

University of South-Eastern Norway
Faculty of Technology, Natural Sciences and Maritime Sciences

–
Master’s Thesis

Study programme: Master’s level teacher programme in natural sciences and technology
Spring 2023

Daniel Husebye Solheim

Efficiency of attacks on NTRUEncrypt
Comparing data from original presentation to attempts on a modern computer

University of South-Eastern Norway
Faculty of Faculty of Technology, Natural Sciences and Maritime Sciences
Department of Science and Industry Systems
PO Box 235
NO-3603 Kongsberg, Norway

http://www.usn.no

© 2023 Daniel Husebye Solheim

This thesis is worth 30 study points

Comparing efficiency of attacks on
NTRUEncrypt between data from original

presentation to attempts on a modern computer

Daniel Husebye Solheim

Supervisor: Måns Daniel Larsson

Spring 2023

Contents
1 Introduction 4

2 Theory 6
2.1 Basic definitions . 6
2.2 LLL-Algorithm . 9

2.2.1 Gram-Schmidt Algorithm 10
2.2.2 LLL-Algorithm . 11

2.3 Definitions needed for the NTRU algorithm 12
2.4 The NTRU Algorithm . 13

2.4.1 Cryptanalysis of NTRUEncrypt 14
2.4.2 NTRU: A ring-based public key cryptosystem 15

2.5 Streamlined NTRU Prime . 17
2.5.1 The key-generation algorithm: 17
2.5.2 The encryption algorithm: 18
2.5.3 The Decryption algorithm: 18
2.5.4 Cryptanalysis of Streamlined NTRU Prime 18

3 Method 19
3.1 Programming in SageMath . 19

3.1.1 Encryption and decryption with NTRUEncrypt 19
3.1.2 Encryption and decryption with Streamlined NTRU Prime 20

1

3.1.3 Attack on NTRUEncrypt 20

4 Results 22

5 Discussion 29

6 Conclusion 31

7 Appendices 33
7.1 Appendix A . 33
7.2 Appendix B . 36
7.3 Appendix C . 40

2

Abstract
The motivation of this thesis was to make a comparison of the time needed to
successfully break an encryption using NTRUEncrypt from data acquired from
a computer in 1998, to data from a computer in 2023. A program was coded
to simulate and attack an encryption using the algorithm, and attacks similar to
those presented in the article “”NTRU: A ring-based public key cryptosystem”
was executed. The results are presented and compared to those in the article, and
differences and similarities are discussed.

3

1 Introduction

A Principle Goal of (Public Key) Cryptography
is to allow two people to exchange confidential in-
formation, even if they have never met and can
communicate only via a channel that is being mon-
itored by an adversary. [1]

Cryptography is the field of study about securing communication from adver-
sarial behavior. [2] It is a field that goes far back. The need to prevent information
from leaking to a third party can easily be found in situations regarding politics
and war. It is critical that essential information will not be leaked to adversaries in
cases where strategies and planning is dependent on an opponent’s unawareness.
We are now in an era where we also send both open and confidential information
through the internet, a medium where it easily can go astray.

A turning point in the history of cryptography is the work of Claude Shan-
non on information theory. Shannon was a mathematician and engineer in the
20th century that did a large amount of fundamental work on the application of
electrical devices on mathematics and he worked a lot on cryptanalysis. In 1948,
Shannon and his co-author, Warren Weaver, introduced the concept of information
theory in the paper, ”A Mathematical Theory of Communication.” [3] The once
unclear concept of information was now more clearly defined through information
theory, which includes the fields of measuring, storing, transferring and securing
information. [4] Shannon also reformulated Kerckhoffs principle from the 19th
century which states that you need to expect that an opponent always have a full
knowledge about how your own cipher-systems works:

Definition (Shannon’s Maxim). “One ought to design systems under the assump-
tion that the enemy will ultimately gain full familiarity with them.” [4]

Shannon’s work made way for a new method of storing and communicating
information. Parallel to this, there were a rapid development in the technology of
computers which opened for new methods to process and calculate data, and made
earlier cryptography too simple to be secure. This lead to the development of sev-
eral new methods for encryption in the time that followed. These encryptions are
conventionally divided into symmetrical ciphers, where all participants have the
same private encryption-key, and asymmetrical ciphers, where each participant
has their own private encryption-keys that are used to generate and make use of
public keys that are shared openly to all who chooses to observe the transfer.

The transfer of the private key in a symmetrical cipher imposes an inherent
security risk for the system. The risk may be mitigated by using asymmetrical

4

ciphers to encrypt the private key for the transfer. Asymmetrical ciphers however,
often require longer encryptions than symmetrical ciphers to be secure, so con-
ventionally both are used in the process of sending information.

New technology for computing and processing information are continuously
being developed and can open for new methods of cracking contemporary estab-
lished methods of cryptography. The cryptography systems in use are continually
tested for weaknesses and risks, so there is always a need to reinforce and de-
velop new methods of encryption. The concept of quantum computers appeared
in the 1980s, and was proven to be able to crack current systems in a considerably
shorter time, if the concept was realized. Today, it has already been built working
quantum computers, although they can not be used for practical applications yet.
However, it is estimated that within 10 years, practical quantum computers should
be realized. [4] Because of this, there is a drive in the cryptological community to
find quantum-resistant systems.

One of the methods considered is lattice-based cryptography, like the NTRU
system. NTRU is a small lattice-based public key encryption system. This means
that it is a symmetrical cipher that uses vectors of relatively short length in a lat-
tice. It makes use of the independence of reduction modulo two relatively prime
integers with polynomial algebra to gain security with high speed and reasonably
short encryption keys. In 1998, the first version of an NTRU encryption system
was presented [5] where the system’s build was explained, and suggestions to
parameters for security standards was argued for based on cryptanalisys of exper-
imental data. The cryptanalisys focused on the generating a lattice matrix from
the public key and parameters, and reducing the matrix, using the BKZ-QP1 algo-
rithm, to find the short private keys. The estimates presented for the time require
to break the different levels on security ranged from 9 days for the moderate secu-
rity level, to 6.2 ·1027 years for the highest security level. However, the processing
power of computers have increased considerably since 1998, which presents the
question of if you can easily break these security standards, and how much the
time required to break them is reduced.

5

2 Theory

2.1 Basic definitions
Definition 2.1. Let G be a set with an operation ⊕. Then the pair (G,⊕) is a
group if:

• There exist an identity element, e, such that

e⊕ g = g ⊕ e = g

for all g ∈ G.

• For all a, b, c ∈ G, the operation is associative:

a⊕ (b⊕ c) = (a⊕ b)⊕ c.

• For all g ∈ G there exist an inverse, g−1 ∈ G to g such that:

g ⊕ g−1 = g−1 ⊕ g = e.

A group is abelian if:

• For all a, b ∈ G the operation is commutative:

a⊕ b = b⊕ a

Definition 2.2. A ring is an abelian group R = (R,⊕) with an additional opera-
tion ⊗ such that:

• For all a, b, c ∈ R the associative law holds:

a · (b · c) = (a · b) · c

• The distributive laws holds:

a · (b+ c) = ab+ ac and (b+ c) · a = ba+ ca

• There exist an element of unity for multiplication, I , such that

a · I = I · a = a

for all a ∈ R.

6

Definition 2.3. An element a ∈ R is invertible if there exist an element b ∈ R
such that

ab = ba = I

The inverse, b, is usually denoted as a−1. If every element a ∈ R, except 0, is
invertible, the ring is called a field.

Definition 2.4. An ideal of a ring R is a proper subgroup I , such that

r ∈ R, a ∈ I ⇒ ra ∈ I.

Definition 2.5. The coset (i.e., an equivalence class) of a ∈ R under the equiva-
lence relation

a ∼
I
b ⇐⇒ a− b ∈ I, for all a, b ∈ R,

is denoted a + I or sometimes [a] or a. The set of cosets for a relation is
denoted

R/I := {a+ I|a ∈ R},

and is called a quotient ring.

Definition 2.6. A set of vectors, v1, v2, ..., vn, are linearly independent if

a1v1 + a2v2 + ...+ anvn = 0 ⇒ a1 = a2 = ... = an = 0.

In other words, if no vector in the set can be described as a linear combination of
other vectors in the set.

Definition 2.7. Let v1, ..., vn ∈ Rm be a set of linearly independent vectors. The
lattice L generated by v1, ..., vn is the set of linear combinations of v1, ..., vn with
coefficients in Z,

L = {a1v1 + a2v2 + · · ·+ anvn : a1, a2, ..., an ∈ Z}.

Any two bases for a lattice L are related by a matrix having integer coefficients
and determinant equal to ±1.

Definition 2.8. A subset L of Rm is an additive subgroup if it is closed under
addition and subtraction. It is called a discrete additive subgroup if there is a
positive constant ϵ > 0 with the following property: for every v ∈ L,

L ∩ {w ∈ Rm :|| v − w ||< ϵ} = {v}.

In other words, if you take any vector v in L and draw a solid ball of radius ϵ
around v, then there are no other points of L inside the ball.

7

Definition 2.9. An integral (or integer) lattice is a lattice all of whose vectors
have integer coordinates. Equivalently, an integral lattice is an additive subgroup
of Zm for some m ≥ 1.

The group of matrices with integer entries whose inverses also have integer
entries are called the general linear group over Z and is denoted by GLn(Z).
Definition 2.10. Let L be a lattice of dimesion n and let v1, v2,, vn be a basis for
L. The fundamental domain (or fundamental parallelepiped) for L corresponding
to this basis is the set

F(v1, ..., vn) = {t1v1 + t2v2 + · · ·+ tnvn : 0 ≤ ti < 1}.
Proposition 2.1. Let L ⊂ Rn be a lattice of dimension n and let F be a funda-
mental domain for L. Then every vector w ∈ Rn can be written in the form

w = t + v for a unique t ∈ F and a unique v ∈ L.

Equivalently, the union of the translated fundamental domains

F + v = {t + v : t ∈ F}
as v ranges over the vectors in the lattice L exactly covers Rn.

Definition 2.11. Let L be a lattice of dimension n and let F be a fundamental
domain for L. Then the n-dimensional volume of F is called the determinant of
L (or sometimes the covolume of L). It is denoted by det(L).

Proposition 2.2 (Hadamard’s Inequality). Let L be a lattice, v1, v2, ..., vn be a
basis for L, and let F be a fundamental domain for L. Then

det L = V ol(F) ≤|| v1 || || v2 || · · · || vn || .
Proposition 2.3. Let L be a lattice, v1, v2, ..., vn be a basis for L, and let F =
F(v1, ..., vn) be the associated fundamental domain. Write the coordinate of the
ith basis vector as

vi = (ri1, ri2, ..., rin)

and use the coordinates of the vi as the rows of a matrix,

F = F (v1, ..., vn) =

r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
rn1 rn2 . . . rnn

Then the volume of F is given by the formula

V ol(F(v1, ..., vn)) =| det(F (v1, ..., vn)) | .
All fundamental domains of a lattice has the same volume, thus det(L) is

invariant for the lattice L.

8

2.2 LLL-Algorithm
Definition 2.12 (Shortest Vector Problem (SVP)). Find a shortest nonzero vector
in a lattice L, i.e., find a nonzero vector v ∈ L that minimizes the Euclidean norm
|| v ||.

Definition 2.13 (The Closest Vector Problem (CVP)). Given a vector w ∈ Rm

that is not in L, find a vector v ∈ L that is closest to w, i.e., find a vector v ∈ L
that minimizes the Euclidean norm || w − v ||.

Variants are:

• Shortest Basis problem (SBP): Set a requirement on the basis for a lattice
about the norm of the vectors.

• Approximate Shortest Vector Problem (apprSVP): Find a vector that is no
longer than the shortest vector times a function dependent on the dimension.

• Approximate Closest Vector Problem (apprCVP): Same as apprSVP, but for
CVP.

Theorem 2.1 (Hermite’s Theorem). Every lattice L of dimension n contains a
nonzero vector v ∈ L satisfying

|| v ||≤
√
n det(L)

1
n .

Definition 2.14. For a given dimension n, Hermite’s constant γn is the smallest
value such that every lattice L of dimension n contains a nonzero vector v ∈ L
satisfying

|| v ||2≤ γn det(L)
2
n .

The exact value of γn is only known for 1 ≤ n ≤ 8 and n = 24.

γ2
2 =

4

3
, γ3

3 = 2, γ4
4 = 4, γ5

5 = 8, γ6
6 =

64

3
, γ7

7 = 64, γ8
8 = 256, γ24 = 4.

For large values of n it is known [1] that Hermite’s constant satisfies

n

2πe
≤ γn ≤ n

πe
.

9

Definition 2.15. We define the Hadamard ratio of the basis B = {v1, ..., vn} to
be the quantity

H(B) =
(

det L

|| v1 || || v2 || . . . || vn ||

) 1
n

.

0 < H(B) ≤ 1. The closer the value is to 1 the more orthogonal are the vec-
tors of the basis.

Definition 2.16. Let L be a lattice of dimension n. The Gaussian expected short-
est length is

σ(L) =

√
n

2πe
(det L)

1
n .

The Gaussian heuristic says that a shortest nonzero vector in a ”randomly chosen
lattice” will satisfy

|| vshortest ||≈ σ(L).

2.2.1 Gram-Schmidt Algorithm

Let b1, ..., bn be a basis for a vector space V ⊂ Rm. The following algorithm
creates an orthogonal basis b∗1,...,b∗n for V :
Set b∗1 = b1.
Loop i = 2, 3, ..., n.

Compute µij =
bi·b∗j
||b∗j ||2

for 1 ≤ j < i.

Set b∗i = bi −
i−1

Σ
j=1

µijb
∗
j .

End loop

10

2.2.2 LLL-Algorithm

for i = 1, 2, ..., n;

b∗i := bi;

for j = 1, 2, ..., i− 1;

µij := (bi, b
∗
j)/Bj;

b∗i := b∗i − µijb
∗
j

Bi := (b∗i , b
∗
i)

k := 2;

(1) perform (∗) for l = k − 1;

if Bk < (
3

4
− µ2

k k−1)Bk−1, go to (2);

perform (∗) for l = k − 2, k − 3, ..., 1;

if k = n, terminate;
k := k + 1;

go to (1);

(2) µ := µk k−1;B := Bk + µ2Bk−1;µk k−1 := µBk−1/B;

Bk := Bk−1Bk/B;Bk−1 := B;(
bk−1

bk

)
:=

(
bk
bk−1

)
;(

µk−1 j

µkj

)
:=

(
µkj

µk−1 j

)
for j = 1, 2, ..., k − 2;(

µi k−1

µik

)
:=

(
1 µk k−1

0 1

)(
0 1
1 −µ

)(
µi k−1

µik

)
for i = k + 1, k + 2, ..., n;

if k > 2, then k := k − 1;

go to(1).

(∗) If | µkl |>
1

2
, then :

r : integer nearest to µkl; bk := bk − rbl;

µkj := µkj − rµlj for j = 1, 2, ..., l − 1;

µkl := µkl − r.

11

2.3 Definitions needed for the NTRU algorithm
Definition 2.17. Fix a positive integer N . The ring of convolution polynomials
(of rank N) is the quotient ring

R =
Z[x]

(xN − 1)
.

Similarly, the ring of convolution polynomials (modulo q) is the quotient ring

Rq =
(Z/qZ)[x]
(xN − 1)

.

In brief, the exponents on the powers of x may be reduced modulo N in R and
Rq.
It is often convenient to identify a polynomial

a(x) = a0 + a1x+ a2x
2 + . . .+ aN−1x

N−1 ∈ R(q)

with its vector of coefficients

(a0, a1, a2, ..., aN−1) ∈ ZN .

Addition of polynomials corresponds to usual addition of vectors, but multiplica-
tion is more complicated:

Proposition 2.4. The product of two polynomials a(x), b(x) ∈ R is given by the
formula

a(x) ⋆ b(x) = c(x) with ck = Σ
i+j≡k (mod N)

aibj.

The product of the two polynomials in Rq are also given by the formula, but the
value of ck is reduced modulo q.

Definition 2.18. Let a(x) ∈ Rq. The centered lift of a(x) to R is the unique
polynomial a′(x) ∈ R satisfying

a′(x) (mod q) = a(x)

whose coefficients are chosen in the interval

−q

2
< a′i ≤

q

2
.

Proposition 2.5. Let q be prime. Then a(x) ∈ Rq has a multiplicative inverse if
and only if

gcd(a(x), xN − 1) = 1 in (Z/qZ)[x]

12

Definition 2.19. For any positive integers d1 and d2, we let

T (d1, d2) =

a(x) has d1 coefficients equal to 1,

a(x) ∈ R : a(x) has d2 coefficients equal to − 1,

a(x) has all other coefficients equal to 0,

Polynomials in T (d1, d2) are called ternary (or trinary) polynomials. They are
analogous to binary polynomials, which have only 0’s and 1’s as coefficients.

With N prime and gcd(N, q) = 1, elements in T (d, d) will never have inverses
in Rq, so T (d, d− 1) is often used.

Proposition 2.6. The L2 norms of f ∈ T (d1, d1 − 1) and g ∈ T (d2, d2) are:

| f |=
√
2d1 − 1−N−1 | g |=

√
2d2

2.4 The NTRU Algorithm
The NTRU algorithm, also referred to as NTRUEncrypt, is a public key encryp-
tion system that makes use of public parameters to generate private and public
keys. The algorithm is presented through describing an encryption and decryption
procedure between two individuals, Alice and Bob:

A trusted party choses public parameters (N, p, q, d) with N and p prime, gcd(p, q) =
gcd(N, q) = 1, and q > (6d+ 1)p.

Alice:

• Chooses private g ∈ T (dg, dg).

• Chooses private f ∈ T (df , df − 1) that is invertible in Rq and Rp.

• Computes Fq, the inverse of f in Rq.

• Computes Fp, the inverse of f in Rp.

• Publishes the public key h = Fq ⋆ g.

13

Bob:

• Chooses plaintext m ∈ Rp.

• Chooses a random ephemeral key r ∈ T (dr, dr).

• Uses Alice’s public key h to compute e ≡ pr ⋆ h + m (mod q).

• Sends ciphertext e to Alice.

Alice:

• Computes f ⋆ e ≡ pg ⋆ r + f ⋆ m (mod q).

• Centerlifts to a ∈ R and compute m ≡ Fp ⋆ a (mod p).

2.4.1 Cryptanalysis of NTRUEncrypt

The restriction that q > (6d + 1)p set for the NTRU algorithm is necessary for
guaranteed successful decryption because of one step. The centerlift from f ⋆ e ∈
Rq to a ∈ R. The restriction guarantees that the magnitude of every coefficient of
f ⋆ e is strictly smaller than q/2 [1]. Because of this, a = f ⋆ e, not just modulo q.

If one finds an approximation f′ of f, it can be used to decrypt e, as long as
f′ ⋆ e is not reduced modulo q:

h = Fq ⋆ g
e = pr ⋆ h + m (mod q)

aq = f′ ⋆ e ≡ f′ ⋆ pr ⋆ h + f′ ⋆ m (mod q)

(Centerlift aq from Rq to a ∈ R).
F′
p ⋆ a ≡ F′

p ⋆ f′ ⋆ m ≡ m (mod p)

The restriction on q covers for the worst-case scenario of the coefficients value
in f ⋆ e, so it’s possible to successfully decrypt a message, even with a weaker
restriction. In this scenario, it becomes a matter of probability for the chance that
the coefficients of f ⋆ e exceeds q/2.

14

Don Coppersmith and Adi Shamir wrote an article [6] where they study NTRU-
Encrypt as a lattice problem and makes estimations on the probability that an ap-
proximation of f can successfully be used for decryption, and to what degree they
would fail. They summarize that the norm of f should not be too short compared
with other vectors in the lattice, as it would be easy to find, but still sufficiently
shorter than the other vectors, so that they can not be used to gain insight into an
encryption. They also state that such a security would vanish with improvements
to techniques for lattice basis reduction.

Another security risk of the NTRUEncrypt is using the same ephemeral key
on two different messages, or encrypting the same message using two different
ephemeral keys. By looking at the difference between the encrypted messages,
you can find a lot of information about the ephemeral keys with relatively few
encryptions of the same message:
Let ei = pri ⋆ h+m be the i-th encryption of the same message m. Then

(ei − e1) ⋆ h
−1 ≡p(ri − r1) ⋆ h ⋆ h−1 + (m−m) ⋆ h−1 ≡ p(ri − r1) (mod q)

If sent a moderate amount of times (4 or 5), an attacker will be able to gain enough
information to realistically find the message using brute force methods. [1]

2.4.2 NTRU: A ring-based public key cryptosystem

A possible method to break NTRUEncrypt is through calculating an LLL-reduction
of a lattice-matrix with the form

α 0 · · · 0 h0 h1 · · · hN1

0 α · · · 0 hN−1 h0 · · · hN−2

.
.

.
0 0 · · · α h1 h2 · · · h0

0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0

.
.

.
0 0 · · · 0 0 0 · · · q

,

where hi is the i-th coefficient in the public key, q is the public parameter, and
α is a variable chosen to fit the public parameters. If the reduction algorithm is
sufficiently precise, one can find a short vector whose length is close enough to
the original vector that it can be used for decryption.

In “NTRU: A ring-based public key cryptosystem,” [5] three choices of pa-
rameters are presented as different levels of security:

15

Moderate Security

(N, p, q) = (107, 3, 64)

f ∈ T (15, 14) g ∈ T (12, 12) r ∈ T (5, 5)

High Security

(N, p, q) = (167, 3, 128)

f ∈ T (61, 60) g ∈ T (20, 20) r ∈ T (18, 18)

Highest Security

(N, p, q) = (503, 3, 256)

f ∈ T (216, 215) g ∈ T (72, 72) r ∈ T (55, 55)

The security of the system was tested through the use of an improved version
of the LLL-algorithm, called BKZ. The algorithm was applied to a lattice-matrix
of the form shown above, where the value of α was adjusted to optimize the effi-
ciency of an attack. When the algorithm is applied to a matrix, there is an option
to adjust certain parameters. The article chooses to focus on the “block size” pa-
rameter, which appears to have the strongest effect on precision and running time.
The article also describes how the ratio c, between the length of the target vectors
and the Gaussian expected shortest length can affect the reduction time, executing
faster as c becomes smaller. Two versions of BKZ was considered as well: The
floating point version, and the QP1-version, where QP1 yielded a higher preci-
sion.
The data from the tests presents the running time of the algorithm, the dimension
N of the lattice, the block size parameter, and a comparison of the norms of the
found vectors to the target vectors. Data is presented from three cases, represent-
ing levels of security, with different values of q and c. For each case it is presented
running times for multiple attempts as, for increasing values of the dimension, the
block size is increased until a sufficiently close approximation of the target vector
is found.

16

2.5 Streamlined NTRU Prime
Parameters:

p: a prime number
q: a prime number
w: a positive integer

Definition 2.20. The rings (Z)[x]
(xp−x−1)

, (Z/3Z)[x]
(xp−x−1)

, and the field (Z/qZ)[x]
(xp−x−1)

are abbre-
viated as R, R/3, and R/q respectively. An element of R is small if all of its
coefficients are in {−1, 0, 1}, and it has weight w if it has exactly w nonzero co-
efficients. A set, Short, is defined as the set of all small, weight-w elements of
R.

Definition 2.21. The set Rounded is defined as the set of polynomials r0+ r1x+
...+ rp−1x

p−1 ∈ R where each coefficient ri is in

{−(q − 1)/2, ...,−6,−3, 0, 3, 6, ..., (q − 1)/2}

for q ∈ 1 + 3Z, or in

{−(q + 1)/2, ...,−6,−3, 0, 3, 6, ..., (q + 1)/2}

for q ∈ 2 + 3Z.

Definition 2.22. Round : R/q → Rounded is defined as: if

ai ∈ {−(q − 1)/2, .., (q − 1)/2}

, and ri is the element of 3Z that is closest to ai, then

Round(a0 + a1x+ ...+ ap−1x
p−1 = r0 + r1x+ ...+ rp−1x

p−1)

. Note that Round(r) = r + e for some small e ∈ R.

2.5.1 The key-generation algorithm:

• Generate a uniform random small element g ∈ R. Repeat this step until g
is invertible in R/3.

• Compute v = 1/g in R/3

• Generate a uniform random f ∈ Short

• Compute h = g/(3f) in R/q.

• h is your public key, and (f, v) are your secret keys.

17

2.5.2 The encryption algorithm:

• Let r ∈ Short represent a message.

• Compute hr ∈ R/q.

• Compute c = Round(hr) ∈ Rounded.

• Your encrypted message is c.

2.5.3 The Decryption algorithm:

• Compute 3fc ∈ R/q.

• Lift 3fc so that each integer is between −(q− 1)/2 and (q− 1)/2, and then
reduce modulo 3 to get a polynomial e ∈ R/3.

• Multiply e by v in R/3.

• Lift ev to a small polynomial r′ ∈ R.

• If r′ has weight w, output the message.

2.5.4 Cryptanalysis of Streamlined NTRU Prime

In the same way as NTRUEncrypt, successful decryption of a message sent in
Streamlined NTRU Prime is dependent on that the coefficients in a certain step of
the decryption does not exceed a value at which they will be reduced modulo q.
If one can find an approximation f ′ of f , such that 3f ′c is not reduced modulo q,
then:

h = g/(3f) ⇔ g = 3hf

c = Rounded(hr) = hr +m, where e is small
aq = 3f ′c = 3f ′hr + 3f ′e

(Centerlift aq from R/q to a ∈ R)
1/(3hf ′) ∗ a ≡ 3f ′hr/(3hf ′) ≡ r (mod 3)

In the submission document ”NTRU Prime Round 3” [7] the condition for the
coefficients of 3fc is ensured from the restriction that q ≥ 16w + 1 through a
proved theorem that states the coefficients of 3fc = 3fe + gr lies in the interval
[−8w, 8w], when f, g, r and m are small.

18

3 Method
The calculations done in this article are done using the software SageMath 9.5 in
a Jupyter setup. The computer that made the calculations had a AMD Ryzen 7
5800X 8-Core Processor with a clock frequency of 3.80 GHz.

3.1 Programming in SageMath
In order to better understand and use the NTRU system, it was attempted to recre-
ate encryption algorithms with SageMath. Three programs were coded. The first
program attempts a simple encryption and decryption with the NTUREncrypt al-
gorithm. The second program also attempts a simple encryption and decryption,
but with the Streamlined NTRU Prime algorithm. The third program is a modifi-
cation to the first, where a message is encrypted with NTRUEncrypt and then is
attacked using the BKZ-function in SageMath.

3.1.1 Encryption and decryption with NTRUEncrypt

Exact code is shown in Appendix 7.1.

The rings used for the system was defined as quotient rings over integer rings with
the appropriate modulo. A ring like this could be applied to a list of coefficients,
or to a polynomial of an integer ring. However, to convert from a polynomial from
a quotient ring, it was necessary to do a lift on the polynomial first. A general lift
was often used to convert between quotient rings, but the algorithm required a
centered lift in certain steps to ensure correct decryption, as can be seen in fig-
ure 8. To generate ternary polynomials, a list was created with the appropriate
number of 1s and (-1)s and then shuffled. The list would represent a vector of the
coefficients to the polynomial. The private keys was randomly generated through
a defined function, but the message was manually written into the code to more
easily confirm the outcome.

NTRUEncrypt uses rings on the form Z[x]/q
(xN−1)

, where q is a power of 2. This
presented a challenge, because a function to find an inverse to a non-field in Sage-
Math was not found. The solution [8] was to first find the inverse modulo 2, and
then “lifting” the inverse to the inverse modulo the last modulus squared. This is
done until you have an inverse modulo a number greater than or the same as q, and
then the found inverse is reduced modulo q, which gives the appropriate inverse.

19

3.1.2 Encryption and decryption with Streamlined NTRU Prime

The code for Streamlined NTRU Prime was written with SageMath online through
the website https://cocalc.com/. The online version was not as fast as the
downloaded version, but it was sufficient since the running time was not consid-
ered with Streamlined NTRU Prime. The exact code is shown in Appendix 7.2.

The code was done in a similar way to what was used for NTRUEncrypt, but
with different values and requirements for parameters. An important detail is that
p now determines the dimension, while the ring earlier defined by the variable p is
now held constant to be modulo 3. Another difference is that ternary polynomials
are now generated with a specified weight, instead of specific numbers of 1s and
(-1)s. The encryption step of the algorithm is fairly simple, as it only rounds the
product of the message and public key to the closest multiple of 3. Centered lifts
are required in the decryption steps in the same way as with NTRUEncrypt.

3.1.3 Attack on NTRUEncrypt

Exact code is shown in Appendix 7.3

The code for the attack makes use of the code for the normal encryption and
decryption, however it was condensed for the purpose of being able to run sev-
eral attacks with different values of beta, without having to generate new keys for
every attempt. The parameters used are adjusted for each attack to both increase
the efficiency of the attack and to test different levels of security. The ratio c is
taken into consideration when generating the private keys and their lengths in the
lattice are made the same, in an attempt to recreate the method used in “NTRU: A
ring-based public key cryptosystem.” [5] The steps up to the completed encryp-
tion was not changed much, as the attack is executed on the public key and the
encrypted message. After the encryption, the public key is converted to a list of its
coefficients and in the case that the coefficients of the highest powers are 0, they
are added to the list.

The lattice-matrix has four parts, were all parts can be seen as rotations of a
single respective vector. Because of this, a function to rotate the elements of a list
was made and is used to build up the matrix from the public key and parameters
of the system. However, a BKZ-function that worked with a non-integer α could
not be found, so it was replaced with 1 as this was deemed sufficient enough to
execute a working attack. Then a starting block size is determined and the QP1-
version of the BKZ-function is applied to the matrix, with the starting and ending
time being recorded. If the reduction succeeded, then a sufficiently short vector
should be found on the first row in the reduced matrix. The vector is converted to

20

https://cocalc.com/

a polynomial and checked if it is invertible, which would be false for most cases
where the reduction fails to find a sufficiently short vector. If it is invertible, then
the polynomial is used in an attempt to decrypt the encrypted message and if the
result corresponds to the original message, the code will finish and show the final
results for the attempted dimension. In the case that the short vector found is not
invertible, the block size is increased by two and a new attempt to reduce the ma-
trix is attempted. In the first attempts, the code would stop if an invertible vector
was not usable for decryption, however the code was altered as show in figure 28
to just increase the block size instead. The alteration was made for the case rep-
resenting the highest security shown in table 4 for dimension N = 90 and higher,
and for the case represented in 5. Because the target ratio c was mistakenly not
altered for the attempts shown in table 4, new attempts were made with a correct
ratio, shown in table 5.

21

4 Results
The results in the following tables was produced by generating one encryption
and repeatedly applying the BKZ-funcion to the resulting lattice, with increasing
block size for each attempt, until a vector usable for decryption was found. When
a satisfying vector was found, new attempts were started on a new encryption
with a higher dimension N . The tables show the running time for every attempt,
as well as a comparison of the norms to the shortest vector found and the original
private key. In most cases where the decryption failed, the shortest vector found
was a “q-vector”, where all elements of the vector were 0 except for one which
had the value q. This became less frequent when the parameter q became higher
and vectors slightly shorter than the q-vectors were found.

Most attacks were executed with | f |=| g |, but for the attacks presented in
table 6 dg = df − 3 and table 7 shows the results of attacks on an encryption with
the exact parameters as presented for moderate security, shown in section 2.4.2.
The attack with block size 26 was terminated when it was not finished after a week
of running the BKZ-function.

The attempts represented in table 1 and 2 were the most rigidly executed, with
the block size starting at 4 for every dimension-increase. The following attempts
on higher security levels were executed without the block size being reduced when
the dimension was increased.

22

N
Block
size

Running
time (sec)

Actual total
norm

Smallest
norm
found

Ratio of
found to
actual

75 4 3.50 6.16 64.00 10.38
75 6 5.59 6.16 64.00 10.38
75 8 6.40 6.16 6.16 1.00
80 4 4.42 6.48 64.00 9.88
80 6 7.30 6.48 64.00 9.88
80 8 9.73 6.48 64.00 9.88
80 10 11.96 6.48 6.48 1.00
85 4 6.59 6.48 64.00 9.88
85 6 7.51 6.48 64.00 9.88
85 8 14.43 6.48 64.00 9.88
85 10 16.62 6.48 64.00 9.88
85 12 21.35 6.48 64.00 9.88
85 14 28.66 6.48 6.48 1.00
90 4 6.99 6.78 64.00 9.44
90 6 9.07 6.78 64.00 9.44
90 8 12.87 6.78 64.00 9.44
90 10 16.27 6.78 64.00 9.44
90 12 20.45 6.78 64.00 9.44
90 14 40.37 6.78 64.00 9.44
90 16 63.78 6.78 64.00 9.44
90 18 61.98 6.78 64.00 9.44
90 20 94.71 6.78 6.78 1.00

Table 1: BKZ-QP1 with Q = 64, c ≈ 0.26, δ = 0.99, and prune = 0.

23

N
Block
size

Running
time (sec)

Actual total
norm

Smallest
norm
found

Ratio of
found to
actual

95 4 7.54 7.07 64.00 9.05
95 6 14.24 7.07 64.00 9.05
95 8 19.08 7.07 64.00 9.05
95 10 31.79 7.07 64.00 9.05
95 12 34.58 7.07 64.00 9.05
95 14 50.48 7.07 64.00 9.05
95 16 76.51 7.07 64.00 9.05
95 18 114.64 7.07 64.00 9.05
95 20 120.05 7.07 64.00 9.05
95 22 1144.13 7.07 7.07 1.00
100 4 14.32 7.07 64.00 9.05
100 6 16.85 7.07 64.00 9.05
100 8 20.13 7.07 64.00 9.05
100 10 39.67 7.07 64.00 9.05
100 12 49.38 7.07 64.00 9.05
100 14 73.21 7.07 64.00 9.05
100 16 80.12 7.07 64.00 9.05
100 18 127.55 7.07 64.00 9.05
100 20 199.72 7.07 64.00 9.05
100 22 3218.81 7.07 7.07 1.00

Table 2: BKZ-QP1 with Q = 64, c ≈ 0.26, δ = 0.99, and prune = 0.

24

N
Block
size

Running
time (sec)

Actual total
norm

Smallest
norm
found

Ratio of
found to
actual

75 2 2.11 7.87 128.00 16.26
75 4 4.35 7.87 128.00 16.26
75 6 5.94 7.87 7.87 1.00
80 6 8.93 8.12 128.00 15.76
80 8 16.68 8.12 8.12 1.00
85 8 16.30 8.37 128.0 15.29
85 10 21.57 8.37 126.40 15.11
85 10 17.41 8.37 128.00 15.30
85 12 39.30 8.37 8.37 1.00
90 12 38.06 8.60 128.00 14.88
90 14 46.14 8.60 128.00 14.88
90 16 59.78 8.60 8.60 1.00
95 16 61.82 8.83 128.00 14.49
95 18 80.98 8.83 8.83 1.00
100 18 91.40 9.06 128.00 14.14
100 20 216.96 9.06 128.00 14.14
100 22 2365.18 9.06 128.00 14.14
100 24 8703.01 9.06 9.06 1.00

Table 3: BKZ-QP1 with Q = 128, c ≈ 0.23, δ = 0.99, and prune = 0.

25

N
Block
size

Running
time (sec)

Actual total
norm

Smallest
norm
found

Ratio of
found to
actual

75 2 2.88 11.05 256.00 23.18
75 4 4.92 11.05 187.92 17.01
75 6 7.51 11.05 11.05 1.00
80 6 8.97 11.40 186.94 16.40
80 8 11.46 11.40 8.94 0.78
80 8 11.47 11.40 11.40 1.00
85 8 13.87 11.74 197.11 16.78
85 10 14.98 11.74 188.54 16.05
85 10 19.61 11.75 177.09 15.07
85 12 30.87 11.75 11.75 1.00
90 12 31.95 12.08 187.41 15.51
90 14 38.18 12.08 176.80 14.63
90 16 51.63 12.08 12.08 1.00
95 16 60.72 12.41 201.11 16.21
95 18 86.99 12.41 12.41 1.00
100 18 119.23 12.73 230.09 18.08
100 20 191.06 12.73 204.17 16.04
100 22 2860.60 12.73 184.21 14.47
100 24 4924.21 12.73 12.73 1.00

Table 4: BKZ-QP1 with Q = 256, c ≈ 0.23, δ = 0.99, and prune = 0.

26

N
Block
size

Running
time (sec)

Actual total
norm

Smallest
norm
found

Ratio of
found to
actual

75 2 3.24 8.60 256.00 29.76
75 4 5.22 8.60 8.60 1.00
80 4 6.33 9.06 233.41 25.78
80 6 16.68 9.06 9.06 1.00
85 6 14.45 9.27 9.27 1.00
90 6 12.19 9.49 256.00 26.98
90 8 20.36 9.49 225.25 23.74
90 10 24.00 9.49 9.49 1.00
95 10 27.07 9.70 256.00 26.40
95 12 34.71 9.70 239.29 24.68
95 14 53.87 9.70 9.70 1.00
100 14 60.05 10.10 215.17 21.30
100 16 66.50 10.10 10.10 1.00
108 16 110.98 10.49 256.00 24.41
108 18 138.72 10.49 256.00 24.41
108 20 276.46 10.49 256.00 24.41
108 22 2101.92 10.49 10.49 1.00

Table 5: BKZ-QP1 with Q = 256, c ≈ 0.18, δ = 0.99, and prune = 0.

27

N
Block
size

Running
time (sec)

Actual total
norm

Smallest
norm
found

Ratio of
found to
actual

75 2 1.53 6.08 64.00 10.52
75 4 3.97 6.08 64.00 10.52
75 6 5.42 6.08 64.00 10.52
75 8 10.08 6.08 6.08 1.00
80 8 8.09 6.40 64.00 10.00
80 10 11.78 6.40 64.00 10.00
80 12 12.10 6.40 6.40 1.00
85 12 20.50 6.71 64.00 9.54
85 14 32.75 6.71 64.00 9.54
85 16 42.15 6.71 64.00 9.54
85 18 86.60 6.71 6.71 1.00
90 18 63.12 6.71 6.71 1.00
95 18 74.51 7.00 64.00 0.26
95 20 238.11 7.00 64.00 0.26
95 22 1440.97 7.00 64.00 0.26
95 24 2262.33 7.00 7.00 1.00

Table 6: BKZ-QP1 with Q = 64, c ≈ 0.26, δ = 0.99, and prune = 0.

N
Block
size

Running
time (sec)

Actual total
norm

Smallest
norm
found

Ratio of
found to
actual

107 22 1547.75 7.28 64.00 8.79
107 24 38391.30 7.28 64.00 8.79
107 26 630610.59 7.28 n/a n/a

Table 7: BKZ-QP1 with Q = 64, c ≈ 0.26, δ = 0.99, and prune = 0.

28

5 Discussion
The running time on a modern computer was a lot faster, as expected. The BKZ-
algorithm would finish up to several hundred times faster than what was presented
in the article from 1998, as shown in table 8. By itself, this could give an expec-
tation that attacks on the security levels presented in the article could succeed in
a short time. However, when attempts on encryptions of higher dimensions was
executed, the running time would increase drastically. A part of the reason for
this was the need to increase the block size to succeed in finding a suitable vector
with the BKZ-function. The attacks in the article would in several cases find a
suitable vector with a lower block size than the attempts done for this thesis, es-
pecially when q = 64. There was found no certain explanation for the difference,
but some aspects in the setup of the encryption should be considered:

• The code follows the algorithm in making the generated private keys ran-
dom. Because the target vectors and the lattices based on these vectors are
random, it is natural to cause some differences between attacks, even though
they are based on the same parameters. The article also presents results from
2 rounds of attacks with the same parameters to address this point. In the
presented results the running time was different for the rounds, and one can
also observe that the function sometimes executed faster after an increase in
dimension or block size, like what can be seen with N = 85− 90 in table 3.

• The form of the lattices for the attacks presented in this thesis are slightly
different from those presented in the article. The value α in the lattice-
matrix was replaced with 1. Even though the values of α presented in the
article was close to 1, it can be hypothesized that the effect it had on the
form of the lattice affected the running time.

The block size necessary to find a usable vector seem to be the requirement
that most affected the time needed to break an encryption, as it has an exponential
effect on the running time of the BKZ-algorithm. [5] This seem to have become a
supportive layer of security for the NTRU system. Comparing the running times,
as shown in table 8, the running time of the BKZ-function could be several hun-
dred times faster on a modern computer, but when comparing the fastest attacks in
the highest dimensions, the largest ratio found was 69.38. The block size neces-
sary to succeed in an attack is decided by the keys generated from the algorithm,
and increases with the dimension of the lattice. It is not affected by the processing
power, so although the development of processing power in newer computers have
a significant effect on the running time, it is still not enough to become unaffected
by the exponential increase from the required block size.

While the differences noted above should be taken into consideration, it is still

29

interesting to note that the attempt at breaking the encryption generated at mod-
erate level security did not succeed even after 7 days, close to the predicted time
from the original article, which was 9 days.

In table 4, the outcome of N = 80 with block size 8 stands out. The BKZ-
algorithm found a vector smaller than the target vector. The vector was not invert-
ible, so it could not be used for decryption, and the code was reset to generate a
new encryption. It was not checked at the time, but because the BKZ-algorithm
sorts vectors starting with the smallest, it is possible that a vector that was appro-
priate for decryption could be found in another row of the reduced matrix.

When attempting to attack encryptions where q = 256, the BKZ-function were
able to frequently find vectors smaller than q-vectors. Some of the keys from these
vectors were invertible, but they failed to fully decrypt the message and was dis-
regarded to find a closer approximation to the target vector. Even though these
vectors did not succeed in decrypting the message perfectly, a partial decryption
can still hold value in cryptanalysis and the frequent appearance of these vectors
may have to be considered in regards to security of NTRUEncrypt in higher di-
mensions. However, none of the vectors in question from the tables above have a
norm close to or lower than q/4, so the risk they impose should be negligible. [6]

Q N
Running
time, new
(sec)

Running
time,
original
(sec)

Ratio,
running
time

Block
size,
new

Block
size,
original

64 75 6.40 1604 250.63 8 6
64 80 11.96 3406 284.78 10 8
64 85 28.66 5168 180.32 14 16
64 90 94.71 18920 199.77 20 18
64 95 1144.13 62321 54.47 22 22
64 100 3218.81 183307 56.95 22 22
128 75 5.94 3026 509.43 6 8
128 80 16.68 5452 326.86 8 10
128 85 39.30 10689 271.98 12 12
128 90 59.78 20195 337.82 16 16
128 95 80.98 57087 704.95 18 20
128 100 8703.01 109706 12.61 24 20
256 108 2101.92 145634 69.38 22 22

Table 8: Comparison of running time and block size for a selection of attacks from
table 1, 2, 3, 5 and tables in ”NTRU: A ring-based public key cryptosystem.” [5]

30

6 Conclusion
Attacks on NTRUEncrypt using a modern computer was executed and presented.
A comparison was made to the data found in “”NTRU: A ring-based public key
cryptosystem.” As expected, there was a significant reduction in running time
when executing an attack on a modern computer, however the ratio between run-
ning times seemed to grow smaller as the dimension of the lattice increased. An
attempt to break an encryption using parameters presented as moderate security
was made, but was terminated after running for a week without completing, a time
close to the expected running time in the article.

Even though NTRU has developed into newer and more advanced systems,
such as NTRU Prime, it is interesting to see that even the starting point of these
systems can still withstand more than brute-force attacks after 20 years. With the
system being resistant to quantum-computers as well, one can understand that it
gets attention in the current cryptoglogcial community.

31

References
[1] J. H. Silverman, J. Pipher, and J. Hoffstein, An introduction to mathematical

cryptography, vol. 1. Springer, 2008.

[2] R. L. Rivest, “Cryptography,” in Algorithms and complexity, pp. 717–755,
Elsevier, 1990.

[3] E. M. Guizzo, The essential message: Claude Shannon and the making of
information theory. PhD thesis, Massachusetts Institute of Technology, 2003.

[4] W. Easttom, Modern Cryptography: Applied Mathematics for Encryption and
Information Security. Cham: Springer International Publishing AG, 2022.

[5] J. Hoffstein, J. Pipher, and J. H. Silverman, “Ntru: A ring-based public key
cryptosystem,” in Algorithmic Number Theory: Third International Sym-
posiun, ANTS-III Portland, Oregon, USA, June 21–25, 1998 Proceedings,
pp. 267–288, Springer, 2006.

[6] D. Coppersmith and A. Shamir, “Lattice attacks on ntru,” in Advances in
Cryptology—EUROCRYPT’97: International Conference on the Theory and
Application of Cryptographic Techniques Konstanz, Germany, May 11–15,
1997 Proceedings 16, pp. 52–61, Springer, 1997.

[7] D. J. Bernstein, B. B. Brumley, M.-S. Chen, C. Chuengsatiansup, T. Lange,
A. Marotzke, B.-Y. Peng, N. Tuveri, C. Vredensdaal, and B.-Y. Yang,
“Ntru prime: round 3.” https://ntruprime.cr.yp.to/nist/
ntruprime-20201007.pdf, 2020. Accessed: 2023-03-30.

[8] J. L. (https://math.stackexchange.com/users/11619/jyrki lahtonen), “Polyno-
mial ring over finite field - inverting a polynomial non-prime.” Mathematics
Stack Exchange. URL:https://math.stackexchange.com/q/2650663 (version:
2018-02-15).

32

https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf

7 Appendices

7.1 Appendix A
Code in Jupyter using SageMath to make a simple encryption and decryption with
the NTRU system.

Figure 1: Imported libraries

Figure 2: Defining parameters

Figure 3: Output from code in figure 2

33

Figure 4: Defining a function to generate coefficients for a ternary polynomial

Figure 5: Defining a function to find the inverse mod a power of 2

34

Figure 6: Generating private keys f and g, and the public key h, and calculating
the necessary inverses

Figure 7: Encryption of a chosen message using the public key and a generated
ephemeral key

Figure 8: Decryption of the encrypted message using the private key f and its
inverse

35

7.2 Appendix B
Code in cocalc using SageMath to make a simple encryption and decryption with
the Streamlined NTRU Prime system.

Figure 9: Imported libraries

Figure 10: Defining parameters

36

Figure 11: Defining function to generate random coefficients for ternary polyno-
mial

37

Figure 12: Generating private keys f and g, and the public key h, and calculating
the necessary inverses

38

Figure 13: Encrypting a simple message in Streamlined NTRU Prime

Figure 14: Decryption of the encrypted message using the private keys

39

7.3 Appendix C
Code in Jupyter using SageMath to execute and record running time of an attack
for one dimension of an encryption from the NTRUEncrypt algorithm.

Figure 15: Imported libraries

Figure 16: Defining a function to generate coefficients for a ternary polynomial

40

Figure 17: Defining a function to find the inverse mod a power of 2

41

Figure 18: Defining a function to generate a lattice-matrix from input values

42

Figure 19: Defining a function to calculate the L2 norm of a vector

43

Figure 20: Defining and adjusting parameters

44

Figure 21: Output from code in figure 20

Figure 22: Generating private keys f and g, and the public key h, and calculating
the necessary inverses

Figure 23: Encryption of a chosen message using the public key and a generated
ephemeral key

45

Figure 24: Generating a lattice-matrix from the public key and the public param-
eters

Figure 25: Applying the BKZ-function, retrieving the found vectors, and calcu-
lating data about the norms of the found and target vectors

46

Figure 26: Decrypting with an invertible found key and printing results

Figure 27: Output from code in figure 25 and 26

47

Figure 28: Altered form of 26, adapted to consider unusable vectors with inverses

48

	b78c20c1-8209-4b10-afc7-2aa909e369fd.pdf
	Introduction
	Theory
	Basic definitions
	LLL-Algorithm
	Gram-Schmidt Algorithm
	LLL-Algorithm

	Definitions needed for the NTRU algorithm
	The NTRU Algorithm
	Cryptanalysis of NTRUEncrypt
	NTRU: A ring-based public key cryptosystem

	Streamlined NTRU Prime
	The key-generation algorithm:
	The encryption algorithm:
	The Decryption algorithm:
	Cryptanalysis of Streamlined NTRU Prime

	Method
	Programming in SageMath
	Encryption and decryption with NTRUEncrypt
	Encryption and decryption with Streamlined NTRU Prime
	Attack on NTRUEncrypt

	Results
	Discussion
	Conclusion
	Appendices
	Appendix A
	Appendix B
	Appendix C

