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Summary 

 

Yield prediction is a crucial aspect of crop management in the fruit farming industry. In recent 

years, a variety of methods have been increasingly utilized to address this challenge, in order 

to enhance the technical capabilities both in the hardware and software domain.  

To tackle this challenge, this thesis, as a part of research project aimed at crop management 

called “Earlier and more precise yield forecasts in fruit production – development of the digital 

tree” (translated from Norwegian), we designed a pipeline with separate sections called 

DRCAP. the sections cover Detection, Classification, Regression, and Pixel Processing of apple 

tree images taken by RGB sensors. The primary objective of this pipeline is to identify apples 

at the first stage and then send to Analysis part in order to make a yield prediction. 

We implemented YOLOv7 for apple detection and used a custom convolutional model 

as the classifier and a custom regressor for the regression task. Indeed, an image processing 

technique has been applied as an auxiliary method alongside a classifier and regressor. We 

implemented the coding of this project partially in the Google Collaboratory service and 

partially in the local machine with Jupiter Notebook. 

 The main data set for this study comes from an apple orchard in Gvarv, Telemark 

(Norway), taken over a growth season in 2021 and 2022 which only 2021 dataset was used in 

this study.  

 

 

 

 

 

 

 

 

 
  



 

  

___ 

5 
 

 

Preface 

 

Without any doubt, the journey to completion of this master's thesis has been an enlightening 

experience with a profound sense of accomplishment and gratitude. My pure apology for the 

ones omitted inadvertently in this acknowledgment. 

  

First and foremost, I express my appreciation to my supervisors and co-supervisors for their 

constant help throughout this work. Dr. Erik Andrew Johannessen, with his unhesitating 

commitment to work ethics and his support by any means, from providing the facilities to 

managing unforeseen challenges, would like to extend my thanks to Karl Thomas Hjelmervik 

for his unstoppable struggles with his best, which were an inspiration for me in facing 

challenges. I offer a special thanks to Christian Hovden for his support in providing the data set 

essential for this study, and his broadening support pushed the study a step further. 

I am equally grateful to Dr.Fabio Augusto de Alcantara Andrade for his indispensable technical 

support and perseverance, which gave me the courage to overcome the obstacles. 

Furthermore, my greatest thanks go to all of my esteemed professors at USN for their 

unforgettable help in bringing this thesis from an idea to a more realistic realm. 

  

Last but by no means least, I am profoundly grateful to my family for their support throughout 

my academic journey. Their encouragement and belief in me have been invaluable in reaching 

this milestone. 

  

 

Vestfold, Norway, September 2023 

Amin Mavaddat 

  



___ 

6   
 

 

  



 

  

___ 

7 
 

 

Contents 

1 Introduction.....................................................................................................10 

1.1 Motivation ..................................................................................................... 10 

1.2 Background ................................................................................................... 11 

1.3 Outline view .................................................................................................. 14 

2 Dataset..........................................................................................................15 

2.1  Data Collection.................................................................................................15 

2.2 Data labelling and pre-processing...................................................................17 

3 Methodology..................................................................................................22 

3.1 Introduction  ................................................................................................. 22 

3.1.1 Introduction to Neural Networks……………….……………………….…..…24 

3.2 Detection ....................................................................................................... 27 

3.3 Analysis .......................................................................................................... 31 

3.3.1 Data collection and processing…………………………………………………..31 

3.3.2 Classification Model…………………………………………………………….…..…32 

3.3.3 Custom Model Architecture…………………………………………………....…41 

3.3.4 Hyper-parameter selection……………………………………………………..…42 

3.3.5 Regression…………………………………………………………….…….…………..…46 

  3.3.6 Image processing………………………………………………………….….…………48 

4 Results …………………………………………………………………………………………………………51 

4.1 Detection ....................................................................................................... 51 

4.2 Analysis .......................................................................................................... 63 

  4.2.1 Classification………………………………………………………….……………….….63 

  4.2.2 Regression……………………………………………………………………………...….66 

  4.2.3 Image Processing……………………………………………………………………..…67 

5 Discussion………………………………………………………………………………………………….…69 

5.1 Detection ....................................................................................................... 69 

5.3  Analysis ......................................................................................................... 70 

5.4  Future work .................................................................................................. 71 

6 Conclusion…………………………………………………………………………………………………….73 



___ 

8   
 

References ............................................................................................................. 71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

___ 

9 
 

Table of abbreviations 

DRCAP   Detection, Regression, Classification, and Processing 

of Apple trees 

4IR Fourth Industrial Revolution 

SAGUIN space–air–ground–undersurface integrated network 

DSSAT Decision Support System for Agro-technology 

Transfer 

APSIM Agricultural Production Systems Simulator 

ANN artificial neural networks 

VGG-16 Visual Geometry Group 

RESNET-50 Residual Neural Networks 

F-VGG16 Fine-tuned VGG16 

CNN convolutional neural networks 

F-RESNET50 Fine-tuned RESNET50 

CCNN Custom Convolutional Neural Network 

YOLO YOLO You Only Look Once 

COCO        Common Objects in Context 

IOU Intersection over Union 

XGBoost extreme gradient boosting 

SVC   Support Vector Classifier 

SVM Support Vector Machines 

RBF   radial basis function 

Selu Scaled Exponential Linear Unit 

RELU  Rectified Linear Unit 

ELU Exponential Linear Unit 

Leaky ReLU Leaky Rectified Linear Unit 

SGD Stochastic Gradient Descent 

Adagrad Adaptive Gradient Algorithm 

ADAM  Adaptive Movement Estimation algorithm 

ADAMx  Adaptive Moment Estimation optimize 

Nadam  Nesterov-accelerated Adaptive Moment Estimation 

MSE  GNU Image Manipulation Program 

GIMP    mean average precision 

mAP  mean average precision 

 



___ 

10   
 

Chapter 1 

 

Introduction  

 

1.1 Motivation 

 

Incontrovertibly, the use of appropriate technology will enhance the results of systems on any 

scale, regardless of the field of study. Herein lies the importance of raising the sustainability of 

agricultural products and their production lines from A to Z. One example is the growth and 

handling of apples, which are widely planted not only in Norwegian fruit gardens (orchards) 

but in most countries sharing a similar climatic habitat. The knowledge of handling agricultural 

products lies with the tacit knowledge of the farmer, and a more reliable data-driven decision-

making system will help secure a healthy production and harvest. Within this lies the 

optimization of sensor parameters that can monitor soil moisture, nutritional level, potential 

disease, and the presence of pests, where any deviation from the norm would offer an early 

warning regime and timely intervention that stops or prevents any further detrimental effects 

to the crop. By timing the harvesting period, one can negate bottlenecks in distribution and 

prevent crops designated as food from being wasted. Hence, the digitalization of the orchard 

could play a crucial role in both food security and sustainability. There are several examples 

where the integration of some “intelligent” detection systems has proven to yield a multitude 

of benefits for crop management, fruit grading, resource optimization, disease and pest 

management, quality control, and sustainability [8],[9],[10],and[11]. 

Based on the idea of continuous monitoring of the orchard, this will identify and track 

apples through their growth season, from blossoms to harvest. This will form a central part of 

any crop management system since the growth of apples represents the output of all 

parameters affecting the orchard. The data will be based on images taken from two different 

apple trees situated in two different orchards as representatives for the rest. The model will, 

in addition, be tested on random trees to check its validity. Based on this data, a decision will 

be made concerning the harvest time prediction, and the earlier this can be done, the better 

prediction for distribution into the market can be made. 
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 1.2    Background 

 

1.2.1   Review 

 

The growing pace of sophisticated integration of modern equipment has led the apple industry 

to become more technology-based than the general farming industry [8],[9]. The region of 

Vestfold and Telemark, a main apple producer province in Norway, plays a prominent role in 

the usage of technology to reduce apple waste and improve the management of crops. 

As part of the Fourth Industrial Revolution (4IR), Agriculture 4.0 uses technology to 

improve farming methods. This cuts down on wasteful resource use and supports long-term 

infrastructure for farming [12]. The Fourth Industrial Revolution (4IR) and Agriculture 4.0 play 

a crucial role in the agriculture domain, as does the fusion of technologies in healthcare or 

industry  [12] (Fig.1.1). Also, the influence of the fourth industrial revolution becomes 

prominent if the consequences of climate change show more invasive effects in terms of 

rainfall and temperature patterns [13]. Unlike traditional methods, 4IR, regardless of its 

invasive approaches to threatening the farmers’ job market, plays a crucial role in optimizing 

crop management [10]. 

In addition, the technical benefits help farmers' economies grow because the 

technology makes harvesting more efficient and accurate by letting them track key growth 

parameters in real-time or find diseases or pests early. Additionally, the utilization of intelligent 

detection systems will fine-tune any measures required to meet deviations from “normal” 

growth conditions and thereby optimize the use of natural resources. This not only provides 

economic benefits but also promotes more sustainable agriculture and facilitates an 

environment-friendly approach to resource management. Moreover, the implementation of 

intelligent apple detection systems will consequently provide a viable solution to improve the  

overall feasibility of the apple farming industry as a part of the food industry[11]. 

 

 

 

 



___ 

12   
 

 

 

On the other hand, manual yield estimation methods employed by farmers present numerous 

challenges. For instance, since different people may measure the same plant characteristics 

differently, visual estimation is prone to intrinsic errors. Weather conditions and even the 

person's experience can also have an impact on the estimation. However, some methods, like 

the Penman-Monteith formula, showed relatively satisfying results but still had challenges [14]. 

These challenges are due to the need for costly experts and time-consuming estimation 

procedures  [15]. Therefore, it is crucial to implement precise and objective solutions that are 

less biased by the subjective opinion of the individual farmer. The development of more 

accurate and efficient methods for estimating crop yields is also a necessary step toward 

meeting the growing demand for food production[16]. 

Before the widespread use of machine learning and deep learning methods for fruit 

yield estimation, some computer technology-based methods were used to develop a variety 

of techniques for estimating yields. For instance, statistical models, crop simulation models, 

remote sensing-based methods, and farmer surveys.  

Figure 1.1    space–air–ground–undersurface integrated network (SAGUIN) in agriculture 4.0 [37]. 
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In modeling, historical data from previous yields, such as weather conditions or other 

correlated data, has been employed to make predictions for future estimations. Linear 

regression, multiple regression, and time series are the most common of them. For the world’s 

top six produced crops (wheat, rice, maize, soybean, barley, and sorghum), statistical modeling 

has shown that just a simple measurement of growing season temperature and precipitation 

can account for roughly 30% or more of the yearly fluctuations in worldwide average yield 

volume. However, all of the crop-yielding models are influenced by scale and empirical models 

on a global level, which may not provide accurate predictions for sub-global scales [17].  

In crop simulation models, crop yield is evaluated based on environmental and 

physiological factors. DSSAT (Decision Support System for Agro-technology Transfer) is a 

collection of computer software that operates together, and the most recent version of it 

covers almost 40 different crops [18]. In another capability of DSSAT, the impact of climate 

change on wheat yield in the Huang-Huai region of China, the results have been shown under 

different climate scenarios in the long, mid, and short term [19]. APSIM (Agricultural 

Production Systems Simulator) in crop simulation models showed results in terms of providing 

a yield estimation with a bias [20]. 

 In recent years, there has been remarkable progress in prediction methods. Specifically, 

in above-mentioned models have shown promise in classifying objects such as apples in 

orchards. In order to train these deep learning systems, researchers utilize datasets consisting 

of sophisticated image labeling processes [21]. In some cases, high-tech data acquisition 

systems have been utilized to collect clear images of as high quality as possible, but the 

additional labor intensity involved in doing so would be another issue for farmers and 

producers [22]. Furthermore, several factors must be considered in the above-mentioned 

methods of yield estimation for crops. The majority of the methods are based on complex 

models that take into consideration the underlying mechanisms of crop growth based on the 

data supplied to the models. Not only that, but also, the required input data and its acquisition 

methods in the mentioned models will make them less transparent for the unskilled user and 

less likely to be adopted by farmers and producers. Furthermore, having a huge data set for 

training makes them less susceptible to real-time capability. It is therefore required that 

complex systems harbor a great deal of autonomy combined with a simple user interface if 

they are to be used successfully. 
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1.3   Outline 

 

This study is divided into 6 different chapters. The first chapter introduces the goal or aim of 

this work combined with a briefly addressed review of comparable work in order to introduce 

the reader to this field of study. In second chapter the dataset will be explained. The third 

chapter goes through the methods and materials of work by introducing the fundamental 

requirement to understand the study like the computer vision structures, Deep learning 

systems, and Image processing technics. Chapter four provides the results of study to the 

reader. Chapter fives covers the discussion part. Chapter six went through the conclusion of 

the thesis. 
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Chapter 2 

 

Dataset 

 

Good datasets are essential in successfully developing any data driven model and highlights to 

the high dependency of the quality of the output of a system on the input. This entanglement 

becomes crucial when struggling to enhance a system's accuracy, especially if it is not well-

optimized. In order not to suffer from this slang, a crucial amount of time was spent on the 

dataset, from choosing pictures to labeling in DRCAP; therefore, one of the most important 

and time-consuming steps in this study was dedicated to the dataset, and giving a brief 

description of it would be beneficial. 

 

 

2.1 Data Collection 

The images in this study come from four RGB camera sensors that were mounted at two 

different locations in two separate apple orchards in Gvarv, Telemark (Norway) (Fig. 2.1).  

Pictures were taken for 2 consecutive years in 2021 and 2022 in the daytime and nighttime, 

but only the nighttime pictures were used in DRCAP because of the better contrast and 

illumination in the nighttime pictures (Fig. 2.2). Moreover, the pictures in the dataset were 

taken every night from blossoming time, May 14, to harvesting time, September 25. 

Fig 2.1:  RGB sensor’s locations in Gvarv, Telemark (a) Apple orchard of Eirik Årnes, (b) apple orchard 

of Henning Lindheim.  

a 

 

b 
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Furthermore, several tagged apples were chosen to scale during the season as well as their 

pictures for later use in analysis part of DRCAP.  

These images come from a Raspberry Pi HQ Camera equipped with an Arducam Lens offering 

a 6mm Focal Length with Manual Focus and Adjustable Aperture.  Additionally, several pictures 

were added to the test data set from different apple variants with 3024*4032 resolution from 

different locations (Fig. 2.3).  

 
  

Figure 2.3:  Three apple tree images were taken from three different locations from Drammen and 

Lier in Norway and different apple variants with an iPhone 14 with a 3024*4032 resolution camera. 

Fig 2.2:  a: day-time picture, b: night-time picture contrast comparison 

a b 
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2.2  Data labelling and pre-processing  

 

DRCAP contains two datasets for the detection and analysis parts (Fig. 2.4). There are three 

different sub-datasets in Dataset 1: Sub-dataset 1, Sub-dataset 2, and Sub-dataset 3. Each has 

its own augmentation, labeling strategy, and temporal sampling. It is crucial to note that sub-

dataset 1, sub-dataset 2, and sub-dataset 3 were made separately from the main dataset with 

a separate labeling process, and the 2022 collection was just used for testing and remained 

intact by DRCAP. For 2021 Dataset 1 and Dataset 2, we labeled the images into 3 classes: class 

0 for unripe apples (up to July 10), class 1 for semi-ripe apples (from July 11 to August 15), and 

class 2 for ripe apples (from August 16 to September 14). 

The existence of three different sub-datasets was due to its evolving effect. More 

precisely, we made sub-dataset 1 first and decided to enhance its quality of labeling and 

augmentation after observing the system's results. This led to the creation of sub-dataset 2. 

After observing a significant improvement in outcomes, we decided to create a more precise 

and goal-oriented sub-dataset. This sub-dataset, labeled and augmented with more 

consideration than the previous ones, was generated based on the revolutionary effects of 

visiting the previous sub-datasets. 

In Dataset 1, the sub-dataset 1 includes 241 images chosen with a one- or two-day 

interval between two consecutive images that reached 811 images after randomly chosen 

augmentation. Additionally, the labeling of apples for this sub-dataset was 1900 apples, of 

which every visible apple was considered. Figure 2.5 shows the labeling strategy for sub-

datasets. Apple visibility was the main consideration in this strategy; apples with full visibility 

were considered for this sub-dataset (Fig 2.5(a)). 
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Figure 2.5:  labelling method for a: sub-dataset 1, b: sub-dataset 2, and c: sub-dataset 3 

a b c 

Figure 2.4: DRCAP datasets and sub-datasets. Dataset 1 for detection and Dataset 2 for classification 
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The sub-dataset 2 comprised 110 images chosen with a one- or two-day interval between two 

consecutive images that reached 337 after augmentation. For sub-dataset 2, we labeled apples 

with semi-full up to full visibility, considering random augmentation (Fig. 2.5(b)). The main 

difference with sub-dataset 1 was mostly in trying to have a more inter-class balance as long 

as it had a similar class distribution to the main dataset (Table 1). Since most of the apple-

growing process is in class 2, which is the ripening stage, this stage must be included in the 

dataset as a representation of the apple-growing process. So, this inter-class bias weight has 

been considered in sub-dataset 2 in terms of picking the same percentage of images of each 

class from the main dataset. 

The sub-dataset 3 has 49 images picked by a five- or seven-day interval between two 

consecutive images from the main dataset. After augmentation, the number of images reached 

110, and more consideration was given to bias and intrinsic bias compared to sub-dataset 2. 

Moreover, the augmentations in this part were cropping, rotating, and blurring, which is closer 

to the image-capturing condition in the real orchard. Less desirable illumination and noisier, 

blurry images because of rain in the real-weather condition of the orchard and foggy weather 

in the orchard were the reasons for specific augmentations. We labeled the apples in this sub-

dataset that had full visibility or more than 75% visibility while ignoring those with less visibility 

(Fig. 2.6). 
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Having less desirable illumination and noisier, blurry images because of rain in the real-

weather condition of the orchard were the reasons for augmentations. In the labeling process, 

the apples with full visibility or more than 75% visibility were labeled, and the apples with less 

visibility were ignored (Fig. 2.6). 

It is crucial to note that sub-dataset 1, sub-dataset 2, and sub-dataset 3 were made 

separately from the main dataset with a separate labeling process, and the 2022 collection was 

just used for testing and remained intact by DRCAP. 

 

 

 

Table 1   Class distribution in sub-data sets and main data set 

 

  

 Number of 

images in 

Sub-dataset 

1  

Number of 

images in Sub-

dataset 2  

Number of 

images in 

Sub-dataset 3 

Class distribution 

in main dataset  

Temporal 

segmentation of 

classes 

Class 0 37 16 7 15% up to July 10 

Class 1 168 34 34 70% July 11 to August 15 

Class 2 36 14 8 15% August 16 to 

September 14 

Fig2.6:  apple image a: labeled as a class b: not labeled as a class 

a b 
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  Dataset 2 belongs to the analysis part used in classification and regression and contains 

almost 500 images in 3 classes that reached 3100 images after augmentation chosen from 

main dataset (Fig. 2.7 (a), (b), (c)). In order to make the results as reliable and general as 

possible, approximately 35% of pictures were collected from the internet (Fig. 2.7 (d), (e), (f))).  

Images were labeled in 3 classes for 2021 Dataset 1 and Dataset 2: class 0 for unripe 

apples (up to July 10), class 1 for semi-ripe apples (from July 11 to August 15), and class 2 for 

ripe apples (from August 16 to September 14). Indeed, all the labeling was done manually for 

all datasets and sub-datasets. 

 

 

 

  

   

 

 
 

 

 
  

Fig2.7:  (a) class 0, (b) class 1, (c) class 2                       (d) class 0, (e) class 1, (f) class 2 [1] [6] [7] 

a b c d e f 
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Chapter 3 

 

Methodology 

 

3.1 Introduction 

 

In this chapter, more details of DRCAP, including the detection part, analysis part, and image 

processing part, were explained. This part covered apple detection and cropping, classification, 

regression, and image processing, as shown in Fig. 3.2. In the first section of DRCAP, the 

detection part, it has been tried to detect apples and crop them from the tree picture. The 

automatically cropped pictures were then saved in a folder as input for the second section (Fig 

3.1). In the second section, the analysis section, the cropped apples went through three 

parallel methods to make yield predictions. The blue boxes in Fig. 3.2 were considered the final 

techniques for each section and sub-section. 

  

Figure 3.1:   a: Input tree image to detection part      b: output of detection part before cropping      c: 

output of detection part after cropping    

a b c 
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3.1.1 Introduction to Neural Networks 

 

Neural Networks or artificial neural networks, ANNs, are the building blocks of deep learning 

and machine learning concepts that try to imitate the human brain's interconnected 

processing units called neurons [23] (Fig.3.3(a)). Moreover, the elemental constituents of 

neural networks include input layers, hidden layers, and output layers that each node in those 

layers are linked to the node in the subsequent ones (Fig.3.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.3: Fig 3.3: a: Human neuron similarity with a single neuron [3], b: Classifiers in DRCAP  

F-VGG16*: Fine-tuned VGG16 
CCNN**: Custom Convolutional Neural Network 
F-RESNET50***: Fine-tuned RESNET50 

a 
b 

Figure 3.4: A typical Convolutional Neural Network with input, hidden, and output layers[2] 
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Furthermore, the weight parameters, adjusted in the training phase of the network, control 

the optimization of the network. Another crucial hyper-parameter, the activation function, in 

neural networks, introduces a non-linearity to the system by controlling the weights of inputs 

[23] (Fig.3.3(a)) (section 3.3.4). 

Convolutional layers in neural networks, particularly convolutional neural networks (CNNs), 

are spatial feature extractors that apply convolutional operations to the input data, allowing 

the network to recognize patterns in images [23]. These layers use learnable filters or kernels 

to convolve across input data, which captures local patterns and enables the network to 

efficiently learn the features (Fig.3.5). In this figure, a 3*3 filter convolves with a 7*7 input 

image to encode a representation (feature map) in which the receptive field is highlighted in 

pink and the corresponding output value for the position is marked in green. To find the output, 

the kernel slides over the input image and passes through each pixel position. In this process, 

the weights of the kernel are multiplied by each pixel value in the corresponding region 

covered by the kernel. The multiplication of the weights of the kernel with each pixel value in 

the corresponding region covered by the kernel produces the output. 

 

 

 

Figure 3.5: An example of an input image Ι 7x7 convolved with a filter k 3x3 with weights of zeros 

and ones to produce a feature map[5] 
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Additionally, there are extensive applications of Neural Networks in a variety of domains from 

speech recognition [24] , and natural language processing [25] to those relevant to this study 

in object detection and classification. In our study, the CNNs shown in Fig.3.3(b) were explored.  
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3.2 Detection 

 

Detecting and localizing an object in a picture stands for object detection, and various methods 

have been employed so far to detect objects (in this case, apples). Some methods rely on 

traditional image processing techniques such as space conversion (e.g., RGB, HSV), image 

binarization, and segmentation to detect [26] or a combination of texture and shape features 

[17]. Recently developed neural networks like YOLOv5 [27], YOLOv7 [4], and YOLOv8 [28], 

which stand for You Only Look Once, have been used for this section by pre-trained weights of 

YOLOv5, v7, and v8. 

 In the fields of machine learning and deep learning, pre-trained weights are the learned 

model parameters obtained via training on larger datasets. Weights can be considered as the 

numerical values of the inner connections of nodes in a neural network or a machine learning 

model parameter. Additionally, Pre-training would be a beneficial step in enhancing the 

model's capability and optimization. In most cases, because of the lack of affluent data, as in 

our case, the transferring of weights from pre-trained models of YOLO played a crucial role in 

covering the data deficiency [29].   

Yolo versions distinguishing performance in real-time applications, especially the YOLOv7, 

which is 120% faster compared to the YOLOv5 (Fig. 3.6), makes it a proper candidate for fast 

and efficient detections, particularly for DRCAP.  

Figure 3.6: YOLOv7 comparison with other real-time object detectors on COCO 

dataset [4]. 
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Owing to the presence of anchor boxes in bounding box prediction in the YOLO structure, the 

detection of objects of different sizes and shapes is optimized [25]. As shown in Fig. 3.7(a), 

anchor boxes are some predefined boxes with different features like aspect ratio and shapes, 

which help the model predict objects. YOLOv7 takes advantage of nine anchor boxes, which 

allows it to detect a wider range of objects compared to other versions. Alongside with the 

anchor boxes importance in the object detection part the Intersection over Union (IOU) should 

not be forgotten since it is a measure of the overlap between the predicted bounding box and 

the ground truth bounding box, or actual bounding box (Fig. 3.7(b)). 

In DRCAP, the YOLO versions played a crucial role in detecting the apples. However, 

even using such a well-performed version of a neural network was not enough to boost the 

apple detection quality without proper data pre-processing and data cleaning methods. 

As mentioned before in the chapter 2, there were three sub-datasets in the detection 

part as the elemental constituents of the detection section, and practically, the major boost in 

the YOLOv7 performance occurred after the data cleaning and preprocessing methods came 

across. As shown in Fig. 3.8, to achieve a proper weight function for finding best candidate 

from YOLO versions, three sub-datasets have undergone 108 training cycles ((number of 

epochs=4) * (number of batches=3) * (number of yolo versions=3) * (numbers of sub-

datasets=3) = 108) with 10% test set considerations for all sub-datasets. 
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Figure 3.7:  a: Anchor boxes in bounding box prediction in the YOLO structure, b: Intersection over 

Union example in different values for an object [5] 

a 

b 
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3.3 Analysis 

 

In this section, the second part of DRCAP, which consists of classification, regression, and image 

processing, is discussed in detail. To give a brief overview, the cropped apple picture from the 

detection part of the DRCAP (Fig 3.1(c)) goes through three parallel methods. The first method 

is a classification technique that attributes a class to the image based on its ripeness including 

class0, class1, and class3. The second technique is regression, which gives a continues number 

to the input image from zero to three, which enables the operator to have a better 

understanding of the apple's ripeness, especially when the apple is in the inter-class transient 

stage. Finally, in the image processing section, the image was labeled based on its dimension 

in terms of pixel dimensions. Indeed, an average and class-specified pixel density of pictures 

has been calculated. 

 

 

3.3.1 Data collection and processing 

 

First of all, the data set for all three sections in the analysis part is the same. By applying a crop 

filter to the dataset, the most important pre-processing of the input data for the classification 

part was already done during the augmentation. Since the output of the detection part was 

cropped apple images, which could be fully cropped or partially cropped based on the 

detection output, having a similar augmentation was a necessity (Fig. 3.9). Indeed, the dataset 

used in this section, Dataset 2, was split into 5% and 10% as test sets. 

 

 

 

 

 

 

 

 

 
Fig 3.9:  a: output of yolov7     b: output of detection part of DRCAP 

a b 
a b 
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3.3.2 Classification Model 

 

Classification is a machine learning model or algorithm which attributes the given input, images 

in this case, to different classes or categories, and its main obligation is to predict the classes 

of unseen data based on the extracted features during the training process from training and 

validation data. As shown in Fig. 3.10, six classification algorithms were tested in the 

classification part to find the best classifier for this part in three different sections.  

First, the Visual Geometry Group,VGG-16 [30], which used with the transfer learning method, 

was the feature extractor in three classifiers: extreme gradient boosting or XGBoost [31], 

Random Forest [32], and Support Vector Classifier [33]. VGG-16, is a deep convolutional neural 

network architecture developed by the Visual Geometry Group at the University of Oxford, 

VGG-16 consists of 16 layers, including 13 convolutional layers and 3 fully connected layers. 

The VGG-16 model's pre-trained weights on the ImageNet [32] were included in the feature 

extraction process for the transfer learning part in the classification section in Fig. 3.1. A feature 

extractor is a convolutional neural network (CNN) model that extracts important features and 

patterns, such as texture or edges, from the input data. To be more specific, first the VGG-16 

architecture's output up to the first convolutional layer in the last convolutional block 

(block5_conv1) has been taken, which is a tensor. Then, after reshaping this tensor into a one-

dimensional vector, it went through the classifiers for training (Fig. 3.11). 

Fig 3.10: Classifiers with more detailed implemented methods 

F-VGG16*: Fine-tuned VGG16 
CCNN**: Custom Convolutional Neural Network 
F-RESNET50***: Fine-tuned RESNET50 
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 The feature vectorization process involves flattening a feature map (Fig. 3.12), the output of 

VGG-16 in block5_conv1, to a vector. Finally, the extracted features from images were used as 

the input for the XGBoost, Random Forest, and Support Vector Classifiers to make predictions. 
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  a b 

c d 

e f 

Figure 3.12: Feature map examples for different classes. Rows a-b 

correspond to class 0, c-d to class 1, and e-f to class 2.  
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After extracting and flattening the features from the input image by the VGG16, it will go 

through classifiers for finding the best classifier performance. The first one, was extreme 

gradient boosting. XGBoost is a versatile algorithm capable of performing classification and 

regression tasks. It is composed of a sequence of decision trees in which each tree corrects the 

errors of the previous tree (Fig. 3.13 (a)) [31]. A decision tree is a machine learning system that 

uses a hierarchical model, like a tree, to provide choices. In this model, core nodes correspond 

to features, branches correspond to decisions based on those features, and leaf nodes 

correspond to outcomes. The second classifier was , Random Forest  which is another learning 

algorithm that makes multiple decision trees during training and combines the output of each 

tree to make a reliable and robust prediction (Fig. 3.13 (b)) [34]. The third classifier was Support 

Vector Machines. SVM are supervised algorithm that learns from labeled data to make 

predictions or classifications on new data and can be used for classification and regression 

tasks. The aim of SVM is mostly to introduce a hyperplane that maximizes the margin among 

different classes to obtain generalizations to unseen data (Fig. 3.13 (c)) [35]. 

 The hyper-parameters used in the above-mentioned classifiers were another crucial 

point.  The XGBoost hyper-parameters for transfer learning part were: 1000 trees, 0.9 learning 

rate which controls the step size at each iteration while moving toward a minimum of a loss 

function, maximum depth of seven which sets the maximum depth of each decision tree, and 

the gbtree as the booster which indicates that the underlying boosting algorithm is a tree-

based model. Indeed, for the Random Forest classifier the employed hyper-parameters were: 

seven maximum depth, 1000 decision tree in the forest, and zero random state, which sets the 

random seed for reproducibility. Additionally, in SVC classifier used the radial basis function 

(RBF) kernel with a degree of 3, a gamma value of 'scale,' and a regularization parameter C set 

to 10, which is suitable for solving classification problems with non-linear decision boundaries. 
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Furthermore, for the next step, as shown in Fig. 3.10, the VGG-16 and  Residual Network, 

RESNET50 [36], models were fine-tuned. ResNet-50, short for Residual Network with 50 layers, 

is a convolutional neural network architecture. Developed by Microsoft Research, ResNet-50 

is known for its deep structure which allows it to extract more complex features from input 

data.  

In fine-tuning, an important technique in transfer learning, the pre-trained model 

weights were allowed to be updated on a new dataset. In this case, the weights of VGG-16 and 

RESNET-50 were updated for our dataset. However, in transfer learning part, the pre-trained 

weights were frozen, and just new layers or head layers went through training on a new 

dataset. 

In the fine-tuning section of Fig. 3.10, the image from the detection part was reshaped 

and then sent through the VGG-16 network as the feature extractor. Then the VGG-16 

architecture's output up to the last MaxPooling layer in the last block before dense layers 

(block5_pool1) have been taken, which is a tensor, Then, after reshaping this tensor into a one-

dimensional vector, it went through the dense layers for training (Fig. 3.14). Dense layers in a 

neural network are responsible for fully connecting every neuron in one layer to every neuron 

in the subsequent layer, allowing for comprehensive information exchange and feature 

transformation. Five dense layers have been used, with the Selu activation function (section 

3.3.4) for the first four layers, and for the last one, a three-node layer with the Softmax 

activation function has been implemented. Additionally, the same process has been 

implemented in the RESNET-50 model with the Relu activation function in the first four dense 

layers (Fig. 3.15). Indeed, the hyper-parameter selection for the fine-tuning of VGG-16 and 

RESNET-50 was covered in Section 3.3.4 and Table 2.  
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3.3.3 Custom Model Architecture 

 

In the last step in the Fig 3.10, a custom CNN model was designed. designing a custom 

convolutional neural network as the last step in classification part of DRCAP has been 

considered. In this chapter the details and architecture of custom model and the steps in 

designing process were covered. 

Designing a Convolutional Neural Network (CNN) for an image dataset involves several 

important considerations to create a well-performed model. First of all, dataset size and 

diversity play a crucial role since the larger and more diverse the data set, the wider the range 

of patterns and variations in the images, which leads to a better-generalized model. However, 

most of the time, to reach a rich feature map extraction, it is essential to go for a deep model 

that requires more data and resources, so a trade-off and balance in the depth of the model   

must be applied. In other words, if the model uses deeper architecture it can extract 

complicated patterns and structures but is more likely to overfit and longer running time 

Furthermore, pre-processing techniques were another factor in terms of applying resizing, 

normalizing, and data augmentation if required. Additionally, deciding the number of layers, 

filter sizes, and type and size of pooling layers were challenges in the design process. 

Furthermore, one of the most important steps was hyper-parameter selection in terms of the 

activation functions and normalization steps like batch normalization. As a result, with all the 

mentioned considerations and factors, we came up with a design for the DRCAP classifier as 

shown in Fig. 3.16. It shows the custom Convolutional Neural Network in the DRCAP classifier 

with seven convolutional layers attributing the input image to three classes.  

The model starts with a 124*124-pixel image in three channels of red, green, and blue 

and continues with five max pooling layers in five convolutional blocks. The first and second 

blocks include two convolutional layers with batch normalization after each convolutional layer 

and a Max Pooling layer at the end of each block. The third and fourth blocks each contain a 

convolutional layer, followed by a batch normalization layer and a Max Pooling layer. Finally, 

after implementing a flattening layer to the feature map, the feature vector was achieved as 

the input to the following dense layers with two dense layers and a Softmax with three nodes 
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at the end (3.3.5). It is beneficial to consider hyper-parameter selection considerations before 

illustrating the classifier architecture.   

 

 

3.3.4 Hyper-parameter selection 

 

Parameters such as weights and biases in a CNN are internal structural variables acquired from 

the training data during the training process. In other words, the model's weights and biases 

are adjusted during training to minimize a mathematical function known as the loss function. 

The loss function quantifies the model's performance by measuring the difference between 

the model's output and the given input data. Furthermore, the choice of the loss function is an 

important factor in designing a model, as different problems may require different loss 

functions [37]. In the context of DRCAP, categorical cross-entropy is used as the cost function 

for the system. 

Unlike parameters, hyper-parameters are not trainable in the training process but play 

a crucial role in the performance of a model, such as avoiding overfitting or under-fitting. They 

are external configurations for the model and are not learned from the data during training. 

Figure 3.16: Custom Convolutional Network Model Architecture 
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Overfitting mostly happens when the weight model brings the noises or outliers to attention 

rather than the patterns and structures of the data. To put in a vivid picture, the model 

memorizes the coordination of apples instead of understanding the subject matter.  

On the other hand, under-fitting just comes across as a superficial model that can only 

be implemented on simple structures and has no capability of extracting more advanced 

patterns and structures from data. Therefore, having a balanced approach to dealing with data 

is the cornerstone of developing an effective and general model. As a result, in DRCAP, a variety 

of strategies and approaches have been taken to address these issues in terms of hyper-

parameter selection. Some considerations in overfitting or under-fitting, class imbalances, 

resource constraints, and vanishing and exploding gradients have been taken as much as 

possible. 

In the DRCAP classifier model, to mitigate the issues mentioned above, several key 

factors have been taken into account. Firstly, we applied weight initializers, specifically 

variance scaling in convolutional layers with fan average mode and the He uniform in dense 

layers, to ensure stable training. Weight initializers are methods that provide initial values for 

the weights in the network, ensuring that the network starts with suitable values to improve 

convergence during training. Additionally, the training process conducted visual inspections to 

identify any anomalies in validation performance. Not only that, but the early stopping method 

was another factor considered in the system for avoiding under-fitting or over-fitting with 

monitoring accuracy degradation and inspecting any signs of accuracy loss. 

Besides, monitoring and visualization, undoubtedly, was a critical feature that led to 

add some key details to the classifier like variance scaling, batch normalization, and 

regularization by monitoring the validation accuracy and learning rate curve. In addition, 

during the training process and validation process of the DRCAP classifier, cross-validation 

method was employed to inspect the model performance. In this method, our sub-datasets 

were divided into several sub-datasets that the model gets validated in one and trained on the 

rest, depending on the division number, in order to reach as well-performed as possible of the 

model.  

Early stopping is a technique in machine learning that monitors a model's performance 

on a validation dataset during training and stops the training process when the performance 

does not show improvement, preventing overfitting. It helps find an optimal balance between 
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model complexity and generalization by stopping training when further iterations are likely to 

lead to worse performance on unseen data. 

 

Furthermore, activation functions played an influential role in detecting more complex 

and deep patterns in the data structure by introducing a non-linearity to the model in terms of 

controlling the output of the nodes or neurons. In choosing an activation function for DRCAP’s 

classifier, several factors were considered, like gradient anomalies, e.g., disappearing or 

exploding gradients, output range, etc. A variety of activation functions, such as ELU, SeLU, 

ReLU, Leaky ReLU, and Sigmoid were implemented and tested alongside with other hyper-

parameters in DRCAP. For instance, ELU is a smooth and continuous function with a non-zero 

gradient for all inputs and the ability to handle vanishing gradients. This can help with smoother 

convergence during training and may result in a more stable optimization process, especially 

with variance scaling. 

Another technique to improve training quality was batch normalization in the DRCAP 

classifier. Batch normalization is a technique in deep learning that normalizes the activations 

of each layer during training by calculating and applying statistics for each mini-batch of data 

[43]. In other words, batch normalization can improve the stability and performance of each 

layer while achieving higher learning rates when needed. Additionally, an increase in the 

robustness and generalization of the model is also achievable.  

Indeed, one of the most important aspects of a CNN is the optimization of the system 

that in DRCAP several optimizers were implemented such as Stochastic Gradient Descent 

(SGD), Adagrad, Adam, and Adamax. Optimizers in Convolutional Neural Networks (CNNs) are 

algorithms that update model parameters during the training process to minimize the loss 

function, such as stochastic gradient descent (SGD) or the Adam optimizer [38]. In addition, 

different optimizers use different strategies in converging the model efficiency. 

Last but not least, the tuning of hyper-parameters is the cornerstone of all the 

previously mentioned points, as CNNs generally resemble a black box that works as a team. 

More precisely, a combination of elements must be entangled to reach an optimum point, and 

all of the hyper-parameters package resembles a gear box that every gear must be in 

coordination with others.  

It can be assumed that the driving force of all hyper-parameters is the mathematical and 

statistical concepts and equations which would be enough for hyper-parameter selection, 
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which of course is mostly true, but in most cases, fitting the hyper-parameters requires an 

advanced understanding of the data structure, data complexity, and software and hardware 

limitations. 

In the case of the DRCAP classifier, hyper-parameter tuning played a prominent role, 

especially activation function-variance scaling-optimizer triple sets. Some of the most 

important Hyper-parameters used in the DRCAP classifier, VGG-16, and RESNET-50 are shown 

in Table 2. The important hyper-parameters that were tested for the VGG-16, DRCAP, and 

RESNET-50 networks can be seen in Table 2. For VGG-16 and RESNET-50, the following were 

chosen as the hyper-parameters: Adam as the optimizer, categorical cross entropy as the loss 

function, and SELU with Softmax as the activation functions for dense layers. Indeed, ELU and 

Softmax have been considered for activation functions for convolutional layers and dense 

layers, respectively. 

 

 

 

 

 

 

 

 

 

DRCAP, VGG-16, and RESNET-50 important tested hyper-parameters 

Activation function Optimizer 

Shuffling 

And 

Cross-Validation 

 Exponential Linear Unit (ELU) Adamax 

Scaled Exponential Linear Unit 

(SELU) 

Adam 

rectified linear unit (RELU) Stochastic gradient descent 

(SGD) 

Leaky Rectified Linear Unit Nadam 

 Adgard 

 Table 2. DRCAP, VGG-16 (fine-tuned), and RESNET-50 (fine-tuned)tested hyper-parameters for more 

than 25 times running for each   
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 Shuffling and cross-validation in Table 2 refer to the dataset from which the test set 

was chosen by shuffling, randomly reordering the examples in the dataset. It is crucial to note 

that after shuffling, the data set, including the training set, validation set, and test set, was the 

same for the custom network, fine-tuned network, and transfer learning-based networks to 

ensure that testing and training situations were equal to all of them. Indeed, the best 

performance in cross-validation was considered for VGG-16 and RESNET-50. It is beneficial to 

remind, 5% and 10% of the dataset were considered test sets. Moreover, the shuffling, 

training, and testing cycles for each network and technique were approximately 25 cycles. It 

meant 25 shufflings were applied to the dataset, and the networks were trained and tested on 

each. 

 

 

 

         

  

 

3.3.5 Regression 

 

Regression serves as a powerful tool for predicting continuous outcomes in image analysis, 

which permit the model to move beyond classification tasks to predict specific numeric value. 

In the big picture, regression is a statistical method that quantifies the relationship between 

variables and can be varied based on the application and goal of the regressors. 

In DRCAP, we have used two approaches for the regression task. First, as shown in Fig. 

3.2, a regression system has been developed with the VGG-16 as the feature extractor using 

the transfer learning method. Here, the VGG-16 extracts features from the input images, which 

come from the detection part of the DRCAP, and makes a feature vector to send to the 

classifiers for training. Additionally, four classifiers have been employed in classification for this 

purpose: XGBoost, Random Forest, Bayesian [39], and Theil-Sen [40]. A Bayesian regressor is a 

type of regression model which uses Bayesian statistics to estimate relationships between 

variables by probability distributions[41]. Theil-Sen is a statistical method that estimates the 

slope of a linear relationship between variables. Unlike traditional linear regression, Theil-Sen 
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is less sensitive to outliers, which makes it a useful method in situations where the data may 

contain outliers [42] 

The second regression task was designing a custom regressor for this part, an ANN, 

which was done by introducing several dense layers after implementing the custom CNN 

classifier of DRCAP as the feature map extractor for the input image. The custom regressor 

includes one input layer, which is the feature vector, and three hidden dense layers with ELU 

and He Uniform as the activation function and kernel initializer, respectively. The output dense 

layer included an output neuron. Furthermore, Mean Square Error (MSE) and Adam were used 

as the loss function and optimizer, respectively.  

One of the reasons for introducing a regressor part in the analysis part of the DRCAP 

was the mid-class error. This means that the input image after the detection part went through 

the classifier and took a label as a class of it, which gave the operator a sense of yield prediction. 

However, to cover the gaps in the classifier error in terms of classifying the images in mid-class 

ranges, a regressor was introduced. More specifically, some apples could be in mid-class 

groups, and that could be both in two classes, especially in ripening time, and add a systematic 

error to the analysis. Precisely, when an apple grows, it goes from the unripe class to the ripe 

class, but in transient time, it can be classified in both classes. To address this issue, the 

regressor can attribute continuous numbers instead of discontinuous class numbers. It must 

be considered that regression came up as an extra help to the classifier, especially in mid-class 

cases that start from zero up to around three, indicating the ripeness class. Indeed, the 

continued numbers in the regression zone gave a sense of an apple label in the growing stage. 

As an example, if the regressor gave a 1.3 on a scale of zero to three, it was an indication of 

being an apple in class 1 but at the same time reaching class 2, which means it is a mid-class 

apple (Fig 3.17).It must be addressed that the image stage belongs to the transient time from 

class 1 to class 2 based on the dataset split (Table 1). 
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3.3.6 Image processing  

 

The last but not least step in the DRCAP analysis section belongs to the image processing part, 

which works based on the image size of the given input. The aim of this method was first to 

find a suitable average pixel dimension for each class and, second, to find a pixel density of the 

apple images. Several apples have been tracked since blossom time with specific time 

temporals: class 0 for unripe apples (up to July 10), class 1 for semi-ripe apples (from July 11 

to August 15), and class 2 for ripe apples (from August 16 to September 14), in terms of their 

weight and images. Those tagged apple weights have been recorded at harvest time. 

Precisely, seven apples were tracked from their first fruiting time up to harvesting time 

which one of them was shown in Fig. 3.18. To monitor the growth correlation of apples, a chart 

of pixels growing has been plotted, with the X-axis representing the length of the picture in 

pixels and the Y-axis representing the width of the image in pixels as shown in Fig. 3.19. Sample 

1 and sample 2 refer to the two different apple variants from two different locations in the 

orchard where the pictures were taken. Four of the seven tracked apples belong to the sample 

1 and three belongs to the sample 2. These apples have been tracked manually from the 

pictures of main dataset and cropped as accurately as possible during the growing process. 

Then, an average of the length and width of the pixels of cropped apple images in each stage 

or class has been calculated as shown in Table 3. Table 3 shows the detailed average pixel 

thresholds for each class of both samples. 

 

Figure 3.18: Growth monitoring of a specific apple in time. 

 a: 2021-06-25, b: 2021-07-04, c: 2021-07-28, d: 2021-08-21, 

and e: 2021-09-14  

a b 
c d 

e 
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Table 3:  Pixel thresholds for classes of samples 

  

Figure 3.19: Four apples class-change chart in the growing period for Sample 1 and three apples class-

change chart in the growing period for Sample 2 
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For the average pixel density, a more reliable approximation of the number of pixels of an 

apple in an apple image was calculated in the GNU Image Manipulation[43] (Fig. 3.18). 

Therefore, for all the tagged apples, the same process has been applied. It has been tried at 

this stage to capture the pixels of the apple as accurately as possible to find a density for it. For 

instance, in Fig. 3.21, the apple pixel was 6058 pixels, and since we have its weight, by dividing 

its weight by the number of pixels, a pixel density can be extracted. The same method was 

used on the tagged apples, yielding both a class pixel density and an average pixel density (Fig. 

3.19). 

 

 

 

 

 

 

 

 

 

Table 3:  Pixel thresholds for classes of samples 

sample 1 class pixels sample 2 class pixels 

0 1 2 0 1 2 

45*45 46*46 67*63 52*51 53*52 78*73 

Figure 3.21: pixel growing of a tagged apple, the numbers below each picture represents the pixels 

of the cropped picture 

Figure 3.20: fine cropping of apple pixels a: 

after fine cropping, b: before fine cropping 

 

a b 
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Chapter 4 

 

Results  

 

This chapter includes two sub-chapters, detection and analysis, presenting the results of the 

study for the detection and analysis parts. In the detection sub-chapter, the results of apple 

detection were covered, and the analysis sub-chapter covers the results in three micro-

chapters for classification, regression, and image processing. 

  

4.1 Detection  

 

Aa shown in Table 4 different versions of YOLO (YOLOV5, YOLOV7, and YOLOV8) have been 

trained on three sub-datasets in 108 training cycles as mentioned in Fig 3.8 and section 3.2. It 

is crucial to note that the test set for different versions of YOLO on a particular sub-dataset 

was the same to have an equal evaluation situation for all versions. For the 108-training cycle, 

the YOLOV7 performed with best accuracy of 82% compared with 76% best accuracy for 

YOLOV8 and 78% best accuracy for YOLOV5 (Fig. 4.1). 

  

 

YOLOv5 YOLOv7 YOLOv8 

Sub-

set1 

Sub-

set2 

Sub-

set3 

Sub-

set1 

Sub-

set2 

Sub-

set3 

Sub-

set1 

Sub-

set2 

Sub-

set3 

Best Accuracy 72% 72% 78% 72% 76% 82% 70% 74% 76% 

Average 

Accuracy 
76% 79% 73% 

Table 4:  YOLO version performance in detection part in different sub datasets 
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Figure 4.1: YOLOv5 results: first double-row (box a); YOLOv7 results: second double-row (box b), 

YOLOv8 results: third double-row (box c).  

a 

b 

c 
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Fig. 4.1 and metrics are essential for evaluating the performance of YOLO versions during 

training, validation, and testing phases. They give insights into how well the model is learning 

to detect objects, classify them, and generate accurate bounding boxes. Therefore, it would 

be beneficial if we went through each chart and what it showed us. 

The train/box_loss box presents the box loss during the training process which is a 

measure of how well the predicted bounding box coordinates align with the ground-truth 

bounding box coordinates. The val/box_loss box presents the same information, but for the 

validation process. Comparing these two boxes for all versions gives us information about the 

over- or under-fitting of the training process. Since there is no divergence in the trend of them, 

an overfitting issue, at least with this factor consideration, is not probable. Also, as shown in 

the results for the YOLOv7, the training loss drastically drops to 0.02 around 50 epochs, which 

is significant in comparison to the YOLOv5 and v8. 

 Moreover, the train/cls_loss figure represents the classification loss during training. It 

indicates how well the model is performing in terms of correctly classifying objects in the 

images. The val/cls_loss box presents the same information but for the validation process. The 

train/dfl_loss stands for "Direction-Focus Loss," is a type of loss function that improves object 

detection performance, especially in multi-class object detections. However, since our case 

only involves one class, the apple class, this chart would not be as important as others. But, 

the use of focal loss can still be beneficial in terms of optimizing the YOLO algorithm to learn 

and improve its ability to detect objects in the single-class dataset. The val/dfl_loss box 

presents the same information but for the validation process. 

            Furthermore, metrics/precision (B) is a metric that measures the accuracy of positive 

predictions made by the model. The "(B)" indicates that it is calculated on a per-batch basis. 

More precisely, by changing the batch size of the process, this factor will change; therefore, 

finding an optimum batch size could be a crucial point to achieve a high-accuracy weight 

function. The metrics/recall (B) can be interpreted as how well the YOLO model is capturing 

relevant instances of the object in each batch of the test set. This metric can help us 

understand the performance of the model in terms of sensitivity and how well it is identifying 

positive instances, or objects, out of all the actual positive instances in each batch. Comparing 

the results on the recall boxes of the three versions shows that the YOLO v5 and v8 recalls 

reach a higher number than YOLO v7 in fewer epochs. However, it drops significantly soon and 

struggles to reach the same level in the rest of the process, and after 200 epochs, it ends in 
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the same number with a saturated and flat chart. But Yolo v7 reaches its peak with a slighter 

sloop and remains there with a less fluctuated trend.  

The metrics/mAP50 (B) refers to the mean average precision (mAP) at an intersection 

over union (IoU) threshold of 0.5, and the calculation is performed on a per-batch basis in the 

context of your YOLO model evaluation. The IoU (Intersection over Union) is a measure of the 

overlap between the predicted bounding box and the ground truth bounding box, or actual 

bounding box. The last but not least, metrics/mAP50-95(B) box refers to IoU thresholds from 

0.5 to 0.95 on the test set, calculated on a per-batch basis. 

 Moreover, the F1 score of each version has been shown in Fig. 4.2. This score is a single 

metric that provides a balanced assessment of a model's ability to correctly classify positive 

instances while minimizing both false positives and false negatives. In Fig. 4.2 the F1 score was 

plotted in relation with the confidence threshold. This confidence score represents the model's 

confidence that the predicted bounding box contains an apple.  

 

Figure 4.2: F1 score comparison chart of YOLO versions 
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Fig. 4.2 suggests that, for our specific dataset, YOLOv7 performs better in terms of F1 

score, and the optimal trade-off between precision and recall occurs at a confidence threshold 

of 0.45. It must be included that the choice of the best model and confidence threshold should 

align with the objectives and constraints of case. For instance, if we prioritize minimizing false 

positives (higher precision), we might choose a higher confidence threshold. If we prioritize 

capturing as many true positives as possible (higher recall), we might choose a lower 

confidence threshold. Therefore, a trade-off must be considered and the F1 score can be an 

option to find a balance between these two goals. 

 

  In addition to the test set, several pictures from different apple tree variants from 

different locations in Norway under less desirable illumination and contrast have been taken 

to test how well the final weight of YOLOv7 acts.  Before that, it would be beneficial to provide 

examples of improper augmentation, such as saturated noise, extreme zoom in/out, improper 

cropping, and extreme blur, that affected the results in sub-dataset1 and sub-dataset2, as 

shown in Fig. 4.3. Having a look to the results of the best weight models of YOLOv5, v8 and 

some instances before going to the YOLOv7 results would make it more transparent. The Fig. 

4.4 shows the output of best weight models of YOLOv5 and v8 applied on an image from our 

2022 main image set which was totally intact for all models and methods. Indeed, Fig. 4.5 

shows YOLOv5 and v8 outputs on the images from different apple variants for the best F1 

score. 
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Figure 4.3: Random augmentation examples on sub-dataset 1 and sub-dataset 2. 
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a 

b 

Figure 4.4 a: YOLOv5 best weight output, b: YOLOv8 best weight output for best F1 

score 

Click for better resolution 

https://drive.google.com/file/d/12uZg4ItXGWv_aOG57CFunagCOovoIAoD/view?usp=sharing
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Figure 4.5: a: YOLOv5 best weight output; b: YOLOv8 best weight output for best 

F1 score 

Click for better resolution 

a 

b 

https://drive.google.com/file/d/1qnFjOkOLdc8uPoyO5c3nLdYseXSrFDRC/view?usp=sharing
https://drive.google.com/file/d/1qnFjOkOLdc8uPoyO5c3nLdYseXSrFDRC/view?usp=sharing
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The Fig. 4.6, 4.7, and 4.8 shows theYOLOv7 best weight output for the best F1 score in an image 

from 2022 main image set from class 0, class1, and class2 respectively.  Indeed, the Fig. 4.9 

shows theYOLOv7 best weight output on different apple variant images. 

 

Figure 4.6: the YOLOv7 best weight output on a class0 image for best F1 score 

Click for better resolution 

https://drive.google.com/file/d/1kVxSD59BHcpLSvSAVepfJJOLDC_tfLfu/view?usp=sharing
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Figure 4.7: the YOLOv7 best weight output on a class1 image for best F1 score 

Click for better resolution 

https://drive.google.com/file/d/1ZxC8mENrG0jheKp6kXFYaUoY21ToXw5Q/view?usp=sharing
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Figure 4.8: the YOLOv7 best weight output on a class2 image for best F1 score 

Click for better resolution 

https://drive.google.com/file/d/1U7acvE9ru7kWHaUeA0luDh6PzZ4lLd3t/view?usp=sharing
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Figure 4.9: YOLOv7 best weight output on different apple variant images for best F1 score 

Click for better resolution 

https://drive.google.com/file/d/1E4gO1614uHEwejS3nV8lYYwmJxQ9pH_A/view?usp=sharing
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4.2 Analysis 

 

The analysis section includes three sub-chapters including classification, regression, and image 

processing in which the results will be presented separately. 

 

 

4.2.1 Classification 

 

Table 5 shows the classifiers used in the classification part of the DRCAP in custom CNN, Fine-

tuning, and Transfer learning concepts. They have been evaluated based on their accuracy and 

loss. This table shows that the Custom Classifier of DRCAP performed better than other 

classifiers with a 98.3% accuracy and 0.5 loss. Based on these results, several outputs of the 

DRCAP custom CNN classifiers were presented in Fig. 4.10 with the only false class prediction 

in the Fig. 4.10(g). Moreover, the training curve of the model have been shown in Fig. 4.11. 

Furthermore, the heatmap of the confusion matrix has been provided in Fig. 4.12. 

 

 

 

 

 

Table 5: DRCAP classifiers results 

 DRCAP Classifiers results 

Custom 

CNN 

Fine-tuning Transfer Learning 

VGG-16 RESNET-50 XGBoost R-Forest SVC 

Accuracy 

(%) 
98.3  90 83 87 89 91 

loss 0.05 0.58 0.86  
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Figure 4.10: predicted and real classes of the output of the DRCAP custom classifier model 

Click for more pictures (video of all test images) 

a b c 

d e f 

g h i 

https://drive.google.com/file/d/12yD6O85SRXnGAAFujirNpyOs1ysE1ujI/view?usp=sharing
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Figure 4.11: Training curve of the DRCAP custom classifier model 

Figure 4.12: Heat map of confusion matrix of the output of DRCAP classifier  
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4.2.2 Regression 

 

According to Fig. 3.1, the regression part of the DRCAP included two sections. Table 6 compares 

them in terms of R-squared, MAE, and running time spent on test set which was around 80 

images. A relatively higher MAE and R-squared results have been demonstrated by the Custom 

ANN regressor model with a less than a minute computation time, followed by Theil-Sen as the 

second-best performer. 

 

 

 

 

 

 

 

Table 6.  Regression task detailed results 

 Regression 

Feature 

extractor 
VGG-16 

Custom CNN 

model 

Regression 

Model 
XGBoost 

Random 

Forest 
Theil-Sen Bayesian 

Custom 

Regression 

Model 

R-Squared 86 81 91 87 94 

MAE (Mean 

average Error) 
0.56 0.18 0.11 0.22 0.13 

Running 

Time(minutes) 

on test set 

17 15 18 21 <1 
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4.2.3 Image Processing  

 

 In the image processing part of the analysis section of DRCAP, the pixel dimension of each 

class has been calculated, and an average pixel density of the apple pictures has been 

proposed. Fig. 4.13 shows the measurements of the seven tagged apples on 14 September 

with an extra apple in their class 2 stages. Table 8 presents the average gram of eight apples, 

seven tagged apples with one more, shown in Fig. 4.13 and the average pixel amounts of the 

tagged apples for samples 1 and 2 on 14 September 2021, which have been captured by the 

GIMP software. It shows that the average of eight apples is 171.6 grams and reports at the 

same time that the average pixels of two samples were 5617 pixels. More precisely, the 30.6 

m g/pixel is the gram of an apple image pixel, which is derived by dividing the weight of the 

apple by average pixel measured with GIMP software. The 30.6 m g/pixel tells us that a pixel 

of an apple image is 30 milligrams. 

Besides, this method can be used as an auxiliary method for classification and yield 

prediction. According to Table 3, an average pixel dimension for each class of two samples has 

been calculated, and a total average for all three classes can be shown in Table 7, which was 

calculated just by averaging each class in both samples. According to Table 7, if the image 

comes out of the detection part as a cropped apple image and faces a discrepancy between 

the classifier and regression in attributing a class number to it, the pixel processor gives the 

operator another view to help in determine what class the image belongs to. It must be known 

that discrepancy comes mostly in the transient time of an apple's growing period. 

 

 

 

Table 7: Average class pixels 

 

 Average class pixels 

0 1 2 

48*48 49*49 to 74*69 75*70 
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Table 8: Pixel density details 

date  24.07.21 02.08.21 10.08.21 20.08.21 14.09.21 

Gram Average  171.6 

Pixel Average sample 1 2551 3040 3673 4186 4823 

  sample 2 3460 4300 5051 5940 6411 

Samples pixel average  3005 3670 4362 5063 5617 

density(mg/pix)       30.6 

 

Total density per pixel 30.6 m G/Pixl   

 

 

Figure 4.13: tagged apples for weight measuring on September 15, 2021 

Click for more details 

https://docs.google.com/spreadsheets/d/16Qc9WiIwuvL6oglOedp-xbXG5sNWssoz/edit?usp=sharing&ouid=118415937931545221393&rtpof=true&sd=true
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Chapter 5  

 

Discussion 

 

 

5.1   Detection 

 

Comparing the YOLO versions results in the detection part of the DRCAP, which clarifies several 

advantages and disadvantages of each model. First of all, YOLOv5, mostly known for its speed, 

showed 78% accuracy but came across as lacking in precision, especially for smaller objects 

and unseen datasets as same as the 76% accuracy of YOLOv8 (Fig. 4.5). on this dataset the 

YOLOv8 showed some potential improvements in comparison with YOLOv5 but faced some 

challenges in terms of generalization capabilities. On the other hand, the 82% accuracy of 

YOLOv7 showed better accuracy performance not only on the test set but also on a new and 

unseen dataset but its training time was more than YOLOv8.  Some of the observed differences 

in accuracy can be attributed to several factors, including the model complexity, the training 

data quality, and the hyperparameter tuning which depends the data complexity. For 

instances, YOLOv7's Path Aggregation Network (PANet) [53] and head network contribute to 

its higher feature extraction and fusion capabilities compared to YOLOv5 and YOLOv8. 

Additionally, YOLOv7's DIoU-v5 loss function improves bounding box regression accuracy. After 

all these technical considerations in the architecture of each model and their benefits, the 

greatest jump in accuracy happened after preparing a proper dataset and training process to 

the network. As seen in Table 4 the achieved accuracy gap between the sub-dataset 1 and sub-

dataset 3 was ten percent which is considerable. Therefore, providing a pre-cleaning and pre-

processing method and dataset to the network would play a crucial role and even in some 

cases it can compensate the lacks in model improvements techniques [54]. 
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5.3   Analysis 

 

As shown in Table 5, in the transfer learning methods part of the classification section, SVC as 

a linear classifier, which finds hyperplanes for best class separation, performed better than R-

Forest and XGBoost as ensemble models. Since the VGG-16 was the feature extractor in this 

part, which produces a high-dimensional feature space due to its deep architecture, SVC’s 

upper-hand accuracy indicates there was a linearly separable class in the feature space. 

Therefore, lines can separate the classes in this high-dimensional space. Also, SVC is a robust 

classifier for outliers in comparison to ensemble models like XGBoost and Random Forest; so, 

the existence of outliers in feature space might be handled more by SVC than by two other 

models. 

Furthermore, in the fine-tuning part of Table 5, the VGG-16 and RESNET-50 have been 

considered as classifiers instead of traditional machine learning models and algorithms like 

SVC, XGBoost, and Random Forest. The gap between the result of VGG-16 and the RESNET50 

shows that the architecture complexity of a model, such as using more layers, cannot 

necessitate better results. As a result, there are other crucial factors beyond model complexity, 

such as hyper-parameter selections, tuning, and keeping a balanced trade-off between 

complexity and simplicity. 

Additionally, DRCAP custom CNN classifier performance excelled others in terms of 

accuracy and loss. There were multiple factors to address this accuracy, First and foremost, 

scaling the variance of neurons played a crucial role, which was not the case in RESNET50 and 

VGG-16, since it was important to have a stabilized learning process that directly influences 

the model training convergency. The stabilization matters more, especially in deep models, 

since all the neurons can be considered as decision-makers for the input data, which here is 

the input feature. The fan average mode in variance scaling controls the overall decision for 

each neuron. This mode is beneficial when the input and output are significantly different. 

Also, employing ELU as an activation function in architecture was another factor since it was 

important to control the output at the same time, preventing neurons from being completely 

inactive and leading them to a balanced response to both positive and negative inputs.  
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 Additionally, in the regression task in the analysis part of the DRCAP in Table 6, Theil-Sen 

showed that a statistical model can proceed with machine learning algorithms like Bayesian, 

Random Forest, and XGBoost in terms of R-squared and MAE. Theil-Sen's robustness and 

resistance to outliers, coupled with its ability to handle non-linearity, led it to a better position 

in results. However, the computation time is still the same for them, with a slight difference. 

But the custom regressor ANN model showed even better results not only in R-squared but 

also in computation time, bringing the time from more than 15 minutes for all classical models 

to less than a minute, which makes it a proper choice for real-time applications. The ANN's 

performance can be improved for several reasons. the ANN takes advantage of a wide range 

of customizations in the architecture and activation function, which have contributed to the 

ANN's ability to better fit the regression task. 

 

 In the image processing part of the DRCAP, we tracked and observed seven tagged 

apples from two different trees and places in the orchard. The tracked apples were chosen 

from different parts of the tree since, during the ripening process, some factors, like apples 

exposure to sunlight, would be changed. We chose apples from the top, middle, and lower 

parts of the trees in both samples. Based on Fig. 3.17, an obvious correlation among the apples, 

even from different samples and locations, is visible, which indicates that the tracked apples 

were growing in correlation with each other. 

 

 

 

5.4   Future work 

 

Several steps are still available in DRCAP to make it more specialized than before and can be 

considered as future steps. First of all, improving one of the YOLO versions or even designing 

another custom detection network will be an important step in localizing the DRCAP. 

            Owing to the fact that this study is part of a larger project called Digital Orchard, having 

a big picture of the orchard is a crucial point. Expanding the image analysis part to help the 

operator with real-time monitoring for crop management, as mentioned in Chapter 1, would 

be possible by introducing real-time-based systems. The real-time-based systems in the DRCAP 
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pipeline have been considered in designing shallow networks and ANNs to make them as 

optimized as possible. Also, monitoring the orchard for early pest detections and anomalies is 

possible in the image analysis section by tracking more apples from several places in the 

orchard. Additionally, not only fertilizer effects on trees and soil can be investigated, but also 

precipitation patterns and their correlation with fruit quality and volume can be understood. 
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Chapter 6 

 

Conclusion 

 

A pipeline, DRCAP, was introduced in this study for apple yield prediction. In the pipeline, 

firstly, the apple images were detected and cropped by YOLO (v5, v7, and v8); YOLOv7, with an 

accuracy of 82%, showed better performance than 78% for YOLOv5 and 76% for YOLOv8. A 

custom CNN classifier with an accuracy of 98.3% assigned a class to the cropped and detected 

images in the analysis part, outperforming VGG-16 at 90% and RESNET-50 at 83%. Indeed, an 

ANN regression model with an R-squared of 94% and less than a minute of running time for 

tests gave a comprehensive understanding of image classes, especially for the inner-class 

images. Other regressors like Random Forest, XGBoost, Theil-Sen, and Bayesian showed 81%, 

86%, 91%, and 87%, respectively. Moreover, using an image processing technique, an average 

pixel dimension for three classes of apples has been calculated based on the tracking of seven 

tagged apples during their growing period and showed a correlation between apple growth 

rate in different parts of the tree.  
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