li, L.; Hutchinson, M.F.; Mu, X.; Liu, Z. Spatially distributing monthly reference evapotranspiration
and pan evaporation considering topographic influences. J. Hydrol. 2007, 338, 196–220. [CrossRef]

87. Khosravi, K.; Panahi, M.; Tien Bui, D. Spatial prediction of groundwater spring potential mapping based on an adaptive
neuro-fuzzy inference system and metaheuristic optimization. Hydrol. Earth Syst. Sci. 2018, 22, 4771–4792. [CrossRef]

88. Troch, P.; van Loon, E.; Hilberts, A. Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow. Adv.
Water Resour. 2002, 25, 637–649. [CrossRef]

89. Bui, D.T.; Bui, Q.-T.; Nguyen, Q.-P.; Pradhan, B.; Nampak, H.; Trinh, P.T. A hybrid artificial intelligence approach using GIS-based
neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agric. For.
Meteorol. 2017, 233, 32–44.

90. Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273–324. [CrossRef]
91. Maldonado, J.; Riff, M.C.; Neveu, B. A review of recent approaches on wrapper feature selection for intrusion detection. Expert

Syst. Appl. 2022, 198, 116822. [CrossRef]
92. Liu, W.; Wang, J. Recursive elimination–election algorithms for wrapper feature selection. Appl. Soft Comput. 2021, 113, 107956.

[CrossRef]
93. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference for Learning

Representations (ICLR’15), San Diego, CA, USA, 7–9 May 2015; Volume 500.

https://doi.org/10.1016/j.jhydrol.2011.10.010
https://doi.org/10.1007/s100400050176
https://doi.org/10.1016/S0167-8809(00)00235-8
https://doi.org/10.1002/2015GL066534
https://doi.org/10.1016/j.jhydrol.2007.02.036
https://doi.org/10.1111/j.1745-6584.2012.00933.x
https://doi.org/10.1002/(SICI)1099-1085(19990228)13:3%3C255::AID-HYP737%3E3.0.CO;2-Y
https://doi.org/10.1029/2005WR004742
https://doi.org/10.1016/j.jhydrol.2022.127741
https://doi.org/10.1007/s11269-016-1421-8
https://doi.org/10.1007/s13201-022-01599-2
https://doi.org/10.1007/s11053-018-9404-5
https://doi.org/10.1080/01431169408954345
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1038/s41598-021-90898-w
https://doi.org/10.1016/j.jhydrol.2007.02.018
https://doi.org/10.5194/hess-22-4771-2018
https://doi.org/10.1016/S0309-1708(02)00017-9
https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.1016/j.eswa.2022.116822
https://doi.org/10.1016/j.asoc.2021.107956


Remote Sens. 2023, 15, 4761 23 of 23

94. Msaddek, M.H.; Ben Alaya, M.; Moumni, Y.; Ayari, A.; Chenini, I. Enhanced machine learning model to estimate groundwater
spring potential based on digital elevation model parameters. Geocarto Int. 2022, 37, 8815–8841. [CrossRef]

95. Woolson, R.F. Wilcoxon signed-rank test. In Wiley Encyclopedia of Clinical Trials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007;
pp. 1–3.

96. Van Quang, N.; Thanh, N.H. Local government response capacity to natural disasters in the Central Highlands Provinces,
Vietnam. Humanit. Soc. Sci. Commun. 2023, 10, 209. [CrossRef]

97. Hale, M.; Plant, J.A. Drainage Geochemistry; Elsevier: Amsterdam, The Netherlands, 2013.
98. Akhtar, N.; Syakir, M.I.; Anees, M.T.; Qadir, A.; Yusuff, M.S. Characteristics and assessment of groundwater. In Groundwater

Management and Resources; IntechOpen: London, UK, 2020.
99. Wu, C.; Gu, L.; Zhang, Z.; Ren, Z.; Chen, Z.; Li, W. Formation mechanisms of hydrocarbon reservoirs associated with volcanic

and subvolcanic intrusive rocks: Examples in Mesozoic–Cenozoic basins of eastern China. AAPG Bull. 2006, 90, 137–147.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/10106049.2021.2007292
https://doi.org/10.1057/s41599-023-01707-w

	Introduction 
	Background of the Methods Used 
	Deep Neural Networks 
	Random Forest 
	Swarm-Based Optimization Algorithm 

	Study Area and Data 
	Study Area 
	Groundwater Spring Locations 
	Groundwater Spring Influencing Factors 

	Proposed Methodology for Comparative Analysis of Deep Learning and Swarm-Optimized Random Forest for Groundwater Spring Potential Identification 
	Results and Analysis 
	Variable Importance 
	Model Training and Validation 
	Statistical Test 
	Compile the Forest Fire Danger Map 

	Discussions 
	Concluding Remarks 
	References

