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Abstract

Animals and other organisms in wild populations may adjust to climate change by means of plasticity and
evolution, and it is an important task to find the contributions from each of these effects. Attempts to solve
this disentanglement problem by use of best linear unbiased prediction (BLUP) and restricted maximum
likelihood (REML) methods, as borrowed from the field of domestic breeding, have been criticized because
of errors in the variances of the predicted random effects. A primary purpose of this article is to show
how the problem can be solved by use of BLUP in a prediction error method (PEM), borrowed from the
well-established engineering system identification discipline.

The PEM approach is first to collect environmental input data ut and mean phenotypic output data
yt, as well as individual phenotypic and fitness data, for consecutive generations from t = 1 to T . A
reaction norm model of the evolutionary system is then used to find predictions ŷt, and the parameters in
this model, together with environmental reference values and initial state variables, are finally tuned such

that
∑T

t=1

(
yt − ŷt

)2

is minimized.

The main contribution is the use a dynamical BLUP model in a BLUP/PEM method for parameter
estimation and mean reaction norm trait predictions. The model is dynamical in the sense that the
incidence matrix in an underlying linear mixed model, as well as the corresponding residual covariance
matrix, are functions of time. For comparisons, a selection gradient prediction model as presented in
Ergon (2022a,b) is also used in a GRAD/PEM method. The advantages of the BLUP/PEM method are
that it can utilize genetic relationship information, and that it produces better estimates of environmental
reference values. The treatment is limited to multiple-input single-output (MISO) systems. Generations
are assumed to be non-overlapping.

Simulation examples show that BLUP/PEM may find good estimates of environmental reference
values and initial state variables, as well as good mean reaction norm trait predictions. Details for use of
additional fixed effects, as well as appropriate methods for model validation remain to be worked out.

Keywords: Reaction norm evolution, dynamical BLUP model, system identification, prediction error
method

1. Introduction

Individuals in a population of wild organisms may ad-
just to climate change by means of phenotypic plastic-

ity, i.e., by changes in individual behavioral, morpho-
logical and physiological traits in response to changes
in the environment, without natural selection being
involved. A population of wild organisms may also
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adapt to climate change by evolution, i.e., by natural
selection such that the proportion of individuals with
favourable traits increases from generation to genera-
tion. The combined effect of plasticity and evolution
can, for example, be seen in that many bird species
have advanced their breeding period by several weeks
in the last decades (see, e.g., Bowers et al., 2016). It is
well documented that individual phenotypic plasticity
plays an important role in such acclimations (Merilä
and Hendry, 2014), but in many cases it is unclear to
which extent evolution plays a role, and this is fur-
ther complicated by the fact that also plasticity may
evolve. Methods for disentanglement of plasticity and
evolutionary effects on acclimation to climate change
is therefore an active research area (see, e.g., Scheiner
et al., 2020). A main purpose of this article is to show
that system identification methods from the field of
engineering control can play an important role in such
disentanglement efforts.
The combined effect of plasticity and evolution is

often modeled by use of reaction norms, for example
the two-trait intercept-slope model as used in Lande
(2009),

yi,t = ai,t + vi,t + (bi,t + ηi,t) (ut − uref) , (1a)

where yi,t is the individual phenotypic response on
an environmental cue ut − uref at generation t (where
Lande assumed uref = 0 and ηi,t = 0), and where uref

is a reference environment as discussed below. Note
that I in the following will treat the reaction norm pa-
rameters ai,t + vi,t and bi,t + ηi,t as quantitative traits
in their own right, and where necessary I will thus dis-
tinguish between phenotypic traits and reaction norm
traits. In Equation (1a), ai,t and bi,t are the additive
genetic components of the reaction norm traits, while
vi,t and ηi,t are independent and identically distributed
(iid) zero mean normal non-additive effects (genetic or
environmental white noise). From Equation (1a) fol-
lows the mean trait equation

yt = at + bt (ut − uref) , (1b)

where the mean traits at and bt may evolve as results
of natural selection (Lande, 2009).
The plasticity-evolution disentanglement problem

for a population system given by Equations (1a,b) is
illustrated in Figure 1, where an individual Gaussian
fitness function is introduced. Fitness is here a mea-
sure of reproductive success (Ergon, 2019, 2022a), for
example number of offspring. Initially, it is assumed
that the population is fully adapted to the tempera-
ture uref = 10 ◦C, in the sense that the expected ge-
ometric mean fitness has a global maximum at this
temperature, which implies that the variance of yi,t
has a global minimum (Lande, 2009). Panel b) shows

Figure 1: Illustration of phenotypic and fitness changes
as results of a sudden change in mean envi-
ronment from 10 ◦C to 15 ◦C. Panels a) and c)
show the individual fitness functions at 10 ◦C

and 15 ◦C, respectively. Panel b) shows indi-
vidual and mean reaction norms in a station-
ary stochastic environment with the expected
temperature E [ut] = uref = 10 ◦C (dotted
lines and solid line, respectively), from which
follows that the immediate plastic response
on a mean temperature change from 10 ◦C to
15 ◦C, is a change in expected mean pheno-
typic value from 0 to 1.2 (circles).

25 realizations of individual reaction norms, as well as
the mean reaction norm yt, in a stationary stochas-
tic environment with the expected temperature 10 ◦C,
and thus the expected cue value E [ut − uref ] = 0. As
shown in panel a), this means that E [yt] = 0 is equal
to the expected phenotypic value that maximizes fit-
ness, such that the variance in individual fitness values
is at a minimum. If the temperature then suddenly
changes to 15 ◦C, the expected mean phenotypic value
will immediately change to E [yt] = 1.2, and this will
be a purely plastic response. If at the same time the
peak of the fitness function is assumed to move from
0 to 2, as shown in panel c), it follows that the mean
fitness can be improved by evolution of both at and
bt, such that E [yt] finally reaches the value 2. Note
that the mean fitness will then be lower than the ini-
tial mean fitness, because the variance in individual
fitness values will be larger. Concomitant with a set-
tlement on E [yt] = 2, the value of E

[
bt
]
will return to

the initial optimal value in a stationary stochastic envi-
ronment (Lande, 2009). In the end, 100% of the change
in E [yt] will thus be due to evolution of at, while 0% is
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due to evolution of bt, but evolution of bt may still play
a vital role in the period before settlement in the new
environment. Evolution of bt may in fact be crucial
for survival of the species. See also Lande (2009) for
simulations of the mean reaction norm trait responses
in a case as described. In the example as illustrated
in Figure 1, there is the possibility that the tempera-
ture uref which the population is fully adapted to also
is an evolvable trait, in addition to the mean intercept
and mean plasticity slope. Such cases are discussed in
Ergon and Ergon (2017) and Ergon (2018).

The first essential question in this article is how the
evolution of the mean reaction norm traits at and bt
in a population can be found from recorded values of
ut, yi,t, and individual fitness, and then also in more
realistic cases with a gradual change in a multivariate
environment. The second essential question is how a
model for this purpose can be identified in a way such
that genetic relationships between the individuals in
the population are taken into account. As discussed
below, also the reference environment and initial mean
reaction norm trait values may be identified from time
series data.

The adaptive contribution from evolution can be
predicted by use of a linear mixed model with fixed
and random effects, combined with BLUP (best lin-
ear unbiased predictions) and REML (restricted maxi-
mum likelihood) methods, as extensively used in do-
mestic breeding (Henderson, 1950; Ch. 26 and 27
Lynch and Walsh, 1998). BLUP/REML applications
on wild animal populations are for example discussed
in Kruuk (2004) and Nussey et al. (2007), while Arnold
et al. (2019) discusses plant applications. Hadfield
et al. (2010) criticized this approach on the ground
that BLUP underestimates the variances of the ran-
dom effects in the linear mixed model. However, as
shown in Ergon (2022c), this underestimation is pre-
cisely what is needed, in order to obtain the correct in-
cremental changes for prediction of phenotypic traits of
non-plastic organisms, and as shown in Ergon (2023),
this is the case also for reaction norm traits of plastic
organisms.

With known ut and yt time series data, the tradi-
tional BLUP/REML breeding problem is turned into
what in the engineering control community is called a
system identification problem. As will be shown in Sec-
tion 2, the use of input data ut in a linear mixed model
leads to a time varying coincidence matrix Z̃ZZt, and
REML at a single generation cannot therefore be used
for parameter estimation, as it is otherwise done for
BLUP parameter estimation. An alternative is there-
fore to apply REML on data from several generations,
or to use a prediction error method (PEM) that utilizes
data from all generations in a study.

System identification can be described as the art and
science of building mathematical models of dynami-
cal systems from observed input-output signals, and
it has a wide range of applications in various fields
of physics and engineering (Ljung, 2010; Ljung et al.,
2011). PEM is one of the important methods in system
identification (Ch. 7-9, Ljung, 1999; Ch. 7, Stoica and
Söderström, 1989), and a primary purpose of this ar-
ticle is to show that BLUP/PEM is a feasible solution
to the problem with a time varying design matrix in a
linear mixed model. Note that both REML and PEM
make use of various versions of the numerical Newton
algorithm, and that there are clear theoretical links be-
tween ML and PEM (Ljung, 2010; Ch. 7, Stoica and
Söderström, 1989).

I will thus show how the evolutionary system identi-
fication problem can be solved by use of BLUP models
in PEM. The treatment will be limited to the relatively
simple cases where a population evolves in response to
changes in a physical multivariate environment (mi-
croevolution). The more realistic cases with evolution-
ary interaction between several species (macroevolu-
tion) may be far more involved. I will discuss evolution-
ary systems with multiple environmental input signals
and a single mean phenotypic output signal (MISO sys-
tems), i.e., extensions of the model in Equations (1a,b).
I will thus assume an individual multivariate intercept-
slope reaction norm model

yi,t = ai,t + vi,t + (b1,i,t + η1,i,t)u
′
1,t

+ (b2,i,t + η2,i,t)u
′
2,t + · · ·+ (bq,i,t + ηq,i,t)u

′
q,t,
(2a)

where yi,t is the individual phenotypic response on en-
vironmental cues u′

1,t = u1,t − u1,ref , u
′
2,t = u2,t −

u2,ref , . . . , u′
q,t = uq,t − uq,ref , where u1,ref ,

u2,ref , . . . , uq,ref define the reference environment.
Note that such reference values are needed for all in-
terval scaled input variables, as for example temper-
ature in ◦C, and that they must be properly defined
(Ergon, 2022a). Ratio scaled input variables have a
well-defined zero-point, but it follows from the discus-
sion in Ergon (2022a) that these zero-points are not
necessarily the proper reference values. With multiple
input variables, the reference environment is defined
by a column vector uuuref .
In Equation (2a), ai,t, b1,i,t, b2,i,t, . . . , bq,i,t are the

additive genetic components of normally distributed in-
dividual reaction norm intercept and plasticity slopes,
respectively, and it is thus the mean values at, b1,t, b2,t,
. . . , bq,t that are evolvable. The variables ai,t, b1,i,t,
b2,i,t, . . . , bq,i,t may be correlated, as determined by
an additive genetic covariance matrix GGG. The terms
vi,t, η1,i,t, η2,i,t, . . . , ηq,i,t are iid zero mean normal
non-additive effects (genetic and environmental white
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noise). As done in Lande (2009) and Ergon and Ergon
(2017), the variables ai,t+vi,t, b1,i,t+η1,i,t, b2,i,t+η2,i,t,
. . . , bq,i,t + ηq,i,t are treated as quantitative traits in
their own right. These traits have a covariance ma-
trix PPP = GGG +HHH, where HHH is a diagonal matrix with
variance values σ2

v , σ
2
η1
, σ2

η2
, . . . , σ2

ηq
along the main

diagonal. The time unit is generation, and generations
are assumed to be non-overlapping.

From Equation (2a) follows the equation for the
mean phenotypic value,

yt = at +
[
u′
1,t u′

2,t · · · u′
q,t

]

b1,t
b2,t
...

bq,t


= at + (uuut − uuuref)

T
bbbt. (2b)

Here, the mean reaction norm traits may be collected

in a vector xxxt =
[
at bbb

T

t

]T
. The theory will be devel-

oped under the assumption of constant matricesGGG and
PPP , but a case with time-varying matrices will be tested
in simulations.

Although the main purpose is to show how a BLUP
model can be incorporated into the PEM approach,
I will also compare with results found by a selec-
tion gradient (GRAD) method as introduced in Ergon
(2022a), and as further developed in Ergon (2022b).
This method is based on the multivariate breeder’s
equation (Lande, 1979). Principal differences between
the two approaches will be further discussed below.

Independent of the details of the PEM identification
method, there are some general system identification
problems that must be considered. First, the initial
state of the system affects the dynamics, and this state
must therefore be known or identified (Liu, 2013). A
complete identification of an unknown dynamical reac-
tion norm system will thus require that also the initial
mean reaction norm traits are estimated.

Second, PEM uses a mathematical model with the
same input signal as the true system, such that the
system can be identified by parameter optimization
(model tuning) until the model output in some sense
is as close as possible to the true output. For reaction
norm models this implies that also the environmen-
tal reference vector uuuref must be known or estimated,
and that mean centering of for example a tempera-
ture trend is not a good idea (Ergon, 2022a). Such
mean centering appears to be common in applications
of linear mixed models in evolutionary contexts, but
that assumes stationary stochastic environments (e.g.,
Thomson et al., 2018). In practice it may be difficult
to find the reference point in the environment space,
and it is even more difficult because it may evolve (Er-

gon and Ergon, 2017; Ergon, 2018). I will, however,
assume a constant reference environment.

Third, the aspect of system identifiability is essen-
tial, and an identifiability analysis of the GRAD and
BLUP microevolutionary models is therefore a part of
Section 2, including identifiability of the reference en-
vironment and initial mean reaction norm trait values.
Here, note that traditional REML as used in domestic
breeding (Ch. 27, Lynch and Walsh, 1998) would have
to be modified for estimation of the reference environ-
ment. As verified by simulations, such an estimation
is possible in the BLUP/PEM approach.

As we will see, microevolutionary PEM relies on
measurements of the environmental input variables, as
well as on individual phenotypic values and fitness, and
modeling errors and noise corrupted measurements can
make the estimation of especially uuuref difficult. As ex-
plained in Section 2, and shown in simulations, this is
a serious problem in the GRAD/PEM approach, while
the BLUP/PEM approach is much less sensitive. A
main question is still how errors in uuuref affect the mean
reaction norm trait predictions.

An additional aspect is that although dynamical sys-
tems to some extent can be identified from output-only
measurements, it will in practice often be impossible to
find good parameter estimates unless the system is per-
sistently excited by the input signals (Ch. 13, Ljung,
1999). This is hardly a problem when we as in the sim-
ulations in Section 3 assume yearly temperatures in for
example wild bird habitats as part of the environmen-
tal input signals, and persistent excitation of sufficient
order will therefore be assumed.

The PEM principle is simple, as illustrated in Fig-
ure 2. For readers who are not accustomed to block di-
agrams, it should be pointed out that the block with an
adjustable dynamical system model (the tuning model)
is just an illustration of either the GRAD or dynamical
BLUP prediction equations, as developed in Section 2.
These equations make use of environmental input data
uuut, and phenotypic output data yyyt (a vector of individ-
ual values) and yt (the population mean value) from
the microevolutionary system, which are collected for
a number T of consecutive generations. In addition, a
vector wwwt of individual relative fitness values must be
collected for each generation, where the individual fit-
ness is a measure of reproductive success. The relative
fitness is simply the individual fitness divided by the
mean fitness in the population under study.

Note that the individual fitness values are used as
inputs to the tuning model, and that the tuning model
therefore does not include a fitness function. In simula-
tions, however, an individual fitness function is needed
in the evolutionary model that generates true data. As
illustrated in Figure 1., this function must define the
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phenotypic value that gives maximum fitness as func-
tion of the environment.

The inputs uuut, yyyt and wwwt to the tuning model (the
GRAD or BLUP prediction equations) result in the
predicted mean phenotype ŷt, such that the predic-
tion error yt − ŷt can be computed. In BLUP/PEM,
also a known additive genetic relationship matrix AAAt

is necessary (Ch. 26, Lynch and Walsh, 1998). The
model parameters, including uuuref and the initial mean
reaction norm traits, are finally adjusted such that∑T

t=1 ε
2
t =

∑T
t=1

(
yt − ŷt

)2

is minimized. The art

part of this solution is to formulate a tuning model
that does not have unnecessarily many parameters to
estimate, while it at the same time is rich enough to
capture the essential properties of the microevolution-
ary system.

Figure 2: Block diagram of microevolutionary
GRAD/PEM and BLUP/PEM for a
MISO system, with dynamical tuning model
based on a reaction norm model with mean
traits vector xxxt =

[
at b1,t · · · bq,t

]T
. Here,

uuut and yt are the known environmental
input vector and the known mean phe-
notypic value at time t, respectively. AAAt

is the known additive genetic relationship
matrix, while yyyt and wwwt are known vectors
of individual phenotypic and relative fitness
values, respectively. The ĜGG and P̂PP matrices
include the system parameters, while x̂xxinit

and ûuuref are vectors defining the initial
mean reaction norm trait values and the
reference environment, respectively. All
of these model parameters are tuned until∑T

t=1 ε
2
t =

∑T
t=1

(
yt − ŷt

)2

is minimized.

The microevolutionary prediction error method as
illustrated in Figure 2 will, as already mentioned, be
investigated with use of two types of tuning models,

where predictions ŷt = ât +(uuut − ûuuref)
T
b̂bbt are found in

different ways. Primarily, ŷt is found from a dynamical
BLUP model, which makes use of genetic relationship
information. For comparisons, ŷt is also found by use
of a selection gradient (GRAD) model, as developed
for a SISO system in Ergon (2022a), which ignores in-
formation on genetic relationships in the population.

After tuning of the prediction model in Figure 2, i.e.,
when ŷt ≈ yt for all generations from t = 1 to T , pre-
dictions of the mean reaction norm traits can be recov-
ered from the model. The quality of these predictions
with random measurement errors in the uuut and yyyt data
will here be studied by means of simulations (while
wwwt will be the relative number of offspring, which will
be assumed to be correctly counted). Prediction errors
caused by time-varying parameter values and modeling
errors will also be studied.

Section 2 defines the covariance structure for Equa-
tion (2a), and gives the theoretical background for the
alternative GRAD and BLUP optimization algorithms
used for tuning according to Figure 2. A theorem shows

that the element Gaa = E
[
(ai,t − at)

2
]
in the additive

genetic covariance matrix GGG may be set to any value,
such that the rest of the parameters in GGG and PPP will
be estimated in relation to that value. A second theo-
rem shows that a genetic relationship matrix AAAt = IIIN
results in identical GRAD and BLUP mean reaction
norm trait predictions. A third theorem shows that
the GRAD prediction model, as well as a BLUP pre-
diction model with AAAt = IIIN are identifiable, and as
supported by simulations it is conjectured that also a
BLUP prediction model with AAAt ̸= IIIN is identifiable.

Simulations in Section 3 show the feasibility of
GRAD/PEM and BLUP/PEM in the microevolution-
ary context. The environmental inputs are noisy ramp
functions, similar to temperature trends caused by cli-
mate change. True mean phenotypic responses yt, and
true mean trait values at and b1,t, b2,t, . . . , bq,t are
generated by use of the BLUP prediction equations,
with known parameter values (including initial mean
trait values, reference environment, and additive ge-
netic relationship matrix). Individual additive genetic
and environmental effects are at each generation drawn
at random from populations with the given covariance
matrices GGG and PPP , modified by the additive genetic re-
lationship matrix AAAt. With a known model structure,
perfect measurements of the input environment, indi-
vidual fitness, and individual phenotypic values, will
result in close to perfect BLUP parameter estimates
and predictions ŷt. This makes it possible to study
the effects of modeling and measurement errors, and of
time-varying parameter values. It also makes it possi-
ble to study how ignorance of genetic relationship in-
formation affects the parameter estimates and mean
reaction norm trait predictions. The population size
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in the main simulations is N = 100.

A final summary with discussion is given in Sec-
tion 4. Proof of a theorem is given in Appendix A,
while Appendix B shows GRAD results with popula-
tion size N = 10, 000. MATLAB simulation code is
finally given in Appendix C.

2. Theory

2.1. Covariance structures

For the GRAD and BLUP modeling it is necessary to
define the covariance matrices GGG and PPP =GGG+HHH to be
estimated according to Figure 2. For the BLUP mod-
eling it is in addition necessary to introduce Kronecker
product covariance matrices G̃GGt and R̃RRt.

First, the reaction norm traits in Equation (2a) have
an (1 + q)× (1 + q) additive genetic covariance matrix

given by the expectation GGG = E
[
[•]T [•]

]
, where [•] =(

ai,t − at b1,i,t − b1,t b2,i,t − b2,t · · · bq,i,t − bq,t
)
,

with block elements GGGaa, GGGab, GGG
T
ab and GGGbb. The reac-

tion norm traits also have the phenotypic covariance
matrix PPP = GGG + HHH, where HHH is a diagonal matrix
with variances σ2

v , σ
2
η1
, σ2

η2
, . . . , σ2

ηq
along the main

diagonal.

Second, a population of N genetically related indi-
viduals has the N(1 + q) × N(1 + q) Kronecker prod-

uct covariance matrix G̃GGt = GGG
⊗

AAAt, where AAAt is the
symmetric N × N additive genetic relationship ma-
trix (Ch. 26, Lynch and Walsh, 1998; Cantet et al.,
2022; Mathew et al., 2018), and where

⊗
is the Kro-

necker product operator. The Kronecker product sim-
ply means that each of the elements inGGG are multiplied
by AAAt. If the individuals are genetically unrelated, the
additive genetic relationship matrix is a unity matrix,
AAAt = IIIN . In BLUP modeling, a population of N indi-
viduals also has a residual Kronecker product covari-
ance matrix R̃RRt = RRRt

⊗
IIIN , where RRRt is the covariance

matrix of the residuals in a linear mixed model.

2.2. The GRAD prediction model

The GRAD prediction model is based on the multivari-
ate breeder’s equation (Lande, 1979), which means that
it implicitly assumes that the additive genetic relation-
ship matrix is a unity matrix (Ergon, 2023). Applied
on the reaction norm traits in Equation (2a), the multi-
variate breeder’s equation for the incremental changes

in mean traits from generation to generation becomes
∆at
∆b1,t
...

∆bq,t

 =GGGPPP−1


cov (wi,t, ai,t)
cov (wi,t, b1,i,t)

...
cov (wi,t, bq,i,t)

 (3)

where wi,t i th relative individual fitness, i.e., wi,t =
Wi,t/W t. Note, however, that Equation (3) can-
not be used in the tuning model in Figure 2,
because the individual traits ai,t, etc., are not
available. In Ergon (2022a), this problem was
solved by use of a linear transformation of the

vector
[
ai,t b1,i,t b2,i,t · · · bq,i,t

]T
onto the vec-

tor
[
ai,t b1,i,t b2,i,t · · · bq,i,t yi,t

]T
. Using that

Equation (3) gives

∆yt = ∆at + uuu′T
t+1∆bbbt +∆uuu′T

t bbbt, (4)

where ∆uuu′
t = uuu′

t+1 − uuu′
t, this leads to

∆at
∆b1,t
...

∆bq,t

 =

[
GGGaa GGGab

GGGT
ab GGGbb

] [
1
uuu′

t

]
1

Pyy,t
cov (wi,t, yi,t) ,

(5a)

where

uuu′
t =

[
u1,t − u1,ref u2,t − u2,ref · · · uq,t − uq,ref

]T
.

Here,

Pyy,t = Gaa + 2GGGabuuu
′
t + uuu′T

t GGGbbuuu
′
t + rt, (5b)

with

rt = σ2
v + u′2

1,tσ
2
η1

+ u′2
2,tσ

2
η2

· · ·+ u′2
q,tσ

2
ηq
. (5c)

Note that Equation (5a) is a dynamical model in the
sense that Pyy,t varies with time, and that we can set
Gaa to any fixed value and scale the rest of the param-
eters accordingly. Also note that Equations (3) and
(5a) give identical results only asymptotically, i.e., for
N → ∞. In order for Equation (5a) to be compati-
ble with the Price equation (Price et al., 1970; Ergon,
2019), the covariance expression should be computed
as

cov (wi,t, yi,t) =
1

N

N∑
i=1

wi,tyi,t − wtyt. (5d)

With given initial mean trait values, Equation (5a)
gives at, b1,t, etc., and thus also yt = at +

(uuut − uuuref)
T
bbbt according to Equation (2b), for use in
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the tuning model in Figure 2. Initial values of the el-
ements in bbbt for t = 1 must be found as part of the
identification, while a1 follows from Equation (2b) by
setting y1 = 0. See Section 3 for a simulation example,
where GRAD estimates of uuuref , bbb1, and the parameters
in GGG and rt, are found by use of the function fmincon

in MATLAB. This function finds a constrained min-
imum of a scalar function of several variables start-
ing at initial estimates, in this case the minimum of∑T

t=1 ε
2
t =

∑T
t=1

(
yt − ŷt

)2

.

2.3. Dynamical BLUP prediction model

In order to handle cases where the additive genetic
relationship matrix AAAt departs from a unity matrix,
we may use a linear mixed model and BLUP solu-
tions. As a starting point we may note that the re-
action norm model in Equations (2a,b), with use of
u′
1,t = u1,t − u1,ref , etc., and ai,t − at = a′i,t etc., can

be combined into

yi,t = yt + ai,t − at

+
(
b1,i,t − b1,t

)
u′
1,t + · · ·+

(
bq,i,t − bq,t

)
u′
q,t

+ vi,t + η1,i,tu
′
1,t + · · ·+ ηq,i,tu

′
q,t

= yt + a′i,t + b′1,i,tu
′
1,t + · · ·+ b′q,i,tu

′
q,t

+ vi,t + η1,i,tu
′
1,t + · · ·+ ηq,i,tu

′
q,t. (6a)

We thus use the individual variations a′i,t = ai,t−at,

b′1,i,t = b1,i,t − b1,t, . . . , b
′
q,i,t = bq,i,t − bq,t around the

mean values at, b1,i,t, . . . , bq,t as individual random
effects. This leads to the linear mixed model for a
population of N individuals,

yyyt =XXXyt + Z̃ZZt


aaa′t
bbb′1,t
...

bbb′q,t

+ eeet, (6b)

where XXX = 111N , Z̃ZZt =
[
1 u′

1,t · · · u′
q,t

]⊗
IIIN ,

aaa′t = aaat − 111Nat =
[
a′1,t a′2,t · · · a′N,t

]T
, bbb′j,t =

bbbj,t − 111Nbj,t =
[
b′j,1,t b′j,2,t · · · b′j,N,t

]T
, for j =

1, 2, · · · , q, and eeet = vvvt+u′
1,tηηη1,t+· · ·+u′

q,tηηηq,t. Here,

yyyt, aaa
′
t, bbb

′
1,t, bbb

′
2,t, · · · , bbb

′
q,t, vvvt, ηηη1,t, ηηη2,t, · · · , ηηηq,t are N×1

vectors of individual values at time t, while yt is the
scalar valued fixed effect. The expected values E [aaa′t],
E
[
bbb′j,t

]
, E [vvvt] and E

[
ηηηj,t

]
in this mixed model are zero

by definition (Ch. 26, Lynch and Walsh, 1998; Robin-
son, 1991). From Equation (6b) follows the residual
covariance matrix

RRRt = E
[
eeeteee

T
t

]
= σ2

v + u′2
1 σ

2
η1

+ · · ·+ u′2
q σ

2
ηq

= rt.

(6c)

In order to predict yt, aaa′t, and bbb′1,t, bbb
′
2,t, · · ·bbb

′
q,t for

any given parent generation, we may solve the BLUP
equation (Ch. 26, Lynch and Walsh, 1998; Robinson,
1991; Henderson, 1950)

[
XXXTR̃RR

−1

t XXX XXXTR̃RR
−1

t Z̃ZZt

Z̃ZZ
T

t R̃RR
−1

t XXX Z̃ZZ
T

t R̃RR
−1

t Z̃ZZt + G̃GG
−1

t

]


ŷt
âaa′t
b̂bb′1,t
...

b̂bb′q,t

 =

[
XXXTR̃RR

−1

t yyyt

Z̃ZZ
T

t R̃RR
−1

t yyyt

]
,

(6d)

where G̃GGt =

[
Gaa GGGab

GGGTTT
ab GGGbb

]⊗
AAAt = GGG

⊗
AAAt, and R̃RRt =

RRRt

⊗
IIIN . With RRRt = rt according to Equation (6c),

this can be simplified into

[
XXXTXXX XXXT Z̃ZZt

Z̃ZZ
T

t XXX Z̃ZZ
T

t Z̃ZZt + rtG̃GG
−1

t

]


ŷt
âaa′t
b̂bb′1,t
...

b̂bb′q,t

 =

[
XXXTyyyt

Z̃ZZ
T

t yyyt

]
. (6e)

Note that this is a dynamical model in the sense that
Z̃ZZt, G̃GGt and rt vary with time.

With uuu′ =
[
u′
1,t u′

2,t · · · u′
q,t

]T
, and since G̃GG

−1

t =

(GGG
⊗

AAAt)
−1

= GGG−1 ⊗AAA−1
t , it follows from Equa-

tion (6e) that the BLUP equation for any given parent
generation is

[•]


ŷt
âaa′t
b̂bb′1,t
...

b̂bb′q,t

 =

 111TNyyyt[
1
uuu′

]⊗
IIINyyyt

 (6f)

where [•] = N 111TN

[
1 uuu′T

]⊗
IIIN[

1
uuu′

]⊗
IIIN111N

([
1
uuu′

] [
1 uuu′T

])⊗
IIIN + rtGGG

−1 ⊗AAA−1
t

.
Here, the predictions are unbiased in the sense that

E
[
ŷt

]
= E [yt] and E

[
âaa′t

]
= 000, E

[
b̂bb′1,t

]
= 000, etc. (Ch.

26, Lynch and Walsh, 1998; Robinson, 1991). From
Equation (6f) follows the following theorem:

Theorem 1 In Equation (6f), Gaa may be set to any
fixed value, if at the same time the rest of the parame-
ters in GGG as well as in rt are given normalized values
in relation to the value of Gaa.
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Proof : The term rtGGG
−1 in Equation (6f) remains

constant if all elements in GGG and rt are multiplied by
the same factor.

Next, we must find how fitness affects the mean re-
action norm trait predictions for the offspring of any
given parent generation. As shown in Ergon (2023),
and as verified by Theorem 2 below, the incremental
changes in mean trait values can be found from the pre-
dicted random effects by use of Robertson’s secondary
theorem of natural selection (Ch. 6, Walsh and Lynch,
2018; Robertson, 1966), i.e.,


∆at
∆b1,t
...

∆bq,t

 =


cov

(
wi,t, â′i,t

)
cov

(
wi,t, b̂′1,i,t

)
...

cov
(
wi,t, b̂′q,i,t

)

 , (7)

where â′i,t, b̂′1,i,t, . . . , b̂′q,i,t are found from Equa-
tion (6f). A comparison with the multivariate breeder’s
Equation (3) indicates that Equation (7) assumes that
GGG = PPP , which in general is not correct. However, as
discussed in Ergon (2023), and verified by Theorem 2
below, this error is compensated by errors in the pre-

dicted random effects âaa′t, b̂bb′1,t, . . . , b̂bb′q,t. The errors
in the predicted random effects are thus just what is
needed in order to find the correct predicted incremen-
tal changes according to Equation (7). With given ini-
tial mean trait values, Equation (7) gives at, b1,t, . . . ,

bq,t, and thus also yt = at+(uuut − uuuref)
T
bbbt according to

Equation (2b), for use in the tuning model according
to Figure 2. Initial values of the elements in bbbt for t = 1
must also here be found as part of the identification,
while a1 follows from Equation (2b) by setting y1 = 0.
See Section 3 for a simulation example, where BLUP
estimates of uuuref , bbb1, and the parameters in G and rt
are found by use of the function fmincon in MATLAB.

2.4. Differences regarding estimation of
uuuref

Simulations show that estimation of uuuref by means of
the GRAD optimization method is difficult, while esti-
mation by means of the BLUP optimization method is
easier, at least with a single reference value. The fun-
damental difference is that the GRAD model makes
use of uuuref both in the computation of ∆at and ∆bbbt
by use of Equation (5a), and in the computation of
yt = at + uuu′T

t bbbt, while the BLUP model gives ∆at and
∆bbbt by use of Equation (7), without direct use of uuuref .

2.5. Comparison of prediction methods for
AAAt = IIIN

Under the assumption that AAAt = IIIN , it follows from
Theorem 2 in Ergon (2023) that the BLUP model de-
scribed above leads to the mean trait prediction equa-
tion


∆at
∆b1,t
...

∆bq,t

 = [•]
[
1
uuu′

]
cov (wi,t, yi,t) , (8)

where [•] = GGG

([
1
uuu′

] [
1 uuu′TTT

]
GGG+ rtIIIq+1

)−1

. A com-

parison of the GRAD and BLUP prediction models
leads to the following theorem, which follows from The-
orem 3 in Ergon (2023):
Theorem 2 With AAAt = IIIN , the GRAD and BLUP

models result in exactly the same mean reaction norm
trait predictions, i.e., Equation (5a) and Equation (8)
give identical results, independent of population size.

2.6. Identifiability and prediction error
issues

Ideally, optimization according to Figure 2 gives ŷt ≡
yt for t = 1 to T , and estimated entities ûuuref ≡ uuuref ,

â1 ≡ a1, b̂bb1 ≡ bbb1, ĜGG ≡ GGG, and P̂PP ≡ PPP . That would
require an input uuut that is persistently exciting of suf-
ficient order (Ch. 13, Ljung, 1999), a perfect tuning
model with perfect measurements of the input and out-
put signals, and that T → ∞. In order for the sys-
tem to be parameter identifiable (Ch. 6, Stoica and
Söderström, 1989), it should in theory be possible to
obtain ŷt ≡ yt for t = 1 to T only with ûuuref ≡ uuuref ,

â1 ≡ a1, b̂bb1 ≡ bbb1, ĜGG ≡ GGG, and P̂PP ≡ PPP , i.e., with
no other parameter values. It should thus not be pe
possible for an error in one parameter value to be com-
pensated by errors in other parameter values.
It may be argued that Pyy,t according to Equa-

tion (5b) includes the term Gaa+σ2
v , which indicates a

structural identifiability problem. This is, however, not
the case when Ĝaa is given a fixed value in accordance
with Theorem 1.
The identifiability property of the GRAD system in

Equations (2a) and (5a) is given by the following the-
orem:
Theorem 3 The system given by Equation (2a)

and the GRAD Equation (5a) is parameter identifiable,

provided that Gaa ̸= 0 exists, and that Ĝaa is given a
fixed value.
See Appendix A for detailed proof.
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It follows from Theorems 2 and 3 that also a BLUP
system in the special case with a genetic relationship
matrix AAAt = IIIN is parameter identifiable. There seems
to be no reason why the identifiability properties of a
BLUP system should be affected when AAAt ̸= IIIN , and
this reasoning leads to the following conjecture, which
is also supported by simulation results in Section 3:
Conjecture 1 Theorem 3 is valid also for the system

given in Equation (2a) and the BLUP Equation (6f).
When the reference environment is fixed but incor-

rect, the situation is different. It follows from Equa-

tion (5a) that in order to minimize
∑T

t=1

(
yt − ŷt

)2

,

the effects of the error in ûuuref must somehow be com-
pensated by errors in ĜGG or P̂PP . The resulting deviations
in parameter values may be large, and as shown by
simulations in Section 3 this will result in errors in
especially the predicted mean intercept value. As dis-
cussed in Ergon (2022a), the effects on the predicted
mean slope values are smaller.

3. Simulation Results

I will here assume that true data is generated by a
BLUP model, and test the GRAD and BLUP opti-
mization methods in several simulation examples. In
Example 1 we will see that the GRAD tuning model
has problems regarding estimation of the environmen-
tal reference value, and that is the case also if true
data is generated by a GRAD model. In Example 2
we will see that the BLUP tuning model gives good
estimates of uref , and good predictions of the mean
reaction norm traits, also with measurement errors.
With perfect measurements, also the parameter esti-
mates will be good. This example also shows that a
fixed but incorrect value of uref may give large predic-
tion errors, and it verifies that the BLUP and GRAD
predictions with an additive genetic relationship ma-
trix AAAt = IIIN are identical (Theorem 2). Example 3
shows that BLUP optimization may give good mean
trait predictions also with true data generated by use
of time-varying parameters, but then with large er-
rors in the parameter estimates. Finally, Example 4
verifies that the final value of the criterion function∑T

t=1

(
yt − ŷt

)2

may be used for model selection (see

discussion in Section 4).

3.1. Toy example, fitness function and
input signals

For the purpose of testing the BLUP/PEM optimiza-
tion method, I assume a true system with reaction
norms according to Equations (2a,b), where yi,t is
the individual clutch-initiation date for a certain bird

species. This is similar to the toy system in Ergon
(2022a), except that a second input signal is added, and
that I will assume a continuous clutch-initiation time
(which may be more realistic). As in Ergon (2022a),
the individual fitness is an integer number from 0 to 10
(the number of offspring).
The input signals are the present spring temperature

u1,t = ut, and the spring temperature u2,t = ut−1 a
generation back in time. The delayed effect could for
example be food abundance in year t determined by
the temperature in year t−1. This means that the two
input signals have the same reference environment, and
for simplicity I assume a temperature scale such that
uref = 0.
The individual fitness values are rounded values of

Wi,t = 10 exp
(
−(yi,t − θt)

2
/2ω2

)
, (9)

where θt is the phenotypic value that maximizes fitness,
while ω2 = 1000 is the squared width of the Gaussian
fitness function.
Assume a constant or slowly varying mean µU,t of

a stochastic environment, with added white noise (iid
zero mean normal random variations) un,t, with vari-
ance σ2

Un
= 0.5, i.e., ut = µU,t + un,t. In a corre-

sponding way assume that θt = µΘ,t + θn,t, where
µΘ,t = −20µU,t and θn,t is white noise with variance
σ2
Θn

= 200. Also assume that un,t and θn,t are corre-
lated with covariance cov (u1,t, θt) = −2.5, as explained
from fluctuations in the environment during the de-
velopment of the individuals in the parent generation
(Lande, 2009). Since ut is white noise and u2,t = ut−1,
we have cov (u2,t, θt) = 0.
Further assume that ut and θt are noisy ramp func-

tions as shown in Figure 3, starting at t = 10. The
choice of a negative trend in θt, and thus in yt, is in-
spired by common cases where a positive temperature
trend leads to earlier breeding dates for various natural
populations (e.g., Bowers et al., 2016). The noisy tem-
perature trend in Figure 3 is similar to the registered
yearly mean temperature in Oslo, Norway, from 1960
to 2020 (klimaservicesenter, 2023), using the tempera-
ture in 1960 as zero-point. In order to make the sim-
ulation examples more realistic, only data from t = 31
to 60 (1991 to 2020) are used for parameter estimation
and mean reaction norm trait predictions. This will
in most realizations mean that the reference environ-
ment is not within the range of input data used in the
optimizations.

3.2. Population size, measurement errors,
initial values, and result presentation

The GRAD and BLUP optimization algorithms are
tested in four examples in Subsection 3.4 below, with
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Figure 3: Noisy ramp functions ut (spring tempera-
ture, panel a) and θt (optimal clutch initia-
tion date, panel b), with uref = 0, µΘ,t =
−20µU,t, σ2

Un
= 0.5, σ2

Θn
= 200 and

cov (u1,t, θt) = −2.5. The solid parts of the
curves indicate data used for parameter esti-
mation and mean reaction norm trait predic-
tions.

in all 10 special cases. The population size is in gen-
eral N = 100, although for comparison a test with
N = 10, 000 is included in Appendix B. The algorithms
are tested with perfect input and output information,
as well as with measurement errors in u1,t, u2,t and
yi,t. The errors in temperature measurements are im-
plemented by adding normally distributed white noise
with standard deviations 0.1 to u1,t and u2,t, which is
14% of the standard deviation in the yearly variations.
The errors in individual phenotypes are implemented
as uniformly distributed random errors in the inter-
val −0.5 to 0.5, i.e., errors up to half a day in clutch-
initiation time. The relative individual fitness wwwt, i.e.,
the relative number of offspring, will be assumed to be
correctly counted.

All results are found by minimization of
∑60

t=31 ε
2
t =∑60

t=31

(
yt − ŷt

)2

by use of the function fmincon in

MATLAB. In all examples the true value Gaa = 5 was
used, such that estimates of the otherGGG and PPP parame-
ters are found relative to Gaa (Theorem 1). The initial
values for these parameters were sat to 0. The initial

mean trait values were sat to b̂1,init = 0 and b̂2,init = 1

(because the true value is 0), while âinit follows from
Equation (2b) with ŷinit set to zero. In cases where ûref

is a free variable, the initial value was sat to 1 (because
the true value is 0).

The GRAD optimization with population size N =
100 takes around 1 second on an HP EliteBook
×360 1030 G3 laptop. With N = 100, the optimization
time for the BLUP optimization increased to around
400 seconds, owing to the repeated inversions of the
(3N + 1) × (3N + 1) matrix in Equation (6f). No at-
tempts were made to speed up this optimization.

Simulation results are presented as plots over pre-

dicted mean values ŷt, ât, b̂1,t and b̂2,t, as compared to
true mean values yt, at, b1,t and b2,t. Estimated pa-
rameter values are given in tables as mean values and
standard errors, Mean ± SE, based on 10 repeated
simulations with different realizations of random in-
puts (in Case 6 increased to 100). The relative er-
rors in total change of predictions over 30 generations
are included in the tables, computed as, for example,

∆error
30 ât% = 100

(
∆30ât −∆30at

)
/∆30at etc., where

∆30ât = â60 − â31 and ∆30at = a60 − a31. The final
values

∑
ε2t,final of

∑60
t=31 ε

2
t are also included, as they

may possibly be used for model selection.

3.3. Generation of true BLUP data

True mean responses yt, at, b1,t and b2,t are generated
by means of the dynamical BLUP model (6f) and the
prediction Equation (7), the fitness function in Equa-
tion (9), and known parameter values in the covariance
matrices

GGG =

Gaa Gab1 0
Gab1 Gb1b1 0
0 0 Gb2b2

 =

5 0 0
0 1 0
0 0 0.5


and

PPP =

Gaa + σ2
v Gab1 0

Gab1 Gb1b1 + σ2
η1

0
0 0 Gb2b2 + σ2

η2


=

10 0 0
0 2 0
0 0 1

 .

Here, Gab1 = 0 in the true system, but left as a
free parameter in the optimizations. It is assumed
that the population is fully adapted to the station-
ary stochastic environment up to t = 10 (1970), i.e.,
to the expected spring temperature E [ut] = 0 (Er-
gon, 2022a). From this follows that Gab1 = Gab2 = 0
(Lande, 2009)), and that the optimal mean plastic-
ity slope values in a stationary stochastic environ-
ment are b1,init,true = cov (u1,t, θt)/σ

2
Un

= − 5, and

b2,init,true = cov (u2,t, θt)/σ
2
Un

= 0 (Lande, 2009; Er-
gon and Ergon, 2017). This will thus be the initial
mean plasticity slope values at generation 1.
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For simplicity, the additive genetic relationship ma-
trix is assumed to be step-wise time varying, with a
structure as shown in Equation (10) (for population
size N = 6),

AAAt = IIIN + c


0 1/2 1/4 1/4 1/4 1/4
1/2 0 1/2 1/4 1/4 1/4
1/4 1/2 0 1/2 1/4 1/4
1/4 1/4 1/2 0 1/2 1/4
1/4 1/4 1/4 1/2 0 1/2
1/4 1/4 1/4 1/4 1/2 0

 (10)

where c = 0 for 0 < t ≤ 30, c = 0.25 for 30 < t ≤ 40,
c = 0.5 for 40< t ≤ 50, and c = 1 for 50 < t ≤ 60. All
individuals are thus unrelated in the first 30 genera-
tions, while in the last 10 generations every individual
in the population has one sibling, while the rest are
cousins. Note that the 30 generations that are used in
the model tuning according to Figure 2, have ten gen-
erations with c = 0.25, ten generations with c = 0.5,
and ten generations with c = 1. This is an unrealis-
tic example of a dynamical relationship matrix, but it
serves the purpose of a test matrix for the BLUP/PEM
method.
New random effects were at each generation found

as zzzt = M
√
AAAtzzz0,t, where zzzt stands for aaa′t, bbb′1,t, or

bbb′2,t, and where
M
√
AAA is the matrix square root, i.e.,

M
√
AAAt

M
√
AAAt = AAAt. The different data vectors zzz0,t were

drawn from normal distributions in accordance with
the given GGG matrix. For the three values of the fac-
tor c in Equation (10) used in generations 31 to 60,
this reduced the variances of the random effects to ap-
proximately 95%, 90% and 75% of the nominal values,
respectively. The random effects were also mean cen-
tred.

3.4. Simulation examples

Example 1: BLUP true data with GRAD prediction
model

Results for different cases with a BLUP true data
model and a GRAD tuning model, are given in Ta-
ble 1. Note that also with perfect measurements (Case
1), the value of uref is estimated with a large standard
error, resulting in a large SE value for ∆error

30 ât. This is
to some extent understandable, since the true data is
generated by a BLUP model, but also with true data
generated by a GRAD model we find the poor results
ûref = −0.07 ± 0.29. With use of the known value of
uref (Case 2), the parameters Gb1b1 and Gb2b2 are es-
timated with small errors, while the estimated white
noise variances, σ̂2

v , σ̂
2
η1
and σ̂2

η2
have large errors, ow-

ing to the modeling error. The mean reaction norm
traits are in this case predicted with SE values up to

5%., i.e., GRAD/PEM finds good predictions at the
price of large errors in the estimated noise variances.
The known value of uref combined with measurement
errors (Case 3), gives SE values up to 11%. With a fac-
tor five increase in the measurement errors, the mean
trait SE values were up to 40%, without any indication
of bias.

Example 2: BLUP true data with BLUP prediction
model

Simulation results with parameter estimates and mean
trait predictions found by use of the dynamical BLUP
algorithm, are shown in Table 2 and Figure 4. It is in-
teresting to note that the environmental reference value
is estimated far better than with use of the GRAD algo-
rithm, for reasons as explained in Subsection 2.4. With
perfect measurements (Case 4), the result is improved
to ûref = 0.001 ± 0.002 , and as a result the parame-
ter estimates without measurement errors are close to
perfect. With measurement errors (Case 5), the BLUP
results for ûref with N = 100 are in fact just as good
as for N = 10, 000 with use of true GRAD data and
GRAD optimization (Appendix B). Measurement er-
rors result in large errors in some of the parameters,
with consequences as discussed in Section 4, but the
mean trait SE values are still limited to 8%. With a fac-
tor five increase in the measurement errors, the mean
trait SE values increased to around 20%, still without
any indication of bias. When in addition to measure-
ment errors the incorrect relationship matrix AAAt = IIIN
is used in the BLUP optimization algorithm (Case 6),
the mean trait predictions are still quite good, but the
price to pay is large errors in the parameter estimates.
Table 2 also shows mean trait results for GRAD pre-

dictions based on the BLUP parameter results, i.e.,
when the genetic relationships are ignored. For Case 4
and 5, this leads to around 10% overestimation of the
mean trait changes. For Case 6, i.e., with BLUP pa-
rameter estimates based on AAAt = IIIN , the GRAD and
BLUP predictions are identical, as follows from Theo-
rem 2, and this is the case for population sizes down
to N = 2.
The results in Table 2 assumes estimated values of

the reference environment. If we instead use fixed val-
ues of ûref , we obtain results as in Table 3. Note the
large values of ∆error

30 ât% for ûref ̸= uref , while as dis-
cussed in Ergon (2022a) the effects on the predicted
mean slope values are smaller. Also note the large pre-
diction errors for ûref = 1, i.e., for approximately the
initial value of the available temperature data, which
it may be tempting to use as a reference.
Since AAAt ̸= IIIN according to Equation (10) reduces

the variances of the additive genetic effects with 5 to
25%, for the different values of the factor c, it must
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Table 1: Estimation and prediction results with BLUP true data model and GRAD tuning model. Results are
based on 10 simulations with different realizations of all random input variables. The population size
was N = 100.
Case 1: Perfect values of u1,t, u2,t and yi,t, and ûref as free variable.
Case 2: Perfect values of u1,t, u2,t and yi,t, and ûref = uref = 0.
Case 3: Measurement errors in u1,t, u2,t and yi,t, and ûref = uref = 0.

Parameter
True
value

Optimization results
Case 1

Optimization results
Case 2

Optimization results
Case 3

Ĝb1b1 1 1.01± 0.30 0.99± 0.07 1.00± 0.23

Ĝb2b2 0.5 0.55± 0.07 0.45± 0.08 0.51± 0.19

Ĝab1 0 0.12± 0.46 −0.22± 0.36 −0.03± 0.85

σ̂2
v 5 3.67± 2.21 3.52± 1.14 4.05± 2.26

σ̂2
η1

1 1.50± 0.66 0.86± 0.41 1.48± 0.39

σ̂2
η2

0.5 1.11± 0.84 0.57± 0.48 0.82± 0.63

b̂1,init − −5.10± 0.07 −5.12± 0.04 −5.08± 0.06

b̂2,init − −0.05± 0.03 −0.08± 0.05 −0.07± 0.06

ûref 0 −0.19± 0.67 0 0∑
ε2t,final − (100± 50)10−4 (176± 160)10−4 (236± 77)10−4

∆error
30 ât% − −8± 34 3± 3 0± 7

∆error
30 b̂1,t% − −2± 3 −2± 2 −2± 4

∆error
30 b̂2,t% − −4± 14 −4± 5 0± 11

Table 2: Estimation and prediction results by use of the BLUP optimization algorithm. Results are based on 10
simulations with different realizations of all random input variables. The population size was N = 100,
and ûref is in all cases a free variable.
Case 4: Perfect values of u1,t, u2,t and yi,t, with AAA ̸= IIIN used in the tuning model.
Case 5: As Case 4, but with measurement errors in u1,t, u2,t and yi,t.
Case 6: As Case 5, but with AAA = IIIN used in the BLUP tuning model, and number of realizations
increased to 100.

Parameter
True
value

Case 4 Case 5 Case 6

Ĝb1b1 1 1.0000± 0.0000 1.04± 0.10 0.85± 0.29

Ĝb2b2 0.5 0.5000± 0.0000 0.47± 0.07 0.56± 0.23

Ĝab1 0 0.0001± 0.0002 −0.08± 0.40 0.48± 1.27

σ̂2
v 5 5.0002± 0.0004 4.93± 1.30 4.87± 2.31

σ̂2
η1

1 1.0000± 0.0000 1.06± 0.25 1.71± 1.00

σ̂2
η2

0.5 0.5000± 0.0001 0.43± 0.21 0.97± 0.79

b̂1,init − −5.10± 0.07 −5.09± 0.09 −5.10± 0.08

b̂2,init − −0.05± 0.04 −0.05± 0.07 −0.06± 0.04

ûref 0 −0.001± 0.002 −0.003± 0.004 0.002± 0.086∑
ε2t,final − (7± 19)10−11 (17± 6)10−3 (279± 103)10−4

∆error
30 ât% − 0± 0 0± 4 3± 7

∆error
30 b̂1,t% − 0 ± 0 0± 3 −2± 7

∆error
30 b̂2,t% − 0± 0 0± 8 −3± 9

∆GRAD
30 ât% − 9± 1 9± 5 3± 7

∆GRAD
30 b̂1,t% − 11± 1 10± 4 −2± 7

∆GRAD
30 b̂2,t% − 11± 1 10± 9 −3± 9
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Figure 4: Simulation results for BLUP system. Panels a), b) and c) show typical results for Case 4 in Table 2,
with AAAt as given in Equation (10) (although for population size N = 100). Panels d), e) and f) show
typical results for Case 6, with AAA = IIIN used in the BLUP optimization procedure. True yt values
are shown by solid blue lines, while final predictions ŷt are shown by blue dots. True at, b1,t and b2,t

responses are shown by green lines, while BLUP predictions ât, b̂1,t and b̂2,t are shown by black dots.
The corresponding GRAD predictions using BLUP parameters are shown by dotted magenta lines.

Table 3: Errors in predicted total relative change of at, b1,t and b2,t over 30 generations as for Case 4 in Table 2,
except for fixed reference environments used in the BLUP optimization procedure.

ûref ∆error
30 ât% ∆error

30 b̂1,t% ∆error
30 b̂2,t%

−0.5 −23± 1 0± 2 1± 3
−0.2 −9± 3 1±1 1± 1
0 0± 0 0± 0 0± 0
0.2 10±0 −1± 2 −2± 2
0.5 25± 3 −9± 5 −9± 4
1 52± 3 −29± 6 −31± 11
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Table 4: Estimation and prediction results as in Table 2, but with Gaa increasing linearly from 5 to 10 over 60
generations.
Case 7: Results found by use of Ĝaa = 5 and otherwise true parameter values.
Case 8: Results found by minimization of

∑60
t=31 ε

2
t , without measurement errors.

Case 9: Results found by minimization of
∑60

t=31 ε
2
t , with measurement errors

Parameter
True
values

Case 7 Case 8 Case 9

Ĝb1b1 1 1 0.49± 0.04 0.43± 0.26

Ĝb2b2 0.5 0.5 0.32± 0.02 0.33± 0.07

Ĝab1 0 0 0.28± 0.15 0.48± 0.61

σ̂2
v 5 5 3.84± 0.27 4.24± 1.02

σ̂2
η1

1 1 0.54± 0.11 0.62± 0.34

σ̂2
η2

0.5 0.5 0.25± 0.11 0.22± 0.21

b̂1,init − − −5.11± 0.06 −5.07± 0.08

b̂2,init − − −0.05± 0.04 −0.07± 0.04

ûref 0 0 0.002± 0.015 −0.003± 0.024∑
ε2t,final − − (18± 18)10−4 (218± 68)10−4

∆error
30 ât% − −33± 1 −1± 1 −2± 5

∆error
30 b̂1,t% − 16± 1 2± 2 4± 7

∆error
30 b̂2,t% − 17± 1 2± 2 −1± 9

be expected that the responses on the gradual change
in environment are slowed down. As a test, this ef-
fect on the BLUP results were therefore investigated
by recording the true change in intercept value from
generation 31 to generation 60, with use of the same
set of typical ut and θt input data in 100 repeated
simulations. For AAAt = IIIN in the true model, the re-
sults was ∆30a = −3.4± 0.1 days, while AAAt ̸= IIIN gave
∆30a = −2.9±0.1 days, which shows that the responses
are indeed slowed down.

Example 3: BLUP true data with time-varying GGG
matrix

Results with a true system as in Example 2, but with
a parameter value Gaa that increases linearly from
Gaa,1 = 5 to Gaa,60 = 10, are shown in Table 4.

Mean trait predictions based on Ĝaa = 5, and oth-
erwise true parameter values, will now underestimate
the total change ∆30at (Case 7). However, predictions

based on the constant value Ĝaa = 5 and otherwise
optimized parameter values give good mean trait pre-
dictions (Case 8), because parameter values are found
such that the variation in Gaa is very much compen-
sated for. When Case 8 is repeated with measurement
errors (Case 9), the mean trait predictions are still
fairly good, although the SE values increase markedly.
In this case also the SE values for the parameter es-
timates increase markedly. In Cases 8 and 9 some of
the estimated parameter values are far from the true

values.

Example 4: BLUP true data with reduced BLUP
prediction model

In an additional case, Case 10, the BLUP tuning model
was reduced by setting Ĝb2b2 = σ̂2

η2
= 0, while it at the

same time it had to handle measurement noise as in
Case 5. This resulted in ûref = 0.03± 0.1,

∑
ε2t,final =

0.32 ± 0.21, ∆error
30 ât% = 35 ± 17 and ∆error

30 b̂1,t% =
3± 19, i.e., markedly increased errors in the predicted
changes of mean intercept. Note the large increase in∑

ε2t,final, as compared to Case 5, and this was the case
for all realizations, although to various degree. This
indicates that the value of

∑
ε2t,final may possibly be

used as a tool for model selection (see discussion in
Section 4).

4. Summary and discussion

In summary, there are two main purposes with this ar-
ticle. One is to show that system identification meth-
ods borrowed from the field of engineering control may
play an important role in the study of evolutionary
biological systems. The second is to show that the
prediction error method (PEM) can be combined with
the best linear unbiased predictions (BLUP) method,
which is extensively used in domestic breeding pro-
grams. The theoretical foundation is the fact that a
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reaction norm model can be formulated as a linear
mixed model, where the random effects are the individ-
ual variations in intercept and plasticity slope values,
while the environmental cues are included in a dynam-
ical incidence matrix Z̃ZZt. From this follows the addi-
tional observation that restricted maximum likelihood
(REML) based on data from a single generation cannot
be used for parameter estimation, for the simple reason
that each scalar element in the residual covariance ma-
trix in the BLUP model includes several residual vari-
ances. In the formulation of the linear mixed model,
we assumed a MISO system, with linear reaction norms
as functions of environmental cues u1,t, u2,t, etc., but
there is nothing in the theory that prevents us from use
of non-linear reaction norms that are also functions of
u1,tu2,t, u

2
1,t, u

2
2,t, etc., as discussed in Ergon (2018). A

more general model for a MIMO system is developed
in Ergon (2023).

Two evolutionary models for use in PEM as illus-
trated in Figure 2 was presented and developed in Sec-
tion 2. The selection gradient (GRAD) model assumes
that the additive genetic relationship matrix is a unity
matrix, AAAt = IIIN , which implies that all individuals in
the population are genetically unrelated. The BLUP
model, on the other hand, can handle cases with in-
breeding in the populations, i.e., with AAAt ̸= IIIN . In
both the GRAD/PEM and BLUP/PEM methods, the
additive genetic variance Gaa can be set to any value,
and the rest of the elements in theGGG and PPP matrices es-
timated in relation to that value (Theorem 1). When
AAAt = IIIN , the GRAD and BLUP optimization algo-
rithms give identical results (Theorem 2). It is shown
that the GRAD prediction model is identifiable (The-
orem 3), and from Theorem 2 thus follows that the
BLUP prediction model is identifiable when AAAt = IIIN .
It is conjectured that the BLUP model is identifiable
also when AAAt ̸= IIIN , and this conjecture is supported
by simulation results.

Although the theory is limited to MISO systems, an
extension of the GRAD algorithm to multiple-input
multiple-output (MIMO) systems is demonstrated in
Ergon (2022b). Such extensions are possible also for
the BLUP algorithm (Ergon, 2023). The applicabil-
ity of PEM in an evolutionary context is, however, not
limited to the algorithms discussed, it should in princi-
ple work for any type of parametrized prediction model
that includes mean reaction norm traits, or other latent
variables.

A main theoretical result is that the environmental
reference must be known or estimated, as also pointed
out in Ergon (2022a). This was recognized by Scheiner
et al. (2020), who in their simulations used “a 2000 gen-
eration equilibration period, with the mean phenotypic
optimum held constant at 0, to allow the population

to reach mutation–selection–drift equilibrium”. An im-
portant practical result is that the BLUP/PEM opti-
mization method is far better than the GRAD/PEM
method when it comes to estimation of the reference
environment, at least with a single reference environ-
ment.

Independent of optimization method, there is an
important principal difference between the tradi-
tional BLUP/REML approach, and the proposed
GRAD/PEM and BLUP/PEM approaches. In the
BLUP/REML method there is no feedback loop via
a minimization algorithm as shown in Figure 2, where
data from all observed generations are used. Instead,
parameters in the GGG and PPP matrices are estimated by
use of REML for a given base population with an as-
sumed genetic relationship matrix AAAt = IIIN (Ch. 19,
Walsh and Lynch, 2018), or alternatively a relationship
matrix computed from genomic information, and pre-
dictions of mean trait responses are then found forward
in time in an open-loop fashion. PEM is a closed-loop
method, where parameters are estimated, and mean
trait responses predicted by use of information at all
generations. It is, however, necessary to know the addi-
tive genetic relationship matrix AAAt for all generations,
which requires some assumptions regarding the first
generation in a study. The assumption of a perfectly
known pedigree may also then be unrealistic, and kin-
ship estimation based on molecular markers might be
a better alternative (Goudet et al., 2018). It is beyond
the scope of this article to discuss parameter estima-
tion by application of REML on Equation (6e). It is
however obvious that the various components of rt in
Equation (6c) cannot be found by REML at a single
generation, for the simple reason that only rt appears
in Equation (6e).

It should be noted that the primary goal of
BLUP/PEM is not to find correct GGG and PPP parameter
values as such, but to minimize errors in predictions of

the mean phenotypic values ŷt = ât + (uuut − ûuuref)
T
b̂bbt,

which requires that the errors in the predicted mean

reaction norm trait values ât and b̂bbt are minimized. As
further discussed below, this raises questions regarding
model validation. With a correct model, perfect mea-
surements, and long enough data series, however, PEM
also leads to near perfect parameter estimates (Table 2,
Case 4).

Hadfield et al. (2010) and other authors are critical
to the use of BLUP for natural populations, for the
main reason that the estimated variances of the indi-
vidual random variables have large errors. As shown
in Ergon (2022c, 2023), and as utilized in Equation (7)
and verified by Theorem 2, these errors are just what
is needed in order to find the correct mean trait pre-
dictions by means of Robertson’s secondary theorem
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of natural selection. Hadfield et al. (2010) also suggest
that a good test of evolutionary change would be to
simply compare the mean trait values of the first and
final generations, as done in this paper.

The GRAD/PEM and BLUP/PEM optimization
algorithms have been tested by simulations of an
intercept-slope reaction norm toy system in Section 3,
and these tests illustrate the feasibility of PEM in the
microevolutionary context. The model includes two en-
vironmental inputs, first a noisy ramp function in the
present year’s temperature over 60 years (1961 - 2020),
similar to the recorded temperature trend in Oslo, Nor-
way, and second the last year’s temperature. Corre-
sponding correlated changes in the individual pheno-
typic value that maximizes fitness are used in the indi-
vidual fitness function (Figure 3). Only data from the
last 30 generations (1991 - 2020) are used in the opti-
mizations, i.e., the reference temperature before 1960 is
not included in the data. Although the optimal clutch-
initiation time is forwarded by 30 days over 30 years
(Figure 3), the true phenotypic changes is only 10 to 15
days (Figure 4). The phenotypic response is thus lag-
ging behind the optimal response, which is typical for
ramp responses of dynamical systems with time con-
stants. The change in mean intercept over 30 genera-
tions is typically −3 days.

The BLUP results in Figure 4, panels a), b), and c),
are based on random effects that are drawn from dis-
tributions that are affected by the matrix square root
M
√
AAAt, with the structure of AAAt given in Equation (10),

which reduces the variances of the random effects up
to 75% of the nominal values. As a result of this, the
phenotypic response has a tendency of lagging further
behind the optimal response.

It should be noted that the simulated MISO system
with two inputs has a single and common reference en-
vironment uref , and that there is a major difference
between the two algorithms when it comes to estima-
tion of this reference environment. The GRAD opti-
mization algorithm gives large errors in ûref , and cor-
respondingly large errors in the mean trait predictions
(Table 1, Case 1), while the BLUP algorithm gives
good estimates of uref (Subsection 2.4 and Table 2).
When the GRAD algorithm is applied on data from
small populations it may therefore be best to set ûref to
a fixed value, based on a judgement on which environ-
ment the population is adapted to in the time period
before environmental changes. This may also be the
case for MISO and MIMO systems with a multivari-
ate reference environment, although such cases need
further invetigation. As shown in Table 3, large er-
rors in ûref give large errors also in BLUP predictions,
and in more realistic cases the estimated reference en-
vironment values must therefore be used with care. An

alternative choice would be to use the initial environ-
mental value in a recorded time series, but as shown in
Table 3 that may be a bad idea.

Table 1, Case 2, and Table 2, Case 5, show results
with measurement errors in the environmental and in-
dividual phenotypic data, and in these cases some of
the parameters are estimated with large errors. The
changes in mean trait values over 30 generations are
still predicted without bias, and with standard errors
less than 8%.

Table 2, Case 6, shows results with measurement er-
rors and AAAt = IIIN , i.e., with a large error in the ad-
ditive genetic relationship matrix, and the changes in
mean trait values over 30 generations were still pre-
dicted with mean errors less than 3%, and standard
errors less than 10%. The reason for these good predic-
tions, in spite of the error inAAAt, is that minimization of∑30

t=1

(
yt − ŷt

)2

leads to parameter values that partly

compensate for the error in AAAt, and some of these vari-
ables may apparently be far from the true values. The
results in Case 6 also verify Theorem 2.

As shown in Table 2, Case 4, the BLUP algorithm re-
sults in small errors in ûref , and correspondingly good
mean trait predictions. As these predictions are not
very sensitive to measurement errors (Cases 5 and 6)
or errors in AAAt (Case 6), the BLUP/PEM method ap-
pears to be a feasible solution for the microevolution–
plasticity disentanglement problem introduced in Sec-
tion 1, at least in cases with a single reference environ-
ment. The BLUP method is also more flexible than
the GRAD method, in that additional fixed effects can
be included in the model (Ch. 19, Walsh and Lynch,
2018).

The large errors in the estimated parameter values
caused by measurement noise (Cases 2, 5 and 6) lim-
its the usefulness of the parameter estimates for other
purposes, as for example for finding heritabilities of re-
action norm traits (Ch. 19, Walsh and Lynch, 2018).
A similar situation occurs when the true parameter
values vary over time (Table 4, Cases 8 and 9).

Tables 1, 2 and 4 include mean values and standard
errors of the final value of the criterion function. Tests
with a reduced model (Example 4, Case 10) show that∑

ε2t,final increases for all realizations, although to var-

ious degree. This indicates that the value of
∑

ε2t,final
may be used as a tool for model selection, but here a
more detailed study is necessary.

The fact that predicted mean trait values ât and b̂bbt
may be quite good also with large errors in the esti-
mated GGG and PPP parameter values, as discussed above
and demonstrated in the simulations, raises difficult
questions regarding model validation. In system iden-
tification in general, identified models are preferably
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validated by use of data that have not been used for the
identification (Ljung, 2010), and in an industrial con-
text it is often possible to obtain such validation data.
In the evolutionary context, however, the data series
are normally obtained from cumbersome field observa-
tions over a small number of generations for a specific
population of for example squirrels (Boutin and Lane,
2014). Independent data over the same number of gen-
erations for the same species may therefore be impos-
sible to obtain. A possible validation approach could
be to use a part of the data for identification and the
rest for validation, but as seen in the simulations the
dynamics in the responses are quite different in differ-
ent time periods. A remaining possibility is some form
of cross validation, but details of such an approach re-
main to be worked out.

Details regarding additional fixed effects in the dy-
namical BLUP model, various sources of drift, etc.,
also remain to be worked out. Finally, and most im-
portantly, tests on real world data must also be left for
further work.
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Tormod Ådnøy for input regarding BLUP modeling,
Finn A. Haugen for input regarding use of the fmincon
function in MATLAB, and University of South-Eastern
Norway for support.

References

Arnold, P. A., Kruuk, L. E., and Nicotra, A. B.
How to analyse plant phenotypic plasticity in re-
sponse to a changing climate. New Phytologist, 2019.
222(3):1235–1241. doi:10.1111/nph.15656.

Boutin, S. and Lane, J. E. Climate change
and mammals: evolutionary versus plastic re-
sponses. Evolutionary applications, 2014. 7(1):29–
41. doi:10.1111/eva.12121.

Bowers, E. K., Grindstaff, J. L., Soukup, S. S., Drilling,
N. E., Eckerle, K. P., Sakaluk, S. K., and Thomp-
son, C. F. Spring temperatures influence selection
on breeding date and the potential for phenologi-
cal mismatch in a migratory bird. Ecology, 2016.
97(10):2880–2891. doi:10.1002/ecy.1516.

Cantet, R., Angarita-Barajas, B., Forneris, N., and
Munilla, S. Causal inference for the covariance

between breeding values under identity disequilib-
rium. Genetics, Selection, Evolution: GSE, 2022.
54(1):64–64. doi:10.1186/s12711-022-00750-6.

Ergon, R. The environmental zero-point prob-
lem in evolutionary reaction norm modeling.
Ecology and Evolution, 2018. 8(8):4031–4041.
doi:10.1002/ece3.3929.

Ergon, R. Quantitative genetics state-space model-
ing of phenotypic plasticity and evolution. Mod-
eling, Identification and Control, 2019. 40:51–69.
doi:10.4173/mic.2019.1.5.

Ergon, R. The important choice of reference envi-
ronment in microevolutionary climate response pre-
dictions. Ecology and evolution, 2022a. 12(4).
doi:10.1002/ece3.8836.

Ergon, R. Microevolutionary system identifica-
tion and climate response predictions. Modeling,
Identification and Control, 2022b. 43(3):91–99.
doi:10.4173/mic.2022.3.1.

Ergon, R. A BLUP derivation of the multivari-
ate breeder’s equation, with an elucidation of er-
rors in blup variance estimates, and a predic-
tion method for inbred populations. Modeling,
Identification and Control, 2022c. 43(4):131–140.
doi:10.4173/mic.2022.4.2.

Ergon, R. Dynamical BLUP modeling of reaction
norm evolution, accommodating changing environ-
ments, overlapping generations, and multivariate
data. Ecology and Evolution, 2023. 13(7):e10194.
doi:10.1002/ece3.10194.

Ergon, T. and Ergon, R. When three traits make a line:
Evolution of phenotypic plasticity and genetic as-
similation through linear reaction norms in stochas-
tic environments. Journal of Evolutionary Biology,
2017. 30(3):486–500. doi:10.1111/jeb.13003.

Goudet, J., Kay, T., and Weir, B. S. How to estimate
kinship. Molecular ecology, 2018. 27(20):4121–4135.
doi:10.1111/mec.14833.

Hadfield, J. D., Wilson, A. J., Garant, D., Sheldon,
B. C., and Kruuk, L. E. The misuse of BLUP in ecol-
ogy and evolution. The American Naturalist, 2010.
175(1):116–125. doi:10.1086/648604.

Henderson, C. R. Estimation of genetic parameters.
Ann. Math. Stat., 1950. 21:309–310.

klimaservicesenter, N. 2023. URL https://seklima.

met.no/observations/.

99

http://dx.doi.org/10.1111/nph.15656
http://dx.doi.org/10.1111/eva.12121
http://dx.doi.org/10.1002/ecy.1516
http://dx.doi.org/10.1186/s12711-022-00750-6
http://dx.doi.org/10.1002/ece3.3929
http://dx.doi.org/10.4173/mic.2019.1.5
http://dx.doi.org/10.1002/ece3.8836
http://dx.doi.org/10.4173/mic.2022.3.1
http://dx.doi.org/10.4173/mic.2022.4.2
http://dx.doi.org/10.1002/ece3.10194
http://dx.doi.org/10.1111/jeb.13003
http://dx.doi.org/10.1111/mec.14833
http://dx.doi.org/10.1086/648604
https://seklima.met.no/observations/
https://seklima.met.no/observations/


Modeling, Identification and Control

Kruuk, L. E. Estimating genetic parameters in natural
populations using the ‘animal model’. Philosophi-
cal Transactions of the Royal Society of London. Se-
ries B: Biological Sciences, 2004. 359(1446):873–890.
doi:10.1098/rstb.2003.1437.

Lande, R. Quantitative genetic analysis of mul-
tivariate evolution, applied to brain: body size
allometry. Evolution, 1979. pages 402–416.
doi:10.2307/2407630.

Lande, R. Adaptation to an extraordinary environ-
ment by evolution of phenotypic plasticity and ge-
netic assimilation. Journal of evolutionary biol-
ogy, 2009. 22(7):1435–1446. doi:10.1111/j.1420-
9101.2009.01754.x.

Liu, W. Introduction to hybrid vehicle sys-
tem modeling and control, Appendix A: Sys-
tem Identification, State and Parameter Estima-
tion Techniques. John Wiley & Sons, 2013.
doi:10.1002/9781119278924.app1.

Ljung, L. System Identification: Theory for the User.
2nd Edition, Prentice-Hall, Upper Saddle River, NJ,
1999.

Ljung, L. Perspectives on system identification.
Annual Reviews in Control, 2010. 34(1):1–12.
doi:10.1016/j.arcontrol.2009.12.001.

Ljung, L., Hjalmarsson, H., and Ohlsson, H. Four
encounters with system identification. Euro-
pean Journal of Control, 2011. 17(5-6):449–471.
doi:10.3166/ejc.17.449-471.

Lynch, M. and Walsh, B. Genetics and analysis of
quantitative traits. sinauer associates. Inc., Sunder-
land, MA, 1998. 980.
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1
T
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(
yt − ŷt
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when N → ∞. This implies that

the system is parameter identifiable if and only if an er-
ror in one of the elements in these vectors and matrices,
cannot be compensated by errors in other component,
in a way that is valid for all generations from t to T .

From Equation (5a) follows that ∆at and ∆bbbt are
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time t. Since uuu′T
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perfect parameter values can give ∆ât ≡ ∆at according
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∆ât/cov (wi,t, yi,t) =
(
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′
t

)
/P̂yy,t =

N̂t/P̂yy,t, where cov (wi,t, yi,t) is known. Af-
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ĜGGbb to Ĝabj and Ĝkj , respectively, we find N̂t =

100
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Gaa +
∑q

j=1 Ĝabju
′
j,t and from Equation (5b) P̂yy,t = Gaa + 2

∑q
j=1 Ĝabju

′
j,t +

∑q
j=1 Ĝ1ju

′
1,tu

′
j,t

+
∑q

j=1 Ĝ2ju
′
2,tu

′
j,t + · · ·+

∑q
j=1 Ĝqju

′
q,tu

′
j,t

+σ̂2
v +

∑q
j=1 u

′2
j,tσ̂

2
ηj

.
The expression for N̂t/P̂yy,t should be compared with

the corresponding expression forNt/Pyy,t with true pa-
rameter values, and with perfect parameter estimates
we then find N̂t/P̂yy,t ≡ Nt/Pyy,t, i.e., ∆ât ≡ ∆at,

and thus ât ≡ at, provided that the initial value is
â1 ≡ a1. It thus remains to prove that non-perfect pa-
rameter values cannot give N̂t/P̂yy,t ≡ Nt/Pyy,t, and

that â1 ̸= a1 cannot result in ât ≡ at.

All unknown terms in N̂t and P̂yy,t have different in-

put weighting factors u′
j,t, u

′
k,tu

′
j,t or u′2

j,t, where k
and j varies from 1 to q, and where u′

j,t = uj,t−uj,ref .
At any given time, an error in the reference environ-
ment uj,ref for an input variable uj,t, can conceivably
be compensated by an error in the reference environ-
ment for another input variable, or errors in parameter
values, or possibly a combinations of such compensat-
ing errors. But since uj,t varies with time, the effect
of an error in uj,ref also varies with time, and an er-
ror compensation that works at one generation cannot
therefore work at all generations. In a similar way an
error in a parameter value Ĝabj or Ĝkj , can conceivably
be compensated by a combination of errors in reference

environments or in other parameter values, but not in
a way that works at all time steps with different values
of u′

j,t, u
′
k,tu

′
j,t and u′2

j,t.
With persistent excitation of sufficient order (for ex-

ample white noise as part of an input variable), and
sufficiently long data, an error in a reference environ-
ment uj,ref , or in a parameter value Ĝabj or Ĝkj , can-
not therefore, in a way that works for all generations
t in a data series, be compensated by errors in other
reference environments or other parameter values.
Finally, it is self-evident that â1 ̸= a1 cannot result

in ât ≡ at for all t from 1 to T , and that b̂j,1 ̸= bj,1

cannot result in b̂j,t ≡ bj,t for all t from 1 to T . The
system is therefore parameter identifiable.

B. GRAD results for small and
large populations

In order to test the GRAD/PEM optimization method
with population sizes N = 100 and N = 10, 000, true
data is here generated by means of the GRAD Equa-
tions (5a–c). Results are shown in Table A.1. Note
the poor parameter estimates for N = 100, primarily
caused by large errors in ûref .

Table A.1: Estimation and prediction results by means of the GRAD algorithm, with true system responses
generated by means of the GRAD model in Equations (5a–c). Results are based on 10 simulations
with different realizations of all random input variables. The estimated reference value ûref are in
all cases a free variable.
Case 11: Perfect values of u1,t, u2,t and yi,t, with N = 100.
Case 12: As Case 13, but with N = 10, 000.
Case 13: As Case 12, but with measurement errors in u1,t, u2,t and yi,t.

Parameter
True
value

Optimization results
Case 11

Optimization results
Case 12

Optimization results
Case 13

Ĝb1b1 1 1.09± 0.42 1.00± 0.00 1.01± 0.02

Ĝb2b2 0.5 0.57± 0.30 0.50± 0.00 0.50± 0.02

Ĝab1 0 0.14± 0.65 0.01± 0.00 −0.02± 0.08

σ̂2
v 5 5.59± 2.53 4.99± 0.01 4, 93± 0.18

σ2
η1

1 1.10± 0.44 1± 0.00 1.00± 0.04

σ2
η2

0.5 0.60± 0.52 0.50± 0.00 0.52± 0.05

b̂1,init − −5.10± 0.07 −5.13± 0.09 −5.09± 0.08

b̂2,init − −0.05± 0.03 −0.04± 0.04 −0.05± 0.03

ûref 0 −0.07± 0.29 −0.06± 0.05 −0.07± 0.10∑
ε2t,final − (7± 42)10−4 (12± 1)10−8 (18± 6)10−5

∆error
30 ât% − −3± 15 0.34± 0.14 −3.03± 5.04

∆error
30 b̂1,t% − 0± 1 0.00± 0.00 0.27± 0.57

∆error
30 b̂2,t% − 0± 1 0.00± 0.00 0.23± 0.86
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C. MATLAB code for Examples 2, 3 and 4

clear

tic

x=30;

T=60;

N=100;

wsquare =1000;

varz =200;

varu =0.5;

rho =0.25;

Gaa=5;

varv =1* Gaa;

Gab=0;

Gbb1 =1;

Gbb2 =0.5;

Gbb=[Gbb1 0 ; 0 Gbb2];

vareta1 =1* Gbb1;

vareta2 =1* Gbb2;

Paa=Gaa+varv;

Pab=Gab;

Pbb1=Gbb1+vareta1;

Pbb2=Gbb2+vareta2;

G=[Gaa Gab 0 ; Gab Gbb1 0 ; 0 0 Gbb2];

P=[Paa Pab 0 ; Pab Pbb1 0 ; 0 0 Pbb2];

for m=1:10

m

%% Matrix in second part of relationship matrix

for i=1:N

for j=1:N

if i==j dA0(i,j)=0; end

if i==j+1 dA0(i,j)=0.5 -0.25; end

if i==j-1 dA0(i,j)=0.5 -0.25; end

end

end

dA=dA0 +0.25* ones(N,N) -0.25* eye(N);

%% Generate u and theta sequences

uplot=zeros(1,T);

du=zeros(1,T);

dtheta=zeros(1,T);

for i=2:T

du(i)=sqrt(varu)*randn;

dtheta(i)=du(i)*rho*sqrt(varz/(varu))+sqrt(varz*(1-rho ^2))*randn;

if i>10

uplot(i)=(i-10) /20;

end

du2(i)=du(i-1);

end

u10=uplot+du;
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u20=uplot+du2;

theta =-20*uplot -dtheta;

%% Individual population traits around abar , bbar and cbar

a0=zeros(N,T);

b10=zeros(N,T);

b20=zeros(N,T);

a=zeros(N,T);

b1=zeros(N,T);

b2=zeros(N,T);

for t=1:T

a0(:,t)=sqrt(Gaa)*randn(N,1);

b10(:,t)=sqrt(Gbb1)*randn(N,1);

b20(:,t)=sqrt(Gbb2)*randn(N,1);

v(:,t)=sqrt(varv)*randn(N,1);

eta1(:,t)=sqrt(vareta1)*randn(N,1);

eta2(:,t)=sqrt(vareta2)*randn(N,1);

A=eye(N);

if t>30 A=eye(N)+0.25* dA;

if t>40 A=eye(N)+0.5*dA;

if t>50 A=eye(N)+1*dA;

end

end

end

a(:,t)=sqrtm(A)*a0(:,t);

b1(:,t)=sqrtm(A)*b10(:,t);

b2(:,t)=sqrtm(A)*b20(:,t);

a(:,t)=a(:,t)-mean(a(:,t));

b1(:,t)=b1(:,t)-mean(b1(:,t));

b2(:,t)=b2(:,t)-mean(b2(:,t));

v(:,t)=v(:,t)-mean(v(:,t));

eta1(:,t)=eta1(:,t)-mean(eta1(:,t));

eta2(:,t)=eta2(:,t)-mean(eta2(:,t));

end

%% Simulation of true system

bbar10 =-5*ones(1,T+1);

bbar20 =0* ones(1,T+1);

ybar0=-0*ones(1,T);

abar0=zeros(1,T+1);

for t=1:T

% Gaat(t)=Gaa +0.08333333*(t-1); % For Example 3

abar0 (1)=ybar0 (1)-bbar10 (1)*u10(1)-bbar20 (1)*u20(1);

bterm1 =( bbar10(t)+b1(:,t)+eta1(:,t)).*u10(t);

bterm2 =( bbar20(t)+b2(:,t)+eta2(:,t)).*u20(t);

Y0(:,t)=abar0(t)+a(:,t)+v(:,t)+bterm1+bterm2;

W0(:,t)=10* exp(-(Y0(:,t)-theta(t)).^2/(2* wsquare));

W0(:,t)=round(W0(:,t));

Wbar0(t)=mean(W0(:,t));

X=ones(N,1);

U=[u10(t)*eye(N) u20(t)*eye(N)];

r=varv+u10(t)^2* vareta1+u20(t)^2* vareta2;

A=eye(N);

if t>30 A=eye(N)+0.25* dA;
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if t>40 A=eye(N)+0.5*dA;

if t>50 A=eye(N)+1*dA;

end

end

end

G11=Gaa*A;

% G11=Gaat(t)*A; % For Example 3

G12=Gab*A;

G22=Gbb1*A;

G33=Gbb2*A;

Z=[eye(N) U];

Gm=[G11 G12 0*eye(N); G12 G22 0*eye(N) ; 0*eye(N) 0*eye(N) G33];

M=[X'*X X'*Z
Z'*X Z'*Z+r*inv(Gm)];

Ym=[ X'*Y0(:,t) ; Z'*Y0(:,t) ];

effects=inv(M)*Ym;

cova=cov(W0(:,t),effects (2:N+1));

Dabar =((N-1)/N)*cova (1,2)/Wbar0(t);

covb1=cov(W0(:,t),effects(N+2:2*N+1));

Dbbar1 =((N-1)/N)*covb1 (1,2)/Wbar0(t);

covb2=cov(W0(:,t),effects (2*N+2:3*N+1));

Dbbar2 =((N-1)/N)*covb2 (1,2)/Wbar0(t);

abar0(t+1)=abar0(t)+Dabar;

bbar10(t+1)=bbar10(t)+Dbbar1;

bbar20(t+1)=bbar20(t)+Dbbar2;

end

ybar0=mean(Y0);

%% Measurement errors

Y0=Y0+1* rand(N,T) -0.5;

ybar0=mean(Y0);

u10=u10 +0.1* sqrt(varu)*randn;

u20=u20 +0.1* sqrt(varu)*randn;

%% Short data

u1=u10(T-x+1:T);

u2=u20(T-x+1:T);

Y=Y0(:,T-x+1:T);

abar=abar0(T-x+1:T)-ybar0(T-x+1);

bbar1=bbar10(T-x+1:T);

bbar2=bbar20(T-x+1:T);

ybar=ybar0(T-x+1:T)-ybar0(T-x+1);

W=W0(:,T-x+1:T);

Wbar=mean(W);

deltaabar(m)=abar (30)-abar (1);

%% Contraints

Gbb1_min =0; Gbb1_max =10;

Gbb2_min =0; Gbb2_max =10;

% Gbb2_min =0.000001; Gbb2_max =0.000001; % For Example 4

Gab_min =-10; Gab_max =10;

vare_min =0; vare_max =50;
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varw1_min =0; varw1_max =10;

varw2_min =0; varw2_max =10;

% varw2_min =0.000001; varw2_max =0.000001; % For Example 4

bbarinit1_min =-10; bbarinit1_max =0;

bbarinit2_min =-10; bbarinit2_max =10;

Gbbmin =[Gbb1_min ,Gbb2_min ];

Gbbmax =[Gbb1_max ,Gbb2_max ];

varwmin =[varw1_min ,varw2_min ];

varwmax =[varw1_max ,varw2_max ];

bbarinitmin =[ bbarinit1_min bbarinit2_min ];

bbarinitmax =[ bbarinit1_max bbarinit2_max ];

uref_min = -0.0000001; uref_max =0.0000001;

uref_min =-2; uref_max =2;

% uref_min =0.199999; uref_max =0.200001;

% uref_min =0.999999; uref_max =1.000001; % For Table 3

% uref_min = -0.500001; uref_max = -0.499999;

par_lb =[Gbbmin ,Gab_min ,vare_min ,varwmin ,bbarinitmin ,uref_min ];

par_ub =[Gbbmax ,Gab_max ,vare_max ,varwmax ,bbarinitmax ,uref_max ];

par_guess =[zeros (1,7) 1 1];

par_known =[Gaa];

ybarhat_init =0;

%% fmincon:

% dA=zeros(N,N); % For Case 6

Aineq =[]; Bineq =[]; Aeq =[]; Beq =[];

fun_objective_handle_Example_2=...

@(par)fun_objective_Example_2(par ,par_known ,u1 ,u2 ,Y,ybar ,dA ,W,Wbar ,

ybarhat_init ,N,T,x);

fun_constraints_handle_Example_2=...

@(par)fun_constraints_Example_2(par ,par_known ,u1 ,u2 ,Y,ybar ,dA ,W,Wbar ,

ybarhat_init ,N,T,x);

[par_opt ,fval ,exitflag ,output ,lambda ,grad ,hessian] =...

fmincon(fun_objective_handle_Example_2 ,par_guess ,Aineq ,Bineq ,Aeq ,Beq ,par_lb ,

par_ub ,fun_constraints_handle_Example_2);

output

fval

Fval(m)=fval;

opt_results(m,:)=par_opt;

%% Simulation with adapted model

Gbb1opt=par_opt (1);

Gbb2opt=par_opt (2);

Gabopt=par_opt (3);

vareopt=par_opt (4);

varw1opt=par_opt (5);

varw2opt=par_opt (6);
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bbar1opt=par_opt (7);

bbar2opt=par_opt (8);

urefopt=par_opt (9);

u1opt=u1 -urefopt;

u2opt=u2 -urefopt;

bbarhat1=bbar1opt*ones(x,1);

bbarhat2=bbar2opt*ones(x,1);

ybarhat =0* ones(x,1);

% Gbb1opt=Gbb1; % For use in Table 4, Case 7

% Gbb2opt=Gbb2;

% Gabopt=Gab;

% vareopt=Gaa;

% varw1opt=Gbb1;

% varw2opt=Gbb2;

% bbar1opt=bbar10 (31);

% bbar2opt=bbar20 (31);

% bbarhat1=bbar1opt*ones(x,1);

% bbarhat2=bbar2opt*ones(x,1);

% u1opt=u1;

% u2opt=u2;

for t=1:x-1

abarhat (1)=ybar (1)-bbarhat1 (1)*u1opt (1)-bbarhat2 (1)*u2opt (1);

X=ones(N,1);

U=[ u1opt(t)*eye(N) u2opt(t)*eye(N)];

r=vareopt+u1opt(t)^2* varw1opt+u2opt(t)^2* varw2opt;

A=eye(N);

if t>0 A=eye(N)+0.25* dA;

if t>10 A=eye(N)+0.5*dA;

if t>20 A=eye(N)+1*dA;

end

end

end

G11=Gaa*A;

G12=Gabopt*A;

G22=Gbb1opt*A;

G33=Gbb2opt*A;

Z=[eye(N) U];

Gm=[G11 G12 0*eye(N); G12 G22 0*eye(N) ; 0*eye(N) 0*eye(N) G33];

M=[X'*X X'*Z
Z'*X Z'*Z+r*inv(Gm)];

Ym=[ X'*Y(:,t) ; Z'*Y(:,t) ];

effects=inv(M)*Ym;

cova=cov(W(:,t),effects (2:N+1));

Dabarhat =((N-1)/N)*cova (1,2)/Wbar(t);

covb1=cov(W(:,t),effects(N+2:2*N+1));

Dbbarhat1 =((N-1)/N)*covb1 (1,2)/Wbar(t);

covb2=cov(W(:,t),effects (2*N+2:3*N+1));

Dbbarhat2 =((N-1)/N)*covb2 (1,2)/Wbar(t);

abarhat(t+1)=abarhat(t)+Dabarhat;

bbarhat1(t+1)=bbarhat1(t)+Dbbarhat1;

bbarhat2(t+1)=bbarhat2(t)+Dbbarhat2;
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ybarhat(t+1)=abarhat(t+1)+bbarhat1(t+1)*u1opt(t+1)+bbarhat2(t+1)*u2opt(t

+1);

end

%% GRAD predictions

bbarhat1G=bbar1opt*ones(x,1);

bbarhat2G=bbar2opt*ones(x,1);

ybarhatG =-0*ones(x,1);

for t=1:x-1

abarhatG (1)=ybar (1)-bbarhat1G (1)*u1opt (1)-bbarhat2G (1)*u2opt (1);

Paaopt=Gaa+vareopt;

Pbb1opt=Gbb1opt+varw1opt;

Pbb2opt=Gbb2opt+varw2opt;

Pyy=Paaopt +2* Gabopt*u1opt(t)+u1opt(t)^2* Pbb1opt+u2opt(t)^2* Pbb2opt;

covWy =(N-1)*cov(W(:,t),Y(:,t))/N;

betay=inv(Pyy)*covWy (1,2)/Wbar(t);

abarhatG(t+1)=abarhatG(t)+(Gaa+Gabopt*u1opt(t))*betay;

bbarhat1G(t+1)=bbarhat1G(t)+( Gabopt+Gbb1opt*u1opt(t))*betay;

bbarhat2G(t+1)=bbarhat2G(t)+(0+ Gbb2opt*u2opt(t))*betay;

end

%% Results

Totalabar=abar (1)-abar(x);

Totalabarhat=abarhat (1)-abarhat(x);

Rel_total_abar_error(m)=( Totalabarhat -Totalabar)/Totalabar;

Totalbbar1=bbar1 (1)-bbar1(x);

Totalbbarhat1=bbarhat1 (1)-bbarhat1(x);

Rel_total_bbar1_error(m)=( Totalbbarhat1 -Totalbbar1)/Totalbbar1;

Totalbbar2=bbar2 (1)-bbar2(x);

Totalbbarhat2=bbarhat2 (1)-bbarhat2(x);

Rel_total_bbar2_error(m)=( Totalbbarhat2 -Totalbbar2)/Totalbbar2;

Totalabar=abar (1)-abar(x);

TotalabarhatG=abarhatG (1)-abarhatG(x);

Rel_total_abar_error_G(m)=( TotalabarhatG -Totalabar)/Totalabar;

Totalbbar1G=bbar1 (1)-bbar1(x);

Totalbbarhat1G=bbarhat1G (1)-bbarhat1G(x);

Rel_total_bbar1_error_G(m)=( Totalbbarhat1G -Totalbbar1)/Totalbbar1;

Totalbbar2=bbar2 (1)-bbar2(x);

Totalbbarhat2G=bbarhat2G (1)-bbarhat2G(x);

Rel_total_bbar2_error_G(m)=( Totalbbarhat2G -Totalbbar2)/Totalbbar2;

end

%% Plots

ybar=[NaN*ones(1,T-x) ybar];

ybarhat =[NaN*ones(1,T-x) ybarhat '];
abar=[NaN*ones(1,T-x) abar];

abarhat =[NaN*ones(1,T-x) abarhat ];

abarhatG =[NaN*ones(1,T-x) abarhatG ];

bbar1=[NaN*ones(1,T-x) bbar1 ];

bbarhat1 =[NaN*ones(1,T-x) bbarhat1 '];
bbarhat1G =[NaN*ones(1,T-x) bbarhat1G '];
bbar2=[NaN*ones(1,T-x) bbar2 ];
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bbarhat2 =[NaN*ones(1,T-x) bbarhat2 '];
bbarhat2G =[NaN*ones(1,T-x) bbarhat2G '];

figure (2)

subplot (3,2,1) % (3,2,2) for Panel d)

plot(ybar ,'b'), hold on

plot(ybarhat ,'.b')
plot(abar ,'g','LineWidth ' ,2)
plot(abarhat ,'.k','LineWidth ' ,2)
plot(abarhatG ,':m','LineWidth ' ,2)
title(' Mean phenotype and intercept ')
ylabel('days') % Don 't use for Panel d)

axis([T-x T -20 10]), hold off , grid

text(T-x-1.5,15,'a)','FontSize ' ,14) % d) for Panel d)

subplot (3,2,3) % (3,2,4) for Panel e)

plot(bbar1 ,'g','LineWidth ' ,2), hold on

plot(bbarhat1 ,'.k','LineWidth ' ,2)
plot(bbarhat1G ,':m','LineWidth ' ,2)
hold off , grid

title('Mean plasticity slope one')
ylabel('days/^oC') % Don 't use for Panel e)

axis([T-x T -6.5 -4.5])

text(T-x-1.5,-4.16,'b','FontSize ' ,14) % e) for Panel e)

subplot (3,2,5) % (3,2,6) for Panel f)

plot(bbar2 ,'g','LineWidth ' ,2), hold on

plot(bbarhat2 ,'.k','LineWidth ' ,2)
plot(bbarhat2G ,':m','LineWidth ' ,2)
hold off , grid

xlabel('Generation [t]')
title('Mean plasticity slope two')
ylabel('days/^oC') % Don 't use for Panel f)

axis([T-x T -1 0.5])

text(T-x-1.5 ,0.75 ,'c)','FontSize ' ,14) % f) for Panel f)

%% Total results

Mean=mean(opt_results)

Std=std(opt_results)

Mean_abar_error=mean(Rel_total_abar_error);

Std_abar_error=std(Rel_total_abar_error);

abar_results =[ Mean_abar_error Std_abar_error]

Mean_bbar1_error=mean(Rel_total_bbar1_error);

Std_bbar1_error=std(Rel_total_bbar1_error);

bbar1_results =[ Mean_bbar1_error Std_bbar1_error]

Mean_bbar2_error=mean(Rel_total_bbar2_error);

Std_bbar2_error=std(Rel_total_bbar2_error);

bbar2_results =[ Mean_bbar2_error Std_bbar2_error]

Mean_abar_error_G=mean(Rel_total_abar_error_G);

Std_abar_error_G=std(Rel_total_abar_error_G);

abar_results_G =[ Mean_abar_error_G Std_abar_error_G]

Mean_bbar1_error_G=mean(Rel_total_bbar1_error_G);
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Std_bbar1_error_G=std(Rel_total_bbar1_error_G);

bbar1_results_G =[ Mean_bbar1_error_G Std_bbar1_error_G]

Mean_bbar2_error_G=mean(Rel_total_bbar2_error_G);

Std_bbar2_error_G=std(Rel_total_bbar2_error_G);

bbar2_results_G =[ Mean_bbar2_error_G Std_bbar2_error_G]

Mean_fval=mean(Fval);

Std_fval=std(Fval);

fval_results =[ Mean_fval Std_fval]

toc

function f = fun_objective_Example_2(par ,par_known ,u1,u2,Y,ybar ,dA,W,Wbar ,

ybarhat_init ,N,T,x)

Gbb1e=par(1);

Gbb2e=par(2);

Gabe=par (3);

varee=par(4);

varw1e=par (5);

varw2e=par (6);

bbarhat1_init=par(7);

bbarhat2_init=par(8);

uref=par (9);

u1e=u1 -uref;

u2e=u2 -uref;

Gaa=par_known (1);

u1e=u1;

u2e=u2;

bbarhat1=bbarhat1_init*ones(x+1,1);

bbarhat2=bbarhat2_init*ones(x+1,1);

ybarhat=ybarhat_init*ones(x+1,1);

for t=1:x-1

abarhat (1)=ybar (1)-bbarhat1 (1)*u1e (1)-bbarhat2 (1)*u2e(1);

X=ones(N,1);

U=[u1e(t)*eye(N) u2e(t)*eye(N)];

r=varee+u1e(t)^2* varw1e+u2e(t)^2* varw2e;

A=eye(N);

if t>0 A=eye(N)+0.25* dA;

if t>10 A=eye(N)+0.5*dA;

if t>20 A=eye(N)+1*dA;

end

end

end

G11=Gaa*A;

G12=Gabe*A;

G22=Gbb1e*A;

G33=Gbb2e*A;

Z=[eye(N) U];

Gm=[G11 G12 0*eye(N) ; G12 G22 0*eye(N) ; 0*eye(N) 0*eye(N) G33];

M=[X'*X X'*Z
Z'*X Z'*Z+r*pinv(Gm)];

Ym=[ X'*Y(:,t) ; Z'*Y(:,t) ];

effects=inv(M)*Ym;
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beta(t+1)=effects (1);

cova=cov(W(:,t),effects (2:N+1));

Dabarhat =((N-1)/N)*cova (1,2)/Wbar(t);

covb1=cov(W(:,t),effects(N+2:2*N+1));

Dbbarhat1 =((N-1)/N)*covb1 (1,2)/Wbar(t);

covb2=cov(W(:,t),effects (2*N+2:3*N+1));

Dbbarhat2 =((N-1)/N)*covb2 (1,2)/Wbar(t);

abarhat(t+1)=abarhat(t)+Dabarhat;

bbarhat1(t+1)=bbarhat1(t)+Dbbarhat1;

bbarhat2(t+1)=bbarhat2(t)+Dbbarhat2;

ybarhat(t+1)=abarhat(t+1)+bbarhat1(t+1)*u1e(t+1)+bbarhat2(t+1)*u2e(t+1);

end

f=sum((( ybar (1:x)'-ybarhat (1:x)).^2)/x);
end

function [cineq ,ceq]= fun_constraints_Example_2(par ,par_known ,u1,u2,Y,ybar ,dA

,W,Wbar ,ybarhat_init ,N,T,x)

cineq = [];

ceq = [];

end
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