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Abstract
For theoretical studies, reaction norm evolution in a changing environment can be 
modeled by means of the multivariate breeder's equation, with the reaction norm 
parameters treated as traits in their own right. This is, however, not a feasible ap-
proach for the use of field data, where the intercept and slope values are not available. 
An alternative approach is to use infinite-dimensional characters and smooth covari-
ance function estimates found by, e.g., random regression. This is difficult because of 
the need to find, for example, polynomial basis functions that fit the data reasonably 
well over time, and because reaction norms in multivariate cases are correlated, such 
that they cannot be modeled independently. Here, I present an alternative approach 
based on a multivariate linear mixed model of any order, with dynamical incidence 
and residual covariance matrices that reflect the changing environment. From such 
a mixed model follows a dynamical BLUP model for the estimation of the individual 
reaction norm parameter values at any given parent generation, and for updating of 
the mean reaction norm parameter values from generation to generation by means 
of Robertson's secondary theorem of natural selection. This will, for example, make 
it possible to disentangle the microevolutionary and plasticity components in climate 
change responses. The BLUP model incorporates the additive genetic relationship 
matrix in the usual way, and overlapping generations can easily be accommodated. 
Additive genetic and environmental model parameters are assumed to be known and 
constant, but it is discussed how they can be estimated by means of a prediction 
error method. The identifiability by the use of field or laboratory data containing envi-
ronmental, phenotypic, fitness, and additive genetic relationship data is an important 
feature of the proposed model.
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1  |  INTRODUC TION

A reaction norm describes the phenotypes that a genotype can 
produce across a range of environments. Mean reaction norms in 
a population can evolve, and this evolution can be modeled by the 
use of several methods. In its simplest form, a mean reaction norm is 
characterized by an intercept value and a plasticity slope value, but it 
may also be natural to use models with a multiple of reaction norms, 
and they may be nonlinear.

A common model is the multivariate breeder's equation 
(Lande, 1979), where the mean reaction norm parameters may be 
treated as traits in their own right, as in, for example, Lande (2009). 
For applications on field data from studies of wild populations, there 
are two problems with such models. First, the individual reaction 
norm parameters are not available, and second, additive genetic 
relationships in the population cannot be taken into account. The 
first problem can be solved by a linear transformation as shown in 
Ergon  (2022a), and as used for comparison purposes in Section 2, 
but the second problem will still exist.

An alternative approach for reaction norm modeling is to use 
infinite-dimensional characters, as in a method introduced by 
Kirkpatrick and Heckman (1989), and as applied on reaction norms by 
Gomulkiewicz and Kirkpatrick (1992). It is then necessary to obtain 
smooth covariance function estimates (Kingsolver et al., 2001), and 
one method for that purpose is random regression (Shaeffer, 2004), 
where individual breeding values are modeled as relatively simple 
weighted sums of basis functions. Additive genetic relationship ma-
trices can be included in such models (Oliviera et al., 2019). An obvi-
ous difficulty is here the need to find for example polynomial basis 
functions that fit the data reasonably well over time. Another diffi-
culty is that the reaction norms in multivariate cases are correlated, 
such that they cannot be modeled independently.

In the present article, I introduce a multivariate modeling ap-
proach based on best linear unbiased predictions (BLUP), allowing 
for multiple (and potentially correlated) traits to have joint norms 
of reaction, which can be linear or approximated by power series 
(Gavrilets & Scheiner, 1993). This is a dynamical BLUP model in the 
sense that the incidence matrix for the random effects and the re-
sidual covariance matrix are functions of the changing environment. 
I will develop the theory under the assumption that the parameters 
in the model are known, but as will be shown separately they can 
also be identified by a prediction error method, as introduced in a 
microevolutionary context in Ergon (2022a, 2022b). This identifica-
tion aspect is an essential prerequisite, that is, the model must be 
identifiable from available environmental, phenotypic, fitness, and 
additive genetic relationship data.

BLUP based on linear mixed models with fixed and random effects 
are extensively used in domestic animal and plant breeding (Arnold 

et al., 2019; Ch. 26, Lynch & Walsh, 1998; Robinson, 1991). These 
methods may also be applied on wild populations (Kruuk,  2004; 
Nussey et al., 2007), although such uses have been criticized owing 
to errors in estimated variances of the random effects (Hadfield 
et al., 2010). An important application is the disentanglement of mi-
croevolutionary and plasticity components in for example climate 
change responses (Ergon, 2022a, 2022b; Merilä & Hendry, 2014). 
The basic BLUP equations were first developed in summation form 
(Henderson, 1950), but as done here, it is more convenient to use 
matrix formulations.

This article will be focused on how mean reaction norm parameter 
values, and thus mean phenotypic traits, evolve under the influence 
of environmental cues and changes in the fitness landscape. Such 
evolution of reaction norms and phenotypic traits seeks to maximize 
the mean fitness of a given population, and changes in the location 
of fitness peaks in the phenotypic space are therefore the driving 
force. I will thus study the dynamics of microevolutionary systems, 
mainly by the use of BLUP, but also with reference to the well-known 
multivariate breeder's equation (Lande, 1979). Although fitness can 
be defined as the long-run growth rate (Sæther & Engan, 2015), or 
for nonoverlapping generations the expected geometric mean fit-
ness (Autzen & Okasha, 2022), I will in simulations simply use the 
number of surviving descendants as a measure of individual fitness 
(Ch. 6, Rice, 2004).

It is well-known that BLUP underestimates the variances of the 
random effects in linear mixed models (Hadfield et al., 2010; Ch. 26, 
Lynch & Walsh, 1998). Here, I will show why and to which extent that 
is necessary in order to obtain the correct incremental changes in 
mean reaction norm parameter values from generation to generation. 
I will also show that these changes may be found from Robertson's 
secondary theorem of natural selection (Robertson, 1966) applied 
on the estimated random effects. This also applies to nonplastic 
organisms, where the mean reaction norms degenerate into mean 
phenotypic trait values (Ergon, 2022c).

The dynamical BLUP model with Robertson updating of mean 
reaction norm parameter values, makes the use of the additive 
genetic relationship matrix At in a standard way (Ch. 26, Lynch & 
Walsh,  1998). The theoretical treatment is limited to cases where 
only mean phenotypic traits are included in the fixed effects, and 
for simplicity, it assumes that generations are nonoverlapping. It is, 
however, also shown how cases with overlapping generations can be 
handled in a straightforward way. For cases with sexual reproduc-
tion, I assume a hypothetical single parent (mid-parent) occupying 
an intermediate phenotypic position between the two parents (Ch. 
7, Rice, 2004).

The theoretical development will be general, that is, for any num-
ber of phenotypic traits and any number of environmental cues in 
the model. For clarity of presentation, however, some details will be 
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    |  3 of 15ERGON

given for a system with only two phenotypic traits and two environ-
mental cues. A similar limited system will also be used in simulations.

The additive genetic and phenotypic covariance matrices, G and 
P, are here assumed to be constant and known. They may, however, 
be estimated by means of a prediction error method (PEM), utilizing 
the information contained in environmental cues and individual phe-
notypic trait values over many generations, as well as fitness infor-
mation (Ergon, 2022a, 2022b). With plastic traits in the dynamical 
BLUP model, restricted maximum likelihood (REML) methods ap-
plied on data from a single generation cannot be used for this pur-
pose. The simple reason for this is that each element in the residual 
covariance matrix is a function of several nonadditive effects, such 
that the REML equations become indeterminate.

As developed theoretically, and verified in simulations, the dy-
namical BLUP model with an additive genetic relationship matrix 
equal to an identity matrix, that is, with random mating in an unbred 
population, will give the same results as a selection gradient pre-
diction method (GRAD) based on the multivariate breeder's equa-
tion (Ergon, 2022a, 2022b). For large populations, these results will 
asymptotically also be the same as from the multivariate breeder's 
equation directly.

After this introduction, Theory and Methods follow in Section 2, 
Simulations in Section 3, and Summary and Discussion in Section 4. 
Proofs of two theorems are given in Appendices A and B. For the 
interested reader, a user guide is given in Appendix C, including the 
procedure for PEM system identification. MATLAB code for the sim-
ulations is given in Supporting information.

2  |  THEORY AND METHODS

2.1  |  Notation

Mathematical symbols with descriptions in the order they appear in 
equations are shown in Table 1.

2.2  |  Introductory example

For a simple toy example, intended to ease the readers into the 
concepts used below, consider a single trait yi,t measured on a sin-
gle individual. In this case, the BLUP estimate of the true additive 
genetic value for that individual is â� i,t = h2

(

yi,t −mean
)

, where h2 is 
the heritability, while mean denotes any fixed effects adjustment. If 
we substitute this estimate into Robertson's secondary theorem of 
natural selection (Ch. 6, Walsh & Lynch, 2018), we find the between-
generation response R = Δyt = cov

(

wi,t , â
�
i,t

)

= h2cov
(

wi,t , yi,t
)

= h2S, 
where wi,t is the relative fitness, while S is the Robertson-Price within-
generation change in the mean. In this way, we recover the standard 
univariate breeder's equation.

What is done below is to consider a much more complicated phe-
notype (an observed vector yt of individual focal traits with reac-
tion norms) and use BLUP to estimate the vector of additive effects 

associated with the norm of reaction functions, with these BLUPs 
then substituted into the expression for Robertson's secondary the-
orem of natural selection. The incremental changes in the mean re-
action norm parameter values thus follow from cov

(

wi,t , ẑ
′
i,t

)

, where 
ẑ′ i,t stands for the BLUP estimates of the true additive genetic values 
involved (Equation (11) below).

For the special case with an additive genetic relationship ma-
trix At = In, the BLUP estimates yield a matrix-based inheritance 
expression (using the correlated nature of the random effects) to 
replace h2, and a Robertson-Price term cov

(

wi,t , yi,t
)

 to measure phe-
notypic selection (Equation  (12) below). From a practical point of 
view, Equation  (12) is unnecessary, but it is included for the pur-
pose of comparisons with results from the multivariate breeder's 
equation.

TA B L E  1 Mathematical symbols with description.

Symbol Description

Δ zt Incremental change in mean trait from generation 
t to generation t + 1

wi,t Relative individual fitness, wi,t = Wi,t ∕Wt

zi,t , yi,t , zi,t , y i,t Individual traits and vectors of individual traits

G Additive genetic covariance matrix, with block 
elements Gaa, Gab , Gbb

P Phenotypic covariance matrix, with block 
elements Paa, Pab, Pbb

�t Selection gradient

a�
i,t
+ �i,t Individual intercept deviations around mean value 

at, with additive and non-additive effects

b�
i,t
+ �i,t Individual plasticity slope deviations around 

mean value bt, with additive and non-additive 
effects

Δat, Δbt Incremental changes in mean reaction norm 
parameter values

�2
�
, �2

�
Variances of nonadditive effects

ut , ut Environmental variable and vector of 
environmental variables

Pyy Variance of yi,t
X Design matrix in linear mixed model

Z̃t = Zt

⨂

In
Incidence matrix in linear mixed model, with 

Zt = f
(

ut
)

xt Random effects in linear mixed model, for special 
case with 2 traits and 2 environmental variables, 
xt =

[

a�T
1,t

a�T
2,t

b
�T
11,t b

�T
12,t

b
�T
21,t

b
�T
22,t

]T

et Residual vector in mixed model, with et = f(ut )

At Additive genetic relationship matrix

G̃t = G
⨂

At
Kronecker covariance matrix for BLUP model

R̃t = Rt

⨂

In
Kronecker residual matrix for BLUP model, with 

Rt = E
[

ete
T
t

]

ẑ′ i,t Estimated individual intercept or slope deviations 
around mean values

z
parents

t
, zoffspring

t
Mean reaction norm parameter values for parents 

and offspring
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2.3  |  Background theory

For the development of the dynamical BLUP matrix equation that 
follows, we need some background theory. First, the Price equation 
for selection in a population with n individuals says that the evolu-
tion of the mean trait of an n × 1 vector zt of individual quantitative 
traits is described by (Price, 1970, 1972)

where Δzt = zt+1 − zt is the incremental change in mean trait value 
from generation to generation and where zi,t is an individual trait. 
Here, wi,t is the relative individual fitness, that is, individual fitness 
divided by the mean fitness in the population, while zdescendants

i,t
 is 

the mean trait of the descendants (and the parent if it survives) 
of individual i in generation t. The trait zi,t may be any property 
we can assign a numerical value to, not necessarily biological. In a 
biological context, the trait may be a behavioral, morphological, or 
physiological characteristic, but it may also be a parameter in a re-
action norm model that describes a plastic organism. Disregarding 
the second term on the righthand side of Equation  (1), we find 
the Robertson-Price identity, Δzt = cov

(

wi,t , zi,t
)

 (Robertson, 1966; 
Ch. 6, Walsh & Lynch, 2018), as referred to above, and which we 
will use below.

Second, we need to see how the multivariate breeder's equation 
(Lande, 1979; Lande & Arnold, 1983),

where �t is the selection gradient, which can be applied on the param-
eters in a reaction norm model. Equation (2) was derived from a multi-
variate version of Equation (1), which requires several assumptions, as 
detailed in Ergon (2019, 2022c):

1.	 The vector zi,t of individual phenotypic traits is the sum of 
independent additive genetic effects xi,t and nonadditive en-
vironmental and genetic effects ei,t, that is, zi,t = xi,t + ei,t.

2.	 The nonadditive effects ei,t are zero mean, independent, and iden-
tically distributed (iid) random variables.

3.	 There are no expected fitness-weighted changes in the individual 
additive genetic effects xi,t from one generation to the next be-
sides selection, that is, E

[

wi,t

(

xdescendants
i,t

− xi,t

)]

= 0.
4.	 The additive genetic effects xi,t, and the environmental effects ei,t 

and edescendants
i,t

, are multivariate normal.
5.	 The additive genetic effects xi,t and nonadditive effects ei,t and 

edescendants
i,t

 influence individual fitness only through zi,t.
6.	 All individuals in the population are genetically unrelated, which 

means that the additive genetic relationship matrix At is a unity 
matrix.

In what follows, we will make the use of Assumptions 1, 2, and 3, 
while Assumptions 4, 5, and 6 will be used only indirectly when the 

BLUP results with At = In are compared with results based on the 
multivariate breeder's equation.

In order to see how Equation (2) can be applied on the parame-
ters in a reaction norm model, we may use an individual intercept-
slope model based on Assumptions 1 and 2 above (Lande, 2009),

where ut is an environmental cue, and where the mean reaction norm 
is yt = at + btut. Here, ai,t = at + a�

i,t
+ �i,t and bi,t = bt + b�

i,t
+ �i,tut are 

the individual intercept and slope parameters, where �i,t and �i,t are 
iid and zero mean random variables, with variances �2

�
 and �2

�
, re-

spectively. We thus use a�
i,t
+ �i,t and b�

i,t
+ �i,t to denote individual 

deviations from mean values at and bt, respectively, where a′
i,t

 and 
b′
i,t
 are the additive genetic components of these deviations. Such 

additive genetic deviations will be the random effects in the linear 
mixed model developed below, and thus the random effects that are 
estimated by the use of the BLUP equations.

When the reaction norm parameters in Equation (3) are treated 
as quantitative traits in their own right, Equation (2) leads to

with G and P given by G = E

⎡

⎢

⎢

⎣

⎡

⎢

⎢

⎣

a�
i,t

b�
i,t

⎤

⎥

⎥

⎦

�

a�
i,t

b�
i,t

�
⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

Gaa Gab

Gab Gbb

⎤

⎥

⎥

⎦

 and 

P =

⎡

⎢

⎢

⎣

Gaa+�2
�

Gab

Gab Gbb+�2
�

⎤

⎥

⎥

⎦

. The additive genetic and phenotypic cova-

riance matrices G and P may be time-varying, but for simplicity, we will 
here assume that they are constant. As discussed in Ergon (2022a), it is 
essential that the environmental input in Equation (3) has a proper ref-
erence value, and for simplicity we here assume an environmental 
scale such that the reference environment is zero. Note that the model 
in Equation (4) cannot be identified by the use of available environmen-
tal, phenotypic, fitness, and additive genetic relationship data, where 
ai,t and bi,t are not included.

For comparisons with BLUP results, we finally need an identifi-
able version of the multivariate breeder's equation. As shown in 
Ergon (2022a), Equation (4) can by the use of a linear transformation 

of the vector 
[

ai,t bi,t

]T

 onto the vector 
[

ai,t bi,t yi,t

]T

 be re-

formulated into the selection gradient (GRAD) form,

where selection with respect to ai,t and bi,t, as in Equation (4), is replaced 
by selection with respect to yi,t. Here, Pyy = Paa + 2Gabut + Pbbu

2
t
 , while 

P−1
yy
cov

(

wi,t , yi,t
)

 is the selection gradient. It is essential to note that 
Equations  (4) and (5) give identical results only asymptotically, when 

(1)Δzt = cov
(

wi,t , zi,t
)

+ E
[

wi,t

(

zdescendants
i,t

− zi,t

)]

,

(2)Δzt = GP
−1
cov

(

wi,t , zi,t
)

= G�t ,

(3)yi,t = at + a�
i,t
+ �i,t +

(

bt + b�
i,t
+ �i,t

)

ut = yt + a�
i,t
+ b�

i,t
ut + �i,t + �i,tut ,

(4)
⎡

⎢

⎢

⎣

Δat

Δbt

⎤

⎥

⎥

⎦

= GP
−1
⎡

⎢

⎢

⎣

cov
�

wi,t , ai,t
�

cov
�

wi,t , bi,t
�

⎤

⎥

⎥

⎦

,

(5)
⎡

⎢

⎢

⎣

Δat

Δbt

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

Gaa Gab

Gab Gbb

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1

ut

⎤

⎥

⎥

⎦

P−1
yy
cov

�

wi,t , yi,t
�

,
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    |  5 of 15ERGON

the population size n → ∞, and the reason for that is the differences 
in how the covariance functions are used in the two equations. As we 
will see, extensions of Equation (5) are possible for more complex reac-
tion norm models. This is interesting because with an additive genetic 
relationship matrix At = In, the dynamical BLUP model we will develop 
results in incremental changes in mean reaction norm parameter val-
ues, that are identical to those found from an extended version of 
Equation (5). Here, we should finally note that since Equation (5) is de-
rived from the multivariate breeder's equation (2), it is valid only under 
Assumptions 1–6 above.

2.4  |  Development of the dynamical BLUP model

For clarity of presentation, some details will here be limited to a sys-
tem with p = 2 phenotypic traits, and q = 2 environmental cues, and 
a similar simplified system will also be used in the simulations. The 
theory will, however, be developed in such a way that extensions to 
higher dimensions are obvious.

For a specific trait j, the individual reaction norm model with 
q = 2 environmental cues is

where aj,t + a�
j,i,t

+ vj,i,t, bj1,t + b�
j1,i,t

+ �j1,i,tu1,t and bj2,t + b�
j2,i,t

+ �j2,i,tu2,t 
are the individual parameter values, while

is the mean trait value. For a population with n individuals, we may 
collect yj,i,t, a′j,i,t, etc., in n × 1 vectors and obtain the individual trait vec-
tor for trait j,

With p = 2 traits and q = 2 environmental cues, we thus obtain 
the linear mixed model in general form (Ch. 26, Lynch & Walsh, 1998; 
with yt as fixed effects vector)

with yt =
[

yT
1,t

yT
2,t

]T

, yt =
[

y1,t y2,t

]T

, xt =
[

a�T
1,t

a�T
2,t

b
�T
11,t

b
�T
12,t

b
�T
21,t

b
�T
22,t

]T

, 

and et =
[

eT
1,t

eT
2,t

]T

, where e1,t = v1,t + �11,tu1,t + �12,tu2,t and 

e2,t = v2,t + �21,tu1,t + �22,tu2,t. Here, X =

⎡

⎢

⎢

⎣

1n 0

0 1n

⎤

⎥

⎥

⎦

, with dimension 

pn × p = 2n × 2, while Z̃t has dimension pn × p(1 + q)n = 2n × 6n. In 
more detail, we have Z̃t = Zt

⨂

In, where 

Zt =

⎡

⎢

⎢

⎣

1 0 u1,t

0 1 0

u2,t 0 0

0 u1,t u2,t

⎤

⎥

⎥

⎦

, and where 
⨂

 is the 

Kronecker product operator, which means that all elements in Zt 
should be multiplied by In. For use in Appendix B, we may note that 

Zt =
[

Ip U
T

t

]

, with Ut =

⎡

⎢

⎢

⎣

u1,t u2,t 0 0

0 0 u1,t u2,t

⎤

⎥

⎥

⎦

T

. It is an es-

sential feature of the model in Equation (7) that E
[

a�
j,t

]

= E
[

ej,t
]

= 0, such 
that E

[

a�
j,i,t

]

= E
[

ej,i,t
]

= 0 for j = 1 to p, and that E
[

b
�
jk,t

]

= 0, such that 

E
[

b�
jk,i,t

]

= 0 for j = 1 to p and k = 1 to q (Ch. 26, Lynch & Walsh, 1998). 
We thus also have that E

[

yj,i,t
]

= yj,t.
The random effects in Equation (7) may all be correlated, with an 

additive genetic covariance matrix G = E
�

xtx
T
t

�

=

⎡

⎢

⎢

⎣

Gaa Gab

G
T

ab
Gbb

⎤

⎥

⎥

⎦

. The 

residuals e1,t and e2,t in Equation (7) are assumed to be uncorrelated, 

with a covariance matrix Rt = E
�

ete
T
t

�

=

⎡

⎢

⎢

⎣

r1,t 0

0 r2,t

⎤

⎥

⎥

⎦

, where 

r1,t = �2
�1
+ u2

1,t
�2
�11

+ u2
2,t
�2
�12

 and r2,t = �2
�2
+ u2

1,t
�2
�21

+ u2
2,t
�2
�22

, with �2
�j
, 

�2
�j1

 and �2
�j2

 as the variances of the nonadditive effects vj,i,t, �j1,i,t and 

�j2,i,t according to Equation (6a). Also G may in general be a function 
of time, but we will here assume that it is constant. We will assume 
that G and Rt are known, although they may in practice be estimated 
by the use of restricted maximum likelihood (REML) (Ch. 27, Lynch & 
Walsh, 1998), or a prediction error method (Ergon, 2022a, 2022b). 
Note, however, that REML equations for a single generation will be 
indeterminate, that is, we can find r1,t and r2,t, but not all the residual 
covariances in the expressions for r1,t and r2,t. For use in a general 
multivariate BLUP equation, we also need the n × n additive genetic 
relationship matrix At (Ch. 26, Lynch & Walsh,  1998), and the 
Kronecker covariance matrices G̃t = G

⨂

At and R̃t = Rt

⨂

In.
For comparisons with predictions based on selection gradients 

(GRAD), as in Equation (5), we also need the phenotypic covariance 

matrix P =

⎡

⎢

⎢

⎣

Paa Gab

G
T

ab
Pbb

⎤

⎥

⎥

⎦

, where Paa = Gaa + diag
([

�2
�1

�2
�2

])

 and 

Pbb = Gbb + diag
([

�2
�11

�2
�12

�2
�21

�2
�22

])

, with diag([ ∙ ]) de-

noting diagonal matrices. Also P is assumed to be constant.
From the mixed model according to Equation (7) follows the mul-

tivariate BLUP equation in matrix form (Henderson, 1950; Ch. 26, 
Lynch & Walsh, 1998),

where, for p = 2 and q = 2, ŷt =
[

ŷ1,t ŷ2,t

]T

 and 

x̂t =
[

â�T
1,t

â�T
2,t

b̂
�T
11,t

b̂
�T
12,t

b̂
�T
21,t

b̂
�T
22,t

]T
. Here, E

[

ŷj,i,t

]

= yj,t and 

E
[

â�1,i,t

]

= E
[

â�2,i,t

]

= E
[

b̂�11,i,t

]

= E
[

b̂�12,i,t

]

= E
[

b̂�21,i,t

]

= E
[

b̂�22,i,t

]

= 0   . 

Note that the derivation of Equation  (8) does not necessarily re-
quire an assumption of normal data (Robinson, 1991).

(6a)

yj,i,t =aj,t+a�
j,i,t

+vj,i,t+
(

bj1,t+b�
j1,i,t

+�j1,i,t

)

u1,t+
(

b� j2,t+b�
j2,i,t

+�j2,i,t

)

u2,t =yj,t+a�
j,i,t

+b�
j1,i,t

u1,t+b�
j2,i,t

u2,t+vj,i,t+�j1,i,tu1,t+�j2,i,tu2,t ,

(6b)yj,t = aj,t + bj1,tu1,t + bj2,tu2,t

(6c)y j,t = 1nyj,t + a�
j,t
+ b

�
j1,t
u1,t + b

�
j2,t
u2,t + vt + �j1,tu1,t + �j2,tu2,t .

(7)yt = Xyt + Z̃txt + et ,

(8)
⎡

⎢

⎢

⎣

X
T
R̃
−1

t
X X

T
R̃
−1

t
Z̃t

Z̃
T

t
R̃
−1

t
X Z̃

T

t
R̃
−1

t
Z̃t+ G̃

−1

t

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

ŷt

x̂t

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

X
T
R̃
−1

t
yt

Z̃
T

t
R̃
−1

t
yt

⎤

⎥

⎥

⎦

,
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6 of 15  |     ERGON

2.5  |  Updating of mean reaction norm 
parameter values

When Equation (8) is applied on any given parent generation, the 
expected mean values of the vector elements in x̂t will be zero, that 

is, E
[

â�1,t

]

= E
[

â�2,t

]

= … = E

[

b̂
�
22,t

]

= 0. However, owing to dif-

ferent fitness (number of descendants) among the individuals in 
the parent generation, the corresponding mean values in the off-
spring generation before new reproduction will be different from 

â′1,t, etc., and these within-generation differences may be used for 
updating of the mean reaction norm parameters a1,t, a2,t, b11,t, b12,t, 
b21,t, and b22,t in Equations  (6a) and (6b). After this updating, the 
offspring are ready to become new parents, again with 

E
[

â�1,t

]

= E
[

â�2,t

]

= … = E

[

b̂
�
22,t

]

= 0.

Selection will thus result in within-generation incremental changes 
in the mean values of the estimated random effects from parents to 
offspring before reproduction, generally given by Equation (1),

where ẑ′ i,t is any estimated individual value â′1,i,t, â′2,i,t, b̂′11,i,t, b̂′12,i,t, 
b̂′21,i,t, or b̂′22,i,t in the random effects vector x̂t in Equation  (8), while 
ẑ′descendants
i,t

 is the corresponding mean value for the descendants of in-

dividual i  in generation t. In Equation (9), zparents
t

 stands for the mean 
value of any one of the estimated random effects from Equation (8), 
that is, â′1,t, â′2,t, b̂

′
11,t, b̂

′
12,t, b̂

′
21,t, or b̂′22,t, while zoffspring

t
 is the corre-

sponding mean value for the offspring after selection but before re-
production. These incremental changes should thus at each generation 
be used for updating of the mean reaction norm parameter values be-
fore the offspring become new parents. For this purpose, we need an 
additional assumption, which follows from Assumption 3 above, be-
cause ẑ′ i,t and ẑ′descendants

i,t
 are estimates of an additive genetic compo-

nent of a reaction norm parameter, and thus have no nonadditive 
components:

Assumption 7. There are no expected fitness-weighted changes 
in estimated random effects from individual parents to their descen-
dants after selection but before reproduction, that is, 

E
[

wi,t

(

ẑ�descendants
i,t

− ẑ� i,t

)]

= 0.

When Assumption 7 is applied on Equation  (9), we obtain the 
Robertson-Price identity for the within-generation changes in the 
mean values (Ch. 6, Walsh & Lynch, 2018). Here, the incremental 
changes zoffspring

t
− z

parents

t
 will be entirely determined by the additive 

genetic values ẑ′ i,t and individual fitness, and when these changes 
are used for updating we thus obtain between-generation changes 
in the mean values as given by Robertson's secondary theorem of 
natural selection (Ch. 6, Walsh & Lynch, 2018). When Equation (8) 
is applied on a given parent generation, and when the changes 
in mean values of estimated random effects from the parent to 
the offspring generation are used for updating, the incremental 
changes in those values under Assumption 7 thus follow from the 
following theorem:

Theorem 1. In a population that is adequately de-
scribed by Equation (7), the incremental changes in mean 
reaction norm parameter values from generation to gen-
eration are found from Robertson's secondary theorem 
of natural selection,

�where zt is any mean parameter value a1,t, a2,t, b11,t , b12,t, 
b21,t, or b22,t, while ẑ′ i,t is the corresponding estimated in-
dividual value â′1,i,t, â′2,i,t, b̂′11,i,t, b̂′12,i,t, b̂′21,i,t, or b̂′22,i,t, in 
the random effects vector x̂t in Equation (8).

From Theorem 1 follows the incremental changes in mean traits 
according to

With correct initial mean reaction norm parameter values, this 
gives y1,t and y2,t according to Equation (6b), and this can be general-
ized to higher dimensions, with p > 2 and q > 2.

For finite population sizes, there will be drift in the mean reac-
tion norm parameter values, owing to random errors in the cova-
riance computations according to Equation  (11). However, as we 
will see in the simulations, there are also other sources of drift.

From the BLUP theory above follows the following theorem:

Theorem 2. For a reaction norm evolutionary system 
with p = 2 phenotypic traits and q = 2 environmental 
cues, Equation (8) and Theorem 1 will with At = In result 
in incremental changes in mean reaction norm parameter 
values according to

�This can be generalized to higher dimensions, with p > 2 
and q > 2.

See Appendix A for proof, and results in Section 3.
For comparisons with the multivariate breeder's equation, the 

results from Equation (12) can also be found by a generalization of 
the GRAD incremental parameter changes according to Equation (5):

(9)z
offspring

t
− z

parents

t
= cov

(

wi,t , ẑ
�
i,t

)

+
[

wi,t

(

ẑ�descendants
i,t

− ẑ� i,t

)]

,

(10)Δzt = cov
(

wi,t , ẑ
�
i,t

)

,

(11)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δa1,t

Δa2,t

Δb11,t

Δb12,t

Δb21,t

Δb22,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cov
�

wi,t , â
�
1,i,t

�

cov
�

wi,t , â
�
2,i,t

�

cov
�

wi,t , b̂
�
11,i,t

�

cov
�

wi,t , b̂
�
12,i,t

�

cov
�

wi,t , b̂
�
21,i,t

�

cov
�

wi,t , b̂
�
22,i,t

�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δa1,t

Δa2,t

Δb11,t

Δb12,t

Δb21,t

Δb22,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= G
�

Z
T

t
R
−1
t
ZtG+ I6

�−1

Z
T

t
R
−1
t

⎡

⎢

⎢

⎣

cov
�

wi,t , y1,i,t
�

cov
�

wi,t , y2,i,t
�

⎤

⎥

⎥

⎦

.
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    |  7 of 15ERGON

Theorem 3. Equation  (12) can be reformulated as an 
extension of Equation (5),

�where 
⎡

⎢

⎢

⎣

I2

Ut

⎤

⎥

⎥

⎦

= Z
T

t
, while Pyy,t = Paa + 2U

T

t
Gab + U

T

t
PbbUt.

See Appendix  B for proof, and simulation results in Section  3, 
where Equations (12) and (13) give identical results for population sizes 
n ≥ 2. The simulations also show that the results from Equation (13) are 
close to the results from a corresponding version of the multivariate 
breeder's equation (4), with declining differences for increasing pop-
ulation size.

2.6  |  Example case without plasticity

When all plasticity slope parameter values are zero, Equation  (6a) 
gives yj,t = aj,t, and the individual phenotypic traits

For p traits, this leads to Equation (8) with 

x̂t =
[

â�T
1,t

â�T
2,t

⋯ â�T
p,t

]T

, Z̃t = Ipn, … 

X =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1n 0 ⋯ 0

0 1n ⋯ 0

⋮

0

⋮

0

⋱ ⋮

⋯ 1n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, G̃ = Gaa

⨂

At, and 

R̃t =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

r1 0 ⋯ 0

0 r2 ⋯ 0

⋮

0

⋮

0

⋱ ⋮

⋯ rp

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⨂

IN, where rj is the variance of 

vj,i,t. For At = In this leads to the following theorem:

Theorem 4. With individual phenotypic traits accord-
ing to Equation  (14), and with At = In, the dynamical 
BLUP model above and the multivariate breeder's equa-
tion (2) give identical results.

A proof of Theorem 4 is given in Ergon (2022c), although then 
relying on a comparison with the multivariate breeder's equation. 
Here, Theorem 1 makes it into an independent proof. Note that in 
this case Equation (13) degenerates into Equation (2).

2.7  |  Errors in estimated random effects variances

The fact that updated mean reaction norm parameter val-
ues, and thus also updated mean phenotypic trait values, are 
found by the use of Robertson's secondary theorem of natu-
ral selection applied on estimated random effects, as stated in 
Theorem 1, quite generally shows that the variances of these ef-
fects are underestimated. This is easily seen in the case without 
plasticity, given by Equation (14), in which case Equation (2) can 
be formulated as

which should be compared with the result following from Theorem 1,

The underestimation of the variances Gjj = E
[

a�2
j,i,t

]

 becomes espe-

cially transparent with diagonal G and P matrices, where we from 

Equations  (15a) and (15b), with the use of �2
�j
= E

[

�2
j,i,t

]

, find 

â� j,i,t = Gjj

(

Gjj+�2
�j

)−1(

a�
j,i,t

+ vj,i,t

)

. In this case, we thus find

that is, var
(

�a� j,i,t

)

= �Gjj < Gjj for 𝜎2
𝜐j
> 0. See Ergon (2022c) for simula-

tion results.

2.8  |  Adjustments for overlapping generations

With surviving parents, only a fraction ft < 1 of a given generation 
are offspring from the previous generation. The incremental changes 
in mean reaction norm parameter values from one generation to the 
next are then reduced accordingly, and by the use of Equation (11), 
we thus obtain

where zt is any one of the mean reaction norm parameters, while ẑ′ i,t 
is the corresponding estimated individual random effect. As verified 
in the simulations, this will slow down responses on environmental 
changes, with reduced mean fitness as consequence.

(13)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δa1,t

Δa2,t

Δb11,t

Δb12,t

Δb21,t

Δb22,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

Gaa Gab

G
T

ab
Gbb

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

I2

Ut

⎤

⎥

⎥

⎦

P
−1
yy,t

⎡

⎢

⎢

⎣

cov
�

wi,t , y1,i,t
�

cov
�

wi,t , y2,i,t
�

⎤

⎥

⎥

⎦

,

(14)yj,i,t = yj,t + a�
j,i,t

+ vj,i,t .

(15a)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δy1,t

Δy2,t

⋮

Δyp,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= cov

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

wi,t ,GP
−1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a�
1,i,t

+v1,i,t

a�
2,i,t

+v2,i,t

⋮

a�
p,i,t

+vp,i,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(15b)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δy1,t

Δy2,t

⋮

Δyp,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= cov

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

wi,t ,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

â�1,i,t

â�2,i,t

⋮

â�p,i,t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(15c)var
(

â� j,i,t

)

= Ĝjj = var

(

Gjj

Gjj + �2
�j

(

a�
j,i,t

+ vj,i,t

)

)

=
G2
jj

Gjj + �2
�j

,

(16)Δzt = ft × cov
(

wi,t , ẑ
�
i,t

)

,
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3  |  SIMUL ATIONS

3.1  |  The aim of the simulations

The aim of the simulations is to verify the theoretical BLUP results by 
means of a toy example, and the purpose is fourfold. First, it is veri-
fied that mean reaction norm parameter values can be updated from 
generation to generation by means of Robertson's secondary theorem 
of natural selection (Theorem 1). Second, it is shown that it is possi-
ble to disentangle the microevolutionary and plasticity components of 
for example climate change acclimations as shown in Equation (11) in 
general, and in Equation (12) for the special case with At = In. Third, it 
is verified that the dynamical BLUP and GRAD results for the incre-
mental changes in mean reaction norm parameter values are identical 
for population sizes n ≥ 2, provided that At = In (Theorems 2 and 3). 
Fourth, it is shown that the GRAD results are erroneous for populations 
with genetic relatedness between the individuals, that is, for At ≠ In.

3.2  |  Description of toy example

In a toy example in Ergon  (2022a), the environmental input was a 
noisy positive trend in spring temperature, starting in 1970, and re-
sulting in a noisy negative trend in mean breeding (clutch-initiation) 
date for a certain bird species, approximately as in figure 2 in Bowers 
et al. (2016).

Here, the example is extended to include a second environmen-
tal variable with a noisy positive trend in mean value, and with varia-
tions from year to year that are somewhat positively correlated with 
the variations in spring temperature. This input may for example be a 
measure of spring rainfall. The example also includes a second adap-
tive phenotype, which might be the breeding habitat, as discussed 
in Chalfoun and Schmidt (2012). We thus have a microevolutionary 
system with two environmental cues and two phenotypic traits, sim-
ilar to the theoretical example case.

The individual (mid-parent) fitness values are integers from 0 to 
4, with number of descendants as unit, and cases with both nonover-
lapping and overlapping generations are simulated. The population 
size is assumed to be constant, which implies that not all descen-
dants survive until reproduction. A constant population size is not 
essential for the principal results, but it simplifies the simulations.

In the simulations, the two environmental reference values are 
assumed to be known from historical data, that is, it is assumed 
that the population was fully adapted to the stationary stochastic 
environment before the onset of anthropogenic and global climate 
change around 1970.

3.3  |  Environmental inputs and reaction  
norm model

Assume a population that is fully adapted to a stationary stochastic en-
vironment with mean spring temperature u1,ref = 10°C (the reference 

value for temperature), and mean spring rainfall u2,ref = 2 mm/day 
(the reference value for rainfall). Also assume phenotypic scales 
such that the phenotypic values that maximize fitness in the ref-
erence environment are given by �1,ref = �2,ref = 0. Further assume 
environmental cues u1,t = �U1,t

− 10 + u1,s,t and u2,t = �U2,t
−2 + u2,s,t, 

where the mean values �U1,t
 and �U2,t

 are ramp functions as shown 
in Figure  1, while u1,s,t and u2,s,t are zero mean and white random 
variables, that is, without autocorrelation. In a corresponding way 
assume that �1,t = �Θ1,t

+ �1,s,t and �2,t = �Θ2,t
+ �2,s,t, where �Θ1,t

 and 
�Θ2,t

 are ramp functions as shown in Figure 1, while �1,s,t and �2,s,t are 
zero mean and white random variables.

Assume that u1,s,t, u2,s,t , �1,s,t, and �2,s,t have a joint normal dis-
tribution with variances �2

U1,s

, �2
U2,s

, �2
Θ1,s

, and �2
Θ2,s

, and covariances 
�U1,sU2,s

, �U1,sΘ1,s
= −2���

2

U1,s
, and �U2,sΘ2,s

= −2���
2

U2,s
, where �� is the 

autocorrelation of background environmental fluctuations, as de-
scribed in more detail in Lande  (2009). Data were generated for 
60 generations, with typical input data as shown in Figure 1 (as 
mean values in breeding season). See Supporting information for 
MATLAB code.

Also assume an individual reaction norm model with two pheno-
typic traits, according to

with parameters G =

⎡

⎢

⎢

⎣

Gaa Gab

G
T

ab
Gbb

⎤

⎥

⎥

⎦

 and P =

⎡

⎢

⎢

⎣

Paa Gab

G
T

ab
Pbb

⎤

⎥

⎥

⎦

, and param-

eter values Gaa =

⎡

⎢

⎢

⎣

0.2 0.1

0.1 0.2

⎤

⎥

⎥

⎦

, Gab =

⎡

⎢

⎢

⎣

0 0

0 0

⎤

⎥

⎥

⎦

, Gbb =

⎡

⎢

⎢

⎣

0.05 0.025

0.025 0.05

⎤

⎥

⎥

⎦

, 

Paa =

⎡

⎢

⎢

⎣

0.4 0.1

0.1 0.4

⎤

⎥

⎥

⎦

 and Pbb =

⎡

⎢

⎢

⎣

0.1 0

0 0.1

⎤

⎥

⎥

⎦

. Note that Equations (17a) 

and (17b) are somewhat simplified versions of Equation  (6a), in that 
b12,t = b�

12,i,t
= �12,i,t = 0 and b21,t = b�

21,i,t
= �21,i,t = 0. Also note that 

the two traits in Equations (17a) and (17b) are correlated, with the co-
variance �y1,y2 = Gaa,12 + Gbb,12�U1,sU2,s

 .

3.4  |  Fitness function and initial mean reaction  
norm values

The individual fitness function is assumed to be rounded values of

where �1,t and �2,t are the phenotypic values that maximize fitness, 
while �2 = 10. The discrete values of Wi,t (number of descendants) are 
thus integers from 0 to 4.

In the simulations it is essential that the mean reaction norm param-
eters are given correct initial values at generation t = 1. We will assume 

(17a)y1,i,t = a1,t + a�
1,i,t

+ v1,i,t +
(

b11,t + b�
11,i,t

+ �11,i,t

)

u1,t ,

(17b)y2,i,t = a2,t + a�
2,i,t

+ v2,i,t +
(

b22,t + b�
22,i,t

+ �22,i,t

)

u2,t ,

(18)Wi,t = 4 ∙ exp
(

−
(

(

y1,i,t−�1,t
)2

+
(

y2,i,t−�2,t
)2
)

∕2�2
)

,
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    |  9 of 15ERGON

that the phenotypic values are scaled such that the initial mean intercept 
values in a stationary stochastic environment are a1,t = a2,t = 0, and that 
the initial mean reaction norm slope values are the optimal values in a 
stationary stochastic environment. These optimal values are the ones 
that maximize the expected individual fitness according to Equation (18), 
in a stationary stochastic environment, and thus minimize the criterion 

functions J1 = E
[

(

y1,i,t−�1,t
)2
]

 and J2 = E
[

(

y2,i,t−�2,t
)2
]

. With E
[

y1,i,t
]

= 0, 

and substituting E
[

y2
1,i,t

]

= b
2

11,t
�2
U1,s

 and E
[

y1,i,t�1,t
]

= b11,t�U1,sΘ1,s
, we find 

J1 = b
2

11,t
�2
U1,s

− 2b11,t�U1,sΘ1,s
+ �2

Θ1,s

, and setting dJ1

db11,t
= 2b11,t�

2
U1,s

− 2�U1,sΘ1,s
= 0, 

we thus find the optimal mean slope value b11,opt = �U1,sΘ1,s
∕�2

U1,s
= −0.5. 

In the same way, we find that b22,opt = −0.5 will minimize J2.

F I G U R E  1 Typical input data for 
simulation example, with mean values 
shown by dashed lines, and with 
ramp functions starting at generation 
t = 10 (1970). Numerical values are 
�Θ1,t

= −2
(

�U1,t
− 10

)

, �Θ2,t
= −2

(

�U2,t
− 2

)

, 
�2
U1,s

= 0.5, �2
U2,s

= 0.1875, �2
Θ1,s

= 2, 
�2
Θ2,s

= 1, �U1,sU2,s
= 0.25, �U1,sΘ1,s

= −0.25, 
and �U2,sΘ2,s

= −0.09375.

F I G U R E  2 Simulation results with 
population size n = 100, and an additive 
genetic relationship matrix At = In. Mean 
trait values y1,t and y2,t are shown by solid 
blue lines. Mean reaction norm parameter 
values are shown by solid green lines 
(BLUP), dashed blue lines (GRAD), and 
dotted magenta lines (the multivariate 
breeder's equation).
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10 of 15  |     ERGON

3.5  |  Simulation results

Simulation results with population size n = 100, and additive genetic 
relationship matrix At = In, are shown in Figure 2. New additive ge-
netic (random) effects, and nonadditive effects (residuals), were at 
each generation drawn from normal distributions in accordance with 
the given G and P matrices. The BLUP results given by Equation (12) 
(green lines), and the GRAD results given by Equation (13) (dashed 
blue lines), are identical for population sizes n ≥ 2. Results given by 
the multivariate breeder's equation (4) (dotted magenta lines), are 
somewhat different from the BLUP results. These differences are 
clearly smaller for a population size of n = 1000. Note that y1,t and 
y2,t lag behind �1,t and �2,t, as shown in Figure 1, which is typical for 
ramp responses from dynamical systems with time constants.

As a test, the simulations were repeated with a constant additive 
genetic relationship matrix for a population with a high degree of 
relatedness among individuals, as shown for n = 6 in Equation (19),

As shown in Figure 3, this gave different results for the BLUP and 
GRAD methods. In this case new additive genetic (random) effects 
at each new generation were found as zt =

M
√

Az0,t, where zt stands 
for a′

1,t
, a′

2,t
, b′

11,t
, b′

12,t
, b′

21,t
, or b′

22,t
, and where the different data vec-

tors z0,t were drawn from normal distributions in accordance with 

the given G matrix. Here, M
√

A is the matrix square root, that is, 
M
√

A
M
√

A = A. This reduced the variances of the random effects to ap-
proximately 75% of the nominal values. The random effects were 
also mean centred.

The simulations with results as in Figure  3 were repeated for 
a case with surviving parents, where only a fraction ft = 0.5 of any 
given generation are offspring from the previous generation, that is, 
with the use of Equation (16). As seen in Figure 4, panels (a) and (c), 
and as must be expected, the responses are slowed down. As can 
also be seen in panels (a) and (c), the fraction ft < 1 causes the mean 
trait values y1,t and y2,t to lag further behind the phenotypic values 
�1,t and �2,t that maximize fitness. The result of this is lower mean fit-
ness values, as can be seen in the (identical) plots in panels (b) and (d).

The changes in mean values over 60 generations in Figures 2 
and 3, will to some degree be caused by drift. As a test, the 
total change in a1,t over 60 generations in a stationary stochas-
tic environment as before t = 10 in Figure 1, was computed. For 

population sizes from n = 10 to 400, and based on 100 repeated 
simulations this change had a mean value of approximately zero, 
and a standard error of approximately 0.1, that is, around 10% of 
the corresponding changes in panel (a) in Figures  2 and 3. With 
n = 2, this standard error due to drift increased to 15%. There were 

(19)A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

1∕2

1∕4

1∕4

1∕4

1∕4

1∕2

1

1∕2

1∕4

1∕4

1∕4

1∕4

1∕2

1

1∕2

1∕4

1∕4

1∕4

1∕4

1∕2

1

1∕2

1∕4

1∕4

1∕4

1∕4

1∕2

1

1∕2

1∕4

1∕4

1∕4

1∕4

1∕2

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

F I G U R E  3 Simulation results with 
population size n = 100, and an additive 
genetic relationship matrix A according 
to Equation (19). Mean trait values are 
shown by solid blue lines. Mean reaction 
norm parameter values are shown by solid 
green lines (BLUP) and dashed blue lines 
(GRAD).
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    |  11 of 15ERGON

no noticeable differences between cases with At ≠ In and At = In. 
In order to find an explanation of the drift, the environmental cue 
u1,t over 60 generations in a stationary environment was approxi-
mated by a least squares straight line, denoted û1,t. Based on 100 
repeated simulations with n = 100, the resulting change in û1,t over 
60 generations had a mean value of approximately zero, and a 
standard error of approximately 0.30, that is, around 12% of the 
corresponding changes of u1,t in Figure 1, panel (a). This result in-
dicates that the major part of the drift is caused by the stochastic 
nature of the environmental cues and the phenotypic values that 
maximize fitness.

4  |  SUMMARY AND DISCUSSION

As shown in Section 2, a general reaction norm model with p pheno-
typic traits and q environmental cues, that is, with p(1 + q) mean re-
action norm parameters, can be formulated as a linear mixed model 
with fixed and random effects. In this model, the fixed effects will 
be the mean trait values, while the random effects will be the addi-
tive genetic components of individual deviations from mean reaction 
norm parameter values. From this follows that for any given parent 
generation, estimates of the mean trait values and the additive ge-
netic components of individual deviations from mean reaction norm 
parameter values, can be found from BLUP equations. Because the 
incidence and residual covariance matrices are functions of the en-
vironmental cues, and thus of time, I have introduced the concept 
of dynamical BLUP. Note that the elements in the random effects 
vector in Equation (7) could be ordered differently, for example as.

xt =
[

a�T
1,t

b
�T
11,t

b
�T
12,t

a�T
2,t

b
�T
21,t

b
�T
22,t

]T

, but then also 
the G, P, Ut and Zt matrices must be reorganized accordingly.

The development of the dynamical BLUP model in Equation (8) 
relies on Assumptions 1, 2, 3, and 7, as given in Section 2, while 
Assumptions 4, 5, and 6 are needed only for the comparison with 
results based on the multivariate breeder's equation. Most impor-
tantly, Assumption 4 implies that applications of the multivariate 
breeder's equation on non-normal data in general will produce incor-
rect microevolutionary results. This problem was acknowledged by 
Lande and Arnold (1983), who in their Appendix proposed a possible 
correction for errors caused by skewness. The fundamental reason 
for such errors is that the multivariate breeder's equation involves 
only mean and variance values of the additive genetic and nonad-
ditive effects, while influences from third and higher order statisti-
cal moments are ignored. See for example discussions in Bonamour 
et al. (2017) and Pick et al. (2022).

Although the development of the dynamical BLUP model in 
Equation  (8) does not rely on normal data (Robinson, 1991), it still 
follows from Theorems 2 and 3 that the BLUP results will be incor-
rect in cases with non-normal data and an additive genetic relation-
ship matrix At = In. A natural conclusion is therefore that non-normal 
data will give erroneous BLUP results also when At ≠ In, at least for 
the dynamical BLUP model used here.

In the derivation of the linear mixed model in Equation  (7), I 
assumed linear reaction norms as functions of environmental cues 
u1,t, u2,t, etc., but there is nothing in the theory that prevents us 
from the use of nonlinear reaction norms that are also functions of 
u1,t , u2,t, u21,t , u

2
2,t
, etc., as discussed in Gavrilets and Scheiner (1993) 

and Ergon (2018).

F I G U R E  4 Simulation results with 
population size n = 100, and additive 
genetic relationship matrix At ≠ In 
according to Equation (19). In panels (a) 
and (c), mean trait values y1,t and y2,t and 
mean reaction norm parameter values 
a1,t and a2,t for ft = 1 are shown by solid 
blue and solid green lines, respectively. 
Dashed blue and magenta lines show the 
corresponding responses with a fraction 
ft = 0.5 of new offspring in the population 
at all generations. Phenotypic values �1,t 
and �2,t that maximize fitness are added 
as weak dotted blue lines. Panels (b) and 
(d) show identical plots of mean fitness 
for ft = 1 (solid green lines) and ft = 0.5 
(dashed magenta lines).
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12 of 15  |     ERGON

As shown by Theorem 1, updating of the mean reaction norm 
parameter values from generation to generation can be done by ap-
plying Robertson's secondary theorem of natural selection on the 
vector elements â′T

1,t
, etc., in the estimated random effects. This 

shows that the well-known underestimation of the variances of the 
random effects, is just what is needed, in order to find the correct 
incremental changes in mean reaction norm parameter values. The 
resulting dynamics will depend on the additive genetic and residual 
covariance matrices G and Rt, as well as of the additive genetic rela-
tionship matrix At for the parent generation.

The references to the Robertson-Price identity and Robertson's 
secondary theorem of natural selection in connection with 
Assumption 7 and Theorem  1, might be somewhat confusing. In 
general (Ch. 6, Walsh & Lynch, 2018), the Robertson-Price identity 
follows from the Price equation, Equation (1), by disregarding the sec-
ond term on the righthand side. With zi,t = xi,t + ei,t (Assumption 1), 
this leads to Δzt = cov

(

wi,t , xi,t + ei,t
)

. Robertson's secondary theorem 
of natural selection, on the other hand, states that Δzt = cov

(

wi,t , xi,t
)

 
where xi,t is the breeding value. For the special application of the 
Price equation in Equation  (9), we have xi,t = ẑ� i,t and ei,t = 0, such 
that there is no difference between ẑ′ i,t considered as a trait, and the 
breeding value of that trait. From this follows that Robertson-Price 
identity and Robertson's secondary theorem of natural selection in 
this special case give the same results.

It is worth noticing that the additive genetic relationship matrix 
for the offspring generation does not affect the updating of mean 
reaction norm parameter values. This is shown in the theoretical 
derivations, but it is also a natural consequence of the fact that the 
dynamical BLUP model, just as the multivariate breeder's equation, 
is an evolutionary state-space model (Ergon, 2018).

For cases with At ≠ In, it should be noted that At is included in the 
BLUP matrix equation (8) via G̃t, just as in the standard equation used 
in domestic breeding (Ch. 26, Lynch & Walsh, 1998). It is also reassur-
ing to know that the BLUP equation asymptotically, for At → In, gives 
results that are identical to the GRAD results based on the multivari-
ate breeder's equation (Theorems 2 and 3). Note that results from the 
use of the multivariate breeder's equation are equal to the GRAD re-
sults only asymptotically, that is, for population size n → ∞. For cases 
without plasticity, and with At = In, the results from all three methods 
are identical, independent of population size (Theorem 4).

Theorems 1, 2, and 3 were verified in simulations with the use of 
At = In, and population sizes down to n = 2, while Theorem 4 was ver-
ified by simulations in Ergon  (2022c). Simulation results with At ≠ In 
were found by the use of a constant and possibly unrealistic additive 
genetic relationship matrix, but these results still serve the purpose of 
showing that the BLUP and GRAD results with At ≠ In are different.

The changes in mean trait and mean reaction norm parameter 
values over 60 generations that can be seen in Figures 2 and 3, are 
partly caused by drift. As indicated at the end of Section 3, the major 
sources of drift are the stochastic nature of the input environmental 
variables u1,t and u2,t, as well as of the phenotypic values �1,t and �2,t 
that maximize fitness. In the simulations, the population size plays a 
vital role only when n < 10.

In the simulations, the G and P parameters are assumed to be 
known, although they are normally not, and this is the case also for 
the reference environment and the initial mean reaction norm param-
eters. However, as shown in Ergon (2022a, 2022b), these parameters 
can be found by a prediction error method (PEM) using all available 
input–output experimental or field data, including individual fitness 
data. Ergon (2022a, 2022b) combined PEM with the GRAD model, 
that is, with extensions of Equation (5), but as will be reported sepa-
rately, PEM works just as well when combined with the BLUP model 
in Equation (8). BLUP/PEM will in fact be much better than GRAD/
PEM when it comes to the identification of the reference environ-
ment. As seen for GRAD/PEM in Ergon (2022a, 2022b), and as will 
be reported separately for BLUP/PEM, the essential feature of PEM 
in the present setting is to predict the reaction norms as well as pos-
sible, while the additive genetic and environmental parameter values 
may be very much influenced by random measurement errors and 
modeling errors.

For the interested reader, the essential steps in the proposed dy-
namical BLUP method are summarized in Appendix C, where also 
the procedure for PEM system identification from laboratory or field 
data is included.

Parameter estimation by means of restricted maximum likeli-
hood (REML) applied on data from a single generation is not possi-
ble for plastic organisms. A simple reason for this is that the 
variance components rj,t in the diagonal residual covariance matrix 
Rt are functions of several unknown variances of the nonadditive 
effects in the reaction norm model, that is, r1,t, r2,t, etc. can be 
found, but not all the residual covariances involved. The reason be-
hind this problem is that there are confounding variables in the re-
action norm equations. In for example Equation (3), all the terms in 
a�
i,t
+ b�

i,t
ut + �i,t + �i,tut are confounded, which implies that the use of 

REML at a single generation will not give details of the G and Rt 
matrices. As pointed out above, a solution is to use a prediction 
error method (PEM) where data from all generations are used. Note 
that this confounding is not a problem in the modeling process, 
where at and bt in a�i,t = ai,t − at and b�i,t = bi,t − bt, respectively, are 
found from Equation (11), and where a′i,t, b

′
i,t, �i,t and �i,t are samples 

with given variances.
With surviving parents, only a fraction ft of the population 

will be offspring from the previous generation, and as shown in 
Equation  (16), the incremental changes in mean reaction norm 
parameter values will then be reduced accordingly. As verified 
in simulations, and as must be expected, the responses on envi-
ronmental changes will then be slowed down, with reduced mean 
fitness as consequence. Note that the last term on the righthand 
side of Equation (1), the Price equation, in general, is affected by 
surviving parents, but that this term according to Assumption 7 
does not affect the dynamical BLUP updating from generation to 
generation.
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APPENDIX A

Proof of Theorem 2.

Lemma 1. Assuming an additive genetic relationship 
matrix At = In, the mean values of the estimated fixed ef-
fects in Equation (8), for j from 1 to p, are ŷj,t = yj,t, while 
the mean values of the estimated random effects, for j 
from 1 to p and k from 1 to q, are â� j,t = 0 and b̂� jk,t = 0.

Proof.  Equation  (8) will after elimination of XT
R̃
−1

t
 

give the following equation for a specific trait j,

Taking mean values on both sides of Equation (A1a) gives

Equation (8) also gives

from which with the use of the mixed model property 
�

A
⨂

B
��

C
⨂

D
�

= (AC)
⨂

(BD) follows that

where Q̃ = Q
⨂

In =

�

�

Z
T

t
R
−1
t

�T

Z
T

t
R
−1
t

�−1
�

Z
T

t
R
−1
t

�T�

Z
T

t
R
−1
t
Zt + G

−1
�

⨂

In is an 
pn × pn(1 + q) matrix, with block row vectors Q̃j = Qj

⨂

In, for j from 
1 to p. From Equation (A2b), thus follows

Since x̂t has dimension n × 1, we here have 
Qj

⨂

Inx̂t = Qj

�

Inx̂t
�

= Qj x̂t, and by taking mean values of both sides 
of Equation (A2c), we thus find

Equations  (A1b) and (A2d) thus give two expressions for 
yj,t − ŷj,t , and since in general Qj x̂t ≠ â� j,t + u1,t b̂

�
j1,t + u2,t b̂

�
j2,t + … + ur,t b̂

�
jq,t
 , 

these expressions are equal if and only if ŷj,t = yj,t and 
â� j,t = u1,t b̂

�
j1,t = u2,t b̂

�
j2,t = … = ur,t b̂

�
jq,t = 0.

Having established that At = In results in â� j,t = 0, b̂� jk,t = 0 and 
ŷj,t = yj,t, it is time to find how fitness affects the incremental changes 
in mean reaction norm parameter values. For clarity of presentation, 
we here limit the number of phenotypic traits to p = 2, and the num-
ber of environmental cues to q = 2, as we also did in parts of Section 2. 
We also introduce the diagonal n × n matrix Ft = diag

(

wi,t

)

 , and the 
following two lemmas:

Lemma 2. The mean value of the product of Ft and 
an estimated random effect vector ẑt in Equation (8), 
where ẑt = â� j,t for j  from 1 to p, or ẑt = b̂

�
jk,t for j  from 

1 to p and k from 1 to q, is Ft ẑt = Δzt, that is, the in-
cremental change in the mean reaction norm param-
eter value zt.

Proof. Since wt = 1 and ẑt = 0 (from Lemma  1), we 
find Ft ẑt =

1

n

∑n

i=1
wi,t ẑi,t − wt ẑt = cov

�

wi,t , ẑi,t
�

, and 
thus according to Theorem 1, Ft ẑt = Δzt.

Lemma 3. The mean value of the sum Fty j,t − Ft1nyj,t, 
for j from 1 to p, is cov

(

wi,t , yj,i,t
)

.

Proof. Fty j,t − Ft1nyj,t =
1

n

∑n

i=1
wi,tyj,i,t − wtyj,t = cov

�

wi,t , yj,i,t
�.

Assuming p = 2 and q = 2, for simplicity, and using that ŷj,t = yj,t 
(Lemma 1), multiplication of Equation  (A2a) from the left with the 
block diagonal matrix F̃t = I6

⨂

Ft, and insertion of F̃
−1

t
F̃t between 

(

Z
T

t
R
−1
t
Zt + G

−1
)

 and 
⨂

Inx̂t, we find by the use of the mixed model 
property 

�

A
⨂

B
��

C
⨂

D
�

= (AC)
⨂

(BD) that

Since all elements in ZT

t
R
−1
t
Zt + G

−1 and ZT

t
R
−1
t
 are multiplied by Ft , 

Equation (A3a) can be reformulated as

Taking mean values of all vector elements, will according to 
Lemma 2 and 3 finally give

(A1a)â� j,t + u1,t b̂
�
j1,t + u2,t b̂

�
j2,t + … + ur,t b̂

�
jq,t = y j,t − 1nŷj,t ,

(A1b)â� j,t + u1,t b̂
�
j1,t + u2,t b̂

�
j2,t + … + ur,t b̂

�
jq,t = yj,t − ŷj,t ,

(A2a)
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⋮

yp,t−1nŷp,t
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(A2c)Qj
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Inx̂t = y j,t − 1nŷj,t .

(A2d)Qj x̂t = yj,t − ŷj,t .
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APPENDIX B

Proof of Theorem 3.

Since 
⎡

⎢

⎢

⎣

I2

Ut

⎤

⎥

⎥

⎦

= Z
T

t
, we must in order to prove Theorem 3 show that 

(

Z
T

t
R
−1
t
ZtG+ I6

)−1

Z
T

t
R
−1
t

= Z
T

t
P
−1
yy,t
. We can do that by the use of the 

matrix inversion lemma (A+BCD)−1 = A
−1 − A

−1
B
(

C
−1+DA−1

B
)−1

DA
−1, 

with the use of A = I6, B = Z
T

t
, C = R

−1
t

, and D = ZtG. This gives

Here, Rt + ZtGZ
T

t
=

⎡

⎢

⎢

⎣

r1,t 0

0 r2,t

⎤

⎥

⎥

⎦

+
�

I2 U
T

t

�
⎡

⎢

⎢

⎣

Gaa Gab

G
T

ab
Gbb

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

I2

Ut

⎤

⎥

⎥

⎦

, which 

with r1,t = �2
�1
+ u2

1,t
�2
�11

+ u2
1,t
�2
�12

 and r2,t = �2
�2
+ u2

1,t
�2
�21

+ u2
2,t
�2
�22

 

gives Rt + ZtGZ
T

t
= Paa + 2U

T

t
Gab + U

T

t
PbbUt = Pyy,t, and thus ZtGZ

T

t
= Pyy,t − Rt. 

Equation (B1) thus finally gives

APPENDIX C

User guide, including PEM system identification
For the interested reader, I here summarize the essential steps in 
the proposed dynamical BLUP method, including the procedure 
for PEM system identification from laboratory or field data. Note 
that the feasibility of the PEM method in an evolutionary context 
has been tested in Ergon (2022a, 2022b), but then with the use of 
a GRAD model. For simplicity, I here assume the BLUP simulation 
system in Section  3, with nonoverlapping generations, and with 
input trends as shown in Figure  1. With overlapping generations, 
the fraction ft of the population that is offspring from the previous 
generation must be included as factors on the righthand sides of 
Equations (11) and (13).

1.	 Collect environmental input data u1,t and u2,t, individual and 
mean phenotypic data y1,i,t, y2,i,t, y1,t and y2,t, relative fitness 
data wi,t, and additive genetic relationship matrices At, for con-
secutive generations from t = 1 to T.

2.	 Form the dynamical incidence matrices 

Z̃t =

⎡

⎢

⎢

⎣

In 0 u1,tIn 0

0 In 0 u2,tIn

⎤

⎥

⎥

⎦

.

3.	 Set Gaa,11 to an assumed and constant value (other G and P 
parameter values will be estimated relative to this value).

4.	 Assume some initial parameter values in Gaa,12, Gaa,22, Gbb,11, Gbb,12, 
Gbb,22, �2�1, �

2
�2

, �2
�11

 and �2
�22
. Simulations indicate that all these initial 

values may be set to zero. From this also follows initial parame-
ter values in the dynamical residual covariance matrices 

Rt =

⎡

⎢

⎢

⎣

r1,t 0

0 r2,t

⎤

⎥

⎥

⎦

, where r1,t = �2
�1
+ u2

1,t
�2
�11

 and r2,t = �2
�2
+ u2

2,t
�2
�22
 .

5.	 Also assume initial values of the mean reaction norm slopes at time 
t = 1, that is, b11,1 and b22,1, and of the reference environment val-
ues u1,ref and u2,ref. Simulations indicate that b11,1 = 0 and b22,1 = 0 
are useful values, while u1,ref and u2,ref preferably should be set to 
the mean values before the onset of the trends in Figure 1.

6.	 Set initial values y1,1 = y2,1 = 0, a1,1 = − b11,1u1,1, and 
a2,1 = − b21,1u2,1, and predict the mean reaction norm parameter 
values for t = 1 to T by the use of Equations  (8) and (11). From 
this follow the predicted mean phenotypic values according to 
y1,t = a1,t + b11,tu1,t and y2,t = a2,t + b22,tu2,t.

7.	 Search for optimal parameter values by the use of PEM, as shown 
in figure 2 in Ergon (2022a), but with the dynamical BLUP model 
instead of a GRAD model. Use the function fmincon in MATLAB, 
or a corresponding function in, for example, R.

A preliminary test with population size n = 100, and system identifica-
tion by the use of samples 41 to 60 in Figure 1, gave good prediction 
results without measurement errors in the u1,t , u2,t, y1,i,t, y2,i,t and wi,t data. 
The optimization time for the BLUP optimization by the use of an HP 
EliteBook × 360 1030 G3 laptop was as long as 3000 s, owing to the re-
peated matrix inversions for the computation of the estimated random 
effects in Equation (8). No attempts were made to speed up the optimi-
zation by the use of more efficient computations. Random measurement 
errors appear to affect especially the estimated reference environments, 
such that search bounds for these values should be rather narrow around 
the mean values of past stationary stochastic environments, which the 
population is judged to have been adapted to. Note that these refer-
ence values are not within the range of the input values from 40 to 60 
in Figure 1, which are used for the identification. Also note that for cases 
with At = In , the GRAD predictions according to Equation (13) give iden-
tical results, but with a very much shorter computation time.

(A4)

⎡
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⎢
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⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= G
�

Z
T

t
R
−1
t
ZtG+ I6

�−1

Z
T

t
R
−1
t

⎡
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⎢
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cov
�
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�
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�
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�
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⎥
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.

(B1)
(

Z
T

t
R
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t
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)−1

Z
T

t
R
−1
t
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(
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T

t

(

Rt+ZtGZ
T

t
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ZtG

)

Z
T

t
R
−1
t
.

(B2)
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Z
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t
R
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t
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)−1

Z
T

t
R
−1
t

=Z
T

t
R
−1
t

−ZT

t
P
−1
yy,t

ZtGZ
T

t
R
−1
t

=Z
T

t
R
−1
t

−ZT

t
P
−1
yy,t

(

Pyy,t−Rt

)

R
−1
t

=Z
T

t
P
−1
yy,t

.

 20457758, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10194 by H

O
G

SK
O

L
E

N
 I SO

R
O

ST
-N

O
R

G
E

 B
iblioteket V

estfold, W
iley O

nline L
ibrary on [01/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Dynamical BLUP modeling of reaction norm evolution, accommodating changing environments, overlapping generations, and multivariate data
	Abstract
	1|INTRODUCTION
	2|THEORY AND METHODS
	2.1|Notation
	2.2|Introductory example
	2.3|Background theory
	2.4|Development of the dynamical BLUP model
	2.5|Updating of mean reaction norm parameter values
	2.6|Example case without plasticity
	2.7|Errors in estimated random effects variances
	2.8|Adjustments for overlapping generations

	3|SIMULATIONS
	3.1|The aim of the simulations
	3.2|Description of toy example
	3.3|Environmental inputs and reaction norm model
	3.4|Fitness function and initial mean reaction norm values
	3.5|Simulation results

	4|SUMMARY AND DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


