
www.usn.no

TS3000 Bacheloroppgave IRI

Image Processing on the Edge

Group 6 - Aerial Edge

Faculty of Technology, Natural Sciences and Maritime Sciences
Campus Kongsberg

http://www.usn.no

2

www.usn.no

Course: TS3000 Bacheloroppgave IRI
Title: Image Processing on the Edge

This report forms part of the basis for assessing the student’s performance on the course.

Project group: Group 6 - Aerial Edge

Group participants: SINDRE NES,
EVEN JØRGENSEN,
ABDUL MAJEED ALIZAI,
ÅDNE KVÅLE,
MARTIN BØRTE LIESTØL,
JON JAHREN

Supervisor: JAN DYRE BJERKNES
Project partner: Kongsberg Defence & Aerospace

Summary:
The Local Hawk drone project, using Single Board Computers (SBCs), is struggling with
tasks like motor control and object detection due to the limitations of the SBCs. To address
these issues, this project examined four different hardware and software setups for better
object detection in lightweight drones. We evaluated each setup based on how accurately
they could detect objects, how quickly they could process images, their power usage, weight,
and how complex they were to set up and use. The study highlighted the need to carefully
choose the right setup to get the best performance in object detection. This research provides
valuable insights into image processing for lightweight drones, which could benefit the Local
Hawk project and similar efforts.

The University of South-Eastern Norway accepts no responsibility for the results and
conclusions presented in this report.

http://www.usn.no

Acknowledgements

We’d like to say a big thank you to our supervisors, Jan Dyre Bjerknes and Henning
Gundersen. Their advice and support really helped us get through this project.

Additionally we would like to thank our university and our department for providing us
with the resources and environment to learn and carry out this project. The opportunities
and support we’ve received here have been invaluable.

4

Abstract

The Local Hawk drone project, currently using Single Board Computers (SBCs), faces
difficulties in simultaneous task execution such as motor control and object detection due
to the limitations of the SBCs. The necessity to improve frame rates and efficiency led to
an exploration of various hardware and software configurations.

The primary aim of the research was to evaluate and compare four different configurations
to optimize object detection capabilities in lightweight Unmanned Aerial Vehicles (UAVs).
The key areas of focus were processing power, accuracy, and energy efficiency.

The study conducted an exhaustive benchmarking of four hardware and software config-
urations, evaluating them on various parameters such as detection accuracy (precision,
recall, and F1-score), frame rate, power consumption, weight efficiency, and complexity
of setup and operation.

The analysis demonstrated the importance of carefully selecting hardware and software
configurations to achieve optimal object detection performance within the constraints
of lightweight UAVs. It was found that configurations varied greatly in their precision,
recall, and F1-scores, with different trade-offs between frame rate and power consumption.
Additionally, weight efficiency and complexity of setup and operation played crucial roles
in determining the overall suitability of each configuration.

This research significantly contributes to the understanding of edge image processing for
lightweight UAVs, serving as a foundation for future investigations in this area. The
results hold practical relevance for the Local Hawk project and similar endeavors aiming
to enhance the capabilities of lightweight UAVs in applications ranging from surveillance
to search-and-rescue operations.

Keywords: Single Board Computers (SBC), Local Hawk, Unmanned Aerial Vehicles
(UAV), object detection, frames-per-second (FPS), edge image processing, hardware con-
figuration, software configuration, lightweight UAV technologies.

Kongsberg, 22nd May 2023

5

Contents

Acknowledgements

Abstract

Contents
List of Figures .

Introduction
. Introduction .
. Problem Domain .
. Research Perspective .

Process
. Project Tools .

. . Github .

. . Taiga .

. . Overleaf .

. . ChatGPT .

. . Microsoft Suite .
. Risk Analysis .

Configurations
. Hardware Selection Process .

. . nVidia Jetson Nano .

. . Coral Edge TPU .

. . Raspberry Pi B & Zero .

. . Pi Camera modules .
. Operating System and System Software Decision Process

. . Raspberry Pi and Zero .

. . Jetson Nano System Software Configuration

. . -bit vs. -bit .
. Proposed architectures .

. . Initial Proposal .

. . Second proposal .

. . Accepted architectures .

6

Contents

. Object detection software .

. Distance Measurement .

. Proposed Operating System and System Configuration

. Image processing modules .
. . Configuration , Jetson Nano .
. . Configuration , Pi w/ Coral Edge TPU
. . Configuration , Pi Zero w/ Coral Edge TPU
. . Configuration , Pi .

. Configurations, full context .
. . ROS integration .
. . UAV side project .

. Drone architecture .
. . Flight controller firmware setup .
. . Communication software setup .

. Exploring Use cases .
. . Qualisys and drone tracking .

Measurements
. Config .
. Config & Config .

. . EfficientDet Lite .

. . EfficientDet Lite .

. . USB . vs. USB .
. Config .

Conclusion

References

A Hardware
A. Specification tables for configs .

A. . Config .
A. . Config .
A. . Config .
A. . Config .
A. . Comparison .

A. Single-board computer (SBC) .
A. Camera .

A. . Rolling vs. Global shutter .
A. . Camera drivers .

A. Hardware Acceleration for ML Inference .
A. . Google Coral TPU .

A. Flight controller .

7

Contents

B UAV
B. Flight controller .

B. . Firmware .
B. . MAVLink .
B. . Drone simulation .

B. Drone implementation .

C Config Code Explanation and Analysis
C. Blob detection.v .
C. Blob detection.v .
C. Blob detection.v .
C. Blob Detection.v Evaluation .

D Config Source code
D. Blob Detection.v .
D. Blob Detection.v .
D. Blob Detection.v .

E ROS to ROS
E. Translating from ROS to ROS .

E. . Syntax Changes .
E. . Architecture .

F Yolo training Tutorial

G Source code, ROS nodes
G. Source code, ROS nodes .

G. . Image processing, configuration .
G. . Image processing, configuration /
G. . Object follower .
G. . Image Processing, configuration .
G. . Drone Position Estimation .
G. . Image Processing, configuration (Code Only)

H Tensorflow Lite Model Maker script
H. Tensorflow Lite Model Maker script .

I Team
I. Team Members .

8

List of Figures

3.1 Hermenutic Spiral [5] . 14

4.1 Sprint organization [6] . 16
4.2 Taiga Interface . 18
4.3 Risk table . 21
4.4 Risk Matrix [10] . 22

5.1 Jetson nano [12] . 25
5.2 Coral USB accelerator [13] . 25
5.3 Proposed Operating System Configuration 28
5.4 Example ROS2 graph . 29
5.5 Docker architecture . 31
5.6 Decision Process OS . 32
5.7 Decision Process Distribution . 33
5.8 Jetson Nano Decision Map . 36
5.9 End Result Jetson Nano Architecture . 37
5.10 Initial architecture design . 39
5.11 Image processing modules . 40
5.12 Four distributed and one centralized architecture 41
5.13 Hardware architectures accepted by client 42
5.14 Initial software architecture design . 43
5.15 Finished Overview System Configuration 46
5.16 Hardware architecture, config 1 . 48
5.17 Visual representation of the journey . 49
5.18 Deepstream app config file, source0 . 51
5.19 config_infer_primary_YoloV5.txt, custom model 51
5.20 YoloDET before . 53
5.21 YoloDET after . 54
5.22 Selecting our model . 54
5.23 extracting metadata original . 54
5.24 extracting metadata modified . 54
5.25 Hardware architecture, config 2 . 56
5.26 Pascal VOC .xml contents (left), corresponding image (right) 58
5.27 Software, config 2 . 59
5.28 Hardware architecture, config 3 . 60

9

List of Figures

5.29 Hardware architecture, config 4 . 60
5.30 Config model, config 4 . 62
5.31 ColorFinder object, config 4 . 63
5.32 BlobDetection.v2, config 4 . 64
5.33 Trying different HSV combinations . 65
5.34 ROS2 node description . 67
5.35 Hardware architecture including the flight controller and ESCs 68
5.36 Dataflow during test scenario . 70
5.37 Estimated drone position vs Qualisys tracking data 73

6.1 Results represented in spider diagrams . 79
6.2 Yolov5 nano versus small model FPS . 80
6.3 EfficientDet Lite 0 on various Raspberry Pies 81
6.4 EfficientDet Lite 1 on various Raspberry Pies 82
6.5 EfficientDet Lite 0 compared to EfficientDet Lite 1 on Raspberry Pi 4B . . 83
6.6 EfficientDet Lite 0, USB 3.0 vs 2.0 on RPi 4B 84
6.7 EfficientDet Lite 1, USB 3.0 vs 2.0 on RPi 4B 85
6.8 FPS, Configuration 4 . 86

A.1 libcamera-vid piping video to gstreamer 99
A.2 v4l2src (RaspiCam) feeding video to gstreamer 99
A.3 Coral USB accelerator [13] . 100
A.4 Showcase of MATEKSYS H743-SLIM, from mateksys.com [1] 101

B.1 ArduPilot logo, from ardupilot.org [2] . 102
B.2 SITL with Gazebo . 106
B.3 Photo of drone from top . 107
B.4 Photo of drone from left . 108
B.5 Photo of drone from right . 109
B.6 Photo of drone from front . 110
B.7 Photo of drone hovering in the air . 111
B.8 Photo taken from drone’s perspective doing object detection 112

10

Introduction

. Introduction

We are a team of six computer engineering students from the University of South-Eastern
Norway, Campus Kongsberg. Our bachelor assignment was given to us by Kongsberg
Defence & Aerospace (KDA), a Norwegian technology company headquartered in Kongs-
berg. KDA specializes in manufacturing equipment for defense, space exploration, and
aviation.[3]

Our client conducts a student-centered initiative known as ’Local Hawk’, which is opera-
tional during the summer. The main focus of this initiative is to investigate a variety of
methods for fostering the development of autonomous drones. The client has expressed
an interest in our project with the aim of garnering insightful data that could be ap-
plied to future deliberations concerning the architectural design of these unmanned aerial
vehicles, with special emphasis on Frames-Per-Second (FPS), as this is the most crucial
and important aspect.

The drone systems traditionally used in the Local Hawk project has limited computing
power and restrictions on weight. KDA expressed an interest in doing a research project
for our assignment, where we would examine any potential performance gains by moving
the processing closer to the sensor hardware, meaning we will be using dedicated hardware
for image processing.

. Problem Domain

The drones being used in the Local Hawk project today use what we call Single Board
Computers (SBC). These devices are usually created in a small form factor, and due to
their limited size, they are also limited in processing capabilities. This means that it has
challenges performing several tasks simultaneously, e.g., controlling the drone motors and

11

3 Introduction

executing object detection at the same time.

In earlier iterations of Local Hawk they attempted to run object detection while flying
the drone at the same time on a single SBC. This resulted in very low framerate which
in turn meant that it could not be used for any meaningful purpose. The reason for this
is that processing camera images can be computationally expensive. For instance, if we
need to process a 24-bit color image with a 600x600 resolution pixel-by-pixel, we would
have to handle 360,000 pixels, each with 3 color channels, resulting in an input data size
of 1,080,000 bytes per image. This poses a challenge for the limited hardware available
for a lightweight drone.

The primary objective of this study is to meticulously evaluate various software and hard-
ware architectures for a compact UAV equipped with object detection capabilities. We
will place a particular emphasis on identifying the potential frames-per-second (FPS)
improvements attainable on our systems, as this is our main focus. Each architecture
will be critically analyzed and compared based on parameters such as performance, cost,
complexity, and weight.

While the aspiration of implementing these architectures in an actual UAV or drone sys-
tem is considered as a secondary or stretch goal, the core of our research will provide
valuable insights and recommendations. These recommendations will cater to the techno-
logy selection process when designing lightweight UAVs for diverse applications requiring
object detection capabilities. By doing so, our findings are expected to significantly con-
tribute to the design of efficient and effective UAV systems.

In the context of the Local Hawk project, image processing is particularly essential when
considering the use case of ”Autonomous Landing”. UAVs operate in diverse environ-
ments with various terrains and conditions, making precise and safe landings a challenge.
Through image processing, the drone can significantly enhance its autonomous landing
capabilities. One such improvement is the incorporation of visual markers to indicate
the designated landing spot. By identifying these markers, the drone can ascertain the
designated landing spot, ensuring a more precise and controlled landing.

. Research Perspective

In our initial discussions with the client, it was clearly communicated that they desired a
research report containing actionable information for decision-making, provided our find-

12

3 Introduction

ings indicate the potential for a successful endeavor.

This presented challenges for us, as we lacked prior experience with research-focused pro-
jects. Consequently, we needed to adapt our approach in order to comprehend how best
to organize and execute our work, ensuring optimal delivery of results.

During the initial stages of the project, we deliberately refrained from immediately enga-
ging with specific technologies or embarking on the development of a product in a domain
where our knowledge was limited. Instead, we adopted a hermeneutic process, which is
not commonly employed in engineering or systems engineering. However, this method-
ology proves valuable when dealing exclusively with knowledge and information, rather
than specific implementations.[4]

The diagram of the hermeneutic spiral presented below illustrates the practical applica-
tion of this concept. As our understanding of the problem domain deepens, we gained
the ability to formulate more refined inquiries regarding the information that is relevant
to us and the client. This enhanced understanding guided us in approaching the problem
domain with the aim of achieving the desired results.

13

3 Introduction

Figure 3.1: Hermenutic Spiral [5]

14

Process

In this section, we will outline and explain how we transitioned from our initial phase and
organized our project in order to facilitate work on practical implementation. We will
explain which tools we utilized and methodology we used to achieve our results.

While the hermeneutic methodology facilitated invaluable insights during the explorat-
ory stage of our project, its emphasis on interpretation and understanding proved less
applicable when transitioning from knowledge acquisition to knowledge application. The
hermeneutic approach, with its focus on understanding texts or phenomena in depth,
provides a foundation for comprehensive understanding rather than prioritizing explicit
task completion. Consequently, as the project shifted to a phase demanding direct ac-
tion and the tangible execution of tasks, the inherent characteristics of the hermeneutic
approach were less aligned with these new requirements. Therefore, to maintain project
efficiency during the implementation phase, it became necessary to consider alternative
methodologies more attuned to the objectives of this new stage.

We decided that our project demands were best met using an agile methodology. This
methodology is an iterative approach to software development and project management
that emphasizes flexibility, collaboration, and client satisfaction. It advocates adaptive
planning, evolutionary development, early delivery, continual improvement, and encour-
aging rapid and flexible response to change. Agile methods break tasks into smaller
increments with minimal planning and do not directly involve long-term planning. This
methodology prioritizes direct communication over extensive documentation, producing
working software that evolves through a collaborative effort between self-organizing cross-
functional teams.

15

4 Process

Figure 4.1: Sprint organization [6]

An agile workflow has a number of key terms and features, and there are several different
ways to conduct an agile project. Common for all of these, however, is that these projects
are divided into short work cycles known as iterations or sprints, typically lasting between
one and four weeks. Each sprint has a defined goal and a set of tasks to be completed.
We decided that for our project we would not adhere to a strict definition, e.g., scrum.
Instead, we opted to pick and choose between different features that made the most sense
for our project, and to make sure that we utilized the most prominent features that are
essential to an agile project. These features were: sprint, sprint backlog, daily stand-up
meetings, and retrospective.

Following the agile methodology, we decided to have daily stand-up meetings where we
would update the group on our individual progress. We organized our sprints to last one
week at a time, where we had an initial meeting on Monday to set up our tasks for the
week, and a meeting at the end of the week where we updated our client on where we were
in terms of progress. In the end-of-week meetings, the client was invited to give feedback
on which tasks they wanted us to prioritize going forward into the next sprint.

16

4 Process

. Project Tools

. . Github

We needed a way to organize and collaborate on code, and essential to this is Source Code
Management (SCM), and for this purpose, our choice fell on git. Git is a distributed SCM,
originally developed for use on the Linux kernel, but has since gained a significant market
share and is now the dominant SCM. Git’s primary function is to enable developers to cre-
ate different versions of their projects and switch between these versions seamlessly. This
means that developers can experiment with different features and code changes without
impacting the main, stable codebase. If a change works well, it can be integrated (or
”merged”) into the main codebase; if not, it can be discarded without having caused any
disruption.

In a team environment, Git is essential for managing contributions from multiple de-
velopers. Each developer can work on their own copy of the project (a ”branch”), without
interfering with others’ work. When their work is complete, it can be merged into the
main codebase.

Git is also distributed, meaning every developer has a complete copy of the project’s
history on their local machine. This not only allows developers to work offline but also
provides an inherent backup. If any repository is lost, it can be restored from any de-
veloper’s local copy.

Instead of organizing our own server with git, we opted for using GitHub, which allows
students and educators access to their professional option at no cost, allowing us to or-
ganize our code in a more structured manner.

. . Taiga

In order to organize our agile workflow we elected to use Taiga. It is a web-based tool that
allows us to track sprints, tasks within sprints, and assign aforementioned tasks to specific
members of the group, and additionally allow members to follow updates on a specific
task. In addition to this, Taiga has integration with GitHub, allowing us to modify tasks
from GitHub whenever we commit code in our repository there.

As the project progressed, we found that we were not generating a substantial amount of
code, and therefore, the GitHub integration was not as crucial as we initially assumed.

17

4 Process

Figure 4.2: Taiga Interface

Moreover, our interaction with the Taiga platform was proving to be more of a diversion
from our core tasks rather than a facilitator of our work. The platform’s organization
and functionality did not meet our needs and expectations, which caused further dis-
satisfaction. Consequently, we decided to transition away from this web-based project
management tool. Instead, we opted for a more streamlined approach of crafting sum-
maries for each sprint. This method proved to be less demanding in terms of resources
and was more suitable and beneficial for the progression of our project.

. . Overleaf

Overleaf is a collaborative, cloud-based LaTeX editor used for the creation of scientific
documents. LaTeX is a typesetting system favored in academia for its ability to handle
technical and scientific documents with ease, especially those with complex mathematical
equations or structures.

Overleaf provides a platform where multiple users can view, edit, and compile LaTeX
documents in real time. This collaboration aspect makes it an excellent tool for group
projects, theses, papers, or any document requiring input from several contributors.

18

4 Process

. . ChatGPT

ChatGPT is an artificial intelligence language model, released to the public recently. It
is designed to understand natural language and generate human-like responses to a wide
range of prompts and questions.

ChatGPT is most useful for tasks that require natural language processing, such as lan-
guage translation, sentiment analysis, text summarization, and conversational interfaces.
It can also be used for a variety of other applications, such as content generation, language
modeling, and knowledge extraction.

We have on occasion used ChatGPT for cleaning up and helping us formulate language
in a more academic and formal fashion.

. . Microsoft Suite

Microsoft Office is a suite of productivity applications that have become a standard tool
in most professional and academic environments. It includes software like Word for doc-
ument creation, Excel for data management and analysis, PowerPoint for presentations,
Outlook for email and calendar management, and more recently Teams for collaborative
communication. Each of these applications serves distinct purposes and can be instru-
mental in managing and executing a project efficiently.

For our purposes, we organized a lot of our work through the university-provided teams
solution, where we organized documents that were impractical to use LaTeX for. This is
where we kept time sheets, presentation material, and meeting notes.

19

4 Process

. Risk Analysis

Risk analysis is an ongoing process that continuously evaluates risk throughout the pro-
ject’s lifecycle. It is the responsibility of the risk manager to ensure that this process
takes place regularly and consistently during the project. This is crucial because it raises
awareness among us and our client about potential risks and vulnerabilities, encourages
necessary improvements, and facilitates necessary changes. Such analysis can help the risk
manager to identify new risks and changes that require attention along the way. [7]

After identifying the risks, it is essential to prioritize them based on their probability and
consequence. Moreover, measures should be put in place to manage them effectively if
they occur. While everyone on the team should participate in assessing the project’s risks,
the risk manager will be primarily responsible for ensuring quality assurance. [8]

Identifying the risks in our project

A risk analysis was conducted for our project, wherein we identified both internal and
external risks. Internal risks are linked with factors that are under our control, whereas
external risks are associated with factors that lie beyond our control.[9]

After identifying the risks at this stage, we evaluate their potential consequences and
determine the appropriate measures that can be taken if they occur. To gain a better
overview, we record the risks in a table that includes a unique code, a description of the
risk event, recommended measures, probability (P), consequence (C), and priority. Below
is a comprehensive overview of both internal and external risks:

20

4 Process

Figure 4.3: Risk table

21

4 Process

The prioritization of these risks was determined by evaluating their consequence and
probability using the risk matrix:

Figure 4.4: Risk Matrix [10]

22

Configurations

In this chapter we will shed light on the path we took, the decisions we made, and the
progression of our project, with a primary focus on the architectures that underpinned
our work.

Before proceeding to suggest potential architectures to our client, our initial task involved
the selection of appropriate hardware and software, which we then integrated into a range
of architectural designs and presented to the client, allowing them to further specify which
configurations were the most interesting to their intended usage. This section aims to give
an overview of the breadth of options we considered before narrowing down our focus.

After thorough discussions and iterations with our client, we arrived at a consensus on
the architectures that held the most potential for our client’s interests. This agreement
marked a significant turning point in our project, as it enabled us to channel our efforts
in a focused direction.

After deciding which architectures we would proceed with, we will outline and detail the
decisions that went into each architectural design. This will give a clear picture of how
and why we selected the hardware and software that comprises our system.

23

5 Configurations

. Hardware Selection Process

In the initial phase of the project, we presented multiple architectural designs to our cli-
ent from which they chose three different versions, each with slight modifications. KDA
expressed interest in an in-depth exploration of sensor readings conducted at the edge,
prompting our decision to design a more decentralized architecture. This setup separates
functionality between the edge configuration while maintaining a central configuration
that remains consistent across all versions.

Earlier versions of the Local Hawk drone could fly independently using GPS, an internal
measurement unit, and a barometer. These features were enabled by a specific accessory
for the Raspberry Pi 4, called a NAVIO2 hat, which provided all the necessary sensors.
The drone’s flight was controlled by Ardupilot, a software suite running directly on the
Raspberry Pi 4. However, our client wanted to avoid overloading the Raspberry Pi 4’s
processor with the heavy computational tasks associated with object detection. As a res-
ult, we were asked to focus on solutions where image processing is carried out on separate,
dedicated hardware. Early in the project, we identified and chose various hardware parts
that would be appropriate for our drone designs.

. . nVidia Jetson Nano

The Jetson Nano is a single-board computer with a built-in NVIDIA GPU with 128 CUDA
cores. CUDA (Compute Unified Device Architecture) is a parallel computing platform
and application programming interface (API) model that utilizes NVIDIA’s graphics pro-
cessing units (GPUs) for general purpose computing. By allowing developers to leverage
the power of GPU beyond graphics, CUDA has vastly increased the efficiency and speed of
computationally intensive applications. It provides a suite of software tools and libraries
that allow developers to create software that can perform complex computational tasks on
GPUs, thus significantly improving performance for applications involving mathematical
and scientific computations, image processing, and more.

We chose the Jetson because the GPU can be leveraged for high-performance deep
learning-based object detection. Performing image processing on a GPU has the ad-
ded benefit of freeing up the CPU for other tasks.[11]

24

5 Configurations

Figure 5.1: Jetson nano [12]

. . Coral Edge TPU

Google’s Coral Edge Tensor Processing Unit (TPU) is a type of custom-built circuit
known as an ”application-specific integrated circuit” or ASIC. This TPU is specifically
designed for deep learning inference, which involves making predictions from new data
using a trained machine learning model. Similar to the GPU embedded in the Jetson
Nano, this hardware is believed to execute object detection based on deep learning more
rapidly than a CPU in a typical single-board computer. The Coral Edge TPU is a USB
device, meaning it needs a computer to function.

Our interest in the Coral Edge was driven by its light weight and compact size. Coupled
with a Raspberry Pi single-board computer, it would create a system that is cost-effective
and light, ideal for our project requirements. We were keen to explore the performance
potential of this hardware combination.

Figure 5.2: Coral USB accelerator [13]

25

5 Configurations

. . Raspberry Pi B & Zero

The Raspberry Pi 4B and Raspberry Pi Zero 2 were chosen as integral components for
the lightweight drone system due to their blend of power, flexibility, and cost-effectiveness.

The Raspberry Pi 4B’s quad-core processor offers impressive computational power in a
compact package, making it capable of handling complex tasks like navigation algorithms.
On the other hand, while the Raspberry Pi Zero 2 is less powerful, it remains a competent
device for managing lighter tasks within the system, making the two boards a compli-
mentary pair.

An important consideration for drone applications is the weight and size of components.
Both the Raspberry Pi 4B and Pi Zero 2 excel in this regard with their lightweight and
compact form factors that do not compromise the flight time or maneuverability of the
drone.

Cost-effectiveness is another compelling factor that makes these boards an attractive
choice. They are significantly more affordable than other single-board computers of sim-
ilar capabilities, fitting well within projects constrained by budget without sacrificing
functionality.

Raspberry Pi’s flexibility is also notable due to the broad range of available peripherals,
such as cameras and sensors. These can be seamlessly integrated into the system, provid-
ing great versatility when constructing the drone setup. Additionally, the Raspberry Pi
benefits from extensive software support and a large, active community. With the abil-
ity to run various Linux distributions, software development and troubleshooting become
much easier tasks.

Finally, the Raspberry Pi offers scalability for future expansions or modifications. With
numerous Raspberry Pi models available, it is feasible to scale the system up or down
according to the changing requirements. For instance, upgrading to a more powerful
Raspberry Pi model to accommodate increased computational demand or additional fea-
tures can be done without substantially altering the system’s architecture.

All these reasons underscore why the Raspberry Pi 4B and Raspberry Pi Zero 2 are op-
timal choices for a lightweight, efficient, and robust drone system.

26

5 Configurations

. . Pi Camera modules

The Raspberry Pi Camera Module v2 and v3 were chosen as key components for our
lightweight drone system due to their high-resolution capabilities, light weight, compat-
ibility, and affordability. In addition to this, several group members already owned the
version 2 of the camera, and this was available on the Jetson Nano.

The Raspberry Pi Camera Module v2 is equipped with an 8-megapixel sensor, capable of
capturing high-resolution images and video, which is vital for effective image processing
and object detection tasks. It provides impressive image quality, ensuring the data col-
lected by the drone is clear and detailed.

On the other hand, the Raspberry Pi Camera Module v3 offers an even higher resolution
with its 11.9-megapixel Sony IMX708 sensor. This module delivers crisp, high-quality
images and better low-light performance, crucial for varied and unpredictable flight en-
vironments.

Both camera modules are exceptionally lightweight and compact, which is an essential
aspect for drone-based applications. By using these camera modules, we avoid adding sub-
stantial weight to the drone, thereby maintaining optimal flight time and maneuverability.

In addition, both camera modules are fully compatible with the Raspberry Pi ecosystem,
which assures seamless integration into our drone setup. The ability to directly connect
these modules to the CSI camera port on Raspberry Pi boards enables efficient data
transmission and simplifies the overall system design.

Lastly, similar to the Raspberry Pi boards, these camera modules are cost-effective. They
offer high-quality imaging capabilities at a fraction of the cost of many other comparable
camera modules. This affordability makes them an ideal choice for projects operating on
tighter budgets.

In summary, the Raspberry Pi Camera Module v2 and v3 provide the perfect blend of per-
formance, compatibility, and affordability for our drone system. They offer high-quality
visual data, which is essential for tasks such as object detection and navigation.[14][15][16]

27

5 Configurations

. Operating System and System Software Decision Process

In the pursuit of rigorous research and robust information, the significance of a controlled
environment and reproducible results cannot be overstated. Absent these, the applicab-
ility and value of our findings risk being limited, particularly under rigorous scrutiny.
A crucial component of establishing this controlled environment involves ensuring uni-
formity in our software across all configurations to the greatest feasible extent. This is
to prevent the introduction of performance artifacts that could significantly impact per-
formance, such as inconsistencies in software libraries or versions. In figure 5.3 you can
see how we envisioned our platform to function.

Figure 5.3: Proposed Operating System Configuration

In order to efficiently run the necessary software, we required a system configuration with
robust hardware support. This system had to be compatible with a variety of Raspberry
Pi hardware and the nVidia Jetson Nano. We decided to utilize the Python interpreted
language for rapid prototyping. For the middleware and communication layer, we chose
ROS2.

ROS2 Introduction and Rationale

Our first four proposals outlined in Section 5.10 each offer a certain degree of distribu-
tion. Distributing data processing across multiple hardware units necessitates machine-
to-machine communication, a task for which the client specifically requested the use of

28

5 Configurations

ROS2. ROS2 is a comprehensive software suite designed for robotics, with its core fea-
ture being inter-process communication. By creating and building our software as ROS2
nodes, we can avoid dealing with networking complexities, as ROS2 abstracts them. In
ROS2, nodes constitute a graph where edges represent topics. Nodes can publish and
subscribe to these topics.

Figure 5.4: Example ROS2 graph

Figure 5.4 presents a potential configuration of a ROS2 graph featuring three nodes.
Beyond managing low-level communication between hardware units, integrating ROS2
contributes to high modularity, fostering the possibility for significant scalability. Upon
reviewing our initial configurations, our client voiced interest in incorporating an addi-
tional single-board computer to further distribute the workload. This hardware expansion
could also be implemented at subsequent stages without necessitating code rewrites. Es-
sentially, nodes can be easily transferred from one hardware unit to another.

29

5 Configurations

Our objective was to make an informed decision, ensuring we did not default to conven-
tional software without considering potential alternatives that might offer performance
benefits or simplified software deployment. Both the Raspberry Pi variants and the Jet-
son Nano are compatible with the Linux operating system. Linux, a free and open-source
operating system, is available in several versions, commonly referred to as distributions
or ”distros”. These distributions can greatly vary in terms of software availability and
hardware support, contingent on the installed version. Consequently, we aimed to invest-
igate the potential differences between these versions to determine which one best met
our needs.

However, with over 600 distinct Linux distributions available, it was not feasible to eval-
uate all of them within our limited timeframe. To streamline our focus, we decided to
sample the most commonly used distributions that also maintain an enterprise presence.
Ultimately, we chose to evaluate Raspberry Pi OS, the version bundled with Raspberry
Pi variants, along with Fedora Linux, openSUSE Linux, and Ubuntu.[17]

30

5 Configurations

After finalizing our decision, we turned our attention to designing our architecture, con-
sidering how the software would function on different hardware configurations and how
we could ensure a uniform configuration across all systems. To this end, we explored the
feasibility of running the software within what is commonly known as a container. A
container is a compact, standalone, and executable software package that encompasses
everything required to execute a piece of software, including the code, runtime, system
tools, system libraries, and settings. Containers are isolated from each other and bundle
their own software, libraries, and configuration files, communicating through well-defined
channels. Implementing this technology would guarantee identical deployment config-
urations and could help mitigate any potential performance artifacts. The goal of this
configuration was to encapsulate the necessary environment and libraries for ROS2 within
these containers, as illustrated in Figure 5.5.

Figure 5.5: Docker architecture

Upon deciding which configurations to investigate, we initiated our examination by meth-
odically installing the different distributions on physical hardware and assessing their
functional capabilities and any shortcomings. As illustrated in Figure 5.6, you can ob-
serve the different outcomes and ascertain which functions were successful and which were
not.

31

5 Configurations

Figure 5.6: Decision Process OS

32

5 Configurations

As indicated in figure 5.6, there were no systems that met all the requirements we had
for our software platform, this caused a need to do further research in order to be able to
decide which platform we would use going forward.

We further refined our choices to Ubuntu and Debian, as these platforms had only a single
missing dependency. However, we needed to ascertain which option would offer the best
outcomes relative to the efforts required to rectify each system.

Figure 5.7: Decision Process Distribution

Debian faced the disadvantage of having difficulties with the ROS2 operation, which en-
tails a relatively complex and comprehensive build-system. The documentation can often
be outdated due to the fast-paced advancement of the ROS2 project at the current stage.
Conversely, Ubuntu’s challenge lay in the lack of driver software for the Camera Module
Version 3.

Given our limited experience with the ROS2 build system and the scant documentation
on manual software building and installation, we decided to attempt installing the ex-
isting Debian driver in an Ubuntu environment. This would enable us to operate ROS2
with Camera Version 3.

33

5 Configurations

In the Linux operating system, drivers are typically formulated as modules and integrated
with the operating system kernel. This kernel is the software component within an oper-
ating system that manages hardware resources. Within the Linux system, it is feasible to
specifically compile this component for the running system, without interfering with the
other system software components.

Our next step was to clone the git repository of the Raspberry Pi Foundation, given that
the operating system bundled with these single-board computers (SBCs) supports that
particular camera. Once completed, we managed to compile the Raspberry Pi OS kernel
for our active version of Ubuntu.

After finalizing the installation and booting our new kernel, the hardware was detected,
but there was no video output. At this juncture, we believed that we could get the hard-
ware to function under Ubuntu, considering this as our best immediate course of action.

We proceeded with various tests under different configurations and compiled different ver-
sions of the Linux kernel, including an unmodified version directly from https://kernel.
org. When none of these strategies produced the desired results, we were compelled to
reassess our approach.

Our focus then transitioned towards an attempt at compiling ROS2 for Debian. We delved
into the documentation to compile the software on our system. However, this task proved
challenging, and we faced several hurdles while attempting to compile the software. As a
temporary solution, we found someone who had compiled a Debian package on GitHub,
albeit from an older build. We could not verify its applicability to our requirements,
thus leaving us with necessary steps to continue deploying ROS2 while we concurrently
operated an unsecured ROS2 installation, aiming to expedite development.

Following an extended period of continuous effort, we managed to compile ROS2 under
a Debian system. This development allowed us access to Camera Module 3 and ROS2
on the same computer. The subsequent step involved deploying this to a Docker image,
facilitating environment control and ensuring a consistent platform for our ROS2 source
code.

However, an unfortunate consequence of compiling software is its substantial size growth.
Post-building our Docker system, its size ballooned to 14GB, which was unwieldy for
deployment and challenging to run on the Raspberry Pi Zero. Unfortunately, we were
unable to rectify this issue in time for our project delivery. Although it does operate on
the Raspberry Pi Zero, deployment is slow and can potentially create problems if the Zero

34

https://kernel.org
https://kernel.org

5 Configurations

exhausts memory while pulling the Docker image.

. . Raspberry Pi and Zero

After reviewing our results from the selection process, we arrived at a proposed solution
for our configurations based on the Raspberry Pi hardware and the Raspberry Pi OS.
This solution mirrored the one depicted in figure 5.5, thereby aligning closely with our
initial research and concept.

. . Jetson Nano System Software Configuration

Upon finalizing the configuration for the Raspberry Pi, we shifted our focus to the Jetson
Nano. Our initial plan was to have identical configurations across all hardware. However,
the proprietary nature of Nvidia’s hardware precluded the support of the Raspberry Pi
OS. This necessitated exploratory research on compatible software for the Jetson Nano,
which would align closely with the Raspberry Pi configurations. We direct your attention
to figure 5.8, depicting the versions we attempted to install and set up on the hardware.

35

5 Configurations

Figure 5.8: Jetson Nano Decision Map

Following a rigorous testing phase where we attempted to run several different distribu-
tions on the Nano, we concluded that this approach was not an efficient use of our time.
We chose instead to focus on executing the docker architecture on the bundled Ubuntu
version running on the Jetson Nano. The supported version was released in April 2018.
Despite its age, we believed that since Docker was available for it, we could adjust our
container setup to secure a controlled environment to the extent possible.

Docker Environment Jetson Nano

When considering Docker on the Nano, we decided to implement the same configuration
we had functioning on the other systems. However, adapting this to the hardware and
software on the Nano proved challenging. Nvidia distributes the necessary software for
the Nano in packages referred to as ”Jetpacks”. These packages are designed for use on
specific versions of Linux that they ship with Jetson Nano; our version of the Jetson

36

5 Configurations

Nano was supported on Ubuntu 18.04, a five-year-old distribution. This presented chal-
lenges due to the rapid pace of change in many of the frameworks and Python libraries
we wanted to use. Similar factors were also present in terms of features and performance
improvements in the operating system itself.

Creating a Docker environment where we pass the GPU and every required library into
the container in a functional manner proved to be a complex task. It demanded more
expertise and time than we could provide during our project. Ultimately, the challenges
posed by the Jetson Nano forced us to reconsider our architectural idea.

The final result for our Jetson Nano was that we utilized the system software bundled
with the hardware, specifically Ubuntu 18.04. Owing to issues with Docker, we ran the
software on the bare metal, as illustrated in figure 5.9. Moreover, unlike the Raspberry Pi
configurations running ROS2 Humble, the Nano operates ROS2 Dashing. Despite these
differences, the ROS2 architecture remains identical to the other configurations.

Figure 5.9: End Result Jetson Nano Architecture

37

5 Configurations

. . -bit vs. -bit

As Raspberry Pi OS 64-bit beats 32-bit in almost every metric regarding computation
time [18] we decided to omit 32-bit based operating systems from this project.

. Proposed architectures

. . Initial Proposal

Before we could start implementing our specific designs we needed to get the go-ahead
from our client. We made a design sketch with five different configurations and presented
these in order to reach an agreement on which areas we should focus on.

38

5 Configurations

Figure 5.10: Initial architecture design

From the figure 5.10 in this figure, you can see the five proposals which we presented to
the client. These proposals were based on a variety of hardware configurations we had
briefly discussed during meetings and the ones that we thought were the most likely to
achieve our client’s goals and deliver results that would show that this idea was viable.

39

5 Configurations

. . Second proposal

Figure 5.11: Image processing modules

40

5 Configurations

Figure 5.12: Four distributed and one centralized architecture

Figures 5.11 and 5.12 describe the second iteration of our hardware configuration designs.
Our image processing hardware is now drawn as interchangeable modules, which plug into
the rest of the drone. The “Decision making” module in 5.12 represents a new single board
computer, and the “Actuator and sensor control” module is the flight controller. After
further discussing our proposals with the client we agreed to drop configuration 5 due to
time constraints. Discarding the centralized configuration gave us more time to explore
image processing software, which at this point seemed to be the most time-consuming
task ahead.

. . Accepted architectures

Figure 5.13 illustrates the final hardware architectures which were accepted by the cli-
ent.

41

5 Configurations

Figure 5.13: Hardware architectures accepted by client

At this stage we had designed a high-level software architecture which shows our planned
ROS2 nodes and how they should interface with each other. The architecture shown in
figure 5.14 is common for all our configurations. We decided that all 4 image processing
modules should output the estimated distance to a detected object, and the detected
object’s X and Y coordinates within the image frame. As a demonstration of a use case
which needs the distance and position data, we designed the software architecture with
“object following” in mind. For this use case the “Follow algorithm” node in figure 5.14
would be a regulator which decides how the UAV should move to follow the detected
object.

42

5 Configurations

Figure 5.14: Initial software architecture design

43

5 Configurations

. Object detection software

One of the object detection systems we wanted to use was YOLO.

The YOLO (You Only Look Once) framework, developed by Joseph Redmon, revolu-
tionized the field of object detection by providing a real-time object detection system.
Contrary to traditional two-step object detection methods, where one step is dedicated
to proposing regions where objects might exist and the second to classifying those re-
gions, YOLO performs both tasks in one step. This makes it significantly faster and
more efficient, which is particularly beneficial for applications that require real-time de-
tection.[19]

The architecture of YOLO involves dividing the input image into a grid. Each grid cell
predicts a certain number of bounding boxes and class probabilities. During the detection
phase, bounding boxes with class probabilities below a certain threshold are discarded.

YOLO has gone through several iterations to improve its performance, in this study we
have looked at YOLOv5 (released June 25th, 2020) [20], and the latest YOLOv8 (released
January 10th, 2023)[21], both released by Ultralytics.

Given the novelty of YOLOv8, there was a lack of documentation regarding its operation
on a Jetson Nano. All the available information concerning YOLO’s operation on a Jetson
Nano pertained to YOLOv5. Therefore, after meticulous comparison and deliberation,
the decision was made to transition to the earlier iteration, YOLOv5.

Despite the commendable efforts of Ultralytics to simplify the application of YOLO,
mastering the process of training on our own dataset, and effectively utilizing the diverse
set of tools that accompany the framework, demanded a considerable investment of time.
This learning curve demonstrates the complexity inherent in working with such advanced
object detection systems. Readers are referred to the F appendix for a concise guide
on how to train models with custom data. Additional information and comprehensive
documentation can be found on the Ultralytics website.

Dataset

In this study we decided on a common dataset for all the object detection models to be
trained on. The dataset is divided into three distinct subsets - training, validation, and
testing sets - each consisting of 110, 32, and 30 images respectively. The training set is
used during the learning process, the model is then validated on the validation set at the
end of each epoch. The test set is a dataset never seen before by the model and is used to
do a final validation of the model. Since we wanted to have a comparison between object

44

5 Configurations

detection and blob detection, we decided on a green tennis ball being the target for our
models as this is easier to capture with blob detection.

. Distance Measurement

After wishes from our client, we’ve included the capability to calculate the distance to
a detected object in our project. This is especially useful when considering the drone’s
relative position to the object and is particularly relevant for use cases such as landing.
Understanding this distance becomes a key factor in ensuring precise and controlled land-
ing maneuvers.

Due to the fact that we are using one singular camera, there is a problem getting the proper
depth. The method we chose to use involves the idea of similar triangles to calculate the
distance between a camera and an object. This method is based on the principle that the
ratio of the object’s actual width to its distance from the camera matches the ratio of the
object’s perceived width in the captured image (in pixels) to the camera’s focal length.
[22]

To illustrate this concept mathematically, we introduce two similar triangles:

• The first triangle (Triangle A) is constructed with the vertices being the camera,
the object, and a selected point on the camera’s image plane.

• The second triangle (Triangle B) includes the camera, the image of the object as
perceived by the camera, and the identical point on the image plane as used in
Triangle A.

In this scenario, the parameters for the two triangles are defined as follows:

• In Triangle A, the ’height’ is the distance to the object (D) and the ’base’ is the
actual width of the object (W).

• In Triangle B, the ’height’ represents the camera’s focal length (F), and the ’base’
signifies the apparent width of the object in the image (P, in pixels).

Since the two triangles are similar, the ratios of the corresponding sides are equal, resulting
in the equation:

D
W

=
F
P

(5.1)

45

5 Configurations

Using this equation, we can derive any one of the variables given the other three. For
instance, the focal length of the camera (F) can be calculated by rearranging the equation
to:

F =
P×D

W
(5.2)

Furthermore, if the object’s position shifts, altering the apparent width in the captured
image (P’), the same equation can be adapted to compute the new distance (D’):

D′ =
W ×F

P′ (5.3)

. Proposed Operating System and System Configuration

After a comprehensive evaluation of operating systems suitable for various hardware con-
figurations, we concluded that the Raspberry Pi configurations would utilize the system
software provided with the devices. This decision was informed by the superior hardware
support and the system’s ability to effectively run ROS2 as required.

Contrarily, the situation with the Jetson Nano was distinct. Given the limited time for an
in-depth exploration of the software construction on this platform, we decided to adhere
to the configuration supported by nVidia. The final proposed system can be seen in Figure
5.15.

Figure 5.15: Finished Overview System Configuration

46

5 Configurations

. Image processing modules

In this chapter, we delve into the vital aspect of image processing configuration, a journey
that has proven both challenging and enlightening. Our exploration began with an un-
derstanding of the integral role image processing plays in our project. As a technique that
involves transforming or altering images using mathematical operations, image processing
serves as a conduit that translates raw, visual data into a format that our systems can
understand and utilize effectively.

Throughout this chapter, we discuss the myriad complexities involved in selecting, tuning,
and applying appropriate image processing techniques and configurations. We recount our
decision-making process, the technical considerations, the trial-and-error iterations, and
the fortuitous insights that informed our eventual choices.

We acknowledge that the pathway toward effective image processing configuration is
neither linear nor universally applicable. The optimal solutions often depend heavily
on the specific contexts, goals, and constraints of the project at hand. However, we be-
lieve that by sharing our journey – our successes, our hurdles, and the lessons we learned
along the way – we can provide valuable insights that may guide similar endeavors in the
future.

Through this reflection, we aim to illuminate the depth and breadth of thought that
underlies the seemingly mundane topic of image processing configuration, reinforcing its
critical role in the success of our project and many others in the field. By the end of this
chapter, readers will not only understand our journey toward an effective image processing
configuration but also appreciate the intellectual richness that this journey entails.

47

5 Configurations

. . Configuration , Jetson Nano

This section aims to clarify the steps we followed to make object detection work on a
Jetson Nano, incorporating details of unsuccessful attempts as well.

Figure 5.16: Hardware architecture, config 1

Initial setup

The NVIDIA Jetson Nano platform employs a software development kit (SDK) image
known as JetPack, specifically version 4.6.1, which is the newest compatible version for
the Jetson Nano device. JetPack 4.6.1 is built upon Ubuntu 18.04 (Bionic Beaver) and
utilizes Python 3.6.9. The image is preconfigured with several essential developer tools,
including TensorRT, cuDNN, and CUDA.

To flash the image onto the Jetson Nano, one can either use a terminal or the NVIDIA
SDK Manager, which can be accessed at [23]. It is strongly recommended to employ the
NVIDIA SDK Manager for this task, as it significantly simplifies the installation process
for the image and any additional SDKs. However, this method necessitates that the com-
puter used for flashing possesses the same operating system as the target image. In the
present case, the computer required reformatting to Ubuntu 18.04 to ensure compatibility.

Alternatively, the SD card can be directly flashed using the terminal. The necessary image
can be obtained from the NVIDIA developer site [24]. Subsequent instructions specific to
your operating system can be found at [25].

Following this, the NVIDIA SDK Manager can be used to install all additional SDKs
via Secure Shell (SSH). This approach upholds the user-friendliness and efficient process
inherent to the SDK Manager.

48

5 Configurations

Software overview

Camera interface: Gstreamer and openCV
Object detector type: Deep neural network
Machine learning framework: Trained with Pytorch, TensorRT for inference
Model type: FP32 TensorRT model (.engine)
Model 1: 640x640x3 (Yolov5n)
Model output: Bounding boxes, prediction scores, class names, number of predictions
Model size: 7MB

Config journey

The process of getting infernece to run on the Jetson Nano platform has been a complex
undertaking, with our efforts encompassing three distinct methodologies and two different
models: MobileNet-SSD and YOLO. Each subsequent three subsection will delineate
the specifics of these approaches. All methodologies employs TensorRT optimization
to facilitate efficient execution on the NVIDIA hardware. The final method is the one
currently in operation. see figure 5.17 for a visual representation of the journey.

Figure 5.17: Visual representation of the journey

Yolo with Deepstream

The process of deploying YOLOv5 on the Jetson Nano platform proved to be more com-
plex compared to the implementation of MobileNet-SSD. The YOLOv5 documentation
provides a dedicated page for its application on a Jetson Nano using a Software Develop-
ment Kit (SDK) from Nvidia named Deepstream. However, the tutorial [26], last updated
18 November 2022) is not as straightforward as it might appear. For the purpose of this
study, the deployment of YOLOv5 on the Jetson Nano was accomplished through two
distinct approaches, both of which will be thoroughly explored in the following sections.

The initial step requires the use of a PC running Ubuntu 18.04 to operate the Nvidia SDK
Manager in conjunction with the Jetson Nano. Following this, the installation of several

49

5 Configurations

additional packages, one of which is Deepstream, is necessary. This part of the procedure
is fairly linear and should already be done with the initial setup of the Jetson.

The challenge arises when attempting to install dependencies for YOLO. Since YOLOv5
necessitates Python 3.7, while the Jetson Nano only supports Python 3.6.9, after cloning
the repository, all entries in the requirements.txt file were commented out. Subsequent
to numerous trials and errors, the tested system runs the following versions.

Python package Version number
gitpython 3.1.20
matplotlib 3.3.4
numpy 1.19.5

opencv-python 4.1.1
Pillow 7.1.2
psutil

PyYAML 6.0
requests 2.18.4
scipy 1.5.4
thop 0.1.1
tqdm 4.64.1

seaborn 0.11.0
setuptools 59.6.0

Table 5.1: pip packages used for deepstream

Continuing from this point, the subsequent steps as outlined on the GitHub repository
should be followed until the DeepStream Configuration for YOLOv5 ”Step 4. Generate
the cfg and wts files”. This can be accomplished with the following Python3 commands:

python3 gen_wts_yoloV5.py -w yolov5s.pt
python3 gen_wts_yoloV5.py -w custom.pt

Here, the user has the flexibility to either convert the pretrained yolov5s model or replace
it with any model that has been subjected to transfer learning, as demonstrated above.

After completing the remaining steps, the user should be able to run inference on the
included video. Additionally, to run inference on a Camera Serial Interface (CSI) camera,
as employed in this study, the user must modify the source0 parameter in the deep-
stream_app_config.txt file as follows:

50

5 Configurations

Figure 5.18: Deepstream app config file, source0

DeepStream offers built-in support for CSI cameras, with type=5 indicating the usage of
a CSI camera. The camera’s width and height can be adjusted according to the user’s
needs. It should be noted, however, that the model is optimized for an input resolution of
640x640 pixels, so providing an input close to this resolution would potentially enhance
performance.

It is also important to modify the config-file under primary-gie, set this to config_infer_primary_yoloV5.txt

To use a custom model, the configuration file must be modified in line with the particular
version of YOLO in use, hence necessitating amendments to the ’config_infer_primary_yoloV5.txt’
file. The modifications include changes to the following parameters:

Figure 5.19: config_infer_primary_YoloV5.txt, custom model

In this context, the weight (wts) and configuration (cfg) files have been renamed as
’yoloV5_custom.cfg’ and ’yoloV5_custom.wts’, respectively, indicating their customized
nature and their association with the YOLOv5 model. Now to run inference, simply use
the command:

deepstream-app -c deepstream_app_config.txt

As indicated on the Ultralytics webpage [26], the potential to achieve a rate of 30 frames
per second (fps) exists when deploying a Jetson Xavier NX with FP32 and the YOLOv5s

51

5 Configurations

model. In contrast, the Jetson Nano, possessing lesser hardware capabilities than the
Xavier, managed to reach a rate of 10 FPS with the YOLOv5n (Nano) model.

However, a substantial obstacle presented itself in the form of a 400 ms latency on the
inference stream. Even with thorough system resource monitoring and various attempted
solutions, the latency issue could not be mitigated. The implications of this problem
suggested that the procedure overtaxed the Jetson Nano’s hardware, thereby making it
an unsuitable choice for applications like drone operations, which require instantaneous
detection capabilities.

The Deepstream approach, despite its challenges, displayed a degree of adaptability. Spe-
cifically, it allowed a broad range of easy customizability via accessible configuration
files.

52

5 Configurations

Mobilenet-SSD

Jetson Inference [27], a GitHub repository developed by Dustin Franklin from Nvidia,
provides a well-documented tutorial complete with video walkthroughs, which is particu-
larly beneficial for beginners in the field of computer vision working on the Jetson device.
The process of getting this up and running is as simple as cloning the repo and then
running the docker that is included.

The pre-trained model demonstrated satisfactory performance at shorter distances but
struggled with object detection when the objects were small or located at greater distances.
To address this, transfer learning was applied to the model using our dataset, both on
the Jetson device and on a separate computer equipped with a dedicated GPU. Despite
training the model for over 1000 epochs, the inference failed to detect the object.

A survey of online forums confirmed that the model encountered difficulties with small
objects. An attempt was made to upgrade the model to accommodate an input resolution
of 512x512 instead of the standard 300x300. This was tried, and while this modification
slightly improved the model’s performance, it did not reach the level of the YOLO model
trained earlier in the study. As a result, a decision was made to revisit YOLO.

Yolo with openCV

Since DeepStream did not yield satisfactory results, we searched for an alternative solu-
tion. During this exploration, we discovered newly created repository from Mailrocketsys-
tems https://github.com/mailrocketsystems/JetsonYolov5. The repository applies
TensorRT and OpenCV for inference. The configuration process is user-friendly, requir-
ing merely adherence to the instructions provided in the repository’s ReadMe file on
GitHub.

The extraction of the right metadata from the model necessitates some modifications to
the yoloDET script. Please refer to Figures 5.20 and 5.21 for the implemented changes.

Figure 5.20: YoloDET before

53

https://github.com/mailrocketsystems/JetsonYolov5

5 Configurations

Figure 5.21: YoloDET after

Now we can simply edit the app.py script to use our model, and extract the metadata we
just added in yoloDET. See figures 5.22, 5.23, 5.24

Figure 5.22: Selecting our model

Figure 5.23: extracting metadata original

Figure 5.24: extracting metadata modified

The repository enabled us to perform inference in real-time with close no none latecy,
which was particularly helpful in demonstrating the capabilities of the hardware within
config1.

Reflections

While the Jetson Nano boasts comparatively robust hardware, it is beginning to show
signs of obsolescence, largely due to its reliance on an older version of the Jetpack SDK,
which in turn is based on outdated versions of Ubuntu and Python. There have been
considerable developments since Ubuntu 18.04 and Python 3.6. Nonetheless, we maintain

54

5 Configurations

that the Jetson Nano presents a compelling option for hobbyists seeking to delve into
the realm of AI and explore its capabilities. For more advanced development pursuits, we
would recommend a more contemporary model, such as the Jetson Orin Nano. This newer
hardware is accompanied by support for the latest release of the Jetpack SDK, which is
based on Ubuntu 20.04, and generally offers better compatibility with recent software.

The Jetson Nano was received quite late into the project, leaving us with approximately
one month to set it up and get it working. With more time, and a deeper understanding
of machine learning and ai, the results might have been different.

55

5 Configurations

. . Configuration , Pi w/ Coral Edge TPU

Figure 5.25: Hardware architecture, config 2

Software overview

Camera interface: picamera2 python library
Object detector type: Deep neural network
Machine learning framework: Tensorflow Lite
Model type: Tensorflow Lite model (.tflite) compiled for Coral Edge TPU
Model 1 input: 320x320x3 array (EfficientDet-lite0)
Model 1 size: 5.57MB (EfficientDet-lite0)
Model 2 input: 384x384x3 array (EfficientDet-lite1)
Model 2 size: 7.57MB (EfficientDet-lite1)
Model outputs: Bounding boxes, prediction scores, class names, number of predictions

Apt package name Version
python3-tflite-runtime 2.5
python3-cv-bridge 1.16.2
libedgetpu1-std 16.0

python3-picamera2 0.3.9

Table 5.2: Required apt packages, config 2

Pip package name Version
numpy 1.20

Table 5.3: Required pip packages, config 2

56

5 Configurations

Video capture software setup

The configuration runs inference on image data provided by the Pi camera V2. The
Picamera2 library is the Python interface to the currently supported Raspberry Pi cam-
era stack. Picamera2 requires Raspberry Pi OS Bullseye or newer versions, and the legacy
camera stack must be disabled through the raspi-config utility.

Inference software setup

Setting up the configuration with Python is straightforward as the Coral Edge TPU is well
documented by Google’s Coral team. The TPU is only compatible with Tensorflow Lite
models so the Tensorflow Lite Python API (Tensorflow Lite Runtime) is needed to run
inference. Additionally, the Edge TPU runtime library is needed to provide an interface
between Tensorflow Lite Runtime and the TPU. At the time of writing Tensorflow Lite
Runtime is only compatible with Python versions 3.7 – 3.9.

Deep learning models

Using the same dataset as in configuration 1, we have trained 2 suitable models for this
configuration. The models are trained with transfer learning on pre-trained neural net-
works. We used Tensorflow Lite Model Maker for training. This library simplifies transfer
learning to a degree that allows it to be done with minimal knowledge of the inner workings
of Tensorflow and neural networks. Using Tensorflow Lite Model Maker had the down-
side of limiting our options for pre-trained models. The library only supports 5 different
object detection models, which are all from the EfficientDet family released in late 2019.
We selected EfficientDet-lite0 and EfficientDet-lite1 for this configuration. These models
are optimized for Tensorflow Lite and edge deployment [28] [29]. EfficientDet-lite0 is the
lightest model with an input size of 320x320x3. EfficientDet-lite1 is slightly heavier with
an input size of 384x384x3. An attempt was made to compile a custom Yolo v5 model for
Tensorflow Lite and the Edge TPU for a better comparison against configuration 1. The
Yolo model was discarded as we were unable to have it utilize the TPU. The Coral Edge
TPU puts multiple constraints on the model choice [30], one of them being that not all
commonly used neural network operations are supported. Deducing why our yolo model
failed to run on the TPU was beyond the scope of this study, as it would likely require
deep understanding of neural networks.

57

5 Configurations

Training the models

We used transfer learning with the Tensorflow Lite Model Maker library to train models
for configuration 2. We explored the possibility of using Keras as well, which is a high-
level deep learning API with Tensorflow integration. Using Keras would enable us to
use any available object detection model for transfer learning. While Model Maker only
supports 5 object detectors. Model Maker was selected because of its low complexity. Due
to our time constraints, we chose not to dedicate time to learning Keras. Before training
we prepared our dataset by annotating our images. The dataset used is the same as the
one used in configuration 1. The dataset is annotated using Labelimg, which is a GUI
application for manually labeling objects. Labelimg generates an xml file for each image
in the Pascal VOC annotation format. The annotation contains info on the bounding box
location and class name for labeled objects in an image. Figure 5.26 shows the content of
an xml file, and its corresponding image with the bounding box drawn around our labeled
object.

Figure 5.26: Pascal VOC .xml contents (left), corresponding image (right)

The annotated dataset is split into three categories: Training data, validation data and
test data. Training data is the set used for training our model. The validation data is
used to evaluate the model during the training process. Test data is used to evaluate the
final model after training is complete. The final evaluation gives us the model’s precision
statistics. The simplicity of Tensorflow Lite Model Maker is best described by the few
lines of code required to train a model. Our training script for transfer learning with the
EfficientDet Lite1 model can be found in H. When the Tensorflow Lite model is trained it
needs to be compiled for the TPU. The compilation is done using the Edge TPU Compiler
tool which can run on any Linux machine [31]

58

5 Configurations

High level data flow

Figure 5.27 shows the input and outputs of the Tensorflow Lite interpreter object which
contains all the methods used to handle inference. The picamera2 python library provides
an interface to the Raspberry Pi camera drivers and allows us to capture image frames as
multidimensional arrays. The tflite_interpreter class provides methods for setting up and
running inference with our trained object detection model. The model takes the image
array as input and outputs the coordinates of bounding boxes around any detected object
as well as a prediction score per detected object. The score describes how likely it is that
the detection is a true positive. The full source code for configuration 2 can be found in
appendix G

Figure 5.27: Software, config 2

Reflections

This section covers aspects of configuration 3 we would have liked to explore further, if
given the time.

• Camera choice: EfficientDet Lite 0 and 1 take input images in the sizes 320x320
and 384x384 respectively. Capturing video at resolutions above these values are a
waste of resources. We should have used a camera with the ability to capture at
low res with a high Field of View. Pi Camera V2 can capture at 640x480, but at
this resolution the field of view is severely limited[32]. This issue could likely be
resolved by using a different camera, unfortunately it was an issue we discovered
very late in the project.

• Models: Getting the YOLOv5 model used in configuration 1 to run on the TPU
would result in a better comparison between the two.

• Multi TPU setup: We only purchased one TPU which left us unable to explore
the effects of a multi TPU setup. The Edge TPU Compiler can compile models
in segments, each segment then runs on an individual TPU increasing the total
throughput.

59

5 Configurations

. . Configuration , Pi Zero w/ Coral Edge TPU

Figure 5.28: Hardware architecture, config 3

Software

Configuration 3 runs the same software as configuration 2.

. . Configuration , Pi

Figure 5.29: Hardware architecture, config 4

In this section, we will present Configuration 4, which stands out as the sole configuration
that does not incorporate hardware acceleration, unlike the other configurations discussed
in this report.

Blob detection software

For image capture, we use the Pi Camera V3, interfaced via the Picamera2 library. And
for image processing, we implement OpenCV [33], a widely-used library known for its

60

5 Configurations

powerful computer vision and image processing capabilities. It is particularly suitable for
blob detection because of its versatility, efficiency, and ease of use. We also used a helper
library, cvzone [34], to reduce code and complexity.

Blob detection models and techniques

We opted for blob detection or blob analysis [35], an image processing technique that
identifies and analyzes distinct areas of interest within an image. In the context of our
project, blob detection was tasked with identifying balls of different colors.

Blob detection was chosen for its adaptability and precision. It can be finely tuned to
detect specific objects, has a high degree of flexibility to meet different computational
needs, and is particularly suited to the Raspberry Pi 4’s limited processing power. These
attributes made blob detection a compelling choice, as our project’s aim was to balance
detection accuracy with computational efficiency.

To identify the desired objects, our blob detection algorithm utilizes the HSV color
space[36], which separates the hue, saturation, and value/brightness components of an
image. By selecting appropriate color ranges, we are able to isolate specific objects based
on their distinctive color properties.[35] Once we have found a colored object through
color-based detection, our algorithm employs mathematical equations to analyze the con-
tour properties of these objects. Specifically, we determine whether the contours of the
detected blobs exhibit circular characteristics. This step helps differentiate the desired
balls from other shapes or artifacts in the image. [37]

Blob detection offers a high level of modifiability, allowing it to be tailored to meet
specific computational requirements. By adjusting key parameters, the algorithm can be
implemented with minimal computational resources, making it suitable for applications
where processing power is limited. Alternatively, a larger set of parameters can be utilized,
enabling more intricate analysis and detection of complex blobs. However, it should be
noted that this approach requires higher computational resources.

Considering the limitations of the Raspberry Pi 4 without acceleration hardware, the
modifiability of blob detection allows us to strike a balance between detection accuracy
and computational efficiency. We can optimize the algorithm by fine-tuning parameters
to ensure reliable performance on this hardware platform.

Software overview

Camera interface: Picamera2 Python library
Object detector type: Blob detection algorithm
Image processing library: OpenCV and cvzone
Model input: Images from Pi Camera V3

61

5 Configurations

Model output: Coordinates of HSV color values and contour properties (circle)

OpenCV and our blob detection algorithm process these frames to identify distinct blobs
(regions of interest) within the image. The algorithm outputs the coordinates of detected
blobs, along with their HSV color values and contour properties.

Config journey

Figure 5.30: Config model, config 4

To provide a clear and comprehensive understanding of our journey through this con-
figuration, we developed a model accompanied by an explanatory guide. The model is
divided into three phases, which illustrate the different stages of our work, the problems
we encountered, and the solutions we implemented. This approach offers a better view of
how our project developed from start to finish.

In the first phase of our task, we decided to use Python with OpenCV for image pro-
cessing. Python is a flexible and user-friendly language, making it an ideal choice for
quick development. OpenCV is a powerful tool for image processing, offering a wide
range of optimized algorithms. Using Python and OpenCV together enabled us to build
and test our image-processing algorithms efficiently and effectively.

After deciding to use Python and OpenCV for image processing, we needed to choose a
suitable algorithm for our task. We selected blob detection, considering its efficiency and
simplicity. This algorithm was an easy choice due to the lack of computing resources in
our configuration. It’s important to note that efficiency and effectiveness can still depend
on the specifics of a task.

62

5 Configurations

Moving to the second phase, we knew one of our client’s wishes was for us to develop
a program capable of detecting three tennis-sized balls, each of a different color. The
program was also required to calculate and display their x, and y coordinates, the distance
of each detected ball, and FPS on the frame. Initially, we worked in such a way that we
developed and tested the program on a high-end laptop with a webcam. At this point,
our blob detection algorithm could only detect the ball at approximately 1m, when our
goal was to detect it up to 3-4m. Here is a picture of how we defined the color range for
detection.

Figure 5.31: ColorFinder object, config 4

Having realized that the initial version (Blob detection.v1) C of our program did not fulfill
the client’s requirement, it became evident that we had to improve our blob detection.
As we went to the next step to expand the program’s capabilities from detecting one
ball to three balls, the computational demands increased, which lead to the challenge of
balancing efficiency and performance within our resource constraints.

With the improvements in place, our v2 version C of the program had advanced to the
point where it could successfully detect three differently colored balls, simultaneously
displaying their depth along with their x and y coordinates within the frame. However,

63

5 Configurations

despite better efficiency and accuracy, we were yet to reach our objective of detecting the
balls from a distance of 3-4 meters. Furthermore, the frame rate was still a matter of
concern, as we were only able to achieve an average of 4-8 frames per second, varying
based on the resolution scale.

Figure 5.32: BlobDetection.v2, config 4

Upon testing the program on a Raspberry Pi, we found that the computational demands
were too high for the hardware to handle effectively since we built and tested the program
on a high-end laptop using the webcam. As a result, we needed to revisit our approach
and develop a more simplified version that could effectively run on the Raspberry Pi.

In the third phase of our progress, in response to the computational constraints, we
developed a simpler blob detection algorithm for the v3 version C. By simplifying and
removing some of the more computationally intense functionalities from the program, we
were able to finally achieve the detection of the balls from a distance of 3-4 meters on
our PC. While the precision of this version was somewhat compromised in comparison to
v2, it was a necessary trade-off given our resource constraints. This version also offered a
significant improvement in frame rate performance as we were now achieving between 20-
25 frames per second, also resolving the previous frame rate issues we had encountered.

Upon testing our code on the Raspberry Pi, we encountered consistent results, primarily
due to the frame rate on the desktop PC being limited to 30 fps. Due to the change of
cameras being used from webcam to pi camera 3, the HSV values needed to be updated.
The code can be modified to be more accurate with further iterations since we see that
we can press the raspberry pi even further.

To further test our configuration, we set out to evaluate the effectiveness of our blob
detection. For this purpose, a script was developed to process labeled validation images,

64

5 Configurations

calculating precision, recall, and eventually yield the f1 score. This precision metric was
chosen to compare our algorithm’s performance with a trained model.

The optimal score we achieved was the result of testing over 10,000 different combinations
of HSV values:

Figure 5.33: Trying different HSV combinations

It’s important to clarify that this figure does not aim to showcase the accuracy of our
algorithm. Rather, it demonstrates our methodology for optimizing the F1 score across
a set of images with varying lighting conditions and environmental factors. C.4

However, given the algorithm’s dependency on HSV values, its performance varied signi-
ficantly under different lighting conditions.[38] This was a result of predetermined HSV
values becoming inconsistent under varying lighting conditions, leading to inaccurate de-
tections and incomplete detection of objects. To evaluate this, we utilized one image set
captured under a wide variety of conditions. The images were taken in different envir-
onments, with lighting and distance variables changing extensively. The performance in
these assorted conditions yielded varied results, indicating that the image set’s robust-
ness under uniform lighting conditions does not necessarily translate to the same level of
accuracy under diverse lighting and environmental conditions.

65

5 Configurations

The final test was done on FPS, where we recorded the fps over 30 secounds. This test
was done using the ROS architectures and was relativly stable. We had one drop in FPS,
but we did not have the time to investigate the manner further.

Complexity

While the initial implementation of the blob detection was relatively straightforward,
achieving optimal performance was a more intricate process. It required meticulous fine-
tuning of parameters to adapt to various conditions, and additional efforts were needed
to handle the irregularities present in real-world data.

Maintenance added to the overall complexity, with a recurring need to manually adjust
HSV values each time the environment changed. This repetitive process, although not
adding significant complexity, was time-consuming and could potentially impact overall
system efficiency. It’s an area we aim to improve in future iterations of the project.

Despite these complexities, this configuration proved less complex in comparison to others,
due largely to fewer encountered difficulties underway.

. Configurations, full context

In this section, we present our configurations in the full UAV context, from image pro-
cessing to the flight controller. We will cover ROS2 integration of the image processing
modules, and the ROS2 nodes we have developed as we worked towards a complete UAV
system.

. . ROS integration

As all image processing modules have the same outputs, the process of integrating them
with ROS2 is the same for each module. An image processing module is split into two
nodes which each handle a specific task. One node handles video capture, while the other
node handles object detection. The benefit of this modular approach is not obvious for
our configurations as both video capture and object detection run on the same hardware.
Having the option to run these nodes on dedicated hardware could be useful in the future,
which is why we went with the modular approach. An abstract explanation of our nodes
can be found in figure 5.34. For more details see appendix G, which contains commented
code for each node we have developed.

66

5 Configurations

Figure 5.34: ROS2 node description

. . UAV side project

Throughout this study we have had ambition to fly a UAV with the ability to follow an
object, as mentioned briefly in 5.3.3. The “UAV controller node” and “Mavlink node” in
figure 5.34 were made to achieve this goal. Results from real world testing on a UAV would
be valuable when comparing the performance of our configurations. Unfortunately, we
didn’t reach the point where we could launch a drone with the object following capability.
We elaborate on this side project in appendix B.2

67

5 Configurations

. Drone architecture

Figure 5.35: Hardware architecture including the flight controller and ESCs

The configuration consists of a flight controller flashed with a firmware featuring the
ability to receive relatively high-level commands from any image processing-stack and
turn it into real, physical movement of a drone.
The firmware chosen for this Bachelor’s thesis is the ”ArduCopter”-firmware from the
well-known ArduPilot[2] project, widely regarded as the best open-source flight controller
firmware for UAV projects.[39] The high-level commands in question being sent is from
the widely used MAVLink[40] messaging protocol which can be received and transmitted
through serial communications (UART / USB).

. . Flight controller firmware setup

The drone’s flight controller has to be flashed with a version of ArduCopter and all
necessary calibrations, ESC/motor-setup and tuning can be done through ArduPilot’s
official Mission Planner-application[2] installed on a desktop computer running Windows
or Linux operating system.
The flight controller has to also be configured to accept the MAVLink messaging protocol
on one of its serial Rx/Tx-ports, which also can be configured through Mission Planner.

68

5 Configurations

. . Communication software setup

The single-board computer in the image processing config-stack needs a way to trans-
mit and recieve MAVLink messages to and from the flight controller. There exists readily
available software solutions which can encode MAVLink messages and transmit them over
a serial communications interface such as UART or USB.

Two software solutions were assessed during this Bachelor’s thesis:
The ”Pymavlink” Python-libraries[41] and the ”MAVROS” ROS-package[42].

While both these solutions were assessed, only ”Pymavlink” was actually implemented in
a working configuration. This is due to the ”MAVROS” ROS-package for the supported
ROS 2 distributions (Foxy and Humble) still being in an alpha state[43] as of the time of
writing this report, and was therefore omitted.
More in-depth information and examples on MAVLink and ”Pymavlink” can be found in
B.1.2.

69

5 Configurations

Figure 5.36: Dataflow during test scenario

70

5 Configurations

. Exploring Use cases

In this section of the research report, we delve into one of the primary motivations for
this project, which is the potential applications of edge computing. Of particular interest
is the use case involving drones, which encapsulates the entire spectrum of our work,
ranging from the simulation of a drone via the Qualisys motion capture system to the
actual construction and piloting of one.

In the following subsections, we will discuss the various tests conducted in our research,
along with a detailed analysis of their respective outcomes.

. . Qualisys and drone tracking

The Qualisys motion capture system is a powerful tool that we use to pinpoint the exact
location of the drone. It gives us real-time data on the drone’s position in 3D space,
with six degrees of freedom (6DOF). This means it can track the drone’s movements
forward and backward, up and down, left and right, as well as its rotations around three
perpendicular axes. With this system, we can monitor and evaluate the drone’s position
in any environment, including a room. [44]

Drone tracking with Qualisys

Qualisys is exceptionally efficient in tracking drones. It goes beyond merely determining
the drone’s location; Qualisys supplies accurate tracking data that captures the drone’s
nuanced movements in real-time. Specifically, we are focused on the yaw, x and y coordin-
ates. The yaw value helps us understand the drone’s rotation around the vertical axis,
while the x and y coordinates pinpoint the drone’s position in three-dimensional space.
By comparing this data with our drone location algorithm’s output, we can assess the al-
gorithm’s accuracy and reliability. If there are discrepancies, we can refine our algorithm
using this high-quality data, ensuring the drone’s precise positioning and control.

Drone position

In order to calculate the drone position we need to get the distance data (denoted as d)
from our image processing configurations, and we need to get the yaw (denoted as θ)
from the qualisys. We use the yaw data to simulate magnetometer data we would get
from the flightcontroller. This testing have been done with a dummy drone with qualisys
markers on the floor, so that we don’t factor in the z axis.

71

5 Configurations

We’re essentially using a polar coordinate system with the object at the origin. In this
system, a point is described by its distance from the origin, and its angle measured
counterclockwise from a reference direction. For our specific problem, this angle is the
drone’s yaw.

Given this setup, the drone’s x (xdrone) and y (ydrone) positions can be calculated by
using trigonometric functions with the distance to the object and the drone’s yaw. This
calculation assumes that the object is at a location relative to origio, and the drone’s yaw
is defined as 0 when the drone is north of the object with the camera pointing south,
increasing counterclockwise, and decreasing clockwise.

The equations to calculate the drone’s position are as follows:

xdrone = xobject −d · sin(θ) (5.4)

ydrone = yobject +d · cos(θ) (5.5)

These equations account for the drone’s distance from the object and its orientation.
The trigonometric functions sin and cos help to decompose the total distance d into x
and y components, providing an estimate for the drone’s position. After the estimation,
we compare the calculated position with the true position. This allows us to gauge the
accuracy of our algorithm. In addition, we plot these positions over time to visually assess
the performance of our drone location algorithm.

Test Results

With the use of ROS2s get_logger().info() and the plots generated, we were able to
reliably read the test data from our calculations:

Yaw (rad) Distance to Object (cm) Estimated Position(x,y) True Position(x,y) Difference (%)
-0.045 92 (0.0395, 0.919) (-0.086, 0.941) 2.65
1.524 88 (-0.878, 0.0498) (-0.984, -0.004) 10.6
3.015 80 (-0.100, -0.793) (-0.051, -0.810) 1.43
-1.581 86 (0.859, -0.005) (0.773, -0.017) 11.1

Table 5.4: Drone Position Testing Data

The numbers we’re discussing are average measurements taken from each yaw, using a
still camera. These measurements consider all areas of the coordinate system that our
Qualisys tracking system is adjusted to match. We compare our test data with the real
coordinates from the Qualisys Tracking Manager (QTM). By finding the distance between
each point, we can estimate the difference between them. This test was conducted with
the object at the origin point (0,0).

72

5 Configurations

Figure 5.37: Estimated drone position vs Qualisys tracking data

Data from a moving camera, as shown in 5.37, is not as accurate as the data from a still
camera. This might be because the camera was placed half a meter above the ground,
something we didn’t account for in our tests. Even so, the results indicate that our
function is working correctly, which is our main goal.

The testing was done with image processing configuration 4. And since the contours in
the frames fluctuate a little from each time, this also factor in on the estimated values.

73

5 Configurations

ROS to ROS

The previous project by Local Hawk had utilized Qualisys for drone tracking, and we
opted to use their existing codebase. However, this code was designed for ROS1, which
required us to convert it to the newer ROS2 standard.

Initially, we contemplated using a bridge between ROS1 and ROS2. However, given that
this bridge is still in the alpha phase and only supports standard ROS messages, it was
not suited for our application as we were dealing with custom message types developed
by Local Hawk. Hence, we decided to translate the ROS related code from ROS1 to
ROS2. We did not make any big changes to the calculations, other than setting some
initial values, due to errors parsing the data into the calculation function.

A significant portion of the changes we made were the underlying architecture and meth-
odology of ROS2, which diverges significantly from its predecessor.

The API client library has been changed, and they changed the achitecture to be more
object oriented in ROS2. So everything from simple syntax to architecture have been
changed. But most of the time was understanding how the ROS1 script worked.

One main challenge arose due to the Qualisys Tracking Manager (QTM) library’s depend-
ency on ”Asyncio”. Both Asyncio and ROS utilize event loops, which manage and dis-
tribute the execution of different tasks in an asynchronous programming environment.

This meant we needed to learn how the Asyncio event loop worked to understand what
changes had been made. Essentially, these event loops allow multiple tasks to be executed
concurrently, without the need for multi-threading or multi-processing. They achieve this
by running one task until it needs to wait for an external event (like an I/O operation),
then pausing that task and running another. This allows the program to utilize CPU
time efficiently, as it can continue processing other tasks while waiting for the external
event, instead of just sitting idle.[45]

74

5 Configurations

Instead of using the ROS2 spin function, we put the node into the Asyncio event loop.
The Local Hawk team started this, but we had to change some parts of the code. You
can see these changes in our code breakdown here.

75

Measurements

Performance Measurement Results

The purpose of this section is to evaluate and compare the performance of the four dif-
ferent hardware configurations. This assessment will help us determine the most suitable
configuration for achieving the desired balance between processing power, accuracy, and
energy efficiency.

Detection accuracy (precision, recall, F1-score)

• Precision: Precision is a measure of how many of the detected objects are actually
relevant. It is calculated as the number of true positives (TP) divided by the
sum of true positives and false positives (FP). A high precision indicates that the
object detection system is good at identifying relevant objects while avoiding false
detections. Precision = TP / (TP + FP)

• Recall: Recall is a measure of how many of the relevant objects are detected by the
system. It is calculated as the number of true positives (TP) divided by the sum
of true positives and false negatives (FN). A high recall indicates that the object
detection system is good at finding all the relevant objects in the scene. Recall =
TP / (TP + FN)

• F1-score: The F1-score is the harmonic mean of precision and recall, providing a
single metric that balances both precision and recall. This is useful when you want
to compare the performance of different object detection systems, especially when
there’s a trade-off between precision and recall. An F1-score closer to 1 indicates
a better-performing object detection system. F1-score = 2 * (Precision * Recall) /
(Precision + Recall) [46][p. 155-156]

76

6 Measurements

Frame Rate

• Frame Rate, often measured in frames per second (fps), refers to the speed at which
the system can process consecutive images for object detection. It represents the
number of images the system can analyze and generate object detection results for
within a second.

• Higher frame rates indicate better performance, as the system can analyze more
images in a given period. This is particularly important for drone applications,
where real-time or near-real-time object detection is crucial for seamless operation
and rapid decision-making.

Power consumption

• Power consumption refers to the amount of electrical power used by the edge con-
figurations while performing object detection tasks. It is measured in watts (W)
and is obtained by monitoring the current and voltage supplied to the device during
operation.

• Lower power consumption is generally more desirable, as it indicates higher energy
efficiency and can result in longer flight times for the drone. Comparing the power
consumption of the four configurations can help determine which option is better
suited for a lightweight drone, where battery life and weight are critical factors.

Weight Efficiency

• Weight efficiency refers to the total weight of the configuration, including the com-
putational hardware (like the Jetson Nano or Raspberry Pi), any attached accel-
erators (like the Google Coral TPU), and necessary components for their function
(like heat sinks, cables, power supply, etc.). In the context of drones, lower weight
is preferable as it can lead to longer flight times and improved maneuverability.

Complexity (Ease of Setup and Operation)

• Complexity in this context refers to the level of difficulty involved in setting up
and operating the object detection system. This includes tasks such as installing
and configuring the necessary software, implementing the object detection model,
troubleshooting issues, and managing the system during operation.

• 1 represents a very complex system that is difficult to set up and operate. This might
include challenges such as complicated installation procedures, hard-to-resolve er-
rors, poor documentation, a steep learning curve, and significant maintenance re-
quirements.

77

6 Measurements

• 10 represents an easy-to-use system that is straightforward to set up and oper-
ate. This might include factors such as clear and thorough documentation, simple
installation procedures, easy-to-use tools and interfaces, minimal troubleshooting
requirements, and low maintenance needs.

Results

Configuration config 1 config 1 config 2 config 2 config 3 config 3 config 4
yolov5n yolov5s edl0 edl1 edl0 edl1 blob

Precision 0.991 0.995 0.945 0.924 0.945 0.924 0.96
Recall 1.00 1.00 0.516 0.580 0.516 0.580 0.25
F1-score 0.96 0.96 0.667 0.712 0.667 0.712 0.399

Avg FPS over 30 sec 11.03 5.966 24.64 16.46 5.70 3.92 23.33
Power Consumption (W) 10.8 11.7 11.7 7,2 W

Weight (g) 246.1 87.6 43.3 51.1
Complexity 2 9 9 7

Price 124$ 145$ 100$ 85$

Table 6.1: Results

78

6 Measurements

(a) Config 1 results (b) Config 2 results

(c) Config 3 results (d) Config 4 results

Figure 6.1: Results represented in spider diagrams

79

6 Measurements

. Config

The following figure show the FPS performance of configuration 1 while running object
detection. We ended up testing two Yolo models, nano and small.

Figure 6.2: Yolov5 nano versus small model FPS

. Config & Config

Both the EfficientDet Lite 0 and EfficientDet Lite 1 models has been benchmarked on the
follwing three hardware configurations:

• Raspberry Pi 4B w/ Coral USB Accelerator (Config 2)

• Raspberry Pi Zero2 w/ Coral USB Accelerator (Config 3)

• Raspberry Pi 3B+ w/ Coral USB Accelerator

All three hardware configurations has been benchmarked by running the Docker-container
at ”benchmark/coral-1xRPi” from the ”Aerial-Edge/Drone” repository [47] with the latest
Raspberry Pi OS Lite (64-bit) natively installed on a Class A2 SDXC-card.

80

6 Measurements

. . EfficientDet Lite

Figure 6.3: EfficientDet Lite 0 on various Raspberry Pies

81

6 Measurements

. . EfficientDet Lite

Figure 6.4: EfficientDet Lite 1 on various Raspberry Pies

82

6 Measurements

Figure 6.5: EfficientDet Lite 0 compared to EfficientDet Lite 1 on Raspberry Pi 4B

83

6 Measurements

. . USB . vs. USB .

Plugging the Coral USB Accelerator to a USB 2.0-port instead of 3.0-port pretty much
halves the frame rate during the object-detection benchmark. This consistent with the
Coral’s tech specs[48] which claims that the USB Accelerator is compatible with USB 2.0
but the inferencing speed is slower. Note that both the Raspberry Pi 3B+ and Zero 2
only have USB 2.0 ports but the 4B still produces substantially higher frame rate than
these two when it also is connected on USB 2.0.

Figure 6.6: EfficientDet Lite 0, USB 3.0 vs 2.0 on RPi 4B

84

6 Measurements

Figure 6.7: EfficientDet Lite 1, USB 3.0 vs 2.0 on RPi 4B

85

6 Measurements

. Config

The following figure displays the frame per second (FPS) performance of Configuration
4 while tracking a single object over a 30-second interval with our final blob detection:
G.1.4

Figure 6.8: FPS, Configuration 4

86

Conclusion

Our bachelor’s project aimed to provide readers with valuable insights into edge image
processing for lightweight unmanned aerial vehicles (UAVs). Through our research and
experimentation, we successfully achieved object detection capabilities tailored specific-
ally for such UAVs. We utilized four different hardware and software configurations to
accomplish this task.

By benchmarking our four configurations, we assessed their respective detection accuracy
and frame-per-second (FPS) performance on a single object. This allowed us to compre-
hensively evaluate the suitability and effectiveness of each configuration for lightweight
UAVs in terms of precision and real-time processing capabilities.

Our findings not only contribute to the field of edge image processing but also hold
practical significance for the Local Hawk Project and its endeavors. The results highlight
the importance of selecting appropriate hardware and software configurations to achieve
optimal object detection performance within the constraints of lightweight UAVs.

Furthermore, this project serves as a foundation for future research and development in
the area of edge image processing for lightweight UAVs. The insights gained from our
study can guide further improvements in detection accuracy and FPS, leading to enhanced
capabilities for lightweight UAVs in various domains, including surveillance, monitoring,
and search-and-rescue operations.

Overall, our project successfully addresses the goal of providing the reader with knowledge
on edge image processing for lightweight UAVs. Through our experimentation and evalu-
ation, we have demonstrated the feasibility and efficacy of object detection using different
configurations, thereby contributing to the advancement of lightweight UAV technologies
and applications.

87

References
[1] mateksys.com. ‘Flight controller h743-slim v3.’ (), [Online]. Available: http://www.

mateksys.com/?portfolio=h743-slim. (accessed: 20.03.23).
[2] ArduPilot.org. ‘Ardupilot documentation.’ (), [Online]. Available: https://ardupilot.

org/ardupilot/. (accessed: 20.03.23).
[3] KongsbergGruppen. ‘Om kongsberg gruppen.’ (), [Online]. Available: https : / /

www.annual-report.kongsberg.com/no/om-kongsberg-gruppen/dette-er-
kongsberg-gruppen/. (accessed: 05.02.23).

[4] S. N. Leksikon. ‘Dialektikk.’ (), [Online]. Available: https://snl.no/dialektikk.
(accessed: 08.02.23).

[5] R. Bologna, F. Trede and N. Patton, ‘Bourdieu and jung: A thought partnership
to explore personal, social, and collective unconscious influences on professional
practices,’ Qualitative Report, vol. 25, p. 3519, Oct. 2020. doi: 10.46743/2160-
3715/2020.4184.

[6] A. Sienkiewicz. ‘Iteration vs sprint vs cadence in agile.’ (), [Online]. Available:
https://bigpicture.one/sprint-cadence-iteration/. (accessed: 18.05.23).

[7] L. Rosencrance. ‘What is risk analysis?’ (), [Online]. Available: https : / / www .
techtarget.com/searchsecurity/definition/risk-analysis. (accessed: 20.03.23).

[8] V. Solutions. ‘Risk matrix calculations – severity, probability, and risk assessment.’
(), [Online]. Available: https://www.vectorsolutions.com/resources/blogs/
risk-matrix-calculations-severity-probability-risk-assessment/. (ac-
cessed: 20.03.23).

[9] H. Underwood. ‘Outline risk identifying risks to your project change managing
change for your project.’ (), [Online]. Available: https://slideplayer.com/slide/
11367849/. (accessed: 20.03.23).

[10] P. Guevara. ‘A guide to understanding 5x5 risk matrix.’ (), [Online]. Available:
https://safetyculture.com/topics/risk-assessment/5x5-risk-matrix/.
(accessed: 20.03.23).

[11] A. Kayid, Y. Khaled and M. Elmahdy, ‘Performance of cpus/gpus for deep learning
workloads,’ May 2018. doi: 10.13140/RG.2.2.22603.54563.

[12] Nvidia. ‘Jetson nano developer kit.’ (), [Online]. Available: https://developer.
nvidia.com/embedded/jetson-nano-developer-kit. (accessed: 18.03.23).

88

http://www.mateksys.com/?portfolio=h743-slim
http://www.mateksys.com/?portfolio=h743-slim
https://ardupilot.org/ardupilot/
https://ardupilot.org/ardupilot/
https://www.annual-report.kongsberg.com/no/om-kongsberg-gruppen/dette-er-kongsberg-gruppen/
https://www.annual-report.kongsberg.com/no/om-kongsberg-gruppen/dette-er-kongsberg-gruppen/
https://www.annual-report.kongsberg.com/no/om-kongsberg-gruppen/dette-er-kongsberg-gruppen/
https://snl.no/dialektikk
https://doi.org/10.46743/2160-3715/2020.4184
https://doi.org/10.46743/2160-3715/2020.4184
https://bigpicture.one/sprint-cadence-iteration/
https://www.techtarget.com/searchsecurity/definition/risk-analysis
https://www.techtarget.com/searchsecurity/definition/risk-analysis
https://www.vectorsolutions.com/resources/blogs/risk-matrix-calculations-severity-probability-risk-assessment/
https://www.vectorsolutions.com/resources/blogs/risk-matrix-calculations-severity-probability-risk-assessment/
https://slideplayer.com/slide/11367849/
https://slideplayer.com/slide/11367849/
https://safetyculture.com/topics/risk-assessment/5x5-risk-matrix/
https://doi.org/10.13140/RG.2.2.22603.54563
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

References

[13] Coral.ai. ‘Usb accelerator.’ (), [Online]. Available: https://coral.ai/products/
accelerator. (accessed: 18.03.23).

[14] R. P. Ltd. ‘Raspberry pi camera module 3.’ (), [Online]. Available: https : / /
datasheets.raspberrypi.com/camera/camera-module-3-product-brief.pdf.
(accessed: 20.03.23).

[15] LCSC. ‘Camera module v2.’ (), [Online]. Available: https://datasheet.lcsc.
com/lcsc/1810010717_Raspberry-Pi-RPICAMERABOARD_C110649.pdf. (accessed:
20.03.23).

[16] R. P. Ltd. ‘About the camera modules.’ (), [Online]. Available: https : / / www .
raspberrypi.com/documentation/accessories/camera.html. (accessed: 20.03.23).

[17] Branka. ‘Linux statistics – 2023.’ (), [Online]. Available: https://truelist.co/
blog/linux-statistics/. (accessed: 18.05.23).

[18] Phoronix. ‘Raspberry pi os 32-bit vs. 64-bit performance.’ (), [Online]. Available:
https://www.phoronix.com/review/raspberrypi- 32bit- 64bit. (accessed:
22.05.23).

[19] J. Redmon, S. Divvala, R. Girshick and A. Farhadi. ‘You only look once: Unified,
real-time object detection.’ (), [Online]. Available: https://arxiv.org/abs/1506.
02640. (accessed: 16.03.23).

[20] G. Jocher. ‘Nvidia jetson nano deployment.’ (), [Online]. Available: https://docs.
ultralytics.com/yolov5/. (accessed: 12.05.23).

[21] Ultralytics. ‘Ultralytics yolov8.’ (), [Online]. Available: https://docs.ultralytics.
com/#ultralytics-yolov8. (accessed: 16.03.23).

[22] A. Rosebrock. ‘Find distance from camera to object.’ (), [Online]. Available: https:
//pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-
using-python-opencv/. (accessed: 19.05.23).

[23] Nvidia. ‘Nvidia sdk manager.’ (), [Online]. Available: https://developer.nvidia.
com/sdk-manager. (accessed: 12.05.23).

[24] Nvidia. ‘Jetpack sdk 4.6.1.’ (), [Online]. Available: https://developer.nvidia.
com/embedded/jetpack-sdk-461. (accessed: 18.03.23).

[25] Nvidia. ‘Write image to the microsd card.’ (), [Online]. Available: https://developer.
nvidia.com/embedded/learn/get-started-jetson-nano-devkit#write. (ac-
cessed: 12.05.23).

[26] G. Jocher. ‘Nvidia jetson nano deployment.’ (), [Online]. Available: https://docs.
ultralytics.com/yolov5/tutorials/running_on_jetson_nano/. (accessed:
12.05.23).

[27] D. Franklin. ‘Jetson inference.’ (), [Online]. Available: https://github.com/dusty-
nv/jetson-inference. (accessed: 20.05.23).

89

https://coral.ai/products/accelerator
https://coral.ai/products/accelerator
https://datasheets.raspberrypi.com/camera/camera-module-3-product-brief.pdf
https://datasheets.raspberrypi.com/camera/camera-module-3-product-brief.pdf
https://datasheet.lcsc.com/lcsc/1810010717_Raspberry-Pi-RPICAMERABOARD_C110649.pdf
https://datasheet.lcsc.com/lcsc/1810010717_Raspberry-Pi-RPICAMERABOARD_C110649.pdf
https://www.raspberrypi.com/documentation/accessories/camera.html
https://www.raspberrypi.com/documentation/accessories/camera.html
https://truelist.co/blog/linux-statistics/
https://truelist.co/blog/linux-statistics/
https://www.phoronix.com/review/raspberrypi-32bit-64bit
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://docs.ultralytics.com/yolov5/
https://docs.ultralytics.com/yolov5/
https://docs.ultralytics.com/#ultralytics-yolov8
https://docs.ultralytics.com/#ultralytics-yolov8
https://pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-opencv/
https://pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-opencv/
https://pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-opencv/
https://developer.nvidia.com/sdk-manager
https://developer.nvidia.com/sdk-manager
https://developer.nvidia.com/embedded/jetpack-sdk-461
https://developer.nvidia.com/embedded/jetpack-sdk-461
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#write
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#write
https://docs.ultralytics.com/yolov5/tutorials/running_on_jetson_nano/
https://docs.ultralytics.com/yolov5/tutorials/running_on_jetson_nano/
https://github.com/dusty-nv/jetson-inference
https://github.com/dusty-nv/jetson-inference

References

[28] Google/Tensorflow. ‘Efficientdet-lite0 tensorflow hub page.’ (), [Online]. Available:
https://tfhub.dev/tensorflow/lite-model/efficientdet/lite0/detection/
default/1. (accessed: 19.05.23).

[29] Google/Tensorflow. ‘Efficientdet-lite1 tensorflow hub page.’ (), [Online]. Available:
https://tfhub.dev/tensorflow/lite-model/efficientdet/lite1/detection/
default/1. (accessed: 19.05.23).

[30] Google/Coral. ‘Tensorflow models on the edge tpu.’ (), [Online]. Available: https:
//coral.ai/docs/edgetpu/models-intro/. (accessed: 19.05.23).

[31] Google/Coral. ‘Edge tpu compiler.’ (), [Online]. Available: https://coral.ai/
docs/edgetpu/compiler/. (accessed: 19.05.23).

[32] P. contributors. ‘Picamera documentation: Sensor modes.’ (), [Online]. Available:
https://picamera.readthedocs.io/en/release- 1.13/fov.html#sensor-
modes. (accessed: 20.05.23).

[33] OpenCV. ‘Opencv documentation.’ (), [Online]. Available: https://docs.opencv.
org/4.x/. (accessed: 16.03.23).

[34] CVzone. ‘Cvzone documentation.’ (), [Online]. Available: https://github.com/
cvzone/cvzone. (accessed: 16.03.23).

[35] ‘Blob detection using opencv (python, c++).’ (), [Online]. Available: https :
//learnopencv.com/blob- detection- using- opencv- python- c/. (accessed:
20.03.23).

[36] Packt. ‘Object detection using color.’ (), [Online]. Available: https://subscription.
packtpub.com/book/data/9781789537147/1/ch01lvl1sec09/object-detection-
using-color-in-hsv. (accessed: 20.03.23).

[37] ‘Contour detection using opencv (python/c++).’ (), [Online]. Available: https :
//learnopencv.com/contour-detection-using-opencv-python-c/. (accessed:
20.03.23).

[38] Aerial-Edge. ‘Dataset for config4 evaluation.’ (), [Online]. Available: https : / /
universe . roboflow . com / dataset - k3la3 / ball - finder - a5yur / dataset / 3.
(accessed: 20.03.23).

[39] OscarLiang.com. ‘Firmware for fpv drone flight controller overview.’ (), [Online].
Available: https://oscarliang.com/fc-firmware/. (accessed: 20.03.23).

[40] MAVLink.io. ‘Mavlink developer guide.’ (), [Online]. Available: https://mavlink.
io/en/. (accessed: 20.03.23).

[41] ArduPilot. ‘Python mavlink interface and utilities.’ (), [Online]. Available: https:
//github.com/ArduPilot/pymavlink. (accessed: 21.05.23).

[42] ros.org. ‘Mavros.’ (), [Online]. Available: http://wiki.ros.org/mavros. (accessed:
20.03.23).

90

https://tfhub.dev/tensorflow/lite-model/efficientdet/lite0/detection/default/1
https://tfhub.dev/tensorflow/lite-model/efficientdet/lite0/detection/default/1
https://tfhub.dev/tensorflow/lite-model/efficientdet/lite1/detection/default/1
https://tfhub.dev/tensorflow/lite-model/efficientdet/lite1/detection/default/1
https://coral.ai/docs/edgetpu/models-intro/
https://coral.ai/docs/edgetpu/models-intro/
https://coral.ai/docs/edgetpu/compiler/
https://coral.ai/docs/edgetpu/compiler/
https://picamera.readthedocs.io/en/release-1.13/fov.html#sensor-modes
https://picamera.readthedocs.io/en/release-1.13/fov.html#sensor-modes
https://docs.opencv.org/4.x/
https://docs.opencv.org/4.x/
https://github.com/cvzone/cvzone
https://github.com/cvzone/cvzone
https://learnopencv.com/blob-detection-using-opencv-python-c/
https://learnopencv.com/blob-detection-using-opencv-python-c/
https://subscription.packtpub.com/book/data/9781789537147/1/ch01lvl1sec09/object-detection-using-color-in-hsv
https://subscription.packtpub.com/book/data/9781789537147/1/ch01lvl1sec09/object-detection-using-color-in-hsv
https://subscription.packtpub.com/book/data/9781789537147/1/ch01lvl1sec09/object-detection-using-color-in-hsv
https://learnopencv.com/contour-detection-using-opencv-python-c/
https://learnopencv.com/contour-detection-using-opencv-python-c/
https://universe.roboflow.com/dataset-k3la3/ball-finder-a5yur/dataset/3
https://universe.roboflow.com/dataset-k3la3/ball-finder-a5yur/dataset/3
https://oscarliang.com/fc-firmware/
https://mavlink.io/en/
https://mavlink.io/en/
https://github.com/ArduPilot/pymavlink
https://github.com/ArduPilot/pymavlink
http://wiki.ros.org/mavros

References

[43] mavlink. ‘Mavlink to ros gateway with proxy for ground control station.’ (), [Online].
Available: https://github.com/mavlink/mavros. (accessed: 21.05.23).

[44] Qualisys. ‘Qualisys tracking.’ (), [Online]. Available: https://www.qualisys.com/
engineering/robotics-and-uav/. (accessed: 16.03.23).

[45] S. H. Alex Martelli Anna Ravenscroft, Python in a Nutshell, 3rd Edition. O’Reilly
Media, Inc., 2017.

[46] H. S. Christopher D. Manning Prabhakar Raghavan, An introduction to Information
Retrieval. Cambridge University Press, 2009.

[47] Aerial-Edge. ‘Composition of ros2 packages for the drone stack & benchmark script
running in docker.’ (), [Online]. Available: https://github.com/Aerial-Edge/
Drone. (accessed: 21.05.23).

[48] Coral.ai. ‘Coral about.’ (), [Online]. Available: https://coral.ai/docs/accelerator/
datasheet/. (accessed: 16.03.23).

[49] Nvidia. ‘Nvidia tensorrt.’ (), [Online]. Available: https://developer.nvidia.com/
tensorrt. (accessed: 16.03.23).

[50] PiDramble.com. ‘Power consumption benchmarks.’ (), [Online]. Available: https://
www.pidramble.com/wiki/benchmarks/power-consumption. (accessed: 22.05.23).

[51] C. Software. ‘A deep dive into raspberry pi zero 2 w’s power consumption.’ (),
[Online]. Available: https://www.cnx-software.com/2021/12/09/raspberry-
pi-zero-2-w-power-consumption/. (accessed: 22.05.23).

[52] Elefun.no. ‘Mateksys h743-slim v3 flight controller.’ (), [Online]. Available: https:
//www.elefun.no/p/prod.aspx?v=56509. (accessed: 22.05.23).

[53] tensorflow.org. ‘Tfl about.’ (), [Online]. Available: https://www.tensorflow.org/
lite/guide. (accessed: 16.03.23).

[54] wikipedia.org. ‘Single-board computer.’ (), [Online]. Available: https://en.wikipedia.
org/wiki/Single-board_computer. (accessed: 16.03.23).

[55] OpenCV. ‘Opencv hough circle.’ (), [Online]. Available: https://docs.opencv.
org/4.x/d4/d70/tutorial_hough_circle.html. (accessed: 16.03.23).

[56] OpenCV. ‘Opencv display.’ (), [Online]. Available: https://docs.opencv.org/4.
x/dc/da5/tutorial_py_drawing_functions.html. (accessed: 16.03.23).

[57] P. Principles. ‘Opencv enumerate.’ (), [Online]. Available: https://docs.opencv.
org/4.x/dc/da5/tutorial_py_drawing_functions.html. (accessed: 16.03.23).

[58] jeremiedecock. ‘Circle documentation.’ (), [Online]. Available: https://github.
com/jeremiedecock/vor12/blob/master/vor12/computer_vision/circle_
detection.py. (accessed: 16.03.23).

91

https://github.com/mavlink/mavros
https://www.qualisys.com/engineering/robotics-and-uav/
https://www.qualisys.com/engineering/robotics-and-uav/
https://github.com/Aerial-Edge/Drone
https://github.com/Aerial-Edge/Drone
https://coral.ai/docs/accelerator/datasheet/
https://coral.ai/docs/accelerator/datasheet/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://www.pidramble.com/wiki/benchmarks/power-consumption
https://www.pidramble.com/wiki/benchmarks/power-consumption
https://www.cnx-software.com/2021/12/09/raspberry-pi-zero-2-w-power-consumption/
https://www.cnx-software.com/2021/12/09/raspberry-pi-zero-2-w-power-consumption/
https://www.elefun.no/p/prod.aspx?v=56509
https://www.elefun.no/p/prod.aspx?v=56509
https://www.tensorflow.org/lite/guide
https://www.tensorflow.org/lite/guide
https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/Single-board_computer
https://docs.opencv.org/4.x/d4/d70/tutorial_hough_circle.html
https://docs.opencv.org/4.x/d4/d70/tutorial_hough_circle.html
https://docs.opencv.org/4.x/dc/da5/tutorial_py_drawing_functions.html
https://docs.opencv.org/4.x/dc/da5/tutorial_py_drawing_functions.html
https://docs.opencv.org/4.x/dc/da5/tutorial_py_drawing_functions.html
https://docs.opencv.org/4.x/dc/da5/tutorial_py_drawing_functions.html
https://github.com/jeremiedecock/vor12/blob/master/vor12/computer_vision/circle_detection.py
https://github.com/jeremiedecock/vor12/blob/master/vor12/computer_vision/circle_detection.py
https://github.com/jeremiedecock/vor12/blob/master/vor12/computer_vision/circle_detection.py

References

[59] kvaale. ‘Circle parameters.’ (), [Online]. Available: https://github.com/Aerial-
Edge / Containers / blob / main / cv - distance / app / main . py # L8. (accessed:
16.03.23).

[60] R. P. PhD. ‘Contour, shape and color detection using opencv-python.’ (), [Online].
Available: https://www.researchgate.net/publication/325195384_Contour_
Shape_Color_Detection_using_OpenCV-Python. (accessed: 16.03.23).

[61] TechVidvan. ‘Contour, shape and color detection using opencv-python.’ (), [Online].
Available: https://techvidvan.com/tutorials/detect-objects-of-similar-
color-using-opencv-in-python/. (accessed: 16.03.23).

[62] goodday451999 and modalaashwin41. ‘Multiple color detection in real-time us-
ing python-opencv.’ (), [Online]. Available: https://www.geeksforgeeks.org/
multiple-color-detection-in-real-time-using-python-opencv/. (accessed:
16.03.23).

[63] raspberrypi.com. ‘Datasheet for raspberry pi zero 2.’ (), [Online]. Available: https:
//datasheets.raspberrypi.com/rpizero2/raspberry-pi-zero-2-w-product-
brief.pdf. (accessed: 20.03.23).

[64] raspberrypi.com. ‘Datasheet for raspberry pi 4b.’ (), [Online]. Available: https:
//datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf. (ac-
cessed: 20.03.23).

[65] nvidia.com. ‘Datasheet for nvidia jetson nano.’ (), [Online]. Available: https://
developer.nvidia.com/embedded/dlc/jetson-nano-system-module-datasheet.
(accessed: 20.03.23).

[66] OscarLiang.com. ‘F1, f3, f4, g4, f7 and h7 flight controller processors explained.’ (),
[Online]. Available: https://oscarliang.com/f1-f3-f4-flight-controller/.
(accessed: 20.03.23).

[67] iNavFlight. ‘Ardupilot documentation.’ (), [Online]. Available: https://github.
com/iNavFlight/inav/wiki. (accessed: 20.03.23).

[68] wikipedia.org. ‘Pid controller.’ (), [Online]. Available: https://en.wikipedia.org/
wiki/PID_controller. (accessed: 20.03.23).

[69] raspberrypi.com. ‘Camera hardware specification.’ (), [Online]. Available: https://
www.raspberrypi.com/documentation/accessories/camera.html#hardware-
specification. (accessed: 20.03.23).

[70] wikipedia.org. ‘Rolling shutter.’ (), [Online]. Available: https://en.wikipedia.
org/wiki/Rolling_shutter. (accessed: 22.05.23).

[71] R. Pi. ‘About the camera modules.’ (), [Online]. Available: https://www.raspberrypi.
com/documentation/accessories/camera.html. (accessed: 22.05.23).

[72] libcamera.org. ‘Documentation - libcamera.’ (), [Online]. Available: https://libcamera.
org/docs.html. (accessed: 20.03.23).

92

https://github.com/Aerial-Edge/Containers/blob/main/cv-distance/app/main.py#L8
https://github.com/Aerial-Edge/Containers/blob/main/cv-distance/app/main.py#L8
https://www.researchgate.net/publication/325195384_Contour_Shape_Color_Detection_using_OpenCV-Python
https://www.researchgate.net/publication/325195384_Contour_Shape_Color_Detection_using_OpenCV-Python
https://techvidvan.com/tutorials/detect-objects-of-similar-color-using-opencv-in-python/
https://techvidvan.com/tutorials/detect-objects-of-similar-color-using-opencv-in-python/
https://www.geeksforgeeks.org/multiple-color-detection-in-real-time-using-python-opencv/
https://www.geeksforgeeks.org/multiple-color-detection-in-real-time-using-python-opencv/
https://datasheets.raspberrypi.com/rpizero2/raspberry-pi-zero-2-w-product-brief.pdf
https://datasheets.raspberrypi.com/rpizero2/raspberry-pi-zero-2-w-product-brief.pdf
https://datasheets.raspberrypi.com/rpizero2/raspberry-pi-zero-2-w-product-brief.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://developer.nvidia.com/embedded/dlc/jetson-nano-system-module-datasheet
https://developer.nvidia.com/embedded/dlc/jetson-nano-system-module-datasheet
https://oscarliang.com/f1-f3-f4-flight-controller/
https://github.com/iNavFlight/inav/wiki
https://github.com/iNavFlight/inav/wiki
https://en.wikipedia.org/wiki/PID_controller
https://en.wikipedia.org/wiki/PID_controller
https://www.raspberrypi.com/documentation/accessories/camera.html#hardware-specification
https://www.raspberrypi.com/documentation/accessories/camera.html#hardware-specification
https://www.raspberrypi.com/documentation/accessories/camera.html#hardware-specification
https://en.wikipedia.org/wiki/Rolling_shutter
https://en.wikipedia.org/wiki/Rolling_shutter
https://www.raspberrypi.com/documentation/accessories/camera.html
https://www.raspberrypi.com/documentation/accessories/camera.html
https://libcamera.org/docs.html
https://libcamera.org/docs.html

References

[73] raspberrypi. ‘Github - raspicam.’ (), [Online]. Available: https://github.com/
raspberrypi/userland/tree/master/host_applications/linux/apps/raspicam.
(accessed: 20.03.23).

[74] B. B. Rad, H. J. Bhatti and M. Ahmadi, ‘An introduction to docker and analysis of
its performance,’ IJCSNS International Journal of Computer Science and Network
Security, vol. 17, no. 3, pp. 228–235, 2017. [Online]. Available: http://paper.
ijcsns.org/07_book/201703/20170327.pdf, (accessed 20.03.23).

[75] Gazebo.org. ‘Gazebo.’ (), [Online]. Available: https://gazebosim.org/home. (ac-
cessed: 22.05.23).

[76] IBM. (), [Online]. Available: https://www.ibm.com/topics/computer-vision.
(accessed: 20.03.23).

[77] R. Kulhary. ‘Opencv overview.’ (), [Online]. Available: https://www.geeksforgeeks.
org/opencv-overview/. (accessed: 20.03.23).

[78] A. Stefanuk. ‘Hire opencv developers.’ (), [Online]. Available: https://mobilunity.
com/blog/hire-opencv-developers/. (accessed: 20.03.23).

[79] wikipedia. ‘Blob detection.’ (), [Online]. Available: https://en.wikipedia.org/
wiki/Blob_detection. (accessed: 20.03.23).

[80] MathWorks. ‘What is object detection.’ (), [Online]. Available: https : / / www .
mathworks.com/discovery/object-detection.html. (accessed: 20.03.23).

[81] T. A. Yuya Maruyama Shinpei Kato. ‘Exploring the performance of ros2.’ (), [On-
line]. Available: https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=
&arnumber=7743223&tag=1. (accessed: 15.05.23).

[82] . L. Puck et al. ‘Performance evaluation of real-time ros2 robotic control in a time-
synchronized distributed network.’ (), [Online]. Available: https://ieeexplore.
ieee.org/document/9551447/. (accessed: 15.05.23).

[83] M. K. Saeid Dehnavi. ‘Compros: A composable ros2 based architecture for real-time
embedded robotic development.’ (), [Online]. Available: https://www.researchgate.
net/publication/354956131_CompROS_A_composable_ROS2_based_architecture_
for_real-time_embedded_robotic_development. (accessed: 15.05.23).

[84] A. Rosebrock. ‘Intersection over union (iou) for object detection.’ (), [Online]. Avail-
able: https://pyimagesearch.com/2016/11/07/intersection-over-union-
iou-for-object-detection/. (accessed: 20.05.23).

[85] Chachart. ‘Chachart spiderdiagram.’ (), [Online]. Available: https://chachart.
net/radar?lang=en&fbclid=IwAR30SnjlOijhznssThCggGnYFXUVBdKXyB_8i2O1KUosQIFeuUtpHLirCrY.
(accessed: 21.05.23).

93

https://github.com/raspberrypi/userland/tree/master/host_applications/linux/apps/raspicam
https://github.com/raspberrypi/userland/tree/master/host_applications/linux/apps/raspicam
http://paper.ijcsns.org/07_book/201703/20170327.pdf
http://paper.ijcsns.org/07_book/201703/20170327.pdf
https://gazebosim.org/home
https://www.ibm.com/topics/computer-vision
https://www.geeksforgeeks.org/opencv-overview/
https://www.geeksforgeeks.org/opencv-overview/
https://mobilunity.com/blog/hire-opencv-developers/
https://mobilunity.com/blog/hire-opencv-developers/
https://en.wikipedia.org/wiki/Blob_detection
https://en.wikipedia.org/wiki/Blob_detection
https://www.mathworks.com/discovery/object-detection.html
https://www.mathworks.com/discovery/object-detection.html
https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=&arnumber=7743223&tag=1
https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=&arnumber=7743223&tag=1
https://ieeexplore.ieee.org/document/9551447/
https://ieeexplore.ieee.org/document/9551447/
https://www.researchgate.net/publication/354956131_CompROS_A_composable_ROS2_based_architecture_for_real-time_embedded_robotic_development
https://www.researchgate.net/publication/354956131_CompROS_A_composable_ROS2_based_architecture_for_real-time_embedded_robotic_development
https://www.researchgate.net/publication/354956131_CompROS_A_composable_ROS2_based_architecture_for_real-time_embedded_robotic_development
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://chachart.net/radar?lang=en&fbclid=IwAR30SnjlOijhznssThCggGnYFXUVBdKXyB_8i2O1KUosQIFeuUtpHLirCrY
https://chachart.net/radar?lang=en&fbclid=IwAR30SnjlOijhznssThCggGnYFXUVBdKXyB_8i2O1KUosQIFeuUtpHLirCrY

Appendix A

Hardware

A. Specification tables for configs

All values from these tables that are not referenced externally are done by own measuring.
The power supply component for the single-board computers has been omitted from these
tables due to there being several different options to choose from when supplying power
to these boards and not all of them can be covered here.

A. . Config

MSRP Weight Volume Power
(idle)

Power
(max)

Jetson Nano $ 99 241 g 232 cm3 5 W 10 W
Pi camera 3 $ 25 4 g 7 cm3 0,66 W 0,83 W
Camera ribbon - 1,1 g - - -
SUM $ 124 246,1 g 239 cm3 5,7 W 10,8 W

Table A.1: Hardware specification table for Config 1 hardware [12][69]

A. . Config

94

Appendix A Hardware

MSRP Weight Volume Power
(idle)

Power
(max)

Raspberry Pi 4B
4GB

$ 60 46 g 86 cm3 2,7 W 6,4 W

Pi camera 3 $ 25 4 g 7 cm3 0,66 W 0,83 W
Camera ribbon - 1,1 g - - -
Coral USB $ 60 19,7 g 15,6 cm3 2,5 W 4,5 W
USB C-A cable - 16,8 g - - -
SUM $ 145 87,6 g 109 cm3 5,7 W 11,7 W

Table A.2: Hardware specification table for Config 2 hardware [64][50][69][48]

A. . Config

MSRP Weight Volume Power
(idle)

Power
(max)

Raspberry Pi Zero2 $ 15 11 g 9,75 cm3 0,6 W 6,4 W
Pi camera 3 $ 25 4 g 7 cm3 0,66 W 0,83 W
Camera ribbon - 1,1 g - - -
Coral USB $ 60 19,7 g 15,6 cm3 2,5 W 4,5 W
USB C-micro cable - 7,5 g - - -
SUM $ 100 43,3 g 32 cm3 3,8 W 11,7 W

Table A.3: Hardware specification table for Config 3 hardware [63][51][69][48]

A. . Config

MSRP Weight Volume Power
(idle)

Power
(max)

Raspberry Pi 4B $ 60 46 g 86 cm3 2,7 W 6,4 W
Pi camera 3 $ 25 4 g 7 cm3 0,66 W 0,83 W
Camera ribbon - 1,1 g - - -
SUM $ 85 51,1 g 93 cm3 3,4 W 7,2 W

Table A.4: Hardware specification table for Config 4 hardware [64][50][69]

95

Appendix A Hardware

MSRP Weight Volume Power
(idle)

Power
(max)

Config 1 $ 124 246,1 g 239 cm3 5,7 W 10,8 W
Config 2 $ 145 87,6 g 109 cm3 5,7 W 11,7 W
Config 3 $ 100 43,3 g 32 cm3 3,8 W 11,7 W
Config 4 $ 85 51,1 g 93 cm3 3,4 W 7,2 W

Table A.5: Hardware specification table for comparison of all configs

A. . Comparison

A. Single-board computer (SBC)

A single-board computer (SBC) is a complete computer built on a single circuit board,
with microprocessor(s), memory, input/output (I/O) and other features required of a
functional computer. Single-board computers are commonly made as demonstration or
development systems, for educational systems, or for use as embedded computer control-
lers. Many types of home computers or portable computers integrate all their functions
onto a single printed circuit board.

Unlike a desktop personal computer, single board computers often do not rely on expan-
sion slots for peripheral functions or expansion. Single board computers have been built
using a wide range of microprocessors. Simple designs, such as those built by computer
hobbyists, often use static RAM and low-cost 32- or 64-bit processors like ARM. Other
types, such as blade servers, would perform similar to a server computer, only in a more
compact format. [54]

Thanks to the characteristics of SBCs, they are a core hardware component in all of the
architectural designs in this comparative study.

96

Appendix A Hardware

RPi 4B RPi Zero2 Jetson Nano
CPU Cortex-A72 @

1.5GHz
Cortex-A53 @

1.0GHz
Cortex-A57 @

1.43GHz
GPU VideoCore IV @

500MHz
VideoCore IV @

400MHz
128-core Maxwell @

921MHz
Memory 1 GB - 8 GB 512 MB 4 GB
Video
decoding

H.264/H.265
(4Kp60)

H.264 (1080p30) H.264/H.265
(4Kp60)

Video
encoding

H.264/H.265
(1080p30)

H.264 (1080p30) H.264/H.265
(4Kp30)

Connectivity USB 3.0 × 2 USB 2.0 × 1 USB 3.0 × 4
USB 2.0 × 2 UART × 1 USB 2.0 × 1
UART × 1 SPI × 2 UART × 1

SPI × 2 I2C × 1 SPI × 2
I2C × 1 I2C × 3

Form factor 85mm × 56mm 65mm × 30mm 69mm × 45mm
Weight 46g 11g 250g
MSRP $ 35 - $ 75 $ 15 $ 99

Table A.6: Comparison table for single-board computers (SBCs) [63][64][65]

When proposing what SBCs to deploy in our test-solution architectures we tend to
mainly look at specifications regarding processing power (CPU & GPU), memory (RAM),
hardware-accelerated video encoding/decoding and connectivity (USB, UART etc.) in re-
lation to the weight and form factor of the board. We also need to take into consideration
the availability and discrepancy between MSRP and actual sale price due to the current
world-wide chip shortage disrupting the market.

We decided the top-contenders and implemented them across all configurations:

• Raspberry Pi Zero 2 (RPi Zero 2)

• Raspberry Pi 4B (RPi 4B)

• nVidia Jetson Nano

97

Appendix A Hardware

A. Camera

Camera Module
v2

Camera Module
3 NoIR

Camera Module
3 Wide

Video Modes 1920 × 1080p47 2304 × 1296p56 2304 × 1296p56
1640 × 1232p41 2304 × 1296p30 2304 × 1296p30
640 × 480p206 1536 × 864p120 1536 × 864p120

Focus Adjustable Motorized Motorized
Depth of field Approx 10 cm to ∞ Approx 10 cm to ∞ Approx 5 cm to ∞
Horizontal FoV 62.2 degrees 66 degrees 102 degrees
Vertical FoV 48.8 degrees 41 degrees 67 degrees
Size 25 × 24 × 9mm 25 × 24 × 11.5mm 25 × 24 × 12.4mm
Weight 3g 4g 4g
MSRP $ 25 $ 25 $ 35

Table A.7: Comparison table for selected cameras[69]

A. . Rolling vs. Global shutter

All the cameras selected for this project use a ”rolling shutter”, meaning each frame of a
video is captured not by taking a snapshot of the entire scene at a single instant in time
but rather by scanning across the scene rapidly, vertically, horizontally or rotationally.
In other words, not all parts of the image of the scene are recorded at exactly the same
instant. (Though, during playback, the entire image of the scene is displayed at once, as
if it represents a single instant in time.) This produces predictable distortions of fast-
moving objects or rapid flashes of light. This is in contrast with ”global shutter” in which
the entire frame is captured at the same instant. [70]
A camera using a ”global shutter” would therefore cause less distortion of objects in frame
moving very fast, for example in the case of a drone capturing high-speed video footage.

Raspberry Pi Global Shutter Camera

Raspberry Pi recently released a new camera during this spring named the ”Global Shut-
ter (GS) Camera”. The Global Shutter Camera’s image sensor has a 6.3mm diagonal
active sensing area, which is similar in size to Raspberry Pi’s HQ Camera. However,
the pixels are larger and can collect more light. Large pixel size and low pixel count are
valuable in machine-vision applications; the more pixels a sensor produces, the harder it
is to process the image in real time. To get around this, many applications downsize and
crop images. This is unnecessary with the Global Shutter Camera and the appropriate

98

Appendix A Hardware

lens magnification, where the lower resolution and large pixel size mean an image can be
captured natively. [71]
The new ”GS Camera” would likely work substantially better for the application of cap-
turing video on a drone for object detection, with the only drawback being additional
weight from a heavier lens.

A. . Camera drivers

There are currently two different driver libraries for capturing with the Raspberry Pi
Cameras:

• libcamera [72]

• RaspiCam (legacy) [73]

Some quick benchmark tests indicates that the legacy RaspiCam drivers outperforms the
newer libcamera drivers in terms of CPU-usage. The reason for this is likely that the leg-
acy drivers are proprietorially made by the own producer of the Rasberry Pi’s GPU-stack
(Broadcom) and are therefore more efficiently taking advantage of the hardware.

Below are screenshots of an RTP-stream, the first using piped output from ”libcamera-
vid” and the second using ”v4l2src”, both with a Pi Camera Module v2.
The %CPU usage is over double for the ”libcamera-vid” command compared to ”v4l2src”
when streaming @ 1080p30.

Figure A.1: libcamera-vid piping video to gstreamer

Figure A.2: v4l2src (RaspiCam) feeding video to gstreamer

Unfortunately, the newest Pi Camera Module v3 is not compatible with the legacy
RaspiCam drivers.

99

Appendix A Hardware

A. Hardware Acceleration for ML Inference

A. . Google Coral TPU

The Coral TPU is a compact, power-efficient chip designed by Google to accelerate Tensor-
Flow Lite models on devices. It enables rapid machine learning processing, enhances data
privacy, and eliminates the need for continuous internet connectivity. Developers can
achieve high-performance machine learning inferencing, making it an ideal choice for ap-
plications like computer vision and natural language processing in various edge devices.
[48]

Figure A.3: Coral USB accelerator [13]

A. Flight controller

When choosing flight controller (FC) board(s) for the hardware stack of our test-solution
architectures we tend to mainly look at processor speed and flash memory in relation to
form factor and weight as well as the availability in local retail shops. The boards’ sensor
and connectivity options are aspects we deem less relevant for our research project.

F1, F3, F4, G4, F7, and H7 are the different STM32 processors (aka MCU – Micro
Controller Unit). The processor is the brain of a flight controller (FC), similar to the
CPU in a computer.

There are currently 11 series of STM32 MCU, from faster to slower processing speeds
they are: H7, F7, G4, F4, F3, F2, F1, F0, L4, L1, and L0. [66]

We decided to go for a single FC to be used in all the hardware stacks of our test-
solution architectures of the latest and greatest generation FC that employs the fastest

100

Appendix A Hardware

Processor Processor Speed Flash Memory SRAM
F0 (STM32F051) 48MHz 256KB 32KB
F1 (STM32F103) 72MHZ 128KB 96KB
F3 (STM32F303) 72MHz 256KB 80KB
F4 (STM32F405) 168MHz 1MB 192KB
F4 (STM32F411) 100MHz 512KB 128KB
G4 (STM32G491) 170MHz 512KB 128KB
F7 (STM32F745) 216MHz 1MB 320KB
F7 (STM32F722) 216MHz 512KB 256KB
F7 (STM32F765) 216MHz 2MB 512KB
H7 (STM32H743) 480MHz 2MB 1MB

Table A.8: Comparison table for microcontroller unit (MCU) [66]

H7-generation microcontroller unit (MCU) with 2 MB of flash memory. This ensures the
drone can run very smoothly and has sufficient flash memory to support any firmware
with a full set of features.

We decided we wanted to go for a single FC for the hardware stacks of our test-solution
architectures. Employing the ”STM32H743” MCU, it ensures the drone can run very
smoothly and has sufficient flash memory to support any firmware with a full set of
features.

We ended up going for a MATEKSYS Flight Controller H743-SLIM [1] as it fulfills our
criteria and could be readily ordered at the Norwegian online store ”elefun.no”.

Figure A.4: Showcase of MATEKSYS H743-SLIM, from mateksys.com [1]

101

Appendix B

UAV

B. Flight controller

B. . Firmware

Flight controller (FC) firmware is the software that runs on a flight controller and controls
the operation of an FPV drone. It affects flight performance and features, and different
firmware options offer various advantages and disadvantages for different flying styles and
preferences. [39]

There are mainly two firmwares [39] to choose from for autonomous flying today:

• INAV

• ArduPilot

ArduPilot is perhaps the most popular open-source autopilot software suite. It supports
a variety of vehicles, including quadcopters, planes, rovers, ground vehicles, even RC
submarines.

ArduPilot is known for its extensive features and customization options, making it a good
choice for advanced pilots and developers. It supports both autonomous and manual con-
trol modes, GPS waypoint navigation, and various sensors like barometers and magneto-
meters. [39]

Figure B.1: ArduPilot logo, from ardupilot.org [2]

102

Appendix B UAV

ArduPilot was chosen as baseline firmware since it is a long-standing open-source project
that’s well-documented [2] compared to INAV [67]. ArduPilot is also the only firmware
officially supported by the MATEKSYS Flight Controller H743-SLIM (ref: A.5) out of
these two options.

B. . MAVLink

MAVLink is a very lightweight messaging protocol for communicating with drones (and
between onboard drone components).

MAVLink follows a modern hybrid publish-subscribe and point-to-point design pattern:
Data streams are sent / published as topics while configuration sub-protocols such as the
mission protocol or parameter protocol are point-to-point with retransmission. [40]

MAVLink Commands

With the help of the relatively low-level ”Pymavlink” Python-library we’re able to send
and receive messages to and from a ArduCopter-flashed flight controller. To do this, first
import ”mavutil” from the ”pymavlink” libraries and establish a connection and wait for
a heartbeat from the flight controller:

1 from pymavlink import mavutil
2

3 # Tries to establish connection on Raspberry Pi serial UART:
4 the_connection = mavutil.mavlink_connection("/dev/ttyACM0", baud=57600)
5 the_connection.wait_heartbeat()

After ”the_connection” is successfully initialized its from here on possible to communicate
with the flight controller.

103

Appendix B UAV

As an example, to command the flight controller to change mode, arm throttle and take
off can be done by encoding each of these three desired commands in each their respective
”COMMAND_LONG” messages, including all the command’s parameters, as per the
MAVLink.io[40] documentation:

1 # Sets flight controller flight mode to "GUIDED":
2 the_connection.mav.command_long_send(
3 the_connection.target_system , # Established after heartbeat
4 the_connection.target_component , # Established after heartbeat
5 mavutil.mavlink.MAV_CMD_DO_SET_MODE , # Command to be sent
6 0, # Confirmation bit
7 1, 4, 0, 0, 0, 0, 0) # The command's 7 parameters
8

9 # Arms the throttle to allow for motors to spin:
10 the_connection.mav.command_long_send(
11 the_connection.target_system ,
12 the_connection.target_component ,
13 mavutil.mavlink.MAV_CMD_COMPONENT_ARM_DISARM ,
14 0,
15 1, 0, 0, 0, 0, 0, 0)
16

17 # Takes off to 5 metres above ground level:
18 the_connection.mav.command_long_send(
19 the_connection.target_system ,
20 the_connection.target_component ,
21 mavutil.mavlink.MAV_CMD_NAV_TAKEOFF ,
22 0,
23 0, 0, 0, 0, 0, 0, 5)

Every MAVLink command has 7 parameters that need to be set, these parameters can
be looked up in the MAVLink.io[40] documentation for each respective command.

Manual Control Protocol

The ”MAVLink Commands” example above works fine for programmatically moving the
drone on a ”macro”-scale where the flight controller has GNSS-signal available. To pro-
grammatically move the drone on a ”micro”-scale its possible to do this through the
”MANUAL_CONTROL”-message as per the MAVLink.io[40] documentation:

1 # After connection already established and heartbeat recieved:
2 the_connection.mav.manual_control_send(
3 the_connection.target_system , # Established after heartbeat
4 x, # Pitch, in range [-1000,1000]
5 y, # Roll, in range [-1000,1000]
6 z, # Thrust, in range [-1000,1000]
7 r, # Yaw, in range [-1000,1000]
8 0) # Bitfield corresponding to extra
9 # buttons, not needed and can be

10 # set to 0 in this case

104

Appendix B UAV

Note that the z-value (thrust) is in the range [-1000,1000] where -1000 is full negative
thrust, 0 is no thrust and 1000 is full thrust. Most aircraft only operate in the range
[0,1000] without any functionality for negative thrust.
Also note that the thrust can not be modified through this protocol unless the flight
controller is in a flight mode that supports manual control, as per the ArduPilot.org[2]
documentation.

B. . Drone simulation

Simulation is implemented by using a Flight Dynamics Model (FDM) of the vehicle to
simulate the physics involved with vehicle movement. It receives inputs from a SITL
(Software in the Loop) program running the ArduPilot firmware (which are the firmware’s
servo/motor outputs) and outputs vehicle status, position, velocities, etc. that result from
those inputs back to the firmware simulation. Just as sensors would in the real world case.
[2]

SITL Simulator (Software in the Loop)

The SITL simulator allows you to run Plane, Copter, or Rover without any hardware.
It is a build of the autopilot code using an ordinary C++ compiler, giving you a native
executable that allows you to test the behavior of the code without hardware. [2]

Through simulating the drone’s flight controller running ArduPilot and interfacing with it
through MAVLink messages we’re able to test code in a safe environment before deploying
it on a physical drone. With the addition of Gazebo [75] we can see a 3D-rendering of
the drone and its surrounding, making it ideal for controlling the simulated drone on a
”micro”-scale.

105

Appendix B UAV

Figure B.2: SITL with Gazebo

B. Drone implementation

During the project a four rotor ”quadcopter” drone was built as the project’s attempt at
a real-world implementation, mainly to act as a platform for our proof of concept.
Due to time constraints and hardware difficulties, the full context configuration with all
the ROS2-nodes could not be tuned properly and therefore not implemented safely. The
full context implementation was limited only to simulations with SITL.

106

Appendix B UAV

Figure B.3: Photo of drone from top

107

Appendix B UAV

Figure B.4: Photo of drone from left

108

Appendix B UAV

Figure B.5: Photo of drone from right

109

Appendix B UAV

Figure B.6: Photo of drone from front

110

Appendix B UAV

Figure B.7: Photo of drone hovering in the air

111

Appendix B UAV

Figure B.8: Photo taken from drone’s perspective doing object detection

112

Appendix C

Config Code Explanation and Analysis

C. Blob detection.v

Since we use the Raspberry Pi Camera Module v3 and not a depth camera, we need to
find a way to find the distance to a known object. We ended up using OpenCV and
cvzone. Our approach involves detecting a specific color in the video frames, identifying
the contours of the detected object, and then calculating the distance based on the object’s
apparent size in the image.

First, we import the necessary packages for image processing, numerical operations, and
color detection:

1 import cv2
2 import cvzone
3 from cvzone.ColorModule import ColorFinder
4 import numpy as np

We create a VideoCapture object (OpenCV) to read video frames from the camera [33],
and set the capture dimensions to 640x480 pixels [33]:

1 cap = cv2.VideoCapture(0)
2 cap.set(3, 640)
3 cap.set(4, 480)

Next, we create a ColorFinder object (cvzone) with automatic color range update turned
off [34], and define the color range for detection (using predetermined HSV values):

1 myColorFinder = ColorFinder(False)
2 hsvVals = {'hmin': 97, 'smin': 21, 'vmin': 23, 'hmax': 125, 'smax': 255, '

vmax': 193}

In a continuous loop, we read the video frames from the camera (OpenCV) [33], detect
the specified color range in the image using the ColorFinder object (cvzone) [34], and find
the contours in the binary mask (cvzone) [34]:

113

Appendix C Config4 Code Explanation and Analysis

1 while True:
2 success, img = cap.read()
3 imgColor , mask = myColorFinder.update(img, hsvVals)
4 imgContour , contours = cvzone.findContours(img, mask)

When contours are detected, we extract data from the first contour (assumed to be the
object of interest) and calculate the distance to the object based on its apparent size in
the image. We use the real-world dimensions of the object (in this case, a tennis ball with
a width of 6.5 cm) and the camera’s focal length to compute the distance:

1 if contours:
2 data = contours[0]['center'][0], h - contours[0]['center'][1], int(

contours[0]['area'])
3

4 f = 535 # focal length of the camera
5 W = 6.5 # real-world width of the tennis ball
6

7 w = np.sqrt(contours[0]['area']/np.pi) * 2 # width of the tennis ball
in the image

8 d = (W * f) / w # calculate the distance
9

10 print(d)

Finally, we display the distance in centimeters on the image (cvzone) [34] and stack the
original image, detected color image, binary mask, and contour image for visualization
(cvzone) [34] this is done for testing purpose:

1 cvzone.putTextRect(img, f'depth: {int(d)} cm', (contours[0]['center'][0] -
75, contours[0]['center'][1] - 50), scale= 2)

2 imgStack = cvzone.stackImages([img, imgColor , mask, imgContour], 2, 0.5)
3 cv2.imshow("Image", imgStack)
4 cv2.waitKey(1)

This approach is suitable for objects with known dimensions and relatively uniform color
distribution. This testing was used with simple color detection. We can use this function
to use the contours of trained models to find the distance as well.

114

Appendix C Config4 Code Explanation and Analysis

C. Blob detection.v

This code uses OpenCV [33] and cvzone [34] to track and measure the distance of 3
tennis-sized balls with different colors in a live video feed from a webcam.

First, we import the necessary packages:
1 import cv2 as cv
2 from cvzone.FPS import FPS
3 import imutils
4 import math
5 import numpy as np

This function calculateDistance is used to calculate the distance from the camera to
the object based on the radius of the object in pixels. This calculation is based on similar
triangles and the field of view of the camera.

1 # Function to calculate distance from the object based on its radius in
pixels

2 def calculateDistance(ballRadius_px):
3 return int(faktor / ballRadius_px)

This function detect_colored_object uses color-based filtering and shape-based detec-
tion to identify and locate the colored ball in the video frame [61]. The function uses
color filtering to create a mask for pixels within the defined color range and applies the
Hough Transform function [55] on a blurred grayscale version of the frame to detect circles.
If a detected circle’s center lies within the color mask, the function returns the circle’s
coordinates and radius[58].

1 # Function to detect a colored object within a given color range and size
2 def detect_colored_object(colorLower , colorUpper , min_radius , max_radius):
3 mask = cv.inRange(hsv, colorLower , colorUpper)
4

5 # Erode the mask to remove noise & Dilate the mask to fill gaps
6 mask = cv.erode(mask, None, iterations=2)
7 mask = cv.dilate(mask, None, iterations=2)
8

9 # Convert the frame to grayscale and apply median blur
10 gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
11 gray = cv.medianBlur(gray, 5)
12

13 # Detect circles using the Hough transform
14 circles = cv.HoughCircles(gray, cv.HOUGH_GRADIENT , 1, 20, param1=100,

param2=30,
15 minRadius=min_radius , maxRadius=max_radius)
16

17 # Check if any circles were detected
18 if circles is not None:
19 circles = np.uint16(np.around(circles))

115

Appendix C Config4 Code Explanation and Analysis

20

21 for circle in circles[0, :]:
22 x, y, radius = circle
23

24 # Check if the circle's center is within the mask's boundaries
25 if 0 <= x < mask.shape[1] and 0 <= y < mask.shape[0] and mask[y

, x] > 0:
26 return (x, y, radius)
27 return None

The function display_object_info visualizes [56] details such as a circle around the
detected object, x, and y coordinates, and estimated distance on the video frame.

1 # Function to display information about the detected object on the frame
2 def display_object_info(frame, x, y, radius, distance, color, text_offset):
3 if x is not None and y is not None:
4 # Draw a circle around the detected object
5 cv.circle(frame, (x, y), radius, color, 2)
6

7 # Display the coordinates x and y
8 coordinates_text = f"X: {x}, Y: {y}"
9

10 # Display the distance text
11 distance_text = f"Distance: {distance} cm"
12

13 # Put the coordinate text on the frame
14 cv.putText(frame, coordinates_text , (x + 10, y), cv.

FONT_HERSHEY_SIMPLEX , 0.5, color, 2)
15

16 # Put the distance text on the frame
17 cv.putText(frame, distance_text , (22, 70 + text_offset), cv.

FONT_HERSHEY_SIMPLEX , 0.5, color, 2)

The ballRadius is a variable indicating the radius of the tennis ball, the cameraFOV is
the camera’s field of view, and lastly, the faktor is a calculation parameter [59] used to
determine the distance of the object from the camera.

1 ballRadius = 3.25 # cm (radius of the ball)
2 cameraFOV = 62.2 # degrees (field of view of the camera)
3 faktor = (1280 / 2) * (ballRadius / math.tan(math.radians(kameraFOV / 2)))

Pixels from center to edge divided by minimum distance from the lens

For each color, the program attempts to detect an object of that color in the frame
[57]. If an object is found, its properties (coordinates, distance) are updated in the color
dictionary. The updated information is then displayed [56] on the frame. This process
repeats for each frame, enabling real-time tracking.

1 # Main loop
2 while True:

116

Appendix C Config4 Code Explanation and Analysis

3 (grabbed, frame) = videoCap.read() # Read a frame from the video
capture

4 fps, img = fpsreader.update(frame, color=(255, 0, 0)) # Update the FPS
overlay on the frame

5 frame = imutils.resize(frame, width=1280) # Resize the frame
6 hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV) # Convert the frame to HSV

format
7

8 # Initialize x, y, and ballRadius_px values for each color
9 for color_info in colors.values():

10 color_info['x'] = None
11 color_info['y'] = None
12 color_info['ballRadius_px'] = None
13

14 # Iterate through the defined colors and detect objects
15 for idx, (color_name , color_info) in enumerate(colors.items()):
16 # Call the detect_colored_object function to find objects in the

frame
17 obj = detect_colored_object(color_info['lower'], color_info['upper'

], color_info['min_radius'],
18 color_info['max_radius'])
19

20 if obj: # If an object is detected , get the coordinates and radius,
distance

21 x, y, ballRadius_px = obj
22 distance = kalkulerDistanse(ballRadius_px)
23

24 # Update the color_info dictionary with the new values
25 color_info['x'] = x
26 color_info['y'] = y
27 color_info['ballRadius_px'] = ballRadius_px
28 color_info['distance'] = distance

The display_object_info function visually [56] presents data about the detected object
on the video feed.

1 # Display information about the detected object on the frame
2 display_object_info(frame, color_info['x'], color_info['y'],

color_info['ballRadius_px'],
3 color_info.get('distance'), color_info['color'

], color_info['text_offset'])
4

5 cv.imshow("Frame", frame) # Show the frame

Referring back to the discussion in the ’Configuration 4 Journey’ section, it was clear that
the computational demands of our program far exceeded the capabilities of the hardware
in use, given that the development and testing were conducted on a high-end laptop
utilizing a webcam. As a result, we needed to revisit our approach and develop Blob
detection.v3.

117

Appendix C Config4 Code Explanation and Analysis

C. Blob detection.v

By simplifying and removing some of the more computationally intense functionalities
from the program we developed Blob detection.v3.

First, we import the necessary packages:
1 import cv2
2 import cvzone
3 from cvzone.ColorModule import ColorFinder
4 from cvzone.FPS import FPS
5 import numpy as np

The is_circle function checks if a shape is circular enough to be considered a circle. If
the shape is ”round enough” (the roundness is more than the given threshold, which is
set to 0.6), it filters out shapes that are not ”round enough”.

1 # Function to check if a contour is a circle
2 def is_circle(cnt, threshold=0.6):
3 area = cv2.contourArea(cnt) # Compute the area of the contour
4 perimeter = cv2.arcLength(cnt, True) # Compute the perimeter of the

contour
5 if perimeter == 0: # If the perimeter is zero, it cannot be a circle,

return False
6 return False
7 circularity = 4 * np.pi * area / (perimeter * perimeter) # Calculate

the circularity of the contour
8 return circularity >= threshold

Next, we create a ColorFinder object (cvzone) with automatic color range update turned
off [34], and define the color range for detection using predetermined HSV (Hue, Satura-
tion, Value) values:

1 myColorFinder: ColorFinder = ColorFinder(False)
2

3 # Define the HSV color range for blue, green and orange
4 hsvValsBlue = {'hmin': 105, 'smin': 168, 'vmin': 119, 'hmax': 111, 'smax':

255, 'vmax': 255} #blue
5 hsvValsGreen = {'hmin': 76, 'smin': 29, 'vmin': 132, 'hmax': 97, 'smax':

124, 'vmax': 255} #green
6 hsvValsOrange = {'hmin': 0, 'smin': 120, 'vmin': 120, 'hmax': 20, 'smax':

255, 'vmax': 255} #orange

Each frame from the camera (OpenCV) [33], is read and processed for frame rate, which
at first is analyzed to find areas that match the color profiles defined for blue, green, and
orange in HSVvalues[34], and then analyze these colored areas further to identify contours
in those regions. These contours are checked for circularity using the is_circle function,
thereby extracting contours that are likely to be circles.

118

Appendix C Config4 Code Explanation and Analysis

1 # Update the color detection for blue, green and orange
2 imgColorBlue , mask = myColorFinder.update(img, hsvValsBlue)
3 imgColorGreen , maskRed = myColorFinder.update(img, hsvValsGreen)
4 imgColorOrange , maskOrange = myColorFinder.update(img, hsvValsOrange)
5

6 # Find contours in blue, green and orange color mask
7 imgContourBlue , contours = cvzone.findContours(img, mask)
8 imgContourGreen , contoursRed = cvzone.findContours(img, maskRed)
9 imgContourOrange , contoursOrange = cvzone.findContours(img, maskOrange)

10

11 # Filter contours that are circles
12 circular_contours_blue = [cnt for cnt in contours if is_circle(cnt['cnt

'])]
13 circular_contours_green = [cnt for cnt in contoursRed if is_circle(cnt[

'cnt'])]
14 circular_contours_orange = [cnt for cnt in contoursOrange if is_circle(

cnt['cnt'])]

Processes and displays the depth, x-position, and y-position for each detected ball. It
iterates over three lists containing circular contours for each color, and checks if there are
circular contours detected. If so, it selects the first contour and calculates the depth of
the ball using its area and predefined values for focal length and ball width [22]. It then
prints the color of the ball and its depth.

1 # Process and display depth, x, and y position for each ball
2 for color, circular_contours_list in zip(['blue', 'green', 'orange'],
3 [circular_contours_blue ,

circular_contours_green , circular_contours_orange]):
4 if circular_contours_list:
5 cnt = circular_contours_list[0]
6 data = cnt['center'][0], h - cnt['center'][1], int(cnt['area'])
7

8 f = 474 #focal length of the camera
9 W = 6.5 # real-world width of the tennis ball

10 w = np.sqrt(cnt['area'] / np.pi) * 2 # width of the tennis ball
in the image

11 d = (W * f) / w # calculate the distance
12 print(f"{color}: {d}")

The depth is displayed using cvzone.putTextRect function[34] which adds the text
”depth: int(d) cm” to the imgContourBlue image. The x and y position is also displayed
using cvzone.putTextRect. ImgStack is a stack of the original image, color image with a
blue mask, binary mask, and contour image, which is then shown with cv2.imshow[34].

1 # Display depth on the frame
2 cvzone.putTextRect(imgContourBlue , f'depth: {int(d)} cm',
3 (cnt['center'][0] - 75, cnt['center'][1] -

50), scale=2)
4 # Display x and y position on the frame with more space between

depth and position

119

Appendix C Config4 Code Explanation and Analysis

5 cvzone.putTextRect(imgContourBlue , f'x: {cnt["center"][0]}, y:
{cnt["center"][1]}',

6 (cnt['center'][0] - 75, cnt['center'][1] -
10), scale=1.5)

7

8 imgStack = cvzone.stackImages([img, imgColorBlue , mask, imgContourBlue
], 2, 0.5)

9 cv2.imshow("Image", imgStack)

This version offered a significant improvement in frame rate performance and detection
and was further tested on Rasberry Pi.

120

Appendix C Config4 Code Explanation and Analysis

C. Blob Detection.v Evaluation

We first import the necessary packages to enable image processing, numerical operations,
and color detection:

1 import cv2
2 import cvzone
3 from cvzone.ColorModule import ColorFinder
4 import numpy as np
5 import xml.etree.ElementTree as ET
6 import os
7 import csv

The function is_circle is created to check if a detected contour is circular or not. We
calculate the area and the perimeter of the contour and use these values to calculate the
circularity. A threshold is set to determine whether the contour is circular or not:

1 def is_circle(cnt, threshold=0.6):
2 area = cv2.contourArea(cnt)
3 perimeter = cv2.arcLength(cnt, True)
4 if perimeter == 0:
5 return False
6 circularity = 4 * np.pi * area / (perimeter * perimeter)
7 return circularity >= threshold

The parse_label function is designed to parse label information from an XML file. It
extracts the name and bounding box coordinates of an object:

1 def parse_label(xml_file):
2 tree = ET.parse(xml_file)
3 root = tree.getroot()
4

5 label = {}
6 for obj in root.findall('object'):
7 name = obj.find('name').text
8 box = obj.find('bndbox')
9 xmin = int(box.find('xmin').text)

10 xmax = int(box.find('xmax').text)
11 ymin = int(box.find('ymin').text)
12 ymax = int(box.find('ymax').text)
13

14 label[name] = [(xmin, ymin, xmax, ymax)]
15 return label

121

Appendix C Config4 Code Explanation and Analysis

We create the calculate_f1_score function to compute the F1 score given precision and
recall:[46][p. 156]

1 def calculate_f1_score(precision , recall):
2 if precision + recall == 0: # to avoid division by zero
3 return 0
4 else:
5 f1_score = 2 * (precision * recall) / (precision + recall)
6 return f1_score

Next, we define the read_image function that simply reads an image from a given path
using the OpenCV function imread:

1 def read_image(image_file):
2 return cv2.imread(image_file)

In the detect_color function, we detect colors in an image using a pre-defined HSV
value range. We then use cvzone’s findContours function to find the contours in the
binary mask. A filter is applied to only select contours that pass the is_circle test:

1 def detect_color(image):
2 myColorFinder = ColorFinder(False)
3 #hsvVals = {'hmin': 49, 'smin': 69, 'vmin': 17, 'hmax': 108, 'smax':

255, 'vmax': 181} #green
4 #hsvVals = {'hmin': 0, 'smin': 42, 'vmin': 0, 'hmax': 20, 'smax': 186,

'vmax': 219} #red
5 hsvVals = {'hmin': 87, 'smin': 78, 'vmin': 0, 'hmax': 114, 'smax': 195,

'vmax': 174} #blue
6 imgColor , mask = myColorFinder.update(image, hsvVals)
7 imgContour , contours = cvzone.findContours(image, mask)
8

9 circular_contours = [cnt for cnt in contours if is_circle(cnt['cnt'])]
10

11 results = []
12 if circular_contours:
13 for cnt in circular_contours:
14 x, y, w, h = cv2.boundingRect(cnt['cnt'])
15 results.append(('blue', (x, y, x+w, y+h)))
16 return results

122

Appendix C Config4 Code Explanation and Analysis

The calculate_iou function is designed to compute the Intersection over Union (IoU)
between two bounding boxes. This metric is commonly used in computer vision tasks to
evaluate the accuracy of object detection models: [84]

1 def calculate_iou(box1, box2):
2 x1, y1, w1, h1 = box1
3 x2, y2, w2, h2 = box2
4

5 xi1 = max(x1, x2)
6 yi1 = max(y1, y2)
7 xi2 = min(x1 + w1, x2 + w2)
8 yi2 = min(y1 + h1, y2 + h2)
9

10 inter_area = max(xi2 - xi1, 0) * max(yi2 - yi1, 0)
11

12 box1_area = w1 * h1
13 box2_area = w2 * h2
14 union_area = box1_area + box2_area - inter_area
15

16 return inter_area / union_area if union_area > 0 else 0

123

Appendix C Config4 Code Explanation and Analysis

We define the calculate_precision_recall function to compute precision and recall
based on predictions and ground truth data. For each prediction, we calculate the max-
imum IoU with all ground truth boxes of the same color. If this maximum IoU is greater
than or equal to a set IoU threshold, it’s considered a true positive; otherwise, it’s a
false positive. False negatives are counted as those ground truth boxes that don’t have
any corresponding prediction with an IoU greater than or equal to the threshold:[46][p.
155-156]

1 def calculate_precision_recall(predictions , ground_truth , iou_threshold
=0.5):

2 TP = FP = FN = 0
3

4 for image_predictions , image_ground_truth in zip(predictions ,
ground_truth):

5 for pred_color , pred_box in image_predictions:
6 if pred_color in image_ground_truth:
7 ious = [calculate_iou(pred_box, truth_box) for truth_box in

image_ground_truth[pred_color]]
8 max_iou = max(ious) if ious else 0
9

10 if max_iou >= iou_threshold:
11 TP += 1
12 else:
13 FP += 1
14 else:
15 FP += 1
16

17 for truth_color , truth_boxes in image_ground_truth.items():
18 if truth_color not in [pred_color for pred_color , _ in

image_predictions]:
19 FN += len(truth_boxes)
20 else:
21 for truth_box in truth_boxes:
22 ious = [calculate_iou(pred_box, truth_box) for

pred_color , pred_box in image_predictions if pred_color == truth_color]
23 max_iou = max(ious) if ious else 0
24 if max_iou < iou_threshold:
25 FN += 1
26

27 precision = TP / (TP + FP) if TP + FP > 0 else 0
28 recall = TP / (TP + FN) if TP + FN > 0 else 0
29

30 return precision , recall

124

Appendix C Config4 Code Explanation and Analysis

In our main procedure, we define paths to our image and label directories, then sort and
pair up the corresponding image and label files:

1 image_dir = '/home/vaffe/RandomStuff/dataset/valid/blue/'
2 label_dir = '/home/vaffe/RandomStuff/dataset/valid/blue/labels/'
3

4 image_files = sorted(os.listdir(image_dir))
5 label_files = sorted(os.listdir(label_dir))

The code processes each image file and corresponding label file one by one. It reads the
image, detects the color (our function returns the bounding boxes of detected objects),
and parses the XML label file to obtain the ground truth bounding boxes. The predictions
and ground truth are stored for later evaluation:

1 for image_file , label_file in zip(image_files , label_files):
2 image_path = os.path.join(image_dir , image_file)
3 label_path = os.path.join(label_dir , label_file)
4

5 image = read_image(image_path)
6 label = parse_label(label_path)
7

8 prediction = detect_color(image)
9

10 predictions.append(prediction)
11 ground_truths.append(label)
12

13 print('Predicted: ', prediction)
14 print('Ground Truth: ', label)

Finally, we calculate precision, recall, and F1 score, which are commonly used metrics to
evaluate the performance of object detection models:

1 precision , recall = calculate_precision_recall(predictions , ground_truths)
2 f1_score = calculate_f1_score(precision , recall)
3

4 print('Precision: ', precision)
5 print('Recall: ', recall)
6 print('F1 Score: ', f1_score)

The precision metric quantifies the number of correct positive predictions made, while
recall (also known as sensitivity) quantifies the number of correct positive results divided
by the number of all relevant samples (all samples that should have been identified as
positive). The F1 Score is the harmonic mean of precision and recall and provides a
single score that balances both the concerns of precision and recall in one number. [46][p.
155-156]

125

Appendix D

Config Source code

D. Blob Detection.v

1 import cv2
2 import cvzone
3 from cvzone.ColorModule import ColorFinder
4 from cvzone.FPS import FPS
5 import numpy as np
6

7 fpsreader = FPS()
8 cap = cv2.VideoCapture(0)
9 cap.set(3, 640)

10 cap.set(4, 480)
11

12 success, img = cap.read()
13 h, w, _ = img.shape
14

15 myColorFinder = ColorFinder(False)
16 hsvVals = {'hmin': 36, 'smin': 29, 'vmin': 44, 'hmax': 90, 'smax': 150, '

vmax': 187}
17

18 while True:
19 success, img = cap.read()
20 fps, img = fpsreader.update(img)
21 imgColor , mask = myColorFinder.update(img, hsvVals)
22 imgContour , contours = cvzone.findContours(img, mask)
23

24 if contours:
25 data = contours[0]['center'][0], h - contours[0]['center'][1], int(

contours[0]['area'])
26

27 f = 535
28 W = 6.5
29 w = np.sqrt(contours[0]['area'] / np.pi) * 2
30 d = (W * f) / w
31

126

Appendix D Config4 Source code

32 x, y = contours[0]['center'][0], contours[0]['center'][1]
33

34 print("x: ", x)
35 print("y: ", y)
36

37 print(fps)
38

39 cvzone.putTextRect(img, f'depth: {int(d)} cm', (contours[0]['center
'][0] - 75, contours[0]['center'][1] - 50),

40 scale=2)
41 cv2.putText(img, f'x: {int(x)}, y: {int(y)}', (20, h - 600), cv2.

FONT_HERSHEY_SIMPLEX , 1.5, (255, 0, 0),
42 thickness=2)
43

44 imgStack = cvzone.stackImages([img, imgColor , mask, imgContour], 2,
45 0.5)
46 cv2.imshow("Image", imgStack)
47

48 if cv2.waitKey(1) & 0xFF == ord('q'):
49 break
50 cap.release()
51 cv2.destroyAllWindows()

D. Blob Detection.v

1 import cv2 as cv
2 from cvzone.FPS import FPS
3 import imutils
4 import math
5 import numpy as np
6

7 def calculateDistance(ballRadius_px):
8 return int(faktor / ballRadius_px)
9

10 def detect_colored_object(colorLower , colorUpper , min_radius , max_radius):
11

12 mask = cv.inRange(hsv, colorLower , colorUpper)
13 mask = cv.erode(mask, None, iterations=2)
14 mask = cv.dilate(mask, None, iterations=2)
15

16 gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
17 gray = cv.medianBlur(gray, 5)
18

19 circles = cv.HoughCircles(gray, cv.HOUGH_GRADIENT , 1, 20, param1=100,
param2=30,

20 minRadius=min_radius , maxRadius=max_radius)
21

22 if circles is not None:

127

Appendix D Config4 Source code

23 circles = np.uint16(np.around(circles))
24

25 for circle in circles[0, :]:
26 x, y, radius = circle
27

28 if 0 <= x < mask.shape[1] and 0 <= y < mask.shape[0] and mask[y
, x] > 0:

29 return (x, y, radius)
30 return None
31

32 def display_object_info(frame, x, y, radius, distance, color, text_offset):
33 if x is not None and y is not None:
34

35 cv.circle(frame, (x, y), radius, color, 2)
36 coordinates_text = f"X: {x}, Y: {y}"
37 distance_text = f"Distance: {distance} cm"
38

39 cv.putText(frame, coordinates_text , (x + 10, y), cv.
FONT_HERSHEY_SIMPLEX , 0.5, color, 2)

40 cv.putText(frame, distance_text , (22, 70 + text_offset), cv.
FONT_HERSHEY_SIMPLEX , 0.5, color, 2)

41

42 ballRadius = 3.25 # cm (radius of the ball)
43 cameraFOV = 62.2 # degrees (field of view of the camera)
44 faktor = (1280 / 2) * (ballRadius / math.tan(math.radians(kameraFOV / 2)))
45

46 colors = {
47 'green': {
48 'lower': (72, 70, 32),
49 'upper': (99, 244, 107),
50 'min_radius': 0, #ex between 0
51 'max_radius': 0, #to ex 60 pixels
52 'color': (0, 255, 0),
53 'text_offset': 0, #Distance text position under FPS
54 },
55 'orange': {
56 'lower': (0, 115, 99),
57 'upper': (18, 255, 255),
58 'min_radius': 0,
59 'max_radius': 0,
60 'color': (0, 102, 255),
61 'text_offset': 20,
62 },
63 'red': {
64 'lower': (119, 37, 0),
65 'upper': (179, 179, 147),
66 'min_radius': 0,
67 'max_radius': 0,
68 'color': (0, 0, 255),
69 'text_offset': 40,
70 },

128

Appendix D Config4 Source code

71 }
72

73 fpsreader = FPS()
74 videoCap = cv.VideoCapture(0)
75 videoCap.set(3, 1280)
76 videoCap.set(4, 720)
77

78 while True:
79 (grabbed, frame) = videoCap.read()
80 fps, img = fpsreader.update(frame, color=(255, 0, 0))
81 frame = imutils.resize(frame, width=1280)
82 hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
83

84 for color_info in colors.values():
85 color_info['x'] = None
86 color_info['y'] = None
87 color_info['ballRadius_px'] = None
88

89 for idx, (color_name , color_info) in enumerate(colors.items()):
90 obj = detect_colored_object(color_info['lower'], color_info['upper'

], color_info['min_radius'],
91 color_info['max_radius'])
92 if obj:
93 x, y, ballRadius_px = obj
94 distance = kalkulerDistanse(ballRadius_px)
95

96 color_info['x'] = x
97 color_info['y'] = y
98 color_info['ballRadius_px'] = ballRadius_px
99 color_info['distance'] = distance

100

101 display_object_info(frame, color_info['x'], color_info['y'],
color_info['ballRadius_px'],

102 color_info.get('distance'), color_info['color'
], color_info['text_offset'])

103

104 cv.imshow("Frame", frame)
105 key = cv.waitKey(1)
106 if key == ord("q"):
107 break

D. Blob Detection.v

1 import cv2
2 import cvzone
3 from cvzone.ColorModule import ColorFinder
4 from cvzone.FPS import FPS
5 import numpy as np

129

Appendix D Config4 Source code

6

7 def is_circle(cnt, threshold=0.6):
8 area = cv2.contourArea(cnt)
9 perimeter = cv2.arcLength(cnt, True)

10 if perimeter == 0:
11 return False
12 circularity = 4 * np.pi * area / (perimeter * perimeter)
13 return circularity >= threshold
14

15 fpsreader = FPS()
16

17 cap = cv2.VideoCapture(0)
18 cap.set(cv2.CAP_PROP_FRAME_WIDTH , 640)
19 cap.set(cv2.CAP_PROP_FRAME_HEIGHT , 480)
20

21 ret, frame = cap.read()
22 h, w, _ = frame.shape
23

24 myColorFinder: ColorFinder = ColorFinder(False)
25 hsvValsBlue = {'hmin': 105, 'smin': 168, 'vmin': 119, 'hmax': 111, 'smax':

255, 'vmax': 255}
26 hsvValsGreen = {'hmin': 76, 'smin': 29, 'vmin': 132, 'hmax': 97, 'smax':

124, 'vmax': 255}
27 hsvValsOrange = {'hmin': 0, 'smin': 120, 'vmin': 120, 'hmax': 20, 'smax':

255, 'vmax': 255}
28

29 while True:
30 ret, frame = cap.read()
31 fps, img = fpsreader.update(frame)
32

33 imgColorBlue , mask = myColorFinder.update(img, hsvValsBlue)
34 imgColorGreen , maskRed = myColorFinder.update(img, hsvValsGreen)
35 imgColorOrange , maskOrange = myColorFinder.update(img, hsvValsOrange)
36

37 imgContourBlue , contours = cvzone.findContours(img, mask)
38 imgContourGreen , contoursRed = cvzone.findContours(img, maskRed)
39 imgContourOrange , contoursOrange = cvzone.findContours(img, maskOrange)
40

41 circular_contours_blue = [cnt for cnt in contours if is_circle(cnt['cnt
'])]

42 circular_contours_green = [cnt for cnt in contoursRed if is_circle(cnt[
'cnt'])]

43 circular_contours_orange = [cnt for cnt in contoursOrange if is_circle(
cnt['cnt'])]

44

45 for color, circular_contours_list in zip(['blue', 'green', 'orange'],
46 [circular_contours_blue ,

circular_contours_green , circular_contours_orange]):
47 if circular_contours_list:
48 cnt = circular_contours_list[0]
49 data = cnt['center'][0], h - cnt['center'][1], int(cnt['area'])

130

Appendix D Config4 Source code

50

51 f = 474
52 W = 6.5
53 w = np.sqrt(cnt['area'] / np.pi) * 2
54 d = (W * f) / w
55 print(f"{color}: {d}")
56

57 cvzone.putTextRect(imgContourBlue , f'depth: {int(d)} cm',
58 (cnt['center'][0] - 75, cnt['center'][1] -

50), scale=2)
59 cvzone.putTextRect(imgContourBlue , f'x: {cnt["center"][0]}, y:

{cnt["center"][1]}',
60 (cnt['center'][0] - 75, cnt['center'][1] -

10), scale=1.5)
61

62 imgStack = cvzone.stackImages([img, imgColorBlue , mask, imgContourBlue
], 2, 0.5)

63 cv2.imshow("Image", imgStack)
64 if cv2.waitKey(1) & 0xFF == ord('q'):
65 break
66 cap.release()
67 cv2.destroyAllWindows()

131

Appendix E

ROS to ROS

E. Translating from ROS to ROS

The following documentation describes our process of translating from ROS1 to ROS2.
It’s important to note that this translation does not represent an optimal approach.
Although improvements could be implemented to enhance the efficiency and readability of
the code, the aim of this translation was to ensure compatibility with ROS2, maintaining
performance, and providing satisfactory results in the tests we conducted. This document
also assumes that the reader have some knowledge about ROS2 or 1.

E. . Syntax Changes

The syntax of ROS1 and ROS2, while largely similar, exhibits several distinctions primar-
ily associated with changes in the architectural structure of scripts. Among the differences,
library usage stands out:

1 #ROS1
2 import rospy
3 import rosgraph
4

5 #ROS2
6 import rclpy
7 from rclpy.node import Node

In ROS1, rospy and rosgraph serve as the key libraries for node creation and computation
graph visualization. Transitioning to ROS2, rclpy replaces these libraries, providing a
Python API for ROS2 interactions, with the Node class encapsulating a node within the
ROS graph.

Moreover, modifications were also made to logging functions. Despite the changes, the
functions retain a similar operational manner:

132

Appendix E ROS1 to ROS2

1 #ROS1
2 rospy.loginfo()
3

4 #ROS2
5 get_logger().info()

E. . Architecture

The most significant modifications involved the creation and architecture of the ROS
nodes. In ROS2, a class is established that inherits from the rclpy node class. Within
this class, the node is named, and subscribers, publishers, and other necessary variables
for the node are added. Subsequently, this node is initialized within the main function:

1 #ROS2
2 class Qualisys_node(Node):
3

4 def __init__(self):
5 super().__init__('qualisys_node')
6

7 self.pub = self.create_publisher(DronePose , 'drone_pose', 10)

All the functions that the class will utilize are defined within it, incorporating the self
parameter for invocations within the class:

1 #ROS2
2 class Qualisys_node(Node):
3

4 def __init__(self):
5 def talker(self, data):
6 def create_msg(self,x,y,z,v_x,v_y,v_z,a_x,a_y,a_z,yaw,v_yaw,freq,

full_msg):
7 def calculate_vel_a(self,position ,freq, yaw):
8 def calc(self,position ,rot,freq):
9 def create_body_index(self, xml_string):

10 def get_freq(self, xml_string):
11 async def qtmMain(self):

This stands in contrast to the ROS1 architecture, where an overarching class to manage
the functions does not exist. Instead, a main function is utilized that accepts the publisher
as a parameter:

1 #ROS1
2 async def mainQualisys(pub):

In ROS1, this main function for the node is what runs indefinitely. Unlike in ROS2, where
a class object is initiated to run endlessly. Our modifications to the loops were minor and
mainly involved creating variables and tasks:

133

Appendix E ROS1 to ROS2

1 #ROS1
2 asyncio.ensure_future(mainQualisys(pub))
3 asyncio.get_event_loop().run_forever()
4

5 #ROS2
6 loop = asyncio.get_event_loop()
7 qtm_task = loop.create_task(qtm_node.qtmMain())
8 ...
9 asyncio.ensure_future(qtm_task)

10 loop.run_forever()

Although the main functions in ROS1 and ROS2 might appear different, they operate
similarly in that the node is initialized within the main function. However, in ROS1,
subscribers and publishers are also created within the main:

1 #ROS1
2 if __name__ == "__main__":
3 rospy.init_node('qualisys', anonymous=True) #Node initialization
4 pub = rospy.Publisher('/drone_controller/current_pos', DronePose ,

queue_size=10) #create publisher
5

6 #ROS2
7 def main(args=None):
8 rclpy.init(args=args) #Node initialization
9 qtm_node = Qualisys_node() #Creates Node

Upon executing the code with these modifications, we encountered some issues with the
data received from Qualisys. It was not in the same format as expected by the create_msg
function. To resolve this issue, we initialized the values outside the class, which corrected
the problem of acquiring initial values from Qualisys:

1 #ROS2
2 if prev_msg is None:
3 prev_msg = DronePose()
4 prev_msg.pos.x = 0.0
5 prev_msg.pos.y = 0.0
6 prev_msg.pos.z = 0.0
7 prev_msg.vel.x = 0.0
8 prev_msg.vel.y = 0.0
9 prev_msg.vel.z = 0.0

10 prev_msg.yaw.data = 0.0
11

12 if prev_vel is None:
13 prev_vel = [0.0, 0.0, 0.0]

134

Appendix F

Yolo training Tutorial

Prerequisites

A computer with an NVIDIA graphics card that is CUDA compatible (RTX 2070 was
used in this study). Although you can train with a CPU, it will be significantly slower.
A virtual environment with Python 3.8 – 3.11 (Python 3.9.16 was used in this study).

1. Install Pytorch: Start by installing the correct version of Pytorch. Visit Pytorch’s
website and select the version that suits your hardware. If your GPU supports CUDA,
select ”compute platform” CUDA 11.8. If your GPU is not supported, opt for the CPU
version.

135

Appendix F Yolo training Tutorial

2. Run the Pytorch Command: Execute the provided command in your Python envir-
onment. This might take some time, as Pytorch will download and install all necessary
packages.

136

Appendix F Yolo training Tutorial

3. Download and Install the Correct CUDA Version.

4. Verify CUDA Installation: Follow the steps in the installer. After installation, use the
command nvcc –version to ensure that CUDA has been installed correctly.

5. Clone the YOLO Repository and Install Requirements.

git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt

6. We recommend running the following script once to train on the COCO dataset, as
this will create the correct folder structure and download the necessary weights: python

137

Appendix F Yolo training Tutorial

train.py –img 640 –epochs 3 –data coco128.yaml –weights yolov5n.pt

7. Duplicate and Rename the YAML File: Make a copy of the coco128.yaml file found
under yolov5/data/ and rename it to match your dataset. This file instructs the training
command where to find the dataset and corresponding labels.

8. Modify the YAML File: Adjust the file to meet your requirements. For instance, in
this study, we only have one class, named ”greenball”.

138

Appendix F Yolo training Tutorial

10. You’re now ready to begin training your YOLO model on your custom data. Decide
on the model you want to use for transfer learning. We recommend either yolov5n (nano)
or yolov5s (small), as larger models result in slower frame rates.

python train.py –img 640 –epochs 3 –data custom.yaml –weights yolov5n.pt –device 0

Ensure that the YAML file selected is the custom one you created earlier.

Choose the number of epochs for training; a range of 500 to 1000 is recommended. The
img 640 parameter determines the size to which the image is scaled (640 is YOLO’s de-
fault).
To execute the process on CPU, remove the –device 0 parameter.

11. Examine Training Results: Upon completion of training, you’ll find all related ma-
terials saved under the runs/train/ directory. The most recent training session will be
in the latest exp folder. This folder contains the retrained weights and general statistics
from the training process, including plots that visualize the training progress.

139

Appendix F Yolo training Tutorial

12. After successfully training your YOLO model, you can test it in real-time using your
webcam. Run the following command:

python detect.py –weights <path to weights> –source 0

Replace <path to weights> with the path to your trained weights file. The –source 0
specifies that the webcam (usually denoted by ’0’ in most systems) should be used as the
input source.

140

Appendix G

Source code, ROS nodes

G. Source code, ROS nodes

G. . Image processing, configuration

Video capture node

1 import rclpy
2 from rclpy .node import Node
3 from sensor_msgs.msg import Image
4 from cv_bridge import CvBridge
5 import cv2
6 import gi
7 gi . require_version(”Gst” , ”1.0”)
8 from gi . repository import Gst, GObject
9 import time

10
11 class ImagePublisher(Node) :
12 def __init__(sel f) :
13 super() .__init__(’image_publisher ’)
14 sel f . publisher = self . create_publisher(Image, ’video_frames ’ , 10)
15 timer_period = 0.000166
16 sel f . timer = self . create_timer(timer_period, sel f . timer_callback)
17 Gst. init (None)
18 # Configure a GStreamer pipeline to capture from a jetson .
19 # nvarguscamerasrc sensor−id=0 select which camera sensor to capture from
20 # video/x−raw(memory:NVMM) sets the output of the source to raw video stored in NVIDIA’s proprietary NVMM format.
21 # the width and the height is set to the expected input to the model
22 # video/x−raw, format=BGRx converts the NVMM−formatted video to raw input
23 # appsink drop=True parameter means that i f the pipeline is running faster than it can handle , it will drop frames to

maintain performance.
24 sel f . pipeline = (”nvarguscamerasrc sensor−id=0 ! ”
25 ”video/x−raw(memory:NVMM) , width=640, height=640, framerate=30/1, format=NV12 ! ”
26 ”nvvidconv flip−method=0 ! ”
27 ”video/x−raw, width=640, height=640, format=BGRx ! ”
28 ”videoconvert ! ”
29 ”video/x−raw, format=BGR ! appsink drop=True”)
30 sel f .cap = cv2.VideoCapture(sel f . pipeline , cv2.CAP_GSTREAMER)
31 sel f .br = CvBridge()
32 sel f . timer_start = time.time()
33 sel f .timer_end = time.time()
34 sel f . period = 0
35 sel f . fps = 0
36
37 def timer_callback(sel f) :
38 ret , frame = self .cap. read()
39 sel f .timer_end = time.time()
40 sel f . period = self .timer_end − self . timer_start
41 sel f . fps = 1/sel f . period
42 sel f . timer_start = time.time()
43 # CV bridge wraps the image array in ROS image message
44 sel f . publisher . publish(sel f .br .cv2_to_imgmsg(frame))
45
46 sel f . get_logger() . info(’Video frame published ’)
47
48

141

Appendix G Source code, ROS2 nodes

49
50
51
52 def main(args=None) :
53 # Initialize ROS client library
54 rclpy . init (args=args)
55 image_publisher = ImagePublisher()
56 rclpy . spin(image_publisher)
57 image_publisher.destroy_node()
58 rclpy .shutdown()
59
60 i f __name__ == ’__main__’ :
61 main()

Object detection node

1 import rclpy
2 from rclpy .node import Node
3 from sensor_msgs.msg import Image
4 from std_msgs.msg import Int32MultiArray
5 from cv_bridge import CvBridge
6 import cv2
7 import numpy as np
8 import time
9 from .yoloDet import YoloTRT

10
11
12 # Absolute path to used library and tensorRT model
13 model = YoloTRT(library=”/home/gruppe6/ros2_ws/src/config1/config1/yolov5/build/libmyplugins . so” ,
14 engine=”/home/gruppe6/ros2_ws/src/config1/config1/yolov5/build/best2 . engine” , conf=0.5, yolo_ver=”v5”)
15
16
17
18 class Detect(Node) :
19 def __init__(sel f) :
20 # Instantiate parent class object (Node)
21 super() .__init__(’detect ’)
22 # Create subscription to video_frames topic
23 sel f . subscription = self . create_subscription(Image, ’video_frames ’ , sel f . listener_callback , 10)
24 # Create publisher to object_pos_and_distance topic
25 sel f . publisher = self . create_publisher(Int32MultiArray, ’object_pos_and_distance ’ , 10)
26 # cv_bridge i s used to extract the image array from the ROS image msg
27 sel f .br = CvBridge()
28
29 sel f .frame_count = 0
30 sel f .period_timer_start = time.time()
31 sel f .period_timer_end = time.time()
32 sel f . fps = 0
33
34
35
36 # Callback for video_frames subscription , called every
37 # time a new video frame i s recieved
38 def listener_callback(self , data) :
39 sel f .frame_count += 1
40 sel f .period_timer_end = time.time()
41 sel f . timer_period = self .period_timer_end − self .period_timer_start
42 sel f . fps = 1 / sel f . timer_period
43 sel f .period_timer_start = time.time()
44 sel f . get_logger() . info(’Recieving video frame, current FPS: {:.2 f} ’ . format(sel f . fps))
45 current_frame = self .br .imgmsg_to_cv2(data)
46 detections , t = model. Inference(current_frame)
47 for obj in detections :
48 # print(obj [’ class ’] , obj [’ conf ’] , obj [’ center ’] , obj [’width ’])
49 cx = int(obj [’center ’] [0])
50 cy = int(obj [’center ’] [1])
51 f = 434
52 W= 6.5
53 w = obj [’width ’]
54 distance = int ((W∗f)/w)
55
56 # creating a ros2 int32multiarray
57 msg = Int32MultiArray()
58 msg.data = [cx, cy, distance]
59 sel f . publisher . publish(msg)
60
61
62
63 def main(args=None) :
64 # Initialize ROS client library
65 rclpy . init (args=args)

142

Appendix G Source code, ROS2 nodes

66 # Instantiate the detect node
67 detect = Detect()
68 # Spin node forever
69 rclpy . spin(detect)
70
71 detect .destroy_node()
72 rclpy .shutdown()
73
74
75 i f (__name__ == ”__main__”) :
76 main()

G. . Image processing, configuration /

Video capture node

1 import rclpy
2 from rclpy .node import Node
3 from sensor_msgs.msg import Image
4 from cv_bridge import CvBridge
5 import cv2
6 from picamera2 import Picamera2
7
8 width = 384
9 height = width

10
11 class VideoCapture(Node) :
12 def __init__(sel f) :
13 super() .__init__(’video_capture ’)
14 sel f . publisher = self . create_publisher(Image, ’video_frames ’ , 10)
15 # Timer callback is triggered 60 times per second
16 timer_period = 1/60
17 sel f . timer = self . create_timer(timer_period, sel f . timer_callback)
18 sel f .picam2 = Picamera2()
19 # Configure picamera2 to capture video with the format and size expected by the model.
20 # This way we avoid having to reformat and resize later
21 # raw is set to 1640x1232 to force high FOV sensor mode.
22 # FrameDurationLimits is the min and max frame period in microseconds , 40000us limits capture
23 # to 25 FPS
24 sel f .picam2. configure(sel f .picam2. create_video_configuration(main={”format”: ’RGB888’ , ”size”: (width, height)},
25 raw={”size”: (1640,1232)},
26 controls={”FrameDurationLimits” : (40000, 40000)}))
27 sel f .picam2. start ()
28 sel f .br = CvBridge()
29
30 def timer_callback(sel f) :
31 frame = self .picam2.capture_array()
32
33 # Cv bridge wraps the image array in a ROS image message
34 sel f . publisher . publish(sel f .br .cv2_to_imgmsg(frame))
35 sel f . get_logger() . info(’Video frame published ’)
36
37
38 def main(args=None) :
39 # Initialize ROS client library
40 rclpy . init (args=args)
41
42 # Instantiate the video_capture node
43 video_capture = VideoCapture()
44
45 # Spin node forever
46 rclpy . spin(video_capture)
47 video_capture.destroy_node()
48 rclpy .shutdown()
49
50 i f __name__ == ’__main__’ :
51 main()

Object detection node

143

Appendix G Source code, ROS2 nodes

1
2 import rclpy
3 from rclpy .node import Node
4 from sensor_msgs.msg import Image
5 from std_msgs.msg import Int32MultiArray
6 from cv_bridge import CvBridge
7 import cv2
8 import numpy as np
9 import tflite_runtime . interpreter as t f l i t e

10 import time
11 from picamera2 import Picamera2
12
13
14
15 # Absolute path to t f l i t e model
16 model =’/home/gruppe6/models/edl1_1k_edgetpu. t f l i t e ’
17
18 # Load edgetpu runtime shared library
19 tpu_interpreter = t f l i t e . Interpreter(model, experimental_delegates=[
20 t f l i t e . load_delegate(’ libedgetpu . so.1.0 ’)])
21
22 cpu_interpreter = t f l i t e . Interpreter(model)
23 # We discard detections with lower confidence score than the threshold
24 threshold = 0.80
25
26 class Detect(Node) :
27 def __init__(sel f) :
28 # Instantiate parent class object (Node)
29 super() .__init__(’detect ’)
30
31 # Create subscription to video_frames topic
32 sel f . subscription = self . create_subscription(Image, ’video_frames ’ , sel f . listener_callback , 10)
33
34 # Create publisher to object_pos_and_distance topic
35 sel f . publisher = self . create_publisher(Int32MultiArray, ’object_pos_and_distance ’ , 10)
36
37 # cv_bridge is used to extract the image array from the ROS image msg
38 sel f .br = CvBridge()
39
40 # Selected interpreter , change to cpu_interpreter to run
41 # model on cpu only
42 sel f . interpreter = tpu_interpreter
43
44 # Allocate tensors , must be called to start inference
45 sel f . interpreter . allocate_tensors()
46
47 # Input details for the loaded model
48 sel f . input_details = self . interpreter . get_input_details()
49
50 # Output details for the loaded model
51 sel f . output_details = self . interpreter .get_output_details()
52
53 sel f .period_timer_start = time.time()
54 sel f .period_timer_end = time.time()
55 sel f . fps = 0
56 # Multiplier used for distance calculation
57 sel f . focal_length_multiplier = 847 # pi camera 2
58
59 sel f . ball_real_diameter = 6.5 # cm
60 # ROS2 message type , used to publish to ’object pos and distance ’
61 sel f .output_array = Int32MultiArray()
62
63 # Get image dimensions expected by the model
64 sel f .width = self . input_details [0] [’shape ’] [1]
65 sel f . height = self . input_details [0] [’shape ’] [2]
66
67 # Returns False i f val is outside cutoff , used to discard
68 # distance measurements at the edges of the frame
69 def constrain_detection(self , val , frame_dim, cutoff) :
70 return val > cutoff and val < (frame_dim − cutoff)
71
72 # Callback for video_frames subscription , called every
73 # time a new video frame is recieved
74 def listener_callback(self , data) :
75 sel f .period_timer_end = time.time()
76 sel f . timer_period = self .period_timer_end − self .period_timer_start
77 sel f . fps = 1 / sel f . timer_period
78 sel f .period_timer_start = time.time()
79 sel f . get_logger() . info(’Current FPS: {:.2 f} ’ . format(sel f . fps))
80 current_frame = self .br .imgmsg_to_cv2(data)
81
82
83 # Add batch dimension expected by the model,
84 # new shape = [1 , WIDTH, HEIGHT, 3]
85 input_data = np.expand_dims(current_frame, axis=0)
86

144

Appendix G Source code, ROS2 nodes

87 # Set input_data as the model input
88 sel f . interpreter . set_tensor(sel f . input_details [0] [’index ’] ,
89 input_data)
90
91 # Start inference by invoking the interpreter
92 sel f . interpreter . invoke()
93
94 # boxes, classes , scores and number of detections are the
95 # available model outputs
96 # We are only using boxes and scores in this node
97
98 # output_details returns the tensor index needed by get_tensor()
99 boxes = self . interpreter .get_tensor(sel f . output_details [1] [’index ’]) [0]

100 scores = self . interpreter .get_tensor(sel f . output_details [0] [’index ’]) [0]
101
102
103
104
105 # Loop over all detections
106 for i in range(len(scores)) :
107 i f ((scores [i] > threshold) and (scores [i] <= 1.0)) :
108 # Get corner coordinates of bounding box
109 x1, x2 = int(boxes[i] [1] ∗ sel f .width) , int(boxes[i] [3] ∗ sel f .width)
110 y1, y2 = int(boxes[i] [0] ∗ sel f . height) , int(boxes[i] [2] ∗ sel f . height)
111
112 w, h = x2 − x1, y2 − y1
113 # Get center of bounding box
114 cx, cy = (int(x1 + 0.5∗w) , int(y1+0.5∗h))
115
116 # Only send info on the best score
117 i f (scores [i] > best_score) :
118 best_score = scores [i]
119 cx_out = cx
120 cy_out = cy
121 distance_out = int ((sel f . dist_multiplier)/w)
122
123 # Because distance calculation is based on width, we need to discard
124 # detections at the left and right edges as the width may be cropped
125 i f (sel f . constrain_detection(cx, sel f .width, 30)) :
126 dist = int ((sel f . ball_real_diameter ∗ sel f . focal_length_multiplier) / w)
127 sel f .output_array.data = [cx_out, cy_out, distance_out]
128 sel f . publisher . publish(sel f .output_array)
129 else :
130 sel f .output_array.data = [cx_out, cy_out, −1]
131 sel f . publisher . publish(sel f .output_array)
132 # No detections
133 else :
134 sel f .output_array.data = [−1, −1, −1]
135 sel f . publisher . publish(sel f .output_array)
136
137
138
139 def main(args=None) :
140 # Initialize ROS client library
141 rclpy . init (args=args)
142
143 # Instantiate the detect node
144 detect = Detect()
145
146 # Spin node forever
147 rclpy . spin(detect)
148
149 detect .destroy_node()
150 rclpy .shutdown()
151
152
153 i f (__name__ == ”__main__”) :
154 main()

G. . Object follower

Controller node

1
2 import rclpy
3 from rclpy .node import Node
4 from std_msgs.msg import Int32MultiArray
5 from . object_follower import ObjectFollower

145

Appendix G Source code, ROS2 nodes

6
7
8
9 class Controller(Node) :

10 def __init__(sel f) :
11 super() .__init__(’ controller ’)
12 sel f . subscription = self . create_subscription(Int32MultiArray, ’object_pos_and_distance ’ , sel f . listener_callback , 10)
13 sel f . publisher = self . create_publisher(Int32MultiArray, ’yaw_thrust_pitch ’ , 10)
14 # Instantiate an ObjectFollower object
15 # PIDs must be set up by editing the constructor in object_follower .py
16 sel f . object_follower = ObjectFollower()
17
18 # Callback for the ’object_pos_and_distance ’ subscription
19 def listener_callback(self , msg_in) :
20 # Feed values from ’object_pos_and_distance ’ to the object follower
21 sel f . object_follower(x=msg_in.data[0] , y=msg_in.data[1] , distance=msg_in.data[2])
22 msg_out = Int32MultiArray()
23 # Publish object follower outputs to ’yaw_thrust_pitch ’ topic
24 msg_out.data = [sel f . object_follower .yaw_out, sel f . object_follower .thrust_out, sel f . object_follower .pitch_out]
25 sel f . publisher . publish(msg_out)
26
27
28 def main(args=None) :
29 rclpy . init (args=args)
30 controller = Controller()
31 rclpy . spin(controller)
32 controller .destroy_node()
33 rclpy .shutdown()
34
35
36 i f (__name__ == ”__main__”) :
37 main()

Object follower class

1
2 from . pid import PID
3
4
5
6
7 class ObjectFollower :
8 # Setpoints for yaw and thrust PIDs are 160 to keep detected
9 # object in the center of a 320x320 frame.

10 # Pitch setpoint of 70 to keep detected object at 70 cm distance
11 def __init__(sel f) :
12 sel f .yaw_pid = PID(160, 0.5 , 0.0 , 0.0 , −1000, 1000)
13 sel f . thrust_pid = PID(160, 0.5 , 0.0 , 0.0 , 300, 700)
14 sel f .pitch_pid = PID(70, 0.5 , 0.0 , 0.0 , −1000, 1000)
15 sel f .yaw_out = 0
16 sel f .thrust_out = 0
17 sel f .pitch_out = 0
18
19 def __call__(self , x, y, distance) :
20 i f (x != −1):
21 sel f .yaw_out = int(sel f .yaw_pid(x))
22 sel f .thrust_out = int(sel f . thrust_pid(y))
23 sel f .pitch_out = int(sel f .pitch_pid(distance))
24 # i f x = −1 no object is being detected , drone should
25 # move slowly towards ground with 300 thrust (500 is neutral thrust)
26 else :
27 sel f .yaw_out = 0
28 sel f .thrust_out = 300
29 sel f .pitch_out = 0
30
31 def tune_yaw(self , kp, ki , kd) :
32 sel f .yaw_pid.tune(kp, ki , kd)
33
34 def tune_thrust(self , kp, ki , kd) :
35 sel f . thrust_pid.tune(kp, ki , kd)
36
37 def tune_pitch(self , kp, ki , kd) :
38 sel f .pitch_pid.tune(kp, ki , kd)

PID class

146

Appendix G Source code, ROS2 nodes

1
2 import time
3
4
5
6
7 def clamp(val : float , lower_limit : float , upper_limit : float) :
8 return lower_limit i f val <= lower_limit else upper_limit i f val > upper_limit else val
9

10 class PID:
11
12 def __init__(self ,
13 setpoint : float = 0.0 ,
14 kp: float = 0.0 ,
15 ki : float = 0.0 ,
16 kd: float = 0.0 ,
17 min_output: float = None,
18 max_output: float = None,
19 dt_min: float = 0.01) :
20
21
22 # setpoint : PID controller setpoint
23 # kp: proportional gain constant
24 # ki : integral gain constant
25 # kd: derivative gain constant
26 # dt_min: minimum time between error corrections
27
28 sel f . setpoint = setpoint
29 sel f .kp, sel f . ki , sel f .kd = kp, ki , kd
30 sel f .dt_min = dt_min
31 sel f .min_output = min_output
32 sel f .max_output = max_output
33
34 sel f .p_out: float = 0.0
35 sel f . i_out: float = 0.0
36 sel f .d_out: float = 0.0
37 sel f .prev_time = time.time()
38 sel f .prev_input: float = 0.0
39 sel f .prev_output: float = 0.0
40
41
42 def __call__(self , input) :
43 current_time = time.time()
44 dt = current_time − self .prev_time
45 sel f .prev_time = current_time
46 d_input = input − self .prev_input
47
48 i f dt < self .dt_min:
49 return sel f .prev_output
50
51 error = self . setpoint − input
52
53 # proportional control signal
54 sel f .p_out = self .kp ∗ error
55
56 # integral control signal
57 sel f . i_out += self . ki ∗ error ∗ dt
58 sel f . i_out = clamp(sel f . i_out, sel f .min_output, sel f .max_output)
59
60 # derivative control signal
61 sel f .d_out = self .kd ∗ d_input / dt
62
63 output = self .p_out + self . i_out + self .d_out
64 output = clamp(output, sel f .min_output, sel f .max_output)
65
66 sel f .prev_input = input
67 sel f .prev_output = output
68
69 return output
70
71 def tune(self , kp, ki , kd) :
72 sel f .kp = kp
73 sel f . ki = ki
74 sel f .kd = kd
75
76 def get_kp(sel f) :
77 return sel f .kp
78
79 def get_ki(sel f) :
80 return sel f . ki
81
82 def get_kd(sel f) :
83 return sel f .kd

147

Appendix G Source code, ROS2 nodes

Autopilot

1 import rclpy
2 from rclpy .node import Node
3 from std_msgs.msg import Int32MultiArray
4 from pymavlink import mavutil
5 import socket
6
7 # When simulating the flight controller firmware through SITL,
8 # MAVLink connection is transmitted over UDP instead of UART / USB
9

10 # Quickly creates a socket to get programmatically get ahold of current IP−address :
11 def get_ip_address() :
12 = socket . socket(socket .AF_INET, socket .SOCK_DGRAM)
13 s .connect((”192.168.1.1” , 80))
14 return s .getsockname() [0]
15
16 class Autopilot(Node) :
17 def __init__(sel f) :
18 super() .__init__(’autopilot ’)
19 sel f . get_logger() . info(’Node started ’)
20 # Subscribes to yaw, thrust and pitch values being computed from the PIDs in ”Controller node”:
21 sel f . subscription = self . create_subscription(Int32MultiArray, ’yaw_thrust_pitch ’ , sel f . listener_callback , 10)
22 sel f . serial0_udp = ’udpin: ’ + get_ip_address() + ’:14550 ’
23 # Tries to establish MAVLink connection on udpin : [IP_ADDRESS]:14550 and waits for heartbeat :
24 sel f .the_connection = mavutil .mavlink_connection(sel f . serial0_udp)
25 sel f .the_connection.wait_heartbeat()
26 sel f . get_logger() . info(’Heartbeat from: %s ’ % self .the_connection.target_system)
27
28 def listener_callback(self , msg_in) :
29 sel f .the_connection.mav.manual_control_send(sel f .the_connection.target_system, # Established after heartbeat
30 msg_in.data[2] , # Established after heartbeat
31 0, # Roll value (static)
32 msg_in.data[1] , # Thrust value
33 msg_in.data[0] , # Yaw value
34 0) # Bitfield corresponding to extra
35 # buttons , not needed and can be
36 # set to 0 for this purpose
37
38 def main(args=None) :
39 rclpy . init (args=args)
40 autopilot = Autopilot()
41 rclpy . spin(autopilot)
42 autopilot .destroy_node()
43 rclpy .shutdown()
44
45
46 i f (__name__ == ”__main__”) :
47 main()

148

Appendix G Source code, ROS2 nodes

G. . Image Processing, configuration

Video capture node

This script creates a ROS2 node capable of capturing and streaming video data from a
Raspberry Pi Camera using ROS2, OpenCV, cv_bridge, and picamera2.

First, we import the required packages that allow us to establish ROS2 nodes, manage
ROS2 image data, work with the Raspberry Pi camera, and convert between ROS2 and
OpenCV image formats:

1 import rclpy
2 from rclpy.node import Node
3 from sensor_msgs.msg import Image
4 import cv2
5 from cv_bridge import CvBridge
6 from picamera2 import Picamera2
7 from libcamera import controls

Then we define the CameraCapture class, inheriting from Node. In this class’s constructor,
we initialize the parent class with the name camera_capture, generate a publisher to
transmit Image messages over the image_data topic, establish a timer with a callback
function for publishing image data, configure and initiate the Raspberry Pi camera, and
instantiate a bridge for converting between OpenCV and ROS image formats:

1 class CameraCapture(Node):
2 def init(self):
3 super().init('camera_capture')
4 self.publisher_ = self.create_publisher(Image, 'image_data', 10)
5 self.timer = self.create_timer(1/30, self.publish_image_data)
6 self.opencv_video = Picamera2()
7 self.opencv_video.configure(self.opencv_video.

create_preview_configuration(main={"format": 'RGB888', "size": (640,
480)}))

8 self.opencv_video.set_controls({"AwbEnable": True})
9 self.opencv_video.start()

10 self.bridge = CvBridge()

In the publish_image_data function, we capture a frame from the Raspberry Pi camera,
convert it to a ROS2 message, and publish the message:

1 def publish_image_data(self):
2 frame = self.opencv_video.capture_array()
3 msg = self.bridge.cv2_to_imgmsg(frame, encoding='bgr8')
4 self.publisher_.publish(msg)

The main function initializes the ROS2 client library (rclpy), creates an instance of our
CameraCapture node, waits for incoming messages, properly destroys the node when done,
and finally shuts down the ROS2 client library:

149

Appendix G Source code, ROS2 nodes

1 def main(args=None):
2 rclpy.init(args=args)
3 node = CameraCapture()
4 rclpy.spin(node)
5 node.destroy_node()
6 rclpy.shutdown()
7

8 if name == 'main':
9 main()

150

Appendix G Source code, ROS2 nodes

Blob Detection

This task involves developing a ROS2 node capable of detecting specific color objects in
a video stream, estimating their relative positions and distances, and publishing this in-
formation using ROS2. The utilized packages include ROS2 (rclpy), OpenCV, cv_bridge,
cvzone, and numpy.

First, we import the necessary packages for establishing ROS2 nodes, handling ROS2
messages, image processing, blob detection and numerical operations:

1 import rclpy
2 from rclpy.node import Node
3 from sensor_msgs.msg import Image
4 from std_msgs.msg import Int32MultiArray
5 import cv2
6 from cv_bridge import CvBridge
7 import cvzone
8 from cvzone.FPS import FPS
9 from cvzone.ColorModule import ColorFinder

10 import numpy as np
11 import time
12 import math

We define the ObjectDetection class, which inherits from Node. In the constructor
of this class, we create a subscriber to receive Image messages from the image_data
topic, initialize the FPS reader, bridge for converting between OpenCV and ROS2 image
formats, and a publisher to broadcast Int32MultiArray messages (the object position
and distance data) on the distance_and_pos topic:

1 class ObjectDetection(Node):
2 def init(self):
3 super().init('object_detection')
4 self.subscription = self.create_subscription(Image, 'image_data',

self.process_image , 10)
5 self.bridge = CvBridge()
6 self.fpsreader = FPS()
7 self.distance_and_position_publisher = self.create_publisher(

Int32MultiArray , 'distance_and_pos', 10)

The is_circle function is defined to assess the circularity of a contour based on its area
and perimeter:

1 def is_circle(self, cnt, threshold=0.75):
2 area = cv2.contourArea(cnt)
3 perimeter = cv2.arcLength(cnt, True)
4 if perimeter == 0:
5 return False
6 circularity = 4 * np.pi * area / (perimeter * perimeter)
7 return circularity >= threshold

151

Appendix G Source code, ROS2 nodes

In the process_image function, we convert the incoming ROS message to an OpenCV
image, detect specific colors (blue, green, red) in the image, filter the resulting contours
for circularity, compute the distance and position of each detected object based on the size
and location of the contours, log this information, and publish it as a Int32MultiArray
message. If you want to read more about how the detection algorithm works read ??.

1 def process_image(self, msg):
2

3 opencv_image = self.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')
4 h, w, _ = opencv_image.shape
5

6 myColorFinder: ColorFinder = ColorFinder(False)
7 hsvValsBlue = {'hmin': 104, 'smin': 128, 'vmin': 0, 'hmax': 120, 'smax'

: 255, 'vmax': 152}
8 hsvValsGreen = {'hmin': 26, 'smin': 54, 'vmin': 48, 'hmax': 90, 'smax':

137, 'vmax': 255}
9 hsvValsRed = {'hmin': 0, 'smin': 120, 'vmin': 120, 'hmax': 20, 'smax':

255, 'vmax': 255}
10

11 fps, img = self.fpsreader.update(opencv_image)
12

13 _, maskBlue = myColorFinder.update(img, hsvValsBlue)
14 _, maskGreen = myColorFinder.update(img, hsvValsGreen)
15 _, maskRed = myColorFinder.update(img, hsvValsRed)
16

17 _, contoursBlue = cvzone.findContours(img, maskBlue)
18 _, contoursGreen = cvzone.findContours(img, maskGreen)
19 _, contoursRed = cvzone.findContours(img, maskRed)
20

21 circular_contours_blue = [cnt for cnt in contoursBlue if self.is_circle
(cnt['cnt'])]

22 circular_contours_green = [cnt for cnt in contoursGreen if self.
is_circle(cnt['cnt'])]

23 circular_contours_red = [cnt for cnt in contoursRed if self.is_circle(
cnt['cnt'])]

24

25 for color, circular_contours_list in zip(['blue', 'green', 'red'],
26 [circular_contours_blue ,

circular_contours_green , circular_contours_red]):
27 if circular_contours_list:
28

29 cnt = circular_contours_list[0]
30 x, y = cnt['center']
31

32 f = 889
33 W = 6.5
34 w = cnt['bbox'][3]
35 d = (W * f) / w
36

37 self.publish_dist_and_pos(x , y, d)

152

Appendix G Source code, ROS2 nodes

The publish_dist_and_pos function prepares and publishes a Int32MultiArray mes-
sage containing the x and y position and distance of a detected object:

1 def publish_dist_and_pos(self, x, y, distance):
2 msg = Int32MultiArray()
3 msg.data = [int(x), int(y), int(distance)]
4 self.distance_and_position_publisher.publish(msg)

The main function initializes the ROS2 client library, creates an instance of our ObjectDetection
node, waits for incoming messages, properly destroys the node when done, and finally
shuts down the ROS2 client library:

1 def main(args=None):
2 rclpy.init(args=args)
3 node = ObjectDetection()
4 rclpy.spin(node)
5 node.destroy_node()
6 rclpy.shutdown()
7

8 if __name__ == '__main__':
9 main()

G. . Drone Position Estimation

In our application, we focus on estimating the drone’s position relative to a stationary
object. For this, we implement a DronePositionEstimator algorithm. This algorithm
makes use of yaw angle and the distance between the drone and the object to estimate
the position of the drone.

To start with, we import the necessary packages for ROS2 node creation, message hand-
ling, drone position calculation, and plotting:

1 #!/usr/bin/env python3
2

3 import rclpy
4 from rclpy.node import Node
5 from sensor_msgs.msg import Imu
6 from std_msgs.msg import Int32MultiArray
7 from pymavlink import mavutil
8 from pymavlink_msgs.msg import DronePose
9 import math

10 import matplotlib.pyplot as plt
11 from mpl_toolkits import mplot3d
12 import numpy as np

Next, we define a class DronePositionEstimator that inherits from the ROS2 Node
class. The def __init__ function is for when the drone is first initialized and we use
this function to define variables and the creation of subscribers and publishers. This class

153

Appendix G Source code, ROS2 nodes

subscribes to the topics distance_and_pos and drone_pose that provide the distance to
the object and the pose data of the drone, and initializing the variables that we use in
the plot.

1 class FollowAlgorithm(Node):
2 def __init__(self):
3 super().__init__('follow_algorithm')
4

5 self.create_subscription(Int32MultiArray , 'distance_and_pos', self.
position_and_distance_callback , 10)

6

7 self.create_subscription(DronePose , 'drone_pose', self.
qualisys_callback , 10)

8 self.distance = 0.0
9

10 #self.fig = plt.axes(projection='3d')
11 arrsize = 1000
12 self.drone_x_arr = np.zeros(arrsize)
13 self.drone_y_arr = np.zeros(arrsize)
14 self.drone_z_arr = np.zeros(arrsize)
15 self.qualisys_x_arr = np.zeros(arrsize)
16 self.qualisys_y_arr = np.zeros(arrsize)
17 self.qualisys_z_arr = np.zeros(arrsize)
18 self.counter = 0

In the function qualisys_callback, which is triggered when a new message is published
on the drone_pose topic, the estimated drone position is calculated based on the yaw
angle and the distance to the object and then plotting:

1 def qualisys_callback(self, msg: DronePose):
2

3 object_x = 0.0 # meters
4 object_y = 0.0 #meters
5 object_z = 0.0 #meters
6 camera_angle = 45 # degrees
7 yaw = msg.yaw.data # radians -pi to pi
8

9 true_x = msg.pos.x # x position in meters from qualisys
10 true_y = msg.pos.y # y position in meters from qualisys
11 true_z = msg.pos.z # z position in meters from qualisys
12

13 distance_to_object = self.distance# meters
14

15 # Calculate the drone's position
16 drone_x, drone_y, drone_z = self.find_drone_position(yaw,

distance_to_object , object_x , object_y , object_z , camera_angle)
17

18 # Plot data
19 self.plotter((drone_x, drone_y, drone_z), (true_x, true_y, true_z))

154

Appendix G Source code, ROS2 nodes

The function find_drone_position is responsible for the calculation of the drone’s pos-
ition:

1 def find_drone_position(self, yaw, distance_to_object , object_x , object_y ,
object_z, camera_angle):

2

3 drone_x = object_x - distance_to_object * math.sin(yaw)
4 drone_y = object_y + distance_to_object * math.cos(yaw)
5 drone_z = 0
6

7 return drone_x, drone_y, drone_z

The function position_and_distance_callback updates the distance when a new mes-
sage is published on the distance_and_pos topic. This function also converts cm into
meters and adds the distance from the camera to the center of the drone:

1 def position_and_distance_callback(self, msg: Int32MultiArray):
2 self.distance = (msg.data[2] + 12) / 100

The function plotter collects and plots the estimated position of the drone and the actual
position of the drone, saving the plots when the array is full:

1 def plotter(self, drone_pos , qualisys_pos):
2 if (self.counter < len(self.drone_x_arr)):
3 # Scatter plots
4 x_drone = drone_pos[0]
5 y_drone = drone_pos[1]
6 z_drone = drone_pos[2]
7 x_qualisys = qualisys_pos[0]
8 y_qualisys = qualisys_pos[1]
9 z_qualisys = qualisys_pos[2]

10 ndx = self.counter
11 self.counter += 1
12

13 self.drone_x_arr[ndx] = x_drone
14 self.drone_y_arr[ndx] = y_drone
15 self.drone_z_arr[ndx] = z_drone
16 self.qualisys_x_arr[ndx] = x_qualisys
17 self.qualisys_y_arr[ndx] = y_qualisys
18 self.qualisys_z_arr[ndx] = 0
19 else:
20 self.save_plot()
21

22 def save_plot(self):
23 plt.figure()
24 fig = plt.axes()
25 fig.scatter(self.drone_x_arr , self.drone_y_arr , s=len(self.drone_x_arr)

, c='Blue', marker='.')
26 fig.scatter(self.qualisys_x_arr , self.qualisys_y_arr , s=len(self.

qualisys_x_arr), c='Green', marker='.')
27 plt.savefig("/home/vaffe/ros/log/plot.png")

155

Appendix G Source code, ROS2 nodes

Lastly, in the main function, we initialize a ROS2 node for the DronePositionEstimator
and spin the node:

1 def main(args=None):
2 rclpy.init(args=args)
3 node = DronePositionEstimator()
4 rclpy.spin(node)
5 node.destroy_node()
6 rclpy.shutdown()
7

8 if __name__ == '__main__':
9 main()

It’s important to note that the accuracy of the estimated position depends on the precision
of the yaw angle and distance data.

G. . Image Processing, configuration (Code Only)

Camera Capture

1 import rclpy
2 from rclpy .node import Node
3 from sensor_msgs.msg import Image # import the Image message type
4 import cv2
5 from cv_bridge import CvBridge
6 from picamera2 import Picamera2
7 from libcamera import controls
8
9 class CameraCapture(Node) : # inherits from Node

10 def __init__(sel f) : # constructor
11 super() .__init__(’camera_capture ’) # call the constructor of the parent class
12 sel f .publisher_ = self . create_publisher(Image, ’image_data’ , 10) # create a publisher
13 sel f . timer = self . create_timer(1/30, sel f .publish_image_data) # create a timer
14 sel f .opencv_video = Picamera2() # open the video capture device
15 sel f .opencv_video. configure(sel f .opencv_video. create_preview_configuration(main={”format”: ’RGB888’ , ”size”: (640,

480)}))
16 sel f .opencv_video. set_controls({”AwbEnable”: True})
17 sel f .opencv_video. start ()
18 sel f . bridge = CvBridge() # create a bridge between OpenCV and ROS
19
20 def publish_image_data(sel f) : # callback function
21 frame = self .opencv_video.capture_array() # read a frame from the video capture device
22 #i f not success :
23 # self . get_logger() . info (’Failed to read frame from camera ’)
24 # return
25 msg = self . bridge .cv2_to_imgmsg(frame, encoding=’bgr8 ’) # convert the image to a ROS message
26
27
28 sel f .publisher_ . publish(msg) # publish the message
29
30 def main(args=None) : # args is a l i s t of strings
31 rclpy . init (args=args) # initial ize the ROS client library
32
33 node = CameraCapture() # create a node
34
35 rclpy . spin(node) # wait for messages
36 node.destroy_node() # destroy the node explicitly
37
38 rclpy .shutdown() # shutdown the ROS client library
39
40 i f __name__ == ’__main__’ : # i f this f i l e is run as a script
41 main() # run the main function

156

Appendix G Source code, ROS2 nodes

Blob Detection
1
2 #!/usr/bin/etv python
3
4 import rclpy
5 from rclpy .node import Node
6 from sensor_msgs.msg import Image
7 from std_msgs.msg import Int32MultiArray
8 import cv2
9 from cv_bridge import CvBridge

10 import cvzone
11 from cvzone.FPS import FPS
12 from cvzone.ColorModule import ColorFinder
13 import numpy as np
14 import time
15 import math
16
17
18
19 class ObjectDetection(Node) :
20 def __init__(sel f) :
21 super() .__init__(’object_detection ’) # call the constructor of the parent class
22 sel f . subscription = self . create_subscription(Image, ’image_data’ , sel f .process_image, 10) # create a subscriber
23 sel f . bridge = CvBridge() # create a bridge between OpenCV and ROS
24 sel f . fpsreader = FPS() # Initialize FPS reader
25 sel f .distance_and_position_publisher = self . create_publisher(Int32MultiArray, ’distance_and_pos ’ , 10)
26
27
28 def is_circle (self , cnt , threshold=0.75):
29 area = cv2.contourArea(cnt)
30 perimeter = cv2.arcLength(cnt , True)
31 i f perimeter == 0:
32 return False
33 circularity = 4 ∗ np. pi ∗ area / (perimeter ∗ perimeter)
34 return circularity >= threshold
35
36
37
38 def process_image(self , msg) : # callback function main processing function
39
40 opencv_image = self . bridge .imgmsg_to_cv2(msg, desired_encoding=’bgr8 ’)
41 h, w, _ = opencv_image.shape
42
43 myColorFinder: ColorFinder = ColorFinder(False)
44 hsvValsBlue = { ’hmin’ : 104, ’smin ’ : 128, ’vmin’ : 0, ’hmax’ : 120, ’smax’ : 255, ’vmax’ : 152} #blue
45 hsvValsGreen = { ’hmin’ : 26, ’smin ’ : 54, ’vmin’ : 48, ’hmax’ : 90, ’smax’ : 137, ’vmax’ : 255} #green
46 hsvValsRed = { ’hmin’ : 0, ’smin ’ : 120, ’vmin’ : 120, ’hmax’ : 20, ’smax’ : 255, ’vmax’ : 255} #red
47
48 fps , img = self . fpsreader .update(opencv_image)
49
50 _, maskBlue = myColorFinder.update(img, hsvValsBlue)
51 _, maskGreen = myColorFinder.update(img, hsvValsGreen)
52 _, maskRed = myColorFinder.update(img, hsvValsRed)
53
54
55 _, contoursBlue = cvzone. findContours(img, maskBlue)
56 _, contoursGreen = cvzone. findContours(img, maskGreen)
57 _, contoursRed = cvzone. findContours(img, maskRed)
58
59 # Filter contours that are circles
60 circular_contours_blue = [cnt for cnt in contoursBlue i f sel f . is_circle (cnt [’cnt ’])]
61 circular_contours_green = [cnt for cnt in contoursGreen i f sel f . is_circle (cnt [’cnt ’])]
62 circular_contours_red = [cnt for cnt in contoursRed i f sel f . is_circle (cnt [’cnt ’])]
63
64 # Process and display depth, x, and y position for each ball
65 for color , circular_contours_list in zip ([’blue ’ , ’green ’ , ’red ’] ,
66 [circular_contours_blue , circular_contours_green , circular_contours_red]) :
67 i f circular_contours_list :
68
69 cnt = circular_contours_list [0]
70 x, y = cnt [’center ’]
71
72 f = 889
73 W= 6.5
74 w = cnt [’bbox’] [3]
75 d = (W ∗ f) / w
76 sel f . get_logger() . info(f”{color}: {d}”)
77 sel f . get_logger() . info(f” fps : {fps}”)
78 sel f . get_logger() . info(f” x: {x} y: {y}”)
79
80 sel f .publish_dist_and_pos(x , y, d)
81
82 def publish_dist_and_pos(self , x, y, distance) :
83 msg = Int32MultiArray()
84 msg.data = [int(x) , int(y) , int(distance)]

157

Appendix G Source code, ROS2 nodes

85 sel f .distance_and_position_publisher . publish(msg)
86
87 def main(args=None) :
88 rclpy . init (args=args)
89
90 node = ObjectDetection()
91
92 rclpy . spin(node)
93 node.destroy_node()
94
95 rclpy .shutdown()
96
97 i f __name__ == ’__main__’ :
98 main()

Object Estimation

1
2 #!/usr/bin/env python3
3
4 import rclpy
5 from rclpy .node import Node
6 from sensor_msgs.msg import Imu
7 from std_msgs.msg import Int32MultiArray
8 from pymavlink import mavutil
9 from pymavlink_msgs.msg import DronePose

10 import math
11 import matplotlib . pyplot as plt
12 from mpl_toolkits import mplot3d
13 import numpy as np
14
15
16 class FollowAlgorithm(Node) :
17 def __init__(sel f) :
18 super() .__init__(’follow_algorithm ’)
19
20 sel f . create_subscription(Int32MultiArray, ’distance_and_pos ’ , sel f .position_and_distance_callback , 10)
21
22 sel f . create_subscription(DronePose, ’drone_pose ’ , sel f . qualisys_callback , 10)
23 sel f . distance = 0.0
24
25 arrsize = 1000
26 sel f .drone_x_arr = np. zeros(arrsize)
27 sel f .drone_y_arr = np. zeros(arrsize)
28 sel f .drone_z_arr = np. zeros(arrsize)
29 sel f .qualisys_x_arr = np. zeros(arrsize)
30 sel f .qualisys_y_arr = np. zeros(arrsize)
31 sel f .qualisys_z_arr = np. zeros(arrsize)
32 sel f . counter = 0
33
34
35 def qualisys_callback(self , msg: DronePose) :
36
37 object_x = 0.0 # meters
38 object_y = 0.0 # meters
39 object_z = 0.0
40 camera_angle = 45 # degrees
41 yaw = msg.yaw.data # radians −pi to pi
42
43
44 true_x = msg.pos.x # x position in meters from qualisys
45 true_y = msg.pos.y # y position in meters from qualisys
46 true_z = msg.pos. z
47 distance_to_object = self . distance# meters
48
49 drone_x, drone_y, drone_z = self . find_drone_position(yaw, distance_to_object , object_x, object_y, 0, camera_angle)
50
51
52 sel f . plotter ((drone_x, drone_y, drone_z) , (true_x, true_y, true_z))
53
54
55 def find_drone_position(self , yaw, distance_to_object , object_x, object_y, object_z , camera_angle) :
56 def find_drone_position(self , yaw, distance_to_object , object_x, object_y, object_z , camera_angle) :
57
58 # Calculate drone position
59 drone_x = object_x − distance_to_object ∗ math. sin(yaw)
60 drone_y = object_y + distance_to_object ∗ math. cos(yaw)
61 drone_z = 0
62 return drone_x, drone_y, drone_z
63
64 def position_and_distance_callback(self , msg: Int32MultiArray) :

158

Appendix G Source code, ROS2 nodes

65
66 sel f . distance = (msg.data[2] + 12) / 100
67 sel f . get_logger() . info(f”Distance to object {sel f . distance} ”)
68
69
70 def plotter(self , drone_pos, qualisys_pos) :
71
72
73 i f (sel f . counter < len(sel f .drone_x_arr)) :
74 # Scatter plots
75 x_drone = drone_pos[0]
76 y_drone = drone_pos[1]
77 z_drone = drone_pos[2]
78 x_qualisys = qualisys_pos [0]
79 y_qualisys = qualisys_pos [1]
80 z_qualisys = qualisys_pos [2]
81 ndx = self . counter
82 sel f . counter += 1
83
84 sel f .drone_x_arr[ndx] = x_drone
85 sel f .drone_y_arr[ndx] = y_drone
86 sel f .drone_z_arr[ndx] = z_drone
87 sel f .qualisys_x_arr[ndx] = x_qualisys
88 sel f .qualisys_y_arr[ndx] = y_qualisys
89 sel f .qualisys_z_arr [ndx] = 0
90 else :
91 sel f . save_plot()
92
93 def save_plot(sel f) :
94 plt . figure ()
95 fig = plt . axes()
96 fig . scatter(sel f .drone_x_arr, sel f .drone_y_arr, s=len(sel f .drone_x_arr) , c=’Blue ’ , marker=’ . ’)
97 fig . scatter(sel f .qualisys_x_arr , sel f .qualisys_y_arr , s=len(sel f .qualisys_x_arr) , c=’Green’ , marker=’ . ’)
98 plt . savefig(”/home/vaffe/ros/log/plot .png”)
99

100 def main(args=None) :
101 rclpy . init (args=args)
102 follow_algorithm = FollowAlgorithm()
103 rclpy . spin(follow_algorithm)
104 follow_algorithm .destroy_node()
105 rclpy .shutdown()
106
107 i f __name__ == ’__main__’ :
108 main()

159

Appendix H

Tensorflow Lite Model Maker script

H. Tensorflow Lite Model Maker script
1
2 from tflite_model_maker import model_spec
3 from tflite_model_maker import object_detector
4 import tensorflow as tf
5
6 # Only log errors
7 tf . get_logger() . setLevel(’ERROR’)
8
9 # Load train , validation and test data. Arguments 1 and 2 are relative paths

10 # to image and annotation f i l e directory , 3rd argument is a label map.
11 training_data = object_detector .DataLoader.from_pascal_voc(
12 ’training_images2 ’ , ’training_images2 ’ , [’Greenball ’]
13)
14
15 validation_data = object_detector .DataLoader.from_pascal_voc(
16 ’validation_images2 ’ , ’validation_images2 ’ , [’Greenball ’]
17)
18
19 test_data = object_detector .DataLoader.from_pascal_voc(
20 ’test_images ’ , ’test_images ’ , [’Greenball ’]
21)
22
23 # Select pretrained model and directory for storing temp data
24 spec = model_spec. get(’ efficientdet_lite1 ’ , model_dir=’D:/tfTemp/edl1_1k ’)
25 # Number of passes through ful l dataset
26 epochs = 1000
27 # Number of batches the ful l dataset is divided into
28 # Higher batch size = faster training
29 # Max batch size depends on available video memory
30 batch_size = 16
31
32 # Start training/create model
33 model = object_detector . create(training_data , model_spec=spec ,
34 batch_size=batch_size , train_whole_model=True,
35 epochs=epochs , validation_data=validation_data)
36 # Evaluate Tensorflow model
37 eval_result = model. evaluate(test_data)
38 # Convert to Tensorflow Lite model
39 model. export(export_dir=’export ’ , tflite_filename=’edl1_1k. t f l i t e ’)
40 # Evaluate Tensorflow Lite model
41 tflite_eval_result = model. evaluate_tflite(’export/edl1_1k. t f l i t e ’ , test_data)
42
43 print(eval_result)
44 print(”−−−−−−−−−−−−−−−−−−−”)
45
46 # This returns the final precision and recall scores achieved on the test data set
47 print(tflite_eval_result)

160

Appendix I

Team

I. TeamMembers

• Martin Børte Liestøl – Software and Object Detection: As our software lead, Martin
made sure that we were on the right track when it come to picking and developing
our code. He was also responsible for our accelerated configurations.

• Even Jørgensen - Group Leader and Nvidia Jetson: As a group leader he made sure
that each group member was seen and heard, and was the one communicating with
the school. He was also responsible for the Nvidia Jetson Nano configuration of our
project.

• Sindre Nes – Report, Ros2 and Qualisys: Sindre was responsible for the unacceler-
ated configuration, and making Qualisys operational.

• Ådne Kvåle – Hardware and Drone: Ådne focused on the hardware and flightcon-
troller. From building the drone to making it fly.

• Jon Jahren – Process and DevOps: Jon was in charge our group’s methodology and
DevOps practices. He established an environment conducive to efficient collabor-
ation by leveraging tools such as Taiga for agile project management and GitHub
for version control. Additionally, he took charge of managing our Docker images,
ensuring smooth deployment and containerization processes.

• Abdul Majeed Alizai – Documentation, Blob Detection, and website: Abdul con-
tributed to the project by creating the blob algorithm for one of the configurations,
being responsible for the risk analysis, and creating the website for the team.

161

Our thesis is to research the possibilities edge computing gives in an embedded system.

Even Jørgensen
Even1993@hotmail.com
Computer engineer

Main responsibility
Group leader

Martin Børte Liestøl
Martin.liest@gmail.com
Computer engineer

Main responsibility
Programming

Sindre Nes
Sin_pin@hotmail.com
Computer engineer

Main responsibility
Report

Ådne kvåle
237113@usn.no
Tlf: 47242193
Computer engineer

Main responsibility
Hardware

Group 6-2022 – Aerial Edge

Abdul Majeed Alizai
Majeed.alizai4@gmail.com
Computer engineer

Main responsibility
Documentation

Jon Jahren
jon.jahren@gmail.com

Computer engineer

Main responsibility
Project model/Agile

Internal supervisor: Henning Gundersen
E-mail: Henning.gundersen@usn.no

External sensor: Tord Fauskanger
E-mail: tord.fauskanger@gmail.com

External supervisor: Jan Dyre Bjerknes
E-mail: Jan.dyre.bjerknes@kongsberg.com

	Image Processing on the Edge
	Summary

	Acknowledgements
	Abstract
	Contents
	List of Figures

	Introduction
	Introduction
	Problem Domain
	Research Perspective

	Process
	Project Tools
	Github
	Taiga
	Overleaf
	ChatGPT
	Microsoft Suite

	Risk Analysis

	Configurations
	Hardware Selection Process
	nVidia Jetson Nano
	Coral Edge TPU
	Raspberry Pi 4B & Zero 2
	Pi Camera modules

	Operating System and System Software Decision Process
	Raspberry Pi 4 and Zero 2
	Jetson Nano System Software Configuration
	32-bit vs. 64-bit

	Proposed architectures
	Initial Proposal
	Second proposal
	Accepted architectures

	Object detection software
	Distance Measurement
	Proposed Operating System and System Configuration
	Image processing modules
	Configuration 1, Jetson Nano
	Configuration 2, Pi 4 w/ Coral Edge TPU
	Configuration 3, Pi Zero w/ Coral Edge TPU
	Configuration 4, Pi 4

	Configurations, full context
	ROS2 integration
	UAV side project

	Drone architecture
	Flight controller firmware setup
	Communication software setup

	Exploring Use cases
	Qualisys and drone tracking

	Measurements
	Config1
	Config2 & Config3
	EfficientDet Lite 0
	EfficientDet Lite 1
	USB 3.0 vs. USB 2.0

	Config4

	Conclusion
	References
	Hardware
	Specification tables for configs
	Config 1
	Config 2
	Config 3
	Config 4
	Comparison

	Single-board computer (SBC)
	Camera
	Rolling vs. Global shutter
	Camera drivers

	Hardware Acceleration for ML Inference
	Google Coral TPU

	Flight controller

	UAV
	Flight controller
	Firmware
	MAVLink
	Drone simulation

	Drone implementation

	Config4 Code Explanation and Analysis
	Blob detection.v1
	Blob detection.v2
	Blob detection.v3
	Blob Detection.v3 Evaluation

	Config4 Source code
	Blob Detection.v1
	Blob Detection.v2
	Blob Detection.v3

	ROS1 to ROS2
	Translating from ROS1 to ROS2
	Syntax Changes
	Architecture

	Yolo training Tutorial
	Source code, ROS2 nodes
	Source code, ROS2 nodes
	Image processing, configuration 1
	Image processing, configuration 2/3
	Object follower
	Image Processing, configuration 4
	Drone Position Estimation
	Image Processing, configuration 4 (Code Only)

	Tensorflow Lite Model Maker script
	Tensorflow Lite Model Maker script

	Team
	Team Members

