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Abstract
For	 theoretical	 studies,	 reaction	norm	evolution	 in	a	changing	environment	can	be	
modeled	 by	means	 of	 the	multivariate	 breeder's	 equation,	with	 the	 reaction	 norm	
parameters	 treated	as	 traits	 in	 their	own	 right.	This	 is,	however,	not	a	 feasible	ap-
proach	for	the	use	of	field	data,	where	the	intercept	and	slope	values	are	not	available.	
An	alternative	approach	is	to	use	infinite-	dimensional	characters	and	smooth	covari-
ance	function	estimates	found	by,	e.g.,	random	regression.	This	is	difficult	because	of	
the	need	to	find,	for	example,	polynomial	basis	functions	that	fit	the	data	reasonably	
well	over	time,	and	because	reaction	norms	in	multivariate	cases	are	correlated,	such	
that	they	cannot	be	modeled	independently.	Here,	I	present	an	alternative	approach	
based	on	a	multivariate	 linear	mixed	model	of	any	order,	with	dynamical	 incidence	
and residual covariance matrices that reflect the changing environment. From such 
a mixed model follows a dynamical BLUP model for the estimation of the individual 
reaction norm parameter values at any given parent generation, and for updating of 
the	mean	reaction	norm	parameter	values	from	generation	to	generation	by	means	
of	Robertson's	secondary	theorem	of	natural	selection.	This	will,	for	example,	make	
it	possible	to	disentangle	the	microevolutionary	and	plasticity	components	in	climate	
change responses. The BLUP model incorporates the additive genetic relationship 
matrix	 in	 the	usual	way,	and	overlapping	generations	can	easily	be	accommodated.	
Additive	genetic	and	environmental	model	parameters	are	assumed	to	be	known	and	
constant,	 but	 it	 is	 discussed	 how	 they	 can	 be	 estimated	 by	means	 of	 a	 prediction	
error	method.	The	identifiability	by	the	use	of	field	or	laboratory	data	containing	envi-
ronmental, phenotypic, fitness, and additive genetic relationship data is an important 
feature of the proposed model.
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1  |  INTRODUC TION

A	 reaction	 norm	 describes	 the	 phenotypes	 that	 a	 genotype	 can	
produce across a range of environments. Mean reaction norms in 
a	population	can	evolve,	and	this	evolution	can	be	modeled	by	the	
use of several methods. In its simplest form, a mean reaction norm is 
characterized	by	an	intercept	value	and	a	plasticity	slope	value,	but	it	
may	also	be	natural	to	use	models	with	a	multiple	of	reaction	norms,	
and	they	may	be	nonlinear.

A	 common	 model	 is	 the	 multivariate	 breeder's	 equation	
(Lande, 1979),	where	 the	mean	 reaction	norm	parameters	may	be	
treated as traits in their own right, as in, for example, Lande (2009). 
For applications on field data from studies of wild populations, there 
are	 two	 problems	with	 such	models.	 First,	 the	 individual	 reaction	
norm	 parameters	 are	 not	 available,	 and	 second,	 additive	 genetic	
relationships	 in	 the	population	 cannot	be	 taken	 into	 account.	 The	
first	problem	can	be	solved	by	a	linear	transformation	as	shown	in	
Ergon	 (2022a),	 and	as	used	 for	comparison	purposes	 in	Section	2, 
but	the	second	problem	will	still	exist.

An	 alternative	 approach	 for	 reaction	 norm	modeling	 is	 to	 use	
infinite-	dimensional	 characters,	 as	 in	 a	 method	 introduced	 by	
Kirkpatrick	and	Heckman	(1989),	and	as	applied	on	reaction	norms	by	
Gomulkiewicz	and	Kirkpatrick	(1992).	It	is	then	necessary	to	obtain	
smooth covariance function estimates (Kingsolver et al., 2001), and 
one	method	for	that	purpose	is	random	regression	(Shaeffer,	2004), 
where	 individual	 breeding	values	 are	modeled	 as	 relatively	 simple	
weighted	sums	of	basis	functions.	Additive	genetic	relationship	ma-
trices	can	be	included	in	such	models	(Oliviera	et	al.,	2019).	An	obvi-
ous	difficulty	is	here	the	need	to	find	for	example	polynomial	basis	
functions	that	fit	the	data	reasonably	well	over	time.	Another	diffi-
culty is that the reaction norms in multivariate cases are correlated, 
such	that	they	cannot	be	modeled	independently.

In the present article, I introduce a multivariate modeling ap-
proach	based	on	best	 linear	unbiased	predictions	 (BLUP),	allowing	
for multiple (and potentially correlated) traits to have joint norms 
of	 reaction,	which	 can	be	 linear	 or	 approximated	by	 power	 series	
(Gavrilets	&	Scheiner,	1993). This is a dynamical BLUP model in the 
sense that the incidence matrix for the random effects and the re-
sidual covariance matrix are functions of the changing environment. 
I will develop the theory under the assumption that the parameters 
in	 the	model	are	known,	but	as	will	be	shown	separately	they	can	
also	be	 identified	by	a	prediction	error	method,	as	 introduced	 in	a	
microevolutionary	context	in	Ergon	(2022a, 2022b). This identifica-
tion	aspect	 is	an	essential	prerequisite,	 that	 is,	 the	model	must	be	
identifiable	 from	available	environmental,	phenotypic,	 fitness,	 and	
additive genetic relationship data.

BLUP	based	on	linear	mixed	models	with	fixed	and	random	effects	
are	extensively	used	in	domestic	animal	and	plant	breeding	(Arnold	

et al., 2019;	Ch.	26,	Lynch	&	Walsh,	1998;	Robinson,	1991). These 
methods	 may	 also	 be	 applied	 on	 wild	 populations	 (Kruuk,	 2004; 
Nussey	et	al.,	2007),	although	such	uses	have	been	criticized	owing	
to	 errors	 in	 estimated	 variances	 of	 the	 random	 effects	 (Hadfield	
et al., 2010).	An	important	application	is	the	disentanglement	of	mi-
croevolutionary and plasticity components in for example climate 
change	 responses	 (Ergon,	2022a, 2022b;	Merilä	&	Hendry,	2014). 
The	basic	BLUP	equations	were	first	developed	in	summation	form	
(Henderson,	1950),	but	as	done	here,	 it	 is	more	convenient	 to	use	
matrix formulations.

This	article	will	be	focused	on	how	mean	reaction	norm	parameter	
values, and thus mean phenotypic traits, evolve under the influence 
of	environmental	 cues	and	changes	 in	 the	 fitness	 landscape.	Such	
evolution of reaction norms and phenotypic traits seeks to maximize 
the mean fitness of a given population, and changes in the location 
of fitness peaks in the phenotypic space are therefore the driving 
force. I will thus study the dynamics of microevolutionary systems, 
mainly	by	the	use	of	BLUP,	but	also	with	reference	to	the	well-	known	
multivariate	breeder's	equation	(Lande,	1979).	Although	fitness	can	
be	defined	as	the	long-	run	growth	rate	(Sæther	&	Engan,	2015), or 
for nonoverlapping generations the expected geometric mean fit-
ness	 (Autzen	&	Okasha,	2022), I will in simulations simply use the 
number	of	surviving	descendants	as	a	measure	of	individual	fitness	
(Ch. 6, Rice, 2004).

It	is	well-	known	that	BLUP	underestimates	the	variances	of	the	
random	effects	in	linear	mixed	models	(Hadfield	et	al.,	2010; Ch. 26, 
Lynch	&	Walsh,	1998).	Here,	I	will	show	why	and	to	which	extent	that	
is	necessary	 in	order	 to	obtain	 the	correct	 incremental	changes	 in	
mean reaction norm parameter values from generation to generation. 
I	will	also	show	that	these	changes	may	be	found	from	Robertson's	
secondary	 theorem	of	natural	 selection	 (Robertson,	1966) applied 
on the estimated random effects. This also applies to nonplastic 
organisms, where the mean reaction norms degenerate into mean 
phenotypic	trait	values	(Ergon,	2022c).

The	dynamical	BLUP	model	with	Robertson	updating	of	mean	
reaction norm parameter values, makes the use of the additive 
genetic relationship matrix At	 in	 a	 standard	way	 (Ch.	 26,	 Lynch	&	
Walsh,	 1998). The theoretical treatment is limited to cases where 
only mean phenotypic traits are included in the fixed effects, and 
for simplicity, it assumes that generations are nonoverlapping. It is, 
however,	also	shown	how	cases	with	overlapping	generations	can	be	
handled in a straightforward way. For cases with sexual reproduc-
tion,	 I	 assume	a	hypothetical	 single	parent	 (mid-	parent)	occupying	
an	intermediate	phenotypic	position	between	the	two	parents	(Ch.	
7, Rice, 2004).

The	theoretical	development	will	be	general,	that	is,	for	any	num-
ber	of	phenotypic	traits	and	any	number	of	environmental	cues	 in	
the	model.	For	clarity	of	presentation,	however,	some	details	will	be	

T A X O N O M Y  C L A S S I F I C A T I O N
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    |  3 of 15ERGON

given for a system with only two phenotypic traits and two environ-
mental	cues.	A	similar	limited	system	will	also	be	used	in	simulations.

The additive genetic and phenotypic covariance matrices, G and 
P,	are	here	assumed	to	be	constant	and	known.	They	may,	however,	
be	estimated	by	means	of	a	prediction	error	method	(PEM),	utilizing	
the information contained in environmental cues and individual phe-
notypic trait values over many generations, as well as fitness infor-
mation	 (Ergon,	2022a, 2022b).	With	plastic	 traits	 in	 the	dynamical	
BLUP	 model,	 restricted	 maximum	 likelihood	 (REML)	 methods	 ap-
plied	on	data	from	a	single	generation	cannot	be	used	for	this	pur-
pose. The simple reason for this is that each element in the residual 
covariance matrix is a function of several nonadditive effects, such 
that	the	REML	equations	become	indeterminate.

As	developed	theoretically,	and	verified	 in	simulations,	 the	dy-
namical BLUP model with an additive genetic relationship matrix 
equal	to	an	identity	matrix,	that	is,	with	random	mating	in	an	unbred	
population, will give the same results as a selection gradient pre-
diction	method	 (GRAD)	based	on	 the	multivariate	breeder's	equa-
tion	(Ergon,	2022a, 2022b). For large populations, these results will 
asymptotically	also	be	the	same	as	from	the	multivariate	breeder's	
equation	directly.

After	this	introduction,	Theory	and	Methods	follow	in	Section	2, 
Simulations	in	Section	3,	and	Summary	and	Discussion	in	Section	4. 
Proofs	of	 two	theorems	are	given	 in	Appendices	A and B. For the 
interested	reader,	a	user	guide	is	given	in	Appendix	C, including the 
procedure	for	PEM	system	identification.	MATLAB	code	for	the	sim-
ulations	is	given	in	Supporting	information.

2  |  THEORY AND METHODS

2.1  |  Notation

Mathematical	symbols	with	descriptions	in	the	order	they	appear	in	
equations	are	shown	in	Table 1.

2.2  |  Introductory example

For a simple toy example, intended to ease the readers into the 
concepts	used	below,	consider	a	single	trait	yi,t measured on a sin-
gle individual. In this case, the BLUP estimate of the true additive 
genetic value for that individual is â� i,t = h2

(

yi,t −mean
)

, where h2 is 
the	heritability,	while	mean	denotes	any	fixed	effects	adjustment.	If	
we	substitute	this	estimate	into	Robertson's	secondary	theorem	of	
natural	selection	(Ch.	6,	Walsh	&	Lynch,	2018),	we	find	the	between-	
generation response R = Δyt = cov

(

wi,t , â
�
i,t

)

= h2cov
(

wi,t , yi,t
)

= h2S, 
where wi,t is the relative fitness, while S	is	the	Robertson-	Price	within-	
generation change in the mean. In this way, we recover the standard 
univariate	breeder's	equation.

What	is	done	below	is	to	consider	a	much	more	complicated	phe-
notype	 (an	 observed	 vector	yt of individual focal traits with reac-
tion norms) and use BLUP to estimate the vector of additive effects 

associated with the norm of reaction functions, with these BLUPs 
then	substituted	into	the	expression	for	Robertson's	secondary	the-
orem of natural selection. The incremental changes in the mean re-
action norm parameter values thus follow from cov

(

wi,t , ẑ
′
i,t

)

, where 
ẑ′ i,t stands for the BLUP estimates of the true additive genetic values 
involved (Equation (11)	below).

For the special case with an additive genetic relationship ma-
trix At = In,	 the	 BLUP	 estimates	 yield	 a	matrix-	based	 inheritance	
expression (using the correlated nature of the random effects) to 
replace h2,	and	a	Robertson-	Price	term	cov

(

wi,t , yi,t
)

 to measure phe-
notypic selection (Equation (12)	below).	From	a	practical	point	of	
view, Equation (12)	 is	unnecessary,	but	 it	 is	 included	for	 the	pur-
pose	of	comparisons	with	results	from	the	multivariate	breeder's	
equation.

TA B L E  1 Mathematical	symbols	with	description.

Symbol Description

Δ zt Incremental change in mean trait from generation 
t to generation t + 1

wi,t Relative individual fitness, wi,t = Wi,t ∕Wt

zi,t , yi,t , zi,t , y i,t Individual traits and vectors of individual traits

G Additive	genetic	covariance	matrix,	with	block	
elements Gaa, Gab , Gbb

P Phenotypic	covariance	matrix,	with	block	
elements Paa, Pab, Pbb

�t Selection	gradient

a�
i,t
+ �i,t Individual intercept deviations around mean value 

at,	with	additive	and	non-additive	effects

b�
i,t
+ �i,t Individual plasticity slope deviations around 

mean value bt,	with	additive	and	non-additive	
effects

Δat, Δbt Incremental changes in mean reaction norm 
parameter values

�2
�
, �2

�
Variances of nonadditive effects

ut , ut Environmental	variable	and	vector	of	
environmental	variables

Pyy Variance of yi,t
X Design matrix in linear mixed model

Z̃t = Zt

⨂

In
Incidence matrix in linear mixed model, with 

Zt = f
(

ut
)

xt Random effects in linear mixed model, for special 
case	with	2	traits	and	2	environmental	variables,	
xt =

[

a�T
1,t

a�T
2,t

b
�T
11,t b

�T
12,t

b
�T
21,t

b
�T
22,t

]T

et Residual vector in mixed model, with et = f(ut )

At Additive	genetic	relationship	matrix

G̃t = G
⨂

At
Kronecker covariance matrix for BLUP model

R̃t = Rt

⨂

In
Kronecker residual matrix for BLUP model, with 

Rt = E
[

ete
T
t

]

ẑ′ i,t Estimated	individual	intercept	or	slope	deviations	
around mean values

z
parents

t
, zoffspring

t
Mean reaction norm parameter values for parents 

and offspring
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2.3  |  Background theory

For	 the	development	of	 the	dynamical	BLUP	matrix	equation	 that	
follows,	we	need	some	background	theory.	First,	the	Price	equation	
for selection in a population with n individuals says that the evolu-
tion of the mean trait of an n × 1 vector zt	of	individual	quantitative	
traits	is	described	by	(Price,	1970, 1972)

where Δzt = zt+1 − zt is the incremental change in mean trait value 
from generation to generation and where zi,t is an individual trait. 
Here,	wi,t is the relative individual fitness, that is, individual fitness 
divided	by	 the	mean	 fitness	 in	 the	population,	while	 zdescendants

i,t
 is 

the mean trait of the descendants (and the parent if it survives) 
of individual i in generation t. The trait zi,t	may	be	 any	property	
we	can	assign	a	numerical	value	to,	not	necessarily	biological.	In	a	
biological	context,	the	trait	may	be	a	behavioral,	morphological,	or	
physiological	characteristic,	but	it	may	also	be	a	parameter	in	a	re-
action	norm	model	that	describes	a	plastic	organism.	Disregarding	
the second term on the righthand side of Equation (1), we find 
the	Robertson-	Price	identity,	Δzt = cov

(

wi,t , zi,t
)

	(Robertson,	1966; 
Ch.	6,	Walsh	&	Lynch,	2018),	as	referred	to	above,	and	which	we	
will	use	below.

Second,	we	need	to	see	how	the	multivariate	breeder's	equation	
(Lande, 1979;	Lande	&	Arnold,	1983),

where �t	is	the	selection	gradient,	which	can	be	applied	on	the	param-
eters in a reaction norm model. Equation (2) was derived from a multi-
variate version of Equation (1),	which	requires	several	assumptions,	as	
detailed	in	Ergon	(2019, 2022c):

1. The vector zi,t of individual phenotypic traits is the sum of 
independent additive genetic effects xi,t and nonadditive en-
vironmental and genetic effects ei,t, that is, zi,t = xi,t + ei,t.

2. The nonadditive effects ei,t are zero mean, independent, and iden-
tically	distributed	(iid)	random	variables.

3.	 There	are	no	expected	fitness-	weighted	changes	in	the	individual	
additive genetic effects xi,t	from	one	generation	to	the	next	be-
sides selection, that is, E

[

wi,t

(

xdescendants
i,t

− xi,t

)]

= 0.
4. The additive genetic effects xi,t, and the environmental effects ei,t 

and edescendants
i,t

, are multivariate normal.
5. The additive genetic effects xi,t and nonadditive effects ei,t and 

edescendants
i,t

 influence individual fitness only through zi,t.
6.	 All	individuals	in	the	population	are	genetically	unrelated,	which	

means that the additive genetic relationship matrix At is a unity 
matrix.

In	what	follows,	we	will	make	the	use	of	Assumptions	1,	2,	and	3,	
while	Assumptions	4,	5,	and	6	will	be	used	only	indirectly	when	the	

BLUP results with At = In	 are	 compared	with	 results	based	on	 the	
multivariate	breeder's	equation.

In order to see how Equation (2)	can	be	applied	on	the	parame-
ters	in	a	reaction	norm	model,	we	may	use	an	individual	intercept-	
slope	model	based	on	Assumptions	1	and	2	above	(Lande,	2009),

where ut is an environmental cue, and where the mean reaction norm 
is yt = at + btut.	Here,	ai,t = at + a�

i,t
+ �i,t and bi,t = bt + b�

i,t
+ �i,tut are 

the individual intercept and slope parameters, where �i,t and �i,t are 
iid	 and	 zero	mean	 random	variables,	with	 variances	�2

�
 and �2

�
, re-

spectively.	We	 thus	 use	a�
i,t
+ �i,t and b�

i,t
+ �i,t to denote individual 

deviations from mean values at and bt, respectively, where a′
i,t

 and 
b′
i,t
	 are	 the	 additive	 genetic	 components	of	 these	deviations.	 Such	

additive	genetic	deviations	will	be	the	random	effects	in	the	linear	
mixed	model	developed	below,	and	thus	the	random	effects	that	are	
estimated	by	the	use	of	the	BLUP	equations.

When	the	reaction	norm	parameters	in	Equation (3) are treated 
as	quantitative	traits	in	their	own	right,	Equation (2) leads to

with G and P	given	by	G = E

⎡

⎢

⎢

⎣

⎡

⎢

⎢

⎣

a�
i,t

b�
i,t

⎤

⎥

⎥

⎦

�

a�
i,t

b�
i,t

�
⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

Gaa Gab

Gab Gbb

⎤

⎥

⎥

⎦

 and 

P =

⎡

⎢

⎢

⎣

Gaa+�2
�

Gab

Gab Gbb+�2
�

⎤

⎥

⎥

⎦

. The additive genetic and phenotypic cova-

riance matrices G and P	may	be	time-	varying,	but	for	simplicity,	we	will	
here	assume	that	they	are	constant.	As	discussed	in	Ergon	(2022a), it is 
essential that the environmental input in Equation (3) has a proper ref-
erence value, and for simplicity we here assume an environmental 
scale	such	that	the	reference	environment	is	zero.	Note	that	the	model	
in Equation (4)	cannot	be	identified	by	the	use	of	available	environmen-
tal, phenotypic, fitness, and additive genetic relationship data, where 
ai,t and bi,t are not included.

For comparisons with BLUP results, we finally need an identifi-
able	 version	 of	 the	 multivariate	 breeder's	 equation.	 As	 shown	 in	
Ergon	(2022a), Equation (4)	can	by	the	use	of	a	linear	transformation	

of the vector 
[

ai,t bi,t

]T

 onto the vector 
[

ai,t bi,t yi,t

]T

	be	re-

formulated	into	the	selection	gradient	(GRAD)	form,

where selection with respect to ai,t and bi,t, as in Equation (4), is replaced 
by	selection	with	respect	to	yi,t.	Here,	Pyy = Paa + 2Gabut + Pbbu

2
t
 ,	while	

P−1
yy
cov

(

wi,t , yi,t
)

 is the selection gradient. It is essential to note that 
Equations (4) and (5) give identical results only asymptotically, when 

(1)Δzt = cov
(

wi,t , zi,t
)

+ E
[

wi,t

(

zdescendants
i,t

− zi,t

)]

,

(2)Δzt = GP
−1
cov

(

wi,t , zi,t
)

= G�t ,

(3)yi,t = at + a�
i,t
+ �i,t +

(

bt + b�
i,t
+ �i,t

)

ut = yt + a�
i,t
+ b�

i,t
ut + �i,t + �i,tut ,

(4)
⎡

⎢

⎢

⎣

Δat

Δbt

⎤

⎥

⎥

⎦

= GP
−1
⎡

⎢

⎢

⎣

cov
�

wi,t , ai,t
�

cov
�

wi,t , bi,t
�

⎤

⎥

⎥

⎦

,

(5)
⎡

⎢

⎢

⎣

Δat

Δbt

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

Gaa Gab

Gab Gbb

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1

ut

⎤

⎥

⎥

⎦

P−1
yy
cov

�

wi,t , yi,t
�

,
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    |  5 of 15ERGON

the population size n → ∞, and the reason for that is the differences 
in	how	the	covariance	functions	are	used	in	the	two	equations.	As	we	
will see, extensions of Equation (5)	are	possible	for	more	complex	reac-
tion	norm	models.	This	is	interesting	because	with	an	additive	genetic	
relationship matrix At = In, the dynamical BLUP model we will develop 
results in incremental changes in mean reaction norm parameter val-
ues, that are identical to those found from an extended version of 
Equation (5).	Here,	we	should	finally	note	that	since	Equation (5) is de-
rived	from	the	multivariate	breeder's	equation	(2),	it	is	valid	only	under	
Assumptions	1–	6	above.

2.4  |  Development of the dynamical BLUP model

For	clarity	of	presentation,	some	details	will	here	be	limited	to	a	sys-
tem with p = 2 phenotypic traits, and q = 2 environmental cues, and 
a	similar	simplified	system	will	also	be	used	in	the	simulations.	The	
theory	will,	however,	be	developed	in	such	a	way	that	extensions	to	
higher	dimensions	are	obvious.

For a specific trait j, the individual reaction norm model with 
q = 2 environmental cues is

where aj,t + a�
j,i,t

+ vj,i,t, bj1,t + b�
j1,i,t

+ �j1,i,tu1,t and bj2,t + b�
j2,i,t

+ �j2,i,tu2,t 
are the individual parameter values, while

is the mean trait value. For a population with n individuals, we may 
collect yj,i,t, a′j,i,t, etc., in n × 1	vectors	and	obtain	the	individual	trait	vec-
tor for trait j,

With	p = 2 traits and q = 2	environmental	cues,	we	thus	obtain	
the	linear	mixed	model	in	general	form	(Ch.	26,	Lynch	&	Walsh,	1998; 
with yt as fixed effects vector)

with yt =
[

yT
1,t

yT
2,t

]T

, yt =
[

y1,t y2,t

]T

, xt =
[

a�T
1,t

a�T
2,t

b
�T
11,t

b
�T
12,t

b
�T
21,t

b
�T
22,t

]T

, 

and et =
[

eT
1,t

eT
2,t

]T

, where e1,t = v1,t + �11,tu1,t + �12,tu2,t and 

e2,t = v2,t + �21,tu1,t + �22,tu2,t.	Here,	X =

⎡

⎢

⎢

⎣

1n 0

0 1n

⎤

⎥

⎥

⎦

, with dimension 

pn × p = 2n × 2, while Z̃t has dimension pn × p(1 + q)n = 2n × 6n. In 
more detail, we have Z̃t = Zt

⨂

In, where 

Zt =

⎡

⎢

⎢

⎣

1 0 u1,t

0 1 0

u2,t 0 0

0 u1,t u2,t

⎤

⎥

⎥

⎦

, and where 
⨂

 is the 

Kronecker product operator, which means that all elements in Zt 
should	be	multiplied	by	In.	For	use	 in	Appendix	B, we may note that 

Zt =
[

Ip U
T

t

]

, with Ut =

⎡

⎢

⎢

⎣

u1,t u2,t 0 0

0 0 u1,t u2,t

⎤

⎥

⎥

⎦

T

. It is an es-

sential feature of the model in Equation (7) that E
[

a�
j,t

]

= E
[

ej,t
]

= 0, such 
that E

[

a�
j,i,t

]

= E
[

ej,i,t
]

= 0 for j = 1 to p, and that E
[

b
�
jk,t

]

= 0, such that 

E
[

b�
jk,i,t

]

= 0 for j = 1 to p and k = 1 to q	(Ch.	26,	Lynch	&	Walsh,	1998). 
We	thus	also	have	that	E

[

yj,i,t
]

= yj,t.
The random effects in Equation (7)	may	all	be	correlated,	with	an	

additive genetic covariance matrix G = E
�

xtx
T
t

�

=

⎡

⎢

⎢

⎣

Gaa Gab

G
T

ab
Gbb

⎤

⎥

⎥

⎦

. The 

residuals e1,t and e2,t in Equation (7)	are	assumed	to	be	uncorrelated,	

with a covariance matrix Rt = E
�

ete
T
t

�

=

⎡

⎢

⎢

⎣

r1,t 0

0 r2,t

⎤

⎥

⎥

⎦

, where 

r1,t = �2
�1
+ u2

1,t
�2
�11

+ u2
2,t
�2
�12

 and r2,t = �2
�2
+ u2

1,t
�2
�21

+ u2
2,t
�2
�22

, with �2
�j
, 

�2
�j1

 and �2
�j2

 as the variances of the nonadditive effects vj,i,t, �j1,i,t and 

�j2,i,t according to Equation (6a).	Also	G	may	in	general	be	a	function	
of	time,	but	we	will	here	assume	that	it	is	constant.	We	will	assume	
that G and Rt	are	known,	although	they	may	in	practice	be	estimated	
by	the	use	of	restricted	maximum	likelihood	(REML)	(Ch.	27,	Lynch	&	
Walsh,	1998),	or	a	prediction	error	method	(Ergon,	2022a, 2022b). 
Note,	however,	that	REML	equations	for	a	single	generation	will	be	
indeterminate, that is, we can find r1,t and r2,t,	but	not	all	the	residual	
covariances in the expressions for r1,t and r2,t. For use in a general 
multivariate	BLUP	equation,	we	also	need	the	n × n additive genetic 
relationship matrix At (Ch.	 26,	 Lynch	 &	 Walsh,	 1998), and the 
Kronecker covariance matrices G̃t = G

⨂

At and R̃t = Rt

⨂

In.
For	comparisons	with	predictions	based	on	selection	gradients	

(GRAD),	as	in	Equation (5), we also need the phenotypic covariance 

matrix P =

⎡

⎢

⎢

⎣

Paa Gab

G
T

ab
Pbb

⎤

⎥

⎥

⎦

, where Paa = Gaa + diag
([

�2
�1

�2
�2

])

 and 

Pbb = Gbb + diag
([

�2
�11

�2
�12

�2
�21

�2
�22

])

, with diag([ ∙ ]) de-

noting	diagonal	matrices.	Also	P	is	assumed	to	be	constant.
From the mixed model according to Equation (7) follows the mul-

tivariate	BLUP	equation	 in	matrix	 form	 (Henderson,	1950; Ch. 26, 
Lynch	&	Walsh,	1998),

where, for p = 2 and q = 2, ŷt =
[

ŷ1,t ŷ2,t

]T

 and 

x̂t =
[

â�T
1,t

â�T
2,t

b̂
�T
11,t

b̂
�T
12,t

b̂
�T
21,t

b̂
�T
22,t

]T
.	 Here,	E

[

ŷj,i,t

]

= yj,t and 

E
[

â�1,i,t

]

= E
[

â�2,i,t

]

= E
[

b̂�11,i,t

]

= E
[

b̂�12,i,t

]

= E
[

b̂�21,i,t

]

= E
[

b̂�22,i,t

]

= 0   .	

Note	that	the	derivation	of	Equation (8) does not necessarily re-
quire	an	assumption	of	normal	data	(Robinson,	1991).

(6a)

yj,i,t =aj,t+a�
j,i,t

+vj,i,t+
(

bj1,t+b�
j1,i,t

+�j1,i,t

)

u1,t+
(

b� j2,t+b�
j2,i,t

+�j2,i,t

)

u2,t =yj,t+a�
j,i,t

+b�
j1,i,t

u1,t+b�
j2,i,t

u2,t+vj,i,t+�j1,i,tu1,t+�j2,i,tu2,t ,

(6b)yj,t = aj,t + bj1,tu1,t + bj2,tu2,t

(6c)y j,t = 1nyj,t + a�
j,t
+ b

�
j1,t
u1,t + b

�
j2,t
u2,t + vt + �j1,tu1,t + �j2,tu2,t .

(7)yt = Xyt + Z̃txt + et ,

(8)
⎡

⎢

⎢

⎣

X
T
R̃
−1

t
X X

T
R̃
−1

t
Z̃t

Z̃
T

t
R̃
−1

t
X Z̃

T

t
R̃
−1

t
Z̃t+ G̃

−1

t

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

ŷt

x̂t

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

X
T
R̃
−1

t
yt

Z̃
T

t
R̃
−1

t
yt

⎤

⎥

⎥

⎦

,
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6 of 15  |     ERGON

2.5  |  Updating of mean reaction norm 
parameter values

When	Equation (8) is applied on any given parent generation, the 
expected mean values of the vector elements in x̂t	will	be	zero,	that	

is, E
[

â�1,t

]

= E
[

â�2,t

]

= … = E

[

b̂
�
22,t

]

= 0.	 However,	 owing	 to	 dif-

ferent	 fitness	 (number	 of	 descendants)	 among	 the	 individuals	 in	
the parent generation, the corresponding mean values in the off-
spring	generation	before	new	reproduction	will	be	different	from	

â′1,t,	etc.,	and	these	within-	generation	differences	may	be	used	for	
updating of the mean reaction norm parameters a1,t, a2,t, b11,t, b12,t, 
b21,t, and b22,t in Equations (6a) and (6b).	After	 this	 updating,	 the	
offspring	 are	 ready	 to	 become	 new	 parents,	 again	 with	

E
[

â�1,t

]

= E
[

â�2,t

]

= … = E

[

b̂
�
22,t

]

= 0.

Selection	will	thus	result	in	within-	generation	incremental	changes	
in the mean values of the estimated random effects from parents to 
offspring	before	reproduction,	generally	given	by	Equation (1),

where ẑ′ i,t is any estimated individual value â′1,i,t, â′2,i,t, b̂′11,i,t, b̂′12,i,t, 
b̂′21,i,t, or b̂′22,i,t in the random effects vector x̂t in Equation (8), while 
ẑ′descendants
i,t

 is the corresponding mean value for the descendants of in-

dividual i  in generation t. In Equation (9), zparents
t

 stands for the mean 
value of any one of the estimated random effects from Equation (8), 
that is, â′1,t, â′2,t, b̂

′
11,t, b̂

′
12,t, b̂

′
21,t, or b̂′22,t, while zoffspring

t
 is the corre-

sponding	mean	value	for	the	offspring	after	selection	but	before	re-
production. These incremental changes should thus at each generation 
be	used	for	updating	of	the	mean	reaction	norm	parameter	values	be-
fore	the	offspring	become	new	parents.	For	this	purpose,	we	need	an	
additional	assumption,	which	 follows	 from	Assumption	3	above,	be-
cause ẑ′ i,t and ẑ′descendants

i,t
 are estimates of an additive genetic compo-

nent of a reaction norm parameter, and thus have no nonadditive 
components:

Assumption 7.	There	are	no	expected	fitness-	weighted	changes	
in estimated random effects from individual parents to their descen-
dants	 after	 selection	 but	 before	 reproduction,	 that	 is,	

E
[

wi,t

(

ẑ�descendants
i,t

− ẑ� i,t

)]

= 0.

When	Assumption	7	is	applied	on	Equation (9),	we	obtain	the	
Robertson-	Price	identity	for	the	within-	generation	changes	in	the	
mean	values	(Ch.	6,	Walsh	&	Lynch,	2018).	Here,	the	incremental	
changes zoffspring

t
− z

parents

t
	will	be	entirely	determined	by	the	additive	

genetic values ẑ′ i,t and individual fitness, and when these changes 
are	used	for	updating	we	thus	obtain	between-	generation	changes	
in	the	mean	values	as	given	by	Robertson's	secondary	theorem	of	
natural	selection	(Ch.	6,	Walsh	&	Lynch,	2018).	When	Equation (8) 
is applied on a given parent generation, and when the changes 
in mean values of estimated random effects from the parent to 
the offspring generation are used for updating, the incremental 
changes	in	those	values	under	Assumption	7	thus	follow	from	the	
following theorem:

Theorem 1. In a population that is adequately de-
scribed by Equation (7), the incremental changes in mean 
reaction norm parameter values from generation to gen-
eration are found from Robertson's secondary theorem 
of natural selection,

 where zt is any mean parameter value a1,t, a2,t, b11,t , b12,t, 
b21,t, or b22,t, while ẑ′ i,t is the corresponding estimated in-
dividual value â′1,i,t, â′2,i,t, b̂′11,i,t, b̂′12,i,t, b̂′21,i,t, or b̂′22,i,t, in 
the random effects vector x̂t in Equation (8).

From Theorem 1 follows the incremental changes in mean traits 
according to

With	correct	 initial	mean	reaction	norm	parameter	values,	 this	
gives y1,t and y2,t according to Equation (6b),	and	this	can	be	general-
ized to higher dimensions, with p > 2 and q > 2.

For	finite	population	sizes,	there	will	be	drift	in	the	mean	reac-
tion norm parameter values, owing to random errors in the cova-
riance computations according to Equation (11).	However,	as	we	
will see in the simulations, there are also other sources of drift.

From	the	BLUP	theory	above	follows	the	following	theorem:

Theorem 2. For a reaction norm evolutionary system 
with p = 2 phenotypic traits and q = 2 environmental 
cues, Equation (8) and Theorem 1 will with At = In result 
in incremental changes in mean reaction norm parameter 
values according to

 This can be generalized to higher dimensions, with p > 2 
and q > 2.

See	Appendix	A	for	proof,	and	results	in	Section	3.
For	 comparisons	with	 the	multivariate	 breeder's	 equation,	 the	

results from Equation (12)	can	also	be	found	by	a	generalization	of	
the	GRAD	incremental	parameter	changes	according	to	Equation (5):

(9)z
offspring

t
− z

parents

t
= cov

(

wi,t , ẑ
�
i,t

)

+
[

wi,t

(

ẑ�descendants
i,t

− ẑ� i,t

)]

,

(10)Δzt = cov
(

wi,t , ẑ
�
i,t

)

,

(11)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δa1,t

Δa2,t

Δb11,t

Δb12,t

Δb21,t

Δb22,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cov
�

wi,t , â
�
1,i,t

�

cov
�

wi,t , â
�
2,i,t

�

cov
�

wi,t , b̂
�
11,i,t

�

cov
�

wi,t , b̂
�
12,i,t

�

cov
�

wi,t , b̂
�
21,i,t

�

cov
�

wi,t , b̂
�
22,i,t

�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δa1,t

Δa2,t

Δb11,t

Δb12,t

Δb21,t

Δb22,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= G
�

Z
T

t
R
−1
t
ZtG+ I6

�−1

Z
T

t
R
−1
t

⎡

⎢

⎢

⎣

cov
�

wi,t , y1,i,t
�

cov
�

wi,t , y2,i,t
�

⎤

⎥

⎥

⎦

.
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    |  7 of 15ERGON

Theorem 3. Equation (12) can be reformulated as an 
extension of Equation (5),

 where 
⎡

⎢

⎢

⎣

I2

Ut

⎤

⎥

⎥

⎦

= Z
T

t
, while Pyy,t = Paa + 2U

T

t
Gab + U

T

t
PbbUt.

See	 Appendix	 B	 for	 proof,	 and	 simulation	 results	 in	 Section	 3, 
where Equations (12) and (13) give identical results for population sizes 
n ≥ 2. The simulations also show that the results from Equation (13) are 
close to the results from a corresponding version of the multivariate 
breeder's	equation	 (4),	with	declining	differences	for	 increasing	pop-
ulation size.

2.6  |  Example case without plasticity

When	all	 plasticity	 slope	parameter	 values	 are	 zero,	 Equation (6a) 
gives yj,t = aj,t, and the individual phenotypic traits

For p traits, this leads to Equation (8) with 

x̂t =
[

â�T
1,t

â�T
2,t

⋯ â�T
p,t

]T

, Z̃t = Ipn, … 

X =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1n 0 ⋯ 0

0 1n ⋯ 0

⋮

0

⋮

0

⋱ ⋮

⋯ 1n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, G̃ = Gaa

⨂

At, and 

R̃t =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

r1 0 ⋯ 0

0 r2 ⋯ 0

⋮

0

⋮

0

⋱ ⋮

⋯ rp

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⨂

IN, where rj is the variance of 

vj,i,t. For At = In this leads to the following theorem:

Theorem 4. With individual phenotypic traits accord-
ing to Equation (14), and with At = In, the dynamical 
BLUP model above and the multivariate breeder's equa-
tion (2) give identical results.

A	proof	of	Theorem	4	 is	given	 in	Ergon	(2022c), although then 
relying	 on	 a	 comparison	with	 the	multivariate	 breeder's	 equation.	
Here,	Theorem	1	makes	it	 into	an	independent	proof.	Note	that	 in	
this case Equation (13) degenerates into Equation (2).

2.7  |  Errors in estimated random effects variances

The fact that updated mean reaction norm parameter val-
ues, and thus also updated mean phenotypic trait values, are 
found	 by	 the	 use	 of	 Robertson's	 secondary	 theorem	 of	 natu-
ral selection applied on estimated random effects, as stated in 
Theorem 1,	quite	generally	shows	that	the	variances	of	these	ef-
fects are underestimated. This is easily seen in the case without 
plasticity,	given	by	Equation (14), in which case Equation (2) can 
be	formulated	as

which	should	be	compared	with	the	result	following	from	Theorem	1,

The underestimation of the variances Gjj = E
[

a�2
j,i,t

]

	becomes	espe-

cially transparent with diagonal G and P matrices, where we from 

Equations (15a) and (15b), with the use of �2
�j
= E

[

�2
j,i,t

]

, find 

â� j,i,t = Gjj

(

Gjj+�2
�j

)−1(

a�
j,i,t

+ vj,i,t

)

. In this case, we thus find

that is, var
(

�a� j,i,t

)

= �Gjj < Gjj for 𝜎2
𝜐j
> 0.	See	Ergon	(2022c) for simula-

tion results.

2.8  |  Adjustments for overlapping generations

With	surviving	parents,	only	a	fraction	ft < 1 of a given generation 
are offspring from the previous generation. The incremental changes 
in mean reaction norm parameter values from one generation to the 
next	are	then	reduced	accordingly,	and	by	the	use	of	Equation (11), 
we	thus	obtain

where zt is any one of the mean reaction norm parameters, while ẑ′ i,t 
is	 the	corresponding	estimated	 individual	random	effect.	As	verified	
in the simulations, this will slow down responses on environmental 
changes,	with	reduced	mean	fitness	as	consequence.

(13)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δa1,t

Δa2,t

Δb11,t

Δb12,t

Δb21,t

Δb22,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

Gaa Gab

G
T

ab
Gbb

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

I2

Ut

⎤

⎥

⎥

⎦

P
−1
yy,t

⎡

⎢

⎢

⎣

cov
�

wi,t , y1,i,t
�

cov
�

wi,t , y2,i,t
�

⎤

⎥

⎥

⎦

,

(14)yj,i,t = yj,t + a�
j,i,t

+ vj,i,t .

(15a)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δy1,t

Δy2,t

⋮

Δyp,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= cov

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

wi,t ,GP
−1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a�
1,i,t

+v1,i,t

a�
2,i,t

+v2,i,t

⋮

a�
p,i,t

+vp,i,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(15b)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δy1,t

Δy2,t

⋮

Δyp,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= cov

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

wi,t ,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

â�1,i,t

â�2,i,t

⋮

â�p,i,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(15c)var
(

â� j,i,t

)

= Ĝjj = var

(

Gjj

Gjj + �2
�j

(

a�
j,i,t

+ vj,i,t

)

)

=
G2
jj

Gjj + �2
�j

,

(16)Δzt = ft × cov
(

wi,t , ẑ
�
i,t

)

,
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8 of 15  |     ERGON

3  |  SIMUL ATIONS

3.1  |  The aim of the simulations

The	aim	of	the	simulations	is	to	verify	the	theoretical	BLUP	results	by	
means of a toy example, and the purpose is fourfold. First, it is veri-
fied	that	mean	reaction	norm	parameter	values	can	be	updated	from	
generation	to	generation	by	means	of	Robertson's	secondary	theorem	
of natural selection (Theorem 1).	Second,	 it	 is	shown	that	 it	 is	possi-
ble	to	disentangle	the	microevolutionary	and	plasticity	components	of	
for example climate change acclimations as shown in Equation (11) in 
general, and in Equation (12) for the special case with At = In. Third, it 
is	verified	 that	 the	dynamical	BLUP	and	GRAD	results	 for	 the	 incre-
mental changes in mean reaction norm parameter values are identical 
for population sizes n ≥ 2, provided that At = In (Theorems 2 and 3). 
Fourth,	it	is	shown	that	the	GRAD	results	are	erroneous	for	populations	
with	genetic	relatedness	between	the	individuals,	that	is,	for	At ≠ In.

3.2  |  Description of toy example

In	a	 toy	example	 in	Ergon	 (2022a), the environmental input was a 
noisy positive trend in spring temperature, starting in 1970, and re-
sulting	in	a	noisy	negative	trend	in	mean	breeding	(clutch-	initiation)	
date	for	a	certain	bird	species,	approximately	as	in	figure	2	in	Bowers	
et al. (2016).

Here,	the	example	is	extended	to	include	a	second	environmen-
tal	variable	with	a	noisy	positive	trend	in	mean	value,	and	with	varia-
tions from year to year that are somewhat positively correlated with 
the	variations	in	spring	temperature.	This	input	may	for	example	be	a	
measure of spring rainfall. The example also includes a second adap-
tive	phenotype,	which	might	be	the	breeding	habitat,	as	discussed	
in	Chalfoun	and	Schmidt	(2012).	We	thus	have	a	microevolutionary	
system with two environmental cues and two phenotypic traits, sim-
ilar to the theoretical example case.

The	individual	(mid-	parent)	fitness	values	are	integers	from	0	to	
4,	with	number	of	descendants	as	unit,	and	cases	with	both	nonover-
lapping and overlapping generations are simulated. The population 
size	 is	 assumed	 to	be	 constant,	which	 implies	 that	not	 all	 descen-
dants	survive	until	 reproduction.	A	constant	population	size	 is	not	
essential	for	the	principal	results,	but	it	simplifies	the	simulations.

In the simulations, the two environmental reference values are 
assumed	 to	 be	 known	 from	 historical	 data,	 that	 is,	 it	 is	 assumed	
that the population was fully adapted to the stationary stochastic 
environment	before	the	onset	of	anthropogenic	and	global	climate	
change around 1970.

3.3  |  Environmental inputs and reaction  
norm model

Assume	a	population	that	is	fully	adapted	to	a	stationary	stochastic	en-
vironment with mean spring temperature u1,ref = 10°C (the reference 

value for temperature), and mean spring rainfall u2,ref = 2 mm/day	
(the	 reference	 value	 for	 rainfall).	 Also	 assume	 phenotypic	 scales	
such that the phenotypic values that maximize fitness in the ref-
erence	 environment	 are	 given	 by	�1,ref = �2,ref = 0. Further assume 
environmental cues u1,t = �U1,t

− 10 + u1,s,t and u2,t = �U2,t
−2 + u2,s,t, 

where the mean values �U1,t
 and �U2,t

 are ramp functions as shown 
in Figure 1, while u1,s,t and u2,s,t are zero mean and white random 
variables,	 that	 is,	without	autocorrelation.	 In	 a	 corresponding	way	
assume that �1,t = �Θ1,t

+ �1,s,t and �2,t = �Θ2,t
+ �2,s,t, where �Θ1,t

 and 
�Θ2,t

 are ramp functions as shown in Figure 1, while �1,s,t and �2,s,t are 
zero	mean	and	white	random	variables.

Assume	 that	u1,s,t, u2,s,t , �1,s,t, and �2,s,t have a joint normal dis-
tribution	with	variances	�2

U1,s

, �2
U2,s

, �2
Θ1,s

, and �2
Θ2,s

, and covariances 
�U1,sU2,s

, �U1,sΘ1,s
= −2���

2

U1,s
, and �U2,sΘ2,s

= −2���
2

U2,s
, where �� is the 

autocorrelation	of	background	environmental	fluctuations,	as	de-
scribed	 in	more	detail	 in	Lande	 (2009). Data were generated for 
60 generations, with typical input data as shown in Figure 1 (as 
mean	values	in	breeding	season).	See	Supporting	information	for	
MATLAB	code.

Also	assume	an	individual	reaction	norm	model	with	two	pheno-
typic traits, according to

with parameters G =

⎡

⎢

⎢

⎣

Gaa Gab

G
T

ab
Gbb

⎤

⎥

⎥

⎦

 and P =

⎡

⎢

⎢

⎣

Paa Gab

G
T

ab
Pbb

⎤

⎥

⎥

⎦

, and param-

eter values Gaa =

⎡

⎢

⎢

⎣

0.2 0.1

0.1 0.2

⎤

⎥

⎥

⎦

, Gab =

⎡

⎢

⎢

⎣

0 0

0 0

⎤

⎥

⎥

⎦

, Gbb =

⎡

⎢

⎢

⎣

0.05 0.025

0.025 0.05

⎤

⎥

⎥

⎦

, 

Paa =

⎡

⎢

⎢

⎣

0.4 0.1

0.1 0.4

⎤

⎥

⎥

⎦

 and Pbb =

⎡

⎢

⎢

⎣

0.1 0

0 0.1

⎤

⎥

⎥

⎦

.	Note	that	Equations (17a) 

and (17b) are somewhat simplified versions of Equation (6a), in that 
b12,t = b�

12,i,t
= �12,i,t = 0 and b21,t = b�

21,i,t
= �21,i,t = 0.	 Also	 note	 that	

the two traits in Equations (17a) and (17b) are correlated, with the co-
variance �y1,y2 = Gaa,12 + Gbb,12�U1,sU2,s

 .

3.4  |  Fitness function and initial mean reaction  
norm values

The	individual	fitness	function	is	assumed	to	be	rounded	values	of

where �1,t and �2,t are the phenotypic values that maximize fitness, 
while �2 = 10. The discrete values of Wi,t	(number	of	descendants)	are	
thus integers from 0 to 4.

In the simulations it is essential that the mean reaction norm param-
eters are given correct initial values at generation t = 1.	We	will	assume	

(17a)y1,i,t = a1,t + a�
1,i,t

+ v1,i,t +
(

b11,t + b�
11,i,t

+ �11,i,t

)

u1,t ,

(17b)y2,i,t = a2,t + a�
2,i,t

+ v2,i,t +
(

b22,t + b�
22,i,t

+ �22,i,t

)

u2,t ,

(18)Wi,t = 4 ∙ exp
(

−
(

(

y1,i,t−�1,t
)2

+
(

y2,i,t−�2,t
)2
)

∕2�2
)

,
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    |  9 of 15ERGON

that the phenotypic values are scaled such that the initial mean intercept 
values in a stationary stochastic environment are a1,t = a2,t = 0, and that 
the initial mean reaction norm slope values are the optimal values in a 
stationary stochastic environment. These optimal values are the ones 
that maximize the expected individual fitness according to Equation (18), 
in a stationary stochastic environment, and thus minimize the criterion 

functions J1 = E
[

(

y1,i,t−�1,t
)2
]

 and J2 = E
[

(

y2,i,t−�2,t
)2
]

.	With	E
[

y1,i,t
]

= 0, 

and	 substituting	 E
[

y2
1,i,t

]

= b
2

11,t
�2
U1,s

 and E
[

y1,i,t�1,t
]

= b11,t�U1,sΘ1,s
, we find 

J1 = b
2

11,t
�2
U1,s

− 2b11,t�U1,sΘ1,s
+ �2

Θ1,s

, and setting dJ1

db11,t
= 2b11,t�

2
U1,s

− 2�U1,sΘ1,s
= 0, 

we thus find the optimal mean slope value b11,opt = �U1,sΘ1,s
∕�2

U1,s
= −0.5. 

In the same way, we find that b22,opt = −0.5 will minimize J2.

F I G U R E  1 Typical	input	data	for	
simulation example, with mean values 
shown	by	dashed	lines,	and	with	
ramp functions starting at generation 
t = 10	(1970).	Numerical	values	are	
�Θ1,t

= −2
(

�U1,t
− 10

)

, �Θ2,t
= −2

(

�U2,t
− 2

)

, 
�2
U1,s

= 0.5, �2
U2,s

= 0.1875, �2
Θ1,s

= 2, 
�2
Θ2,s

= 1, �U1,sU2,s
= 0.25, �U1,sΘ1,s

= −0.25, 
and �U2,sΘ2,s

= −0.09375.

F I G U R E  2 Simulation	results	with	
population size n = 100, and an additive 
genetic relationship matrix At = In. Mean 
trait values y1,t and y2,t	are	shown	by	solid	
blue	lines.	Mean	reaction	norm	parameter	
values	are	shown	by	solid	green	lines	
(BLUP),	dashed	blue	lines	(GRAD),	and	
dotted magenta lines (the multivariate 
breeder's	equation).
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10 of 15  |     ERGON

3.5  |  Simulation results

Simulation	results	with	population	size	n = 100, and additive genetic 
relationship matrix At = In, are shown in Figure 2.	New	additive	ge-
netic (random) effects, and nonadditive effects (residuals), were at 
each	generation	drawn	from	normal	distributions	in	accordance	with	
the given G and P	matrices.	The	BLUP	results	given	by	Equation (12) 
(green	lines),	and	the	GRAD	results	given	by	Equation (13) (dashed 
blue	lines),	are	identical	for	population	sizes	n ≥ 2.	Results	given	by	
the	multivariate	 breeder's	 equation	 (4)	 (dotted	magenta	 lines),	 are	
somewhat different from the BLUP results. These differences are 
clearly smaller for a population size of n = 1000.	Note	that	y1,t and 
y2,t	lag	behind	�1,t and �2,t, as shown in Figure 1, which is typical for 
ramp responses from dynamical systems with time constants.

As	a	test,	the	simulations	were	repeated	with	a	constant	additive	
genetic relationship matrix for a population with a high degree of 
relatedness among individuals, as shown for n = 6 in Equation (19),

As	shown	in	Figure 3, this gave different results for the BLUP and 
GRAD	methods.	In	this	case	new	additive	genetic	(random)	effects	
at each new generation were found as zt =

M
√

Az0,t, where zt stands 
for a′

1,t
, a′

2,t
, b′

11,t
, b′

12,t
, b′

21,t
, or b′

22,t
, and where the different data vec-

tors z0,t	were	drawn	 from	normal	distributions	 in	 accordance	with	

the given G	 matrix.	 Here,	 M
√

A	 is	 the	 matrix	 square	 root,	 that	 is,	
M
√

A
M
√

A = A. This reduced the variances of the random effects to ap-
proximately 75% of the nominal values. The random effects were 
also mean centred.

The simulations with results as in Figure 3 were repeated for 
a case with surviving parents, where only a fraction ft = 0.5 of any 
given generation are offspring from the previous generation, that is, 
with the use of Equation (16).	As	seen	in	Figure 4, panels (a) and (c), 
and	as	must	be	expected,	 the	responses	are	slowed	down.	As	can	
also	be	seen	in	panels	(a)	and	(c),	the	fraction	ft < 1 causes the mean 
trait values y1,t and y2,t	to	lag	further	behind	the	phenotypic	values	
�1,t and �2,t that maximize fitness. The result of this is lower mean fit-
ness	values,	as	can	be	seen	in	the	(identical)	plots	in	panels	(b)	and	(d).

The changes in mean values over 60 generations in Figures 2 
and 3,	 will	 to	 some	 degree	 be	 caused	 by	 drift.	 As	 a	 test,	 the	
total change in a1,t over 60 generations in a stationary stochas-
tic	environment	as	before	t = 10 in Figure 1, was computed. For 

population sizes from n = 10 to 400,	 and	 based	 on	 100	 repeated	
simulations this change had a mean value of approximately zero, 
and a standard error of approximately 0.1, that is, around 10% of 
the corresponding changes in panel (a) in Figures 2 and 3.	With	
n = 2, this standard error due to drift increased to 15%. There were 

(19)A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

1∕2

1∕4

1∕4

1∕4

1∕4

1∕2

1

1∕2

1∕4

1∕4

1∕4

1∕4

1∕2

1

1∕2

1∕4

1∕4

1∕4

1∕4

1∕2

1

1∕2

1∕4

1∕4

1∕4

1∕4

1∕2

1

1∕2

1∕4

1∕4

1∕4

1∕4

1∕2

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

F I G U R E  3 Simulation	results	with	
population size n = 100, and an additive 
genetic relationship matrix A according 
to Equation (19). Mean trait values are 
shown	by	solid	blue	lines.	Mean	reaction	
norm	parameter	values	are	shown	by	solid	
green	lines	(BLUP)	and	dashed	blue	lines	
(GRAD).

 20457758, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10194 by H

O
G

SK
O

L
E

N
 I SO

R
O

ST
-N

O
R

G
E

 B
iblioteket V

estfold, W
iley O

nline L
ibrary on [01/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  11 of 15ERGON

no	noticeable	differences	between	cases	with	At ≠ In and At = In. 
In order to find an explanation of the drift, the environmental cue 
u1,t over 60 generations in a stationary environment was approxi-
mated	by	a	least	squares	straight	line,	denoted	û1,t. Based on 100 
repeated simulations with n = 100, the resulting change in û1,t over 
60 generations had a mean value of approximately zero, and a 
standard error of approximately 0.30, that is, around 12% of the 
corresponding changes of u1,t in Figure 1, panel (a). This result in-
dicates	that	the	major	part	of	the	drift	is	caused	by	the	stochastic	
nature of the environmental cues and the phenotypic values that 
maximize fitness.

4  |  SUMMARY AND DISCUSSION

As	shown	in	Section	2, a general reaction norm model with p pheno-
typic traits and q environmental cues, that is, with p(1 + q) mean re-
action	norm	parameters,	can	be	formulated	as	a	linear	mixed	model	
with fixed and random effects. In this model, the fixed effects will 
be	the	mean	trait	values,	while	the	random	effects	will	be	the	addi-
tive genetic components of individual deviations from mean reaction 
norm parameter values. From this follows that for any given parent 
generation, estimates of the mean trait values and the additive ge-
netic components of individual deviations from mean reaction norm 
parameter	values,	can	be	found	from	BLUP	equations.	Because	the	
incidence and residual covariance matrices are functions of the en-
vironmental cues, and thus of time, I have introduced the concept 
of	dynamical	BLUP.	Note	 that	 the	elements	 in	 the	random	effects	
vector in Equation (7)	could	be	ordered	differently,	for	example	as.

xt =
[

a�T
1,t

b
�T
11,t

b
�T
12,t

a�T
2,t

b
�T
21,t

b
�T
22,t

]T

,	but	then	also	
the G, P, Ut and Zt	matrices	must	be	reorganized	accordingly.

The development of the dynamical BLUP model in Equation (8) 
relies	 on	 Assumptions	 1,	 2,	 3,	 and	 7,	 as	 given	 in	 Section	2, while 
Assumptions	4,	5,	and	6	are	needed	only	 for	 the	comparison	with	
results	based	on	 the	multivariate	breeder's	equation.	Most	 impor-
tantly,	 Assumption	 4	 implies	 that	 applications	 of	 the	 multivariate	
breeder's	equation	on	non-	normal	data	in	general	will	produce	incor-
rect	microevolutionary	results.	This	problem	was	acknowledged	by	
Lande	and	Arnold	(1983),	who	in	their	Appendix	proposed	a	possible	
correction	for	errors	caused	by	skewness.	The	fundamental	reason	
for	such	errors	 is	that	the	multivariate	breeder's	equation	involves	
only mean and variance values of the additive genetic and nonad-
ditive effects, while influences from third and higher order statisti-
cal	moments	are	ignored.	See	for	example	discussions	in	Bonamour	
et al. (2017) and Pick et al. (2022).

Although	 the	 development	 of	 the	 dynamical	 BLUP	 model	 in	
Equation (8)	does	not	 rely	on	normal	data	 (Robinson,	1991), it still 
follows from Theorems 2 and 3	that	the	BLUP	results	will	be	incor-
rect	in	cases	with	non-	normal	data	and	an	additive	genetic	relation-
ship matrix At = In.	A	natural	conclusion	is	therefore	that	non-	normal	
data will give erroneous BLUP results also when At ≠ In, at least for 
the dynamical BLUP model used here.

In the derivation of the linear mixed model in Equation (7), I 
assumed linear reaction norms as functions of environmental cues 
u1,t, u2,t,	 etc.,	 but	 there	 is	 nothing	 in	 the	 theory	 that	 prevents	 us	
from the use of nonlinear reaction norms that are also functions of 
u1,t , u2,t, u21,t ,	u

2
2,t
,	etc.,	as	discussed	in	Gavrilets	and	Scheiner	(1993) 

and	Ergon	(2018).

F I G U R E  4 Simulation	results	with	
population size n = 100, and additive 
genetic relationship matrix At ≠ In 
according to Equation (19). In panels (a) 
and (c), mean trait values y1,t and y2,t and 
mean reaction norm parameter values 
a1,t and a2,t for ft = 1	are	shown	by	solid	
blue	and	solid	green	lines,	respectively.	
Dashed	blue	and	magenta	lines	show	the	
corresponding responses with a fraction 
ft = 0.5 of new offspring in the population 
at all generations. Phenotypic values �1,t 
and �2,t that maximize fitness are added 
as	weak	dotted	blue	lines.	Panels	(b)	and	
(d) show identical plots of mean fitness 
for ft = 1 (solid green lines) and ft = 0.5 
(dashed magenta lines).
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As	shown	by	Theorem	1, updating of the mean reaction norm 
parameter	values	from	generation	to	generation	can	be	done	by	ap-
plying	Robertson's	 secondary	 theorem	of	natural	 selection	on	 the	
vector elements â′T

1,t
, etc., in the estimated random effects. This 

shows	that	the	well-	known	underestimation	of	the	variances	of	the	
random effects, is just what is needed, in order to find the correct 
incremental changes in mean reaction norm parameter values. The 
resulting dynamics will depend on the additive genetic and residual 
covariance matrices G and Rt, as well as of the additive genetic rela-
tionship matrix At for the parent generation.

The	references	to	the	Robertson-	Price	identity	and	Robertson's	
secondary theorem of natural selection in connection with 
Assumption	 7	 and	 Theorem	 1,	 might	 be	 somewhat	 confusing.	 In	
general	(Ch.	6,	Walsh	&	Lynch,	2018),	the	Robertson-	Price	identity	
follows	from	the	Price	equation,	Equation (1),	by	disregarding	the	sec-
ond	term	on	the	righthand	side.	With	zi,t = xi,t + ei,t	(Assumption	1),	
this leads to Δzt = cov

(

wi,t , xi,t + ei,t
)

.	Robertson's	secondary	theorem	
of natural selection, on the other hand, states that Δzt = cov

(

wi,t , xi,t
)

 
where xi,t	 is	 the	breeding	 value.	 For	 the	 special	 application	of	 the	
Price	 equation	 in	 Equation (9), we have xi,t = ẑ� i,t and ei,t = 0, such 
that	there	is	no	difference	between	ẑ′ i,t considered as a trait, and the 
breeding	value	of	that	trait.	From	this	follows	that	Robertson-	Price	
identity	and	Robertson's	secondary	theorem	of	natural	selection	in	
this special case give the same results.

It is worth noticing that the additive genetic relationship matrix 
for the offspring generation does not affect the updating of mean 
reaction norm parameter values. This is shown in the theoretical 
derivations,	but	it	is	also	a	natural	consequence	of	the	fact	that	the	
dynamical	BLUP	model,	just	as	the	multivariate	breeder's	equation,	
is	an	evolutionary	state-	space	model	(Ergon,	2018).

For cases with At ≠ In,	it	should	be	noted	that	At is included in the 
BLUP matrix equation (8) via G̃t,	just	as	in	the	standard	equation	used	
in	domestic	breeding	(Ch.	26,	Lynch	&	Walsh,	1998). It is also reassur-
ing	to	know	that	the	BLUP	equation	asymptotically,	for	At → In, gives 
results	that	are	identical	to	the	GRAD	results	based	on	the	multivari-
ate	breeder's	equation	(Theorems	2 and 3).	Note	that	results	from	the	
use	of	the	multivariate	breeder's	equation	are	equal	to	the	GRAD	re-
sults only asymptotically, that is, for population size n → ∞. For cases 
without plasticity, and with At = In, the results from all three methods 
are identical, independent of population size (Theorem 4).

Theorems 1, 2, and 3 were verified in simulations with the use of 
At = In, and population sizes down to n = 2, while Theorem 4 was ver-
ified	by	simulations	 in	Ergon	 (2022c).	Simulation	results	with	At ≠ In 
were	found	by	the	use	of	a	constant	and	possibly	unrealistic	additive	
genetic	relationship	matrix,	but	these	results	still	serve	the	purpose	of	
showing	that	the	BLUP	and	GRAD	results	with	At ≠ In are different.

The changes in mean trait and mean reaction norm parameter 
values	over	60	generations	that	can	be	seen	in	Figures 2 and 3, are 
partly	caused	by	drift.	As	indicated	at	the	end	of	Section	3, the major 
sources of drift are the stochastic nature of the input environmental 
variables	u1,t and u2,t, as well as of the phenotypic values �1,t and �2,t 
that maximize fitness. In the simulations, the population size plays a 
vital role only when n < 10.

In the simulations, the G and P	 parameters	 are	 assumed	 to	be	
known, although they are normally not, and this is the case also for 
the reference environment and the initial mean reaction norm param-
eters.	However,	as	shown	in	Ergon	(2022a, 2022b), these parameters 
can	be	found	by	a	prediction	error	method	(PEM)	using	all	available	
input–	output	experimental	or	field	data,	including	individual	fitness	
data.	Ergon	(2022a, 2022b)	combined	PEM	with	the	GRAD	model,	
that is, with extensions of Equation (5),	but	as	will	be	reported	sepa-
rately,	PEM	works	just	as	well	when	combined	with	the	BLUP	model	
in Equation (8).	BLUP/PEM	will	in	fact	be	much	better	than	GRAD/
PEM	when	it	comes	to	the	identification	of	the	reference	environ-
ment.	As	seen	for	GRAD/PEM	in	Ergon	(2022a, 2022b), and as will 
be	reported	separately	for	BLUP/PEM,	the	essential	feature	of	PEM	
in the present setting is to predict the reaction norms as well as pos-
sible,	while	the	additive	genetic	and	environmental	parameter	values	
may	be	very	much	 influenced	by	random	measurement	errors	and	
modeling errors.

For the interested reader, the essential steps in the proposed dy-
namical	BLUP	method	are	 summarized	 in	Appendix	C, where also 
the	procedure	for	PEM	system	identification	from	laboratory	or	field	
data is included.

Parameter	 estimation	 by	means	 of	 restricted	maximum	 likeli-
hood	(REML)	applied	on	data	from	a	single	generation	is	not	possi-
ble	 for	 plastic	 organisms.	 A	 simple	 reason	 for	 this	 is	 that	 the	
variance components rj,t in the diagonal residual covariance matrix 
Rt are functions of several unknown variances of the nonadditive 
effects in the reaction norm model, that is, r1,t, r2,t,	 etc.	 can	 be	
found,	but	not	all	the	residual	covariances	involved.	The	reason	be-
hind	this	problem	is	that	there	are	confounding	variables	in	the	re-
action	norm	equations.	In	for	example	Equation (3), all the terms in 
a�
i,t
+ b�

i,t
ut + �i,t + �i,tut are confounded, which implies that the use of 

REML	at	 a	 single	 generation	will	 not	 give	 details	 of	 the	G and Rt 
matrices.	As	 pointed	 out	 above,	 a	 solution	 is	 to	 use	 a	 prediction	
error	method	(PEM)	where	data	from	all	generations	are	used.	Note	
that	 this	 confounding	 is	 not	 a	 problem	 in	 the	modeling	 process,	
where at and bt in a�i,t = ai,t − at and b�i,t = bi,t − bt, respectively, are 
found from Equation (11), and where a′i,t, b

′
i,t, �i,t and �i,t are samples 

with given variances.
With	 surviving	 parents,	 only	 a	 fraction	 ft of the population 

will	 be	offspring	 from	 the	previous	 generation,	 and	 as	 shown	 in	
Equation (16), the incremental changes in mean reaction norm 
parameter	 values	 will	 then	 be	 reduced	 accordingly.	 As	 verified	
in	 simulations,	and	as	must	be	expected,	 the	 responses	on	envi-
ronmental	changes	will	then	be	slowed	down,	with	reduced	mean	
fitness	as	consequence.	Note	that	the	last	term	on	the	righthand	
side of Equation (1),	the	Price	equation,	in	general,	is	affected	by	
surviving	parents,	 but	 that	 this	 term	according	 to	Assumption	7	
does not affect the dynamical BLUP updating from generation to 
generation.
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APPENDIX A

Proof of Theorem 2.

Lemma 1. Assuming an additive genetic relationship 
matrix At = In, the mean values of the estimated fixed ef-
fects in Equation (8), for j from 1 to p, are ŷj,t = yj,t, while 
the mean values of the estimated random effects, for j 
from 1 to p and k from 1 to q, are â� j,t = 0 and b̂� jk,t = 0.

Proof.  Equation (8) will after elimination of XT
R̃
−1

t
 

give	the	following	equation	for	a	specific	trait	 j,

Taking	mean	values	on	both	sides	of	Equation	(A1a) gives

Equation (8) also gives

from which with the use of the mixed model property 
�

A
⨂

B
��

C
⨂

D
�

= (AC)
⨂

(BD) follows that

where Q̃ = Q
⨂

In =

�

�

Z
T

t
R
−1
t

�T

Z
T

t
R
−1
t

�−1
�

Z
T

t
R
−1
t

�T�

Z
T

t
R
−1
t
Zt + G

−1
�

⨂

In is an 
pn × pn(1 + q)	matrix,	with	block	row	vectors	Q̃j = Qj

⨂

In, for j from 
1 to p.	From	Equation	(A2b), thus follows

Since	 x̂t has dimension n × 1, we here have 
Qj

⨂

Inx̂t = Qj

�

Inx̂t
�

= Qj x̂t,	and	by	taking	mean	values	of	both	sides	
of	Equation	(A2c), we thus find

Equations	 (A1b) and (A2d) thus give two expressions for 
yj,t − ŷj,t ,	 and	 since	 in	 general	 Qj x̂t ≠ â� j,t + u1,t b̂

�
j1,t + u2,t b̂

�
j2,t + … + ur,t b̂

�
jq,t
 ,	

these	 expressions	 are	 equal	 if	 and	 only	 if	 ŷj,t = yj,t and 
â� j,t = u1,t b̂

�
j1,t = u2,t b̂

�
j2,t = … = ur,t b̂

�
jq,t = 0.

Having	 established	 that	 At = In results in â� j,t = 0, b̂� jk,t = 0 and 
ŷj,t = yj,t, it is time to find how fitness affects the incremental changes 
in mean reaction norm parameter values. For clarity of presentation, 
we	here	limit	the	number	of	phenotypic	traits	to	p = 2, and the num-
ber	of	environmental	cues	to	q = 2,	as	we	also	did	in	parts	of	Section	2. 
We	also	 introduce	 the	diagonal	n × n matrix Ft = diag

(

wi,t

)

 ,	 and	 the	
following two lemmas:

Lemma 2. The mean value of the product of Ft and 
an estimated random effect vector ẑt in Equation (8), 
where ẑt = â� j,t for j  from 1 to p, or ẑt = b̂

�
jk,t for j  from 

1 to p and k from 1 to q, is Ft ẑt = Δzt, that is, the in-
cremental change in the mean reaction norm param-
eter value zt.

Proof. Since	wt = 1 and ẑt = 0 (from Lemma 1), we 
find Ft ẑt =

1

n

∑n

i=1
wi,t ẑi,t − wt ẑt = cov

�

wi,t , ẑi,t
�

, and 
thus according to Theorem 1, Ft ẑt = Δzt.

Lemma 3. The mean value of the sum Fty j,t − Ft1nyj,t, 
for j from 1 to p, is cov

(

wi,t , yj,i,t
)

.

Proof. Fty j,t − Ft1nyj,t =
1

n

∑n

i=1
wi,tyj,i,t − wtyj,t = cov

�

wi,t , yj,i,t
�.

Assuming	p = 2 and q = 2, for simplicity, and using that ŷj,t = yj,t 
(Lemma 1),	multiplication	of	Equation	 (A2a) from the left with the 
block	diagonal	matrix	 F̃t = I6

⨂

Ft, and insertion of F̃
−1

t
F̃t	between	

(

Z
T

t
R
−1
t
Zt + G

−1
)

 and 
⨂

Inx̂t,	we	find	by	the	use	of	the	mixed	model	
property 

�

A
⨂

B
��

C
⨂

D
�

= (AC)
⨂

(BD) that

Since	all	elements	in	ZT

t
R
−1
t
Zt + G

−1 and ZT

t
R
−1
t
	are	multiplied	by	Ft ,	

Equation	(A3a)	can	be	reformulated	as

Taking mean values of all vector elements, will according to 
Lemma 2 and 3 finally give

(A1a)â� j,t + u1,t b̂
�
j1,t + u2,t b̂

�
j2,t + … + ur,t b̂

�
jq,t = y j,t − 1nŷj,t ,

(A1b)â� j,t + u1,t b̂
�
j1,t + u2,t b̂

�
j2,t + … + ur,t b̂

�
jq,t = yj,t − ŷj,t ,

(A2a)
�

Z
T

t
R
−1
t
Zt + G

−1
�

�

Inx̂t =
�

Z
T

t
R
−1
t

�

�

In

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y1,t−1nŷ1,t

⋮

y j,t−1nŷj,t

⋮

yp,t−1nŷp,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(A2b)Q̃x̂t =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y1,t−1nŷ1,t

⋮

y j,t−1nŷj,t

⋮

yp,t−1nŷp,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(A2c)Qj

⨂

Inx̂t = y j,t − 1nŷj,t .

(A2d)Qj x̂t = yj,t − ŷj,t .

(A3a)
�

Z
T

t
R
−1
t
Zt + G

−1
�

�

Ft

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

â�1,t

â�2,t

b̂
�
11,t

b̂
�
12,t

b̂
�
21,t

b̂
�
22,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
�

Z
T

t
R
−1
t

�

�

Ft

⎡

⎢

⎢

⎣

y1,t−1ny1,t

y2,t−1ny2,t

⎤

⎥

⎥

⎦

.

(A3b)
�

Z
T

t
R
−1
t
Zt + G

−1
�

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ft â
�
1,t

Ft â
�
2,t

Ft b̂
�
11,t

Ft b̂
�
12,t

Ft b̂
�
21,t

Ft b̂
�
22,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= Z
T

t
R
−1
t

⎡

⎢

⎢

⎣

Fty1,t−Ft1ny1,t

Fty2,t−Ft1ny2,t

⎤

⎥

⎥

⎦

.
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APPENDIX B

Proof of Theorem 3.

Since	
⎡

⎢

⎢

⎣

I2

Ut

⎤

⎥

⎥

⎦

= Z
T

t
, we must in order to prove Theorem 3 show that 

(

Z
T

t
R
−1
t
ZtG+ I6

)−1

Z
T

t
R
−1
t

= Z
T

t
P
−1
yy,t
.	We	can	do	that	by	the	use	of	the	

matrix inversion lemma (A+BCD)−1 = A
−1 − A

−1
B
(

C
−1+DA−1

B
)−1

DA
−1, 

with the use of A = I6, B = Z
T

t
, C = R

−1
t

, and D = ZtG. This gives

Here,	 Rt + ZtGZ
T

t
=

⎡

⎢

⎢

⎣

r1,t 0

0 r2,t

⎤

⎥

⎥

⎦

+
�

I2 U
T

t

�
⎡

⎢

⎢

⎣

Gaa Gab

G
T

ab
Gbb

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

I2

Ut

⎤

⎥

⎥

⎦

, which 

with r1,t = �2
�1
+ u2

1,t
�2
�11

+ u2
1,t
�2
�12

 and r2,t = �2
�2
+ u2

1,t
�2
�21

+ u2
2,t
�2
�22

 

gives Rt + ZtGZ
T

t
= Paa + 2U

T

t
Gab + U

T

t
PbbUt = Pyy,t, and thus ZtGZ

T

t
= Pyy,t − Rt. 

Equation	(B1) thus finally gives

APPENDIX C

User guide, including PEM system identification
For the interested reader, I here summarize the essential steps in 
the proposed dynamical BLUP method, including the procedure 
for	PEM	system	 identification	 from	 laboratory	or	 field	data.	Note	
that	the	feasibility	of	 the	PEM	method	 in	an	evolutionary	context	
has	been	tested	in	Ergon	(2022a, 2022b),	but	then	with	the	use	of	
a	GRAD	model.	For	simplicity,	 I	here	assume	the	BLUP	simulation	
system	 in	 Section	 3, with nonoverlapping generations, and with 
input trends as shown in Figure 1.	With	overlapping	 generations,	
the fraction ft of the population that is offspring from the previous 
generation	must	 be	 included	 as	 factors	 on	 the	 righthand	 sides	 of	
Equations (11) and (13).

1. Collect environmental input data u1,t and u2,t, individual and 
mean phenotypic data y1,i,t, y2,i,t, y1,t and y2,t, relative fitness 
data wi,t, and additive genetic relationship matrices At, for con-
secutive generations from t = 1 to T.

2. Form the dynamical incidence matrices 

Z̃t =

⎡

⎢

⎢

⎣

In 0 u1,tIn 0

0 In 0 u2,tIn

⎤

⎥

⎥

⎦

.

3.	 Set	 Gaa,11 to an assumed and constant value (other G and P 
parameter	values	will	be	estimated	relative	to	this	value).

4.	 Assume	some	initial	parameter	values	in	Gaa,12, Gaa,22, Gbb,11, Gbb,12, 
Gbb,22, �2�1, �

2
�2

, �2
�11

 and �2
�22
.	Simulations	indicate	that	all	these	initial	

values	may	be	set	 to	zero.	From	this	also	 follows	 initial	parame-
ter values in the dynamical residual covariance matrices 

Rt =

⎡

⎢

⎢

⎣

r1,t 0

0 r2,t

⎤

⎥

⎥

⎦

, where r1,t = �2
�1
+ u2

1,t
�2
�11

 and r2,t = �2
�2
+ u2

2,t
�2
�22
 .

5.	 Also	assume	initial	values	of	the	mean	reaction	norm	slopes	at	time	
t = 1, that is, b11,1 and b22,1, and of the reference environment val-
ues u1,ref and u2,ref.	Simulations	indicate	that	b11,1 = 0 and b22,1 = 0 
are useful values, while u1,ref and u2,ref	preferably	should	be	set	to	
the	mean	values	before	the	onset	of	the	trends	in	Figure 1.

6.	 Set	 initial	 values	 y1,1 = y2,1 = 0, a1,1 = − b11,1u1,1, and 
a2,1 = − b21,1u2,1, and predict the mean reaction norm parameter 
values for t = 1 to T	 by	 the	use	of	Equations (8) and (11). From 
this follow the predicted mean phenotypic values according to 
y1,t = a1,t + b11,tu1,t and y2,t = a2,t + b22,tu2,t.

7.	 Search	for	optimal	parameter	values	by	the	use	of	PEM,	as	shown	
in	figure	2	in	Ergon	(2022a),	but	with	the	dynamical	BLUP	model	
instead	of	a	GRAD	model.	Use	the	function	fmincon	in	MATLAB,	
or a corresponding function in, for example, R.

A	preliminary	test	with	population	size	n = 100, and system identifica-
tion	by	the	use	of	samples	41	to	60	 in	Figure 1, gave good prediction 
results without measurement errors in the u1,t , u2,t, y1,i,t, y2,i,t and wi,t data. 
The	optimization	 time	for	 the	BLUP	optimization	by	 the	use	of	an	HP	
EliteBook	× 360 1030 G3	laptop	was	as	long	as	3000 s,	owing	to	the	re-
peated matrix inversions for the computation of the estimated random 
effects in Equation (8).	No	attempts	were	made	to	speed	up	the	optimi-
zation	by	the	use	of	more	efficient	computations.	Random	measurement	
errors appear to affect especially the estimated reference environments, 
such	that	search	bounds	for	these	values	should	be	rather	narrow	around	
the mean values of past stationary stochastic environments, which the 
population	 is	 judged	 to	 have	been	 adapted	 to.	Note	 that	 these	 refer-
ence values are not within the range of the input values from 40 to 60 
in Figure 1,	which	are	used	for	the	identification.	Also	note	that	for	cases	
with At = In ,	the	GRAD	predictions	according	to	Equation (13) give iden-
tical	results,	but	with	a	very	much	shorter	computation	time.

(A4)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δa1,t

Δa2,t

Δb11,t

Δb12,t

Δb21,t

Δb22,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= G
�

Z
T

t
R
−1
t
ZtG+ I6

�−1

Z
T

t
R
−1
t

⎡

⎢

⎢

⎣

cov
�

wi,t , y1,i,t
�

cov
�

wi,t , y2,i,t
�

⎤

⎥

⎥

⎦

.

(B1)
(

Z
T

t
R
−1
t
ZtG+ I6

)−1

Z
T

t
R
−1
t

=

(

I6 − Z
T

t

(

Rt+ZtGZ
T

t

)−1

ZtG

)

Z
T

t
R
−1
t
.

(B2)

(

Z
T

t
R
−1
t
ZtG+ I6

)−1

Z
T

t
R
−1
t

=Z
T

t
R
−1
t

−ZT

t
P
−1
yy,t

ZtGZ
T

t
R
−1
t

=Z
T

t
R
−1
t

−ZT

t
P
−1
yy,t

(

Pyy,t−Rt

)

R
−1
t

=Z
T

t
P
−1
yy,t

.
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