
Modeling, Identification and Control, Vol. 43, No. 4, 2022, pp. 131–140, ISSN 1890–1328

A BLUP derivation of the multivariate breeder’s
equation, with an elucidation of errors in BLUP
variance estimates, and a prediction method for

inbred populations

Rolf Ergon 1

1University of South-Eastern Norway, P.O. Box 203, N-3901 Porsgrunn, Norway. E-mail: Rolf Ergon@usn.no

Abstract

The multivariate breeder’s equation Lande (1979) was derived from the Price equation Price (1970, 1972).
Here, I present a derivation based on the BLUP (best linear unbiased predictions) equations in matrix form,
first given in summation form by Henderson (1950). The derivation makes use of a comparison with the
known form of the multivariate breeder’s equation, and it is therefore not an independent derivation. The
alternative derivation does, however, clarify why and to which extent the variances of BLUP predictions
of random effects are underestimated. The BLUP random effects can in fact be used for prediction of
phenotypic responses by use of the Robertson-Price identity, Robertson (1966), Price (1970, 1972). The
BLUP derivation also leads to a prediction method for populations with inbreeding, i.e., where the additive
genetic relationship matrix departs from a unity matrix, and where the multivariate breeder’s equation
therefore will fail.
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1. Introduction

The multivariate breeder’s equation for correlated phe-
notypic traits,

∆ȳt = GP−1 1

W̄t
cov(Wi,t,yi,t) (1)

was originally developed by Lande (1979) and Lande
and Arnold (1983) using the Price equation, Price
(1970, 1972), as a starting point. Here, ∆ȳt is the
incremental change in the vector of mean trait values
from one generation to the next, while yi,t is a vector of
individual traits at generation t. The G matrix is the
covariance matrix of the additive genetic effects, while
P is the phenotypic covariance matrix, and G and P
are here assumed to be constant. Wi,t and W̄t are the

individual and population mean fitness, respectively.
Lande’s equation has since it first appeared been an
important tool in quantitative genetics.

Evolution of mean traits according to Eq. (1) seeks
to maximize the expected geometric mean fitness, Er-
gon (2022a), and in a theoretical study this requires
an individual fitness function. Such a function will in-
clude a vector of phenotypic values θt that maximize
the individual fitness, as exemplified in Ergon (2019).
Changes of the elements in θt as functions of environ-
mental factors are thus the driving force of the evo-
lution. Environmental factors can in addition have a
direct influence on the evolution Ergon (2019).

In this article, I present a novel derivation of the mul-
tivariate breeder’s equation, based on the linear mixed
model BLUP (best linear unbiased predictions) equa-
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tion in matrix form, Ch. 26, Walsh and Lynch (2018).
I will assume non-overlapping generations, and in cases
with sexual reproduction I will assume a hypothetical
single parent (mid-parent) occupying an intermediate
phenotypic position between the two parents. Note
that the BLUP equations are considerably older than
the Price equation, although then in summation form,
Henderson (1950). My derivation makes use of a com-
parison with Eq. (1), and it is therefore not an inde-
pendent derivation. It does, however, clarify why and
to which extent the variances of BLUP predictions of
random effects are underestimated. The BLUP ran-
dom effects can in fact be used for prediction of ∆ȳt by
use of the Robertson-Price identity, Robertson (1966),
Price (1970, 1972). A main advantage with the BLUP
derivation is also that it easily can be modified to in-
clude a genetic relationship matrix, Ch. 26, Walsh and
Lynch (2018), resulting in a prediction method for in-
bred populations. For this type of inbred populations,
the genetic relationship information is simply ignored
when Eq. (1) is used. An additional possibility is that
the BLUP solution may incorporate additional fixed
effects, which in many cases is advantageous, Ch. 19,
Walsh and Lynch (2018).

Accepting the BLUP equations in matrix form as
given, the BLUP derivation of Eq. (1) is in some ways
simpler than the original derivation, in that only basic
matrix algebra (including Kronecker products) but no
multivariate statistical theory is needed. This is so be-
cause no assumptions of normally distributed additive
genetic and non-additive effects are needed in order to
find the mixed model equations, Robinson (1991). This
does not, however, imply that Eq. (1) and its BLUP
counterpart give correct results for non-normal data.
The reason for this is that Eq. (1) makes use of only
mean values and variances of additive genetic and en-
vironmental effects, which means that influences from
third and higher order statistical moments are ignored.

The BLUP derivation is given in Section 2, including
the necessary assumptions. Simulations that verify the
theoretical results are presented in Section 3, and a
short summary and discussion is finally given in Section
4. MATLAB simulation code is given in the Appendix.

2. Theory

2.1. Assumptions

In Lande (1979) the multivariate breeder’s equation (1)
was developed with the Price equation for selection in
a population, Price (1970, 1972), as starting point. Ac-
cording to the Price equation in its multivariate form,
the evolution of a mean phenotypic trait values in a

p× 1 vector ȳt is described by

W̄t∆ȳt = cov(Wi,t,yi,t) + E[Wi,t(ȳ
offspring
i,t − yi,t)]

(2)
where ∆ȳt = ȳt+1 − ȳt are the incremental changes
from generation to generation, while yi,t is a p × 1
vector of individual trait values. Here, Wi,t and W̄t

are the individual and mean fitness, respectively, while
ȳoffspring
i,t is the p×1 vector of mean trait value of the

offspring (and the parent if it survives) of individual i
in generation t.

In Ergon (2019) it is shown how Eq. (2) leads to the
multivariate breeder’s equation (1) by means of five
assumptions:

1. The vector yi,t of individual traits is the sum of
independent additive genetic effects xi,t and envi-
ronmental effects ei,t (including non-additive ge-
netic effects), i.e., yi,t = xi,t + ei,t.

2. The non-additive effects ei,t are zero mean, inde-
pendent and identically distributed (iid) random
variables.

3. There are no expected fitness weighted changes
in the mean additive genetic effects x̄t from
one generation to the next besides selection, i.e.,
E[Wi,t(x̄

offspring
i,t − xi,t)] = 0.

4. The additive genetic effects xi,t and x̄offspring
i,t ,

and the environmental effects ei,t and ēoffspring
i,t ,

are all jointly multivariate normal.

5. The additive genetic effects xi,t and fitness Wi,t, as
well as the non-additive effects ei,t and Wi,t, and

ēoffspring
i,t and Wi,t, are conditionally independent

given the phenotypic trait vector yi,t. This implies

that xi,t, ēi,t and ēoffspring
i,t influence fitness only

through the values of yi,t.

2.2. A BLUP derivation of the
multivariate breeder’s equation

Initially assume the simple case where an individual
phenotypic trait yij,t in a vector yj,t at a time t (a
generation) has an additive genetic effect xij,t = ȳj,t +
aij,t, and an independent non-additive (environmental)
effect eij,t (Assumption 1). Also assume that the mean
values of aij,t and eij,t are zero (Assumption 2). We
thus have the individual traits

yij,t = ȳj,t + aij,t + eij,t (3)

where ȳj,t is the mean phenotypic value in the popu-
lation. For a population with N individuals this leads
to

yj,t = 1N ȳj,t + aj,t + ej,t (4)
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where yj,t, 1N , aj,t and ej,t are N × 1 column vectors.
In the multivariate case with p phenotypic traits, Eq.

(4) gives
y1,t

y2,t

...
yp,t

 =


1N ȳ1,t

1N ȳ2,t

...
1N ȳp,t

+


a1,t

a2,t

...
ap,t

+


e1,t

e2,t

...
ep,t

 (5)

or in a standard linear mixed model form, Ch. 26,
Lynch M (1998),

yt = Xȳt + Zat + et (6)

where X =


1N 0 · · · 0
0 1N · · · 0
...

...
. . .

...
0 0 · · · 1N

, ȳt =


ȳ1,t

ȳ2,t

...
ȳp,t

,

at =


a1,t

a2,t

...
ap,t

 and et =


e1,t

e2,t

...
ep,t

, while Z = IpN is

the pN × pN identity matrix.
We must in general assume that the random effects

aj,t may be correlated, with a covariance matrix (here
assumed to be constant)

G = E




ai1
ai2
...
aip

 [ ai1 ai2 · · · aip
]


=


G11 G12 · · · G1p

G21 G22 · · · G2p

...
...

. . .
...

G1p G2p · · · Gpp

 (7)

Also assume that the residuals ej,t are independent
and identically distributed (iid), with ēj,t = 0 and
constant variances rj , resulting in a covariance matrix

R =


r1 0 · · · 0
0 r2 · · · 0
...

...
. . .

...
0 0 · · · rp


For use in a general multivariate BLUP equation we

also need to introduce the N ×N genetic relationship
matrix At, Ch. 26, Lynch M (1998), and the Kronecker
covariance matrices G̃ = G ⊗ At and R̃ = R ⊗ IN ,
where IN is the N × N identity matrix. Here, ⊗ is
the Kronecker product operator, which means that all
elements in G and R should be multiplied by At and
IN , respectively.

From the mixed model, Eq. (6), follows the mul-
tivariate BLUP equation in matrix form, Henderson

(1950), Ch. 26, Lynch M (1998),[
XT R̃−1X XT R̃−1Z

ZT R̃−1X ZT R̃−1Z + G̃−1

] [
ˆ̄yt

ât

]
=

[
XT R̃−1yt

ZT R̃−1yt

]
(8)

In order to find the multivariate breeder’s equation,
we must here assume At = IN , such that G̃ = G ⊗
IN . For the further development we need the following
lemma:

Lemma 1 Assuming a genetic relationship matrix
At = IN , the mean values of âj,t and ˆ̄yj,t in Eq. (8)
are zero and ȳj,t, respectively, i.e., ¯̂aj,t = ˆ̄aj,t = 0 and
ˆ̄yj,t = ȳj,t.
Proof: Because Z = IpN , Eq. (8) after elimination

of XT R̃−1 gives ât = yt − Xˆ̄yt, from which follows
that for all values of j from 1 to p

âj,t = yj,t − 1N ˆ̄yj,t (9)

From Eq. (8) with Z = IpN and elimination of R̃−1,
also follows that(

IpN + R̃G̃−1
)

ât = yt −Xˆ̄yt (10)

which, after introduction of a pN × pN matrix Q =
IpN + R̃G̃−1, with N × N block matrices Qjk for j
and k from 1 to p, gives

Qj1â1,t + Qj2â2,t + · · ·+ Qjpâp,t = yj,t−1N ˆ̄yj,t (11)

Since the block matrices Qjk in general are non-zero,
we will by taking mean values of all terms in Eqs. (9)-

(11) find two equations for ȳj,t− 1N ˆ̄yj,t that are equal
only when ¯̂aj,t = ˆ̄aj,t = 0 for all j from 1 to p. Since

1N ˆ̄yj,t = ˆ̄yj,t, Eq. (11) thus gives ˆ̄yj,t = ȳj,t.
Next, we must find how fitness affects the mean trait

predictions for the offspring of any given parent gener-
ation. In order to do that we must assume that there
are no expected changes in the mean phenotypic val-
ues ȳt from one generation to the next, beside those
caused by selection (Assumption 3). We must also as-
sume that the individual fitness Wi,t is determined by
the individual phenotypic traits yij,t for all values of j
(Assumption 5). As a measure of individual fitness, we
may here use the number of offspring.

We may now introduce the N ×N diagonal relative
fitness matrix Ft = diag(Wi,t)/W̄t, with Wi,t/W̄t for
i from 1 to N along the main diagonal, and the block
diagonal pN × pN matrix F̃ = diag(Ft). After multi-
plication from the left by F̃t, Eq. (10) can be written
as

F̃t

(
IpN + R̃G̃−1

)
F̃−1

t F̃tât = F̃ty − F̃tXˆ̄yt (12)

Here, the block matrices Qjk in IpN + R̃G̃−1 are N ×
N diagonal matrices, and for that reason F̃t(IpN +
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R̃G̃−1)F̃−1
t = IpN + R̃G̃−1 =

(
G̃ + R̃

)
G̃−1. Eq.

(12) therefore results in

F̃tât = G̃(G̃ + R̃)−1(F̃ty − F̃tXˆ̄yt) (13)

Using G + R = P, and the mixed product property
A⊗B = (A⊗ I)(B⊗ I) = (A ·B)⊗ I, Eq. (13) gives

Ftâ1,t

Ftâ2,t

...
Ftâp,t

 =
(
GP−1

)
⊗ IN


Fty1,t − Ft1N ˆ̄y1,t

Fty2,t − Ft1N ˆ̄y2,t

...
Ftyp,t − Ft1N ˆ̄yp,t


(14)

Taking mean values on both sides of Eq. (14), and
utilizing that ˆ̄yj,t = ȳj,t (Lemma 1), we find the key
equation

Ftâ1,t

Ftâ2,t

...

Ftâp,t

 = GP−1


Fty1,t − Ft1N ȳ1,t

Fty2,t − Ft1N ȳ2,t

...
Ftyp,t − Ft1N ȳp,t

 (15)

We now find that the elements in the column vector on
the righthand side of Eq. (15) are

Ftyj,t − Ft1N ȳj,t =
1

W̄t

(
1

N

N∑
i=1

Wi,tyij,t − W̄tȳj,t

)

=
1

W̄t
cov(Wi,t, yij,t) (16)

where cov(Wi,t, yij,t) is applied on the parent genera-
tion. Eqs. (15) and (16) thus give

Ftâ1,t

Ftâ2,t

...

Ftâp,t

 = GP−1 1

W̄t
cov(Wi,t,yi,t) (17)

Here, we recognize the righthand side of Eq. (1), which
necessarily means that the elements on the lefthand
side are Ft ˆaj,t = ∆ȳj,t.

The BLUP derivation of Eq. (1), leading to Eq. (17),
also leads to the following theorem:

Theorem 1 Assuming a genetic relationship matrix
At = IN , the incremental change ∆ȳj,t in a mean phe-
notypic trait from one generation to the next is given
by the mean value of the product Ftâj,t, where âj,t is
found from the Eq. (8), i.e.,

∆ȳj,t = Ftâj,t (18)

An alternative expression for the incremental pheno-
typic changes is given by the following theorem:

Theorem 2 Assuming a genetic relationship matrix
At = IN , the incremental change ∆ȳj,t in a phenotypic

trait from one generation to the next can be found from
the Robertson-Price identity applied on the estimated
random effect,

∆ȳj,t =
1

W̄t
cov (Wi,t, âij,t) (19)

Proof: From Lemma 1 follows that ¯̂aj,t = ˆ̄aj,t = 0,
and Eq. (18) can thus be developed as

∆ȳj,t = Ftâj,t =
1

W̄t

(
1

N

N∑
i=1

Wi,tâij,t − W̄ ¯̂aj,t

)

=
1

W̄t
cov(Wi,t, âij,t) (20)

In summary we thus have three methods which for
a genetic relationship matrix At = IN give identi-
cal results for the incremental changes in phenotypic
traits, i) the multivariate breeder’s equation (1), ii) the
BLUP updating equation (18), and iii) the Robertson-
Price identity (19). Note, however, that the two BLUP
methods can be used also for inbred populations with
At 6= IN , where the multivariate breeder’s equation
will fail.

Finally note that the derivation of Equation (17)
made use of four of the five assumptions used in the
derivation based on the Price equation, as presented
in Ergon (2019). The assumption of jointly multivari-
ate normal random effects (Assumption 4) was used
only indirectly, in that we relied on a recognition of
the righthand side of Eq. (1).

2.3. Errors in BLUP variance estimation

It is well known that BLUP consistently underesti-
mates the variances of the random effects, and this
has been seen as a serious problem for applications on
wild populations, Hadfield (2010). However, it follows
from Theorem 2 that the underestimation of var(âij,t)
for all j is just what is needed in order to obtain the
same results from the Robertson-Price identity (Theo-
rem 2) and the multivariate breeder’s equation. This
is most easily seen in the univariate case, with G = g
and R = r, where Eq. (1) and the Robertson-Price
identity (19) give

∆ȳt =
g

g + r

1

W̄t
cov(Wi,t, yi,t)

=
1

W̄t
cov

(
Wi,t,

g

g + r
(ai,t + ei,t)

)
=

1

W̄t
cov(Wi,t, âi,t) (21)

Here, we have âi,t = g
g+r (ai,t + ei,t), and thus

var(âi,t) =
(

g
g+r

)2

(g + r) = g2

g+r , while var(ai,t) = g.
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This can be generalized into

∆ȳt =


∆ȳ1,t

∆ȳ2,t

...
∆ȳp,t



= GP−1 1

W̄t


cov(Wi,t, ai1,t + ei1,t)
cov(Wi,t, ai2,t + ei2,t)

...
cov(Wi,t, aip,t + eip,t)


=

1

W̄t
cov(Wi,t,GP−1(aij,t + eij,t)) (22)

where aij,t and eij,t are p×1 vectors of additive genetic
and environmental effects for a given individual. We
thus find the variance of a given vector âj,t as the vari-
ance of the mean centered row vector j in the matrix

H = GP−1
a11,t + e11,t a21,t + e21,t · · · aN1,t + eN1,t

a12,t + e12,t a22,t + e22,t · · · aN2,t + eN2,t

...
...

. . .
...

a1p,t + e1p,t a2p,t + e2p,t · · · aNp,t + eNp,t


(23)

Note that we for limited population sizes must use
mean centered row vectors in order to avoid conflicts
with Lemma 1.

2.4. An alternative proof of Theorem 2

According to Lemma 1 we have that ¯̂aj,t = ˆ̄aj,t = 0
and ˆ̄yj,t = ȳj,t. From Eq. (8), with Z = IpN , thus
follows 

â1,t − 0
â2,t − 0

...
âp,t − 0

 =

(R̃−1 + G̃−1)−1R̃−1


y1,t − 1N ȳ1,t

y2,t − 1N ȳ2,t

...
yp,t − 1N ȳp,t

 (24)

where âj,t = [â1j,t â2j,t · · · âNj,t]
T and yj,t =

[y1j,t y2j,t · · · yNj,t]
T . Using the mixed product prop-

erty Ã⊗B̃ = (A⊗I)(B⊗I) = (A ·B)⊗I, we may here

write (R̃−1 + G̃−1)−1R̃−1 = ((R−1 + G−1)−1R−1) ⊗
IN = (G(G + R)−1)⊗ IN . Row permutations on both
sides of Eq. (24), and multiplication by (Wi,t−W̄t)/W̄t

now leads to an expectations equation for any chosen

individual,

1

W̄t
E

(Wi,t − W̄t)


âi1,t − 0
âi2,t − 0

...
âip,t − 0


 =

G(G + R)−1 1

W̄t
E

(Wi,t − W̄t)


yi1,t − ȳ1,t

yi2,t − ȳ2,t

...
yip,t − ȳp,t




(25)

where G + R = P. We thus find

1

W̄t
cov(Wi,t, âi,t) = GP−1 1

W̄t
cov(Wi,t,yi,t) (26)

which proves that the multivariate Roberson-Price
identity applied on âi,t gives the same result as the
multivariate breeder’s equation applied on yi,t.

3. Simulation results

In order to verify Theorems 1 and 2, a population as
described in Section 2 with three phenotypic traits was
used, y1,t

y2,t

y3,t

 =

 1N ȳ1,t

1N ȳ2,t

1N ȳ3,t

+

 a1,t

a2,t

a3,t

+

 e1,t

e2,t

e3,t

 (27)

with parameter values as given in Fig. 1, including
G12 6= 0. The individual fitness function was rounded
values of

Wi,t = 10exp

(
− 1

2ω2

(
y2
i1,t + y2

i2,t + y2
i3,t

))
(28)

i.e., number of offspring as integer numbers from 0 to
10. The value of ω2 is given in Fig. 1. Eq. (28)
assumes that the individual fitness is maximized for
yi1,t = yi2,t = yi2,t = 0.

The evolution of ȳ1,t, ȳ2,t and ȳ3,t from initial val-
ues different from zero towards zero, was simulated in
MATLAB by use of three methods. New values in the
random vectors a1,t, a2,t, a3,t, e1,t, e2,t and e3,t were at
each new generation drawn from normal distributions
defined by the values of G11, G22, G33, G12, G13, G23,
r1, r2 and r3, and these random inputs were used in
all of the three simulations. First, the responses were
found by use of the multivariate breeder’s equation (1),
with fitness values found from Eq. (28) (see MATLAB
code in Appendix A). Generations were assumed to be
non-overlapping. Typical responses are shown in Fig.
1.
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Figure 1: Evolution of mean phenotypic values towards zero, found by use of normal data and three methods:

i) the multivariate breeder’s equation ∆ȳt = GP−1 1
W̄t

cov(Wi,t,yi,t) (circles), ii) the BLUP equation

(8) and the updating equation ∆ȳj,t = Ftâj,t (dots), and iii) the Robertson-Price identity ∆ȳt =
1
W̄t

cov(Wi,t, âi,t) (squares). Panels a), b) and c) show results with a relationship matrix At = IN ,

while panels d), e) and f) show results for At according to Eq. (29). Parameter values were G11 =
G22 = G33 = 0.5, G12 = G21 = 0.25, G13 = G31 = 0, G23 = G32 = 0, and r1 = r2 = r3 = 0.25. The
population size was N = 100, and the width of the fitness function (28) was ω2 = 10.

Second, the simulations were repeated by use of the
BLUP equation (8), with a genetic relationship matrix
At = IN , and the prediction equation (18) (Theorem
1), i.e., ȳ1,t+1 = ȳ1,t + Ftâ1,t, ȳ2,t+1 = ȳ2,t + Ftâ2,t

and ȳ3,t+1 = ȳ3,t + Ftâ3,t, with fitness values as
found in the first simulation. Third, the responses
were also simulated by use of the Roberson-Price iden-
tity ∆ȳt = 1

W̄t
cov(Wi,t, âi,t) (Theorem 2), again with

At = IN and fitness values as found in the first sim-
ulation. The covariances in the first and third meth-
ods were computed as (N − 1)cov(Wi,t, zi,t)/N , where
cov(Wi,t, zi,t) is the appropriate MATLAB function.
As shown in Ergon (2019), this follows from the defi-

nition of the covariance function in the Price equation
(2). As shown in Fig. 1, the results found by the three
methods are identical with a population size N = 100,
and this is the case for population sizes down to N = 2.

As a test, the simulations were repeated with a rela-
tionship matrix for a population with a high degree of
inbreeding, as shown for N = 6 in Eq. (29), As shown
in Fig. 1, this gave different results for the three meth-
ods. In this case new random effects at each new gener-
ation were found as a1,t = M

√
Ata10,t, a2,t = M

√
Ata20,t

and a3,t = M
√

Ata30,t, with a10,t, a20,t and a30,t drawn
from normal distributions with the given values of G11,
G22, G33, G12, G13 and G23.
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(29)

Here, M
√

At is the matrix square root, i.e.,
M
√

At
M
√

At = At, and the new random effects were
mean centered. This typically resulted in var(a1,t) =
var(a2,t) = var(a3,t) = 0.35, and cov(a1,t,a2,t) = 0.22,
i.e., reduced as compared with the nominal values,
which were 0.5 and 0.25, respectively. The main point
is that the results from the three methods are not iden-
tical when At 6= IN . As shown in Fig. 1, there are mi-
nor differences also between the two BLUP methods,
but these differences are smaller when the population
size is larger (see Section 4 for discussion).

The results in Fig. 1 were obtained with random in-
puts generated by the MATLAB function randn, which
generates normally distributed data. If instead the
function rand was used to generate random inputs that
were uniformly distributed in the interval [−0.5, 0.5],
the responses found by the three methods described
were still identical when At = IN . However, because
the variances of the random inputs with use of the rand
function were reduced by approximately a factor ten,
the responses were approximately ten times slower. As
a final test, uniformly distributed samples in the inter-
val [0, 1] with variance 1 were added to a1,t, resulting
in clearly skewed data. With At = IN , the responses
found by the three methods described were still identi-
cal, although they were all wrong, because the effects of
third and higher order statistical moments are ignored
for non-normal data.

Sampling variances of the random effects were com-
puted in two different ways, with results as shown in
Table 1. Note that the results for the two methods are
identical, and this is true for population sizes down to
N = 2.

4. Summary and discussion

The multivariate breeder’s equation of Lande (1979)
and Lande and Arnold (1983), Eq. (1), was originally
derived from the Price equation, Price (1970), Price
(1972), assuming normally distributed additive genetic
and environmental effects. Here, I show that the same
equation can be derived from the BLUP equations in
matrix form, originally developed by Henderson (1950)
(although then in summation form), and use of a ge-
netic relationship matrix At = IN , where N is the

var(âi1,t) var(âi2,t) var(âi3,t)
Nominal 0.5 0.5 0.5

True 0.5188 0.5712 0.4093
Method 1 0.3595 0.3971 0.2420
Method 2 0.3595 0.3971 0.2420

Table 1: Sampling variances of the random effects at
a specific time t, computed by use of N =
100 and two methods, with use of At = IN :
Method 1: Use of var(âij,t), where âj,t is
found from Eq. (8). Method 2: Use of the
variance of row vector j in the matrix H ac-
cording to Eq. (23), with known values of ai,t

and ei,t.

population size. I show that this alternative derivation
requires the same assumptions as a derivation from the
Price equation, Ergon (2019), except for the normal-
ity assumption. Note, however, that the derivation in
Section 2 relies on a development where the righthand
side of Eq. (17) is recognized as the righthand side of
Eq. (1), and that the normality assumption therefore
is used indirectly.

It is interesting to note that Henderson’s equations
are considerably older than the Price equation, and
that Eq. (17) thus conceivably could have been devel-
oped already in the 1950s. It would then have been nat-
ural to compare the univariate version of Eq. (17) with
the univariate breeder’s equation, Lush (1937), ∆ȳt =
h2S, where h2 is the heritability, while S is the selection
differential, and such a comparison would have shown
that h2 = g/(g + r), and S = cov(Wi,t, yi,t)/W̄t. With
knowledge of Eq. (17) and Theorem 2, it might then
have been conjectured that Eq. (1) is the multivariate
breeder’s equation.

It should be noted that since applications of Eq. (1)
on non-normal data may produce incorrect microevolu-
tionary results, this must be the case also for the BLUP
prediction methods in Eqs. (18) and (19). This prob-
lem was acknowledged by Lande and Arnold (1983),
who in their Appendix proposed a possible correction
for errors caused by skewness. The fundamental rea-
son for such errors is that the multivariate breeder’s
equation involves only mean and variance values of the
additive genetic and environmental effects, while influ-
ences from third and higher order statistical moments
are ignored. See for example discussions in Bonamour
et al. (2017) and Pick et al. (2022).

Other sources of errors in applications of the multi-
variate breeder’s equation, are unknown or at least un-
measured traits that are correlated with the traits used
in the analysis, Morrissey et al. (2010). Such errors will
be the same with use of the two BLUP methods.
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Note that the new derivation of the multivariate
breeder’s equation makes use of the mean values of
the products Ftâj,t, where Ft is a diagonal matrix of
normalized individual fitness values, while âj,t are pre-
dicted random effects according to Eq. (8). Although
the variances of âj,t as such are not used, they have
been computed in the simulations, and assuming a ge-
netic relationship matrix At = IN , they are exactly
what is needed for the Robertson-Price identity to pro-
duce the incremental changes ∆ȳj,t. The BLUP deriva-
tion of the multivariate breeder’s equation thus clari-
fies why and to which extent BLUP underestimates
the variances of the random effects. The theory is con-
firmed by the simulation results in Fig. 1, and the
estimated variance results in Table 1.

The theory in Section 2 also shows how BLUP can
be used to compute the incremental values ∆ȳj,t in
cases where At 6= IN , and were thus the multivariate
breeder’s equation will fail. As shown in Fig. 1, the
identical results with use of At = IN , are no longer
identical when At 6= IN . Note that there are minor
differences also between the two BLUP responses in
panels d), e) and f). This is so because with At 6= IN
only the expectations E

[
¯̂aj,t

]
= 0, such that we may

have ¯̂aj,t = ˆ̄aj,t 6= 0. This may lead to extra terms in
the ∆ȳj,t = Ftâj,t results, while it has nothing to say
for ∆ȳt = cov(Wi,t, āi,t)/W̄t. These differences tend
to be smaller for larger population sizes.

The theory in Section 2 assumes a population with
several correlated phenotypic traits. The multivariate
breeder’s equation may, however, also be used in cases
where parameters in reaction norm models are treated
as traits in their own rights, Lande (2009), Ergon and
Ergon (2017). Identical results can also in such cases be
found from a BLUP model with a relationship matrix
At = IN , but the derivation is then somewhat more
involved. This will be reported separately, as a BLUP
extension to the microevolutionary parameter estima-
tion algorithms in Ergon (2022a) and Ergon (2022b).
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A. Matlab code for simulation
example

clear

T=30;
N=100;
wsquare=10;
G11=0.5;
G22=0.5;
G33=0.5;
G12=0.25;
G13=0;
G23=0;
r1=G11/2;
r2=G22/2;
r3=G33/2;
G=[G11 G12 G13 ; G12 G22 G23 ; G13 G23 G33];
P=[G11+r1 G12 G13 ; G12 G22+r2 G23 ; ...

G13 G23 G33+r3];

%% Relationship matrix
for i=1:N

for j=1:N
if i==j dA(i,j)=0; end
if i==j+1 dA(i,j)=0.5−0.25; end
if i==j−1 dA(i,j)=0.5−0.25; end

end
end
A=0.75∗eye(N)+dA+0.25∗ones(N,N);
A=eye(N); % For panels a), b) and c)

%% Individual population traits around abar1,
%% abar2 and aba3
for t=1:T

a10(:, t)=sqrt(G11)∗randn(N,1);
a20(:, t)=G12∗a10(:,t)/G11 + ...
sqrt(G22−G12ˆ2/G11)∗randn(N,1);

a30(:, t)=sqrt(G33)∗randn(N,1);
e1 (:, t)=sqrt(r1)∗randn(N,1);
e2 (:, t)=sqrt(r2)∗randn(N,1);
e3 (:, t)=sqrt(r3)∗randn(N,1);

a1 (:, t)=sqrtm(A)∗a10(:,t);
a2 (:, t)=sqrtm(A)∗a20(:,t);
a3 (:, t)=sqrtm(A)∗a30(:,t);
a1 (:, t)=a1(:,t)−mean(a1(:,t));

% a1 (:, t)=a1(:,t)+rand(N,1);
% For test purposes

a2 (:, t)=a2(:,t)−mean(a2(:,t));
a3 (:, t)=a3(:,t)−mean(a3(:,t));

end

%% Simulation with Lande’s equation
ybar1L=1∗ones(1,T);
ybar2L=1∗ones(1,T);
ybar3L=1∗ones(1,T);
for t=1:T−1

y1 (:, t)=ybar1L(t)+a1(:,t)+e1(:,t);
y2 (:, t)=ybar2L(t)+a2(:,t)+e2(:,t);
y3 (:, t)=ybar3L(t)+a3(:,t)+e3(:,t);
vary1(t)=var(y1(:,t ));
vary2(t)=var(y2(:,t ));
vary3(t)=var(y3(:,t ));
y (:, t)=[y1(:, t) ; y2 (:, t) ; y3 (:, t )];
W(:,t)=round(10∗exp(−(y1(:,t).ˆ2+y2(:,t).ˆ2+ ...
y3 (:, t).ˆ2)/(2∗wsquare)));

Wbar(t)=mean(W(:,t));
covaaWL=(N−1)∗cov([a1(:,t)+e1(:,t) a2(:,t)+ ...
e2 (:, t) a3 (:, t)+e3(:,t) W(:,t)])/N;

xbarL(:,t)=[ybar1L(t) ybar2L(t) ybar3L(t)]’;
xbarL(:,t+1)=xbarL(:,t)+G∗pinv(P)∗ ...
[covaaWL(1,4) covaaWL(2,4) covaaWL(3,4)]’/Wbar(t);

xbarnyL=xbarL(:,t+1);
ybar1L(t+1)=xbarnyL(1);
ybar2L(t+1)=xbarnyL(2);
ybar3L(t+1)=xbarnyL(3);

end

%% Simulation of BLUP system
ybar1=1∗ones(1,T);
ybar2=1∗ones(1,T);
ybar3=1∗ones(1,T);
for t=1:T−1

y1 (:, t)=ybar1(t)+a1(:,t)+e1(:,t);
y2 (:, t)=ybar2(t)+a2(:,t)+e2(:,t);
y3 (:, t)=ybar3(t)+a3(:,t)+e3(:,t);
F=diag(W(:,t))/Wbar(t);
X=[ones(N,1) zeros(N,1) zeros(N,1)

zeros(N,1) ones(N,1) zeros(N,1)
zeros(N,1) zeros(N,1) ones(N,1)];

Gtilde=[G11∗A G12∗A G13∗A ; ...
G12∗A G22∗A G23∗A ; G13∗A G23∗A G33∗A ];

r1tilde =r1∗eye(N);
r2tilde =r2∗eye(N);
r3tilde =r3∗eye(N);
Rtilde=[r1tilde∗eye(N) zeros(N,N) zeros(N,N)
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zeros(N,N) r2tilde∗eye(N) zeros(N,N)
zeros(N,N) zeros(N,N) r3tilde∗eye(N)];

M=[X’∗inv(Rtilde)∗X X’∗inv(Rtilde)
inv(Rtilde)∗X inv(Rtilde)+inv(Gtilde)];

Ym=[ X’∗inv(Rtilde)∗y(:,t) ; inv(Rtilde)∗y (:, t) ];
effects =inv(M)∗Ym;
a1hat(:, t)=effects (4:N+3);
a2hat(:, t)=effects (N+4:2∗N+3);
a3hat(:, t)=effects(2∗N+4:3∗N+3);
vara1(t)=var(effects (4:N+3));
vara2(t)=var(effects (N+4:2∗N+3));
vara3(t)=var(effects(2∗N+4:3∗N+3));
a1F(:,t)=F∗effects(4:N+3);
a2F(:,t)=F∗effects(N+4:2∗N+3);
a3F(:,t)=F∗effects(2∗N+4:3∗N+3);
Dabar1(t)=mean(a1F(:,t));
Dabar2(t)=mean(a2F(:,t));
Dabar3(t)=mean(a3F(:,t));
ybar1(t+1)=ybar1(t)+Dabar1(t);
ybar2(t+1)=ybar2(t)+Dabar2(t);
ybar3(t+1)=ybar3(t)+Dabar3(t);

end

%% Simulation with Robertson−Price identity
ybar1RP=1∗ones(1,T);
ybar2RP=1∗ones(1,T);
ybar3RP=1∗ones(1,T);
for t=1:T−1

covaaWRP=(N−1)∗cov([a1hat(:,t) a2hat(:,t) ...
a3hat(:, t) W(:,t)])/N;

xbarRP(:,t)=[ybar1RP(t) ybar2RP(t) ...
ybar3RP(t)]’;

xbarRP(:,t+1)=xbarRP(:,t)+[covaaWRP(1,4) ...
covaaWRP(2,4) covaaWRP(3,4)]’/Wbar(t);

xbarnyRP=xbarRP(:,t+1);
ybar1RP(t+1)=xbarnyRP(1);
ybar2RP(t+1)=xbarnyRP(2);
ybar3RP(t+1)=xbarnyRP(3);

end

%% Plots
figure (1)
subplot(3,2,1) % subplot(3,2,2) for Panel d)

plot(ybar1,’b. ’ ), hold on, grid
plot(ybar1L,’bo’)
plot(ybar1RP,’bs’)
hold off
ylabel( ’mean(y 1)’) % Don’t use for Panel d)
axis ([0 T 0 1])
text (0,1.15, ’a)’ , ’FontSize’ ,14) % d for Panel d)

subplot(3,2,3) % subplot(3,2,4) for Panel e)
plot(ybar2,’b. ’ ), hold on, grid
plot(ybar2L,’bo’)
plot(ybar2RP,’bs’)
hold off
ylabel( ’mean(y 2)’) % Don’t use for Panel e)
axis ([0 T 0 1])
text (0,1.15, ’b)’ , ’FontSize’ ,14) % e for Panel e)

subplot(3,2,5) % subplot(3,2,6) for Panel f)
plot(ybar3,’b. ’ ), hold on, grid
plot(ybar3L,’bo’)
plot(ybar3RP,’bs’)
hold off
xlabel( ’Generations’)
ylabel( ’mean(y 3)’) % Don’t use for Panel f)
axis ([0 T 0 1])
text (0,1.15, ’c) ’ , ’FontSize’ ,14) % f for Panel f)

%% Variances
% True
Truefory=[var(y1(:,2)) var(y2 (:,2)) var(y3 (:,2)) ]
Truefora=[var(a1(:,2)) var(a2 (:,2)) var(a3 (:,2)) ]

% Method 1
Method1=[vara1(2) vara2(2) vara3(2)]

% Method 2
for i=1:N

ae (:, i)=G∗inv(P)∗[a1(i,2)+e1(i,2); ...
a2(i,2)+e2(i ,2); a3(i,2)+e3(i ,2)];

ae (:, i)=ae(:, i );
end
Method2=var(ae’)
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