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Abstract

In order to increase the efficiency within the life cycle of the equipment, predictive maintenance has
evolved as a popular research area. Bearings are one of the key components in rotating machinery
which facilitate rotational movements. These elements are prone to defects and these defects can
be traced using the signals that are generated by the bearings. These signals can be analyzed and
provide varied characteristics that can be used as the key elements for predictive maintenance. In
this thesis, a more efficient method has been proposed to classify various bearing faults using dif-
ferent deep learning models such as AlexNet, LeNet, NASNet, ResNet, EfficientNet, and VGG16. The
classification has been done by using two different datasets called NASA and CWRU which are pub-
licly available. Both datasets contain raw bearing vibration signals and we have generated varied
2D images from the raw vibrational signals, including frequency spectrums, spectrograms, and polar
spectrums. Then, we developed and evaluated the performance of AlexNet, LeNet, NASNet, ResNet,
EfficientNet, and VGG16 models based on 2D features. We have used different performance metrics
such as F1-score, accuracy ROC curve, etc. In the NASA dataset, we observed the highest classifica-
tion performance in the VGG16 model that was trained using polar spectrums with an accuracy of
97.12% and an F1-score of 0.965. In the CWRU dataset, AlexNet using spectrogram demonstrated the
highest accuracy of 96.8% and F1-score of 0.968. In the next step, we provided a dual-channel mech-
anism by incorporating statistical features into our model using mid-level fusion. We have proved
the efficiency of the dual-channel deep learning models and demonstrated the significance of the
dual-channel EfficientNet to provide 100% accuracy using spectrogram and frequency spectrum in
bearing anomaly classification. We have tried this method on both CWRU and NASA datasets, and
significantly we could observe that dual channel methods demonstrated remarkable classification
performance in comparison with the single channel models. Based on our results, we believe that
different sectors that provide predictive maintenance can benefit from our results. By incorporat-
ing our proposed solution, they are able to enhance their fault classification performance. Add to
the point, this thesis provides a comprehensive comparative study on bearing fault classification us-
ing different deep learning models, different channels, and different features which can serve as a
foundation for other scholars to modify and evaluate their ideas.
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1 Introduction

Rolling element bearings are widely used in rotating machinery like helicopters, locomotives, air-
planes, pumps, etc. They facilitate rotatory andhorizontalmovements among the equipment, thereby,
they are an integral element to establish optimal performance. Motors are the supplier of almost 50%
of energy for industrial applications and bearings are responsible for approximately 40% of their cor-
responding failure (Zeidan, Paquette, et al., 1994). A bearing consists of the inner and outer ring, a
roller element, and a cage. Inner and outer rings provide a pathway for the rolling elements and the
cage holds an even space between the bearing to guide them within the raceways(B. Zhang et al.,
2008). Factors like excessive loads, peeling, sub case fatigue, misalignment, inclusion, and humidity
can cause anomalies in the inner race, outer race, and rolling element of the bearing (Jin, Sun, Que,
Wang, & Chow, 2016).

These anomalies interferewith thehealth of the equipment and cause several negative consequences
including increased downtime, a plummet in efficiency and revenue, and in severe conditions catas-
trophic incidents, and human injury. In order to prevent these incidents, condition-monitoring tech-
niques like vibration signals, acoustic measurements, and temperature measurements can be used
to monitor the health of the equipment (Shah & Patel, 2014). The failure or malfunction in the bear-
ing can affect the current vibration and produce abnormal signals, which can be used as an indicator
to distinguish the defects. Thereby, through monitoring and analyzing these signals, we can predict
and prevent failures by applying preventive maintenance.

Traditionally, equipment maintenance was performed after the occurrence of incidents, or equip-
ment breakdown. The vast application domain of the bearings and the importance of their health
condition gears scientists toward innovative solutions to detect and classify these anomalies or faults
by using signal processing techniques (Neupane & Seok, 2020). With technological advancements
and amassive amount of research being done using Artificial Intelligence (AI) in several domains such
as healthcare (Amann et al., 2020), wood industry (Baesler, Moraga, & Ramis, 2002), oil and gas
(Aung, Mikhaylov, & Aung, 2020), predictive maintenance using AI has also been evolved to provide
operational efficiency (Matzka, 2020). Deep Learning (DL) methods, by providing automatic feature
extraction from the raw data, modeling complex relations within the data, and their tolerance to-
wards redundant features like noise, provide higher classification accuracy, enhance the efficiency of
the equipment’s life cycle, and mitigate the chance of failure (Neupane & Seok, 2020; Saufi, Ahmad,
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Leong, & Lim, 2019a).

Previous solutions for bearing fault classification have been leveraging the hidden features among
certain single types of data, like time domain features (Nayana & Geethanjali, 2017), frequency do-
main features (Hakim et al., 2022), or 2D representations of the signal (T. Lu, Yu, Han, &Wang, 2020),
and have not been evaluating the full potential characteristics hidden in other forms of data. For
example, by using time domain features, we may overlook frequency-based characteristics, or fre-
quency domain features are not able to evaluate the time-based components. The unique architec-
ture of CNN eliminates the application of feature-extraction methods which demonstrates its superi-
ority over other traditional machine-learning techniques. Signals can be turned into 2D illustrations
using various transformation techniques including Fourier Transformation (Bagchi & Mitra, 2012),
Short-Time Fourier Transformation (Griffin & Lim, 1984), Principal Component Analysis (Castells, La-
guna, Sörnmo, Bollmann, & Roig, 2007), Histogram of Oriented Gradients (Muthamizh Selvan & Ra-
jesh, 2012), Wavelet transformation (Osadchiy, Kamenev, Saharov, & Chernyi, 2021), polar spectra
(Lyzenga, 2017), etc.

Thereby, these demonstrations have the potential to confer advantages to the classification perfor-
mance using different variations of 2D CNN. Hence, the objective of this thesis is to develop an inno-
vative solution using deep learningmodels to classify bearing faults. The innovative solution includes
a 2 - channel fusion model with regard to 2D visualization like polar spectrum, frequency spectrum,
and the spectrogram for one channel, and statistical features for the second channel.

1.1 Motivation and Problem Statement

Anomaly detection and classification of the bearings is a novel research area as it provides opera-
tional efficiency, asset availability, safety, and cost-effectiveness of the equipment. Bearings are vital
parts and the main source of failure in rotary machines like airplanes, automobiles, turbines, and
generators (Jin et al., 2016). Material properties, lubricant properties, bearing size, the number of
rolling elements, speed of bearing, and installation are among the factors that can impact the useful
life cycle within this component. The faults like material fatigue, plastic deformation, and uneven
rotation can stem from excessive load, wear, and lubrication (B. Zhang et al., 2008). Reaching a high
accuracy in anomaly detection and classification of the equipment reduces downtime, increases ef-
ficiency, and prevents catastrophic failures.
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Rolling elements like bearings are one of the key components for providing rotation between two
parts within the equipment, and their failure accounts for one-third of the failures in rotating ma-
chinery (Neupane & Seok, 2020). The failure of an intact functional routine in this element results
in the full breakdown of the rotating machinery. It is vitally important to uphold the integrity of the
equipment to ensure operational efficiency especially when it deals with human safety or has the po-
tential of significant financial loss. The defects within this element can arise in the inner race, outer
race, and rolling element parts. Detecting these defects in an early stage can eliminate downtime
and prevent incidents.

DL models have been widely used in anomaly classification of the bearings. Using the available data,
these algorithms try to find current patterns and make corresponding predictions (Neupane & Seok,
2020). DL algorithms are able to define higher-level and lower-level categories with higher efficiency
and accuracy (Neupane& Seok, 2020). They are comprised ofmultiple processing layers and are able
to get insights into multiple levels of abstraction. The initial insights from the very first layers will be
sent to the next ones obtaining a higher complexity until the final layer, in which the classification is
generated (Neupane & Seok, 2020). The quality of the input data affects the classification results,
thereby ensuring that the input data is capable of providing necessary information is challenging and
vital for a robust classification. Therefore, in this thesis, dual-channel DL models are built for the
classification of various bearing faults.

1.2 Research Questions

1. Are dual-channel CNNs suitable for multi-classification of bearing faults?
To answer this research question, in this thesis, dual-channel CNN models will be developed
using spatial and statistical features for the classification of bearing faults. To do so, we use
separate data pipelines for each type of channel. In the 1D channel, statistical features will be
fed. Whereas, 2D representations will be fed to the 2D CNN channel. The developed dual-
channel CNN models use two datasets such as NASA and CWRU.

2. Does the dual-channel CNN model perform better than single-channel CNN models?
In order to compare the performance of dual-channelmodelswith single-channel 2DCNNmod-
els for the multi-classification of the bearing faults, we developed both types of models and
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later compared their performance.
3. Does the dual-channel CNN model perform better than state-of-the-art algorithms?

To answer this research question, the results of developed 2D CNNmodels are compared with
the state-of-the-art results.

1.3 Thesis Goals

To achieve the main goal of this thesis, it is further divided into sub-goals as follows:
• Examine the state-of-the-art research within the field of anomaly classification and further
improve it by introducing dual-channel 2D CNN models.

• Develop dual-channel CNN models such as EfficientNet, AlexNet, NasNet, ResNet, VGG16, and
LeNet for the classification of varied faults within the bearing using spatial and statistical fea-
tures.

• Validate the robustness of the proposed models by evaluating the performance of the model
on two datasets and comparing their performance.

1.4 Research Approach

In this thesis, as illustrated in Figure 1, we have followed an applied research approach to provide
applicable solutions for a challenge within predictive maintenance.

As per applied research, we started by defining our research focus which was evaluating the classi-
fication performance of the fusion EfficientNet in anomaly classification of the bearings. Then we
provided a comprehensive literature review to evaluate how current methodologies and deep learn-
ing models have contributed to the performance of anomaly classification of the bearing. It was a
critical step to get acquainted with the state-of-the-art methodologies and find the gaps within the
scholar’s previous research. In the next steps, we decided on the models, features, performance
metrics, and datasets that could be used in our research.

We determined, AlexNet, LeNet, NASNet, ResNet, EfficientNet, and VGG16 as our main models, Po-
lar spectrums, Spectograms, frequency spectrum, and statistical features as our evaluation features
that we could extract from both NASA and CWRU datasets. These datasets contained the vibration
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Figure 1: Applied research approach.
signals derived from the bearings which have been prone to different fault conditions including inner
race defect, outer race defect, and rolling element defect. Afterwards, we analyzed the transformed
vibration signals and evaluated the performance of the target model and architectures based on
the determined performance metrics, and provided a comparative analysis to showcase the fusion
methods and the significance of the fusion EfficientNet on the bearing anomaly classification

1.5 Assumptions and Limitations

This subsection outlines the assumptions wemade and the limitations we encountered in this thesis.

1.5.1 Assumptions

1. We assume that the datasets have been generated through consistent environmental condi-
tions during the capturing period.

2. The CWRU dataset consists of varied severities of the different fault types, and we assume that
the severity has remained constant during each experiment.

3. We assume that mid-level fusion can adequately capture the features from both channels.
13



1.5.2 Limitations

1. The highest challenge that we faced during the experiments was our limited computational
resources. Deep learning architectures require a considerable amount of computational re-
sources. Therefore, we were not able to apply more complex hyper parameter tuning or use
a higher number of epochs. Add to the point, The NASA dataset approximately consists of
700 million data points. The considerable magnitudes of data within this dataset, significantly
diminish the processing speed to generate 2D images.

2. The NASA dataset used in this thesis includes unlabeled data. Therefore, in order to perform
classification, we need to turn it into a labeled form. However, due to the presence of the noise
within the signals, precisely pinpointing the initial defective data point is challenging.

3. By removing the noises, we might remove useful information or anomalous data points that
would benefit the classification performance.

4. In our dual-channel model, we train our fusion model based on different data types of 2D
images and statistical features. Therefore, the model complexity increases and results in a
higher training time.

1.6 Thesis Contributions

The main contributions of this thesis are:
• Development of different deep 2D CNN models for classification of bearing faults using 2-
channel fusion model.

• Evaluation of different deep 2D CNN models’ performance on NASA and CWRU datasets.
• Comparing the performance of dual channel models with their peer single channel models.
• Comparing the efficiency of the dual channel EfficientNet model with the state-of-the-art re-
sult.

1.7 Thesis Outline

The rest of the thesis is organized as follows:
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Chapter 2: This section provides the background information needed in order to understand the the-
ories, technologies, and domain.

Chapter 3: This section presents a comprehensive literature review of prior research done on using
DL for multi-classification of bearing faults.

Chapter 4: This section explains the pre-processing techniques that are used before feeding the data
into 2D CNNmodels, the details of both NASA and CWRU datasets, and the architecture that we used
to conduct several experiments for the multi-classification of bearing faults.

Chapter 5: This section presents the experimental results we have achieved and the discussion re-
garding the results.

Chapter 6: This chapter concludes the thesis by providing a summary of the work done in the thesis.
Also, outline the potential work that could be done to our research in the future to achieve better
desirable results.
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2 Background

In this section, we provide an overview of foundational theory on the chosen domain and the Deep
Learning models that have been used to answer the research question of this thesis.

2.1 Condition monitoring and predictive maintenance

Sensors play an important role in Industry 4.0, and by using them, the system can bemore digitalized,
and automation will become possible. The main approach in Industry 4.0 is to increase efficiency,
and sensors have made it possible. They link multiple devices and enable machine-to-machine and
machine-to-human interactions. Using computational power in their systems, these sensors have
become more intelligent and are capable of data calculation. Industry 4.0 evolved with the intelli-
gent process, by incorporating sensor technology, big data, cloud computing, AI, intelligent robotics,
smart valves, and automated smart control applications (Javaid, Haleem, Singh, Rab, & Suman, 2021).

Sensors continuously assess conditions and take necessary actions about them. These counteractions
efficiently provide analytical concepts that eliminate human error and increase efficiency within the
system. They provide valuable knowledge, boost production, advertise, sell, compete, reduce costs,
and enhance business performance and overall productivity. In the industry sections, sensors have
been incorporated to solve various business challenges including predictive maintenance, building
automation, asset monitoring, and process automation. They are a vital part of software intelligence
and have changed the manufacturing process to ensure high productivity. Sensors collect data using
a transducer and use the computational power to produce insight and transfer them to be processed
in information systems andworkflows. They have evolved in away that they are capable of self-assays
and auto-calibration nowadays (Javaid et al., 2021).

Maintenance is divided into three main categories:
1. Corrective maintenance: In this maintenance strategy, an action will be taken after an error or

system failure has occurred. (Davari et al., 2021)
2. Preventive maintenance: This category encompasses the efforts to retain the integrity of cer-

tain conditions by providing systematic inspection, detection, and prevention of failures. It is
divided into three groups: scheduled maintenance, condition-based maintenance, and Predic-

16



tive maintenance(Compare, Baraldi, & Zio, 2019)(Davari et al., 2021)
3. Predictivemaintenance: For PM, there exist three approaches: model-basedprognosis, knowledge-

based prognosis, and data-driven prognosis. Data-driven PM method, which is the backbone
of our research, incorporates the industrial data with computational methods to produce an-
alytical information about the equipment. In this approach a training model will be deployed
based on the sensor data, then it performs classification. The bearing’s vibration shall provide
uswith helpful information about the health of the equipment and can be analyzed using signal
processing methods (Davari et al., 2021).

2.1.1 Bearing Fault Structure

A bearing consists of the inner race, outer race, rolling element, and the cage which can be seen in
Figure 2. Any damage within these parts can cause the corresponding failure which we state as an
inner race defect, outer race defect, and rolling element defect. These varied defective components
generate a diverse range of frequencies. A healthy bearing generates regular vibration signals which
are generated from forces between different components and the rotational movement of the bear-
ing. The continuous vibration structure in a healthy bearing profoundly differs from the nonuniform,
discontinuous structure of a defective bearing. Throughout every rotation cycle, the vibration sig-
nal is influenced by the defect each time the motion encounters the defective zone (B. Zhang et al.,
2008).
During the life cycle of a bearing, different frequency components are generated and can be used to
distinguish different defective parts within a bearing. Each defective part produces frequencies based
on the operational characteristics of the bearing including the number of rolling elements, number
of balls or rollers, diameter of a rolling element, pitch diameter of the bearing, and contact angle of
the bearing (Nivesrangsan & Jantarajirojkul, 2018). These frequencies can be described as follows:

• Ball Pass Frequency Inner race: BPFI corresponds to the frequency that the bearing generates
when there is an error in the inner section of the bearing. It shall be calculated using the fol-
lowing formula (Nivesrangsan & Jantarajirojkul, 2018)(Samimifard, 2023):

BPFI = N ·Z ·RPM

60
·
(
1+ d

D
·cosα

)
(1)

• Ball Pass Frequency Outer race: BPFO race corresponds to the frequency that the bearing gen-
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Figure 2: Bearing faults.(B. Zhang et al., 2008)
erates when there is an error in the outer section of the bearing. It shall be calculated using
the following formula (Nivesrangsan & Jantarajirojkul, 2018)(Samimifard, 2023):

BPFO = N ·Z ·RPM

60
·
(
1− d

D
·cosα

)
(2)

• Ball Spin Frequency: BSF corresponds to the frequency that the bearing generates when
there is an error in the rolling elements. It shall be calculated using the following formula
(Nivesrangsan & Jantarajirojkul, 2018)(Samimifard, 2023):

BSF = N ·Z ·RPM

120
·
(

D2 −d 2

D2

)
(3)

The variables for the three above formulas are explained as follows:
– N: Number of rolling elements
– Z: Number of balls or rollers
– RPM: Revolutions per minute of the bearing
– d: Diameter of a rolling element
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– D: Pitch diameter of the bearing
– α: Contact angle of the bearing

2.1.2 Envelope analysis

Envelope analysis is a signal processing technique that is used to analyze the vibration signal gener-
ated from the bearings (B. Zhang et al., 2010). We can relate the frequency components derived from
the envelope analysis to the frequency components of the bearings and determine the presence of
specific defects. The extracted signal is a combination structure of the actual vibration signal and the
broadband noise. The defects within the inner race, outer race, or rolling element can cause energy
distribution and result in resonances in the bearing and related componentswhen the rolling element
passes through the spall. The bearing periodically generates these impulses during the continuous
rotational movements and impulses are much shorter in comparison with the bearing’s rotational
cycle. These impulses affect a broad range of frequencies and cause varied resonances within the
bearing. Envelope analysis is capable of revealing the faults within the bearing life cycle using the
demodulating of the vibration signal (B. Zhang et al., 2008).

As illustrated in Figure 3, Envelope analysis as a multi-step procedure performs band pass filtering,
followed by Hilbert transformation to generate the analytic signal. The envelope signal is then gen-
erated by taking the absolute value of the analytic signal. The envelope is then followed by the FT to
extract the features as components for the experiments (B. Zhang et al., 2008, 2010)

Vibration signal: As the rolling element bearing rotates, the forces between components and ex-
ternal forces generate vibration signals. These vibration signals exist in any health condition of the
bearing and demonstrate a signature based on the mode that the signals were collected (B. Zhang et
al., 2008).

Band pass filtering: Vibration signals accompany background noise from the shaft and other compo-
nents. Varied frequency bands including Low, middle, and high-frequency, reveal hidden character-
istics of the defective component. Low-frequency bands that are below 1KHz, encompass fault fre-
quencies related to processing equipment. Middle-frequency bands which are considered between
1KHz and 20KHz demonstrate the faults within the surface. However, the majority of the generated
energy from a defective bearing is located within the high-frequency range which is above 20KHz.
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Figure 3: Demodulation flowchart.
Bandpass filtering filters the signal based on specific frequencies. In the bearing anomaly classifica-
tion, we need the components around the resonant frequency that were triggered by the defective
element (B. Zhang et al., 2008; Q. Lu, 2012).

Hilbert transform: A fault source modulates the vibration signal. Therefore, envelope demodulation
can be used to extract amplitudes related to the fault frequency (Q. Lu, 2012). Hilbert transformation
is used for developing analytic signals and the envelope signal is its absolute value (B. Zhang et al.,
2008). An analytic signal is a complex signal whose imaginary part is the Hilbert transform (Feldman,
2011). In the following equations x(t) is the time domain signal and h(t) corresponds to the the Hilbert
transformation formula(Q. Lu, 2012).

h(t ) = 1

π

∫ +∞

−∞
x(t )

λ− t
d t = x(t )∗ g (t ) (4)

x(t ) =− 1

π

∫ +∞

−∞
h(λ)

t −λdλ (5)

The second equation is the inverse of the Hilbert transformation where(Q. Lu, 2012):

g (t ) = 1

πt
if t ̸= 00if t = 0 (3)
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h(λ)is the result of applying the Hilbert transform to the x(t) and passing it through the filter as g(t).
The magnitude of the analytic and the phase of the analytic are represented as the following equa-
tions respectively (Q. Lu, 2012):

∣∣a(t )
∣∣=√

x2(t )+ (x ′(t ))2 (6)

θ(t ) = arctan

(
x ′(t )

x(t )

)
= 2π f0t +ϕ(t ) (7)

FFT: In the last step of the demodulation, to visualize the faulty component FFT is applied to the en-
velope signal to calculate the frequency spectrum (B. Zhang et al., 2008). This transformation has
been widely used in frequency amplitude computation, and filtering operation. Applying FFT on real-
valued information generates results with redundant imaginary parts. Fast Fourier Transformation
optimizes trigonometric function calculation and uses a limited variety of discrete angles which as a
result increases efficiency. FT allows the use of only half of the data. As demonstrated in equation 8,
real parts represent even data values and imaginary parts represent odd data values (Bechhoefer &
Fang, 2012).

Fn = F e
n +e2πi n/N F o

n (8)
where

F e
n =

N /2−1∑
k=0

f2k e2πi k/(N /2) (9)

F o
n =

N /2−1∑
k=0

f2k+1e2πi kn/(N /2) (10)

A vector data structure containing two arrays for even and odd data is then generated. A complex
vector is also defined for real and imaginary data. FFT copies the real vector into the complex vector.
In the next step, a decimation in frequency FFT is performedwhich applies the FFT to half of the com-
plex data. Then A decimation in time FFT is applied to it. The transformations within Equation 9 and
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Equation 10 are then recombined using Equation 8 to ensure a correct transformation (Bechhoefer
& Fang, 2012).

2.2 Artificial Neural Network

ANNs mimic the human brain as an interconnection structure of neurons. As illustrated in Fig 4, in
the first step, nodes or perceptrons process the received data using mathematical functions. Then,
the output of the processed data will be sent to the next layer of perceptrons, and ultimately to
the output layer. ANNs include a wide range of networks with unique architectures like perceptron
networks, feed-forward layered networks, and recurrent neural networks. The efficiency of each
network depends on its training. During the training process, the network learns to adjust its weights
to minimize the differences between the predicted and the actual values to increase the accuracy
(Kufel et al., 2023).

2.2.1 Deep Neural Networks

DNNs are a type of ANN with multiple hidden layers between the input and output layers. These
hidden layers are the key components in the DNNs by extracting more features within the data. Each
layer improves the refinement of the extracted feature andmore layers empower the network’s train-
ing capability. As demonstrated in Figure 4 when the data passes through the network containing
multiple hidden layers, in each layer weight, biases, and activation functions are applied to refine the
data. This network is capable of extracting complex features and patterns, which makes it a great
tool for tasks like image processing, and natural language processing (Kufel et al., 2023).

2.2.2 Convolutional Neural Networks

DL models like CNN have been developed to process multi-dimensional data input and extract their
features automatically using convolution structures. As illustrated in Figure 5, convolutional layers
generate feature maps containing the pattern within the data and optimize the features during the
training phase. To avoid data loss, padding is applied at the borders by increasing the input size with
zero value. As the generated feature maps might encounter overfitting, pooling can be applied to
reduce the spatial dimension of the feature maps. Finally, the data is passed through the fully con-
nected layers for further classification (Z. Li, Liu, Yang, Peng, & Zhou, 2021).
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Figure 4: Representation of DNN and ANN. (Kufel et al., 2023)

Convolution layers: As illustrated in Equation 11, this layer is a combination of two function struc-
tures and demonstrates how one alters the shape of the other. In the image classification tasks, this
procedure involves features and the feature detector. Figure 6 provides a visual representation of
the equation, it demonstrates how the kernel moves through the input image and provides a feature
map. The feature map encapsulates the vital information within the image and reduces the size of
the image’s dimensions (Haque, Verma, Alex, & Venkatesan, 2020).

( f ∗ g )(t ) =
∫ ∞

−∞
f (τ)g (t −τ)dτ (11)

Pooling layers: In the next layer to address the variability of the shapes, textures, and orientations
of the 2D input, pooling is applied to the feature maps which were derived from the convolution
layer. For example, different breeds of dogs in various orientations and positions fall into the dog
category. To ensure consistency, pooling targets these variations by extracting dominant features
from the feature map. Furthermore, this layer also reduces the dimension of the feature map by
75%, which downsizes the number of parameters before feeding them to the neural networks, and
prevents overfitting (Haque et al., 2020).
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Figure 5: CNN Architecture. (Shahid et al., 2022)

Figure 6: CNN Architecture. (Haque et al., 2020)

Flattening layers: Before feeding the feature maps into the neural networks, the 2D pooled features
need to map into a 1D column. This can be done by taking the values from each map and then lining
them up into a one-dimensional column(Haque et al., 2020).

Full Connection layers: The flattened layer is the input to the ANN and is fully connected to the next
layer in the network. This link between the input features and their attributes in the corresponding
layer increases the accuracy of the classification (Haque et al., 2020).
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3 State of the Art

There is significant research that is going on in the areas of developing deep learning (DL) algorithms
for bearing faults classification. In this section, we present some of the algorithms that have been
developed by researchers in this field. The literature review is summarized and presented in Table 1.

Wang et al (H. Wang et al., 2022) studied the diagnosis of the bearing anomalies using BAS-SWD, and
amulti-sensor data fused 1D-CNNwhich was originally based on VGG16. This method was conducted
on non-stationary signals within the CWRU dataset. Initially, these signals were divided and normal-
ized to ensure a standard input. A novel BAS-SWD algorithm was used for the feature extraction to
decompose the pre-processed data into OCs, which are distinguishable data points with anomaly
characteristics. The top 3 OCs with the highest envelope spectral kurtosis were used as the input of
the model. The authors utilized the 1D CNN model and added a fused layer to combine data from
the different sources. This multi-sensor fused model demonstrated a remarkable classification result
with an average classification accuracy of 100%. The authors would like to challenge mixed fault di-
agnosis in gear, and bearing using this method in their future work.

Shaoet al (Shao, Jiang, Zhang, & Liang, 2017) proposed a diagnosis method based on a convolutional
deep belief network for bearing diagnosis of electric locomotives. In this approach, an auto-encoder
compressed the vibrational data to reduce the massive amount of data and learn the lower-level
features. No feature extraction had been deployed and the dataset was directly split into training
and test datasets. Then, high-layer features were extracted using a convolutional deep belief net-
work with the use of Gaussian visible units by employing a two-dimensional structure and periodic
characteristics of the input data. These binary units employed an exponential moving average to im-
prove the performance of themodel. Finally, Softmax was used for fault classification. The authors in
this research employed this method on an electric locomotive bearing dataset with three faults and
eight operating conditions including normal condition, slightly outer race fault, severe outer race
fault, roller element fault, inner race fault, outer race, and inner race compound fault, inner race and
roller compound fault and outer race and roller compound fault. Each working condition included
400 samples and each sample had 1024 data points. The result of this experiment presented an aver-
age accuracy of 97.4375% which is higher than traditional methods like SVM, BPNN, and ANFIS. Add
to the point, the comparison between 200 training samples and 300 training samples demonstrated
that the results were always over 95%. Therefore, it was concluded that this method can avoid over-
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fitting. This proposed method was also validated on Bearing 3 of Testing 1 of the NASA dataset using
50 random samples and results demonstrated 100% accuracy. However, this accuracy shall be vali-
dated on the other two NASA datasets which include different fault types as well.

Wang et al (P. Wang et al., 2017) proposed a novel approach to gearbox fault detection by converting
the time series data into graphical images. The integration ofWT and DCNN detects and classifies the
severity of the fault. WT can represent different resolutions in frequency and time domains, which
can effectively detect faults from the early stage. Also, due to the window size variation, different
faults can be illustrated. DCNN by analyzing the brightness of the specific pixels of the side bands
detects underlying features and classifies them. The authors also used three different severity levels
in their analysis, and for each one, two data series were collected of which 60 were used for training
and the rest for the test. After converting the vibration signals into 2D images they used them as the
inputs of the DCNN. The training was carried out for 50 epochs. The time taken to train the network
was 4.25 s, and for classifying the test data was around 0.001 s. The network performed a classifi-
cation accuracy of 99.58% Applying this method on other datasets to check the validation shall be
considered for future work.

Jianget al (Jiang et al., 2019) proposed an anomaly detection approach based on GAN architecture to
overcome challenges within an imbalanced dataset. Industrial applications demonstrate imbalanced
time series data where normal conditions are well higher than abnormal ones, which results in algo-
rithms like SVM, and CNN can barely keep the accuracy as they perform on class-balanced proper-
ties. During an imbalanced condition, the classifier focuses on the majority class, and the detection
gears toward normality. Thereby, GAN was proposed to resolve this challenge using training a gen-
erator and a discriminator for the detection. The generator employed an encoder-decoder-encoder
three-sub-network, based on deep convolutional generative adversarial networks, and then a feature
extractor was inserted between data and GAN to reduce the training time. During the training pro-
cess, feature extraction on normal data was conducted, and then by using an anomaly detector the
researchers obtained data distributions and potential representative modes of these features. This
method was applied to vibration signals in both a laboratory-generated dataset, and rolling-bearing
data from the CWRU dataset. The result of this method interestingly achieved the highest level of
accuracy by 100% for both datasets and demonstrated that it can significantly distinguish the normal
samples from abnormal ones. The method was implemented on a one-dimension dataset. Applying
other time series data shall be taken into account for further analysis.
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Sayanjitet al (S. S. Roy et al., 2020) presented an auto-correlation-aided feature extraction method
for the diagnosis and classification of bearing defects. Auto-correlation was implemented on the
healthy and faulty vibration signals to check their similarity. The best combinations could be rec-
ognized using several statistical, Hjorth, and non-linear feature parameters concerning the recursive
feature elimination technique. Then the top 5 features were fed into a random forest classifier. In this
approach, the noise in the preprocessing stage was eliminated because noisy signals can not impact
the correlogram because their correlations are too small. The authors also evaluated this method
in the CWRU dataset. Three classes of faults exist in this experiment, including an inner race with a
0.007-inch diameter, an outer racewith a 0.014-inch diameter, and ball faults with a 0.021-inch diam-
eter. The vibration signals were digitized at 12 kHz and 48 kHz. The signals were then partitioned into
segments containing 6000 and 12000 data points. The results demonstrated that 36 features were
extracted from vibration correlograms and then using recursive feature elimination reduction, the
top 5 features were selected based on accuracy, sensitivity, and specificity for defect classification.
The classification was made on Different Bearing Defect Sizes (12kHz), Different Bearing Defect Sizes
(48kHz), Different Shaft Speeds (12kHz), and Different Shaft Speeds (48kHz). The overall classifica-
tion results demonstrated that themodel was able to perform the classification with 99.9% accuracy,
100% sensitivity, and 99.8% specificity for the 12kHz set and 99.2% accuracy, 100% sensitivity, and
99.5% specificity for the 12kHz set. The model was also validated on the NASA dataset with 97.9%
accuracy, 99.4% sensitivity, and 95.8% specificity. The author used only Random Forest for the clas-
sification. Other algorithms can also be evaluated using auto-correlation-aided feature extraction to
demonstrate a solid efficiency result from the proposed methodology.(Samimifard, 2023)

Ronak et al (Bhadra et al., 2018) developed a DL-basedmethod including CNN for pattern recognition
of the bearings faults. They employed the research on the NASA dataset to evaluate the results and
compared it with the conventional machine learning methods. In conventional analysis, statistical
features like RMS, skewness, and kurtosis are generated and normalized, and then k-NN, SVM, and
RF are applied. On the other hand, CNN automatically extracts features in convolution layers from
the raw signals. The authors also implemented both 1D matrix and 2D matrix in convolution layers.
1D matrix was also turned into a 2D matrix using the dimension of the nearest possible square. The
results of deploying various algorithms presented 81.2% accuracy for KNN, 66.3% accuracy for SVM,
82.1% accuracy for RF, 93.3% accuracy for 1D-CNN, and 92.9% accuracy for 2D-CNN which demon-
strated great performance for DL methods. The learning curves for 1D and 2D DL-based methods
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demonstrated great results in achieving accuracy in classification after 900 epochs, which took 13
sec/epoch for 1D and 25 sec/epoch for 2D. Therefore, 1D performed better as it demonstrated higher
accuracy and faster computational speed. In this research, the author evaluated the accuracy be-
tween different ML algorithms and CNN. Thereby, the evaluation between different DL algorithms
shall also be considered.(Samimifard, 2023)

Mao et al (Mao et al., 2018) worked on detecting failures within bearings using Incremental Support
Vector Machine and Stacked Auto-Encoder. In this combinational offline and online method, feature
extraction using the faulty data, and the ISVMmodel was developed in the offline section, and in the
online part, fault feature vectors were constructed using the network weight of offline SAE based on
the new data. This method was implemented on the CWRU and IMS datasets. In the IMS dataset,
500 samples were extracted for each health condition with a learning rate of 0.2 and an offline train-
ing sample of 300. FFT was then used to develop frequency spectrum data from the raw signal and
fed them to the Stacked Auto-Encoder. In the last step, traditional SVM and Incremental SVM were
applied to the features. The classification results of this method illustrated 98.33% accuracy for the
SVM, and 98.33% accuracy for the ISVM, which proved the feasibility of this method. A comparison
between SVM and other classification algorithms concerning the Stacked Auto-Encoder and analyz-
ing their performance shall be taken into account for the upcoming approaches.(Samimifard, 2023)

Roy et al (M. Roy et al., 2018) proposed an approach to an automated feature extraction method
for online condition monitoring based on the stack of the traditional autoencoder and an online se-
quential extreme learning machine network. Three steps were involved in this procedure. In the first
step, which was an offline approach, Autoencoder, which encompassed the same number of nodes
in input and output layers of 4096 neurons, and a single hidden five-neuron layer were trained with
smoothed input data. Next, online feature extraction was applied and these features were used as
the input of OSELM with an input layer of 5 neurons, hidden layers with 10 neurons, and a single
output node. The authors then applied this method to the NASA dataset and eliminated the noise
by picking one in a row of file input features resulting in 4096 input features in each sample for each
bearing. The result of this method demonstrated that it was capable of detecting faults with 100%
accuracy. The authors suggest that as a further step, the classification performance needs to be eval-
uated using this method.

Purarjomandlangrudi et al (Purarjomandlangrudi et al., 2014) proposed a fault detection approach
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called Anomaly detection, which used classification techniques. In this approach, the algorithm was
trained with the normal data, and then, the learned algorithm was applied to a new dataset. The
methodology was applied to the NASA dataset. The FFT spectrumwas provided eight days before the
element’s full breakdown and represented major defects from day 5. Kurtosis and Non-Gaussianity
Score were then extracted from the raw data with 50 ms length and 25 ms shift each. The anomalies
were then detected using Gaussian distribution on extracted features, estimating parameters for a
Gaussian, and Selecting the threshold. The result of this technique provided 95% detection accuracy
which was higher than the accuracy resulting from SVM. Add to the point, this method provides early
detection of 100h before the anomaly. The authors recommended applying this method to other ro-
tating elements, or a comparison of this method with other available ml techniques to investigate
the results for their complementary future work.(Samimifard, 2023)

Tao et al (T. Lu et al., 2020) proposed a bearing fault detection technique based on AlexNet using
transfer learning. AlexNet which is a CNN architecture, is comprised of 5 convolutional layers and
3 fully connected layers followed by a softmax layer. Transfer learning is divided into a pre-trained
network and the transferred network. The parameters in the former part were trained with available
data and were used as feature extractors. Transfer learning overcomes the overfitting challenge by
reducing parameters. This method is applied to the CWRU dataset. The preprocessing step com-
prised of generating a spectrogram by the Non-Uniform Fast Fourier Transform Hamming window,
cutting spectrograms into 10ms duration using 5 pixels, and turning them 227*227*3 pixels which are
input size of AlexNet. The result of this experiment demonstrated over 99.7% accuracy on classifica-
tion, which demonstrated highly applicable classification performance.

Abbasi et al (Abbasi, Lim, & San Yam, 2019) worked on the PM of an Air booster compressor motor
using RNN and LSTM. The involved parameters included current, active power, discharge tempera-
ture, air pressure, and vibration. Unlike traditional neural networks which are not suitable for time
series prediction due to the independency of data with each other, RNN depends on the previous
inputs. The data for this research was gathered within a two-year timeline. During this period the
Air booster compressor motor failed 3 times for different reasons. In the preprocessing stage, the
data were divided into healthy and unhealthy values containing shutdown, outliers, and out-of-range
faults for the latter. LevenbergMarquardt and Bayesian Regularization algorithmswere compared for
the training. Training functions, the architecture of the model, and network parameters were the in-
dicators of the model. The simulation results for the RNN-LSTMmodel presented that the Levenberg
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Marquardt model generated lower RMSE and performed faster. The researcher trained the model
with different epochs and the number of neurons in the hidden layer and the optimal number of
neurons was 15. By increasing the number of neurons the RMSE increased. It was also increased
after epochs reached 750 because the model was overfitted. The authors also presented that the
model can predict potential faults in the ABC motor. The only disadvantage of this approach is the
long training time. However, they could overlook this problem because network training was an of-
fline procedure. An online approach shall be defined for further steps.

Wang et al (J. Wang et al., 2021) proposed a new multi-sensor information fusion method for fault
classification using CNN. In this model, the time-domain vibration signals were turned into a two-
dimensional matrix, which then was fed into CNN for classification. Each sampling corresponds to
three data points representing data that were extracted from three different positions of the motor.
To perform Signal-to-Image Conversion, a sliding windowmechanism was adapted on 90 points with
45 points moving forward, and then (-1, 1) normalization was applied. This 180*3 image was then fed
into CNN. The convolution layer contained 32 kernels with the zero-padding method to avoid dimen-
sion loss. In the max-pooling layer, a 2*2 window size was applied with the zero padding method.
After this layer, a dropout layer was applied to avoid overfitting. The author has applied this method
to CWRU, IMS, and the dataset from the designed bearing fault test rig to perform the classification.
The result of this evaluation demonstrated 99.92% on CWRU, 99.68% IMS, and 99.25% on the test
rig. In this research, a comparison between the accuracy of the deep learning algorithms was con-
ducted only on the CWRU dataset. This evaluation shall be applied to two other datasets as well.
This model was applied to the known types of faults. Therefore, to make this model applicable to the
industry, the author recommended anomaly detection under different working conditions using the
multi-sensor information fusion method. Also, a combination of this method with other methods is
recommended.

Khorram et al (Khorram et al., 2021) presented an End-to-end 1-D CNN-LSTM deep learning method
for the anomaly detection of the bearings. Time-series data contains local and global features. CNN
extracted the local features and LTSM learned the long-term correlation between two variables and
dealt with global features. To perform this combinational method, the dataset was transformed
into equal-sized sequences before feeding to CNN. In CNN, a dropout layer was placed after each
main layer to avoid overfitting, Batch-normalization layers were also applied to enhance accuracy
and speed, and a sigmoid activation function was applied in the fully connected layer. The author
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labeled the dataset into Healthy, Suspected, Inner-race-fault, and Rolling-element-fault and used 30
files for each class. The train test split was performed to be divisible by the batch size, thereby they
suggested 25% for the training and 75% for the test. The result of this experiment presented 97.13%
for the fault classification. This classification was performed on a limited dataset, thereby, applying it
to the full dataset shall be taken into account. The author proposed implementing GRU-LSTM on the
dataset and evaluating its performance. Also applying generative adversarial networks on small-scale
datasets can be taken into account.(Samimifard, 2023)

Shao et al (Shao, Jiang, Wang, & Zhao, 2017) proposed a deep feature fusion method for anomaly
detection. In this approach, the signals were divided into the training set and test set without any
preprocessing. Deep auto-encoder as a combinational auto-encoder, used a denoising auto-encoder
to provide low-layer feature learning and a contractive auto-encoder to learn deep features based
on the previous step for the feature extraction. Thereby, the demand for manual feature extraction
was eliminated. The locality-preserving projection was then used for their improvement. The result
was then sent to Softmax for classification. This method was implemented on a Rotor fault test rig
with seven working conditions. Each working condition contained 200 samples and each sample
contained 1000 data points. The author used 70% of the samples for the training and the rest for
the test. Three different experiments were conducted by the authors including Raw vibration data
without manual feature extraction, 19 extracted features from eight frequency-band signals, and 19
extracted features from the most sensitive signals. The proposed method was then compared to
the Standard deep DAE, Standard deep CAE, BP, and SVM in the three mentioned experiments. The
results of this method presented 95.19% accuracy for experiment 1, 96.33% for experiment 2, and
97.10% for experiment 3, which proved the efficiency of this method over other evaluated methods
and effectiveness for feature learning. The authors also suggested evaluating the accuracy and effi-
ciency of the other deep learning algorithms based on this method.

Enshaei et al (Enshaei & Naderkhani, 2019) explored a method for anomaly detection of bearings
within the inductionmachine using deep bidirectional LSTM. Thismethodwas then developed on the
CWRU dataset and then divided by a 90% training set and a 10% test set. In this method, the patterns
were expected to be classified to enable fault detection. The network architecture was comprised of
1 input layer, 1 Bi-LSTM layer with 100 neurons, 6 fully connected layers, a softmax layer, and 1 output
layer. Hyperbolic tangent function and sigmoid as an activation function were considered in this ap-
proach. The classification results demonstrated that BiD-LSTM performed better in comparison with
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the typical LSTM with a total accuracy of 98.3%. The result was also compared with the DNN and
demonstrated 100% accuracy. However, the latency, which was considered an efficiency factor was
increased as well. The authors believed that by increasing the number of LSTM layers, the accuracy
could also increase. They also presented a hybrid network concerning the lowest latency to increase
the accuracy of their future work.

Xiang et al (X. Li et al., 2019) proposed a method using Deep Transfer Learning to overcome the chal-
lenge of anomaly detection of unsupervised data. This method was conducted based on the knowl-
edge extracted from different supervised data of the rotatory equipment on 4 different datasets in-
cluding CWRU Dataset, IMS Dataset, Bogie Dataset, and Crack Dataset. Xavier normal initializer was
used to obtain weights and biases and the BP algorithm for the parameters update. In this approach,
IMSDataset, BogieDataset, andCrackDatasetwere considered learning sources, andGaussian noises
were deployed to produce source samples. The signal-to-noise ratio was then employed to produce
the same amount of noisy data. The DNN was used for the transfer learning and the results of apply-
ing this method presented that higher accuracies would be achieved using more target-supervised
data. Moreover, it represented that at least 70% accuracy could be achieved in extreme cases. In this
research, the authors focused on the feasibility of the diagnosis using limited supervised data and
proposed applying this method to real-industrial data for their future work.

Guo et al (Guo et al., 2018) demonstrated an approach to rotating element fault detection using
deep convolutional transfer learning, and unlabeled data. The proposedmethod is comprised of two
steps. The authors first used a 1-D CNN for feature extraction and condition classification. 16 lay-
ers including one input layer, six convolutional layers, six pooling layers, two fully connected layers,
and one output layer were developed in this neural network. Then, domain-invariant features were
applied to a 1-D CNN. Thereby, the deep convolutional transfer learning networkwas expected to per-
form unlabeled classification with regard to other labeled data. CWRU Bearing Dataset, IMS bearing
dataset, and Railway Locomotive Bearing Dataset were used to develop six anomaly detection trials,
and each transfer was repeated 10 times. The results of deploying this method demonstrated that
the accuracy of the anomaly detection based on each transfer could reach over 82%, which demon-
strated the effectiveness of this method. This method was then compared with no transfer learning,
handcrafted-feature-based transfer learning, and state-of-the-art transfer learning includingDDC and
DANN, and demonstrated higher results in each trial. applying this method using online data during
the second step can be taken into account for industrial validation.
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Raminet al (Rajabioun et al., 2023) proposed a method for bearing fault classification using a multi-
sensor approach. 2D DL frameworks were also developed to perform the classification based on
these multi-sensor data. In this approach, six different signals have been merged and created a ma-
trix which can then be fed into the Neural networks. The authors have turned the 1D signals into
the 2D matrix to enable the 2D CNN model to identify spatial patterns. The authors have applied
this method to a costume set of 2 induction motors in one healthy state and 5 fault conditions and
generated 300 experiments. The results demonstrate that by incorporating multi-sensors the results
increased to 96% classification accuracy.

Sayanjitet al (S. S. Roy et al., 2020) presented an auto-correlation-aided feature extraction method
for the classification of bearing defects. This model was implemented on the healthy and defective
vibration signals to check their similarity. The best combinations could be recognized using several
statistical, Hjorth, and non-linear feature parameters with regard to the recursive feature elimina-
tion technique. Then the top 5 features were fed into a random forest classifier. This method was
evaluated in the CWRU case study and the results demonstrated that the model was able to per-
form the classification with 99.9% accuracy. The model was also validated on the NASA dataset with
97.9% accuracy. The author used only Random Forest for the classification. Other algorithms can also
be evaluated using auto-correlation-aided feature extraction to demonstrate a solid accuracy result
from the proposed methodology.

Although various scholars have extensively worked on anomaly classification methods and tried dif-
ferent DL algorithms, our research provides a unique perspective within the field. Most of the schol-
ars have been working on single models, single features, or even one dataset, thereby, they were
not able to provide a comprehensive analysis of how different models would differ in performance
and how to increase the performance. In this thesis, we provide a comprehensive study on bear-
ing anomaly classification using AlexNet, EfficientNet, NasNet, ResNet, and VGG16 and evaluate how
different features like spectrograms, Frequency spectrums, and polar spectrums can affect perfor-
mance. Add to the point, through incorporating the fusion methods and using two channels within
the models, we can highlight the significance of this method, specifically on EfficientNet, and prove
their efficiency in anomaly classification and their contribution in increasing the accuracy.
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Author Dataset Feature Model Accuracy

Wang et al(H. Wang et al.,2022)
CWRU highest envelopespectral kurtosis Multi-sensor 1Dfused VGG16 100%

Shaoet al (Shao,Jiang, Zhang, &Liang, 2017)
Electric Loco-motive BearingDataset

vibrational data CDBN 97.43%

Wang et al(P. Wang et al.,2017)
Gearbox data Wavelets DCNN 99.58%

Jianget al (Jianget al., 2019) CWRU Time series data GAN 100%
Sayanjitet al(S. S. Roy et al.,2020)

CWRU-NASA Auto correlationon vibrationaldata
Random forestclassifier 99.2%-97.9%

Ronak et al(Bhadra et al.,2018)
NASA Statistical fea-tures 1D CNN - 2D CNN 93.3%- 92.9%

Mao et al (Mao etal., 2018) CWRU Frequency spec-trum ISVM 98.33%
Roy et al (M. Royet al., 2018) NASA Auro encoder OSELM 100%
Purarj et al(Purarjomandlangrudiet al., 2014)

NASA FFT spectrum -kutrosis - NonGuassianilityscore

Gaussian distri-bution 95%

Tao et al (T. Lu etal., 2020) CWRU Spectogram AlexNet 99.7%
Wang et al(J. Wang et al.,2021)

CWRU - NASA signal to image Multi sensor fu-sion usning CNN 99.92% - 92.68%

Khorram et al(Khorram et al.,2021)
NASA time series data CNN-LSTM 97.13%

Enshaei et al(Enshaei &Naderkhani,2019)

CWRU raw vibrationaldata deep deep bidi-rectional longshort-term mem-ory

100%

Xiang et al (X. Liet al., 2019) CWRU deep transferlearning DNN 70%
Guo et al (Guo etal., 2018) CWRU raw signal data 1D CNN 82%
Raminet al(Rajabioun et al.,2023)

self generateddata raw signal Multi sensor fu-sion 98%

Sayanjitet al(S. S. Roy et al.,2020)
CWRU - NASA Auto correlation random forestclassifier 99.9% - 97.9%

Table 1: literature review summary
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4 Research Methodology

In this section, we explain the researchmethodology employed to achieve the objective of this thesis.
In the first subsection, we describe the datasets and used preprocessing techniques. Subsequently,
we present the architectures of the used 2D-CNNmodels for the classification of the various bearing
faults.

4.1 Datasets and Data pre-processing

In this thesis, two datasets were considered. The first dataset used is the CWRU dataset which was
collected by Case Western Reserve University (CWRU) and the other one is the NASA dataset. Both
datasets are publicly available and contain bearing vibration signals that accommodate different fault
conditions.

4.1.1 CWRU dataset

As illustrated in Figure 7, Within this setup, bearings are connected to a shaft with a rotation speed
of 1772 rpm. Different fault types including inner race, rolling element, and outer race in different
sizes from 7mm to 40 mm are imposed on them using an electro-discharge machine. The data was
recorded using accelerometers which were located at the drive end and fan end of the motor and
underwent post-processing in Matlab. The vibrational signals were collected within different runs
using 12000 and 48000 sampling rates and generated the dataset. The data within this dataset were
in Matlab format. In this thesis, we are working on a drive-end subset of the CWRU dataset with a
12000 sampling rate that was captured from the bearing located at the drive end of the shaft. Table
2 provides an overview of the CWRU dataset. As illustrated in this table, different defect types of in-
ner race defect, outer race defect, and rolling element defect and their corresponding defect size of
7mm, 14mm, and 21mm defect sizes have been involved in our experiment to perform classification
on the three defect types (X. Zhang, Zhao, & Lin, 2021) .

4.1.2 CWRU Dataset preprocessing

The signals within the CWRU prelabeled dataset were captured using a 48000 sampling frequency.
We have turned the raw signals into 1-second samples with 4800 data points. As illustrated in Figure
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Figure 7: CWRU Bearing test rig (Saufi et al., 2019b).
Defect diameter Defect Number of data points

7 mm Inner race defect 4862247 mm Outer race defect 4868047 mm Ball pass defect 48738414 mm Inner race defect 38189014 mm Outer race defect 48448314 mm Ball pass defect 48622421 mm Inner race defect 48912521 mm Outer race defect 48912521 mm Ball pass defect 486804
Table 2: The excerpt of CWRU Dataset.

8, we have made the division based on a 50% window size. In this demonstration, every second
sample overlapswith the secondhalf of the previous sample. Overlapping results in amore consistent
sampling by capturing the details at the boundaries and also providing more samples to be used for
classification in the neural networks.

4.1.3 NASA dataset

The NASA dataset collection setup can be seen in Figure 9. To collect the NASA data, four Rexnord
ZA-2115 bearings were installed in one shaft with a Pitch diameter of 71.5mm, a Rolling element di-
ameter of 8.4mm, 16 rolling elements per row, and a 15.17 contact angle. The shaft was driven by an
AC motor and coupled by rub belts with 2000 rpm rotation speed and a radial load of 6000 lbs. The
bearings were lubricated using an oil circulation system. The vibrational data were collected along
the X and Y axis with a sampling rate of 20 kHz and 20480 data points for each sample. During this
run-to-failure experiment, three faults were detected including roller element fault, inner race fault,
and outer race fault (Qiu, Lee, Lin, & Yu, 2006).
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Figure 8: Time domain signals with 14mm fault size.

Three different datasets were produced with the following details mentioned in detail in Table 3. In
this table, duration is the running time until the failure of the bearing. That means it represents a
full life cycle of the bearing before it fails functional activity. IMS-Rexnord Bearing Data.zip file con-
tains three different datasets. Table 3 provides some details about each dataset regarding the type
of failure that occurred during this run-to-failure experiment and the duration of each experiment.
Each file also is comprised of 1-second vibrational signals with 20,480 points. The interval column
describes the interval time between two data samples and the fault section represents which fault
in which bearing resulted in the bearing functional failure.

Dataset Duration Number of files Channels Interval Fault

Dataset 1 34 days 12h 2156 8 First 43, 5min Inner race Bearing 3rest 10 min Roller element Bearing 4Dataset 1 6 days 20h 98 4 10min Outer race Bearing 1Dataset 2 31 days 10h 4448 4 10min Outer race Bearing 3
Table 3: NASA Dataset detail (Samimifard, 2023).

4.1.4 NASA dataset pre-processing

In the NASA dataset, the observations are not labeled with the state of the bearings. As the ex-
periments have been conducted on the full life cycle of a bearing, we need to initiate the defective
signals within them. We use the generated measurements of BPFI, BPFO, and BSF, as our expected
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Figure 9: Bearing test rig. (Qiu et al., 2006)
frequencies, and the frequencies and amplitudes derived from the envelope of the signal, to detect
the highest peak within each observation (Samimifard, 2023).

Figures 10, 11, and 12 illustrate, the amplitude of the highest peaks for all the observations within
an experiment. A sudden increase in the amplitudes can highlight the presence of a defect. As the
following high peaks demonstrations present, we can observe an initial point of 432 for the defective
observations of bearing 1 in experiment 2 for the outer race defects, 2110 for the defective observa-
tions of bearing 3 in experiment 1 for the inner race defects, and 1237 for the defective observations
of bearing 4 in experiment 1 for the rolling element defect. Using these initial points, we can label
our observations with their corresponding defect type.

4.2 Feature Extraction

In order to turn the raw signal into a structure that can be efficiently used for classification, we have
contributed by extracting statistical features and transforming them into spectral representation. Ex-
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Figure 10: High peaks generated from bearing 1 in dataset2.

Figure 11: High peaks generated from bearing 3 in dataset1.

Figure 12: High peaks generated from bearing 4 in dataset1.
tracting the most important features enables us to leverage them to our benefit by reducing the
number of data points, or revealing distinguishable patterns.

4.2.1 Statistical Features

Different statistical features have been used to provide in-depth insights about the state of the bear-
ings.
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• Mean: Demonstrates the average of the data points within the signal. Any change within this
attribute over time can determine the presence of a defect within the bearing.

• Skewness: It evaluates the asymmetry within the signal and any metrics except zero represent
an anomaly within the signal. (Sacerdoti, Strozzi, & Secchi, 2023)

Skewness = n

(n −1)(n −2)

n∑
i=1

(
xi − x̄

s

)3 (12)

• Kurtosis:This attribute measures the tail of a distribution. A high value in the measurement of
the tail can indicate a defect within the bearing (Dey & Jana, 2022).

K ur tosi s =
∑n

i=1

(
xi −µ

)4

(n −1)σ4
(13)

• RMS (Root Mean Square): It demonstrates the energy of a signal and can be used as an iden-
tifier of any damage within the bearing. In the following equation. (Dey & Jana, 2022)

RMS =
√

1

n

n∑
i=1

x2
i (14)

• Standard Deviation: This attribute identifies variability within a signal. An incremental value
of Standard Deviation can represent an abnormal activity in the signal. It is represented as the
following where each data point is defined as xi , n is the number of data points, and µ is the
mean value of all data points (Dey & Jana, 2022) :

σ=
√∑n

i=1

(
xi −µ

)2

n −1
(15)

4.2.2 Polar Spectrums

Fourier transformation illustrates the frequency content in a time domain signal. It provides the cor-
responding magnitude and the phase of the frequency. By mapping the frequency spectrums into
polar coordinates, we can illustrate the magnitude and phase of the frequency using the radial dis-
tance and the angle respectively. It plots a circular representation using different amplitudes and
their corresponding frequencies. It also provides us with information concerning both strength and
timing which are pivotal for analyzing the signal behavior. Figures 13, 14, and 15 demonstrate the po-
lar spectrums for different fault conditions and different severities within the bearing. As illustrated
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in these Figures, polar spectrums can be determinative in identifying frequencies related to specific
defects within the bearing.

Figure 13: Polar spectrums of ball bearing defect.

Figure 14: Polar spectrums of inner race fault.

Figure 15: Polar spectrums of outer race fault.
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4.2.3 Frequency Spectrums

The frequency spectrum (FFT) illustrates the signal frequencies and their corresponding amplitudes.
Using FFT, we convert time-domain signals into the frequency domain to uncover distinct patterns
within the signal. Figures 16, 17, and 18 demonstrate the frequency spectrum for different fault con-
ditions and different severities within the bearing. Add to the point, by analyzing features like the
frequency and amplitude of peaks within the frequency spectrumswe are able to identify the defects
within the signal.

Figure 16: Frequency spectrums of ball bearing defect.

Figure 17: Frequency spectrums of Inner race defect.

4.2.4 Spectogram

Spectrograms are visualizations that demonstrate how frequencies change over time. In this 2D visu-
alization, the X-axis corresponds to the time, the y-axis corresponds to the frequency, and the color
of each point is the amplitude of the frequency. It is a combination of time-domain and frequency-
domain representations. Figures 19, Figure 20, and Fig 21 demonstrate the frequency spectrum
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Figure 18: Frequency spectrums of Outer race defect.
for different fault conditions and different severities within the bearing. In these representations,
brighter regions demonstrate higher amplitudes and darker regions demonstrate lower amplitudes.
Add to the point, vertical and horizontal patterns. Add to the point, it may contain vertical and hori-
zontal patterns that may demonstrate sudden events or consistency over time.

Figure 19: Spectogram of ball bearing defect.
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Figure 20: Spectogtam of Inner race defect.

Figure 21: Spectogram of Outer race defect.

4.3 Network Architectures

The six different 2D CNN models have been utilized for the classification of the bearing faults. The
experimental setup for all the used CNN models are described below.

4.3.1 AlexNet

Alexnet is a deep learning model that has revolutionized the Convolutional Neural Network. As illus-
trated in Figure 22, this model consists of 5 convolutional layers. The first convolutional layer filters
the input image with 96 kernels of size 11×11 and a ReLU activation function. A local response nor-
malization is applied to improve the performance of edge detection and amax pooling layer is applied
tominimize the spatial size. The subsequent two convolutional layers include 256 kernels of size 5×5,
and 384 kernels of 3×3 size respectively with ReLU activation, and the kernel sizes for Conv4, and
Conv5 are 384 and 256. Then themax pooling layer is again applied and the layers are then flattened.
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In the next step, three fully connected layers are integrated where the first two have 4096 neurons
with a dropout layer to avoid over-fitting. The last fully connected layer with 256 kernels of size and
softmax activation function demonstrates the probability over the predictable classes (Alzubaidi et
al., 2021; Dhillon & Verma, 2020).

Figure 22: Alexnet Architecture(Dhillon & Verma, 2020).

4.3.2 LeNet

As illustrated in Figure 23, the first convolutional layer applies 6 filter kernels of size 5×5 and a ReLU
activation function. In order to decrease the dimensions of the feature map a pooling layer is applied
using 2×2 window and stride of 2. Then next convolutional layer applies 16 filter kernels of size 5×5

and a ReLU activation function. Spatial dimensions within the feature map are again decreased using
a pooling layer with 2×2 window and flattened into a 1D vector, and then fed into 2 fully connected
layers with 120 and 84 neurons and ReLU activation function. A dropout is then applied for the
regularization and the last fully connected layer performs the classification (Patel, 2020; Dhillon &
Verma, 2020).

Figure 23: LeNet Architecture(Dhillon & Verma, 2020).
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4.3.3 NASNet

This architecture has been designed to automatically select the most efficient model with the high-
est performance. As illustrated in Figure 24, this method is implemented based on normal cells and
reduction cells in which the first one preserves the spatial dimension and the latter halves the di-
mension. Each one of these cells processes the data using specific convolutions, identity mappings,
and pooling methods. As cells are the building blocks of NASnet, the input goes through a series
of these two cell types, and their feature maps are then concatenated to provide more informative
features from the raw data. These features are then passed through the Global Average Pooling layer
to produce a 1D vector. The 1D vector is then sent to the dense layer with 128 neurons and the ReLU
activation function. A dropout layer is then applied and the processed features have resulted in the
classification using a dense layer and softmax activation function (Radhika et al., 2020; Dhillon &
Verma, 2020).

Figure 24: NASnet Architecture(Dhillon & Verma, 2020).

4.3.4 ResNet

The Residual Network has been introduced to minimize the vanishing gradient problem by skipping
certain layers. In this architecture, the first convolutional layer captures themain features and then is
followed by a pooling layer for spatial dimension reduction. ResNet is comprised of a series of resid-
ual blocks and each block is also constructed using a few convolutional layers. Our specific ResNet
model, which is Resnet50 has 49 convolutional layers. In the last step, global average pooling is ap-
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plied to reduce the spatial dimension of the feature map. The last layer is a fully connected layer
demonstrating the probability over the classes using the softmax activation function (Alzubaidi et
al., 2021; Patel, 2020; Sapijaszko & Mikhael, 2018).

Figure 25: ResNet Architecture(Radhika et al., 2020).

4.3.5 VGG16

As illustrated in Figure 26, this network with a deep architecture is constructed with 13 convolutional
layers and utilizes 3×3 filter with a stride of 1 and ReLU activation function. 5 max-pooling layers with
a stride of 2 have been applied among convolutional layers to reduce the spatial dimensions of the
feature map. Three fully connected layers are also included in this architecture using 4096 units for
the first two and 4096×3 units for the last one. In the last fully connected layer a softmax activation
function is applied to evaluate the probability over the distinct classes (Radhika et al., 2020).

4.3.6 EfficientNet

This model is an improved version of CNN by the width, depth, and resolution of the network. In this
context, depth is the number of layers, width is the number of channels in each layer and resolution
is the quality of the image. As illustrated in Figure 27, this base model is comprised of 7 blocks.
The first convolutional layer has a 3×3 kernel. The next layer, which is a Mobile Inverted Bottleneck
Convolution is equippedwith a 3×3 kernel and scale factor of one. Three blockswith a 3×3 kernel and
scale factor of 6 and twoblockswith a 5×5 kernel and scale factor of 6 are included in this architecture
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Figure 26: VGG 16 Architecture(Radhika et al., 2020).
(Goutham, Sameerunnisa, Babu, & Prakash, 2022). After the base model, a global average pooling is
applied to reduce the dimension of the spatial features. Then it will be forwarded to a fully connected
layer with 128 neurons and a ReLU activation function. In the next step, a drop-out layer is applied to
avoid overfitting, and in the final step, a fully connected layer and a softmax activation function the
distribution over classed will be generated.

Figure 27: EfficientNet Architecture(Bazi et al., 2019).

48



4.3.7 Fusion Technique

As demonstrated in Figure 28, the fusion method is empowered with features from two distinct data
sources. These two channels are fed with statistical features and varied 2D representations. In the
first channel, the statistical features pass through the statistics branch with a 1D CNN architecture.
This channel is comprised of 2 convolutional layers, 2 max-pooling layers, 1 flattened layer, and 1 fully
connected layer with ReLU activation function. The next branch extracts the features within the 2D
representation using a 2D CNN architecture as the images pass through this channel. The extracted
features within these two channels are then concatenated and fed to a fully connected layer with
256 neurons and a ReLU activation function following a dropout layer. In the last step, a final fully
connected layer with a softmax activation function is applied to predict the distribution over the
distinct classes.

4.4 Model Training Framework

4.4.1 Data preparation

The model development framework initiates with operations that effectively transform the data be-
fore feeding them to the neural networks. Statistical data are fed to the 1D branch, thereby, they
need to undergo certain steps that turn them into a format that can be interpreted by the 1D CNN
model. These steps start with normalizing the various statistical features derived from the bearing
signals using StandardScaler which is provided by Scikit-Learn library.

The second channel interprets the 2D images extracted from the signal including the frequency spec-
trum, polar spectrum, and spectrogram. These images need to be resized into a standardized config-
uration before being sent to each variance of 2D CNN architecture. Add to the point, data augmen-
tation techniques including rotations, width, height shifts, and horizontal flips are also applied to
enhance the diversity patterns. Further, the associated labels related to each input are then turned
into integer format using LabelEncoder and then transformed into one hot encoded structure.

4.4.2 Model training

In order to evaluate the performance of the model, the available data needs to be split into two dis-
tinct units. The train-test split empowers the model to be able to evaluate the effectiveness of the
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Figure 28: General structure of the fusion method using AlexNet and 1D CNN.
model on a new set of data, therefore we split our data using an 80:20 ratio, in which 80% of our data
is used to train our model and 20 % of the data is used for testing the model. We are dealing with an
imbalanced set of data faults, andwe have to address this challenge by calculating the weight of each
class and train ourmodel using the frequency of theweight. By using this techniquewe canmake sure
that themodel will not rely on the larger set of the defects type, and consider equality while training.
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We used hyperparameter tuning to find the model with the highest performance. Using hyperpa-
rameter tuning We evaluated the model by different combinations of epochs and batch sizes. We
have used batch sizes of 32 and 64, and in order to avoid overfitting, we have considered small
sizes of epochs of 20 and 30. During the training process, we used the Adam optimizer to adjust
the learning rate during the training. As we have to perform multiclass classification, we have used
sparse-categorical-cross entropy as our loss function. In order to evaluate the performance, we have
determined accuracy as our metric which provides us with insight into the efficiency of the model.
To effectively avoid overfitting, we also have implemented.

4.4.3 Validation and Testing Strategy

During the training process, we allocated 20%of the training data for the validationwhich is evaluated
at the end of each epoch. Evaluating this distinct set of data enables us to assess the performance of
the model during the training set and avoids overfitting by applying early stopping in our model with
the patience set to 3 epochs. After the model is trained, we need to test the performance of the test
set. The following performance metrics are then calculated to assess the efficiency of the model.

• Accuracy: As demonstrated in the following formula, accuracy is the ratio of true predictions
to all true and false results (Latif, Zou, Idrees, & Ahmad, 2020).

Accuracy= TPos+TNeg
TPos+TNeg+FPos+FNeg (16)

• Precision: As described in the formula, precision is the ratio of the true positives to the sum of
true positives and false positives (Latif et al., 2020).

Precision= TPos
TPos+FPos (17)

• Recall: The following recall formula, calculates the ratio of the true positives to the sum of true
positives and false negatives(Latif et al., 2020).

Recall= TPos
TPos+FNeg (18)

• F1-Score: This metric demonstrates the balance between precision and recall by calculating
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their weighted average (Latif et al., 2020).

F 1-Score= 2× (Pr eci si on +Recal l )

Pr eci si on +Recal l
(19)

• Confusion matrix: This 2D matrix demonstrates the true label and the predicted label derived
from the classifier using the following algorithm. In the following formula r and c represent
the row and column, m is the total number of samples within the test set, and xi is the input
to the classifier (Heydarian, Doyle, & Samavi, 2022). Figure 29, as a sample, demonstrates
the confusion matrix derived from the dual channel AlexNet using spectrograms on the CWRU
dataset.

M(r,c) =
m∑

i=1
(I (yi = r ) I (h(xi ) = c)), (20)

∀r,c ∈ {0, . . . , q −1}

Figure 29: Dual channel AlexNet using spectrograms on the CWRU dataset.

• ROC-auc curve: Receiver Operating Characteristics is the probability curve and Area Under The
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Curve demonstrated the capability of the model to distinguish among the separate classes by
plotting true positive rates on the y-axis and false positive rates on the x-axis. A result in the
vicinity of 1 for AUC demonstrates a great classification result and as the result gets closer to
0, it demonstrates a poor classification insight(Narkhede, 2018).

4.5 Computing resources

4.5.1 Hardware Configuration

The efficiency and performance of the generated models are in a tight relation with the underlying
infrastructure. We have trained our models using a high-performance processor of Intel(R) Core(TM)
i7-10750H, which is equipped with a base clock frequency of 2.60GHz. This system was also empow-
ered with NVIDIA GeForce GTX 1650 Ti Discrete 4GB GDDR6 DirectX 12 GPU. This particular type of
GPU comes with 4GB memory and is supported by DirectX 12 to provide advanced graphical perfor-
mance. Other hardware configurations include 16GB DDR4-2933 RAM and the storage system of Two
drives: M.2 2242 SSD 512GB, and 2.5 HDD 1TB

4.5.2 Software and libraries

For the experiments within this thesis domain, we have used a system with the operating system of
Windows 11 Pro. The development took place under Python programming language using version
3.9.13. As implementing deep learning models has been the main focus of this thesis, We have used
TensorFlow 2.11.0 deep learning library to create my models. We also have leveraged other libraries
including sys 3.9.13, cv2 4.8.0, Numpy 1.26.0, Pandas 1.4.4, Matplotlib 3.5.2, sns 0.11.2, Scikit-Learn
1.0.2, OS. Time, and Collections.
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5 Experiments and Results

This section begins by describing the experimental setup employed for the classification of various
bearing defects. Subsequently, we discuss the obtained results through a series of experiments con-
ducted on the two datasets. The link to the generated development codes is located in the Appendix
section of this thesis.

5.1 Experiments

In order to perform several experiments, we employed the following experimental setup and outlined
the hyperparameter tuning procedure.

5.1.1 Experimental setup

The experimental setup for the NASA dataset has been done as follows. NASA dataset contains the
raw vibration signals of the bearings. These signals encompass the information on the defects that
occurred on the Inner race, Outer race, and rolling element part of the bearings. After the demodu-
lation process, we turned the raw vibration signals of the defects into their corresponding 2D visual-
izations including Frequency Spectrums, Polar Specrums, and Spectrograms.

The experimental setup for the CWRU dataset has been done as follows. The CWRU dataset con-
tains the raw vibration signals of the bearings in the Matlab format. These signals encompass the
information on the defects that occurred on the Inner race, Outer race, and rolling element part of
the bearings. After splitting the vibrational signals into equal bunches, we turned the fragmented
raw vibrational signals of the defects into their corresponding 2D visualizations including Frequency
Spectrums, Polar Specrums, and Spectrograms.

In the next step, we split the dataset into training and testing datasets using an 80:20 ratio, where
80% of the dataset was assigned for the training and 20% of the dataset was reserved to test. Add
to the point, as we are dealing with an imbalanced set of defects we have calculated the weights for
each class to train our model based on the specific class weights. We then evaluated their classifi-
cation performance using LeNet, NASNet, AlexNet, EfficientNet, and VGG16. Using mid-level fusion
methods, we implemented dual feature channels, where one channel was implemented using 2D
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representations and 2D CNN-based methods, and the other channel was implemented using statis-
tical features and 1D CNN. The final classification was then performed based on the two channels.

5.1.2 Hyperparameter tuning

In order to find themost optimalmodel structure, we have followed the samehyperparameter tuning
structure on both datasets. We have evaluated the performance of the model based on different
epochs of 20 and 30 and different batch sizes of 32 and 64. The model was then trained under
different combinations of these epochs and batch sizes and for each combination, the evaluation was
conducted to provide the test accuracy and F1-score. The best hyperparameter was then identified
based on the combination that provided the highest accuracy. We have also used early stopping
with patience 3 during the training phase to avoid unnecessary runs after no improvements within 3
epochs.

5.2 Results and discussions

5.2.1 Experimental Results on the NASA dataset

The obtained classification results using various 2D CNN models on the NASA dataset are presented
in the tables from Table 4 to Table 9.

• Single Channel Models

In this section, we present the results obtained based on several feature extraction methods
using single-channel 2D CNN models on the NASA dataset.

– Polar Spectrums

The classification results using the polar spectrum with a single channel model are pre-
sented in Table 4. From Table 4, it can be observed that out of all the developed mod-
els, VGG16 obtained a higher classification accuracy of 97.2% and with an F1-score of
0.96.Whereas, the secondbest-obtained result is usingAlexNetwith an accuracy of 96.16%
and with an F1-score of 0.951.
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As illustrated in the ROC curves within Figure 30, we can observe that VGG16 and ResNet
demonstrate a greater performance within the model to provide true predicted classes.

In order to understand the more detailed view of the few experiments, confusion matri-
ces are obtained. The confusion matrices are shown in Figure 31 and it can be observed
from the confusion matrices 31 that AlexNet provides 116 true predicted labels out of 267
and LeNet, 274 out of 287. From this, it can be observed that there is a challenge for clas-
sification between inner race defects and rolling element defects. Adding to the point, 111
rolling element defects have been misclassified as inner race defects in VGG16. We also
identified 182 misclassifications out of 287 using EfficientNet. ResNet on the other hand,
demonstrated a significant classification performance with minimum false predicted la-
bels of 8 out of 112. As we are trying to minimize equipment downtime and increase their
lifespan, we need our model to be able to provide more accurate assessments.

Model Accuracy Class Precision Class Recall F1-Score

AlexNet 0.9616 0.03 1. 1. 1. 0.989 0.1 0.951EfficientNet 0.45 0.03 1. 0.88 0. 1. 0. 0.525LeNet 0.96 0. 0.92 0.96 0. 1. 0.96 0.95NASNet 0.82 0. 0.82 0. 0. 1. 0. 0.74ResNet 0.928 0. 1. 0.6 0. 1. 1. 0.90VGG16 0.972 0.05 1.0 1.0 1.0 1.0 0.4 0.96
Table 4: Single Channel using Polar Spectrum.

– Spectograms

In this, we present the classification results when using spectrograms along with various
2D-CNN models. The obtained classification results are presented in Table 5. From the
table, it can be observed that the EfficientNet model got the classification result of 90%
accuracywith an F1-score of 0.89, whichwas significantly higher than othermodelswithin
the table. The second best-achieved result is using VGG16 with an accuracy of 76% and
with an F1-score of 0.72.

The roc curve is shown in Figure 33 where the graph shows that EfficientNet and VGG16
demonstrate high true positives and low false positives.
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Figure 30: Single channel roc curve using polar spectrum..

Figure 31: Single channel confusion matrix using polar spectrum..
In order to understand themore detailed view of this experiment, confusion matrices are
obtained. The confusion matrices are presented in Figure 32 and it can be seen that Effi-
cientNet classifies 71 out of 287 correctly and can efficiently categorize the inner race fault
types. AlexNet, and NASNet on the other hand, depict a great deal of misclassification.
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Whereas VGG16 demonstrates better performance in the confusion matrix by classifying
110 true labels out of 287.

Model Accuracy Class Precission Class Recall F1-Score

AlexNet 0.66 0. 0. 0.65 0. 0. 1. 0.53EfficintNet 0.90 0.027 1. 0. 8 1. 0.7 0. 0.89LeNet 0.32 0.02 0.96 0. 1. 0.88 0. 0.26NASNet 0.65 0.02 0. 0.56 1. 0. 0.095 0.52ResNet 0.66 0. 0.32 0.75 0. 0.98 0.015 0.53VGG16 0.76 0. 0.34 0.94 0. 1. 0.095 0.72
Table 5: Single Channel using Spectrograms.

Figure 32: Single channel confusion matrix using Spectogram..
– Frequency Spectrums

Model Accuracy Class Precission Class Recall F1-Score

AlexNet 0.65 0. 0.32 0. 0. 1. 0. 0.52EfficintNet 0.9 0.02 1. 0. 1. 0.70 0. 0.89LeNet 0.32 0.02 0.96 0. 1. 0.88 0. 0.29NASNet 0.65 0.02 0. 0.56 1. 0. 0.09 0.52ResNet 0.66 0. 0.32 0.75 0. 0.98 0.015 0.53VGG16 0.49 0.07 0.47 0.84 0.66 0.89 0.29 0.48
Table 6: Single Channel using Frequency Spectrums.
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Figure 33: Single channel roc curve using spectrogram..
The classification results using the frequency spectrum with a single channel model are
presented in Table 6. From the table, it can be seen that EfficientNet provides the highest
accuracy of 90% for the classification of bearing faults using frequency spectrums with
an F1-score of 0.89. Whereas, the ResNet model achieved the second-best classification
accuracy of 65% accuracy and an F1-score of 0.53. From this, it can be observed that there
is a huge gap between the accuracy of the EfficienNet and other models when we eval-
uate using frequency spectrums. This gap may signify the advanced architecture of the
EfficientNet in network scaling to increase the accuracy.

The AUC curve is plotted for this model and shown in Figure 35. From the graph, as we
can see, EfficientNet achieved a significant classification capability with AUC values of
0.81,0.89, and 0.97. This means, EfficientNet achieved higher performance.

In order to understand the more detailed view of this experiment, confusion matrices
are obtained. The confusion matrices are presented in Figure 34. From the confusion
matrices, we can observe that there are 71 true predictions out of 287 for EfficientNet,
87 True predictions out of 287, and 147 out of 287 for VGG16. We can also perceive that
the various models like AlexNet, NASNet, ResNet, and even EfficientNet all had problems
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with the classification of rolling element defect types. This fact makes them unreliable in
performing accurate predictive maintenance in real-world scenarios.

Figure 34: Single channel confusion matrix using Frequency Spectrum..

Figure 35: Single channel roc curve using Frequency Spectrum..
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• Dual Channel Models In this, we present the results obtained based on several feature extrac-
tion methods using dual channel 2D CNN models on the NASA dataset.

– Polar Spectrums

Model Accuracy Class Precission Class Recall F1-Score

AlexNet 0.99 0.99 0.91 0.98 1. 0.84 0.98 0.99EfficintNet 0.99 0.99 1. 1. 1. 0.92 1. 0.99LeNet 0.993 0.99 1. 0.98 0.99 1. 0.98 0.992NASNet 0.331 0. 0. 0.33 0. 0. 1. 0.164ResNet 0.996 0.99 1. 1. 1. 0.92 1. 0.996VGG16 0.989 0.98 0.9 .98 0.99 0.76 1. 0.982
Table 7: Dual Channels using Polar Spectrum and statistical features.

In this, we present the classification results when using polar spectrum and statistical fea-
tures along with various dual-channel 2D-CNNmodels. The obtained classification results
are presented in the Table 7. From the table, it can be observed that the ResNet model
achieved the highest classification performance with an accuracy of 99.6% and with an
F1-score of 0.99. All the other models except NASNet have also demonstrated high clas-
sification probabilities of over 98% and an F1-score of over 0.98.

The ROC curves are obtained for all the experiments using the polar spectrum in Figure 37.
The graph demonstrates that except NASNet, all the other models have resulted in high
AUC values above 0.9. EfficientNet and ResNet demonstrate a significant AUC value for
all classes which is representative of the correct classification performance of themodels.

In order to understand the more detailed view of this experiment, confusion matrices
are obtained. The confusion matrices (CM) are presented in Figure 36. From these CMs,
we can observe that, all the models i.e., ResNet, AlexNet, EfficientNet, VGG16, and LeNet
demonstrate robust classification performance. EfficientNet, and ResNet both contained
only one misclassified defect, and LeNet, AlexNet, and VGG16 2,3, and 4 misclassified de-
fects respectively.

– Spectograms In this, we present the classification results when using spectrograms and
statistical features along with various dual-channel 2D-CNNmodels on the NASA dataset.
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Figure 36: Dual channel confusion matrix using polar spectrum.

Figure 37: Dual channel roc curve using polar spectrum.

With regard to the classification results of the fusionmodel, the obtained results are tabu-
lated in Table 8. From the table, it can be seen that EfficientNet demonstrates a significant
accuracy of 100% with the F1-score of 1. Whereas, models AlexNet, LeNet, ResNet, and
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Model Accuracy Class Precission Class Recall F1-Score

AlexNet 0.993 0.99 1. 0.98 1. 0.84 1. 0.992EfficintNet 1 1. 1. 1. 1. 1. 1. 1LeNet 0.993 0.99 1. 0.98 1. 0.84 1. 0.992NASNet 0.641 0.62 0. 0. 1. 0. 0. 0.628ResNet 0.996 1. 1. 0.98 1. 0.92 1. 0.996VGG16 0.986 0.99 0.68 0.98 0.97 0.84 1. 0.984
Table 8: Dual Channels using Spectograms and statistical features.

VGG16 also demonstrate high classification results above 98% and with an F1-score of
above 0.98.

When the AUC curves are plotted, the graphs obtain the values of 1 for different classes
within the ROC curve. Within the graph 39, EfficientNet demonstrates the efficiency of
the model and its ability to make true predictions. All the other models except NASNet
provide the AUC value of 1 for the outer race and rolling element defect classes and above
0.91 for the inner race defect class.

In order to understand themore detailed view of this experiment, confusion matrices are
obtained. The confusion matrices (CM) are presented in Figure 38. From CMs, we can
observe that the EfficientNet model was able to perform the classification with zero mis-
classified instances. Following EfficientNet, ResNet with one misclassified instance, and
LeNet and AlexNet both with two misclassified instances have been the highest efficient
models.

– Frequency spectrums In this, we present the classification results when using frequency
spectrums and statistical features alongwith various dual-channel 2D-CNNmodels on the
NASA dataset.

Model Accuracy Class Precission Class Recall F1-Score

AlexNet 0.993 0.99 1. 0.98 1. 0.84 1. 0.992EfficintNet 1 1. 0.92 0.98 01. 0.92 0.98 1LeNet 0.993 0.98 0.83 0.98 0.99 0.76 0.98 0.992NASNet 0.331 0. 0. 0.33 0. 0. 1. 0.16ResNet 0.996 1. 1. 0.98 1. 0.92 1. 0.996VGG16 0.993 0.99 1. 0.98 1 0.84 1. 0.992
Table 9: Dual Channels using frequency spectrums and statistical features.
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Figure 38: Dual channel confusion matrix using Spectograms..

Figure 39: Dual channel roc curve using Spectograms..
With regard to the classification results, the obtained results of the fusion model are tab-
ulated in Table 9. From the table, it can be seen that the EfficientNet model achieved the
highest accuracy of 100% in the classification of varied bearing faults. Whereas, ResNet,
AlexNet, LeNet, And VGG16models also obtained the accuracy of the classification above
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99% accuracy.

The ROC curves are obtained for all the dual Channels using frequency spectrums and
statistical features in Figure 41. From the graphs, it can be seen that Alexnet demon-
strated great performance in correctly classifying the defects by providing AUC values of
1 for all classes. Also, AlexNet, ResNet, VGG16, and LeNet, all provide AUC values over 0.9.

In order to understand themore detailed view of this experiment, confusion matrices are
obtained. The confusion matrices (CM) are presented in Figure 40. From the CMs, we
can observe that there is only one misclassified defect in ResNetet, and 2 for EfficientNet,
alexNet, and VGG16, and 5 for LeNet.

Figure 40: Dual channel confusion matrix using Frequency spectrum..

5.2.2 Experimental Results on CWRU dataset

The obtained classification results using various 2D CNNmodels on the CWRU dataset are presented
in the tables from Table10 to Table 15.

• Single Channel Models In this, we present the results obtained based on several feature ex-
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Figure 41: Dual channel roc curve using Frequency spectrum..
traction methods using single-channel 2D CNN models on the CWRU dataset.

– Polar Spectrums

Model Accuracy Class Precission Class Recall F1-Score

AlexNet 0.55 0.64 0.36 0.66 0.42 0.63 0.54 0.553EfficintNet 0.724 0.70 0.62 0.82 0.77 0.80 0.56 0.722LeNet 0.635 0.58 0.77 0.65 0.81 0.36 0.68 0.621NASNet 0.641 0.62 0.63 0.66 0.72 0.47 0.07 0.6636ResNet 0.682 0.58 0.66 0.79 0.79 0.5 0.67 0.67VGG16 0.677 0.57 0.63 0.87 0.0.83 0.625 0.51 0.674
Table 10: Single Channel using Polar Spectrum.

Several 2D CNNmodels have been trained on the CWRU dataset. The obtained classifica-
tion results on the single channel using the polar spectrum are presented in Table 10. In
the table, we can observe that the EfficientNetmodel resulted in the highest classification
accuracy of 72.4% with an F1-score of 0.722. AlexNet also demonstrated the second-best
performance model by obtaining the classification accuracy of 55% .
The ROC curves are obtained for all the models for this experiment and the graphs are
depicted in Figure 43. In the graphs, EfficientNet has demonstrated a better performance
at truly predicting the defect types with the AUC values ranging from 0.88 to 0.911.
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In order to understand themore detailed view of this experiment, confusion matrices are
obtained. The confusion matrices (CM) are presented in Figure 42. Within the matrices,
we can observe sparse misclassification among all the models in this experiment.

Figure 42: Single channel confusion matrix using polar spectrum..
– Spectograms

Model Accuracy Class Precission Class Recall F1-Score

AlexNet 0.968 0. 0.29 0. 0. 1. 0. 0.968EfficintNet 0.838 0.69 0.96 0.97 1. 0.90 0.62 0.831LeNet 0.889 0.78 0.98 0.957 0.951 0.826 0.881 0.891NASNet 0.711 0.92 1. 0.47 0.18 0.57 1. 0.716ResNet 0.683 0.55 0.80 0.97 0.97 0.48 0.56 0.678VGG16 0.723 0.724 0.64 0.8 0.74 0.99 0.42 0.722
Table 11: Single Channel using Spectrograms.

With regard to the classification results within Table 11, AlexNet results in the highest
classification accuracy in comparison with another model with an accuracy of 96.8% and
F1-score of 0.968. EfficientNet and LeNet also demonstrated good results of 83.8% accu-
racy and 0.831 F1-score for EfficientNet, and 88.9% accuracy and 0.891 F1 score for the
LeNet
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Figure 43: Single channel roc curve using polar spectrum..
We can also observe a great classification performance by evaluating the high AUC graphs
within the EfficientNet in Figure 44. LeNet andResNet also providedAUC values over 0.92.
All other models have resulted in AUC values over 0.83 and demonstrated an excellent
performance to provide true predictions

As we can observe in the confusion matrices in Figure 44, provide a decent classification
by providing 297 correct classifications out of 354 defect types. AlexNet, LeNet, resNet,
and VGG16 also result in 93,39, 112, and 105 misclassification instances respectively

– Frequency Spectrums

Model Accuracy Class Precission Class Recall F1-Score

AlexNet 0.55 0.64 0.36 0.66 0.42 0.63 0.54 . 0.553EfficintNet 0.641 0.49 0.90 0.55 0.50 0.27 0.85 0.643LeNet 0.853 0.83 0.97 0.77 0.71 0.97 0.88 0.851NASNet 0.358 0.26 0.1 0.16 0.47 0.076 0.070 0.216ResNet 0.539 0.5 0.65 0.47 0.55 0.68 0.40 0.536VGG16 0.79 0.80 0.81 0.69 0.40 0.91 0.96 0.78
Table 12: Single Channel using Frequency Spectrums.

With regard to the classification results within Table 12, we can observe that LeNet pro-
68



Figure 44: Single channel confusion matrix using spectogram.

Figure 45: Single channel roc curve using spectogram.
vided the highest classification accuracy of 85.3%, and F1- score of 0.851 in comparison
with othermodels in this experiment. VGG16 also provided a good accuracy of 79%which
is well higher than other models within this experiment.
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Figure 46: Single channel confusion matrix using frequency spectrum.
Add to the point, the AUC values within the ROC curves in Figure 47 represent that LeNet
has the highest capability of true prediction in comparison with other models within the
experiment. We could also observe that VGG16 and EfficientNet both provide promising
capability for true predictions as well.

the confusion matrices in Figure 46, demonstrate the classification performance of the
models. As these matrices represent, AleXnet, EfficientNet, LeNet,resNet, and VGG16,
result in 171, 150, 52, 163, and 86 misclassified instances out of 354 respectively

• Dual Channel Models

– Polar Spectrums

With regard to the classification results within Table 13, we can observe that AlexNet and
EfficientNet provide the highest accuracy of 98.3% and F1-score of 0.983. ResNet, VGG16,
and LeNet provided high accuracy of, 97.7%, 97.4%, and 95.7% respectively.

Add to the point, the AUC values within the ROC curves in Figure 49, prove the effective-
ness of this model in providing true classification. EfficientNet and ResNet, both demon-
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Figure 47: Single channel roc curve using frequency spectrum.
Model Accuracy Class Precission Class Recall F1-Score

AlexNet 0.983 0.98 1. 0.96 0.96 1. 0.98 0.983EfficintNet 0.983 0.98 0.98 0.97 0.96 1. 0.98 0.983LeNet 0.957 0.95 0.99 0.93 0.92 1. 0.95 0.957NASNet 0.596 0.51 0. 0.54 0.86 0. .617 0.579ResNet 0.977 0.97 1. 0.96 0.96 1. 0.97 0.977VGG16 0.974 0.98 1. 0.9453125 0.94 1. 0.98 0.974
Table 13: Dual Channels using polar Spectrum and statistical features.

strate significant classification performance by AUC values of 1 for all the fault types.
As we can observe within the confusion matrices in Figure 48, all the models except
NASNet, demonstrate a minor misclassification. As we can see, this misclassification for
AlexNet, EfficientNet, and LeNet, has been mostly centralized on the mismatch among
the defects within rolling element defect and outer race defects fault types.AleXnet, Ef-
ficinetNet, LeNet, ResNet, and VGG16,resulted in 6,7,7,8, and 9 misclassified instances
respectively

– Spectograms

With regard to the classification results within Table 14, we can observe that Efficient-
Net, and ResNet, both demonstrate significant accuracy of 100% with the F1-score of
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Figure 48: Dual channel channel confusion matrix using polar spectrum.

Figure 49: Dual channel channel roc curve using polar spectrum.
1. AlexNet, LeNet, and VGG16 also both provide a high classification accuracy of 99.1%,
99.7%, and 99.6% with the F1-score of 0.991, 0.997, and 0.996 respectively.

Add to the point, the AUC values within the ROC curves in Figure 51, demonstrate sig-
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Model Accuracy Class Precission Class Recall F1-Score

AlexNet 0.991 0.1 0.99 0.98 0.97 1. 0.1 0.991EfficintNet 1 1. 1. 1. 1. 1. 1. 1LeNet 0.997 0.1 1. 0.98 0.98 1. 1. 0.997NASNet 0.361 0.36 0.2 0. 0.99 0.01 0. 0.20ResNet 1. 0.97 1. 0.97 1. 1. 0.991VGG16 0.996 0.98 .99 0.93 0.92 1. 0.98 0.996
Table 14: Dual Channels using Spectograms and statistical features.

nificant AUC values of 1 for AlexNet, EfficientNet, LeNet, and ResNet which proves the
efficiency of these models in identifying true labels.

As we can see in the confusion matrices in Figure 50, EfficienetNet performs perfectly in
classifying different fault types. AlexNet, LeNet, and ResNet, on the other hand, demon-
strate minor misclassified instances of 6, 15, and 8 within fault types respectively.

Figure 50: Dual channel confusion matrix using spectograms spectrum.
– Frequency spectrums

With regard to the classification results within Table 14, we can observe that EfficientNet
was able to provide significant classification results of 100% accuracy with an F1-score of
1. AlexNet and ResNet also demonstrate great classification accuracy of 97.7%, with an
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Figure 51: Dual channel roc curve using spectograms.
Model Accuracy Class Precission Class Recall F1-Score

AlexNet 0.977 0.98 0.98 0.96 0.95 1. 0.98 0.977EfficintNet 1 1. 1. 1. 1. 1. 1. 1LeNet 0.974 0.96 1. 0.95 0.96 1. 0.96 0.974NASNet 0.358 0. 0. 0.34 0. 0. 1. 0.17ResNet 0.997 1. 1. 0.99193548 0.99 1. 1. 0.997VGG16 0.971 0.99 1. 0.93 0.92 1. 0.99 0.971
Table 15: Dual Channels using frequency spectrums and statistical features.
F1-score of 0.977.

As illustrated in the ROC curve in Figure 53, we can obtain that AlexNet, EfficientNet, and
ResNet, all demonstrate significant AUC values of 1 which proves the efficiency of these
models in identifying true labels.

As illustrated in the confusion matrices in Figure 52, AlexNet, EfficientNet, LeNet, and
ResNet, demonstrate significant classification performance where there was 0 misclassi-
fication in EfficientNet, 8 for AlexNet,9 for LeNet, and 1 for ResNet
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Figure 52: Single channel confusion matrix using frequency spectrum.

Figure 53: Single channel roc curve using frequency spectrum.

5.3 Summary of the results and discussions

To summarize the results of the 2D CNNmodels, the results are as expected. Tables 16, and 17 provide
a comprehensive insight into the efficiency of the different developed deep learning methods on a
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single-channel and dual-channel approach based on the CWRU and NASA datasets and using Polar
spectrums, frequency spectrums, and spectrograms feature extraction techniques. Given the results
derived from these models, we can justify the superiority of the dual-channel models in comparison
with their corresponding single-channel methods. We can observe a significant positive change in
the classification performance of All the models except NASNet architecture.

Within theCWRUdataset single channel analysis, we canobserve that spectrogramshave contributed
to providing higher classification accuracy in comparison with other 2D features that were used in
the experiments. On the other hand, in the NASA dataset, polar spectrums have been significantly
contributing to revealing features that can provide higher classification performance.

In the CWRU dataset, among all the evaluated models, Multi-channel EfficientNet has provided the
highest accuracy of 98.3 %, 100%, and 100% respectively using polar spectrums, spectrograms, and
frequency spectrums. Within this dataset, we also could observe that a multichannel model ResNet
model using a spectrogram can also provide the highest accuracy of 100%. In the NASA dataset as
well, EfficientNet demonstrated a significant classification performance of 99.65%, 100%, and 100%
respectively using polar spectrums, spectrograms, and frequency spectrums. By comparing the re-
sults we can obtain that in both datasets, Multi EfficientNet using spectrograms and frequency spec-
trums has outperformed other classification models. In the CWRU dataset, we can obtain the clas-
sification time using the best hyperparameters for spectrograms as 232.34 ms and 336.89 ms for
frequency spectrums which demonstrates the superiority of this feature over frequency spectrums.

In conclusion, We observed how different architectures would demonstrate different performances
for anomaly classification within the bearing, and while architectures like EfficientNet and ResNet
indicated astonishing results, NASNet was failing the experiments. By evaluating the classification
performance using varied channels, different models, and different features we could justify the su-
periority of the multi-channel models in comparison with their peer single-channel architecture and
also identify the EfficientNet using spectrograms as the highest performance model by the accuracy
of 100%.

Table 5.3 shows a comparison of the results of the developed deep learning models with the state-
of-the-art algorithms. Scholars have tried different methods and different features to evaluate and
increase the classification performance. Tao et al (T. Lu et al., 2020), Khorram et al (Khorram et al.,
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CWRU dataset Single Dual
AlexNet Polars 0.550 0.983Spectrogram 0.968 0.977Spectrums 0.55 0.991
VGG16 Polars 0.677 0.974Spectrogram 0.723 0.966Spectrums 0.79 0.971
EfficientNet Polars 0.724 0.983Spectrogram 0.838 1Spectrums 0.641 1
LeNet Polars 0.635 0.967Spectrogram 0.889 0.997Spectrums 0.853 0.974
NASNet Polars 0.641 0.596Spectrogram 0.711 0.361Spectrums 0.358 0.347
ResNet Polars 0.682 0.977Spectrogram 0.683 1Spectrums 0.539 0.997

Table 16: Performance of various networks on the CWRU dataset
NASA dataset Single Dual

AlexNet Polars 0.961 0.9930Spectrogram 0.662 0.993Spectrums 0.658 0.993
VGG16 Polars 0.9712 0.9895Spectrogram 0.766 0.986Spectrums 0.4912 0.993
EfficientNet Polars 0.459 0.9965Spectrogram 0.905 1Spectrums 0.905 1
LeNet Polars 0.9686 0.9930Spectrogram 0.324 0.993Spectrums 0.324 0.993
NASNet Polars 0.8217 0.331Spectrogram 0.658 0.641Spectrums 0.656 0.331
ResNet Polars 0.9285 0.9965Spectrogram 0.662 0.996Spectrums 0.662 0.996

Table 17: Performance of various networks on the NASA dataset
2021), Xiang et al (X. Li et al., 2019), and Guo et al (Guo et al., 2018) have tried 1 channel CNNmodels.
The results ranged from 70% to 99.7%. Tao et al (T. Lu et al., 2020), by providing 99.7% accuracy using
AlexNet and spectrogram, has demonstrated a significant result. However, their research lacks vali-
dation on a second dataset. Add to the point, that using one type of data may not provide extensive
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insight into the data and may not be applicable for real-world scenarios. Wang et al (J. Wang et al.,
2021), and Raminet al (Rajabioun et al., 2023) have applied multi-sensor fusion methods. Wang et
al (J. Wang et al., 2021) has leveraged 2D images of vibrational signals of CWRU in their experiments
and achieved 99.92% accuracy. Raminet al (Rajabioun et al., 2023) also by using raw signals within a
self-generated dataset could achieve 98% accuracy. In comparison to our experiments, our proposed
dual-channel method leverages different features derived from one specific sensor. Mao et al (Mao
et al., 2018), and Sayanjitet al (S. S. Roy et al., 2020) have used machine learning methods within
their experiments. They have leveraged ISVM and random forest classifier and achieved 98.3% and
97.9% in bearing fault classification. In our work, we have applied a mid-fusion architecture by si-
multaneously leveraging 1D and 2D channels. We achieved promising results, and could significantly
prove the efficiency of the Dual-Channel EfficientNet using spectrograms and frequency spectrums
by providing 100% accuracy on both datasets. This validation can make our model adjustable with
real-world data and benefit industries by providing more accurate and robust classification perfor-
mance. Also, applying all these different experiments can become a blueprint for other researchers
for their further research in this domain.

Author Dataset Feature Model Accuracy

Wang et al

(H. Wang et
al., 2022)

CWRU highest envelope spec-
tral kurtosis

Multi-sensor 1D
fused VGG16

100%

Shao et

al (Shao,
Jiang,
Zhang, &
Liang, 2017)

Electric
Locomotive
Bearing
Dataset

vibrational data CDBN 97.43%

Wang et al

(P. Wang et
al., 2017)

Gearbox
data

Wavelets DCNN 99.58%

Jiang et al

(Jiang et al.,
2019)

CWRU Time series data GAN 100%

Continued on next page
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Table 18 – continued from previous page

Author Dataset Feature Model Accuracy

Sayanjitet
al (S. S. Roy
et al.,
2020)

CWRU-
NASA

Auto correlation on vi-
brational data

Random forest
classifier

99.2%-
97.9%

Ronak et al

(Bhadra et
al., 2018)

NASA Statistical features 1D CNN - 2D CNN 93.3%-
92.9%

Mao et al

(Mao et al.,
2018)

CWRU Frequency spectrum ISVM 98.33%

Roy et al

(M. Roy et
al., 2018)

NASA Auro encoder OSELM 100%

Purarj et al
(Purarjomandlangrudi
et al., 2014)

NASA FFT spectrum - kutro-
sis - Non Guassianility
score

Gaussian distri-
bution

95%

Tao et al

(T. Lu et al.,
2020)

CWRU Spectogram AlexNet 99.7%

Wang et al

(J. Wang et
al., 2021)

CWRU -
NASA

signal to image Multi sensor fu-
sion usning CNN

99.92% -
92.68%

Khorram et

al (Khorram
et al., 2021)

NASA time series data CNN-LSTM 97.13%

Enshaei
et al

(Enshaei &
Naderkhani,
2019)

CWRU raw vibrational data deep deep
bidirectional
long short-term
memory

100%

Continued on next page
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Table 18 – continued from previous page

Author Dataset Feature Model Accuracy

Xiang et al

(X. Li et al.,
2019)

CWRU deep transfer learning DNN 70%

Guo et al

(Guo et al.,
2018)

CWRU raw signal data 1D CNN 82%

Raminet al

(Rajabioun
et al., 2023)

self gener-
ated data

raw signal Multi sensor fu-
sion

98%

Sayanjitet
al (S. S. Roy
et al.,
2020)

CWRU -
NASA

Auto correlation random forest
classifier

99.9% -
97.9%

Menget al

(S. S. Roy et
al., 2020)

CWRU Mapping to Greyscale
image

improved convo-
lutional neural
network (CNN)
incorporating a
convolutional
attention

97.13%

saadiet
al (Nacer,
Nadia, Ab-
delghani, &
Mohamed,
2023)

CWRU Greyscale image-
reshape-fft

ANN and SVM 99.9%

Ruxueet al

(Bai et al.,
2021)

NASA pyramidal dilatated
convolution is designed
to extract the features

ResNet-FCF 99.55%

Continued on next page
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Table 18 – continued from previous page

Author Dataset Feature Model Accuracy

Yuhanget
al (Chen,
Xiao, & Li,
2022)

CWRU Rw vibrational signal 1D CNN – trains at
one speed test at
other speed

99.29%

Zaminget al
(Liu, Zhang,
Meng, &
Zhang,
2022)

CWRU Wavelets CNN for fea-
ture extraction
sparrow search
algorithm (SSA)
optimized ex-
treme learning
machine for
classification

97%

Our work

(Dual-

channel

Efficient-

Net)

CWRU -

NASA

Spectogram/ Fre-

quency spectrum and

statistical features

2D-1D CNN 100% -

100%
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6 Conclusion and Future Work

6.1 Conclusion

In this thesis, we provided a comprehensive study on bearing anomaly classification using varied
deep-learning models including AlexNet, EfficientNet, LeNet, NASNet, ResNet, and VGG16. Then, in
order to overcome the misclassification challenge among the different fault types, we incorporated
statistical features into our models using mid-level fusion and developed dual-channel models that
could significantly take advantage of varied features to increase the classification performance. In or-
der to validate our hypothesis, we tried thismethod onboth theNASAdataset and the CWRUdataset.

By conducting experiments based on different features, datasets, and models and also comparing
their results, we could justify the superiority of the dual-channel models and prove how they can
contribute to providing better solutions for anomaly classification within the bearing. In the single-
channel approach, AlexNet, and VGG16 have demonstrated higher classification performance within
both CWRU and and NASA datasets respectively. Using AlexNet, in the CWRU dataset, Spectograms
have contributed to the highest accuracy of 96.8%, and in using VGG16 in the NASA dataset polars
have been used to generate the highest classification accuracy of 97.2%. In a dual-channel approach,
these two classification performances have been increased to 97.7%, and 99.3% respectively. How-
ever, EfficientNet using Spectogram has demonstrated a higher classification performance of 100%
within both datasets. Based on our results, we believe that the industries that are providing predic-
tive maintenance solutions can integrate our proposed method to increase their performance, and
scholars can leverage this comprehensive comparative analysis to provide further solutions.

6.2 Future Work

Anomaly classification in industrial machinery plays a significant role in providing predictive main-
tenance. In order to delve deeper into the concept of this thesis, and provide decisive solutions
that can enhance the performance of the rotating equipment, evaluating and deploying this method
in real-time situations can be considered as a future work. Additionally, our evaluation was solely
signal-based, and we have tried only signal-based features in our experiments. Therefore, incor-
porating new types of features such as temperature data and lubrication analysis can be useful in
providing more comprehensive results and it can be considered as another future work.
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Appendices

Appendix

The codes can be accessed through the following GitHub repository:
https://github.com/zahra88ir/MasterThesis
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