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Abstract
The increasing integration of distributed energy resources such as photovoltaic (PV) systems into distribution networks
introduces intermittent and variable power, leading to high voltage fluctuations. High PV integration can also result in
increased terminal voltage of the network during periods of high PV generation and low load consumption. These problems
can be solved by optimal utilization of the reactive power capability of a smart inverter. However, solving the optimization
problemusing a detailedmathematicalmodel of the distribution networkmay be time-consuming.Due to this, the optimization
process may not be fast enough to incorporate this rapid fluctuation when implemented in real-time optimization. To address
these issues, this paper proposes a co-simulation-based optimization approach for optimal reactive power control in smart
inverters. By utilizing co-simulation, the need for detailedmathematicalmodeling of the power flowequation of the distribution
network in the optimizationmodel is eliminated, thereby enabling faster optimization. This paper compares three optimization
algorithms (improved harmony search, simplicial homology global optimization, and differential evolution) using models
developed in OpenDSS and DigSilent PowerFactory. The results demonstrate the suitability of the proposed co-simulation-
based optimization for obtaining optimal setpoints for reactive power control, minimizing total power loss in distribution
networks with high PV integration. This research paper contributes to efficient and practical solutions for modeling optimal
control problems in future distribution networks.
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PMU Phasor measurement unit
PV Photovoltaic
p.u. Per unit
RES Renewable energy resources
SCB Static capacitor bank
SDN Smart distribution network
SHGO Simplicial homology global optimization
SIB Static inductor bank
SVR Static voltage regulators

List of symbols
V Nominal voltage of the distribution network
V1 Voltage at Bus1
V2 Voltage at Bus2
PL Active power of load
QL Reactive power of load
PPV Active power generation from PV
QPV Reactive power capacity from PV
Ploss Active power loss in the network
x Vector of the reactive power from PV
Npv Number of PV available in the distribution net-

work
PPV j Active power generation of j th PV
QPV j Reactive power capacity of j th PV
SPV j Rating of j th PV
Vmin
i Lower permissible voltage limit

Vmax
i Upper permissible voltage limit

Nbus Total number of buses in the distribution network

1 Introduction

1.1 Motivation and incitement

To promote the use of green energy, renewable energy
resources (RES) such as photovoltaic (PV) systems, wind
turbines, and fuel cells are highly integrated into the distribu-
tion network [1, 2]. With the advancement in PV technology
and cost reduction, the integration of photovoltaic systems
is expected to increase in the distribution network [3].
This increased integration of PV in the distribution net-
work presents additional technical challenges, as discussed
in [4–6]. The energy obtained from PV is highly intermit-
tent, uncertain, and variable in nature. The higher integration
of PV creates several problems, particularly an increase in
terminal voltage and voltage fluctuations [7, 8]. PVs are inte-
grated into the distribution network using power electronics
devices, and their control can provide fast and reliable oper-
ation. Therefore, the application of these interfaces has been
suggested as a quick-responding solution to regulate voltage
[9–11].

Although various control strategies have been proposed
[12] to overcome the challenges resulting from the high inte-
gration of PVs, the optimal control of smart inverters in smart
distribution networks (SDN) can be one of the alternatives
to address these challenges [13]. Optimal control of smart
inverters in SDN can be solved by optimization. Formulating
and solving the optimization problem using a detailed dis-
tribution network modeling might be challenging [14]. The
optimization process with detailed mathematical modeling
of SDNmay encounter some problems, such as slow conver-
gence or no convergence at all [15]. Furthermore, the need
for faster optimization techniques is more pressing with the
growing concern of implementing real-time control appli-
cations among distribution system operators (DSOs) [16].
Hence, this paper is intended to explore the applicability of
co-simulation-based optimization approach for optimal reac-
tive power control from smart inverters in SDN.

1.2 Literature review

Currently, the voltage in distribution networks is regulated
through voltage regulating devices (VRDs) such as on-load
tap changing (OLTC) transformers, static voltage regula-
tors (SVR), static capacitor banks (SCB), and static inductor
banks (SIB) [17]. However, with the rapid transition in the
distribution network, the operating condition of VRD is
altered [18], which requires frequent switching operations
to regulate the rapidly fluctuating voltage. Providing prompt
voltage control from such devices is difficult due to slower
response and limited switching operation [19]. Also, the fre-
quent switching operation of VRDs causes mechanical wear
and tear, causing an additional financial burden. In addition, it
also causes high voltage flicker and increased switching loss
[20]. Therefore, the reactive power control of smart invert-
ers, as suggested by IEEE1547-2018 [21], is recently gaining
attraction among DSOs [22, 23].

There are various approaches to control the reactive power
in the scientific literature [24, 25]. In most studies, reactive
power control is achieved in centralized, decentralized, or
distributed methods. The decentralized method uses local
measurement, and, on the basis of that, the optimal settings
for reactive dispatch are estimated. However, the decentral-
izedmethod lacks proper coordination between the controller
and the central controller. The centralized method provides
optimal reactive power setpoints by solving optimal power
flow in the distribution network. The key problem with the
centralized technique is the lack of communication andmon-
itoring infrastructure in the distribution network. However,
as smart inverter technology advances, most smart inverters
now have powerful communication and monitoring equip-
ment [26]. Therefore, a centralized control mechanism based
on optimal power flow (OPF) can be used in distribution
networks with substantial integration of photovoltaics [27].
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Some researchers incorporate centralized and local control
and propose them as distributed control. Regardless of the
optimal control approach, the most important factor is the
modeling of the distribution network for optimization.

One of the main problems in applying the optimal con-
trol algorithm in a distribution network is modeling an
unbalanced distribution network [28]. Accurate and effi-
cient modeling of the distribution network with uncertainties
from variable DERs is essential for applying optimal con-
trol algorithms in the distribution network. In most cases,
the distribution networks are exceptionally long and radial in
nature and serve many customers connected to the network.
Unlike transmission networks, distribution networks can also
consist of many single-phase loads and generation connec-
tion points, which can cause the network to be unbalanced.
Therefore, the optimal control approaches implemented in
transmission networks may not be feasible in distribution
networks [29].

Most of the research on the optimal control application in
a distribution network utilizes load flow calculations based
on physical modeling techniques. From the physical proper-
ties of the network, power flow solutions are solved using
the Newton–Raphson method [30] or the fast decoupled
method [31] or LinDistflow equations [32] or sensitivity-
based modeling [26]. However, due to the unique properties
of the distribution network such as radial nature, unbalanced
operation, multiple numbers of connection points and inter-
connecting lines, and nonuniform loading conditions, the
traditional load flow models may not converge. The use of
thesemodelingmethods rarely produces better results for dis-
tribution systems [33]. In addition, the high R/X ratio of the
distribution network is another problem for the convergence
of the optimization model in the distribution network. The
authors of [34] suggested a modified fast decoupled method
to solve the problem of convergence in the network with a
high R/X ratio in the distribution network. Some modifica-
tions have been made to the traditional modeling method
by modifying the Y-bus matrix to achieve reliable conver-
gence [33]. Even with modifications to most of the earlier
research, the analysis has been done for a balanced distribu-
tion network. These methods will also still have the problem
of convergence with large integration of DERs and unbal-
anced operation in the network.

Some researchers proposed alternative methods to model
the distribution network considering all properties of the net-
work. In [35], the authors proposed the backward/forward
sweep (BFS) method to compute the three-phase power flow
of the distribution network. However, the convergence of the
BFS method is more dependent on the size of the equiv-
alent line impedance and load admittance, which limits the
application of the BFSmethod in a large and unbalanced dis-
tribution network. To overcome this challenge of the branch
flow method, power injection methods can also be used to

approximate the power flow in the network [36]. The authors
in [37] proposed the current injection method (CIM) to per-
form the power flow in the distribution network. Compared to
the BFS method, CIM converges faster with fewer iterations
even for an unbalanced and heavily loaded network [38].

With the increase in utilization of various measurement
devices such as energy meters, phasor measurement units
(PMUs), and intelligent electronics devices (IEDs) in the
distribution network, data-driven modeling of the distribu-
tion networks based on the information from thesemeasuring
devices is gaining attention. With a proper mathematical for-
mulation of the data, the distribution network can bemodeled
more accurately [39]. The authors in [40] proposed a data-
driven model based on voltage sensitivity to approximate
the radial and mesh distribution network using the enhanced
formulation of the Z-bus matrix. Various machine learn-
ing algorithms are also implemented in the optimal voltage
control application in a distribution network [41]. The appli-
cation of machine learning algorithms removes the barrier of
prior knowledge of the complete information of the network
for modeling. Even in the case of data-driven modeling, in
most cases, the data are processed by a mathematical model
that describes the network property of the distribution net-
work. Among several methods, the current mismatchmethod
based on the current injection model gives a more precise
model [42]. In the current injection method, the phase volt-
age of any terminal can be represented by the active and
reactive power injections/absorption from generators/loads
at that terminal.

Even with a detailed mathematical model of the distri-
bution network, the optimization process takes time and,
in some cases, convergence may not be achieved. They
also require commercial solvers to solve the optimization
problem. Another approach to avoid detailed mathematical
modeling of the SDN in the optimization model is to model
the network in the distribution system simulator and optimize
themusing co-simulation [43].By co-simulation, the detailed
mathematicalmodel of the distribution network canbe solved
by the distribution network solver, and the optimization can
be achieved in a short time. This method also reduces the
convergence issues as the complicated power flow equations
are solved in the co-simulation. Also, any type of network,
either balanced or unbalanced, radial or mesh, and single-
phase or polyphase, can be solved by this method. Several
commercially available distribution network solvers such
as OpenDSS, PSCAD, DigSilent PowerFactory, CYME-
DIST, and GridLab-D to model the distribution network[44].
To implement the optimal voltage control algorithm in the
distribution network, co-simulation-based modeling of the
distribution network can also be a suitable option [45].
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1.3 Scopes and contributions

In practical operation, DER outputs and loads may vary from
the forecasted, affecting the operation of control strategies
[46]. To incorporate the uncertainties of DER and load, as
a result, DSOs are moving away from the traditional offline
approach and switching to real-timemode. The availability of
smart devices in smart inverters also allows real-time control
and monitoring without further investment in communica-
tion and monitoring infrastructure. To implement real-time
optimal control, the need to solve the optimization problem
in short instants of time is demanding [27].

Hence, considering the fact that co-simulation-based opti-
mization can give quicker and more precise solutions to
optimization, this paper proposes a co-simulation-based opti-
mal reactive power control method in SDN. The main
contributions made by the authors in this article are:

1. The smart inverter injects or absorbs reactive power to
adjust the voltage [47]. The absorption or injection of
reactive power has a considerable impact on power loss
since the R/X of the line in the distribution system is high.
Therefore, when reactive power is deployed, the impact
of network power loss should be considered. As a result,
this scientific study formulates, analyses, and presents the
optimal reactive power control based on co-simulation to
minimize the power loss in the distribution network.

2. A comparison of three different optimization algorithms
for models developed in two different distribution net-
work simulators is carried out to propose a co-simulation-
based optimal reactive power control using PV inverter.

3. To show the efficacy of the proposed co-simulation-based
optimal reactive power control for computing optimal
reactive power setpoints for the smart inverter, a time
series analysis with variable PV power generation is pre-
sented.

1.4 Paper organization

The remainder of the paper is presented as described here.
Section2 describes amathematical model to show the impact
of reactive power on the voltage profile of the distribution
network and highlights the importance of reactive power
control of the inverter in maintaining the voltage profile. Sec-
tion3 presents the formulation of the proposed co-simulation
model for optimal control. The general methodology to
implement optimization using the proposed method is pre-
sented in Sect. 4. The simulated results and discussion of the
results obtained are shown in Sect. 5. Finally, the last section
highlights the main contributions of the article and suggests
future research directions.

2 Impact of high integration of PVs in the
distribution network

With the high integration of PV in the distribution network,
the conventional presumption of unidirectional power flow
and lower terminal voltage at the end of the distribution net-
work is no longer applicable. As PV is installed at the point of
common coupling (PCC), a load bus in such a network may
become a generation bus. And this could create an increase
in the terminal voltage at the time of higher RES generation
and lower power consumption in loads. To understand the
effect of PV at the PCC, a simple model with a mathematical
model is taken as shown in Fig. 1.

Suppose V is the nominal voltage of the network, V1 and
V2 are the voltages in Bus1 and Bus2. R and X are the resis-
tance and reactance of the line between Bus1 and Bus2. And
the load with active power PL and reactive power QL is con-
nected at Bus2. Similarly, the PV with an active and reactive
power capacity of PPV and ±QPV is also installed at Bus2.
The − sign of QPV indicates that the reactive power is sup-
plied by the PV and the + sign indicates that it is consumed
by the PV. The voltage regulation in this case is given by Eq.
1 [48]. To obtain the voltage at Bus2, this equation can be
rewritten as Eq. 2.

V1 − V2 = R (PL − PPV) + X (QL± QPV)

V
(1)

V2 = V1 − R (PL − PPV) + X (QL± QPV)

V
(2)

From Eq. 2, it can be observed that the voltage at Bus2 is
lower than that at Bus1 when the power generation from PV
is lower than the power consumption from the load.However,
the voltage might go higher than the voltage at Bus1, in case
of higher power generation from the PV.

In case of a light load or no-load condition, it can be
assumed that PL = 0 and QL = 0 and then Eq. 2 can
be expressed as Eq. 3 which shows the relationship of the
injected power from PV at the PCC.

V2 = V1 + R (PPV) + X (± QPV)

V
(3)

From Eq. 3, it can be seen that the terminal voltage in the
PCC can be regulated by controlling the active and reactive
power output from the PV. Furthermore, the ability of the
smart inverter to supply and consume reactive power might
be useful in regulating the voltage in both ways, increasing
or decreasing, depending on the requirement.

In this section, the impact of PV on the voltage profile at
the PCC of the distribution network is presented as a sim-
ple case. However, in realistic distribution networks where
single-phase loads and generation are connected, the effect
of the DERs and load on each phase can be varied. But this
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Fig. 1 A simplified layout of
the distribution network with
load and PV

can be analyzedwith appropriatemodeling of the distribution
network.

3 Formulation of optimizationmodel for
co-simulation-based optimal reactive
power control in SDN

Normally, the optimization model includes objective func-
tions, constraints, and a suitable solver to solve the opti-
mization problem.Depending on the purpose of optimization
in the distribution network, a detailed mathematical model
to solve the power flow equations in the networks is also
required. These equations are defined as constraints in the
optimization model. In most cases, solving these power flow
equations, especially for three-phase unbalance power flow
equations, is time-consuming. However, in the formulation
of co-simulation-based optimization model for a distribu-
tion network, the detailed mathematical model for solving
power flow equations in the distribution network need not
be modeled. Power flow equations are solved in distribu-
tion network-specified software (DNSS). DNSS can solve
the power flow equations more precisely and efficiently.
This may result in faster convergence of such an optimiza-
tion model. Moreover, co-simulation-based optimization is
applied in a case where the objective function is a derived
function of the computed parameters (for example, power
loss in the network, voltage deviation, etc.) in DNSS. The
most powerful behavior of co-simulation-based optimization
is the modeling flexibility: it allows one to define objective
functions and constraints using the parameters obtained from
DNSS. These parameters can be easily assessed using user-
defined functions. The optimization model is also capable to
interact with the DNSS. Moreover, the co-simulation-based
optimization model allows us to further modify the param-
eters of the distribution network to modify the constraints,
controllable variables, and other required parameters in the
optimization model. The optimization model is created sep-
arately using python-based libraries of DNSS.

In this section, the formulation of the optimization model
for optimal reactive power control in the distribution net-
work is discussed. From Eq. 3 in Sect. 2, it can be seen that
the change in reactive power from PV can change the voltage
level at the PCC. In a distribution network with high integra-
tion of PVs, the voltage level at all buses in the network can be
regulatedwith the optimal amount of reactive power fromPV.
Once the voltage profile in the network is improved, the cur-
rent flow in the lines between the twobuses canbeminimized.
Lowering the current flow can result in lower power loss in
the network. Therefore, finding the optimal amount of reac-
tive power is of great importance in minimizing power loss
in the network. For this purpose, the minimization of power
loss (Ploss) in the network is considered the main objective
function. Reactive power from PV inverters is considered a
controllable variable. The objective function F (x) is given
by Eq. 4.

min
x

F (x) = Ploss (x) (4)

Where controllable variable x is the vector of the reactive
power from Npv number of smart inverters available in the
SDN.

x =
[
QPV1 , . . . , QPV j , . . . , QPVNpv

]T
(5)

Its power capability curve limits the reactive power limits
of the smart inverter. Figure 2 shows the PV capability curve.

Each PV’s reactive power output is limited by its max-
imum apparent power and the active power it generates.
Mathematically, Eq. 6 [50] is the reactive power available
(QPV j ) from the smart inverter of size (SPV j ) that produces
the active power of (PPV j ).

QPV j ≤ ±
√∣∣SPV j

∣∣2 − P2
PV j

∀ j = 1, . . . , Npv (6)

In addition, according to the IEEE 1547-2018 standard,
the reactive power of smart inverters can be limited to±44%
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Fig. 2 PV capability curve for
inverter size and reactive power
capability [49]

of the rated capacity. The optimization model has one more
constraint given by Eq. 7 [21].

−k × SPV j ≤ QPV j ≤ k × SPV j (7)

in which k = 0.44 pu and j = 1, . . . , Npv. The optimiza-
tionmodel also includes a voltage constraint.Many standards
define the permissible voltage limits in the distribution net-
work. In this scenario, however, the voltage limit is within
0.95 pu

(
Vmin
i

)
and 1.05 pu

(
Vmax
i

)
. As a result, the voltage

constraint used in this analysis is Eq. 8, where Nbus is the
total number of buses in the SDN.

Vmin
i ≤ Vi ≤ vmax

i ∀ i = 1, 2, . . . Nbus (8)

Equation 4 is the objective function of the problem, and
Eqs. 6, 7, and 8 are the optimization constraints considered
in this study.

4 Proposedmethodology for
co-simulation-based optimal reactive
power control in SDN

Once the optimization model is developed (as described in
Sect. 3, the next step is the implementation of the proposed
methodology. For this purpose, the distribution network is
first developed on a distribution network specialized soft-
ware (DNSS) using all the properties (like line parameters,
interconnections, etc.) of the network. The loads and the PVs
are placed in the DNSS. The DNSS solves the power flow
in the distribution network, so the detailed model for solv-
ing the power flow equations of the distribution network in
the optimization model can be neglected. Various parame-

ters required in the optimization model can be obtained from
DSSS using user-defined functions. Data exchange is carried
out by those user-defined functions. Most DNSS has Python-
based libraries to run the simulation in engine mode. These
user-defined functions also allowus tomodify the parameters
of the distribution network. This is how the proposed co-
simulation-based optimization model coordinates between
the DNSS and the optimization model.

A methodology for co-simulation-based optimization in
an SDN is described in this section. Figure 3 depicts the over-
all block diagram to complete the optimization process. The
objectives functions, constraints, and controllable variables
are defined in the previous section. In this work, the x vector
of the controllable variable, F (x), is the objective function.
Once optimization is started, the optimization model sends
the controllable variables to the DNSS. DNSS returns the
objective function to the optimization model. The optimiza-
tion model then checks if the returned objective function
is meeting all the optimization requirements. If the require-
ments are notmet, the process continues until the termination
condition is reached. In this analysis, population-based opti-
mization algorithms are used. Therefore, the optimization
model continues to perform the same process until all the
conditions are met. The optimization model then provides
the one which gives the best solutions from different itera-
tions.

To provide a clear understanding of the implementation
of the optimization algorithm, an example of the differ-
ential evolution algorithm is shown in Fig. 4. Since DE
uses a population-based optimization technique, other fac-
tors include strategy, mutation, and recombination index, as
well as population size. In the initial stage, the parameters
seed, polish, tolerance, number of workers, and maximum
iteration are initialized. The population’s fitness function is
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Fig. 3 Overall block diagram of optimal reactive power control based on co-simulation

Fig. 4 Flowchart for the
differential evolution
optimization algorithm [51]
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determined using the goal function when initialization is
complete. The offspring are produced from the population
and the fitness functions of the offspring are also calculated.
In order to discover the best match, the parents’ population is
replaced by the children if their fitness is higher than that of
the parents. All populations go through this process again and
again until the maximum number of iterations is reached. A
similar algorithm can be implemented for other optimization
algorithms. The fundamental difference while implementing
the other algorithm is that the initialization parameters for
specific algorithms need to be fixed.

5 Results and discussion

This section presents the simulation results obtained by the
proposed method. OpenDSS and DIgSILENT PowerFactory
are used as DNSS. Python-based defined functions are uti-
lized to perform the co-simulation-based optimization and
develop the optimization model. This section is divided into
three subsections to describe the test system, simulation
results, and the discussion on the results.

5.1 Test system

MVdistribution feeders can be used inDER integration stud-
ies [52]. In this investigation, the CIGRE medium voltage
distribution network established by the CIGRE Task Force
C6.04 is used. The network is symmetric and balanced. How-
ever, the proposed methodology can be implemented in all
types of distribution network studies. The test system con-
sists of two conventional 20kV, 50 Hz three-phase feeders
named feeder 1 and feeder 2. The feeder can be operated in a
radial or meshed topology by turning on or off the switches
S1, S2, and S3. In this analysis, all switches are assumed
to be closed. The detail about the rating of the PV and load
utilized in this analysis are shown in Tables 4, 5, and 6

To optimize the test system, three different optimization
algorithms are considered, namely improved harmony search
algorithm (IHS) [53], simplicial homology global optimiza-
tion (SHGO) [54], and differential evolution (DE) [55]. In
this analysis, the following parameters are considered for
different optimization algorithms. For IHS, the following
parameters were considered. The number of generations =
100, rate of choosing from memory = 0.9, minimum pitch
adjustment = 0.35, maximum pitch adjustment = 0.99, min-
imum distance bandwidth =1e-5, and maximum distance
bandwidth = 1. Similarly, for theDE algorithm, the following
parameters were considered. strategy = best1bin, maxiter =
1000, popsize = 15, tol = 0.01, mutation = (0.5, 1), recom-
bination = 0.7, seed = None, callback = None, disp = False,
polish = True, atol = 0, updating = immediate, workers = 1,

x0 = None. The sampling method for SHGO was considered
to be simplicial.

5.2 Simulation results

First, the distribution network is simulated separately before
optimization by setting the fixed power factor on the smart
inverter. In this mode of operation, the power loss in the
network is calculated. Later, the developed optimization
model is used to obtain the optimal set points of reac-
tive power. To perform a comparative analysis of different
optimization algorithms, three different optimization algo-
rithms are used to solve the optimization problem. The
time required to obtain the optimal solution is taken as
one of the metrics to compare the optimization results. For
iterative optimization analysis, the frequency of obtaining
the optimal solution and the frequency of finding the opti-
mal solution is considered as the comparison matrices. The
nature of individual optimization algorithms is different. IHS
tackles multiobjective (unconstrained), constrained (single-
objective),mixed-integer, and stochastic problems in Pygmo.
On the other hand, SHGO is used for global optimization and
is suitable for achieving global optimality in general-purpose
NLP and black-box optimization problems. Differential evo-
lution is stochastic in nature and does not use gradient
methods to find the global minimum of a multivariate func-
tion. These algorithms are chosen for their unique diversity
and applicability in this paper.

To create diversity in the analysis, three different types
of simulation studies are considered. First, optimization is
performed for a single optimization. Then to make a precise
conclusion of the comparison of different optimization algo-
rithms, iterative optimization (for 100 iterations) considering
the same operating condition as considered in the first case
is performed. To see the effect when PV power generation is
varied, a time series analysis is also implemented for one of
the algorithms.

5.2.1 Single optimization analysis for comparative analysis
of different optimization algorithms

To check the performance of the individual algorithms in
the proposed optimized model, first, the three algorithms are
implemented separately. After completion of each optimiza-
tion, the optimal setpoints for the reactive power are obtained
for all PVs. Table 1 shows the comparison of the optimization
variable, the optimized value, and the execution time.

5.2.2 Iterative optimization analysis for comparative
analysis of different optimization algorithms

From simulation studies performed for a single iteration,
among three different algorithms, SHGO provides the better
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Table 1 Comparison of the
optimization algorithm in
OpenDSS and DigSilent
PowerFactory

QPV IHS SHGO DE

OpenDSS PF OpenDSS PF OpenDSS PF

PV1 (kVAR) 7.647 6.417 8.999 9 6.617 5.495

PV2 (kVAR) 7.322 0.798 9 9 5.099 5.511

PV3 (kVAR) 0.580 13.202 13.500 13.5 12.571 12.549

PV4 (kVAR) 9.670 7.345 13.499 13.5 11.079 11.032

PV5 (kVAR) 11.972 1.044 13.5 13.5 8.837 12.861

PV6 (kVAR) 3.638 9.725 13.5 13.5 10.859 9.994

PV7 (kVAR) 14.244 15.716 18 18 16.314 13.104

PV8 (kVAR) 2.211 1.422 4.5 4.5 0.986 1.530

PV9 (kVAR) 667.482 669.758 674.451 675 665.031 674.930

Ploss (kW) 107.85 109.95 107.383 109.68 107.60 109.78

Time (s) 1.19 9.53 18.59 22.00 0.036 0.84

optimized value; however, the optimization takes longer to
converge. Since SHGO is a global optimization algorithm, it
provides the same optimized value for several optimizations.
However, the execution time and the output of the optimized
variable may differ for different scenarios. Therefore, mul-
tiple iterations are only considered for two algorithms, DE
and IHS.

To make a precise comparison, the optimization is simu-
lated for both algorithms 100 times. The histogram and the
box plot of the optimal values (that is, optimal reactive power
setpoints for PV) obtained for 100 simulations are shown in
Fig. 5.

A similar analysis is performed to assess the total time
needed to complete the optimization process. The histogram
plot and the box plot for the execution time derived from 100
simulations are shown in Fig. 6.

5.2.3 Time series co-simulation-based optimization for
optimal reactive power control in SDN

To support the analysis with different scenarios, in this sub-
section, the variation in PV power generation is considered.
For this purpose, the intermittent nature of PV is considered.
The nature of the PVprofile is taken from[13]. The individual
PV ratings are then computed by multiplying the PV profile
with the PV rating connected to the distribution network. In
this analysis, it is assumed that all installed PVs follow the
same profile throughout the day. However, the total power
production from each PV throughout the day depends on the
PV rating of that individual PV. Figure 7 shows the PV power
profile of the day with a resolution of 5 min.

After completion of the optimization using the proposed
method, the optimal setpoints of reactive power will be
achieved for all PVs. Figures 8 and 9 show the reactive power
profile obtained for PV1 and PV8. Similarly, the reactive

power profiles of all other PVs are obtained but are not shown
here.

5.3 Discussion on simulation results

The proposed methodology is implemented in the CIGRE
MV distribution network using three different optimization
algorithms. On the basis of the simulation results, the discus-
sion is also divided into three subsections. First, the analysis
for single optimization is discussed. Later, iterative optimiza-
tion is discussed. Finally, in the last subsection, the discussion
of the finding of the proposed method on time series co-
simulation-based optimization is presented. A comparison
in terms of the time required to obtain optimal solutions is
also presented.

5.3.1 Discussion on single optimization analysis

When the distribution network was operated with a constant
power factor (without optimization) of PV, the total active
power loss in the system was found to be 117.16 kW. On the
other hand, the total active power loss in the network with
the implementation of the proposed method is lower. With
optimal setpoints for the PV inverter, the power loss in the
network is reduced. Table 2 shows the comparison of active
power loss in the distribution networkwith fixed power factor
andwith optimal setpoints of reactive power for PV inverters.

5.3.2 Discussion on iterative optimization analysis

From the iterative optimization studies (for 100 iterations)
performed between the models created in OpenDSS and
PowerFactory, convergence was found to be faster in the case
of amodel designed in OpenDSS. For obtaining a better opti-
mal solution, theDE algorithmmodeled inOpenDSS ismore
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Fig. 5 Histogram and box plot for optimal values for 100 simulations of a DE in OpenDSS, b IHS in OpenDSS, c DE in PowerFactory, and d IHS
in PowerFactory

suitable. On the other hand, the DE solves the optimization
problem in a short time.

From the iterative analysis, it is observed that for themodel
developed in OpenDSS, the probability of obtaining the opti-
mal value (i.e., power loss) of 107.60 kW and 107.85 kW
using DE and IHS is 32 % and 27 %, respectively. How-
ever, the optimal values do not deviate much from the mean
value in this case. The mean values are taken as the values
obtained from a single optimization in the previous subsec-
tion. Similarly, for the model developed in PowerFactory,
36% and 29% are the probability of obtaining optimal values
of 109.95 and 109.78 using IHS and DE, respectively.

Similarly, the probability of attaining an optimal solution
in 0.036s and 1.19 s using DE and IHS for the OpenDSS
model was found to be 80% and 91%, respectively. Similarly,
for the PowerFactorymodel, the probability of reaching ideal

values in 0.84 s and 9.53 s using DE and IHS, respectively,
is 40% and 30%. In this case, the average time is the value
obtained from a single optimization in the previous subsec-
tion.

5.3.3 Discussion on time series co-simulation-based
optimization

From time series co-simulation-based optimization using the
proposed method, the reactive power setpoints of all PVs
installed in the considered test network are obtained. The
obtained reactive power setpoints are for a period of time
with a 5-min time step. The proposed method is capable of
computing the reactive power setpoints in order to main-
tain a minimum power loss in the network. The authors also
mention that the co-simulation-based optimization method
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Fig. 6 Histogram and box plot for optimal values for 100 simulations of a DE in OpenDSS, b IHS in OpenDSS, c DE in PowerFactory and d IHS
in PowerFactory

Fig. 7 PV power profile
throughout the day with 5-min
resolution
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Fig. 8 Optimal reactive power
profile of PV1 throughout the
day

Fig. 9 Optimal reactive power
profile of PV8 throughout the
day

Table 2 Comparison of power loss in the network with fixed power
factor and with optimal setpoints of reactive power for PV inverter

Optimization method Power loss (kW)

Fixed power factor 117.16

DE 107.85

SHGO 107.383

IHS 109.78

is suitable for optimizing the problem with specific objec-
tive functions. The criteria for selecting co-simulation-based
optimization depend on the purpose of the application and
the methodology that is implemented. Since the main con-
tinuation of this research is to identify the appropriate
co-simulation-based optimization, convergence time is con-
sidered the major indicator for identifying the best fit.

In this paper, the authors onlymake a comparison based on
the time of convergence. Table 3 shows that the time required

Table 3 Comparison of time for optimization

Optimization method Time (s)

Proposed method 117.85

[13] method 199.87

to solve the optimization by the proposed method is less than
that proposed in [13].

6 Conclusion

This paper introduces a co-simulation-based optimal reac-
tive power control from smart inverters in smart distribution
networks, aiming tominimize power loss by optimizing reac-
tive power set points of PV inverters. The proposed method
effectively reduces the total active power loss, as evidenced
by a decrease in total active power loss from 117.16 to 107.85
kWin the test networkwithout andwith optimization, respec-
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Table 4 MV distribution network benchmark application: parameters
of PV units [56]

Node Type of DER Pmax(kW )

B3 PV 20

B4 PV 20

B5 PV 30

B6 PV 30

B7 PV 30

B8 PV 30

B9 PV 40

B10 PV 10

B11 PV 1500

Table 5 MV distribution network benchmark application: parameters
of residential load

Node Smax(kV A) Power factor

B1 15,300 0.98

B3 285 0.97

B4 445 0.97

B5 750 0.97

B6 565 0.97

B8 605 0.97

B10 490 0.97

B11 340 0.97

B12 15,300 0.98

B14 215 0.97

Table 6 MV distribution network benchmark application: parameters
of commercial load

Node Smax(kV A) Power factor

B1 5100 0.95

B3 265 0.85

B7 90 0.85

B9 675 0.85

B10 80 0.85

B12 5280 0.95

B13 40 0.85

B14 390 0.85

tively. This reductiondemonstrates the ability of the proposed
approach to enhance system efficiency by minimizing the
total power loss in the distribution network.

To simplify the mathematical modeling of the distribu-
tion network in the optimization model, the paper presents
a co-simulation-based approach that eliminates the need
for complex power flow equation modeling. Using the

distribution network solver, the approach achieves faster con-
vergence and facilitates real-time applications in distribution
networks. With an impressive mean time to convergence
of 0.036s for a single optimization scenario, the proposed
method is suitable for real-time control applications. Addi-
tionally, the co-simulation approach outperforms the detailed
mathematical modeling using the current injectionmethod in
terms of optimizing the distribution network. The total time
to obtain optimal solutions decreased from199.87 to 117.85 s
using the proposed method.

The results from the time series co-simulation-based opti-
mization confirm the effectiveness of the proposedmethod in
achieving optimal control in distribution networks. Further-
more, the flexibility of the proposed approach, independent
of the network choice, enables the utilization of various
optimization approaches in the distribution network. Future
applications may involve real-time optimization, specifically
in the implementation of digital twin-based real-time optimal
reactive power control in distribution networks. These find-
ings underscore the potential for further advancements and
investigation of optimal control applications in real-time in
smart distribution networks.
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