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Significance of the Paper for Researchers and

Practitioners: Researchers have been unable

to reach a consensus on a common definition

of the concept of emergence, while

practitioners have experienced difficulty in

recognizing the presence of emergence within

the development of highly complex systems.

The significance of this literature review paper

is to summarize and synthesize the central

literature in the field of emergence, including

how it is described, categorized, as well as

practical applications to detect this

phenomenon. The research discusses different

approaches andmethods to detect emergence

that fit different complexity categories, as

emergence and complexity are intertwined

phenomena. The paper provides a search log

and screening process tomake the findings

reproducible. Further, the paper includes a

metadata analysis of relevant literature and

the relations between these to build

confidence in the study. Finally, the paper

contributes to the body of knowledge by

including the dynamic dimension of the

observer to the emergence vs. complexity

relation.

Abstract

Modern product development often generates systems of high complexity that are

prone to emergent behavior. The industry has a need to establish better practices to

detect inherent emergent behavior when engineering such systems. Philosophers and

researchers have debated emergence throughout history, tracing to the time of the

Greek philosopher Aristotle (384–322 B.C.) and current literature has both philosoph-

ical and practical examples of emergence in modern systems. In this review paper, we

investigate the phenomenon of emergent behavior in engineered systems. Our aim

is to describe emergence in engineered systems and propose methods to detect it,

based on literature. Emergence is in general explained as dynamic behavior seen at

macro level that cannot be traced back to the micro level. Emergence can be known

or unknown in combination with positive or negative. We find that best practices to

engineer complicated systems should contain a sensible suite of traditional approaches

and methods, while best practices to engineer complex systems need extensions to

this considering a new paradigm using incentives to guide system behavior rather than

testing it up-front.
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1 INTRODUCTION

1.1 Background

Modern product development generates large-scale assemblies con-

sisting of state-of-the-art technology applied in system-of-systems

architectures. The multi-layer architecture, the system partitioning,

and the technology development at component level drive the overall

system complexity and makes the system and the system-of-systems

prone to emergent behavior.Weobserve that industries in thedefense,

space, and aerospace domains, driven by stringent product require-

ments and long lifetime are designing systems of high complexity.

These industries search formethods todetect emergence.1 Controlling

emergence is the key factor for both operational success and failure

in system-of-systems.2 The challenge for systems engineers is to pre-

dict and analyze emergent behavior, especially undesirable behavior, in

systems-of-systems.3 System testing is traditionally seen as the prime

mechanism to control the overall system behavior, but in a system-

of-systems, this traditional approach is insufficient.4,5 Hessami and

Karcanias6 state that increasing complexity requires a higher degree
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F IGURE 1 Principal sketch of themismatch in test coverage and
emergence.

of testing, and that integration approach and tools are critical for the

success of engineering complex systems. In this paper, we relate sys-

tem complexity to the four categories of simple, complicated, complex,

and chaotic.7

System level testing in the defense, space, and aerospace industry

typically lacks coverage due to the high cost of testing at this level.

Therefore, complete system tests are rare in this typeof industry. Close

to real-system hardware test arenas are often used for real-time sim-

ulation, but even these are applied only to a limited degree because

of the resource situation (people and money) and tight project sched-

ules.While the system tests are expensive and resource consuming, the

checks are often manual, time consuming, and require system exper-

tise. Kjeldaas et al.8 indicate that the product developers do not check

all test data because it is too time consuming for busy system experts

to manually check all test data. Hence, future product developments

may not benefit from the knowledge available in the unchecked data.

In addition, there is potential for unforeseen system behavior. Figure 1

shows this potentialmismatch between the typical test coverage at dif-

ferent system levels and the emergence occurring at different system

levels. This lack in test coverage at system level often leads to emergent

behavior being discovered late in the development process or in worst

case during the operational phase of the product.8

Philosophers and researchers have been debating the phenomenon

of emergent behavior throughout history. The quote “The whole is

greater than the sum of its parts” is related to Aristotle’s (384–322 B.C.)

quote “Thewhole is something besides the parts”.9 One plus one is greater

than two due to interaction effects creating new behavior at higher

system levels. Axelsson10 gives a brief historical overview of research

regarding emergence.

Emergence is commonly addressed into four specific categories,

developed by Mittal and Rainey11: Simple, weak, strong, and spooky.

Simple and weak emergence is readily predicted and reproduced in

simplified models or simulations of the system. Contrary to weak

emergence, strong emergence is not reproduceable by system simpli-

fication. Spooky emergence will not materialize in any model, not even

models that simulates the complete system-of-systems in all details.11

In a series of papers on Emergence, McConnell12–15 discuss the

observer viewpoint and the importance of taking additional perspec-

tives when searching for causes of emergence in systems.

Emergence and complexity are two sides to the same coin, rep-

resenting degrees of difficulty for an observer to obtain a good

understanding of the system and its behavior. This also indicates the

F IGURE 2 Principal sketch of areas of interest and their overlaps.

level of effort required to achieve that understanding, as well as what

methods will be most useful in that endeavor. A sensible utilization of

humans and machines becomes essential at higher degrees of emer-

gence and complexity, and automation is then a critical measure to

exploit the areas where machines outperform humans. As emergence

shows in all levels of integration and more at higher levels, we need

to focus our efforts at the highest level of integration to extract the

main part of the non-intuitive inherent system behavior. Figure 2 visu-

alizes the four areas of interest for our research case, also illustrating

their overlapping areas. The key area to explore will be the area com-

mon to all four (gray area). Emergence is the main theme. According to

Mittal et al.16 complexity relates to emergence in the way that higher

emergence categorized behavior typically arises in higher complexity

categories requiring different measures to detect the behavior, if at all

possible. Automation has the potential to improve the coverage of sys-

tem analysis and test, and industrial companies have reported 15 ± 5

fold efficiency improvement with shifting theman versusmachine task

balance.17 Integration is the product development domain where we

focus our efforts in detecting emergence, which should start at the

beginning of the project.

Both system architecture & design as well as system integration

activities should make sure that most system errors- and undesired

behaviors are detected. It is essential to balance the time used in these

two above-mentioned activities with regards to process efficiency,

and effort spend on Systems Engineering (SE) in total. According to

Honour,18 15%of project cost spent on SE effort is optimal in the sense

of keeping the actual cost- and schedule according to plan. However,

Honour also found that the system complexity has an inverse effect on

the total SE effort, where more complex systems tend to use less SE

effort and relies more on “lower-level test-and-fix methods”. Honor’s

research is for defense systems with up to 500 system-level require-

ments and up to 50 system-level external interfaces. Emergence is not

considered in this work.
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In this paper, we conduct a literature review to find typical descrip-

tions of emergence, as well as means to detect emergent behavior. The

review will focus on emergence as a phenomenon: how it is described,

and which methods are proposed and applied to detect it. The goal of

our review is to find strategies and methods that are known to detect

emergent behavior in relevant engineered systems. We search for

strategies that make it possible for the industry to detect emergence,

in areas where the industry struggles with detecting it today.

1.2 Contributions of the review paper

The contributions from this reviewwill include:

∙ Emergence description and categorization: How the literature

explains and categorizes emergence.

∙ Emergence relation to complexity:How types of emergences appear

in types of engineered systems, and how this can depend on the

observer.

∙ Identification of practical methods to detect emergence.

1.3 Research questions

The literature reviewwill answer the following research questions:

∙ Research question (RQ): What is the existing state of knowledge of

detecting emergence in engineered systems?

∙ Sub-research question 1 (SRQ1): How does the literature explain

and categorize emergence and its relation to complexity?

∙ Sub-research question 2 (SRQ2):What approaches andmethods for

detecting emergence are available from literature?

1.4 Scope of survey

The remainder of this paper is structured as follows: Section on

Methods presents methodology used for this literature search. Sec-

tion on Results provides a review of selected literature that explains

emergence in engineered systems and propose methods of detection,

looking at differences and similarities in taxonomies andmethods. Sec-

tion on Discussion provides a discussion of the reviewed literature

addressing the research questions and defines limitations of the study.

SectiononConclusion concludes thepaper, provides gainedknowledge

to detect emergence, and proposes future research.

2 METHOD

We conducted a narrative synthesis literature review, which is part of

themixedmethods review family.19 Our goal was to get an overview of

the research in the area of interest and how we can take advantage of

this research using critical reflection in the synthesis process.19

We summarized the substance of the most relevant literature

on emergence, specifically descriptions and methods for detection

of this particular phenomenon. We investigated and debated the

applied methodologies to see if there were any connections between

methodologies used and the successful or unsuccessful outcomes.20

The authors established relevant taxonomies, descriptions, and

methods by within our field of research. We generalized trends in the

literature, to avoid an overwhelming level of details.20 We allocated

the literature into different directions, discussed these different direc-

tions, evaluated them, and concluded on the best way forward. We

discussed the research outcomes found in this literature study in terms

of the applicability to our continuing research.

The authors used a search strategy to crawl the titles, keywords, and

abstracts of the databases Web of Science,21 Scopus,22 IEEE Explore,23

Wiley Online Library,24 and Science Direct25 for defined search words.

In addition, we used author keywords and keywords plus. We com-

bined search words with Booleans, AND for different elements of the

research question, and OR for different relevant synonyms. To include

different wording in English and American, like behavior or behaviour,

we used truncation (behavio?r). To include all forms of a word (emer-

gent, emergence, emergentism), we used wildcard (emergen*). To

restrict the search to specific wording, we used phrases (“Machine

Learning”). To avoid restricting the search to specific domains we did

not use proximity operators.

3 RESULTS

3.1 Literature search and selection

The literature search results can be found in Table A1 in Appendix

A: Literature Search Results, which lists the primary sources found

through the databasesWeb of Science,21 Scopus,22 IEEE Explore,23 Wiley

Online Library,24 and Science Direct.25 The authors retrieved the docu-

ments through the University of South-Eastern Norway (USN) library

database.26

The selection criteria we used to filter out the most relevant

literature to our research were the following:

∙ Focus onemergent behavior, not other types of emergent properties

∙ Focus onmethods to detect emergent behaviors, not specific tools

∙ Focus on engineering, not other fields

The literature search log can be found in Table B1 in Appendix B: Lit-

erature Search Log, including more details regarding the searches and

findings.

The aim was to select literature fitting into our area of interest,

ref. Figure2. Figure3 shows the selectionprocess, including three steps

of screening:

∙ First, we scanned through the titles to exclude less relevant topics to

our research, resulting in a down-selection from756 to 101 records.
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F IGURE 3 Literature search selection of primary references.

∙ Second, we read the abstracts to remove uninteresting

research, resulting in a further down-selection from 101 to

77 records.

∙ Third, we skimmed through the text of the remaining articles to fil-

ter out even more not being sufficiently relevant to our research,

resulting in a final down-selection from 77 to 42 records.

Figure 3 shows the PRISMA flow diagram27 of the selection pro-

cess of the primary references found through the database searches.

Based on this search and selection process, we found central or piv-

otal literature within our field of study. This process was not sufficient

for us to be able to generalize. Additional literature of interest was

found by looking at the reference lists of the selected sources, using

the so-called “snowballing effect”.19 This, to include sufficient litera-

ture in the field of study to be able to generalize withmore confidence.

See Table A2 in Appendix A: Literature Search Results for an overview

of the secondary sources found through the “snowballing effect” from

the primary sources, which we found to support the relevant informa-

tion in the primary sources.We included 30 new records in this second

round of literature selection. These secondary references completed

the survey results, ending with an overall count of 72 records that

the authors explored. Additional 10 references, including databases

used for searching and literature review theory, completed the paper’s

reference list of 82 records.

3.2 Literature metadata-analysis and mapping

We conducted a metadata-analysis of the selected references to

ensure their validity by investigating their affiliations, publishing chan-

nels, and citations. The metadata-analysis is part of Table A1 and

Table A2 in Appendix A: Literature Search Results.
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F IGURE 4 Mapping of relevant literature.

Figure 4 maps the literature selected for further study to see which

citation relations there are among these (the color coding is for visu-

alization purposes to see the citations more easily from different

authors). Kjeldaas et al.,8 Mittal et al.,16 and Szabo and Teo28 are

the sources with the most references to others, containing informa-

tion from many of the sources of older date. Bedau,29 Holland,30 and

Mogul31 are the sources thatmost of the others are referencing, which

we then consider to be of high relevance.

3.3 Emergence descriptions

Despite having been discussed for some 2500 years, general agree-

ment on key characteristics of emergence is still lacking.10 The

description of emergence in literature is still fairly consistent.

Emergence can only occur at a system level: Axelsson10 describes

emergence as phenomena that occur only at a system level, while

Fromm32 defines a property to be emergent only if it appears on a

higher level of complexity or organization. The patterns of emergence

are only observed at a global level.33 Kopetz34 explains that “Emer-

gent properties are irreducible, holistic, and novel–they disappear when the

system is partitioned into its subsystems.”

Emergence is dependent on the context30 and give rise to unique

global properties at the system level.34 Wolf and Holvoet35 recom-

mend to study emergence in the context in which the behavior is

found.

Emergence implies interaction among systems and can also come

from the lack of interaction among systems.36 The patterns seen at

higher level arise solely from “interactions among lower-level components

acting on rules which are executed using only local information without ref-

erence to the global pattern”.33 Although the interactions are nonlinear,

Holland30 claims that it is possible “to reduce the behavior of the whole

to the lawful behavior of its parts, if we take the nonlinear interactions into

account.”

Callister and Andersson37 use the related term “technical debt”,

which could result in emergence causedbymany small shortcuts during

the architecture and design phase.

3.4 Emergence directions

Emergence appears in three different forms in literature: unpre-

dictable form only, predictable form only, and both predictable and

unpredictable forms. Table 1 shows some representative references

from the literature connected to descriptions of the three emergence

directions.

McLaughlin38 is the earliest reference to emergence we have

used in this survey and is the only one we have found claiming that

emergence is purely unpredictable. We therefore assess the claim

of emergence being purely of unpredictable character to be an out-

dated statement. The next direction to emergence we have used in

this survey came with Bedau29 claiming that emergence is purely
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TABLE 1 Representative descriptions of emergence directions from relevant literature.

Reference Descriptions of the emergence directions

McLaughlin38 Unpredictable form only:Emergence is connected to unpredictability, dismissing predictable forms of

emergence by stating that a property is either reducible or emergent. Unpredictability does not equal

emergence, since not all that is unpredictable is emergent.We can see physics, chemistry, and biology as

sub-systems.When nature integrates these sub-systems into a system, emergent behavior will show.

Scientific advances have reduced the domain of emergentism.

Bedau,29 Mnif and

Muller-Schloer39
Predictable form only:Strong (unpredictable) emergence is possible, but at the same time uncomfortably

likemagic and getting something out of nothing.Weak (predictable) emergence can explain autonomous

behavior at macro level due tomicro level dynamics. Complex systems exhibit weak emergence, and

emergence can be both foreseen and unforeseen.

Fromm,32 Holland,33 Mittal and

Rainey,11 Mittal et al.,16 Seth81
Predictable and unpredictable forms:Emergence can be divided into a deterministic and a stochastic region,

deterministic being predictable and stochastic being unpredictable. Strong emergence is just outside the

bounds of deterministic systems, entering the stochastic region. In this region, with the help of available

knowledge, the stochasticity can be controlled. Once new knowledge about the novel behavior is

obtained the system now portrays weak emergent behavior since the behavior is not novel anymore.

predictable. Bedau29 is cited in literature of newer date like Mnif

and Muller-Schloer,39 but we haven’t found any recent literature

supporting this claim. We therefore assess the claim of emergence

being purely predictable to be an outdated statement. The dominating

direction in our field of study today is the third direction, introduced to

our research in Fromm,32 including both predictable and unpredictable

types of emergence. This direction is confirmed in research of newer

dates like Mittal et al.16 and Mittal and Rainey.11 We therefore assess

the claim of emergence being both predictable and unpredictable to

be the most common understanding of the phenomenon today, which

most new research within our field build upon.

Kopetz et al.40 bring another view to predicting emergence: “We

typically exploit expected beneficial emergence for intended product per-

formance, while unexpected beneficial emergence can result in the product

performing better than that for which it was designed. Expected detri-

mental emergence typically is allowed weaknesses of a product, while

unexpected detrimental emergence could lead to unpredictable system

failure”.40 Johnson,41 as well as Zeigler,42 supports this distinction

between beneficial (positive) and detrimental (negative) emergence.

Therefore, we assess the categorization of emergence as positive or

negative in combination with expected or unexpected as valid for the

current research of emergence.

3.4.1 Observer influence

Kopetz et al.40 and Mittal et al.,16 although agreeing on the direction

of emergence, differ in how the observer influences the definition of

emergence. Mittal et al.16 include the observer in the definition of

emergence by looking at how the phenomenon is experienced by the

observer. Kopetz et al.40 on the other hand excludes the observer from

the definition of emergence, saying the phenomenon is what it is inde-

pendent of the observer. We have not found any clear and common

direction in the literature when it comes to the observer’s impact on

emergence, whether to look at the phenomenon subjectively through

the eyes of the observer or purely objectively from a definition of a

viewpoint. We therefore assess the statements of both Mittal et al.16

and Kopetz et al.40 regarding influence of the observer on emergence

to be true, dependent on your point of view being subjective or objec-

tive. Donaldson43 advocates the significant impact humans have on

systems, while McConnell15 claims the human impact to be highly

dependent on the individual. Axelsson10 states that the inclusion of

an explicit observer is essential for understanding and handling emer-

gence. In addition, the more an observer knows and understands the

less strong the emergent properties become.

From the Systems Engineering Body of Knowledge (SEBoK)44 we

see that sufficient operational experience is necessary to put us in a

position to be able to exploit positive- and avoid negative emergence,

and that preventive actions alone are not enough. “True hindsight and

understanding comes from building multiple systems of the same type

and deploying them, then observing their emergent behavior in operation

and the side effects of placing them in their environments. If those obser-

vations are done systematically, and the emergence and side effects are

distilled and captured in relation to the design of the systems—including the

variations in those designs—and made available to the community, then we

are in a position to predict and exploit the emergence.44”

3.5 Emergence and complexity

Emergence and complexity are highly related terms, and this cou-

pling is necessary to understand when researching the emergence

phenomenon.

The definition of complexity is inconsistent and often confused both

in literature and practice.45 Kopetz34 classifies a system as complex

only when the rational capabilities of the human mind cannot develop

a set of models of adequate simplicity. Axelsson10 associates complex-

ity with the amount of information required to describe it in sufficient

details.

Complex systems behavior is not reproducible as stated by Mittal

et al.16 “the cause-and effect relations of complex systems are only coherent

in retrospect and usually do not repeat.”
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Pickard and Beasley46 see complicated systems as ordered, where

cause and effect exists, although only seen by experts. On the contrary,

cause and effect do not exist in complex systems, the system is by itself

adaptive.46

Freund et al.47,48 suggests categorizing of systems complexity as

a combination of structural, dynamic, and environmental complexity.

In this paper, we are influenced by Mittal et al.16 and the Cynefin

framework,7 that categorize system complexity in simple, complicated,

complex, and chaotic systems: Simple systems typically exhibit simple

emergence, complicated systems typically exhibit weak emergence, complex

systems can potentially exhibit strong emergence, and chaotic systems can

potentially exhibit spooky emergence.

Complexity has a strong coupling towards uncertainty and

unpredictability, as discussed by Beale and Tryfonas.45 Hence,

emergence in complex systems is per definition not predictable and

the detection of emergence in complex systems is not possible with

modernmethods.Making the system predictable is therefore essential

to avoid emergence. The Cynefin framework7 proposes ways to deal

with different degrees of complexity in a system, and that analysis can

help transitioning to amore favorable category.

Mittal et al.16 describe how exploring the interface between com-

plicated and complex may generate updated knowledge of the system

behavior that benefits new observers and helps describe it in suffi-

cient details.Mnif andMuller-Schloer39 describehow the systemorder

depends on subjective decisions or capabilities of the observer.

The common understanding of complexity in the literature is that

it is a measure of how difficult it is to understand a system and see

the cause-and-effect relations, which is very much aligned with the

descriptions we see in the literature regarding emergence. Mnif and

Muller-Schloer39 have the same view on complexity as we see in Mit-

tal et al.16 with regards to emergence, being that it is dependent on

the observer. Therefore, we see both complexity and emergence as

subjective measures related to the difficulty of describing a system

(complexity) and its behavior (emergence) and being two sides to the

same coin.

3.6 Emergence detection

“We will never be able to solve all emergent misbehavior problems, espe-

cially as system complexity increases. However, we can and should be able

to recognize recurring patterns of misbehavior, and to learn enough from

experience to be able to avoid or repair many of the common patterns.31”

The literature survey reveals a large number of methods to detect

emergence. We explore three different approaches: test coverage,

manual versus automatic task balance, and combined modeling and

simulation efforts.

3.6.1 Test coverage

It is often difficult to have a full test coverage during a system test. Even

for systems where full test coverage is possible, it may be difficult to

evaluate and assess the test results.8 Methods to assess test cover-

age will help targeting the most important tests and thereby limit the

efforts andmaximizing the outcome of test.

Osmundson et al.3 support design of experiments as a means for

analyzing emergent behaviors to predict favorable and unfavorable

consequences in order to architect systems to better assure desired

results.

Khan and Jing49 lay out a formal approach to study the emergent

behaviors of a system through a method using temporal logic. Instead

of exploring all of the possible system state space, which may grow

exponentially, the temporal logic method helps in computing the polar-

ization and momentum for generating the emergent behavior set, and

accordingly fromwhich the emergent behaviors can be detected.

Fractional factorial test methods help assess test coverage. Dunn50

and Montgomery51 describe different fractional factorial test meth-

ods as means to reduce the scope of testing. Taguchi et al.52 describe

amethod for systematic testing through orthogonal arrays.

The design of experiments is an important approach to facilitate

detection of emergent behaviors. Haugen and Ghaderi53 applies two-

level fractional factorial design of experiments together with Bayesian

statistical inference to simulate and increase the prior knowledge of

the probabilities of different emergent behaviors in an engineered

system.

The authors find the fractional factorials and temporal logic meth-

ods to be good alternativemeans to explore themost interesting areas

of the parameter state space regarding detection of emergence in the

system of interest.

3.6.2 Manual and automatic tasks

The system checks are often manual, time consuming and require sys-

tem expertise. Methods that help in finding a balance between manual

and automatic tasks can help limiting the efforts required by system

experts. Haugen andMansouri17 explore an industrial test systemwith

regards to the manual versus automatic task balance, using a systems

thinking approach. McConnell13 supports that the systems thinking

approach can be useful to understand the emergent properties of a

system.

Øvergaard andMuller54 is a practical paper finding the advantageof

automation in an industrial test campaign.Giammarco36 andSzaboand

Teo28 are theoretical papers describing what is suitable for automa-

tion and not, supported by the formal analysis exploiting human and

machine strengths in Harris andNarkevicius.55

A more sophisticated method like Machine Learning is used in

today’s state of the art research in emergence. Raz et al.,56 Raman and

Jeppu,57–59 Raman et al.,60 and Raman andMurugesan61,62 are explor-

ing in recent papers howMachine Learning algorithms can help detect

emergent behavior. Although Machine Learning can be used for both

automatic and manual tasks, these papers seem to agree that automa-

tion measures can be very helpful in ensuring sufficient test coverage

and extraction of information from test data to facilitate detection of

emergent behavior.
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TABLE 2 Representative literature highlights onmanual versus automatic task balance approach.

References Literature highlights on emergence detectionmethods

Diallo et al.79 Suspicious values produced by the statistical debugging process can bemanually inspected to determine

emergent behavior.

Enoiu et al.,80 Øvergaard andMuller54 We can reduce the test time used for manual testing bymore than 90% by automating the test procedures

that are suitable for automation.

Giammarco36 Automated tools with built in simulators become essential for verifying and validating behavior logic in a

reasonable amount of time.

Haugen andMansouri17 Automating test execution and test result analysis can remove bottlenecks in the test process.

Raman and Jeppu,57–59 Raman et al.,60

and Raman andMurugesan61,62
TheMeasures of Performance (MoP’s) andMeasures of Effectiveness (MoE’s) can bemonitored using

Machine Learning to look for changes that give or could give raise to emergent behaviors. Machine

Learning could be used to adapt system behavior in tandemwith the evolution of emergent behavior in a

complex system-of-systems.

Raz et al.56 Systems Engineering is the first step towards understanding and controlling emergent behavior, while Raz

et al. assert that futuremethods will rely onMachine Learningmethods.

Szabo and Teo28 A key challenge is the need for abstractions of themicro andmacro levels, which are difficult to achieve in an

automatedmanner, and hencemost approaches rely on a post-mortem observation of the simulation by a

system expert.

We assess that automation is a beneficial and necessary approach

to detection of emergence in the system of interest, but only related

to what is suitable for automation. Table 2 presents a summary of the

representative findings from literature.

3.6.3 Combined modeling and simulation efforts

The literature supports the use of combined modeling and simulation

efforts to provide insight into the causes of observed, possibly emer-

gent behavior.1 Computer-based exploration can bring new insight.30

A system-of- systemsmodeling and simulation framework architecture

can provide identification and quantification of emergent behavior.63

Such models are required to measure the existence, type, and level of

emergent behavior of the system-of-systems.64

Kossiakoff et al.65 advocates system behavior models where per-

formance is analyzed at multiple levels (system, sub-system, and

component). Paunovski et al.66 states that although an emergent phe-

nomenon is only visible at runtime operation and cannot be captured

a priori with a model of the system, the conceptual models can be

updated with the gained knowledge through simulations.

Neace and Chipkevich67 suggests to use emergence requirements

as amethod for governance of emergence in a complex system.

Hyun et al.68 and Shin et al.69 use a fault database to incrementally

build a framework to increase the detection of emergence, being an

iterative process to increase a common understanding.

Yang et al.70 states that “Many emergent behaviors burst out in dif-

ferent simulations accompanying the changing parameters and different

scenarios.” This may lead researchers to limit their simulations such as

only covering weak emergent behavior as they find these as the most

interesting with respect to engineering applications.71

Pourafzal and Fereidunian72 use three differential equations known

as Lorenz equations in which adopting different parameters dictate

the phase transition between order and chaos, meaning the transition

between complex and chaotic systems as well as strong and spooky

emergence.

Agent-Based Simulation (ABS) simulates the interactions of

autonomous objects (called agents) to identify, explain, generate, and

design emergent behaviors. The local interactions serve to create

global structures and patterns of behavior.2,73–75 The sources of emer-

gence can be agent properties, inter-agent interactions, the influence

of the environment on the agents’ actions, and ongoing evolutionary

processes on a part of the agents as well as the environment.76

There seems to be two different approaches in the literature when

we are talking about modelling and simulation, one approach focusing

on the design part (left side of the Vee-model) and the other focusing

on the integration part (right side of the Vee-model). Both approaches

are frequently suppliedwithnewresearch, especially related toModel-

Based Systems Engineering (MBSE) and Machine Learning (ML) meth-

ods. We assess both approaches to be equally important, and that

they together form the Systems Engineering process to detect and

understand different types of emergence. We believe emergence can

be understood in the design aspect through modeling efforts, but we

need testing on different realization levels (hardware in the loop) of the

system to detect weak and higher categories of emergence.

The goal of model-based testing is to reduce the integration and

test effort of industrial systems.77 Model Based Systems Engineering

(MBSE) can benefit from simulations for early validation of the sys-

tem design.77 Model Based Systems Integration (MBSI) extends the

MBSE process by increasing the system integration impact early in the

design.78

4 DISCUSSION

The endeavor of studying and understanding the phenomenon of

emergence has been researched throughout centuries and will keep

being investigated for centuries to come.9,10 The Systems Engineer-
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ing process and methods are a good start for detecting emergence by

incorporating working procedures making this possible.56 Raz et al.56

Raman and Jeppu.57–59 Raman et al.60 and Raman andMurugesan61,62

state that modeling can help us regarding simple emergence, while

simulation is required to detect weak emergence. We can update

our modeling efforts when we understand the simulated emergent

behavior, to evolve the system design and exploit and/or mitigate the

detected emergence.

Several methods can be used within the Systems Engineering pro-

cesses to detect emergent behavior. How the testing is set up, Design

of Experiments (DoE), is crucial to facilitate detection of emergence by

providing sufficient stimuli from component interactions, human input,

and environmental impact to trigger the emergent behaviors of the

system.53 A system model with parameters related to the inputs and

features of dependencies can help see the effect of changes and causes

of emergence.1 Modeling & simulation can detect emergence but

depends on the correctness of themodel.66 Building a fault knowledge-

base can help detecting emergence butwill require building experience

through an iterative learning process.69 Statistical debugging is a soft-

ware (SW) method that can help in detecting emergence.79 Machine

Learning (ML) is a method that can detect and predict potential future

detection of emergence, but can also introduce emergence itself.56

The outcome of these findings for our ongoing research in detect-

ing emergent behavior in engineered systems is that we should take

advantage of existing methods like orthogonal arrays (fractional fac-

torial design of experiments and Taguchi matrices) to systematically

test what is relevant, as one of the paradigms to testing. Further, we

should use modeling & simulation to provide system data. Finally, we

need appropriate data analysis techniques (system model inspection,

fault knowledgebase, statistical debugging, and Machine Learning) to

extract relevant information from our systemmodels and test data.

We want to identify and take advantage of the positive

emergence, while detect and mitigate negative emergence.

Many methods have shown promising results in different case

studies.1–3,17,28,30,36,49–54,56–67,70,71,73–80 The approaches range

from intuitive specialized model views used by Guariniello et al.1 to

advanced non-intuitive methods like Machine Learning used by Raz

et al.56 Different approaches will serve different cases to a varying

degree, requiring a thorough evaluation process to select the most

appropriate method to utilize in each case. In the following, we will

discuss the proposed research questions.

4.1 SRQ1: How does the literature explain and
categorize emergence and its relation to complexity?

The phenomenon of emergence has many descriptions, but they all

roughly point in the same direction.10,30,32–36 The main idea is that the

macro level exposes behavior that cannot be traced directly back to

the micro level. Different sources categorize emergence into defined

forms and types, although they dispute the applicability of these and

the impact of the observer. There are three main directions found

in existing literature on emergence, being (1) unpredictable,38 (2)

predictable,29,39 and (3) both.11,16,32,33,81 The unpredictable direction

covers strong and spooky types of emergence,16 while the predictable

direction covers simple andweak types of emergence.16

For our ongoing research, we describe emergence as behavior at

macro level that cannot be traced directly down to micro level. We

categorize emergence as predictable (simple and weak) as well as

unpredictable (strong and spooky), and we look at it subjectively from

an observer point of view.

4.2 SRQ2: What approaches and methods for
detecting emergence are available from literature?

There are several methods within threemain approaches for detecting

emergence. The first approach is to focus on what we test to establish

a reasonable test coverage.53 Orthogonal arrays is a method used to

systematically test to a given interaction level,50–52 and using tempo-

ral logic is another related method.49 The second approach is related

to how efficient we are able to execute a test cycle, looking into the

manual versus automatic task balance.17,28,36,54,80 Machine Learning

is a method of interest to automate data analysis,56–62 and statistical

debugging is another.79 The third approach is modeling and simulation

to increase our level of understanding through simulation and updated

models.30,63,64,67,70 MBSE is an overarching method being used,77 as

well as MBSI.78 More specific methods used in modeling are sys-

tem behavior modeling,65 system interface modeling,1 and conceptual

modeling.66 More specificmethodsused in simulation aremodel-based

testing82 and agent based simulation.2,3,71,73–76

Mogul31 claims wewill never be able to solve all emergent behavior

of systems. This claim is reasonable, especially when we are deal-

ing with complex systems and/or strong emergence, leading us into a

potential infinite endeavor in pursuing all emergent behavior.

The effectiveness of detecting different types of emergent behav-

ior through simulations will vary. Simple emergence can be managed

through the systemmodel,16 anddoes not need tobe simulated. Strong

and spooky emergence are unpredictable and do not usually repeat,16

meaning that the simulation effortmaynot beworthwhile.Weakemer-

gence is then the type of emergence that can be foundmost effectively

through simulation. Modeling & simulation cannot detect all emer-

gent behaviors in the first iteration cycle, as we do not yet possess

all necessary information.66 We need additional iteration cycles to

uncover more and more of the remaining emergent behaviors inher-

ent in the system not revealed through previous iterations.66 Systems

architects can guide emergence through adapting and accommodat-

ing changes in requirements and technology, in a timely manner (see

Hsu et al.4,5 for plenum discussions on if and how we can engineer

emergence).

For our continuing research, we should focus on how to set up the

required test suite to trigger the emergent behaviors of the system. In

this process, we must evaluate the need for different types of testing

like virtual-, real-world-, hardware-, software-, and stress testing. This is

a natural first step, being a prerequisite for any value in later data anal-

ysis. Further, we should focus on data from modeling and simulation
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F IGURE 5 Relations and dynamics in emergence and complexity categorization.

iterative cycles to increase the likelihood of detecting as much as

possible of the system emergence. We need to keep in mind that the

capabilities of both the test arenas being used and the observers inter-

preting the results are impacting the subjectivity in the emergence

categorization.

4.3 RQ: What is the existing state of knowledge
of detecting emergence in engineered systems?

The current research coverage in the area of emergence stops

in the transition between weak and strong type of emergence,

weak emergence being predictable while strong emergence being

unpredictable.1,2,17,28,30,36,49–54,56–67,70,71,73–80 No strategies ormeth-

ods have proven to be successful to detect strong emergence.16 The

literature is looking at simple and weak emergence in complicated

and complex systems.1,8,57–62,66,69,79 The perceived emergence and

complexity are dependent on the observer.11,16,39 The observer may

see the emergence as strong at first, not understanding the emerg-

ing system behavior. After obtainingmore knowledge through test and

analysis, the observer may perceive the emergence as weak, under-

standing the emerging system behavior. The same observer impact

applies for complexity categories, as in the transition from a perceived

complex system to a complicated system.39

The ongoing research indicates that we are moving into a shift

of paradigm when it comes to how we deal with emergent behav-

ior in complicated versus complex systems. For a complex system, we

might need to move away from the traditional test coverage approach

and look more into incentives to adapt the system behavior.4,5,61 No

amount of testing can guarantee that a complex system will not fail,

as well as the number of permutations rendering the calculations and

storage impossible.55 Complicated systems canbe seen as sub-systems

of a complex system-of-systems, and are the bedrock of Systems

Engineering practice.46

This literature study is limited in the sense of being a narrative syn-

thesis and not a systematic review, whichmay result in not including all

relevant literature on emergence.

In this paper, we postulate that it is possible to build on existing

practices and methods to detect true weak and false strong emer-

gence in engineered true complicated and false complex systems. False

strong emergence is the part of strong emergence that has to do with

the observer’s perception due to lack of system knowledge. This will

again help us to develop best practices for emergence detection fur-

ther. By this false and true strong emergence separation, we are able to

push the boundary of emergence detection to also include the part of

perceived strong emergence that really is weak emergence. The tran-

sitions in the yellow region in Figure 5 show the part of emergence

that could benefit both academia and industry to domore evolutionary

research.

The direction for our continuing research will lay in the transi-

tion between predictable weak emergence and unpredictable strong

emergence in combination with the transition between repeatable

complicated systems and non-repeatable complex systems, see the

purple circle in Figure 5. We will look into how the Systems Engineer-

ing process and methods can help the observer to increase knowledge

sufficient to make the transition from perceived strong emergence in

a perceived complex system to what is actually weak emergence in a

complicated system. The aim is to create guidelines to facilitate the

necessary increase in knowledge through simulation, including how to

set up the test suite and how to perform the appropriate data analysis.

5 CONCLUSION

The industry developing engineered systems typically has problems

detecting emergent system behavior. These systems are designed to

exhibit certain known and desired emergent behavior, but unfortu-

nately also show some unknown and undesired behavior. The industry
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has a need to find better practices to detect more of this emergence in

engineered systems.

Emergent behavior is novel macro-level behavior that cannot be

traced directly down to the micro level parts. Interactions between

the micro-level parts cause new behavior at macro level. Emergent

behavior can be seen as a scale where increasing difficulty to predict

and understand the macro level behavior indicates a higher degree of

emergence. We need several approaches, methods, and tools, as well

as much knowledge, to detect and understand the different levels of

emergence. Increased observer knowledge can help to move the sub-

jectively experienced macro level behavior down the emergence scale.

We typically want to detect the inherent emergent behavior of the

system under test to be able to utilize the beneficial emergence and

mitigate the detrimental emergence.

Emergence is highly correlated with complexity. Complexity can be

seen as a scale where increasing difficulty to describe and understand

the system indicates a higher degree of complexity. Increased observer

knowledge can help to move the subjectively experienced complexity

down this scale. An interesting region on this scale is the transition

between complicated and complex systems. Typically, a complex sys-

tem can be seen as a system-of-systems consisting of complicated

systems. A complicated system is difficult but possible to control, while

a complex system is not controllable. Best practices to engineer compli-

cated systems should contain a sensible suite of traditional approaches

and methods, while best practices to engineer complex systems need

extensions to this considering a newparadigmusing incentives to guide

system behavior rather than testing it up-front.

Further research is needed to evaluate what approaches and meth-

ods that work to what degree to detect weak, including subjectively

strong emergence, in engineered complicated, including subjectively

complex systems. Based on this output, we will be able to create best

practices for that purpose. In addition, further research is needed to

measure how effective the above set of best practices is for complex

systems, as well as how additional steps will take effect. The Systems

Engineering community needs continuous evolutionary research on

emergence and complexity, and the research front is looking at weak

emergence in complicated and complex systems.

ACKNOWLEDGMENTS

We would like to acknowledge the Human Systems Engineering Inno-

vation Framework (H-SEIF2) project, the Norwegian Industrial Sys-

temsEngineering (NISE), -and Self-Monitoring, Analysis, andReporting

Technology (SMART) Research Groups at the University of South-

Eastern Norway for their contributions, providing valuable feedback

to our proposed work during the survey period. In addition, we would

like to acknowledge the Research Council of Norway for their fund-

ing. Finally, we would like to acknowledge the KONGSBERG company

for sharing relevant industry information through their subject matter

experts and databases.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were

created or analyzed in this study

ORCID

RuneAndreHaugen https://orcid.org/0000-0002-5567-3179

Nils-Olav Skeie https://orcid.org/0000-0001-6358-9308

GerritMuller https://orcid.org/0000-0003-1952-8377

Elisabet Syverud https://orcid.org/0000-0002-6041-071X

REFERENCES

1. Guariniello C, Khalid RA, Fang Z, Delaurentis D. System-of-systems

tools and techniques for the analysis of cyber-physical systems. Sys
Eng. 2020;23(4):480-491. doi:10.1002/sys.21539

2. Hsu J, Butterfield M. Modeling emergent behavior for systems-

of-systems. INCOSE Int Symp. 2007;17(1):1811-1821. doi:10.1002/j.
2334-5837.2007.tb02985.x

3. Osmundson JS, Huynh TV, Langford GO. KR14 emergent behavior in

systems of systems. INCOSE Int Symp. 2008;18(1):1557-1568. doi:10.
1002/j.2334-5837.2008.tb00900.x

4. Hsu J, Axelband E, Madni A, Dagli C, McKinney D. 3.5.0 can we engi-

neer the emergent behavior of a system-of-systems? INCOSE Int Symp.
2009;19(1):578-592. doi:10.1002/j.2334-5837.2009.tb00969.x

5. Hsu J, Axelband E, Rouse B, Madni A, Sheard S. 7.6.0 How to engi-

neer the emergent behavior of a system of systems. INCOSE Int Symp.
2008;18(1):895-908. doi:10.1002/j.2334-5837.2008.tb00850.x

6. Hessami AG, Karcanias N. 9.6.2 Integration of operations in pro-

cess systems: complexity and emergent properties. INCOSE Int Symp.
2011;21(1):1153-1158. doi:10.1002/j.2334-5837.2011.tb01274.x

7. Snowden D, Cognitive Edge. Accessed 25th November, 2021. https://

www.cognitive-edge.com/

8. Kjeldaas KA, Haugen RA, Syverud E. Challenges in detecting emergent
behavior in system testing. Wiley; 2021:1211-1228.

9. Ross WD. Aristotle’s metaphysics: A revised text with introduction and
commentary. Clarendon Press; 1924.

10. Axelsson J. What systems engineers should know about emergence.

INCOSE Int Symp. 2022;32(1):1070-1084. doi:10.1002/iis2.12982
11. Mittal S, Rainey L. Harnessing emergence: the control and design and

emergent behavior in system of systems engineering. 2015.
12. McConnell GR. 4.2.1 Emergence: A challenge for the systematic.

INCOSE Int Symp. 2000;10(1):202-207. doi:10.1002/j.2334-5837.

2000.tb00377.x

13. McConnell GR. 3.1.4 Emergence: A partial history of systems thinking.

INCOSE Int Symp. 2002;12(1):90-98. doi:10.1002/j.2334-5837.2002.
tb02447.x

14. McConnell GR. 6.3.3 Emergence: Open your eyes to new vis-

tas. INCOSE Int Symp. 2001;11(1):489-497. doi:10.1002/j.2334-5837.
2001.tb02332.x

15. McConnell GR. 5.3.1 Emergence: All in the minds. INCOSE Int Symp.
2012;22(1):705-717. doi:10.1002/j.2334-5837.2012.tb01366.x

16. Mittal S, Diallo S, Tolk A. emergent behavior in complex systems engineer-
ing: A modeling and simulation approach. Wiley; 2018:1-395.

17. Haugen RA, Mansouri M. Applying systems thinking to frame and explore
a test system for product verification; A case study in large defence projects.
Wiley; 2020:78-93.

18. Honour E, Systems Engineering Return on Investment. University

of South Wales; 2013. https://www.hcode.com/seroi/documents/SE-

ROI%20Thesis-distrib.pdf

19. Sutton A, Clowes M, Preston L, Booth A. Meeting the review family:

exploring review types and associated information retrieval require-

ments. 2019:202-222. doi:10.1111/hir.12276

20. Randolph J, A guide to writing the dissertation literature review.

Practical Assessment, Research, and Evaluation; 2009.

21. Clarivate. Web of Science. 2021. https://clarivate.com/

webofsciencegroup/solutions/web-of-science/

22. Elsevier. Scopus. 2021. https://www.scopus.com/home.uri

23. IEEE. IEEE Explore. 2021. https://ieeexplore.ieee.org/Xplore/home.jsp

24. Wiley.Wiley Online Library. 2022. https://onlinelibrary.wiley.com/

https://orcid.org/0000-0002-5567-3179
https://orcid.org/0000-0002-5567-3179
https://orcid.org/0000-0001-6358-9308
https://orcid.org/0000-0001-6358-9308
https://orcid.org/0000-0003-1952-8377
https://orcid.org/0000-0003-1952-8377
https://orcid.org/0000-0002-6041-071X
https://orcid.org/0000-0002-6041-071X
https://doi.org/10.1002/sys.21539
https://doi.org/10.1002/j.2334-5837.2007.tb02985.x
https://doi.org/10.1002/j.2334-5837.2007.tb02985.x
https://doi.org/10.1002/j.2334-5837.2008.tb00900.x
https://doi.org/10.1002/j.2334-5837.2008.tb00900.x
https://doi.org/10.1002/j.2334-5837.2009.tb00969.x
https://doi.org/10.1002/j.2334-5837.2008.tb00850.x
https://doi.org/10.1002/j.2334-5837.2011.tb01274.x
https://www.cognitive-edge.com/
https://www.cognitive-edge.com/
https://doi.org/10.1002/iis2.12982
https://doi.org/10.1002/j.2334-5837.2000.tb00377.x
https://doi.org/10.1002/j.2334-5837.2000.tb00377.x
https://doi.org/10.1002/j.2334-5837.2002.tb02447.x
https://doi.org/10.1002/j.2334-5837.2002.tb02447.x
https://doi.org/10.1002/j.2334-5837.2001.tb02332.x
https://doi.org/10.1002/j.2334-5837.2001.tb02332.x
https://doi.org/10.1002/j.2334-5837.2012.tb01366.x
https://www.hcode.com/seroi/documents/SE-ROI%20Thesis-distrib.pdf
https://www.hcode.com/seroi/documents/SE-ROI%20Thesis-distrib.pdf
https://doi.org/10.1111/hir.12276
https://clarivate.com/webofsciencegroup/solutions/web-of-science/
https://clarivate.com/webofsciencegroup/solutions/web-of-science/
https://www.scopus.com/home.uri
https://ieeexplore.ieee.org/Xplore/home.jsp
https://onlinelibrary.wiley.com/


474 HAUGEN ET AL.

25. Elsevier. Science Direct. 2022. https://www.sciencedirect.com/

26. Unit. ORIA. 2021. https://bibsys-almaprimo.hosted.exlibrisgroup.

com/primo-explore/search?vid=HIT

27. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 state-

ment: An updated guideline for reporting systematic reviews. BMJ.
2021;372:n71. doi:10.1136/bmj.n71

28. Szabo C, Teo Y, An integrated approach for the validation of emer-

gence in component-based simulationmodels. 2012:2739-2749.

29. Bedau MA. Weak emergence. Nous. 1997;31(s11):375-399. doi:10.
1111/0029-4624.31.s11.17

30. Holland J. Emergence. From Chaos to Order. 1999.
31. Mogul JC. Emergent (mis)behavior vs. complex software systems.

Association for Computing MachineryNew YorkNYUnited States.
2006:293-304.

32. Fromm J, Types and forms of emergence. arXiv: Adaptation and Self-

Organizing Systems. 2005;

33. Holland OT, Taxonomy for the modeling and simulation of emergent

behavior systems. In: Agent Directed Simulation Symposium, ADS 2007
- Proceedings of the 2007 Spring Simulation Multiconference, SpringSim
2007. Association for ComputingMachinery, Inc; 2007:28-35.

34. KopetzH. Emergence. Real-time systems.Real-time systems series. 2 ed.
Springer; 2011:43-45. chap 2.4.

35. Wolf T, Holvoet T. Emergence versus self-organization: different concepts
but promising when combined. Springer; 2004:1-15.

36. GiammarcoK, Practicalmodeling concepts for engineering emergence

in systems of systems. 2017:1-6.

37. Callister PS, Andersson J. Evaluation of System Integration andQualifica-
tion Strategies using the Technical Debt metaphor; a case study in Subsea
SystemDevelopment. Wiley; 2015.

38. McLaughlinB. The rise and fall of British emergentism. In: Beckermann

A, FlohrH, Kim J (eds.) Emergence or reduction? Essays on the prospects of
nonreductive physicalism. De Gruyter; 1992:49-93.

39. MnifM,Muller-Schloer C, Quantitative Emergence. 2006:78-84.

40. Kopetz H, Bondavalli A, Brancati F, Frömel B, Höftberger O, Iacob S.

Emergence in Cyber-Physical Systems-of-Systems (CPSoSs). In: Bon-

davalli A, Bouchenak S, Kopetz H, (eds.) Cyber-physical systems of
systems: Foundations – A conceptual model and some derivations: The
AMADEOS legacy. Springer International Publishing; 2016:73-96.

41. Johnson CW. What are emergent properties and how do they affect

the engineering of complex systems? Reliability Engineering and System
Safety. 2006;9(12):1475-1481. doi:10.1016/j.ress.2006.01.008

42. Zeigler BP. A note on promoting positive emergence and man-

aging negative emergence in systems of systems. The Journal of
Defense Modeling and Simulation. 2016;13(1):133-136. doi:10.1177/
1548512915620580

43. Donaldson W. In praise of the “Ologies”: A discussion of and frame-

work for using soft skills to sense and influence emergent behaviors

in sociotechnical systems. Systems Engineering. 2017;20(5):467-478.
doi:10.1002/sys.21408

44. Adcock R, Jackson S, Fairley D, Singer J, Hybertson D, Cloutier RJ,

ed. “Emergence” in The Guide to the Systems Engineering Body of

Knowledge (SEBoK). 2021. http://www.sebokwiki.org

45. Beale D, Tryfonas T. Exploration of the complex ontology. INCOSE Int
Symp. 2018;28(1):1549-1563. doi:10.1002/j.2334-5837.2018.00567.
x

46. Pickard AC, Beasley R. Engineering complicated systems still needs

systems engineering and thinking. INCOSE Int Symp. 2022;32(1):721-
736. http://doi.org/10.1002/iis2.12960

47. Freund L, Al-Majeed S, Millard A, Towards the definition of a strategic

complexity management framework for complex industrial systems.

2021.

48. Freund L, Al-Majeed S,Millard A, Case studies key-findings of a strate-

gic complexity management framework for industrial manufacturing

systems. 2021.

49. Khan TA, Wang J. On formalization of emergent behaviors in multia-

gent systemswith limited interactions. 2016:0553-0558.

50. Dunn K, Process improvements using data. 2021.

51. Montgomery DC. Design and analysis of experiments. 8th ed., Wiley;

2017.

52. Taguchi G, Jugulum R, Taguchi S. Computer-based robust engineering:
Essentials for DFSS. ASQQuality Press; 2004.

53. Haugen RA, Ghaderi A, Modelling and simulation of detection rates of

emergent behaviors in system integration test regimes. Vitenskapelig

artikkel. Linköping Electronic Conference Proceedings. 2021;
54. Øvergaard A, Muller G. System verification by automatic testing. Wiley;

2013:356-367.

55. Harris SD, Narkevicius JM. Emergent failure modes and what to do

about them. INCOSE Int Symp. 2016;26(1):1044-1058. doi:10.1002/j.
2334-5837.2016.00210.x

56. Raz AK, Llinas J, Mittu R, Lawless W, Engineering for emergence in

information fusion systems: A review of some challenges. In: FUSION
2019 - 22nd International Conference on Information Fusion. Institute of
Electrical and Electronics Engineers Inc.; 2019.

57. Raman R, Jeppu Y, Formal validation of emergent behavior in a

machine learning based collision avoidance system. In: SYSCON 2020
- 14th Annual IEEE International Systems Conference, Proceedings. Insti-
tute of Electrical and Electronics Engineers Inc.; 2020.

58. Raman R, Jeppu Y, Does the complex SoS have negative emergent

behavior? Looking for violations formally. In: 15th Annual IEEE Inter-
national Systems Conference, SysCon 2021 - Proceedings. Institute of

Electrical and Electronics Engineers Inc.; 2021.

59. Raman R, Jeppu Y, An approach for formal verification of machine

learning based complex systems. 2019:544-559.

60. RamanR,GuptaN, JeppuY. Framework for formal verification ofmachine
learning based complex system-of-system. Wiley; 2021.

61. Raman R,Murugesan A. Framework for complex SoS emergent behav-

ior evolution using deep reinforcement learning. INCOSE Int Symp.
2022;32(1):809-823. doi:10.1002/iis2.12965

62. Murugesan A, Raman R, Reinforcement learning for emergent behav-

ior evolution in complex system-of-systems. IARIA; 2021.

63. Cummings MA, Identifying and quantifying emergent behav-

ior through system of systems modeling and simulation. 2015.

https://calhoun.nps.edu/handle/10945/47243

64. Bondar S, Hsu JC, Pfouga A, Stjepandić J. Agile digital transformation

of system-of-systems architecturemodels using Zachman framework.

J Ind Inf Integr. Sep 2017;7:33-43. doi:10.1016/j.jii.2017.03.001
65. Kossiakoff A, FlaniganDA, Seymour SJ, BiemerMS. Systems engineer-

ing principles and practice. Systems Engineering &Management. 3rd ed..
Wiley; 2020.

66. Paunovski O, Eleftherakis G, Cowling AJ. Disciplined exploration of

emergenceusingmulti-agent simulation framework.Article Comput Inf.
2009;28(3):369-391.

67. Neace KS, Chipkevich MBA, Designed complex adaptive systems

exhibiting weak emergence. In: Proceedings of the IEEE National
Aerospace Electronics Conference, NAECON. Institute of Electrical and

Electronics Engineers Inc.; 2018:214-221.

68. Hyun S, Song J, Shin S, Baek YM, Bae DH, Pattern-based analysis of

interaction failures in systems-of-systems: A case study on platoon-

ing. In: 2020 27th Asia-Pacific Software Engineering Conference (APSEC).
2020:326-335.

69. Shin S,HyunS, ShinY, Song J, BaeD,Uncertainty based fault type iden-

tification for fault knowledge base generation in system of systems.

2021.

70. Yang KW, Chen YW, Lu YJ, Zhao QS, The study of guided emergent

behavior in system of systems requirement analysis. In: 2010 5th
International Conference on System of Systems Engineering, SoSE 2010.

2010.

71. Singh S, Lu S, Kokar MM, Kogut PA, Martin L, Detection and classifi-

cation of emergent behaviors usingmulti-agent simulation framework

(WIP). Society forModeling and Simulation International (SCS); 2017.

72. Pourafzal A, Fereidunian A, A complex systems approach to feature

extraction for chaotic behavior recognition. 2020:1-6.

https://www.sciencedirect.com/
https://bibsys-almaprimo.hosted.exlibrisgroup.com/primo-explore/search?vid=HIT
https://bibsys-almaprimo.hosted.exlibrisgroup.com/primo-explore/search?vid=HIT
https://doi.org/10.1136/bmj.n71
https://doi.org/10.1111/0029-4624.31.s11.17
https://doi.org/10.1111/0029-4624.31.s11.17
https://doi.org/10.1016/j.ress.2006.01.008
https://doi.org/10.1177/1548512915620580
https://doi.org/10.1177/1548512915620580
https://doi.org/10.1002/sys.21408
http://www.sebokwiki.org
https://doi.org/10.1002/j.2334-5837.2018.00567.x
https://doi.org/10.1002/j.2334-5837.2018.00567.x
https://doi.org/10.1002/iis2.12960
https://doi.org/10.1002/j.2334-5837.2016.00210.x
https://doi.org/10.1002/j.2334-5837.2016.00210.x
https://doi.org/10.1002/iis2.12965
https://calhoun.nps.edu/handle/10945/47243
https://doi.org/10.1016/j.jii.2017.03.001


HAUGEN ET AL. 475

73. Chan WKV, Son Y, Macal CM, Agent-based simulation tutorial - sim-

ulation of emergent behavior and differences between agent-based

simulation and discrete-event simulation. 2010:135-150.

74. Chan WKV, Interaction metric of emergent behaviors in agent-based

simulation. 2011:357-368.

75. Hsu J, Clymer J, Garcia Jr J, E Gonzalez. Agent-based modeling

the emergent behavior of a system-of-systems. INCOSE Int Symp.
2009;19(1):1581-1590. doi:10.1002/j.2334-5837.2009.tb01036.x

76. Kubic A. Towards a formalization of emergence. J Artif Life.
2003;9(1):41-65. doi:10.1162/106454603321489518

77. Zeigler B, Mittal S, Traore M. MBSE with/out simulation: State of

the art and way forward. Article Sys. 2018;6(4):18. doi:10.3390/
systems6040040

78. Montgomery PR, Model-Based System Integration (MBSI) - Key

attributes ofMBSE from the system integrator’s perspective. 2013:

79. Diallo SY, Lynch CJ, Gore R, Padilla JJ. Emergent behavior

identification within an agent-based model of the Ballis-

tic Missile defense system using statistical debugging. J Def
Model Simul-Appl Methodol Technol-JDMS. 2015;13(3):275-289.

doi:10.1177/1548512915621973

80. Enoiu E, Sundmark D, Causevic A, Pettersson P, A comparative study

of manual and automated testing for industrial control software.

ResearchGate; 2017:412-417.

81. Seth AK, Measuring emergence via nonlinear granger causality.

2008:545-553.

82. Tretmans J, Tangram: Model-based integration and testing of complex

high tech systems. 2007.

AUTHOR BIOGRAPHIES

Rune André Haugen is an industrial-PhD

candidate at the University of South-

Eastern Norway (USN). He was in ser-

vice with the Royal Norwegian Air Force

(RNoAF) from 1997 to 2003, including

graduation from the RNoAF Officer Can-

didate School in Stavern (1999) and the

RNoAFAcademy in Trondheim (2001). He

holds both a BSc (2006) and a MSc (2013) in Systems Engineering

from USN. He has worked as a design engineer at FMC Kongsberg

Subsea from2006 to2008 (3Dmodeling), and as a systemengineer

at Kongsberg Defence and Aerospace since 2008 (system design

and system test).

Nils-Olav Skeie got his MSc in Cybernet-

ics from Norwegian University of Science

and Technology (NTNU) in 1985. He

worked with system development within

the computer, aviation and maritime

industry for more than 20 years before

receiving a PhD within machine learning

in 2008 in a cooperation between NTNU

and the University of South-Eastern Norway (USN). In 2006 he

went back to the academia and has been teaching BSc, MSc and

PhD students in software engineering and system engineering. He

continued to work as a part time system architect for themaritime

industry from 2008 to 2015. He became a professor of industrial

machine learning at USN in 2020.

Gerrit Muller, originally from the Nether-

lands, received his MSc in physics from

the University of Amsterdam in 1979. He

worked from 1980 until 1997 at Philips

Medical Systems as a system architect,

followed by 2 years at ASML as a man-

ager of systems engineering, returning to

Philips (Research) in 1999. Since 2003 he

has worked as a senior research fellow at the Embedded Systems

Institute in Eindhoven, focusing on developing system architecture

methods and the education of new system architects, receiving his

PhD in 2004. In January 2008, he became a full professor of sys-

tems engineering at the University of South-Eastern Norway. He

continues towork as a senior research fellowat theEmbeddedSys-

tems Institute in Eindhoven in a part-time position. All information

(System Architecture articles, course material, curriculum vitae)

can be found at: Gaudí systems architecting http://www.gaudisite.

nl/

Elisabet Syverud is an Associate Profes-

sor in systems engineering at the Uni-

versity of South-Eastern Norway. She has

20 years of work experience from the

industry, including 3 years at KDAs mis-

sile division as part of the Systems Engi-

neering group. She received her MSc in

Aerospace Engineering from the Univer-

sity of Kansas, US, and her PhD in Thermal Energy from the

Norwegian University of Science and Technology in Trondheim,

Norway. She started her industrial career in 1993 and has worked

in multiple roles in the oil & gas and defense industries for almost

20 years. Since 2019, she is Associate Professor of Systems Engi-

neering and Head of Department Science and Industry Systems at

USN.

How to cite this article: Haugen RA, Skeie N-O,Muller G,

Syverud E. Detecting emergence in engineered systems: A

literature review and synthesis approach. Systems Engineering.

2023;26:463–481. https://doi.org/10.1002/sys.21660

https://doi.org/10.1002/j.2334-5837.2009.tb01036.x
https://doi.org/10.1162/106454603321489518
https://doi.org/10.3390/systems6040040
https://doi.org/10.3390/systems6040040
https://doi.org/10.1177/1548512915621973
http://www.gaudisite.nl/
http://www.gaudisite.nl/
https://doi.org/10.1002/sys.21660


476 HAUGEN ET AL.
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APPENDIX B: LITERATURE SEARCH LOG

TABLE B1 Search log for literature search in relevant databases.

Date Database

Searchwords combinedwith AND,

OR, NOT Limitations Results Comments/Notes

08.11.2021 Web of Science (WoS) TS= (Emergen* ANDBehavio* AND

Complex* AND System* AND
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51

15 (title)
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08.11.2021 Web of Science (WoS) TS= (Emergen* ANDBehavio* AND

Complex* AND System* AND

“Machine Learning”)

41

8 (title)
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3 (title)

2 duplicates (title)

08.11.2021 Web of Science (WoS) KP= (Emergen* AND behavio* AND
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36

0 (title)
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08.11.2021 Web of Science (WoS) AK= (Emergen* AND behavio* AND
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8

4 (title)
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Web of Science 155

28 (title)
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2 duplicates within
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7 (title)

–

(Continues)
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TABLE B1 (Continued)

Date Database

Searchwords combinedwith AND,

OR, NOT Limitations Results Comments/Notes

SCOPUS 271

21 (title)

17 (abs)

8 (text)

8 duplicates with

WoS

3 roadmap

10.11.2021 IEEE (“All Metadata”:Emergen*) AND (“All
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Metadata”:Complex) AND (“All

Metadata”:System*) AND (“All

Metadata”:Engineering) AND (”All

Metadata”:Model*) AND (“All

Metadata”:Simulat*)

119

8 (title)

–

10.11.2021 IEEE (“All Metadata”:Emergen*) AND (“All

Metadata”:Behavio*) AND (“All

Metadata”:Complex) AND (“All

Metadata”:System*) AND (“All

Metadata”:”Machine Learning”)

28

5 (title)

1 duplicate (title)

10.11.2021 IEEE (“All Metadata”:Emergen*) AND (“All

Metadata”:Behavio*) AND (“All

Metadata”:System*) AND (“All

Metadata”:Engineering) AN“ (“All

Metadata”:Model*) AND (“All

Metadata”:Simulati*) AND (“All

Metadata”Identifi* OR detect*))

72

6 (title)

2 duplicates (title)

05.10.2022 IEEE (“Document Title”:Complexity) AND

(“All Metadata”:SoSE)

2014-2022 9

4 (title)

2 (abs)

05.10.2022 IEEE (“Abstract”:”Fault Knowledge Base”)

OR (“Abstract”:”Fault Database”)

AND (“All Metadata”:SoSE)

2014-2022 12

2 (title)

IEEE 240

22 (title)

20 (abs)

9 (text)

3 duplicates within

IEEE 5 duplicates

with Scopus

04.10.2022 Wiley “Emergence” in Title and “Complexity”

anywhere and “Systems

Engineering” anywhere

Systems

Engineering

OR INCOSE

International

Symposium

44

19 (title)

15 (abs)

05.10.2022 Wiley Automatic* in Title and Test* in Title

and Regression anywhere

Systems

Engineering

OR INCOSE

International

Symposium

1

1 (title)

05.10.2022 Wiley “System-of-Systems” in Title and

Complexity in Keywords and

“Emergent Behavior” anywhere

Systems

Engineering

3

2 (title)

1 (abs)

07.10.2022 Wiley “Systems Engineering” anywhere and

“Emergence” in Abstract and

“Complicated System” in Abstract

and “Complex System” in Abstract

INCOSE

International

Symposium

4

2 (title)

11.10.2022 Wiley “Systems+Engineering+Practice” in

Title and “Emergence ANDComplex

SystemAND System Integration”

anywhere

2020-2022

Books

16

5 (title)

1 (text)

(Continues)
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TABLE B1 (Continued)

Date Database

Searchwords combinedwith AND,

OR, NOT Limitations Results Comments/Notes

11.10.2022 Wiley “Technical+Debt” in Title and “System

Integration” anywhere and

“”Systems Engineering”” anywhere

4

1 (title)

Wiley 72

29 (title)

20 (abs)

20 (text)

1 duplicate with

SCOPUS

05.10.2022 Science Direct Title, abstract, keywords: Model Based

System Engineering

Title: Model Based System Integration

18

1 (title)

Science Direct 18

1 (title)

1 (abs)

1 (text)

Note:We could preferably update the searchwords to do this screening processmore automatically by using theNOToperator. Some recordswere duplicates

in between the different search words we used in the same database, and some records were duplicates in between the different databases. A few of the

records were put on a roadmap for later study because they were focusing more on the tools than the methods. For some records, we were not able to

retrieve the full text documents.
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