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Abstract 

“Necessity is the mother of all inventions” – this famous proverbial saying (unknown 

author) aptly suits the maritime shipping industry in the context of autonomous ships. Though 

shipping industry has had highly automated systems onboard specialised ships like DP vessels, 

fully autonomous shipping operations has eluded it for some time until recently.   

The push towards increased innovation and testing of autonomous shipping has 

primarily begun due to the need for cutting operational costs, for increasing safety at sea, for 

increasing productivity and for reducing carbon-footprint to make shipping more sustainable to 

meet IMO’s Greenhouse gas emission targets. It has also been ably supported by the enabling 

environment created by government policies worldwide, research institutions, shipping 

companies and ship classification societies. 

In order to achieve fully autonomous shipping (or unmanned) operations, the ship 

besides replicating human senses of an onboard operator like vision, hearing and 

communicating – will also need to have the situational awareness and decision-making skill of 

humans especially expert seafarers with long experience.      

Hence, a risk analysis method is required which can acquire the virtue of expert 

seafarers and provide accurate decision-making support to the ships autonomous system 

enabling it to take navigational decisions of its own without human-intervention.  

The real-time risk analysis method looks promising in this regard. The objective of this 

thesis report is to establish a sound body of knowledge about real-time risk analysis, and to 

apply it to build a real-time risk analysis model for autonomous ships. For this purpose, the 

Sundbåten autonomous passenger ferry project which is currently under way is taken as a case-

study. Here the mission is to develop a real-time risk model which is capable of warning the 

captain to take the ship’s control when its autonomous system is incapable to do so.  The real-

time risk analysis model developed in this thesis is capable of identifying the critical risks from 

marine traffic analysis and expert judgements. The framework for risk model looks promising 

and its modular and flexible architecture makes it adaptable for a variety of ships & regions.       
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1 Introduction 

1.1 The problem/challenge 

Traditional risk analysis has been used until now which gives an average risk value 

which is suitable for design phase decision making (Thieme et al., 2021). Hence, it is also 

referred to as static risk analysis and is usually undertaken less frequently covering a longer life 

span which can be up to the entire lifecycle of the system (Mehdi et al., 2020). However, risk 

in real world during operation of the system is not stagnant, and varies with time or in other 

words is dynamic (Mehdi et al., 2020). 

 A hypothetical example of the above can be a ship sailing in rough weather with its 

risk value varying with time. The instantaneous risk at any moment of time may be higher than 

the traditional average risk, thereby under-estimating the risk. This under-estimated risk can 

very likely turn out to be a black-swan moment which was never considered in the design of 

the ship leading to its failure. Similarly, the same ship in calm weather would have an 

instantaneous risk which is lower than average risk value causing over-estimation of risk though 

not as dangerous as the previous case. Implementation of a real-time risk analysis on other hand 

gives a realistic risk figure at that particular instant of time which varies with time either 

increasing or decreasing or steady – in effect giving a true representation of the risk. 

Autonomy of autonomous systems is their ability to make decisions on their own to 

perform a certain task without external intervention (Thieme & Utne, 2017). According to  

RSV 12-2020, (2020) of the Norwegian Maritime Authority (NMA), there are five levels of 

autonomy for autonomous ships. Level 1 implies ships with autonomy limited to decision 

support only where humans are in manual command of the ship. Level 2 is for autonomous 

operation of vessel with continuous watch and operators onboard ready to take control of the 

ship when alerted by alarms. Level 3 is for periodically unmanned periods or days with the 

operators either in escort vessel or onboard in standby mode. Level 4 is unmanned operations 

with completely remote-controlled monitoring and operations from shore. Finally, level 5 is 

total autonomy with no operators neither onboard nor at remote shore control centers. These 

NMA levels of autonomy will be followed in this report.   

Most autonomous systems of today require human or external intervention at certain 

times of their operation (Thieme & Utne, 2017). During those periods when they are externally 

controlled can be referred to as remote operated. Currently, autonomous or remote operated 

systems map & review risks after years of operation during which changes would have occurred 
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in several domains like environmental, technical in much shorter intervals which have not been 

mapped or reviewed. Therefore, there is a need for capturing these risks at much shorter 

intervals (Thieme & Utne, 2017). Such an updated risk picture is possible to be achieved by 

real-time risk models. Hence, real-time risk analysis is a perfect match for autonomous and 

remote operated maritime systems. 

1.2 Impact/ costs of the problem/ challenge    

The biggest challenge to implementing Maritime Autonomous Surface Ships (MASS) 

is to gain the confidence of all stakeholders like the public, national / international authorities, 

regulatory bodies and the maritime industry. Utne et al., (2020, p. 1) has brilliantly summarized 

the gist of DNV’s paper on remote controlled and autonomous ships which is a paper from a 

safety perspective considering its role as a classification society as: “It is essential to ensure 

that autonomous ships have the desired level of reliability, availability, maintainability and 

safety to be acceptable for widespread use at sea”.  

A concept of equivalent safety is recommended by DNV for autonomous ships, which 

implies that MASS should as a minimum have the same level of safety or better than that 

exhibited by traditional human operated ships against loss of human life, assets and 

environment (DNV-CG-0264, 2021, p.17). 

The use of real-time risk analysis thus has the potential to help achieve this objective of 

equivalent safety by continuously observing the ship’s & its environments variable parameters 

during her sea voyage and predicting the risk levels at that moment of time. A higher likelihood 

of achieving equivalent safety would greatly boost confidence of all stakeholders in the 

technology.  

Assessing the real-time risk at a particular moment of time in autonomous vessels with 

traditional risk analysis methods is difficult to achieve since traditional methods rely on static 

average risk values, while the complex maritime systems are highly dynamic in nature with 

uncertainties which change with time (Thieme et al., 2021), (Chen et al., 2021). This uncertainty 

in estimating the real risk can increase the probability of loss of human lives in an autonomous 

ferry which has a high number of untrained people as passengers with no knowledge of the 

autonomous systems onboard the ship. The only assistance the vessel has is the onboard captain 

(on a supervisory role) and the remote operations center. But in order for either of them to react, 

they should be warned in advance by the autonomous system of the impending failure or an 

indecisive situation with sufficient reaction time.  
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Thus, the single biggest cost of a potentially uncontrollable / uncontrolled autonomous 

passenger ferry would be the loss of lives of passengers. Hence, the need to address this issue 

to achieve equivalent safety of autonomous passenger ferry. 

Another aspect is that of total redundancy of ship machinery as proposed by MUNIN 

(Maritime Unmanned Navigation through Intelligence in Networks project funded by EU) for 

unmanned cargo ships to account for the lack of opportunity for conducting onboard 

maintenance during voyage  (Eriksen et al., 2021). A higher redundancy entails higher costs for 

unmanned/autonomous ships. A real-time risk analysis model capable of monitoring the live 

condition of critical ship machinery would enable a realistic estimate of its robustness enabling 

predictive maintenance – in-effect minimizing or eliminating additional redundancy costs.     

1.3 Goal of the thesis 

The goal of the thesis is to explore and compile a sound body of knowledge for real-

time risk analysis, and to apply it to improve predictability of autonomous maritime systems, 

thereby improving public-confidence in autonomous shipping technology.  

The primary objectives of the research are thus two-fold as stated in Figure 1.  

 

Figure 1 - Two-fold Primary research objectives (RO’s) 

The research objectives are pursued by research questions (RQ’s) as stated in Figure 2. 

 

Figure 2 – Six (6) Research questions based on the research objectives 
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The two research objectives are pursued in two-steps namely: conducting a literature 

review for real-time risk analysis for a autonomy level-4 Maritime Autonomous Surface Ship 

(MASS) project named “KASS (Korean Autonomous Surface Ship” – an autonomous container 

ship of Korea currently under development; and secondly establishing a real-time risk analysis 

model for a autonomy level-2 (ultimate goal is autonomy level 3) autonomous passenger ferry 

named “Snøgg” (Sundbåten) to be operated in Kristiansund, Norway which is also being 

developed currently (Figure 3). The scope of the former is to find what is a real-time risk 

analysis and why is it required, and to perform an exploratory search of the various theories, 

methods with an overview of the state of art of the technology in academia. While the scope of 

the latter is to develop a real-time risk analysis model which will warn the on-board captain to 

take physical control of the ship from the autonomous system referred to as MRC (Minimum 

risk condition). MRC is a fail-safe state that the autonomous ship should enter into so as to 

minimize the adverse consequences to life, environment and property whenever its self-driving 

system is out of order or fails to work as intended (DNV-CG-0264, 2021, p. 18). 

 

Figure 3 - Schematic view of thesis goal 
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2 Literature review 

2.1 Goals for the review 

The literature review is performed using inductive research method for gathering 

information about real-time risk analysis (LR-I) and maritime autonomous ships (LR-II) 

(Figure 4). The inductive research analysis consists of exploring peer-reviewed scientific 

journals to gain a better understanding of the two subjects.  

The goal of LR-I is to find various ways of establishing a real time risk analysis model, 

comparing, contrasting and short-listing one or more methods to design and implement the real-

time risk analysis model. 

 

Figure 4 - Concept map showing goals for the literature review 

The objective of LR-II is to search for existing knowledge base for maritime 

autonomous ships to understand how they function, what are their biggest challenges and get 

an insight into existing solutions as well as unsolved challenges which need to be addressed.  

A third inductive research (LR-III) is done at the intersecting region of LR-I and LR-II, 

and its goal is to find information about real-time risk analysis methods as applied to 

autonomous ships. LR-III holds the key to finalise a suitable real-time risk model concept which 

would enable the autonomous system to take a decision regarding when to alert the onboard 

captain/ remote operations center to take control of the ship as part of MRC. 
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2.2 Method for finding and selecting literature 

A systematic literature review for each of LR-I, LR-II and LR-III has been performed 

using the two databases: Scopus (SC) and Web of Science (WoS). A third database of Science 

Direct (SD) was planned to be used, however it does not give the number of citations for each 

journal article when list of journals is exported – hence this database has been excluded since 

it didn’t give the possibility to apply the same inclusion/exclusion parameters as were used for 

SC and WoS databases. However, since LR-III yielded the least results in both SC and WoS, 

only LR-III was searched in SD database which also yielded equally low results.      

Scopus (SC) has been selected as the starting point for the literature review, followed 

by Web of Science (WoS), and lastly Science Direct (SD) for the LR-III literature review.    

 

The following steps have been followed: 

Step 1:  

Keywords for the search were identified: “online risk analysis”, “dynamic risk analysis” 

and “real-time risk analysis”.  

Step 2: 

A quick search was performed to get a feel of the type of results obtained, and to include 

any new keywords discovered in the search. 

Step 3:  

More levels are added or removed to the search query by use of Boolean operators 

AND, OR, ANDNOT {NOT} and also the proximity operator W/n {NEAR/xx} depending on 

the relevance of results obtained. SC {WoS} 

Step 4:   

The final combination of search query which gives search results that are more or less 

relevant to the research topic is selected. A unique identification code is assigned to the final 

search query as “SCxxx” for Scopus results; “WoS_xxx” for Web of Science results and 

“SD_xxx” for Science Direct results, for traceability (Final search queries are enclosed in 

Appendix A). 

Step 5: 

The saved results of journal articles is exported to Microsoft Excel for further data 

processing & data analysis. 
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Step 6:  

The imported journal list inside MS Excel are further trimmed by use of inclusion and 

exclusion parameters by use of “filters” within MS Excel for filtering number of citations and 

filtering published year.   

Step 7:  

For search queries which resulted in considerable results in range of multiple of 100’s 

(eg. SC12 /WoS_02; SC51 /WoS_51) were further narrowed down by use of three levels of 

exclusions: Ex1: for exclusion based on exclusion criteria’s A & B, followed by Ex2: exclusion 

based on relevance of articles to the subject of interest, and finally Ex3: for exclusion by 

elimination of duplicate articles (between search queries LR-I/II/II or between databases).   

For search queries which resulted in fewer results less than 50 (eg. SC101 /WoS_101), 

only two levels of exclusions have been used: Ex2: exclusion based on relevance of articles to 

the subject of interest, and finally Ex3: for exclusion by elimination of duplicate articles 

(between search queries LR-I/II/II or between databases).   

The relevance of articles is mainly found by reading the article title and abstract. If this 

was inconclusive, only then the complete research article has been read to find if it is relevant 

or not. 

Step 8:  

The final shortlisted articles are then added to Zotero using the magic wand tool of 

adding items by identifier (DOI). This enabled all articles to be filed in one location, and 

duplicate items if any were found and merged into single article.  
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Figure 5 - Search stages & results for Scopus (SC) database 
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Figure 6 - Search stages & results for Web of Science (WoS) database & Science Direct* (SD) 
* - Science Direct database used only for LR-III 
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2.3 Reviewed literature 

It is found that LR-I (Real-time/ online/ dynamic risk) and LR-II (autonomous ship) 

queries returned with significant number of results which is further filtered down to a 

manageable number by use of inclusion / exclusion parameters. However, significantly lower 

results is obtained for LR-III (Real-time risk analysis of autonomous ships), indicating that real-

time risk analysis applied to autonomous ships is a field of new-interest with very little data 

available. This is also visible in Figure 7, the search results for LR-III in all three databases: 

SC, WoS and SD show a year’s range of only 2018 to 2021/22 indicating a recent interest in 

this field of study.  

 

 

Figure 7 - LR-III (SC 101: top left) no. of articles distribution (source: Scopus query chart);  
LR-III (WoS_101: top right) no. of articles distribution (created in MS Excel);  

        LR-III (SD_101: bottom) no. of articles distribution (created in MS Excel) 

Considering that the primary area of focus of the report is that of real-time risk analysis 

of maritime autonomous ships – the LR-III journal articles have been thoroughly reviewed. 

This was also manageable due to the relatively finite number of results returned for LR-III        

(15 articles) across all three database searches.  The results from LR-I (real-time/ online/ 

dynamic risk analysis: 80 articles) and LR-II (autonomous ships: 55 articles) partly satisfied the 

focus area and were considerably larger in number. Hence, a quantitative data analysis of the 

list of journal articles for LR-I and LR-II is performed using MS Excel to have an overview of 

the underlying themes and trends which were then selectively explored by reading those journal 

articles only.   
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2.3.1 Real-time risk analysis of autonomous ships (LR-III) 

SR. 
NO. 

AUTHORS Title Year 
RISK ANALYSIS 

METHOD 
DOMAIN PURPOSE SIGNIFICANCE 

RISK 
MODEL 

1 

Zhang M., 
Zhang D., 
Yao H., 
Zhang K. 

A probabilistic model of 
human error assessment 
for autonomous cargo 
ships focusing on 
human–autonomy 
collaboration 

2020 
BN + Fuzzy + THERP 
+ ET (Event tree) 

Human error + 
autonomous ship 
autonomy 

Human error 
assessment for level 3 
autonomous cargo 
ship 

Input to risk 
model 

Y 

2 

Xue J., Van 
Gelder 
P.H.A.J.M., 
Reniers G., 
Papadimitriou 
E., Wu C. 

Multi-attribute decision-
making method for 
prioritizing maritime 
traffic safety influencing 
factors of autonomous 
ships’ manoeuvring 
decisions using grey and 
fuzzy theories 

2019 GRA + Fuzzy theory 
Autonomous ship 
manoeuvring 
decisions 

Prioritising of risk 
influencing factors 
which affect decision 
making of 
autonomous ship 
during manoeuvring 

Input to risk 
model 

Y 

3 

Utne I.B., 
Rokseth B., 
Sørensen 
A.J., Vinnem 
J.E. 

Towards supervisory 
risk control of 
autonomous ships 

2020 STPA + BBN 
"Supervisory risk 
control" of 
autonomous ships 

Embedding risk 
model into the 
supervisory layer of 
autonomous ship's 
control system, such 
that the autonomous 
system itself can 
perform risk 
management 

Framework for 
risk model 

Y 

4 
Thieme, CA; 
Rokseth, B; 
Utne, IB 

Risk-informed control 
systems for improved 
operational performance 
and decision-making 

2021 
ALL METHODS 
DISCUSSED 

Exploratory review 
of risk analysis & 
how to incorporate 
into control system 
of autonomous 
systems 
(Cybernetics)  

Literature review & 
framework for 
algorithm/ risk model 

Framework for 
risk model 

Y 
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SR. 
NO. 

AUTHORS Title Year 
RISK ANALYSIS 

METHOD 
DOMAIN PURPOSE SIGNIFICANCE 

RISK 
MODEL 

5 

Yu Q., 
Teixeira Â.P., 
Liu K., Rong 
H., Guedes 
Soares C. 

An integrated dynamic 
ship risk model based on 
Bayesian Networks and 
Evidential Reasoning 

2021 

Static risk (from Ship 
risk profile inspection 
data) + Dynamic risk 
(from AIS data 
showing traffic flow) 
combined using BN & 
validated by (ER) 
evidential reasoning. 
Bayesian search 
algorithm is used to 
extract static ship risk 
profile from ship risk 
profile inspection data. 

Ship manoeuvring 
risks 

Ship manoeuvring 
risks 

Input to risk 
model 

Y 

6 
Sahin B., 
Soylu A. 

Multi-Layer, Multi-
Segment Iterative 
Optimization for 
Maritime Supply Chain 
Operations in a 
Dynamic Fuzzy 
Environment 

2020 

FAHP (Fuzzy Analytic 
Hierarchy process) as 
multi-criteria decision 
making technique + 
Dijkstra algorithm (for 
minimising cost & risk, 
maximising 
performance) 

Decision making 
algorithm for 
maritime supply 
chain (applicable to 
various other areas 
including 
autonomous ship 
manoeuvring) 

Decision making 
algorithm for 
maritime supply chain 
(applicable to various 
other areas including 
autonomous ship 
manoeuvring) 

Input to risk 
model 

Y 

7 

Li Z., Hu S., 
Gao G., Xi 
Y., Fu S., 
Yao C. 

Risk Reasoning from 
Factor Correlation of 
Maritime Traffic under 
Arctic Sea Ice Status 
Association with a 
Bayesian Belief 
Network 

2021 

BN based on DA effect 
(Dynamic association 
effect) for ship in arctic 
sea 

Ship-ice collision 
risk 

Ship-ice collision risk 
which is continuously 
updated  

Input to risk 
model 

Y 

 Figure 8 - List of LR-III articles (with real-time risk model presented) 
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Out of the total 15 articles found for LR-III, a limited number of research articles (seven) 

are found presenting a real-time risk analysis model or its framework as applied to autonomous 

ships (Figure 8). The predominant subject of interest is that of ship maneuvering (Xue et al., 

2019), (Yu et al., 2021) and collision avoidance (Li et al., 2020). Additionally, there is a study 

on human errors on autonomous cargo ship from point of view of interaction between autonomy 

and persons with focus on the remote shore control centre (SCC) (Zhang et al., 2020). Utne et 

al. (2020) goes one-step further and presents how a real-time risk analysis model can be built 

and how it can be embedded into the ships control system – such that the two work in tandem 

enabling an intelligent autonomous system which can itself perform risk analysis that will 

trigger decision-making on its own such that the mission goal is achieved without human 

interference. Similarly, Thieme et al. (2021) presents a similar view-point of linking the ships 

control system to the real-time risk model albeit with a generic overview of a ships control 

architecture, with possible interfaces to the risk analysis model, supplemented with a toolbox 

of risk analysis methods and tools leaving its choice to the reader based on their evaluation of 

the most relevant approach.  Thus, Thieme et al. (2021) and Utne et al. (2020) have been 

considered as a good starting point for the purpose of building the real-time risk analysis model 

to meet the mission goal of alerting the onboard captain when MRC is about to be breached for 

the Sundbåten case study.  

The predominant causal and frequency analysis method used for the above real-time 

risk analysis models is that of Bayesian network / Bayesian belief network (BN/ BBN) used in 

four out of the seven studies. This is closely followed by the Fuzzy theory, used in three out of 

seven studies. Zhang et al. (2020) has used BN along with THERP (Technique for human error 

rate prediction) and ET (Event tree) for the risk analysis model for human error at the shore 

control centre of autonomous cargo ship. Utne et al. (2020) has used BBN for building the real-

time risk analysis model and to provide a better structure to the STPA (Systems theoretic 

process analysis) hazard analysis. Yu et al. (2021) has used a BN learning approach to extract 

static risk data from the Ship risk profile (from new inspection regime) and combine it with the 

statistical dynamic risk model by using BN, and finally validated using ER (Evidential 

reasoning). Li et al. (2020) has used the BN to build a dynamic risk analysis model for ship-ice 

collision risk and combined with ice-monitoring data. While Thieme et al. (2021) has provided 

a concise overview of several causal & frequency analysis methods along with BBN like: 

Decision trees (DT), dynamic flowgraph method (DFM), Fault tree analysis (FTA), Markov 

model and Markov Cell to Cell Mapping Technique (MCCMT). It also introduces to 
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consequence analysis method of event tree analysis (ETA), and simulation method of testing 

the resilience of autonomous system by failure scenarios and evaluating success of corrective 

measures with example of Monte Carlo simulations.  

Besides, Sahin & Soylu (2020) present a multi-layer multi-criteria decision making 

algorithm for supply chain optimization which can be applied to other domains like autonomous 

ship maneuvering. In this study the weights are obtained by using a Fuzzy Analytical hierarchy 

process (FAHP), while Dijsktra algorithm is used to optimise the layers of risk, cost and 

performance. Also, the fuzzy method is used by Zhang et al. (2020) and Xue et al. (2019) to 

decipher expert judgement data in order to prioritise risk influencing factors for decision-

making.  

The remaining eight studies although not providing a real-time risk analysis model per 

se, still provide the background context or input to the real-time risk analysis model for 

autonomous ships or maritime autonomous systems (Figure 9). Chen et al. (2021) provides a 

comprehensive review of risk analysis methods for autonomous systems like FTA, ETA, BN, 

variants of BN like: Dynamic BN (DBN), Fuzzy BN (FBN), Copula BN. It also compares the 

relevance of these methods with reference to the autonomous maritime system of AUV 

(autonomous underwater vehicle) and concludes that BN based risk analysis methods show 

superior performance than traditional risk analysis methods of FTA, ETA, FMEA. This is stated 

to be due to improved clarity in causal relationship amongst risk-variables, and flexibility of 

BN to provide inferences in both forward and backward directions which suits the updation of 

knowledge when new information becomes available – which makes it a perfect match for 

dynamic risk environments. It further concludes that the biggest advantage of BN is that it can 

be developed with available expertise despite lack of historical information making it versatile 

for a range of autonomous systems besides AUV’s. Other risk analysis methods are also 

discussed in Chen et al. (2021) like Markov chains which predominantly predict future states 

based on present state; and the system dynamics method suited for complex dynamic systems 

capable of understanding non-linear behaviours by using internal feedback loops.  Thus, besides 

Thieme et al. (2021) and Utne et al. (2020) discussed earlier, Chen et al. (2021) also provides a 

supplementary contextual background to the presented real-time risk analysis study. 
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SR. 
NO. 

AUTHORS Title Year 
RISK 

ANALYSIS 
METHOD 

DOMAIN PURPOSE SIGNIFICANCE 
RISK 

MODEL 

8 

Chen X., Bose 
N., Brito M., 
Khan F., 
Thanyamanta 
B., Zou T. 

A Review of Risk Analysis 
Research for the Operations 
of Autonomous Underwater 
Vehicles 

2021 
ALL 
METHODS 
DISCUSSED 

Literature review of 
risk analysis 
methods for UAV 

Literature review  
Framework for 
risk model 

N 

9 

Utne, IB; 
Schjolberg, I; 
Roe, E 

High reliability management 
and control operator risks in 
autonomous marine systems 
and operations 

2019 
HRM 
framework for 
HAZID 

HAZID for control 
room risks in 
autonomous ships 

HAZID for control 
room risks (remote 
controlled operations)  

Background to 
risk model 

N 

10 

Fan C., 
Montewka J., 
Zhang D. 

Towards a Framework of 
Operational-Risk Assessment 
for a Maritime Autonomous 
Surface Ship 

2021 
RPN calculated 
with FMEA for 
different LoA's 

HAZID during 
switching of LoA 
with FMEA, 
followed by RPN for 
autonomous ship 

Prioritising risk 
(RPN) during 
switching of LoA's 

Input to  risk 
model 

N 

11 

Simon 
Blindheim, 
Sebastien 
Gros, Tor 
Arne 
Johansen, 

Risk-Based Model Predictive 
Control for Autonomous Ship 
Emergency Management 

2020 

MPC Algorithm 
(dynamic risk 
based) for 
trajectory 
planning during 
emergency using 
heuristic 
objectives 

Decision-making 
algorithm for 
moving autonomous 
ship along pre-
planned path during 
emergency 

Technical algorithm 
for moving ship along 
pre-planned path 
during emergency 

Input to  risk 
model 

N 

12 

Mehdi R.A., 
Baldauf M., 
Deeb H. 

A dynamic risk assessment 
method to address safety of 
navigation concerns around 
offshore renewable energy 
installations 

2020 

Manoeuvring 
envelope used in 
place of TTPA/ 
CPA 

Ship manoeuvring 
near wind farms 
and/or wind farm 
supply vessels. 

Calculating dynamic 
risk for collision for 
ships near wind farms 

Input to  risk 
model 

N 
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SR. 
NO. 

AUTHORS Title Year 
RISK 

ANALYSIS 
METHOD 

DOMAIN PURPOSE SIGNIFICANCE 
RISK 

MODEL 

13 

Yang, X; 
Utne, IB; 
Sandoy, SS; 
Ramos, MA; 
Rokseth, B 

A systems-theoretic approach 
to hazard identification of 
marine systems with dynamic 
autonomy 

2020 

STPA used for 
HAZID of 
Dynamic 
autonomy of 
marine systems 

HAZID only  HAZID only  
Input to risk 
model 

N 

14 

Eriksen, S; 
Utne, IB; 
Lutzen, M 

An RCM approach for 
assessing reliability 
challenges and maintenance 
needs of unmanned cargo 
ships 

2021 

Evaluation of 
RCM approach 
for unmanned 
cargo ships 

Maintenance of 
unmanned cargo 
ships 

Maintenance of 
unmanned cargo ships 

Input to risk 
model 

N 

15 

Baldauf M., 
Fischer S., 
Kitada M., 
Mehdi R.A., 
Al‐Quhali 
M.A., Fiorini 
M. 

Merging Conventionally 
Navigating Ships and MASS 
- Merging VTS, FOC and 
SCC? 

2019 

Exploratory 
discussion of 
mixed marine 
traffic. 
Simulated 
scenario 
experiment.  

Exploratory 
discussion of mixed 
marine traffic. 
Simulated scenario 
experiment.  

Exploratory 
discussion of mixed 
marine traffic. 
Simulated scenario 
experiment.  

Background to 
risk model 

N 

 

Figure 9 - List of LR-III articles continued (without real-time risk model presented)
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The level of autonomy (LoA) required for autonomous maritime system varies during 

the different phases of operation which is referred to as Dynamic autonomy (Yang et al., 2020). 

Yang et al. (2020) has performed a hazard identification (HAZID) analysis for dynamic 

autonomy using STPA. Hazards associated with Dynamic autonomy have also been explored 

by Fan et al. (2021) by using FMEA method of risk analysis based on failure modes derived 

from an accident simulation model “24 Model”. The RPN for each mode of operation (each 

LoA) were evaluated based on expert judgements using crisp numbers, based on which 

recommendations for change of LoA / operation modes were made. The topic of dynamic 

autonomy has also been explored from view point of human errors in remote /shore control 

rooms by Utne et al. (2019) during changeover of LoA’s of autonomous systems by applying 

the HRM (High reliability management) framework to find the real-time human operator 

performance during transitioning of control between human and autonomous system. This 

study concluded that the need for real-time risk management  is “acute” for remote operators 

mainly due to the dynamic LoA’s for various autonomous systems. 

An interesting take on a scenario of mixed marine traffic of autonomous vessels with 

manned vessels has been presented by Baldauf et al. (2019) which includes an experimental 

simulation study of mixed traffic interaction. Some key findings of this paper were the inability 

to communicate amongst the vessels, and inability to perceive the maneuvers to be done by 

other ships which are both critical in collision avoidance scenarios. Continuing on the topic of 

collision avoidance, Mehdi et al. (2020) presents a dynamic risk assessment method to evaluate 

collision risks while traversing in restricted waters near wind farms which is based on the 

concept of maneuvering envelope – with the notion that greater the overlaps amongst 

neighbouring maneuvering envelopes of adjacent ships greater is the collision risk. This 

dynamic risk was plotted along the path traversed indicating dynamically varying collision 

risks. Blindheim et al. (2020) has demonstrated the use of a dynamic risk based MPC (Model 

Predictive Control) algorithm for planning optimal trajectory of autonomous ship through a pre-

planned narrow path with grounding risks on both sides. It considers that as the ship trajectory 

approaches closer to grounding obstacles, the costs associated with operations and risk costs 

would rise. These were incorporated into the algorithm by path progression cost function, 

control input cost function and risk cost functions. Thus making it possible to have real-time 

decision making within regular time-intervals for correcting the ship’s path so as to minimize 

the costs while maximizing safety.     
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2.3.2 Real-time risk analysis (LR-I) 

A quantitative data analysis of the list of journal articles (SC_12 + WoS_02) for 

exclusion criteria A (n2A) and B (n2B) sourced from Scopus and Web of Science databases 

comprising of (40 articles+2 articles) and (36 articles + 2 articles) articles respectively is 

performed using MS Excel.  

n2A : [SC_12] & [WoS_02] 

  SUM 42  

 

Keyword 
Instances  
(No. of 
articles) 

Abstract 
Instances 
(No. of 
articles) 

Bayes 22 23 

Fuzzy 6 9 

Monte-Carlo 1 0 

Bow-tie 10 10 

Event-tree 1 0 

Markov 0 0 

Digital twin 0 0 

   
Dynamic risk 12 12 

On-line 0 0 

Real-time 2 9 

realtime 1 0 

Dynamic Bayesian 2 2 

Hierarchical Bayesian 1 1 

Copula Bayesian 0 0 

STPA 0 0 

   
Ship 1 2 

Vessel 0 1 

Maritime 1 2 

Seismic 0 1 

Earthquake 1 1 

Process industry 2 2 

Chemical 2 12 

Drilling 5 6 

Power 2 3 

Accident 10 24 

Collision 1 3 

Car 0 4 
 

n2B : [SC_12] & [WoS_02] 

SUM 38  

 

Keyword 
Instances 
(No. of 
articles) 

Abstract 
Instances 
(No. of 
articles) 

Bayes 23 29 

Fuzzy 5 8 

Monte-Carlo 1 1 

Bow-tie 0 1 

Event-tree 0 0 

Markov 2 2 

Digital twin 1 1 

   
Dynamic risk 3 11 

On-line 1 2 

Real-time 4 12 

realtime 0 0 

Dynamic Bayesian 6 7 

Hierarchical Bayesian 2 2 

Copula Bayesian 0 0 

STPA 0 0 

   
 Ship 2 5 

Vessel 0 1 

Maritime 1 1 

Seismic 0 0 

Earthquake 0 0 

Process industry 0 1 

Chemical 0 6 

Drilling 3 4 

Power 0 1 

Accident 4 17 

Collision 2 4 

Car 1 4 
 

 Figure 10 - Data analysis of ‘Real-time risk analysis’ articles done in MS Excel  
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The data analysis is performed by using the ‘Countif’ function whereby word search is 

performed in abstract and keywords cells of the MS Excel list of shortlisted articles ( Figure 

10). It is found that the count of text by abstract is a more reliable measure than count of text 

by keywords since not all keywords are necessarily included in the keyword field of journal 

articles. A minute possibility of noise still exists in this method; however it nevertheless gives 

a good indication of the trend that would help in shaping the presented study. 

A graphical representation of real-time risk analysis studies by theme is presented in 

Figure 11. It is observed that real-time risk analysis has been extensively applied in the chemical 

and process industry with 12 studies/ 42 studies (n2A), and  6 studies/ 38 studies (n2B). This is 

followed by the oil and gas drilling industry with 6 studies /42 studies (n2A). Whereas in n2B, 

the second highest studies has marginally shifted to ship industry with 5 studies/ 38 studies – 

indicating recent interest of real-time risk analysis in shipping industry also indicated 

previously by the highly limited number of LR-III search results. Another important thing to 

note is that accident data is found to be of great significance in both n2A and n2B with 24 

studies / 42 studies and 17 studies / 36studies respectively.  

 

Figure 11 - Distribution of ‘Real-time risk analysis’ study themes (LR-1: n2A and n2B)  
(Own graph prepared in MS Excel based on data analysis done in MS Excel) 

Similarly a distribution of studies by risk analysis methods employed is shown in Figure 

12. The Bayesian network (BN) emerges as the clear choice of majority of the real-time risk 

analysis studies with 23studies /42studies (n2A) and 29 studies /38 studies (n2B) – further 

indicating the dominance in the latest four years as well. Though predominantly the BN has 

been used in its original form, different variations of BN have also been used like Dynamic 

Bayesian network (DBN), Hierarchical Bayesian, Bayesian dynamic logistic regression, 

Bayesian conditional logistic model and Object-oriented Bayesian network to name a few. 
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This is followed by the bow-tie method with 10 studies /42 studies (n2A) and the Fuzzy 

method with 9 studies /42 studies (n2A). Whereas interestingly in the latest four years bow-tie 

method is found to have lost favour with a sole result in n2B, while the Fuzzy method has 8 

studies /38 studies (n2B).  

 

Figure 12 - Distribution of ‘Real-time risk analysis’ studies by risk analysis method (LR-1: n2A and n2B)  
(Own graph prepared in MS Excel based on data analysis done in MS Excel) 

 

 

2.3.3 Autonomous ships (LR-II) 

The journal articles (SC_51 + WoS_51) for exclusion criteria A (n2A) and B (n2B) 

sourced from Scopus and web of Science databases comprising of (36 articles + 2 articles) and               

(15 articles + 2 articles) respectively are applied quantitative data analysis using MS Excel with 

‘Countif’ function as discussed in the preceding section (Figure 13).  
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n2_A: SC_51 & WoS_51 

SUM 38   

  

Keyword 
Instances  
(No. of 
articles) 

Abstract 
Instances 
(No. of 
articles) 

Bayes 1 1 

Fuzzy 5 6 

Monte-Carlo 0 0 

Bow-tie 0 0 

Event-tree 0 0 

Markov 0 0 

Neural 2 3 

Deep learn 0 0 
Deep reinforcement 
learning 0 1 

Ant colony 3 3 

      

Dynamic risk 0 0 

On-line 0 2 

Real-time 0 4 

realtime 0 0 

Dynamic Bayesian 0 0 

risk analysis 0 0 

      

Ship 15 21 

Vessel 3 16 

Maritime 1 9 

MASS 0 0 

UAV 0 0 

Process industry 0 0 

Chemical 0 0 

Drilling 0 0 

Power 0 1 

Accident 2 2 

      

AUV 1 1 

autonomous 14 20 

unmanned 8 12 

Sampling 0 0 

      

Path planning 7 9 

route planning 1 1 

collision avoidance 15 21 
COLREGS 5 7 
Autonomous 
Underwater Vehicle 1 3 

 

n2_B: SC_51 & WoS_51 

SUM 17   

  

Keyword 
Instances  
(No. of 
articles) 

Abstract 
Instances 
(No. of 
articles) 

Bayes 0 0 

Fuzzy 1 2 

Monte-Carlo 0 0 

Bow-tie 0 0 

Event-tree 0 0 

Markov 0 0 

Neural 3 4 

Deep learn 1 2 
Deep reinforcement 
learning 3 3 

Ant colony 0 0 

      

Dynamic risk 0 0 

On-line 0 0 

Real-time 0 3 

realtime 0 0 

Dynamic Bayesian 0 0 

      

Ship 10 15 

Vessel 2 8 

Maritime 3 5 

MASS 0 0 

UAV 0 0 

Process industry 0 0 

Chemical 0 0 

Drilling 0 0 

Power 1 1 

Accident 0 1 

      

AUV 0 0 

autonomous 11 15 

Unmanned 3 1 

Sampling 0 0 

      

Path planning 4 3 

route planning 0 1 

collision avoidance 4 6 

COLREGS 1 3 
Autonomous 
Underwater Vehicle 0 0 

 

Figure 13 - Data analysis of ‘Autonomous ships’ articles done in MS Excel 
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A graph showing distribution of autonomous ship studies by theme is presented in 

Figure 14. The most dominant theme in the journal articles for autonomous ships is based on 

collision avoidance in 21 studies/ 38 studies (n2A), and  6 studies/ 17 studies (n2B). This is 

followed by path planning in 9 studies/ 38 studies (n2A), and  3 studies/ 17 studies (n2B). 

Furthermore, path planning and collision avoidance which is compliant with COLREGS is also 

found to be a repeating theme with 7 studies and 3  studies found in n2A and n2B respectively. 

 

Figure 14 - Distribution of ‘Autonomous ship’ studies by themes (LR-II: n2A and n2B)  
(Own graph prepared in MS Excel based on data analysis done in MS Excel) 

A distribution of risk analysis method used in autonomous ship studies is shown in 

Figure 15. The Fuzzy method is preferred in the study of autonomous ships with 6 studies/ 38 

studies (n2A), and  2 studies/ 17 studies (n2B).  Whereas the usage of Bayes theorem is 

negligible in autonomous ship with only 1no. article in n2A, and none in n2B. This is because 

the predominant themes of collision avoidance and path planning warrant a decision making 

process which mirrors the human-way of thinking. Fuzzy-logic based systems are more attuned 

to such human-way of thinking and foster an environment which is human-friendly (Perera et 

al., 2011), (Perera et al., 2012).   

 

 

Figure 15 - Distribution of ‘Autonomous ship’ studies by risk analysis method (LR-II: n2A and n2B)  
(Own graph prepared in MS Excel based on data analysis done in MS Excel) 
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The Neural network method is used in 3 articles/ 38 articles (n2A), and  4 articles/ 17 

articles (n2B), with deep learning in 2 articles/ 17 articles (n2B) and deep reinforcement 

learning (DRL) in 1 article/ 38 articles (n2A), and  3 articles/ 17 articles (n2B). Thus, indicating 

a marked shift towards use of neural, deep learning and deep reinforcement learning methods 

in recent times in lieu of Fuzzy methods as can be seen in Figure 15. Neural methods are known 

for their distinct learning capabilities and have been used successfully in robotics as pointed out 

by Statheros et al. (2008) in their exploratory study of autonomous ship collision avoidance 

concepts and technologies. This study by Statheros et al. (2008) is considered as a good 

reference for collision avoidance concepts and constructs since it provides a very concise 

overview of the topic and provides diverse approaches to problem solving, and can thereby 

suitably supplement the development of the proposed real-time risk model.   

 

2.4 Summary and theoretical framework 

2.4.1 Unique challenges of Autonomous ships 

Implementation of autonomous technologies on ships having level 3 automation does 

not completely insulate them from human errors. Zhang et al. (2020) states that rather, the place 

of operator is transformed from ship to shore based control centre (SCC), while the nature of 

human errors is more from point of view of interaction between the autonomous systems and 

humans. It further finds that during emergency response situations, the error making probability 

of operators at remote control centres is higher than in traditional ships. Thereby emphasizing 

the need for making the SCC’s more robust to handle navigational risks and minimizing them. 

Utne et al. (2019) highlights that though autonomous systems are normally identified 

with unmanned systems, some traditional ships which are manned also have systems onboard 

like the DP systems which possess autonomous control functionalities which can equally be 

identified as an autonomous system. Autonomous marine systems are characterized by a high 

prevalence of uncertainties from the ocean environment coupled with limited operational 

experience of handling such uncertainties  (Utne et al., 2019).  

This is further complicated by ‘Dynamic autonomy’ which is the switching of levels of 

autonomy between different modes of operation like manual, fully-automatic, partial-automatic 

or remote controlled according to the changing marine environment and within short intervals 

of time (Yang et al., 2020). Operational modes for autonomous ships are identified by manual 

control, remote control, autonomous control and fail-safe (or MRC as defined by DNV-CG-
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0264, (2021), (Fan et al., 2021)). The studies by Fan et al. (2021), Yang et al. (2020), Utne et 

al. (2019), Utne et al. (2020) have identified that the challenge of quantifying risk in dynamic 

autonomy of autonomous maritime systems is one area which requires more research and have 

presented their own attempts at solving it. 

An interesting finding of Utne et al. (2019) is that though increased autonomy reduces 

human effort on one hand, on other hand an emergency situation on such complex autonomous 

systems would warrant a highly experienced operator capable of understanding nuances of the 

system and capable of taking evasive actions within short reaction times.  

The ship traffic at sea is dynamic in nature, and requires the operator to continuously 

adapt as per the prevailing traffic environment at sea during navigation (Li et al., 2020). 

Furthermore, Baldauf et al. (2019) highlights with a mixed traffic simulation experiment of 

autonomous ships merging with traditional ships that participants in the study expressed their 

inability to communicate with other ship and desired either direct communication with an 

operator onboard or the remote operator or some sort of indication from the autonomous ship 

system itself. This simulation experiment also showed that the more experienced seafarers took 

strategic and proactive decisions while manoeuvring their ships in the mixed traffic 

environment. The sum-total of this behaviour exhibited by operators onboard traditional ships 

can be referred to as human-like manoeuvring of ship. Xue et al. (2019) has presented 

prioritising of primary risk influencing factors based on decision-making influencing factors to 

establish a decision-making model that can contribute towards building of an algorithm which 

can effectively mimic human-like manoeuvring. 

Statheros et al. (2008) has similarly emphasised that majority of collision avoidance 

algorithms despite being intelligent lack the ability to communicate with other ships as well as 

with traffic control stations. So, as a way around these algorithms then calculate safe distance 

and the best trajectory to avoid a collision. Statheros et al. (2008) further states that intelligent 

collision avoidance algorithms with their objective way of thinking, though capable of 

minimising errors in navigation are still lacking considerably in pattern recognition of obstacles 

and inability to communicate with surrounding traffic when compared with human abilities.         
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2.4.2 Traditional risk analysis and Real-time risk analysis 

Traditional risk analysis is normally based on average risk values which suits decision-

making during the design phase, that are not appropriate for operations phase where real-time 

information is required and the risk model should be able to reflect the dynamics of the system 

(Thieme et al., 2021). For the autonomous control system to act based on the risk model – it 

should be able to decide how much risk is acceptable and act accordingly (Thieme et al., 2021). 

  Traditional risk analysis models possess a static structure that cannot reflect variation 

in uncertainties over time in complex maritime systems (Chen et al., 2021). Hence in order to 

capture this dynamic uncertainty, dynamic risk analysis methods (or real-time risk analysis) are 

required that can continuously monitor abnormal situations and update based on new 

information the current overall risk (Chen et al., 2021). 

Mehdi et al. (2020) points out that in dynamic risk analysis (or real-time risk analysis) 

the certainty and level of information is higher than in traditional static methods, whereas the 

availability of resources like time, tools is not considerable due to real-time operation. Thus it 

concludes that dynamic risk analysis is deterministic rather than probabilistic, whereas 

traditional risk analysis is probabilistic.  

2.4.3 Concept-map for real-time risk analysis model of autonomous ship: 

Eriksen et al. (2021) has quoted Bertram V. that traditional manned cargo ships have 

frequent failures in their ship machinery, and despite improvements expected in reliability of 

autonomous ships,  these failures will continue to occur. Thus, it follows that autonomous ships 

will have some legacy components carried over from traditional manned ships, and some non-

legacy components newly introduced in the autonomous ship as shown in Figure 16.  

 

Figure 16 - Proposed classification of autonomous ship’s components 
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The primary goal of maritime risk models is to find the factors which influence the 

ship’s risk level in a particular situation, or a certain spatial area referred to as ‘Risk Influencing 

Factors’ (RIF’s) (Yu et al., 2021). These RIF’s are usually based on historical accident data, or 

expert judgements, or ship traffic data – which are then integrated into a risk measure by 

applying probabilistic approach (Yu et al., 2021). 

Bayesian network (BN) is essentially a powerful semi-quantitative risk analysis tool 

which works with mixed data sources: where both quantitative data (relevant when data sources 

are available) and qualitative data (relevant when data sources are un-available or partially 

available) sources co-exist (Yu et al., 2021). It is also inferred in the previous section of 

literature review that BN is a preferred method for solving real-time risk analysis problems.   

The typical steps in BN based risk analysis have been concisely summarised                             

by Yu et al. (2021) as: 1) Finding RIF’s, 2) Building qualitative BN model, 3) Entering 

quantitative dependencies and finally 4) converging onto the result. This has been used as the 

framework for the concept map shown in Figure 17, which is further adapted with necessary 

linkages for the autonomous ship real-time risk analysis.  

 

Figure 17 - Concept map for real-time risk analysis of autonomous ship 
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Historical accident data is an important input to the knowledge base of a BN which 

relies on quantity and quality of data, however all maritime areas do not have these or have 

incomplete data (Yu et al., 2021). Autonomous ships being a novel concept, very little to no 

historical data exists – mainly for the non-legacy components identified in the preceding part 

of this section.  

 This missing link in the historical data can be effectively handled by use of expert 

judgements and knowledge that can contribute with qualitative reasoning  (Chen et al., 2021). 

However, a sole reliance on viewpoint of experts might lead to judgemental uncertainties due 

to inherent biases, which can be overcome by use of machine learning techniques that have the 

ability to enhance quantification errors under deficient data circumstances (Chen et al., 2021). 

Thieme et al. (2021) has highlighted that highly automated systems have similarity in 

functions to autonomous systems, with the example of a dynamic positioning controller of an 

offshore supply vessel as a case-study. Autonomous systems can make decisions for themselves 

without human intervention, while fully automated systems can similarly perform many 

functions automatically by themselves with only higher level decision making being done by 

human (Thieme et al., 2021). Thus, there exists a possibility to extract historical data from 

comparable autonomous / highly automated systems, which has been incorporated in the 

presented concept map (Figure 17). 

With reference to the BN risk analysis method, a key limitation is caused by the size of 

conditional probability tables (CPT) which become larger exponentially as the network grows 

in size and complexity. To get around this limitation, the BN can be combined with other 

methods like evidential reasoning (ER), Naive Bayes, Tree Augmented Naive Bayes (Yu et al., 

2021). Furthermore, Chen et al. (2021) has also discussed variations of BN models as 

improvements to a classic BN. A BN can incorporate effect of time-dependence by use of 

Dynamic Bayesian Network (DBN), which updates over time based on new knowledge. A 

Fuzzy Bayesian Network (FBN) can mitigate the incompleteness or vagueness of available data 

from expert judgements by employing fuzzy set theory. 

With respect to application to real-time risk analysis, Statheros et al. (2008) presents a 

good argument that while it is possible to develop a highly accurate mathematical model for 

decision-making, the time taken by such a model to arrive at a decision would make it irrelevant 

for real-time decision making. Hence, fuzzy logic based methods are stated to have an edge due 

to its quicker decision making – the reliability of which can be further improved by combining 

with other methods like Neural methods.   
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3 Research method 

3.1 General introduction 

Research method and research design are core central themes of any research project, 

which presents how a study has been conducted to a level of detail such that it can be repeated 

by others with comparable results. Research findings have higher credibility if different 

research studies conducted independently arrive at similar conclusions (Frankfort-Nachmias et 

al., 2014, p.263).  

The research method applied for testing the hypothesis is a case-study approach with 

Sundbåten autonomous passenger ferry project as the case-study. The Sundbåten project is an 

ongoing research project between USN and Maritime Robotics for development of an 

autonomous passenger ferry at Kristiansund, Norway. The result of the hypothesis testing of 

the presented thesis will form a basis for achieving the mission goal of when the autonomous 

ferry should warn the onboard captain to take control of the ship. It should be noted that it was 

primarily the Sundbåten project itself which created the need for performing a research on real-

time risk analysis model for autonomous ship as a possible solution to the question of when to 

call the captain to the bridge.    

 

Figure 18 - Research method overview 

Since the Sundbåten project is currently underway some data in the form of preliminary 

hazard analysis (PHA) of the autonomous ship, as well as collected marine traffic data over a 

period of one-year onboard MS Angvik are available (MS Angvik is a traditional manned ship 

currently operating on the Sundbåten route which shall be replaced by the autonomous ship). 

The marine traffic data collected as part of the Marine Traffic Analysis (MTA) primarily 

consists of AIS transmitting vessels from Kystverket (The Norwegian Coastal administration). 

This Sundbåten project data of PHA and MTA forms one of the three key building blocks for 
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the real-time risk model, the other two being the theory generated from systematic literature 

review and results of the expert judgement questionnaire (Appendix F) for variables required 

for the risk model (Figure 18).     

3.2 Research design 

Scientific research is based on certain founding principles or assumptions also referred 

as scientific explanations which answer to the question “why” (Frankfort-Nachmias et al., 2014, 

p. 7-8). Such explanations can be either deductive or inductive in nature, where explanations 

based on an existing body of knowledge leading from the whole to part are deductive; whereas 

those based on fragmented details which when assembled together lead from part to whole are 

inductive (Gray, 2013, p.16). 

In scientific research, the inductive and deductive processes are often complimentary to 

each other, and it is not possible to have a purely inductive research that completely ignores 

established theories or ideas of the day (Gray, 2013, p.18). The inductive research design 

comprises of a combination of inductive and deductive methods as shown in Figure 19 which 

shows a combined inductive and deductive research design as adapted from Gray, (2013).  

 

 

Figure 19 - Research design approach: Combination of inductive & deductive methods 
(Adapted from (Gray, 2013))  
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As shown in Figure 19, the literature review inductively provides fragments of 

information which when assembled together provide emerging patterns and constructs against 

which the hypothesis is tested. This provides a working theory that is based on existing 

established theories which are then deductively applied to build the real-time risk model to 

achieve the mission goal.  

The presented research is a mixed method research comprising of qualitative and 

quantitative research methods. A mixed method research is one in which a hypothesis is tested 

by using both qualitative and quantitative methods for data collection and analysis (Plano Clark 

& Ivankova, 2022).  

Firstly, the literature review represents the qualitative data collection for building the 

knowledge base which is further processed quantitatively using word count in MS Excel to 

extrapolate trends and themes. Secondly, the data of Sundbåten project comprises of both 

qualitative data by way of preliminary hazard analysis, as well as quantitative data in the form 

of field observations from MS Angvik ship. Thirdly, the questionnaire for expert judgment from 

a maritime expert – is structured to address both qualitative and quantitative aspects. The 

maritime expert has over 10 years of balanced experience with seafaring, ship simulator training 

and autonomous ships. These three data sources are indicated in the flowchart shown in Figure 

18. Thus, the presented research is a mixed method research design comprising of both 

qualitative and quantitative research methods.      

 

3.3 Ethical considerations 

No interviews, field-experiments, lab-experiments or collection of personal information 

have been conducted in this research study. Project data comprising of PHA (Preliminary 

hazard analysis) and Marine traffic analysis (MTA) along with allied project discussions from 

“Sundbåten” project of USN/ Maritime Robotics has been used with a pre-condition that the 

collected data will not be shared, since the project is currently underway. The requisite Non-

disclosure agreement (NDA) is signed with Maritime Robotics.  

Confidentiality of project documents has not affected the quality of the study performed 

since the expert judgements and governing trends from data have been incorporated in the risk 

model. The only limitation is that the used project data cannot be explicitly shared in this report 

which if present increases the reliability of the report to the reader.     
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4 Analysis & Results 

4.1 Framework for the real-time risk model 

Building-on the concept-map for real-time risk analysis indicated in Figure 17, a 

framework is required to operationalise it into an actual working model. A top-down approach 

has been considered starting from the top similar to the STPA inspired top-down approach used 

in Utne et al. (2020). The top level being what is the real-time risk model expected to answer: 

which is when to call the onboard-captain to take control of the ship from its autonomous 

system. In order for the model to do that, a decision-making mechanism is required to be set-

up which can collate existing risks and evaluate based on the sum-total of the prevailing risks 

at that instant of time.  

The three over-arching risk themes for the risk influencing factors (RIF) have been 

identified as environmental risk, traffic or obstruction risk and ship condition risk based on 

Utne et al. (2020), Thieme et al. (2021) and Chen et al. (2021). Similarly, the PHA data from 

Sundbåten project as well as the typical navigational hazards for autonomous ships as identified 

by DNV-CG-0264, (2021) also corroborate with these three themes.  

The above three risk themes have been presented in Figure 20, along with the identified 

underlying risk influencing factors based on literature review. It can be inferred that the ship 

condition risk is a very broad risk category covering all risks relevant to the ships primary 

components: both technical as well as human related.    

 

Figure 20 - Real-time risk model: Top level decision making layout 
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As previously entailed in the concept map, the ship’s components are classified as 

legacy component and non-legacy components. The former being components from traditional 

manned-ships with available historical data, while the latter being components specific to 

autonomous ships with partial or no historical data. Thus, the traditional reliability based risk 

models are suited for legacy components, while Bayesian or real-time data based risk models 

are suited for non-legacy components. Eriksen et al., (2021) states that reliability based methods 

are generally applicable for reliability and maintenance of components on unmanned ships, 

however highlights that the biggest challenge is faced by long voyage ships (typically cargo 

ships) due to lack of corrective maintenance opportunities onboard the ship due to unmanned 

(or partially manned) operations.     

 

4.2 Fuzzy-logic based decision-making: Top level 

At the top level, each of the three risk themes are assigned a 3-level risk value: low (L), 

medium (M) and high (H) as shown in Figure 20. In order to mimic human-like decision 

making, a fuzzy-logic based decision making system is incorporated.   

Matlab R2022a software has been used to build the fuzzy inference system at top level, 

using its graphical user interface: ‘Fuzzy logic toolbox’ as shown in Figure 21. Each of the three 

risk themes are represented as input variables (in yellow boxes) as Environmental risk 

(ENVIRO), Traffic/ obstruction risk (TRAFFIC_OBST) and ship condition risk 

(SHIP_COND). In order to incorporate human-interpretation of linguistic terms of low risk (L), 

medium risk (M) and high risk (M): three membership functions are built as triangular 

membership functions for each L, M and H risk levels based on the questionnaire (Figure 22). 
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Figure 21 - Matlab Fuzzy logic designer tool showing risk evaluation at top level 

A rule-based decision making based on ‘Mamdani Fuzzy inference system’ is then 

entered at the next step indicated by white coloured box in Figure 21. The rules are then defined 

inside the rule editor box using boolean operator ‘and’. A simplified view of these are presented 

using MS Excel in Figure 22 showing the three input variables, and the output variable. Each 

of the three risk themes of environmental risk, traffic/ obstruction risk and ship condition risk 

can take three possible values of L,M or H at input end. Thus resulting in a total number of         

3 x 3 x 3 = 27nos. of fuzzy rules at input end. These rules for fuzzy decision making as shown 

in Figure 22 are self-explanatory. For example the first entry of L,L,L at input ends translates 

to VL at output end. Meaning that when environmental risk is “low”, ‘and’ traffic/ obstruction 

risk is “low”, ‘and’ ship condition risk is “low”, then the total risk is “very low”. The rules are 

designed such that traffic/ obstruction risk is scaled ahead, followed by environmental risk and 

finally followed by ship-condition risk based on the expert judgement data from questionairre 

(Appendix F). The reasoning behind this is that in terms of likelihood of the risk to cause a 

near-collision or total collision scenario is the highest for traffic/ obstruction risk followed by 
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environmental risk and then lastly the ship-condition risk. This effect is visible in the output 

‘Surface plot’ shown in Figure 25.  

The output variable (in blue box) is defined as a five-level risk namely: Very Low (VL), 

Low (L), Medium (M), High (H) and Very High (VH) – as five triangular membership functions 

as shown in Figure 21 and Figure 24. The reason behind using a narrower five-level risk for 

output is to get more risk levels so that the change in risks is magnified thereby providing crucial 

reaction time for the onboard operator, which is not possible with a broader three-level risk 

output. While the rationale for using a broader three-level risk at input end (Figure 23) is that it 

enables fewer number of combinations for rules which sufficiently defines the five-level risk 

output. This approach also confirms with Castillo et al. (1997) which states the problem of 

exponential increase of rules when input variables increase beyond four to five variables which 

are quantified as fuzzy sets. It also states the problem of transparency of model which gets 

lower when the number of rules become larger and/or longer – adversely impacting its 

readability. The three-level input risk variables (L/M/H) are defined as triangular membership 

functions Figure 23 in the Fuzzy logic toolbox based on the expert judgement data from 

questionairre (Appendix F) such that the traffic/ obstruction risk has the lowest risk threshold, 

followed by environment risk and lastly the ship-condition risk in increasing order of risk 

threshold levels. 

The final output of Mamdani fuzzy inference system is done by aggregating the fuzzy 

values for each of the three risk themes one-by-one at each of the 27 nos. of rules. The fuzzified 

values at each of the rules are aggregated together to provide a single fuzzified value. Then this 

value is de-fuzzified by centroid-method to achieve the final crisp-value of risk. This final crisp-

value of risk gives the total risk value, which is the total real-time risk value, based on which 

the decision whether to call or not call the captain is made. It should be noted that 

defuzzification by centroid method creates an upper & lower bound for the output variable 

(real-time risk membership function) corresponding to the centroid location. Hence, the range 

for the output variable (real-time risk)  membership function is calibrated such that its lower 

bound tends to zero when all 3 input variables are zero, and similarly its upper bound tends to 

100 when all 3 input variables are 100. This is shown in Figure 24, where the output variable 

(real-time risk)  membership function has a range of  [-12 to 128]. 

The fuzzy logic toolbox creates a ‘Surface plot’ output of Mamdani Fuzzy inference 

system which displays the total risk level in different scenarios as shown in Figure 25.  

 



 

43 

 

RULES FOR FUZZY DECISION MAKING 

INPUT OUTPUT 

(3-level risk value) 
(5-level risk 

value) 

ENV TRAFF SHIP STATUS 

L L L VL 

M M M H 

H H H VH 

        

M L L L 

H L L M 

        

L M L M 

L H L H 

        

L L M L 

L L H M 

        

M M L H 

M H L VH 

H M L H 

H H L VH 

        

L M M H 

L M H H 

L H M H 

L H H VH 

        

M L M M 

H L H H 

M L H M 

H L M H 

        

M M H H 

M H M VH 

M H H VH 

        

H M H H 

H M M VH 

        

H H M VH 

Figure 22 – Simplified version of rules for fuzzy decision-making presented in MS Excel  
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Figure 23 - 3-level input risk membership function 

 

Figure 24 – 5-level output risk membership functions 
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Figure 25 – ‘Surface plot’ output of Mamdani Fuzzy inference system  
indicating total risk level in different scenarios (Matlab Fuzzy logic toolbox output) 

 

4.3 Bayesian network model: Bottom level 

The bottom level decision-making which shall feed into the top-level decision-making 

is built based on Bayesian network (BN) model as shown in Figure 26. The reason behind 

choosing a BN model for bottom level is that as we go from top to bottom, we dive into a 

layered and complex network of variables (or risk influencing factors). The use of BN model 

allows the risk model to be built on incomplete information which gets updated based on latest 

available evidence (for example from the sensors) that can be entered anywhere in the network 

propagating through the model either from cause to effect (forward) or effect to cause 

(backward) providing an updated probability distribution for every variable in the network 

(Fenton & Neil, 2012). 

This enables the fuzzy-logic based top level model to be fed with always the latest 

information from the BN-based bottom model, thereby enabling the risk model to be real-time 

in the true sense. At the same time, the use of fuzzy-logic at top level allows for quicker 

decision-making which suits real-time situations as also identified by Statheros et al. (2008). 

This essence of time in emergency situations on complex autonomous ships by virtue of short 

reaction times is highlighted by Utne et al. (2019), and also by Zhang et al. (2020) in the context 

of delayed perception at shore control centres. 
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Furthermore, the key advantage of BN model is the pictorial representation of the causal 

factors by nodes which are interconnected by links / arrows thereby indicating which variables 

are connected and which ones are independent, combined with its ability to quantify uncertainty 

explicitly in a transparent manner (Fenton & Neil, 2012). 

Due to the limited time-resource, only the traffic / obstruction risk is explored further 

in the bottom level risk model (highlighted in blue box in Figure 26 and Figure 31). The reason 

for choosing the traffic /obstruction risk is that amongst the three risk themes, it is the most 

researched topic in the field of autonomous ships and maritime systems. 

 

Figure 26 - Real-time risk model: Bottom level decision making data link 

As shown in Figure 26, each of the three risk themes have corresponding Bayesian 

networks which feed them their respective risk figures. The top-down approach is continued 

while building the BN using a hierarchical structure which improves readability and provides 

clarity besides minimising the number of parents for any node as recommended by Fenton & 

Neil, (2012).  

Continuing the split in three themes (at top level) by building corresponding sets of 

three Bayesian networks (at bottom level) besides providing the data link, also has a crucial 

advantage of splitting which avoids explosion of combinations encountered in very large 

Bayesian networks as pointed out by Fenton & Neil, (2012). However, the interlinking of some 

of the under-lying nodes (or RIF’s) of the three BN’s is still possible as indicated by the blue 

dashed arrows in Figure 26 maintaining homogeneity of the total risk analysis model. 
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4.3.1 Bayesian network model: For traffic/ obstruction risk 

The Bayesian network (BN) model for traffic/ obstruction risk is built using the ‘GeNIe’ 

software, v3.0.6518.0 (32-bit) for Bayesian network modelling by ‘BayesFusion, LLC’. 

The risk influencing factors (RIF’s) which form the nodes of the BN model (Figure 27) 

are a combination of sources from literature review as well as some new RIF’s. The new RIF’s 

identified are: presence of small leisure boats, high tides causing floating debris, removal of 

floating debris, crossing of maritime traffic lanes, 2-way communication and COLREG 

compliance – which are found to be unique and hitherto not discussed in earlier BN risk model 

studies for autonomous ships. The structure of BN, causation links between RIF’s and resulting 

events, as well as grouping of sub-risks are not based on previous studies and has been newly 

developed as part of this thesis.      

Some RIF’s are adapted from the risk model proposed by Utne et al., (2020) and the 

technology modules for autonomous navigation functions of unmanned ships identified by 

DNV-CG-0264, (2021). The RIF for crossing of maritime traffic lanes is derived from Rule 

10(c) of COLREGS, (2016) which explicitly recommends vessels to avoid crossing of traffic 

lanes as far as feasible and if necessary to do so, advises to cross at 90 degrees to traffic flow, 

thereby abductively implying the inherent risks of crossing maritime traffic lanes. 

The data analysis & processing of the preliminary marine traffic analysis (MTA) data 

collected over a period of one year onboard the passenger ferry MS Angvik as part of Sundbåten 

project is currently in early stages. Discussions which were part of the MTA provided an 

interesting observation that small leisure crafts are a risk factor, since they neither have AIS 

transmitting devices nor they use VHF radio, and very often violate COLREG give way rules 

leading to near-collision situations. Therefore, small leisure crafts have been considered as RIF 

in the BN model (Figure 27). Similarly, it is found from the MTA discussions that during times 

of high tide some debris like wood planks, ropes, tree stumps are often noticed at the sea thus 

being possible sources of obstruction. However, these are picked by the port authorities once 

alerted by captains. Hence, tides and status of debris removal are some other RIF’s which are 

included in the BN model (Figure 27). Similarly, Sundbåten route crosses maritime traffic lanes 

several times in a day and hence crossing of maritime traffic lanes as also been identified as a 

major risk in the BN risk model.           
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Figure 27 - Traffic /Obstruction risk BN model with prior beliefs applied at root nodes (no evidence updated) 

The splitting concept is further carried down into the traffic/ obstruction risk BN by 

splitting into three main sub-risks (in green boxes) namely: traffic risk, obstruction risk and 

compliance risk (Figure 27). This limits the number of parents for any node to three simplifying 

the BN structure. The traffic risk covers risk associated with marine traffic, obstruction risk 

implies risk of obstruction to path traversed by the ship and compliance risk caters to risk 

reflected by degree of conformance to rules or to trajectory prompts. The RIF’s within these 

three sub-risks are further interconnected wherever cause-effect relation exists.  

The interconnection of underlying RIF’s with those of adjoining BN’s of environmental 

risk and ship condition risk are excluded in this model since the focus is only on 

traffic/obstruction risk. For example, the trajectory compliance requires interconnection with 
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environmental risk and ship condition risk since these affect the ship’s compliance to trajectory 

which are shown in the risk model proposed by Utne et al., (2020).      

4.3.2 Bayesian network model: Parameters 

Prior belief: P(H) 

A prior belief P(H) represents our prior knowledge or belief regarding the probability 

of occurrence of a hypothesis (H) (Fenton & Neil, 2012). The hypothesis referred here implies 

the variable or RIF. The prior belief is based on historical data or expert judgements (Zhang et 

al., 2020). The prior beliefs and their sources considered in the BN model are presented in 

Figure 28. These are primarily based on the historical maritime traffic analysis (MTA) data 

collected over a period of one year onboard MS Angvik (for Sundbåten project), while some 

are assumed as stated in Figure 28. The prior belief probabilities are applied to the root nodes 

(or bottom-most nodes without any parent) of BN model as shown in Figure 27. 

 

Posterior belief: P(H | E) 

A posterior belief P(H | E) is the updated probability of occurrence of the hypothesis 

(H) (variable or RIF), due to occurrence of a new evidence (E) (Fenton & Neil, 2012). The 

occurrence of new evidence (E) can be updated in any of the nodes in the BN model inside the 

GeNIe software, which updates the probability distribution of the BN, yielding posterior beliefs.  

 

Likelihood of evidence: P(E | H)     

The likelihood of evidence P(E | H) implies how likely the particular evidence (E) is to 

be seen for the given hypothesis (H) (Fenton & Neil, 2012). 

 

Prior belief: P(E) 

A prior belief P(E) represents our prior knowledge or belief regarding the probability 

of occurrence of a evidence (E) (Fenton & Neil, 2012). 

 

Bayes Theorem 

A simplified formulation for finding the posterior belief P(H | E) is provided by the 

Bayes theorem which is as under (Fenton & Neil, 2012): 

�(� | �) =  
�(� | �)    �   �(�)

�(�)
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Description Quantity 
Prior 
belief 

Source     

  
Nos. 

(% 
Frequency) 

      

            
Average round trips in a day             
(summertime)* 

22 - 
Kystdatahuset 

(KD) 
    

            

Crossing maritime traffic lanes 
9 41 % 

Kystdatahuset 
(KD) 

    

            

Marine traffic: High 2 9 % MTA     

Marine traffic: Medium 9 41 % MTA     

Marine traffic: Low 11 50 % MTA     

            

Small leisure crafts: Absent 12 55 %       

Small leisure crafts: Present # 
10 45 % 

Assumed 
based on KD 
& MTA data 

    

            

CPA <50m envelope: Breached 6 27 % MTA     

CPA <50m envelope: Not Breached 16 73 % MTA     

            

Tides: Low - 50 % Kartverket     

Tides: High - 50 % Kartverket     

            
Debris removed (by Port authorities): 
No **   

- 20 % Assumed **     

Debris removed (by Port authorities): 
Yes    

- 80 %       

            

            
Notes:   
     - MTA: Marine traffic analysis onboard MS Angvik   

    

    - "One Round-trip" implies starting from point A and returning back to 
starting point A  

    

* - Summer time considered due to more trips         

   - MTA statistics have some reliability issues; however, it still provides indication of trends    
#  - Small leisure craft in summertime, indicates average number of unique crafts in a day.    

   - Object detection is dependent on condition of mainly non-legacy items like sensor clusters                               
which are part of "Ship condition risk" hence prior belief is assumed 

** - Port authorities are alerted by captains about debris, which is then immediately cleaned.  
       Debris like wood planks, wood logs, rope (sometimes) typically noticed after high tides (MTA). 

 

Figure 28 - Prior beliefs considered (MTA: Marine traffic analysis onboard MS Angvik (for Sundbåten project))  
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Conditional Probability Tables (CPT) 

The root nodes of BN model as shown in Figure 27, are connected by corresponding 

child nodes in a network leading up to the top level nodes. Similar to the prior belief 

probabilities at the root nodes, the subsequent chain of child nodes have conditional probability 

tables which have probabilities conditioned on the prior probability of parent nodes connecting 

into that child node (Fenton & Neil, 2012).  

The CPT’s for top level BN nodes are shown in Figure 29, while those for bottom level 

BN nodes are shown in Figure 30. The conditional probabilities for the CPT’s have been entered 

mainly based on MTA and its discussions. A detailed list of conditional probability values is 

provided in Appendix F.  These CPT values are sourced from MTA, and reviewed by expert 

judgement.  

 

 

 

 

 

Figure 29 - CPT's for top level BN nodes 
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Figure 30 - CPT's for bottom level BN nodes 
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4.4 Real-time risk model: Bottom level + Top level  

The final concluding step in the building of real-time risk model is to combine the 

Bayesian network model at bottom level with the fuzzy logic risk model at the top level to arrive 

at ‘one’ real-time risk value. This is represented by the flowchart shown in Figure 31, which 

shows the flow of risk information from the Bayesian risk model to the Fuzzy logic model 

which yields the resulting real-time risk level on a five-level risk scale. 

 
Figure 31 - Schematic flowchart showing complete real-time risk model 

This five-level real-time risk scale is linked to the autonomous control system of the 

ship such that it provides a warning to the captain at pre-determined risk levels such that 

sufficient reaction time is available for the onboard captain to assemble at the bridge of the 

vessel.  
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5 Results 

The results for the real-time risk analysis model are presented with typical worst case 

(or pessimistic) scenario and best case (or optimistic) scenario. While the base case scenario is 

as presented in the preceding section in Figure 27 with prior beliefs, with 66% traffic/ 

obstruction risk.    

5.1 Results: Bottom level – BN model 

5.1.1 Scenario A (Optimistic) 

The results for scenario A for the bottom level BN model for traffic/ obstruction risk is 

presented in Figure 32 by updating evidence at root node such that a best case scenario is 

simulated with minimal risks. The BN nodes with updated evidence are indicated in the BN 

model by “underlined bold text” (for example: “No crossing”). This yields a total traffic/ 

obstruction risk of 31%.  

 

Figure 32 - Results: BN model: Traffic/ obstruction risk: 31% {Scenario A, Optimistic} 
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5.1.2 Scenario B (Pessimistic) 

Similarly, the results for scenario B for the bottom level BN model for traffic/ 

obstruction risk is presented in Figure 33 by updating evidence at root node such that a worst 

case scenario is simulated with maximal risks. The BN nodes with updated evidence are 

indicated in the BN model by “underlined bold text” (for example: “Crossing”). This yields 

a total traffic/ obstruction risk of 89%.  

 

 

Figure 33 - Results: BN model: Traffic/ obstruction risk: 89% {Scenario B, Pessimistic} 
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5.2 Results: Top level – Fuzzy model 

At the top level, the BN Scenario A and B values are transferred to the corresponding 

theme of traffic/ obstruction risk in the fuzzy model. However, since the other two bottom level 

BN models for environmental risk and ship condition risk are not implemented in this study – 

hypothetical values are assumed to simulate and test the results obtained by the real-time risk 

model. 

5.2.1 Scenario A (Optimistic) 

The results for scenario A for the top level fuzzy model is presented in Figure 34 by entering 

the traffic/ obstruction risk value of 31% (from BN model) along with the hypothetical low risk 

values of 20% each at environmental and ship risks respectively such that a best case scenario 

is simulated with minimal risks. The real-time risk value for each of the fuzzy rules is visible 

in blue colour (at right side), which is aggregated to achieve a final real-time risk value of 

40.6%. 

 

Figure 34 – Results: Fuzzy model: Total Real-time risk: 40.6 % {Scenario A, Optimistic} 
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5.2.2 Scenario B (Pessimistic) 

Similarly, the results for scenario B for top level fuzzy model for traffic/ obstruction 

risk is presented in Figure 35 by entering the traffic/ obstruction risk value of 89% (from BN 

model) along with the hypothetical high risk values of 90% each at environmental and ship 

risks respectively such that a worst case scenario is simulated with maximal risks. The real-

time risk value for each of the fuzzy rules is visible in blue colour (at right side), which is 

aggregated to achieve a final real-time risk value of 99.3%. 

 

Figure 35 – Results: Fuzzy model: Total Real-time risk: 99.3 % {Scenario B, Pessimistic} 

 

5.3 Validation of Results: Sensitivity analysis 

Sensitivity analysis is a means of verifying to what degree a particular output changes 

when changes are made to input variables, thereby enabling to identify the input variables which 

when changed cause the most variation in output (most sensitive) as well as those which have 

the least effect on output (least sensitive) (Castillo et al., 1997).  
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5.3.1 Sensitivity: BN model 

BN risk models need to be validated to ensure robustness and reliability of the model 

(Yu et al., 2021). Sensitivity analysis is a validation technique for verifying the network’s 

sensitivity to changes in node variables (Utne et al., 2020). As shown in Figure 36, sensitivity 

analysis is performed (in GenIE) considering the top node “MasterRisk” as the target output 

node against which input node variables will be tested by varying values within a range. The 

nodes with deepest shade of red imply nodes which have highest sensitivity, while the ones 

with lightest shade of red indicate the least sensitive nodes, and the transient shades in between 

indicate the moderate sensitivities.    

This is further simplified by the Tornado diagram (Figure 37) created by GeNIe which 

ranks the top ten input node variables from most sensitive to least sensitive, while the length of 

bar indicates the rate of change in the target node as the input node parameter is changed within 

a range of +/-10%. The bar being coded red for negative changes and green for positive changes. 

Thus, the posterior probability distribution for the target node “MasterRisk” (or total 

risk) to occur (State 1) – change in parameter of “Smallcrafts” variable node will have the most 

effect. If the “Smallcrafts” node has a state ‘absent’ meaning there are no small crafts, then 

decrease (red bar) in probability value for ‘absent’ state by -10% increases the posterior 

probability distribution for “MasterRisk” to 0.678 from current value of 0.66. Similarly, an 

increase (green bar) in probability for ‘absent’ state by +10% decreases the posterior 

probability distribution for “MasterRisk” to 0.647 from current value of 0.66. Thereby resulting 

in a maximum sensitivity of 0.262 for “Smallcrafts” node, which is the highest for the network. 

This is followed by the “Traffic” node with a maximum sensitivity of 0.151. Thus, implying 

that minor change in marine traffic and/ or minor change in small leisure craft traffic has the 

highest potential to alter the “MasterRisk” (or Total risk). Or in other words, to control the 

“MasterRisk” (or Total risk) the most efficient treatment is to control the marine traffic and/ or 

small leisure craft traffic. This observation perfectly aligns with the MTA (Marine traffic 

analysis) observations for increase in marine traffic over the last year at Sundbåten’s route, as 

also the frequent near-collision risks experienced with small leisure crafts, thereby validating 

the BN model’s behaviour.  

Amongst the three sub-risk nodes of “R01” (Traffic risk), “R02” (Obstruction risk) and 

“R03” (Compliance risk) – highest maximum sensitivity of 0.129 is noted for “R03” 

(Compliance risk), followed by 0.081 for “R02” (Obstruction risk) and closely followed by 

0.076 for “R01” (Traffic risk). This is visible by the shades of red noted in Figure 36. Thus, 
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indicating that at the higher level of sub-risks – to control the “MasterRisk” (or Total risk) the 

optimum solution is to control the compliance risk first, and if required the other two: 

obstruction risk and/or traffic risk can be controlled. Similar to the preceding paragraph, this 

observation as well corroborates with MTA observation of small leisure crafts very frequently 

violating COLREG compliance (give-way rules) – further confirming sanity of the results 

obtained. 

  

 

Figure 36 - Sensitivity analysis - BN model (Node variable names marked in “green font”) 
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Figure 37 - Sensitivity analysis - BN model: Tornado diagram (with node variable names) 

 

5.3.2 Sensitivity: Fuzzy model 

The sensitivity for Fuzzy model is well represented by the surface plots previously 

shown in Figure 25.  

Additionally, Castillo et al. (1997) states the issues of completeness and consistency for 

rule-based fuzzy systems. Completeness implies that the rule-based fuzzy model should be built 

such that for any random input variable at least one of the defined set or rules is activated – 

which is reflected by the surface plots. Consistency means the rules should not be duplicated 

giving similar conclusions, which has been ensured in the fuzzy model by checking the rules in 

a simplified excel table that provides improved readability and striking out duplicates. 

Consistency also implies divergent conclusions for similar rules indicating conflicting rules – 

this is verified from the surface plots for unnatural peaks or troughs.     
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6 Discussion 

The presented real-time risk analysis model and its methodology are discussed in light 

of existing research studies from literature review, the applied theories, finally followed by 

findings of the conducted study and its validity.  

The field of real-time risk analysis as applied to autonomous ships is an area of 

emerging technology which is reflected by the sparse number of research articles on the topic. 

Efforts at building real-time risk models for autonomous ships have largely been at a localized 

level of assessing risk within a specific domain like human error assessment, ship maneuvering 

risks, ship collision risk, decision making; and/ or limited to hazard identification (HAZID) and 

prioritizing them. This enabled a high-level of detailed analysis specific for the domain of 

interest as a subset of the global real-time risk assessment of autonomous ships. However, a 

real-time risk model capable of assessing the risk at a global level as a sum of these detailed 

subsets is lacking. Though there do exist a couple of research articles which offer useful 

guidelines regarding building real-time risk model and integrating it at the top supervisory level 

of control system of autonomous ships. These have been used as important building blocks 

during development of the presented real-time risk model.  

The mission of the real-time risk model to answer the question of when to alert the 

captain to take control of the ship from its autonomous system – steered this study in the 

direction of global real-time risk assessment of the autonomous ship as a whole, unlike domain-

specific real-time risk models of the past. The underpinning framework for the developed real-

time risk model though built for a small passenger ferry (Sundbåten project case-study), is still 

valid for all types of autonomous ships. It is a scalable risk model and can be built in a modular 

way and then interconnected. Therefore, speedy implementation of real-time risk models is 

possible for autonomous ships of varying complexities and size by splitting resources to work 

simultaneously on different risk modules.  

  The Bayesian network (BN) theory of risk assessment is a well-grounded theory that 

can work effectively with partial historical data and has been used successfully in process and 

chemical plants, and oil and gas drilling industry with some recent applications in shipping 

industry. Its strength and flexibility as a method as enunciated in theory is further confirmed by 

the results obtained in the BN real-time risk model, as also the ease with which the latest 

evidence once updated in any of the BN nodes gets propagated through the entire network. 

Besides, the BN transparently displays its causation and frequency logic, thereby boosting its 

reliability as a method to the user / reader. 
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In the field of maritime autonomous systems and autonomous ships, a key attribute is 

the desire to have human-like decision-making and human-like maneuvering. Human-like 

behavior of the system would mimic the way a manned-ship would behave thereby enabling 

parity of unmanned / partially manned ships with those of manned ships – in effect achieving 

equivalent safety of autonomous ships. 

This human-centric behavior is achievable by use of Fuzzy logic method – which 

provides computational equivalence to human linguistic terms for real-scenarios. In research 

within autonomous ships, Fuzzy logic method has been the method of choice in lieu of Bayesian 

network methods and predominantly used in collision avoidance and path planning. While for 

research studies within real-time risk analysis for autonomous ships, BN methods and fuzzy 

methods are placed on an even keel. The use of fuzzy logic method for real-time risk analysis 

of autonomous ships has been mainly used to collate expert judgement data at upstream level 

(or bottom level of risk model) collected by questionnaire or survey so as to assist in prioritizing 

risk influencing factors for decision-making.  

However, in the real-time risk model presented in this report the fuzzy-logic does not 

directly collect expert judgement data. Instead it collects fuzzy set values for the three input 

variables of environmental risk, traffic/ obstruction risk and ship condition risk from the top 

node of BN model at a downstream level (or topmost level of risk model). These are then 

subjected to a rule-based fuzzy inference system in which rules with varying combinations of 

linguistic risk levels of low, medium and high for the three input variables are coded into the 

system along with their corresponding 5-level output variables  (very low, low, medium, high, 

very high) to mimic human rationale during decision-making. At the output end the fuzzy 

system then gives the de-fuzzified aggregated risk value as a single crisp number. The 

advantage of a single crisp number (based on human-rationale) is the simplicity in programming 

the supervisory control of ship to give warnings to the onboard captain based on a single all-

encompassing value.     

Thus the presented real-time risk model is a good template based on which future 

studies can be initiated. Due to the modular structure of the real-time risk model, it is possible 

to have simultaneous multi-pronged studies to build several domain-specific BN models which 

can then be assembled together using the presented framework for unifying the data to achieve 

a single real-time risk value.   
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6.1 Limitations 

6.1.1 Validity: Internal  & external  

The internal validity of real-time risk model is sufficiently established by conducting 

sensitivity analysis checks on the BN and fuzzy models, as shown in preceding section. It is 

developed based on expert judgements which were part of the Sundbåten project documents 

(both PHA and MTA discussions which included captains working on Sundbåten route amongst 

other experienced seafarers) which improves internal validity. Additionally, as part of the thesis 

a maritime expert with 10+ years of all-round experience in seafaring, ship simulator training 

and autonomous ships has shared expert opinion via the expert judgement questionnaire 

(Appendix F). The MTA data analysis software used in the Sundbåten project has some 

reliability issues which would get transferred to the BN risk model by way of prior-beliefs. 

However, this will not adversely affect the results since BN is a robust method which allows 

partial truths to be updated once evidence is updated. Besides, the expert judgement 

questionnaire also mitigates some of these risks. 

The real-time risk model in the current form (as-is) is valid for similar small-sized 

passenger ferry ships with updation of prior-beliefs based on region of operation of the ferry. 

The overall framework for the real-time risk model is also valid for other types of autonomous 

ships and is a scalable model that can be built in modular way and interconnected. 

However, since the bottom level sub-risks of environmental risk and compliance risk 

are not evaluated as part of this study, hypothetical values have been used in order to elicit a 

response from the risk model. The use of ship simulator was subject to availability of time and 

resources, hence could not be used. External and internal validity of the risk model can be 

boosted by testing it against the ship simulator results to validate findings of risk model against 

actual scenarios.   

6.1.2 Reliability 

The real-time risk model is repeatable in its current form and gives same results, for 

similar sized passenger ferries operating in similar regions. For using it on other ships or 

regions, the prior beliefs and conditional probability tables used in BN model would require 

some updation. Similarly, the rules used in rule-based fuzzy inference system could require 

tweaking to suit other regions and ship types.  
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6.1.3 Other limitations 

Information technology and internet of things (IoT) which are key enablers for the ships 

autonomy have not been explored in this study from point of view of associated risks – 

particularly cyber-security risks. Some purists believe that having direct-communication 

between vessels for collision avoidance situations is contrary to the very basis for COLREG 

rules which is not having communication at all (Mehdi et al., 2020). A similar view is expressed 

by the maritime expert that co-existence of COLREG compliance and having 2-way 

communication can be counter-productive since direct communication in collision avoidance 

scenarios can cause more harm. The expert also states that there is a risk of mis-communication 

or communicating with the wrong ship and in worst case proceeding with maneuvers 

communicated to the wrong ship. Similarly, an argument exists that COLREG does not cover 

all possible maneuvers and combination of environmental and traffic risks (Baldauf et al., 

2019). These aspects of COLREG and two-way communication and their co-existence need to 

be explored in detail in future.   
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7 Conclusion  

The research study performed for implementation of real-time risk analysis for 

autonomous ships successfully converges to the desired solutions as shown in (Figure 38). 

The dual goals of the thesis which were set out in the beginning of the research have 

been successfully achieved. Firstly, a sound body of knowledge for real-time risk analysis of 

autonomous ships based on the systematic literature review (SLR) is established; and secondly 

the mission goal of creating a robust real-time risk analysis model capable of alerting the 

onboard captain of the ship to take control of the autonomous vessel is achieved. 

The developed risk analysis model is one of a kind which covers the entire global view 

of real-time risk for the complete autonomous ship package. Further its modular architecture 

coupled with the single aggregated real-time risk figure simplifies efforts towards linking with 

supervisory control of the autonomous ship, thereby making it highly flexible and scalable.  

7.1 Issues for further research 

The bottom level sub-risks of environmental risk and compliance risk need to be 

included in future studies to achieve a cohesive risk model with internal causal relationships 

amongst the RIF’s within all the three sub-risks. To further boost the model’s reliability its 

results can be compared with ship simulator and the outcomes can be compared for different 

scenarios.  

The academic state of the art for the subject of real-time risk analysis in autonomous 

shipping has been extensively covered in this study. However, inclusion of an industry-based 

perspective on its state of the art is desirable to gauge readiness of the maritime industry and 

different approaches currently been employed by them. 

A possible area of research is to incorporate artificial learning into the BN model and 

Fuzzy model so that the real-time risk-model is capable of learning and adapting for situations. 

Thereby making it possible to train the real-time risk model either based on its interactions with 

the ship simulator or the actual ship during operation. Neural networks for example have had a 

sound basis in the field of robotics as found during the systematic literature review phase of this 

report. 
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Research 
question 

Answers to research questions Reference 

RQ1.1 

Real-time risk analysis has been extensively used in chemical and 
process, oil and gas drilling industries. A recent interest in its 
application to maritime shipping industry is observed, with very 
limited peer reviewed journal studies. 

2.3.2 

RQ1.2 

The main advantage of using real-time risk analysis in lieu of 
traditional risk analysis method is that it is capable of working with 
partial or no historical data, however with a higher certainty and level 
of information at its disposal by virtue of it being in a live operations 
phase rather than traditional risk analysis which works in design 
phase. Thus, the real-time risk model always gives the latest risk 
picture when it gets new evidence. Whereas traditional risk analysis 
methods are static and do not get updated with changed 
circumstances.  

2.4.2 

RQ1.3 

The most commonly used methods for real-time risk analysis of 
autonomous ships are Bayesian networks (BN) and their variations, 
and Fuzzy logic networks. Whereas in autonomous ships in general, 
the Fuzzy logic methods are more commonly used than BN.  

2.3.1 

     

RQ2.1 

The real-time risk model for autonomous passenger ferry is prepared 
by first preparing a concept map based on the systematic literature 
review. Thereafter, the risk model framework is designed as a 
combination of top-level (or high-level) and bottom-level (or detailed 
level). The bottom-level risk model is built using Bayesian network 
modelling while the top-level risk model is based on Rule-based 
Fuzzy inference system. This structure of risk-model gives it a 
flexible and modular architecture enabling the model to be built 
simultaneously. 

2.4.3,  
4 

RQ2.2 

Three RIF's are identified for developing the real-time risk model at 
the top-level namely: environmental risk, traffic/ obstruction risk and 
ship-condition risk. At bottom-level the traffic/ obstruction risk is 
explored further, and three over-arching RIF's are identified namely: 
Traffic risk, Obstruction risk and compliance risk. These over-
arching RIF's subsequently have 13 RIF's in total which are 
connected based on causation-relationships amongst them.  

4 

RQ2.3 

Six unique RIF’s are identified namely: presence of small leisure 
boats, high tides causing floating debris, removal of floating debris, 
crossing of maritime traffic lanes, 2-way communication and 
COLREG compliance – which are found to be unique and previously 
not discussed in earlier BN risk model studies for autonomous ships.  

4.3.1 

      

Figure 38 - Answers to research questions  
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Appendices 

Appendix A: Search queries 

 

Figure A1 - Search queries used in Scopus (SC) 

 



 

72 

 

 

Figure A2 - Search queries used in Web of Science (WoS) 
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